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ABSTRACT

This paper deals with a fusion-based change detection (CD) frame-

work for multi-band images with different spatial and spectral reso-

lutions. The first step of the considered CD framework consists in

fusing the two observed images. The resulting fused image is sub-

sequently spatially or spectrally degraded to produce two pseudo-

observed images, with the same resolutions as the two observed im-

ages. Finally, CD can be performed through a pixel-wise compari-

son of the pseudo-observed and observed images since they share the

same resolutions. Obviously, fusion is a key step in this framework.

Thus, this paper proposes to quantitatively and qualitatively com-

pare state-of-the-art fusion methods, gathered into four main fami-

lies, namely component substitution, multi-resolution analysis, un-

mixing and Bayesian, with respect to the performance of the whole

CD framework evaluated on simulated and real images.

Index Terms— Change detection, hyperspectral and multispec-

tral imaging, fusion, heterogeneous sensors.

1. INTRODUCTION

Change detection (CD) compares images acquired over the same ge-

ographical spot at different times. The objective is to generate a map

representing the portions of the scene that have changed between the

acquisitions. Most CD methods [1] rely on the practical scenario

whereby images to be compared are of the same modalities (optical,

radar) and of same spatial and spectral resolutions, e.g., panchro-

matic (PAN), multispectral (MS) or hyperspectral (HS). Under this

scenario, CD is obtained through a pixel-wise comparison of the two

images. The operations involved in this comparison depend upon the

considered modality. In a nutshell, this comparison is mainly based

upon differences (respectively ratios) in the case of optical (respec-

tively SAR) images. Note that the majority of existing CD methods

are devoted to this scenario. However, this scenario is not represen-

tative of all the situations where CD must be addressed [2]. Natu-

ral disasters, punctual missions, defense and security are examples

where CD should handle images with different resolutions and possi-

bly of different modalities. Robust and reliable CD methods tailored

to these situations are thus needed. Recently, new approaches [2, 3]

have been proposed to deal with images of the same modality but

with different resolutions. Both approaches consists in fusing the

two observed images to produce a fused image of high spatial and
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spectral resolution. In [2], two pseudo-observed images, with the

same resolutions as the two observed images, are subsequently de-

rived by degrading the fused image. Then, CD can be classically

performed through a pixel-wise comparison of the pseudo-observed

and observed images sharing the same resolutions. Note that the final

change map possesses the same high resolution as the fused image.

Consequently, these approaches have a comparative advantage over

state-of-the-art techniques, which individually and independently re-

sample the observed images to a common (low) resolution, lead-

ing to a change map with low resolution. Moreover, each step of

the framework proposed in [2] (fusion, prediction and pixel-wise

change detection) can be tailored by the end-user, bringing an ad-

ditional flexibility to the method. Consequently, this paper exploits

this flexibility by experimenting the most powerful state-of-the-art

fusion methods in the case of PAN, MS and HS images. Indeed,

these image modalities are ubiquitous since, according to the UCS

Satellite Database [4], the majority of Earth observation satellites are

embedded with (multiband) optical sensors. For that reason, [5] has

proposed a deep comparative study on the state-of-the-art MS and

HS data fusion methods, gathered into 4 main families, namely com-

ponent substitution (CS), multi-resolution analysis (MRA), spectral

unmixing and Bayesian techniques. This paper proposes to compare

the performance of the whole CD framework when the fusion step

is conducted by one algorithm chosen in each of these fusion fam-

ilies. Section 2 briefly recalls the CD framework proposed in [2].

Section 3 describes the state-of-the-art fusion methods that will be

incorporated into the CD framework. Section 4 analyzes the CD per-

formance obtained through simulated and real images when consid-

ering these algorithms as the fusion step. Conclusions are reported

in Section 5.

2. CHANGE DETECTION: A FUSION-BASED APPROACH

2.1. Forward model and change hypothesis

Let consider two observed multi-band optical images acquired over

the same geographical spot at two different times ti and tj . Without

loss of generality, assume that the image acquired at time ti is a high

spatial low spectral resolution (HR) image and the one acquired at

time tj is a low spatial high spectral resolution (LR) image denoted

respectively by Y
ti
HR ∈ R

nλ×n and Y
tj
LR ∈ R

mλ×m where nλ

(resp., mλ) and n (resp. m) denote the numbers of bands and pixels

of the HR (resp. LR) images with mλ > nλ and n > m. These

observed images can be seen as the individual results of two degra-

dations of two (unobserved) high spatial and spectral resolution la-

tent images Xtk ∈ R
mλ×n (k = i, j) by two operators denoted by

THR [·] and TLR [·], respectively. Note that the two unobserved la-



tent images are assumed to share the same spatial and spectral char-

acteristics. When the two observed images have been acquired at

the same time, i.e., ti = tj , no change is expected and the latent

images X
ti and X

tj should represent exactly the same scene, i.e.,

X
ti = X

tj , X. Recovering an estimate X̂ of X from Y
ti
HR

and Y
tj
LR can be cast as a fusion problem. However, when ti 6= tj ,

changes may have occurred meanwhile. Thus, no common latent

image X can be defined since X
ti 6= X

tj . However, since X
ti and

X
tj represent the same area of interest, they are expected to keep a

certain level of similarity. Therefore, the fusion process does not lead

to a common latent image anymore, but to a pseudo-latent image X̂

from the observed image pair Y
ti
HR and Y

tj
LR. The pseudo-latent

image can be interpreted as the best joint approximation of latent

images Xti and X
tj . The no-change hypothesis H0 corresponding

to the case of a perfect fusion process, and the change hypothesis H1

can be formulated as, respectively,

H0 :

{

Y
ti
HR = Ŷ

ti
HR

Y
tj
LR = Ŷ

tj
LR

H1 :

{

Y
ti
HR 6= Ŷ

ti
HR

Y
tj
LR 6= Ŷ

tj
LR

(1)

where

Ŷ
ti
HR , THR

[

X̂

]

, Ŷ
tj
LR , TLR

[

X̂

]

(2)

are the two predicted HR and LR images from the estimated pseudo-

latent image X̂.

Note that the equalities/inequalities in (1) should be considered

pixel by pixel, leading to a change/no change decision for each pixel

of the HR and LR images. The majority of the fused image pixels

correspond to the truly observed scene. The few remaining ones,

corresponding to locations impacted by the changes, are expected to

suffer from spatial and spectral aberrations due to the inconsistency

of the information between the two observed images. Note that the

pixel-wise rules to decide between H0 and H1 provide two change

maps with the same resolution as the HR and LR images.

2.2. 3-Step Framework

Capitalizing on the aforementioned forward model and change hy-

pothesis, the CD framework proposed in [2] mainly consists of the

following three steps:

1. fusion: estimating X̂ from Y
t1
HR and Y

t2
LR,

2. prediction: reconstructing Ŷ
t1
HR and Ŷ

t2
LR from X̂,

3. pixel-wise change detection: deriving HR and LR change

maps D̂HR and D̂LR associated with the respective pairs of

observed and predicted HR and LR images, namely,

ΥHR =
{

Y
t1
HR, Ŷ

t1
HR

}

and ΥLR =
{

Y
t2
LR, Ŷ

t2
LR

}

.

Note that the fusion and pixel-wise change detection steps can

be tailored by the end-user providing flexibility to better fit the target

problem.

3. STATE-OF-THE-ART FUSION METHODS

This section briefly describes state-of-the-art fusion methods that

are considered to perform the first step of the CD framework de-

scribed in Section 2.2, specifically: Gram-Schmidt adaptive (GSA),

generalized Laplacian pyramid (GLP-HS), coupled nonnegative ma-

trix factorization (CNMF), hyperspectral superresolution (HySure)

and fast fusion based on Sylvester equation (FUSE). All methods

have been extensively studied in [5] and showed the best fusion

performance for several datasets. They are representative instances

of different categories of fusion methods (CS, MRA, Unmixing and

Bayesian) as exposed in [5]. For more information about the imple-

mentation of the aforementioned methods, the interested reader is

invited to consult [5].

GSA – This CS-based method, proposed by [6] explicitly relies

on the spectral response function (SRF). The computation of the

synthetic intensity component, one of the basis for CS methods, is

made by linear regression between the high resolution image and

lower resolution bands.

GLP – The GLP method, introduced by [7] is part of the MRA

methods in which spatial details in each low resolution band are

obtained from the high resolution image and its low-pass versions

multiplied by a gain factor. The implementation presented in [5]

proposes to adopt a global gain instead of a locally one and a Gaus-

sian filter as low-pass filtering.

CNMF – The CNMF method, proposed by [8], consists in al-

ternately unmixing the two observed images in order to estimate

the spectral signatures and the high resolution abundance maps.

This method can be classified into an unmixing subdivision of

subspace-based methods. The sensors characteristics SRF and PSF

are incorporated into the initialization of the spectral signatures and

the low resolution abundance maps, which contributes to the con-

vergence towards a better local optimum of the cost function.

HySure – The HySure method, introduced by [9], uses total varia-

tion regularization into a subspace-based HS-MS fusion framework.

This approach preserves the edges and the smoothness of homoge-

neous regions. The fusion task is formulated as Bayesian inference

problem and solved though convex optimization.

FUSE – The FUSE method, proposed by [10], is a Bayesian ap-

proach for hyperspectral image fusion. It derives the maximum a

posteriori estimator of the fused image via the exact resolution of

a Sylvester equation. The prior knowledge of the relative SRF and

of the PSF is required. The proposed method shows high compu-

tational performance and facilitates the addition of prior constraint

information.

4. EXPERIMENTAL RESULTS

This section analyzes the performance of the CD framework when

the fusion step is performed through one of the methods listed in

Section 3. Real data for CD is rarely available. Thus, to quantita-

tively evaluate the CD framework in terms of detection performance,

the simulation protocol proposed in [2] has been used to generate

observed and latent images from a single reference HR hyperspec-

tral (denoted HR-HS) image. Besides, a qualitative evaluation of

the most efficient fusion methods have been conducted on two real

images.

4.1. Quantitative results

Simulation protocol – The CD simulation protocol [2] requires

a high spatial resolution hyperspectral (HR-HS) reference image,

which is chosen as a pre-corrected 610 × 330 × 93 HS image of

the Pavia University, Italy, acquired by the reflective optics system



imaging spectrometer (ROSIS) sensor. Given this single HR-HS ref-

erence image, several change masks have been manually generated.

For each mask, a particular type of change has been applied, for

instance, by replacing the whole change mask region by different

pixels, or by rotating its content. The constructed simulation dataset

is composed of 15 pairs of HR-HS X
ti and X

tj images after and

before change, with associated ground-truth change maps. Then, to

generate the observed images Y
t1
HR and Y

t2
LR, two different spec-

tral degradations and one spatial degradation have been considered.

The first spectral degradation corresponds to a 4-band LANDSAT

MS response (Scenario 1) while the other is associated with a 43-

band averaging PAN response (Scenario 2). The spatial degrada-

tion response consists in a 5 × 5 Gaussian blur with equal down-

sampling by d = 5 in vertical and horizontal directions. By combin-

ing and applying these spatial and spectral degradations to each im-

age of the HR-HS pairs
{

X
ti ,Xtj

}

, HR-MS/PAN and LR-HS im-

ages
{

Y
t1
HR,Y

t2
LR

}

and their respective ground-truth change maps

have been obtained. The performance of proposed fusion-based CD

framework will be averaged over the whole dataset for each scenario.
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Fig. 1: Final ROC curves: (a) Scenario 1 and (b) Scenario 2.

Figures-of-merit – The detection performance assessment and the

evaluation of the impact of the chosen fusion method are achieved

through the receiving operator characteristics (ROC) curve, which

plots the probability of the probability of detection (PD) as a func-

tion of the probability of false alarm (PFA). One of the advantages

of the considered CD framework is to allow both HR and LR change

maps to be derived. Based on the results reported in [2], one chooses

to estimate the HR change map (DHR) by conducting a compo-

nent vector analysis (CVA) [11], a classical pixel-wise CD method,

on the pair ΥHR. Within this evaluation scenario, the CD frame-

work is expected to perform well if the underlying fusion method

produces an estimated pseudo-latent image spectrally biased to the

HR image. Additionally, two quantitative measures of detection per-

formance can be extracted from these ROC curves: the area under

the curve (AUC), corresponding to the integration of the ROC curve

and the distance (Dist.) between the interception of the ROC curve

with the diagonal line, PFA = 1 − PD, and the no detection point

(PFA = 1,PD = 0). For both criteria, the better the detection, the

closer to 1 the measure.

Results – Figure 1 and Table 1 present the averaged ROC curves

and associated metrics obtained with the five fusion methods for Sce-

nario 1 (HR-MS and LR-HS images) and Scenario 2 (HR-PAN and.

LR-HS images). For both scenarios, FUSE and HySure methods

provide the best detection performance in terms of the evaluation

metrics. Note that, both techniques require a prior knowledge of

SRF and PSF. Both responses are also used to predict the pseudo-

Table 1: Detection performance (AUC and normalized distance).

D̂GSA D̂GLP D̂CNMF D̂HySure D̂FUSE

Sc. 1
AUC 0.728023 0.907081 0.843431 0.967933 0.986951

Dist. 0.675268 0.835084 0.781578 0.912291 0.951295

Sc. 2
AUC 0.571118 0.80509 0.625677 0.890669 0.957227

Dist. 0.542754 0.728173 0.582358 0.819382 0.933993

observed images in the second step of the CD framework. Besides,

the ideal fusion method designed for the CD framework should pro-

duce consistent pixel values in no-change regions and aberrations

in change regions. Therefore, discrepancies between the first and

second steps of the CD framework may dramatically increase the

number of aberrations which produce false alarms and consequently

reduce the detection performance. More generally, as already men-

tioned before, within the adopted evaluation scenario, CD perfor-

mance depends on whether the pseudo-latent image estimated by the

fusion method, and thus the corresponding pseudo-observed HR and

LR images, is spectrally biased. The results demonstrate the differ-

ence in the characteristics of the different fusion methods: GSA pro-

duces a fused image biased to the MS image; CNMF creates some-

thing intermediate; GLP, FUSE, and HySure produce those biased to

the HS image. These characteristics play a key role in the presented

CD framework although they were not significant for the conven-

tional image fusion problem where no change is expected.

4.2. Qualitative evaluation

Finally, to compare qualitatively the detection performance of the

CD framework according to a given fusion method, a pair of real

LR-HS and HR-MS images acquired at different dates has been ana-

lyzed. These images Y
t2
LR and Y

t1
HR have been acquired by AVIRIS

and Sentinel 2 sensors over the Lake Tahoe region (CA, USA) on

September 19th 2014 and April 12th, 2016, respectively. The LR-

MS image Y
t2
LR is of size 180×175×224 characterized by a ground

sampling distance (GSD) of 30m [12]. According to the spectral re-

sponse of the Sentinel 2 sensor [13], the HR-MS image Y
t1
HR is of

size 540×525×3 with a GSD of 10m and has a visible RGB spectral

range covering 29 bands of the LR-HS image. Fig. 2(a)–(b) shows

the LR-HS and HR-MS images that have been manually geograph-

ically aligned. The resulting CD binary masks recovered by the the

most efficient fusion methods identified in the previous paragraph,

namely HySure and FUSE, combined with the IRMAD pixelwise

CD technique [14], are depicted in Fig. 2(c)–(e).

For this pair of images, the ground truth information (i.e., in

term of a binary map of actual changes) is not available. However,

a visual inspection reveals that all methods succeed in recovering

the most significant changes between the two images, namely, the

pixels corresponding to the lake drought. Nevertheless, as pointed

by the quantitative results, the FUSE method provides the highest

detection rates among the tested methods, mostly by producing less

false alarms. Note that, CD binary masks can be computed at HR,

which helps in detecting finer details, as illustrated by the zoomed

regions in Fig. 2(e)–(g).

5. CONCLUSIONS

This paper studied the appropriateness of state-of-the-art fusion

methods as part of a general CD framework dedicated to multiband

optical images. The comparison criterion is the final CD perfor-



(a) Y
t2
LR (b) Y
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(c) D̂FUSE (d) D̂HySure

(e) zoomed Y
t2
LR (f) zoomed Y
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(g) zoomed D̂FUSE (h) zoomed D̂HySure

Fig. 2: Real scenario (LR-HS and HR-HS): (a) LR-HS observed

image Y
t2
LR, (b) HR-PAN observed image Y

t1
HR, (c) change mask

D̂FUSE estimated by FUSE approach, (d) change mask D̂HySure

estimated by HySure approach. From (e) to (g): zoomed versions of

the regions delineated in red in (a)–(d).

mance. This framework relies on the presence of hybrid (resp.

non-hybrid) pixels, corresponding to change (res. no-change) re-

gions. The hybrid pixels result from the fusion of the multi-band

optical images of the same scene acquired before and after a change.

The framework is composed of three steps: fusion, prediction and

pixel-wise change detection. The aim of the fusion step is to pro-

duce the hybrid/non-hybrid pixel map at a high resolution. The

prediction step degrades the fused image according to the acquisi-

tion model. The pseudo-observed images have the same resolutions

as the truly observed images. The final step applies a conventional

CD method to the pair of observed/pseudo-observed images in or-

der to identify the changed pixels. Therefore, if the fusion process

does not correctly produces the hybrid pixels, the detection step

may not accurately detect the change regions. The CD framework

was tested according to different state-of-the-art fusion methods:

GSA, GLP, CNMF, HySure and FUSE. The detection performance

was evaluated quantitatively and qualitatively through simulated

and real images. At the end, results showed that the FUSE and

HySure methods produces the highest detection performance. This

result can be explained by the fact that both methods exploit the

spatial and spectral response functions as prior information. Thus,

when combined with the prediction step which also relies on these

response functions, both methods can better succeed in producing

relevant hybrid pixels and finally the accurate change map.
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