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• A new scheduling algorithm aware of energy availability is proposed.
• Several heuristics are implemented and compared.
• Considering the electrical infrastructure as a black-box still lead to good results.
• The amount of freedom allowed by the SLA greatly affects the achievable saving.
• Simulations show a reduction of brown energy consumption up to 49%.
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a b s t r a c t

In recent years, the question of the energy consumption of data centers has become more and more impor-tant, and several 
studies raised the possibility of using renewable energy to power them. The intermittent nature of commonly used 
renewable energy sources is a major drawback of using them directly on-site. In this paper, we present an approach for 
scheduling batch jobs with due date constraints, which takes into account the availability of the renewable energy to 
reduce the need of brown energy and therefore running cost. The approach we propose differs from the existing 
methods by providing a scheduling algorithm agnostic of the electrical infrastructure. A separated system, managing the 
renewable sources, provides an arbitrary objective function, which is used to guide the scheduling heuristic. We implemented 
our approach in a data center simulator, and evaluated it by considering a small-scale center powered with solar panels and 
connected to the electrical grid. The relationship between the flexibility allowed by the user negotiated SLAs and the 
behavior of the algorithm is studied, and compared to existing approaches from the literature. Our experiments show a 
reduction of brown energy consumption up to 49% and a cost saving up to 51%, compared to a traditional scheduler unaware 
of renewable availability.

1. Introduction

Today more than ever, the energy consumption generated by
the growing use of information and communication technologies
(ICT) is a major issue, from both economical and ecological points
of view. The emergence and development of grid computing and
cloud computing paradigms, during the last decade, caused the
increase of data centers, as much in number than in size. Data
centers are becoming a significant part of the global electrical
consumption. Their total consumption in 2012 was estimated to
almost 270 TWh [1]. This is roughly equivalent to 1.4% of the
worldwide electrical consumption, while the complete ICT sector
(excludingmanufacturing) accounts for 4.7% of it. According to the
same study, the data center power needs increased annually by
5% between 2006 and 2012. The projections for the next decade

* Corresponding author.

suggest higher growth rate in a near future. For the year 2030, the
data centers alone may use between 3% (best case) and 13% (worst
scenario) of the global electricity production [2].

Because of the current energy consumption of the ICT sector
and its growing requirement, the responsibility of big companies
in term of greenhouse gas emission and pollution in general is
often pointed out. However, ICT firms seem involved in reducing
their ecological impactmore than other industry sectors by buying
renewable energy for their needs, with several companies such as
Intel or Adobe covering all their consumption in U.S. by this way
[3]. This is also pointed out by Greenpeace, in their Click Clean
report1 claiming that, between 2011 and 2016, 16 of the major
internet companies made ‘‘a meaningful long-term commitment
to be 100% renewably powered’’. Their are many reasons for this
recent change in companies behaviors. Radu [4] studied the deter-
minants of Green ICT adoption in general, pointing out economic,

1 «Clicking Clean: Who is winning the race to build a green internet?», http:
//www.clickclean.org/downloads/ClickClean2016%20HiRes.pdf.
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ethical and regulatory-related reasons, such as long term cost re-
duction, pro-environment grants, organization strategy and image.

The transition toward sustainable energy, not only for data cen-
ters, is one of the important global topic of this century. Krakowski
et al. [5] study several scenarios for increased penetration of re-
newable energies in the French electrical mix. Multiple scenarios
target 100% penetration in 2050, showing feasibility, cost and
limitations of each. The authors also compare their results to
a previous prospective study from the French environment and
energy management agency (ADEME)2 with similar objective but
using differentmethods. Other agencies and researchers published
similar studies for other regions, such as Elliston et al. for Australia
[6]. These studies show that renewable energy at large scale is tech-
nically and economically realistic for the next decades. However,
more work should be done in order to reach this goal as soon as
possible, by studying not only how to produce this energy, but
also how to build systems interacting well with such renewable
sources.

Several operators have already built data centers at least par-
tially powered with on-site renewable energies. For instance
AISO.net, a small cloud service provider, uses on-site solar panels
to run its data center. More recently, in 2018, Google announced
the construction of a massive solar power plant producing 2.9
GWh annually on the Saint-Ghislain data center facility site, in
Belgium. As most of the renewable energy sources, like solar and
wind, are intermittent and difficult to predict in the long-term,
new problematics related to energy management are raised. A
lot of researches are currently done on this topic, and several
perspectives are explored.

One of these perspectives is to take advantage of the geograph-
ical distribution of such data centers [7–9]. Indeed, the weather
conditions between distant places are little correlated. By balanc-
ing the load across multiple data centers, it is possible to increase
or decrease the power needed by each one depending on its local
renewable production at a given time.

Another main perspective considers acting at a single data
center level. It aims to manage the workload in such a way that
power consumption matches as closely as possible to the power
available through renewable energies. Depending on the consid-
ered workload, several methods may be considered. With inter-
active services, like web servers, it is possible to use traditional
energy management techniques, which lead to act on their energy
versus performance trade-off [10,11]. By considering a workload
composed of batch jobs, these possibilities remain, and other ones
are applicable. In particular, batch jobs may be delayed to some
extent, in order to runwhenmore energywill be available [12–15].

The work presented in this paper is focused on the latter area.
Our approach is targeting the management of a single data center,
with aworkload composed of batch jobswith due date constraints,
using on-site renewable energy sources. Contrary to existing ap-
proaches, detailed in Section 2, we propose to separate the opti-
mizations of electrical infrastructure from the optimizations of the
computing resources. We designed an online greedy scheduling
algorithm (called Attractiveness-Based Blind Scheduling Heuris-
tic, or ABBSH), which exchanges information with the electrical
management system in order to take availability of energy in
consideration. Along with this algorithm, several multi-objective
functions are proposed to handle the trade-off between energy and
performance considerations.

The approach has been implemented in a data center simulator
from the community, which we extended to simulate various
electrical components. To evaluate the proposed algorithm with
realistic use cases, we have used a workload generator configured

2 «A 100% renewable electricity mix? Analyses and optimisations», http://www.
ademe.fr/en/a-100-renewable-electricity-mix-analyses-and-optimisations.

to mimic the statistical distributions of a real, large-scale cluster
owned by Google. In addition, we have evaluated how the choice
of the due date of the tasks impacts the performances of our al-
gorithm. Finally, we compared the results of our approach to those
of the GreenSlot scheduler [12], a renewable-aware approach from
the literature.

The presented contributions are:

• a new scheduling heuristic for data center powered by
renewable energy sources, with limited knowledge of the
electrical sources infrastructure, detailed in Section 3.5

• an evaluation of the relationship between the constraints
of QoS and the performances of scheduling algorithms for
batch jobs, based on the results of our experiments in Sec-
tion 6

• an algorithm for computing the lower bound for the energy
consumed from the grid, presented in Section 4.5

This paper is organized as follows: in Section 2 an overview
of the researches related to energy-aware and renewable-aware
scheduling are presented. Section 3 contains a description of our
approach, including an overview of the concepts used and a de-
tailed description of the scheduling algorithm. The methodology
used for validating our approach is described in Section 4. Section 5
contains the results of our experiments, which are interpreted
and discussed in Section 6. Finally, we present our conclusion in
Section 7.

2. Related work

To understand better the complexity and the diversity of ap-
proaches for reducing the ecological impact of data centers, it is
required to look at several research areas. This section reviews
related works, from the traditional management of data centers
to the different explored perspectives for exploiting renewable
energy sources inside them.

Data center management and quality metrics. Evenwithout consid-
ering energy consumption, the field of data center management
is huge and very active. Researches focus on different aspects of
data centers, either to improve the quality of service of consumers’
jobs or to improve the resources usage. Jennings and Stadler [16]
give a good overview of the existing works targeting Cloud data
centers and themain challenges in themanagement of such infras-
tructures. The authors highlighted 8 functional areas in this field,
including two related to scheduling of resources and one related to
resource pricing and profit maximization. The approach presented
here, while not specifically designed for virtualized environments,
belongs to those research areas.

A precise evaluation of the quality of a decision in a data center
is complex. One of the main problems is to have a metric inde-
pendent from theworkload to compare different decisions. Even in
specific fields, obtaining this metric is challenging. In [17] authors
propose a complete evaluation of value creation in the context of
big data companies. They conclude on the fact that the current
works are preliminary and insufficient to create a dedicatedmetric
to the specific field of big data. Guérout et al. [18] define multiple
QoS metrics for Software as a Service Cloud platforms, which they
used in [19] as a base for objective formulation of a scheduling
approach. They are organized in four categories: performance,
dependability (such as reliability or availability), security and cost
(including both the cost for the consumer, the energy cost for the
provider and the carbon emission cost). In the following of this
article, we consider only three metrics:

• the respect of the due date associated to a task, which is
a performance QoS metric and a part of the Service Level
Agreement;



• the amount of energy consumed from the electrical grid (not
provided by the on-site renewable energy sources);

• the cost of this energy, which depends on the electrical
provider pricing with changes over the day.

By studying different distributions of due dates in the tasks sub-
mitted to the data center, we also study how this SLA constraint
impacts the other quality metrics.

Energy-aware scheduling for data centers. As it impacts directly the
exploitation cost, many current researches on data centermanage-
ment take energy consumption into account. Multiple ways of sav-
ing energy are currently explored [20], from hardware improve-
ment to networkingmanagement optimizations andmore efficient
cooling systems. For the specific field of data center scheduling,
there are numerous energy-efficient approaches already proposed,
each leveraging one or more techniques to save energy, without
dealing with renewable energy specifically.

One of the common way to reduce the energy consumption is
to make use of Dynamic Voltage and Frequency Scaling (DVFS) to
act on the performance/consumption trade-off. Wang et al. [21]
propose several heuristics for scheduling parallel tasks with prece-
dence constraints, using DVFS to reduce consumption generated
by non-critical tasks, without increasing the total execution time
of the set of tasks. In addition, they present a mechanism based
on a System Level Agreement (SLA) established with the customer,
allowing to reduce the energy needed even more in exchange
for a bounded increase of execution time. Von Laszewski et al.
[22] present a virtual machine scheduler for homogeneous, cloud-
oriented clusters. They use DVFS to reduce the power consumption
of the physical machines, depending on the QoS requirements
of the virtual machines running on them. Contrary to those ap-
proaches, the work presented here does not use DVFS. Instead, to
reduce the power consumption, we rely on shutting down the idle
machines.

With the increased use of virtualization in data centers, some
recent approaches leverage the advantages of such environment to
reduce the energy consumption. Zhou et al. [23] present a greedy
heuristic for minimizing the energy consumption using consolida-
tionwhile considering the quality of service of the virtualmachines
(VMs). The QoS metrics consist in resource requirements of VMs
and in performance degradation caused by VM migration during
consolidation. By measuring the load of each machine, the algo-
rithm try to keep it bounded to avoid both overloading to preserve
VMs’ resources and under-loading to reduce power consumption.
While our approach also try to avoid under-loading of machines,
we do not leverage virtualization techniques and therefore do not
use live migration and consolidation for this purpose.

Energy- and thermal-aware scheduling algorithms are often
studied in the context of data centers. Sun et al. [24] give a spatio-
temporal thermalmodel formachines in data centers. They use this
model to develop a thermal-aware online scheduler taking ther-
mal constraints into account, using DVFS to dynamically change
the power and thermal impact of the machines. In [25], authors
propose several greedy algorithms to improve the cooling infras-
tructure efficiency and to take into account the high failure rate
of large data centers. In our approach, we do not consider cooling
systems. However those studies are complementary with our, as
we focus more on the cooperation between energy sources and
servers themselves.

Some works do not try to minimize the energy consumption
but the energy cost. Li et al. [26] present a scheduling approach
to minimize the cost of the energy consumed while guarantee-
ing security-related QoS. The security guarantee is obtained by
adding security services at runtime according to the level of SLA
of each task. The scheduling algorithm itself is an online heuristic,
based on Lyapunov optimization. With only knowledge of the past

and current electricity prices, the algorithm takes the decision of
whether executing a task or waiting for cheaper electricity. The
algorithm proposed in this paper is also an online scheduler. In
addition, both approaches consider variation of grid electricity
pricing, althoughwe study simplest andmore predictable patterns
(on-peak/off-peak scheme). However, our approach takes advan-
tage of renewable power availability forecasts in the near future to
take a decision and is able to plan ahead the execution of submitted
tasks, resulting in a more predictable resources usage.

Our approach differs from most of the energy-efficient sched-
ulers as the first goal is not to reduce to total energy consumed,
but the non-renewable energy consumed. Therefore, it has more
similarities with approaches such as [26], which tries to minimize
the energy cost while having dynamic electricity pricing.

Data center management with renewable energy. As stated previ-
ously, reducing the power consumption of a data center is different
from improving the use of renewable energy sources. The latter
is also actively studied from the last decade, therefore there have
been a lot of research done on this topic.

The survey [27] presents and classify dozens of works related
to this area. It also summarizes the different ways to address the
problem and the two main open issues in the community, which
are:

1. whether to use on-site or off-site energy sources
2. whether to exploit temporal or spatial diversity and flexibil-

ity in the data center workload.

In the scope of our work, we explore the on-site renewable energy
sources case and try to take advantage of the temporal diversity
and flexibility of the workload.

Several works focus on geographically distributed data cen-
ter around the world [7–9], each having either on-site or off-
site renewable energy sources. This perspective allows to exploit
the spatial aspects of the workload. Gu et al. [28] propose an
approach for serving Cloud user requests with such distributed
data centers with renewable energy sources and energy storage
devices. Several heuristics are presented to select a data center
and a machine, with two different objectives: minimization of the
total cost or minimization of the carbon emissions. In addition to
the geo-distributed aspect, this work differs greatly from our by
considering an interactive workload: a request should be served
instantaneously and always takes the same short amount of time.
At the contrary, we consider a workload of batch jobs, each taking
a significant amount of time and deferrable until a specified due
date.

Batch jobs scheduling with renewable energy. As the diversity of
the approaches for leveraging renewable energies in data center
is important, we propose to focus on some of themwhich consider
a model quite close to the one we study.

Li et al. [29] propose PIKA, a scheduling infrastructure able to
leverage renewable energy sources in data centers with a mix of
interactive web services and batch jobs. Each job, both batch and
interactive, are executed in a virtual machine (VM). While the
jobs of the interactive part are executed immediately, the batch
ones may be delayed in a queue until enough renewable energy is
available or until it must be executed in order to respect its dead-
line. This approach uses VM migration to minimize the number
of physical machines needed to execute the workload at a given
time. The unused nodes are powered off to save as much energy as
possible. In our approach, the workload is composed of batch jobs
only and the jobs are executed directly on the physical machines.
Therefore we do not use virtualization methods for consolidation
purpose. Instead, our approach can plan the execution of jobs in
the future, thus anticipating the use of each machine and reducing
the number of powered-on machines.



With their approach named GreenSlot, Goiri et al. [12] consid-
ered a small cluster used for scientific computation, and powered
partially with solar panels. Using prediction of renewable power
available, along with grid electricity price, the GreenSlot algorithm
delays jobs to execute them when the cost is the lowest (both in
terms of brown energy usage and in terms of purchasing cost). The
managed jobs have an estimated execution time and a deadline.
This approach use a greedy heuristic, based on a discretization
of future time into slots of fixed duration. Each slot is valuated
with predicted renewable energy production, grid electricity cost,
and number of available computing node at this time. To place a
task, the method presented by Goiri et al. consists in testing each
possible starting slot. The first one to allow using only renewable
energy during each required slot is chosen, if any. Otherwise, the
heuristic consists in choosing the one with minimal estimated
electricity purchasing cost.

In another paper, Goiri et al. [13] present the GreenSwitch
approach, along with a real data center prototype named Parasol
in which they implemented and tested their algorithm. This data
center, power by solar panels and batteries, is a small scale one,
containing 64 energy-efficient machines. GreenSwitch is intended
to manage MapReduce workloads, and specifically those using the
Hadoop implementation. The authors used a Mixed Integer Lin-
ear Programming formulation, as a single optimization problem,
of both workload scheduling and energy distribution constraints.
Several variants of the optimization problem are studied, to ex-
plore the impact of using batteries or net-metering. Two different
kinds of workload were used: deferrable, which can be assimilated
to batch jobs that may be delayed until the end of the experiment
window, and non-deferrable, which cannot be delayed. The results
presented in [13] show that the GreenSwitch algorithm can signifi-
cantly increase the use of renewable energy, particularly when the
workload is deferrable, compared to a traditional Hadoop cluster.

Both of those approaches use a centralized optimization, which
has a total knowledge of electrical and IT models, and takes care
of both infrastructures. Our approach, instead, considers each of
those two parts managed by its own optimization loop, and having
only partial information on the other part. When studying de-
ferrable workloads, GreenSwitch [13] considers a single deadline
shared by all the tasks submitted during a day. At the contrary, the
scheduler we propose manages individual due date for each task.

Summary of existing approaches. The diversity of the works pre-
sented in this section shows both the interest in the energy opti-
mizations of data centers and the variety of approaches developed
in this area. Table 1 summarizes the main characteristics of those
approaches. It allows to highlight the similarities and differences
between them and the approach proposed in the present paper,
ABBSH, which is detailed deeply in the next section.

This diversity of approaches is also a challenge for evaluating
new works. There are many, very different models of data centers,
electrical infrastructures and workloads. While some of the dif-
ferences do not avoid comparison of results between approaches,
most make it either difficult or meaningless. For instance, PIKA
[29] has many similarities with our work. However, by leveraging
virtualization techniques and by using a mix of interactive web
services and batch jobs, an experimental comparison with ABBSH
would be either awkward or unfair.

The GreenSlot scheduling algorithm [12] has a model similar
to our approach, as summarized in Table 1. It considers a single
data center with on-site renewable energy sources and manages a
workload of batch tasks with individual due dates. In addition, it
has similar objectives (minimization of the non-renewable energy
used and of the cost of this energy), making easier the comparison
of the results. For these reasons, we compared experimentally
our approach to GreenSlot, which appears to be the only existing
approach usable in a such comparison.

(a) Task execution with traditional scheduler (first-fit).

(b) A possible executionwith a scheduling approach aware of renewable energy
availability.

Fig. 1. Task execution over time, for each machine, with and without awareness
of renewable energy availability for the scheduling. The time between submission
and due date is materialized, for the task ‘0_2’, as an hatched rectangle.

One of the original features of ABBSH, its decision model, must
be emphasized here. While the other works try to solve their
optimization problem in a fully centralized way, we propose in-
stead to have two parts communicating with each other. Each
part (electrical and IT) does domain-specific optimizationswithout
knowledge of the model and characteristics of the other part.

3. Proposed approach

In this section, we will present the concepts used by this ap-
proach, along with the system model considered. Then we will
detail the scheduling algorithm itself and the several proposed
heuristics.

3.1. Overview of renewable-aware batch scheduler

First of all, to give a better overview of our approach, we pro-
pose to illustrate how a renewable-aware scheduler differs from
a traditional one. To show that, we consider a model similar to
the one used in our approach, which will be detailed later. In
this example, a data center is powered by a set of solar panels in
addition to an electrical grid power supply. The workload consists
in a set of batch tasks, each having a due date at which it should be
completed. As the tasks are submitted over time by the users of the
data center, they are not known by the system before submission.



Table 1
Summary of characteristics for existing energy-related data center (DC) scheduling works and comparison with the proposed approach. In the Workload type column, a
distinction is made between batch jobs with due dates (the job should be executed before, but in some circumstances the job may finish after) and deadline (the job is
considered as failed if the deadline is reached). For some approaches, the electrical infrastructure was not studied by the authors and therefore noted as Grid (unspecified).

Approach Energy-related
objectives

Single or
multiple DC

Electrical
infrastructure

Workload type Evaluation
method

Method type Decision model

Wang et al. [21] Min. energy Single Grid
(unspecified)

Batch with
precedence
constraints

Simulations Greedy heuristic Centralized

von Laszewski et
al. [22]

Min. energy Single Grid
(unspecified)

Batch (virtual
machines)
without due
dates

Simulations Greedy heuristic Centralized

Zhou et al. [23] Min. energy Single Grid
(unspecified)

Interactive
services (virtual
machines)

Simulations
(CloudSim)

Greedy heuristic Centralized

Sun et al. [24] Min. cooling
energy

Single Grid
(unspecified)

Batch without
due dates

Simulations Greedy heuristic Centralized

Li et al. [25] Min. energy
(including
cooling)

Single Grid
(unspecified)

Batch with
individual
deadlines

Simulations
(CloudSim)

Greedy heuristic Centralized

Li et al. [26] Min. energy cost Single Grid
(unspecified)

Batch without
due dates

Simulations Heuristic
(Lyapunov
optimization)

Centralized

Gu et al. [28] Min. energy cost
or carbon
emission

Multiple (geo-
distributed)

Photovoltaic,
wind turbines,
grid (dynamic
price)

Interactive
services

Simulations Greedy heuristic Centralized

PIKA [29] Min.
non-renewable
energy

Single Photovoltaic,
grid (without
price
information)

Mix of batch
(virtual
machines) with
individual
deadlines and
interactive
services

Simulations Greedy heuristic Centralized

GreenSlot [12] Min.
non-renewable
energy or total
energy cost

Single Photovoltaic,
grid (dynamic
price)

Batch with
individual due
dates

Real testbed Greedy heuristic Centralized

GreenSwitch
[13]

Min.
non-renewable
energy cost

Single Photovoltaic,
grid (dynamic
price), batteries

Batch
(MapReduce)
jobs with single
common
deadline

Real testbed MILP Centralized

ABBSH
(proposed)

Min.
non-renewable
energy or total
energy cost

Single Photovoltaic,
grid (dynamic
price)

Batch with
individual due
dates

Simulations
(DCworms)

Greedy heuristic Separated
electrical and IT
optimizations
with
cooperation

The scheduler should assign each task to a machine with enough
resources to execute it, and has to respect as much as possible the
due date required by the user.

With a traditional energy-aware scheduler, several techniques
exist to reduce the global energy consumption of the data center,
such as DVFS management or powering off idle machines. Let us
consider, first, a simple first-fit scheduler, able to power off idle
machines. For a givenworkload, it will execute the submitted tasks
as soon as possible, resulting in the execution trace presented
in Fig. 1(a). This figure represents, for each machine, the tasks
executed on it over time. Each task execution is represented as a
rectangle, from its start to its completion. For one of those tasks,
named ‘0_2’, we represented additionally the time range between
its submission and its due date as a thinner, hatched rectangle. In
this example, the task ‘0_2’ appears to end far before its due date,
as the first fit scheduler executes it immediately after submission.

This scheduler is unaware of the origin of the energy used by
the data center. Its power consumption for that scheduling, and the
production of the solar panels over time, is shown in Fig. 2(a). Ob-
viously, the consumption is not correlated with renewable energy
availability. An important part of the energy, in red on this figure,
is drawn from the grid. We also note that a part of the produced
renewable energy, represented in green, is not consumed by the
data center.

By considering a scheduler aware of the renewable energy
availability, this information can be used to match more closely
both consumption and production. Fig. 1(b) gives a possible sched-
ule, for the same workload, which also respects all the due dates.
However, almost all tasks aremore or less delayed compared to the
result of a first-fit algorithm. This is illustrated for the task ‘0_2’,
which is executed a couple of hours latter, but still ends before
its due date. By scheduling tasks this way, the data center con-
sumption over time is quite different from the previous schedule,
aswe can see in Fig. 2(b). It still does not fit perfectly the renewable
energy production, but is clearly more correlated with the latter.
Note that the total energy consumed by the data center is almost
identical in both cases: what changes is how the power use is
distributed over time and its source.

3.2. Data center infrastructure

One of the main goal of the presented approach is to keep
separate, as much as possible, the electrical concerns from the
computing ones. Therefore, we consider two distinct management
systems. The first one is in charge of managing the electrical
infrastructure (power sources, storage, and power distribution ele-
ments), in order tominimize the power losses and tomaximize the
usage of renewable energies when a given amount of power is to



(a) Power profile with traditional scheduler (first-fit).

(b) Power profile with a scheduling approach aware of renewable energy
availability.

Fig. 2. Power profile (production of renewable sources and data center consump-
tion) for a simple scenario, with a scheduler aware of renewable energy availability
and with a traditional scheduler. Legend applies for both figures.

be supplied. The second one is the computing resources (shortened
IT) management, which includes the data center scheduler and
the management of the power states of individual machines. In
order to reach a better global optimization of energy use, each
management systemneeds to exchange pieces of informationwith
the other. For instance, with some knowledge about the available
renewable power during the near future, the computing manage-
ment system may adjust the data center consumption in order to
bring it closer to what will be available. To keep a low coupling
between the two parts, the information exchanged is limited to
a small subset. A cost indicator, named attractiveness, is used to
abstract the optimization objectives of each system to the other,
and will be presented in Section 3.4.

This design, compared to a single optimization loop in charge
of both electrical and IT management, allows more flexibility in
the considered infrastructures. Indeed, a change in the electrical
components themselves or in the electrical optimization scheme
would not impact the computing resources management, and vice
versa.

An overview of the proposed infrastructure is shown in Fig. 3.
The presented work is mainly focused on the IT optimization part,
highlighted in green. Therefore, the electrical infrastructure and its

Fig. 3. Representation of the proposed infrastructure for both computing and
electrical parts of a data center.
c© 2018, This figure uses icons under CC-BY license, authors: Freepik,
Madebyoliver and Yannick Lung.

management system are highly simplified in this paper. However
we show the flexibility of our approach regarding the electrical
part by evaluating two different objective functions used in the
electrical management system.

3.3. IT and electrical models

Across this section, we will detail formally the models used in
the presented approach. As our work is focused on the IT part, the
electrical model used here is intended to be simple and illustrative.

3.3.1. Data center model

We consider J the set of the J tasks submitted to the system at
anymoment. For each task j, we have the following information: its
submission date Sj, its due dateDj, its normalized execution time Tj,
the number of processors required nj ∈ N

∗ and the amount of RAM
needed rj. In addition, the date atwhich the task starts its execution
is noted Bj.

The computing resources are a setMofM machines,whichmay
be heterogeneous. Each machine m is associated to its number of
processors3 Nm, the relative computation speed of the installed
processors Cm, and its amount of usable memory Rm. The relative
computation speed is used to compute the execution time of a task
on this processor, such as the time needed for a task j is given by
Tj/Cm. The static power consumption of a machine (excluding the
processors one) is noted psm. The consumption of each processor
is pminm for the idle power and pmaxm for its maximum (full load)
consumption.

The use of a machine m over time is represented by several
functions. The number of processors used at time t is given by
upm(t) and the memory used by urm(t). Each machine may be
either powered on, off, or may be booting up or shutting down,
which is represented by its state sm(t) ∈ {On,Off , Boot, Shutdown}.
For managing transitions between on and off states, additional
information is needed for each machine. The booting up time
tbootm and the averaged power consumption during boot pbootm,
with similar information for shutting down, respectively tshutm
and pshutm. It is then possible to get the instantaneous power

3 We consider a processor as a physical execution core, assuming no logical core
using SMT technologies. In addition, we make the assumption of an homogeneous
set of processors for a given machine.



consumption of a machine at any time, pm(t), such as:

pm(t) =























psm + upm(t)pmaxm

+(Nm − upm(t))pminm,
if sm(t) = On

pbootm, if sm(t) = Boot

pshutm, if sm(t) = Shutdown

0, otherwise.

We can therefore obtain trivially the total consumption of the
machines of the data center with Eq. (1).

P(t) =
∑

m

pm(t). (1)

A task is executed on a singlemachine (nomigration), andwith-
out interruption (no pause and resume nor preemption). Given E

the set of couples of task and machine on which it is executed, we
have the following relationships.

∀j, ∃m (j,m) ∈ E

∀j (j,m1) ∈ E ∧ (j,m2) ∈ E ⇐⇒ m1 = m2.

To link the task execution model to the use of resources, we
define some relationships.

Rm(t) =

{

j|(j,m) ∈ E ∧ t ≥ Bj

∧ t < Bj +
Tj

Cm

}

(2a)

upm(t) =
Rm(t)
∑

j

nj (2b)

urm(t) =
Rm(t)
∑

j

mj (2c)

∀t,∀m upm(t) ≤ Nm (2d)

∀t,∀m urm(t) ≤ Mm (2e)

∀t,∀m sm(t) 6= On H⇒ upm(t) = 0 ∧ urm(t) = 0. (2f)

Eq. (2a) defines, for a given time, the set of tasks executed on a
given machine. Eqs. (2b) and (2c) represent the use of processors
and memory caused by the execution of the tasks. Those resource
usages are additionally constrained by the total available ones,
as shown in Eqs. (2d) and (2e). Finally, Eq. (2f) describes that
a machine which is powered off should have neither CPU nor
memory load.

In thismodel, the duedates of the tasks are considered to bepart
of the SLA agreed by the customers. The respect of the promised
quality of service for a task consists in finishing it before its due
date, as formalized in Eq. (3a). As we use it as a metric, the average
SLA violation for a given scheduling is given by Eq. (3b).

(j,m) ∈ E, qj =

{

1 if Sj +
Tj

Cm

≤ Dj

0 otherwise
(3a)

SLAviolation = 1−

∑

j qj

J
. (3b)

3.3.2. Electrical model

The electrical infrastructure considered here is composed of an
electrical grid power supply and a set of renewable power sources.
Although we used solar panels in our experiments, no particular
assumption on the kind of source is used in our model.

Let W be the set of the W renewable power sources. The effec-
tive available power at a time t for a source w is obtained through

availablew(t), and is supposed to be known only for the current in-
stant. For each source, we have a prediction function predictedw(t),
which gives an estimation of the available power for a time t in the
future. The prediction is available only for t within a given time
window windowprediction from the current instant. The prediction
function is considered as a black box, and numerous existingworks
may be used to compute it based on source characteristics and
weather forecast, as much for solar panels [30,31] than for wind
turbines [32,33].

The grid model allows to represent variations of the electricity
price over time, such as on-peak/off-peak pricing. Pricing should be
known in advance (within the same timewindowwindowprediction),
and is represented by a function gridp(t), which is the price of a
kilowatt-hour of grid energy at the time t .

3.4. Abstraction of electrical and IT objectives

Each of the management systems, electrical and IT ones, has
only a full knowledge of the their own model, described above.
Those two parts have therefore different objectives: the electrical
part goal is to reduce either the total cost of purchased energy or
the amount of grid energy used, and the IT goal is to schedule each
submitted task with respect to the SLA.

To exchange bits of information between them, our approach
consists in valuing these objectives in an abstracted and normal-
ized way, named attractiveness. An attractiveness value is a real
∈ [−1, 1]which represents, for a given proposal, its benefit or cost
for one of the optimization loops. A value of −1 is used for the
strongest cost, or an impossibility to accept a proposal, whereas
a value of 1 corresponds to the most important benefit possible.
The values between allow for any intermediate degree of cost or
benefit, with 0 representing a neutral proposal.

We propose attractiveness functions for both electrical and
computing parts, which associate a proposal to an attractiveness
value, using information from its ownmodel. As the attractiveness
value abstracts the internal objectives of each part, it is possible
to use it to guide an optimization, without the awareness of the
elements considered to obtain it. Those values will be used by the
scheduling algorithm to reach the best schedule.

3.4.1. Electrical attractiveness
The proposal sent by the IT optimization loop is to be seen

as a part of a consumption plan. It contains an average power
needed, the time at which the power is required, and the duration
of the request. The electrical attractiveness is therefore calculated
based on these proposal data and on the prediction of the model
described in Section 3.3.2.

In order to demonstrate the flexibility offered by the use of
attractiveness to abstract the internal objectives of each optimiza-
tion loop, we propose two variants of the electrical attractiveness
function. Whereas the first one (named variant A) only considers
renewable energy use, the second one (variant B) also takes the
grid electricity price into account.

The variant A is detailed in Algorithm 1. This function has sev-
eral interesting properties. It is defined as a piecewise function, de-
pending on the value of∆power . The two sub-functions, for∆power ≥
0 and ∆power < 0 are identical at the exception of the constants
used as base, maxIncrement and rate. In those functions, the value
of ∆power determines the impact of the maxIncrement factor. The
closer ∆power is to 0, the closer the resulting attractiveness is to
base. At the opposite, when∆power approaches±∞, the attractive-
ness asymptotically approaches base + maxIncrement . Both sub-
functions are monotonic in their definition interval. Consequently,
the computed attractiveness is bounded in [αpos, αpos+βpos]when
∆power ≥ 0, and by [αneg , αneg + βneg ] otherwise. Finally, the speed
at which both sub-functions go from base to base+maxIncrement
is controlled by the value of rate.



Table 2
Values used for constants in Algorithms 1 and 2. Values of hpos , hneg , λ, θmin and θmax

depend on the considered electrical infrastructure.

αpos βpos αneg βneg

Variant A 0.6 0.4 −0.7 −0.3
Variant B 0.6 0.4 N.A. −0.3

Algorithm 2 is the attractiveness function for the variant B. It
is similar to the variant A, but using a more complex function to
determine the value of base, using the average price of the grid
energy used (Cgrid). It depends on three other constants, which
are the minimum and maximum price of grid energy (respectively
θmin and θmax), and λ. The value of λ, called price factor thereafter,
determines the variation of base between Cgrid = θmin and Cgrid =
θmax. This modification impacts the value of the attractiveness
when∆power < 0 (when the average renewable energy production
is lower than the requirement). Consequently, the more the grid
energy price is expensive, the less the value of base is.

Some of the constants used in Algorithms 1 and 2 are given
in Table 2. The other constants, which depend on the electrical
infrastructure, will be given in Section 4.4.

Data:
Pavailable : predicted average available renewable power during the
requested period
Prequired : average required power during the same period
Result: aelec : electrical attractiveness for this request ∈ [−1, 1]
∆power ← Pavailable − Prequired
if ∆power ≥ 0 then

base← αpos ;
maxIncrement ← βpos ;
rate← hpos ;

else
base← αneg ;
maxIncrement ← βneg ;
rate←−hneg ;

end

aelec ← base+maxIncrement.
∆power

∆power + rate
;

Algorithm 1: Electrical attractiveness function for a given con-
sumption request (variant A).

3.4.2. IT attractiveness
For each proposed task schedule, the calculated IT attractive-

ness depends on the schedule start time related to the due date of
the task (tdue = Dj − Tj), as shown in Algorithm 3. The purpose
of this attractiveness function is to favor an early execution, and,
more importantly, to penalize a schedulewhich leads to violate the
due date. The difference between tdue and the submission date Sj is
named flexibility of the task (flexibility = Dj−Tj−Sj). Indeed, it rep-
resents the amount of time during which the start of the task may
be scheduled without violating the SLA. A task with low flexibility
gives few freedom to the scheduler for choosing an appropriate
time for its execution, compared to one with a higher flexibility.
Two additional times are defined in addition to tdue, before and
after it, named turgent and tlate. They are used respectively to reduce
the attractiveness shortly before the deadline, and to encourage a
schedule shortly after the due date over one occurring long time
after. Table 3 presents the values used for the several constants
required by Algorithm 3 to compute the IT attractiveness.

3.5. Scheduling algorithm

The purpose of a scheduling algorithm for batch tasks is to
find, for each task j, a machine in M on which to run the task

Data:
Pavailable : predicted average available renewable power during the
requested period
Cgrid : average grid purchasing cost when renewable is not
sufficient
Prequired : average required power during the same period
Result: aelec : electrical attractiveness for this request ∈ [−1, 1]
∆power ← Pavailable − Prequired
if ∆power ≥ 0 then

base← αpos ;
maxIncrement ← βpos ;
rate← hpos ;

else

base←−1.0− βneg − λ.

(

Cgrid−θmin

θmax−θmin
− 1

)

;

maxIncrement ← βneg ;
rate←−hneg ;

end

aelec ← base+maxIncrement.
∆power

∆power + rate
;

Algorithm 2: Electrical attractiveness function for a given con-
sumption request, with grid price taken into account (variant B).

Data:
Bj : beginning of the proposed schedule
Sj : submission date
tdue : Dj − Tj
Result: ait : IT attractiveness ∈ [−1, 1]
turgent ← tdue − γ .(tdue − Sj) ;
tlate ← tdue + γ .(tdue − Sj) ;
if Bj ≤ turgent then

ait ← vbase + αbase.
turgent−Bj

turgent−Sj
;

else if Bj ≤ tdue then
ait ← vurgent ;

else if Bj ≤ tlate then
ait ← vlate ;

else
ait ← vbad ;

end
Algorithm 3: Calculation of the IT attractiveness for a single possi-
ble task schedule.

Table 3
Values used for constants in Algorithm 3 to compute IT attractiveness.

αbase vbase vurgent vlate vbad γ

0.2 0.7 0.2 −0.9 −1 0.1

and a starting time Bj. We will name thereafter a placement such
a couple of a machine and starting time. Our algorithm, ABBSH
(for Attractiveness-Based Blind Scheduling Heuristic), is online,
scheduling tasks as and when they are submitted, without knowl-
edge of the future submissions. It is implemented as a greedy
heuristic, choosing a definitive placement for a task at the time it
is submitted.

To decide this placement, the algorithm comparesmultiple pos-
sible placements. For each one, the IT attractiveness is computed,
and the power consumption of the data center is evaluated using
Eq. (1) by adding the resources use generated by this placement.
The average power consumption is then used to make a request to
the electrical loop, which gives the corresponding attractiveness as
described in Section 3.4.1.

In order to chose among the possible placements, we are facing
a multi-objective problem. Indeed, we would like to maximize



Function placeTask(j, multiObjectiveFun)

placements← empty list ;
timeStep← min(αstep.Tj, stepmax) ;
windowEnd← Dj+min(αwindow.(Dj − Sj),windowmax) ;
for tcur ← timeStep; tcur < windowEnd; tcur ← tcur+ timeStep do

foreachmachine ∈M do
ts ← first time≥ tcur with at least (cj, rj) available on machine for a duration≥ Tj ;

Prequired ← average P(t) between [ts, ts +
Tj

Cm
], including current placement ;

aelec ← electrical attractiveness for proposal (Prequired, ts, Tj) ;
ait ← IT attractiveness for proposal (j, ts);
place← (machine, ts, ait , aelec) ;
placements.append(place) ;

end

end
(bestMachine, bestTime)←multiObjectiveFun(placements) ;
schedule j on bestMachine with Bj = bestTime ;

Algorithm 4: Simplified pseudo-code of the single task placement function of the ABBSH algorithm. The parametermultiObjectiveFun is a
function which takes a list of placements with their attractiveness and returns the couple (time, machine) of the best solution.

both electrical attractiveness (which is an image of the quality of
the power used) and IT attractiveness (representing the respect of
SLA criteria). We decided to evaluate ABBSH using different multi-
objective methods, which will be detailed in Section 3.6.

Function onTasksSubmitted(tasks)

foreach j ∈ tasks do
placeTask(j, multiObjectiveFun) ;

end

// called tbootm before Bj

Function onTaskReady(j, m)

if pm(tnow) = Off then
startMachine(m) ;

end

Function onTaskStart(j, m)

executeTask(m, j) ;

Function onTaskEnd(j, m)

tend ← tnow + αreboot (tbootm + tshutm) ;
if ∀t ∈ [tnow, tend],Rm(t) = ∅ then

stopMachine(m) ;
end

Algorithm 5: Simplified event-based scheduling and power man-
agement algorithm for ABBSH.

Algorithm 4 presents the method used to place a task j at its
submission, using a givenmulti-objective function. The value of the
time step used is function of the execution time of the task and of
a coefficient, such as αstep · Tj. The time step is also bounded with a
maximum, to have its value in [0, stepmax]. Similarly, the length of
the timewindowduringwhich placements are considered is based
on time between the submission and the due date, with another
coefficient: alphawindow ·(Dj−Sj). To keep this duration into a known
interval, a maximum value is also used, keeping the time window
in [0,windowmax]. The values of those parameters as used in our
experiments will be given in Section 4.4.

To reduce the global power consumption of the data center, our
approach turns off the machines when they are unused. By having
the usage planning of all computing resources in the near future, it
is easy to anticipate the necessary boot-up. The overall scheduling
and power management algorithm is presented in Algorithm 5,
in an event-driven form. Then functions onTasksSubmitted and
onTaskStart implement the scheduler itself. The power state of the
machines is managed by onTaskEnd, which allows to turn off idle

machines, and onTaskReady. The latter is called before the sched-
uled execution of a task, to let the time to turn on the correspond-
ing machine if needed. Turning on and off the machines too often
may result in some drawbacks, including an increase of the total
consumption, because of the additional energy required during
those steps. In order to avoid unnecessary reboot, Villebonnet et al.
[34] define a ‘‘minimum switching interval’’, which is the duration
under which it is preferable to keep the machine idle than to do a
complete reboot cycle. In our scheduling algorithm, the parameter
αreboot is used for a similar purpose, but is relative to the time
required for a reboot cycle. A machine is switched off only if it is
expected to be idle for more than αreboot · (tbootm + tshutm), with
αreboot > 1.

3.6. Multi-objective methods

As our algorithm requires a multi-objective function to select
the best placement for each task, we decided to evaluate our
approach using different of such methods. The objectives are, as
mentioned in Algorithm 4, IT and electrical attractiveness. Three
multi-objective methods were tested. The first is a weighted sum
of both objectives, which is a simplemethod commonly used in the
literature. The second consists of a weighted sum of the hyperbolic
sinus of both attractiveness. Finally, the third is a variant of the
fuzzy-based approach presented by Sun et al. [35].

The use of a weighted sum is particularly interesting here, as
the attractiveness values are already normalized. The choice of the
hyperbolic sinus variant is motivated by the shape of this function.
In addition to its symmetry, due to the fact it is an odd function,
it also has interesting properties which give more weight to the
extreme attractiveness values (close to −1 or 1). These functions
are defined in Eq. (4a) for the simple weighted sum and Eq. (4b)
for the sum of hyperbolic sinus. The weighting is controlled by a
parameter α ∈ [0, 1]. Parameter β in Eq. (4b) is used to control the
shape of the hyperbolic sinus transformation. A value close to 0
makes the transformation almost linear in [−1, 1], and the greater
β is, the more the weight of the extreme attractiveness values are
important compared to medium ones.

fwsum(ait , aelec) = α · ait + (1− α) · aelec (4a)

fwsinh(ait , aelec) = α · sinh(β · ait )

+ (1− α) · sinh(β · aelec). (4b)

The fuzzy-basedmethod allows to select a solution in the Pareto
front, which is the set of non-dominated possible solutions. Fig. 4
illustrates this method, with a scenario where two objectives are



Fig. 4. Illustration of the fuzzy-basedmulti-objective approach, with two objectives
to minimize.
c© 2018, Based on a work under CC-BY-SA license, original author: Johann Dréo.

to be minimized. Initially, the best solution for the first objective is
selected (point A in the figure). Amargin is added to this minimum
value of the first objective, and all the solutions in this range
are considered. The final solution is the one, inside this subset,
which minimizes the second objective (B in Fig. 4). By choosing
a value for this margin, it is possible to adjust the constraint for
the optimization of the first objective. In our implementation, the
margin used is relative to the minimum and maximum values of
the first objective, and to a parameter called fuzzy factor (named α
for uniformity with the other methods). With minobj1 and maxobj1
the extreme values of the solutions on the first objective, the
margin is given by α(maxobj1 −minobj1).

4. Methodology

Our approach has been developed and evaluated in a simulated
platform, and compared to the GreenSlot scheduling algorithm
[12]. After describing the simulation environment, we will detail
the workload generator we used to simulate user jobs submission.
Then, we propose to present briefly the original GreenSlot sched-
uler and themodificationswe added either to adapt it to ourmodel
and to improve it for the considered workload. Finally, we will
detail the parameters used in our experiments for instantiating the
models presented in Section 3.3.

4.1. Simulation platform

Our simulation platform is based on DCworms [36], a data cen-
ter simulator designedmainly for studying the power consumption
in large-scale systems. This simulator was already used in several
works focused on the impact of scheduling policies on a data center
consumption [35,37]. However, as far as we know, this is the first
time it is used in a renewable energy context.

To be able to take decisions based on availability of renewable
energy, we extended DCworms by implementing electrical infras-
tructure simulation. The infrastructure is represented as a set of
interconnected nodes, each of thembeing an electrical component,
such as a renewable source, a grid supply, an electrical bus or a
converter. Each node implements the element’s model as a DC-
worms plugin, written in Java. The whole electrical infrastructure
description is provided to the simulator along with the computing
one, as an XML dialect input file.

For the purpose of the presented experiments, we used a simple
infrastructure, composed of solar panels and of a grid supplywhich
simulates price variation during the day. The solar panel power
production model approximates the solar irradiance using a half-
sinus with a period of 24 h, having its peak centered at noon.

Listing 1: Simplified python code for generating each task of the
workload, resulting of the application of our parameters to the
model from [38].
from scipy . s t a t s import ( pareto , lognorm , expon)

def truncated_expon ( f ) :
while True :

val = expon . rvs ( sca le =1 .0/ f )
i f val <= 1 .0 :

return val

def get_next_task ( prevSubmission ) :
a r r i v a l = pareto . rvs (4 , loc = 1 ) ∗ 3 ∗ 72
submission = prevSubmission + a r r i v a l
p r i o r i t y = truncated_expon (6)
makespan = lognorm . rvs (1 .634 , sca le =447)

return ( submission , pr ior i ty , makespan)

4.2. Workload

The workload used to simulate the user jobs submission is a
crucial pointwhen studying schedulers. Depending on the targeted
data center usage, the real workloads differ a lot. We decided
to generate a synthetic workload based on a previous study of
a Google large-scale cloud computing cluster [38]. By using such
workload generator, we can easily control its duration, and gen-
erate several workloads based on the same distribution laws, but
using different random seeds.

The model from [38] allows to generate tasks and services of
different priority levels and execution time, controlled with few
parameters. As our work is only focused on batch tasks, we set the
parameter ratioTask = 1.0. We used the same parameters related
to execution time as the ones extracted from Google traces in the
article, which are mass = 1700 (average task execution time in
seconds) and disparity = 3.8 (ratio between average and median
execution time). The value of dynamism, which is the average inter-
arrival time, has been adapted to fit the size of our simulated
computing infrastructure, and we used a value of 72 s.

With those parameters, we can extract both inter-arrival and
execution time distributions from the model. The Python code in
Listing 1 gives the distributions used and their parameters using
the SciPy package [39]. The inter-arrival time follows a modified
Pareto law, which is scaled according to dynamism. The execution
time, named makespan in the code, is modeled by a log-normal
distribution, for which the parameters are calculated to respect a
mean equals to mass and a median of mass/disparity. Finally, the
priority of the task, which is used to determine its due date, is given
by an exponential distribution of rate 6, truncated to keep the value
between 0 and 1.

Unfortunately, this model does not handle the tasks due dates.
Aswe have no knowledge of anywork on themodeling of such due
dates in cloud workloads, we propose an arbitrary model based on
tasks priorities. It is parameterized with a value named flexibility

factor, which is used to modify the magnitude of individual tasks
flexibility (time available for scheduling the task with respect to
its due date, as defined in Section 3.4.2). The impact of this factor
on the results of the different heuristics will be pointed out in
Section 5.

Defining such a metric and studying how it affects the behavior
of this kind of scheduling algorithm seems critical for us. Indeed,
it is obvious that the performance of algorithms based on delaying
tasks to execute them at the best time (here, when the renewable
sources produce enough power) depends directly on how much

those tasks can be delayed. Because of the lack of existing study,
we cannot use known work to take realistic distributions of the



Table 4
Parameters of truncated normal distribution used to define task flexibility (in sec-
onds) depending on its priority class.

Priority class µ σ

Low 3600 600
Normal 1200 300
High 0 0

flexibility depending, for example, on the kind of data center or
the politic of its operator.

Based on this observation, two possibilities exist. The first, used
by most of the related study, is to use a workload with arbitrary
due dates and analyze the proposed approach on it. The second
one, which seems preferable for us, is to propose an arbitrary,
parameterized distribution of the tasks flexibility and to confront
the approach to different instances of this distribution. The results
are therefore easier to extrapolate to real workloads (bymeasuring
the distribution of the due dates). In addition, they provide a better
overview of the performances of an approach, for a wider range of
situations. For those reasons, we strongly believe that defining and
studying a flexibility factor results inmore interesting comparisons
between different approaches.

Let flexf be the flexibility factor used. The due dateDj for a given
task j is obtained by Eq. (5), where fmin is a constant used to define
a minimum flexibility and fbase is the base flexibility. For our needs,
the minimum flexibility value is set to fmin = 60 s, and the base
flexibility is obtained using random distribution law that depends
on the task priority.

Dj = Sj + fbase · flexf + fmin. (5)

Using the workload model from [38], each task has a priority
as a value ∈ [0, 1]. Based on that value, we determine a priority

class, which is either low (for priority between 0 and 1/3), normal

(between 1/3 and 2/3) or high. The value of fbase is then obtained
with a normal distribution, truncated at µ ± 3σ , with the values
of µ and σ defined for each priority class, as given in Table 4. For
the priority class high, tasks have only the minimum flexibility,
resulting in µ and σ both equal to 0.

In our experiments, each workload starts at midnight, and con-
tains tasks submitted during 72 h (corresponding to an average of
3600 tasks). As the log-normal distribution used for execution time
is long-tailed, some very high values may occasionally be assigned
to Tj. The time period considered for the workload being relatively
short, we decided to only accept tasks with Tj ≤ 24 h (if a task is
longer, a new task is generated instead).

4.3. GreenSlot

We implemented the ‘‘GreenVarPrice’’ version of the GreenSlot
scheduler, which takes into account the variation of grid energy
price, based on its description given in [12]. Several simplifications
were made in the algorithm presented in the aforementioned pa-
per, along with some modifications to consider the same machine
and task model:

• As we have a perfect renewable prediction, we removed the
adjustment and re-scheduling in case of prediction error.

• The task execution time is perfectly known, and we do not
add tolerance to the time specified at submission.

• Instead of rejecting a job at submission if we cannot respect
its due date, we accept it and schedule it after its due date.

• In our implementation, amachinemay execute several tasks
at the same time (depending on the number of processors
installed and required), whereas the original study consid-
ered tasks using the whole machines.

• In the original article, the idle nodes were put in sleepmode
(S3 state). Instead, our implementation turn them off, based
on the model presented Section 3.3.1.

This algorithm is based on a discrete time unit (15 min in the
original paper experiments), named time slot. It considers a given
time window, divided into slots. For each slot, the algorithm keeps
the prediction of renewable energy production at that time, the
available computing resources, the price of grid energy, and the
planned consumption during this slot.

The tasks submitted by the users are put in a waiting queue
in Least Slack Time First (LSTF) order. At the beginning of each
time slot, the waiting tasks are scheduled in LSTF order. For each
task, the algorithm computes a cost for each slot in the window,
corresponding to the cost for starting the task at the beginning
of this slot. This cost for a given slot is infinite if the required
computing resources are not available during all the task execution
time, or if the task is expected to end outside the current window.
Otherwise, the slot cost depends on the total cost of the grid energy
required, plus an eventual penalty if starting the task at this time
violates its due date.

Eq. (6a) gives the cost function, for a given couple of starting
slot ts and task j, when it is not infinite. The set of time slots during
which the task is executed is given by S. For a slot s, we have
gridEnergys the amount of energy which will be required from the
grid at this time (in kWh) and gridPrices the price of grid energy
for this slot (in $/kWh). A coefficient cgrid is used to obtain the cost
considered by the algorithm. Finally, an additional penalty may be
added to the total cost, as given by Eq. (6b). This value can be either
0 or penaltyviolated, depending if the due date is respected or not. The
values used as cgrid and penaltyviolated are not given in the original
work, but we assume the due date violation to be important com-
pared to some grid energy use. We used penaltyviolated = 5, and
cgrid = 1 in our experiments.

penalty+
∑

s∈S

cprice · gridPrices · gridEnergys (6a)

penalty =

{

0 if ts ≤ Dj − Tj
penaltyviolated otherwise. (6b)

When the costs, for a given task, are calculated for every pos-
sible starting slot, it is scheduled to begin at the slot with the
lowest cost (choosing the earliest if several have the same cost).
Once scheduled, the available computing resources and planned
consumption are updated for the slots during which the task will
be executed.

However, during our early experiments with the GreenSlot al-
gorithm,we found it to be poorly suited to the kind ofworkloadwe
used. The oneused in the originalwork [12]was a scientific compu-
tation workload, with few short tasks and due dates relatively far
away from the submission. Our workloads, at the contrary, contain
a lot of short tasks, and someof themhave to be started in aminute.

We identified two causes of bad performances when using our
workloads with the original algorithm. Appropriate modifications
are proposed to improve it in order to adapt it to our use case.

1. A task with a low flexibility, submitted in the middle of a
slot, may need to be scheduled before the next slot to have
its due date respected. As the task queue is processed only
at the beginning of each slot, such a task is likely to have its
due date violated.

2. As the original algorithm considers a time slot to be indivisi-
ble, a taskwhich uses only a small part of a slot (either a very
short task or the last slot in which a longer task is running)
will appear to reserve an entire slot. Because of that, the
computing resources usage become fragmented, causing the
algorithm to need more resources than really required, or
even to delay tasks after their due dates because the nearest
slots are already reserved.



Table 5
Instantiation of the IT model described in Section 3.3.1 (homogeneous data center,
the values are given ∀m).

Parameters Meaning Values

M Number of machines 10
Nm Processors per machine 4
Rm Memory per machine 32 GiB
psm Base machine consumption 44 W
pminm Processor consumption at idle 0 W
pmaxm Processor consumption at full load 21.5 W
Cm Processor relative speedup 1
pbootm Total power used during boot up 120 W
tbootm Time for booting up 40 s
pshutm Total power used during shut down 100 W
tshutm Time for shutting down 15 s

To address the first issue,wepropose tomodify the task submis-
sion processing, to schedule it immediately if its due date will be
violated before the next slot, instead to put it in the waiting queue.
For the second issue, we improve the algorithm to make it able to
reserve resources for a fraction of a slot. It is then possible to backfill
a slotwith other tasks, starting immediately after the previous one.

Because of thosemodifications,weused three different versions
of the GreenSlot algorithm in our experiments. The first, referred
as original, contains none of those modifications, and uses a slot
time of 15 min (the same value used in the experiments of the
authors of the GreenSlot approach). The second, named partially

modified, uses a shorter time slot (5 min) and implements the ur-
gent scheduling modification. Finally, the modified version imple-
ments both modifications, and a time slot of 15 min, as the second
modification reduces the need of short time slot. The performances
of those different versions will be detailed in Section 5.2, allowing
to argue about the two issues and the impact of our modifications
in the GreenSlot algorithm.

4.4. Experimental configuration

Before to present the experiment results, we will detail the
model instance we used and the values of the various parameters
mentioned previously.

IT model. We simulated a small data center, quite similar in peak
consumption and computing power to the one used by the authors
of [12]. To use realistic values of power consumption, we chose
an energy-efficient commercial rack server as a reference. It is the
Dell PowerEdge R210 II, with a 4-cores Intel Xeon E3-1200 series
processor and 32 GB of RAM.

The consumption of this server is measured up to 130 W at
peak load and 44W at idle.4 This is slightly higher than the values
announced by themanufacturer in its power and performance data
sheet, but in accordance to other measurement on comparable
servers [40]. Our consumption model only takes into account the
dynamic consumption of the processors, so we will attribute to
them all the power difference between idle and full load. The time
required for turning on the server was not measured directly for
this model. Very few works studied in detail the boot time of
servers. There is a wide range of measured values depending the
architecture and the software configuration [41], as shown for in-
stance byVillebonnet et al. [40]measuring from12 to 189 s. A value
of 40 s seems reasonable for a headless server, as the measure-
ments from [41] are comparable in the case of several machines
with GNU/Linux distributions including a graphical session start.
The measurements are even lower (around 30 s) when booting
fromnetwork instead of using a hard drive for this purpose. To take

4 Power consumption using SiSoft Sandra benchmark, as measured by http://
www.itpro.co.uk/635800/dell-poweredge-r210-ii-review.

into account the peak of power consumption which occurs when
turning on and off a machine [42], we considered a consumption
close to the full load one.

The simulated data center is composed of 10 of those servers, or
40 processors available. The model from Section 3.3.1 is therefore
instantiated with 10 identical machines with values summarized
in Table 5.

Electrical model and attractiveness. The electrical infrastructure is,
as mentioned in Section 4.1, composed of two electrical sources.
The first one is a set of solar panels, providing a peak production
of 1500 W. Depending of the photovoltaic module used, the cells
technology, and the efficiency of the solar inverter, the required
surface of solar panels may vary a lot. We will consider an effi-
ciency of around 15%, which is a conservative value of what is
commonly found in the current market, for modules using single
or multi-crystalline technologies cells [43]. With such efficiency,
a peak production of 1500 W is achievable with 10 m2 of panels,
assuming a peak solar irradiance of 1000W.m-2 [44]. The timewin-
dow for prediction of energy availability and grid energy pricing,
windowprediction is set to 48 h. As a matter of simplification, and as
the electrical infrastructure is implemented in a simulator, the pre-
dictionmodel used here is an oracle, with perfect prediction during
the whole window (predictedsolar (t) = availablesolar (t)). The second
source is the electrical grid,with an on-peak/off-peak pricing based
on the values used in [12]. Two periods are considered for pricing:
$0.13/kWh from 9 am to 11 pm (on-peak), and $0.08/kWh from 11
pm to 9 am (off-peak).

Having the maximum renewable sources production and the
grid prices, we can define the missing constants used in electrical
attractiveness functions. The values of hpos and hneg determine the
rate at which attractiveness increase or decrease depending on the
available power. We set both to a quarter of the peak renewable
power, hpos = hneg = 375W . For the variant B of the attractiveness
function, we have the minimum and maximum grid energy price,
θmin = 0.08 and θmax = 0.13. The price factor λ will be set by
experiments detailed in Section 5.1.

Scheduling algorithm. Several parameters are used in the task
placement algorithm itself (Algorithm 4). Two couples of param-
eters, related to time steps (αstep and stepmax) and to the time
window considered for scheduling (αwindow and windowmax) are
used by the algorithm, as described in Section 3.5. A last parameter,
αreboot , control the aggressiveness of the shutting down of idle
machines. The values used for the first four parameters, presented
in Table 6, were chosen based on preliminary experiments for
giving good results for both short and very long tasks. However,
they were not tuned specifically for the workloads used in this
paper and different values may lead to better results, at the cost
of a longer execution time of the task scheduling algorithm.

For the parameters related to the time window, the chosen
values allow the scheduling of tasks long after their due dates (up
to 4 times the duration of the task with a maximum of 12 h).
This permits possible SLA violations if a heuristic considers it more
interesting than using more energy at some point to respect the
due date of a task. The ones related to the time steps are chosen
to avoid too long steps for long tasks (the maximum time step is
30min), while keeping steps long enough for short tasks (0.3 times
its normalized execution time Tj).

Finally, choosing αreboot = 2 allows to keep a machine turned
on if it is idle for less than twice the time needed to perform
a complete reboot. Choosing higher value results in more idle
machines not powered off and a lower value results in more ag-
gressive reboot ofmachines to avoid any idle time. As themachines
consume more power when shutting down or booting up than in
idle state, this value may also be tuned with the characteristics
of the machines used. For sake of completeness, the optimal in



(a) Tasks in workload and corresponding cumulated computing mass, when
executed at earliest (left) and at latest (right).

(b) Solution of the lower bound method for this workload, with associated
consumption across time.

Fig. 5. Illustration of the method for finding the lower bound of grid energy
consumption.

Table 6
Values of parameters used in the scheduling algorithm.

αstep stepmax αwindow windowmax αreboot

0.3 0.5 h 4 12 h 2

terms of power consumption and for an homogeneous data center
is given by Eq. (7). This equation gives the value of αreboot for which
the total energy consumed during a reboot cycle is equal to the
energy consumed if the machine stayed idle.

α
optimal

reboot =
pbootmtbootm + pshutmtshutm

(psm + pminmNm)(tshutm + tbootm)
. (7)

Workloads. The workloads are generated with the model de-
scribed in Section 4.2, which gives the values, for each task j, of
the parameters Sj (submission date), Dj (its due date) and Tj (its
execution time). Several values of flexibility factors flexf are used,
depending on the experiments, and will be given along with the
results. In order to keep the workload definition simple enough, all
the tasks have the sameCPUandmemory requirements,nj = 1 and
rj = 1 GiB. In our experiments, the measured average load of the
computing infrastructurewith such aworkload is about 45%,which
is higher than most of the typical data centers [45], and similar to
some modern cloud clusters.

To ensure the validity of our experiments, we generated a set
of 10 different workloads for each flexibility factor used. Those 10
workloads are generated with the same probability distributions,
but using different random seeds. All the results given in the next
sections were repeated on the 10 workload instances, and the
values used are the average, unless specified otherwise.

4.5. Lower bound of grid consumption

The methodology presented here was focused on comparing
our approach to others heuristics from the literature. However,
it does not give hints to know how close those results are from
the optimal. Scheduling problems are, unfortunately, known to be
easily intractable, even for simple models [46]. In the particular
problem presented in this paper, we expect that obtaining an opti-
mal solution (thanks to linear programming for instance) within a
reasonable time can be achieved only on tiny instances. Therefore,
wepropose instead to study a lower boundof the energy consumed
on the grid.

Themain idea is to relax the problem in a continuous way, such
that individual tasks are gathered into a fully parallelizable work-
load (described as a mass). This mass can be assigned indistinctly
onto the machines, while keeping information about submission
and due dates of the tasks. We keep the notations of the model
presented in Section 3.3 and relies on the following assumptions:

• A task may be executed on any number of processing unit
(fully parallelizable tasks), suspended and migrated instan-
taneously with no cost.

• The data center is homogeneous (the subscript m, used in
the notations from Section 3.3.1, will refer to any machine
and their speedup Cm = 1).

• The machines can be powered on and off instantly.
• The power consumed by a machine is proportional to the

amount of processor used (each accounting for psm/Nm +

pmaxm).

As the problem has been relaxed with these assumptions, we
should note that the lower bound would be unachievable.

We focus on two characteristics of the workload. The first one,
Massearliest , given by Eq. (8c), is the cumulated mass if every task
is scheduled as early as possible. It is easy to compute based on
Wlearliest , the mass given in Eq. (8a). Eq. (8d) gives Masslatest , the
second one, when the tasks are scheduled as late as possible while
respecting their due dates, based on the mass from Eq. (8b).

Wlearliest (t) =
∑

j

{

nj if Sj ≤ t ∧ Sj + Tj ≥ t

0 otherwise (8a)

Wllatest (t) =
∑

j

{

nj if Dj − Tj ≤ t ∧ Dj ≥ t

0 otherwise (8b)

Massearliest (t) =

∫ t

0
Wlearliest (x) dx (8c)

Masslatest (t) =

∫ t

0
Wllatest (x) dx (8d)

∀t 0 ≤ Cpu(t) ≤ Nm ·M (8e)

Cpu(t) ≥ Masslatest (t)−Massdone(t − 1) (8f)

Cpu(t) ≤ Massearliest (t)−Massdone(t − 1) (8g)

MassDone(t) =

∫ t

0
Cpu(x) dx (8h)

Cons(t) = Cpu(t) ·

(

psm

Nm

+ pmaxm

)

(8i)



Grid(t) = max(0, Cons(t)−
W

∑

w

availablew(t)). (8j)

Fig. 5(a) illustrates that using an example workload with only
3 tasks. The tasks are represented in the top figures, along
with the period between their submission and their due dates
(in green). The cumulated mass associated to the earliest and
latest scheduling are given respectively in the bottom left and
bottom right subfigures. Any valid scheduling which respects all
the due datesmust have, at each time, its cumulatedmass between
Masslatest and Massearliest . This is represented by the constraints in
Eqs. (8e) to (8h). Cpu(t) is the total amount of processors used at a
given time t , whileMassDone(t) is the associated cumulated mass.

Based on these constraints, it is possible to find a lower bound
of the energy consumed from the electrical grid. Eq. (8i) gives the
consumption of the data center, Cons(t). By removing the power
produced by each of the W renewable sources, Grid(t) represents
only the power coming from the grid, given by Eq. (8j). An il-
lustration of the method, for the example workload, is shown in
Fig. 5(b). At the top, the earliest and latest cumulated mass are
represented, as well as the one found as the lower bound. The
resulting consumption, for both grid and renewable, are given in
the bottom subfigure.

In practice,weused a discrete timemodel,with time steps small
enough, to compute the lower bound. The solution is therefore
given by minimizing

∑

tGrid(t). At each time step, the renewable
power is used to do as much work as possible without exceeding
the earliest cumulated mass. Then, if it was not enough to reach
the latest cumulated mass, grid power is used for this purpose.

5. Results

In order to present our results, we will, in a first time, present
the experimentsweused to fix the parameters of the severalmulti-
objective methods detailed in Section 3.6, and the price factor used
in variant B of the electrical attractiveness function. Then, using
the values determined by those experiments, we will compare the
performances of the different approaches and heuristics on several
criteria, and for multiple flexibility factors of the workload.

5.1. Choosing parameters

Multi-objective functions parameters. Wehave a total of four differ-
ent multi-objective methods that may be used by ABBSH: the sim-
pleweighted sum, theweighted sumof hyperbolic sinus, the fuzzy-
based with IT attractiveness as its first objective (fuzzy-IT) and
the one with electrical attractiveness as its first objective (fuzzy-
elec). For each of them, we have an α parameter which controls
its behavior. For the two weighted sums, it is the weighting factor,
and it is the fuzzy factor used to calculate the margin on the first
objective for the fuzzy-based approach. The parameter β , used for
the weighted hyperbolic sinus sums, was fixed to a value high
enough to give more weight to the extreme attractiveness value,
and we used β = 2.5.

The value used impacts directly the preference toward either
the IT or the electrical attractiveness. Ideal value depends on the
formulation of attractiveness function. As these formulations do
not change during the use of the scheduling algorithm, choosing
the value is expected to be done offline and only once for config-
uring the scheduler.

To choose a value for them, we used workloads generated with
a relatively high flexibility (flexf = 8), and used only the electrical
attractiveness variant A. The experiments consist in changing the
α value, and evaluating the impact of it on two criteria: the part of
non-renewable energy used and the rate of tasks that finished their
execution after their due dates. The results are shown in Fig. 6. We

are looking for a value ofα, for eachmethod,whichminimizes both
criteria.

For theweighted sums, the results in Figs. 6(a) and6(b) are quite
similar. The SLA violation rate decreases quickly when α becomes
higher than 0.5, and the non-renewable part increase when α is
close to 1. To keep a high QoS and a high renewable energy usage
in the same time, we choose α = 0.55 for both functions.

For the fuzzy-based approaches, a first look to Fig. 6(d) indicates
its worthlessness when the electrical attractiveness is the first
objective. Indeed, the margin needed to have a SLA violation rate
near zero seems to imply a less important renewable usage than for
the other methods. For this reason, we will not keep it in the sub-
sequent experiments. Fig. 6(c) shows a very different result when
the first objective is the IT attractiveness. In this case, we note that
non-renewable energyusagedecreases a little bitwhenα increases
between 0.1 and 0.9, staying almost constant. Similarly, the SLA
violation rate is slowly increasing, until it grows quickly when α

reaches 0.9. We will choose a relatively high flexibility factor of
α = 0.75, to keep the renewable energy usage as important as
possible, and without risking to degrade too much the QoS.

Electrical attractiveness variant B. With themulti-objective param-
eters fixed in the case of the variant A of the electrical attractive-
ness function (without taking the electricity price into account),we
can study how to integrate the price in the variant B. The influence
of the electricity price from the grid is controlled by λ, the price

factor. The choice of its value is to be considered as a decision of
the data center operator. It fixes the trade-off between privileging
the renewable energy (low value) or the cheap grid energy (high
value). With λ = 0, the behavior is the same as with the variant A
(we find base = αneg = −0.7), guaranteeing that the parameters
chosen for the multi-objective methods will work as well for this
case of the variant B. By increasing it, the attractiveness value, for
a situation where renewable energy is not sufficient, will increase
compared to the variant A by at most λ (in the case of the cheapest
possible energy prices).

Fig. 7 gives the results of non-renewable energy consumed
(bought from the electrical grid) and its total cost. The impact of
λ is similar for the different multi-objectives methods. The total
cost decreases initially, but starts increasing again when the price
factor becomes too high (≥ 1.3). This behavior is related to the
total grid energy consumed. Indeed, the total cost is correlated
with the energy consumed from the grid, and the average price
for this energy. With small values of λ, the grid consumption
increases a bit compared to λ = 0, but as the price is taken
into consideration, the average price decreases in the same time.
However, when λ becomes high enough, increasing it does not
reduce significantly the average energy price, and the total price
simply follows the grid consumption. Worst, when the price factor
is too high, the electrical attractiveness function tends to favor the
use of cheap grid energy instead of renewable one which covers
only partially the requirement. Consequently, the amount of grid
energy increases again and the total cost follows. Those high values
are probably not the behavior wanted by any operator of data
center with renewable energy sources, but shows how important
it is to choose an appropriate value for λ.

With those results, we can choose a value for the price factor,
used by the three different heuristics. We want a value that in-
creases the least possible the non renewable energy consumption,
while decreasing the grid energy cost themost possible. Therefore,
setting the price factor λ = 1.2 seems reasonable, and will be used
for the next experiments. With this value, compared to the variant
A, the weighted sumwith the variant B uses 2.2%more grid energy
but reduces the cost by 12%. Similarly, with the weighted sum of
hyperbolic sinus, the consumption from the grid is 0.7% higher for
a cost saving of 13%, and respectively 1.0% and 4.9% for fuzzy-IT.



(a) Simple weighted sum. (b) Weighted sum of hyperbolic sinus.

(c) Fuzzy-based with IT attractiveness as first objective. (d) Fuzzy-based with electrical attractiveness as first objective.

Fig. 6. Impact of multi-objective functions parameter value (weighting or fuzzy margin) on SLA violation and on part of grid energy used.

5.2. Impact of the workload flexibility

With the multi-objective functions parameters set and electri-
cal attractiveness well defined, we can compare the performance
of the different heuristics depending on the flexibility factor used
to generate the workload. Greater flexibility factor gives tasks
with more time between their submission and their due dates
and therefore more opportunity for a scheduling algorithm to
delay them to a better time while respecting their SLA. We used 6
different values for the flexibility factor flexf : 0 (resulting in tasks
needing to be executed immediately after their submission), 1, 2,
4, 8 and 16.

For each value of flexf , 10 workloads were generated, using
the same parameters described in Section 4.2 but with different
random seeds. We evaluated 9 different heuristics which are the
following.

• the 3 GreenSlot variants (original, with partialmodifications
and fully modified)

• ABBSH with electrical attractiveness function A in com-
bination with 3 multi-objective methods (weighted sum,
weighted sum of hyperbolic sinuses and fuzzy-based meth
od with IT attractiveness as first objective)

• ABBSH with electrical attractiveness function B in combina-
tion with the same 3 multi-objective methods.

These 9 heuristics were each applied to all of the 10 workloads
of each value of flexf . Several metrics were measured (percent-
age of tasks for which SLA was violated, amount of grid energy
consumed and total price of this grid energy) to compare the
different heuristics. During the rest of the section and unless stated

otherwise, the results presented are the average value over the ex-
ecution with the 10workloads for a given combination of heuristic
and flexibility factor.

GreenSlot versions. Fig. 8 gives the results for the three GreenSlot
versions. We note the high SLA violation rate for the original ver-
sion, in Fig. 8(a), which reaches 98% when the workload flexibility
factor is 0. The violation rate is less than 2.5% for higher flexibility
values, but is still several times more important than with the two
other versions, which include our modifications. The same figure
shows that the violation rate for the partially modified andmodified

versions is increasing with the flexibility factor.
Fig. 8(b) presents the power consumption from the grid for

the different GreenSlot versions. Each tends to consume less grid
energy when the flexibility factor increases. The original version
consumes always more than the two others, for the reasons given
in Section 4.3. The cost of the grid energy, given in Fig. 8(c), is very
similar to the amount of energy drawn from the grid. However,
we can notably note that the cost is not exactly proportional to
the energy consumed. The results suggest that GreenSlot scheduler
use cheaper energywhen the flexibility increases, aswe can expect
from a price-aware algorithm.

We can see how our modifications allow to improve the per-
formances of the GreenSlot approach when used with our kind
of workload, composed in large proportion of short tasks. As the
modified version is better in all criteria compared to the others,
we will use it as a reference when presenting the heuristics of our
approach.

Electrical attractiveness variant A. Fig. 9 presents the results ob-
tained with the several multi-objective methods of ABBSH, using
the variant A of the electrical attractiveness function (no grid



(a) Simple weighted sum. (b) Weighted sum of hyperbolic sinus.

(c) Fuzzy-based with IT attractiveness as first objective.

Fig. 7. Impact of price factor variation on the amount of energy bought from the electrical grid and its total cost (with the variant B of electrical attractiveness function,
which considers the price variations).

energy price consideration) and the GreenSlot modified version.
The SLA violation rate (Fig. 9(a)) has a similar shape for all the
heuristics, increasingwith the flexibility factor. Our approach leads
to a bit more violations compared to GreenSlot, especially when
the flexibility factor is high.

The consumption of non-renewable energy, shown in Fig. 9(b),
is decreasingwhen the flexibility factor increases for all the heuris-
tics. The fuzzy-ITmethod gives better results than the others when
the flexibility factor is low (≤4 at least) or high (16), but isworst for
medium value. Both simple weighted sum and the weighted sum
of hyperbolic sinus give almost identical results, always equal or
worst than the modified GreenSlot.

As the total cost for the grid energy is correlated with the
amount of grid energy used, the behavior of the different heuristics
is similar for this metric (Fig. 9(c)). We can note, however, that
GreenSlot takes advantage of the tasks flexibility to use cheap
energy, which allows to reduce the cost more efficiently with high
flexibility values than our approach with the variant A of electrical
attractiveness. In addition, the fuzzy-IT method of our approach
seems to use cheaper energy than the two others, without the grid
price being considered by the heuristic.

Electrical attractiveness variant B. The samemetrics are presented,
for the variant B of our electrical attractiveness function, in Fig. 10.
SLA violation rate, in Fig. 10(a), follows a similar law than with the
other cases, tending to increase along with the tasks flexibility. For
low flexibility factors, the two weighted sum methods give much
more violations than the fuzzy-IT one, or the modified GreenSlot
algorithm.

Aswe take into account the grid energy pricewith this electrical
attractiveness function, we note that the grid energy consumption

(Fig. 10(b)) and cost of this energy (Fig. 10(c)) are much more
similar than for the variant A.

5.3. Comparison between approaches

Fig. 11 summarizes the results for most of the presented ap-
proaches and heuristics. The results of ABBSH using the weighted
sum of hyperbolic sinus as multi-objectivemethods are not shown
as they differ only slightly from using the simple weighted sum.
Three flexibility factors are considered, 2, 8 and 16, which seem
representative of workloads with respectively a low, medium and
high level of flexibility. In this figure, the results obtained by using
a first-fit scheduler are also represented, illustrating a traditional
scheduling algorithm with no renewable energy consideration.

For workloads with low flexibility, our approach using the
fuzzy-based method outperforms the GreenSlot one, even with all
our modifications. Whereas, for flexf = 2, the GreenSlot modified

version reduces the use of grid energy by 7.6% compared to a first-
fit scheduling, our approach, with the fuzzy-IT method and the
variant B of electrical attractiveness function, reaches 10.5%. The
cost saving is even more important, with only 9.6% for GreenSlot
compared to 12.4% for fuzzy-IT.

The sameheuristic (fuzzy-ITwith variant B) gives results similar
to the modified version of GreenSlot for the workloads with high
flexibility. The GreenSlot scheduler reaches 48.2% grid energy sav-
ing and 51% cost saving. Our ABBSH algorithm performs slightly
better on this scenario, with a grid energy saving of 49.4% and a re-
duction of 51.2% of the cost, compared to the traditional scheduler.

Our approach is slightly outperformed for workloadswithmedi
um flexibility (flexf = 8). In this case, our best heuristic for



(a) SLA violation rate. The data point for GreenSlot original with a flexibility
factor of 0 is not visible with this scale (its value is 98%).

(b) Energy consumption from the grid.

(c) Cost of the grid energy.

Fig. 8. Impact of flexibility factor over several metrics, for different versions of the
GreenSlot scheduler implemented.

reducing non-renewable energy use is the fuzzy-IT with variant A,
reaching 31% saving, and the best one for reducing cost, with 35.4%
saving, is the simple weighted sum with variant B. The GreenSlot
modified version reduces the grid consumption by 33.2% and the
cost by 38.6%.

In all the scenarios, the original version of GreenSlot gives the
worst results, showing again that it is not adapted to the kind
of workload we used. Notably, when the flexibility factor is low,

(a) SLA violation rate (percentage of the total task number).

(b) Energy consumption from the grid.

(c) Cost of the grid energy.

Fig. 9. Impact of flexibility factor over several metrics, for ABBSH with differ-
ent multi-objective functions, using variant A of electrical attractiveness function
(without consideration of grid energy price).

it actually increases both non-renewable energy use (+2.5% for
flexf = 2) and total cost (+0.4%) compared to a first-fit scheduling.
In addition, it causes important SLA violation rate compared to the
other heuristics, as shown in Fig. 11(a).

The other heuristics give an average SLA violation rate lower
than 1% on each of the three scenarios. However, at the exception
of case of workloads with low flexibility, the violation rate of our



(a) SLA violation rate (percentage of the total task number).

(b) Energy consumption from the grid.

(c) Cost of the grid energy.

Fig. 10. Impact of flexibility factor over several metrics, for ABBSH with different
multi-objective functions, using variant B of electrical attractiveness function (con-
sideration of the variation of the grid energy price).

heuristics is slightly higher than the one of the GreenSlot version
with our modifications.

5.4. Comparison to the lower bound

Based on the method presented in Section 4.5, we computed a
lower bound of the grid energy consumption for every workload

(a) SLA violation rate (percentage of the total task number). First-fit is always at
0, and therefore not visible.

(b) Energy consumption from the grid.

(c) Cost of the grid energy.

Fig. 11. Comparison of the results between the approaches and heuristics, for
workloadswith different flexibility values. The standard deviation is represented, as
each experiment is repeated with 10 workloads generated using different random
seeds.

used in the previous experiments. The results for different values
of the flexibility factor are given in Fig. 12(a), along with one of
the ABBSH heuristic and the two variants of GreenSlot. To interpret
those results, it is important to emphasize that the model used for
this lower bound does not take into account some of the energy



consumed normally. Notably, the energy needed to power on and
off the machines is not accounted.

Therefore, the total energy consumed (both from grid and re-
newable sources) is significantly less than with the tested heuris-
tics. For all of them, this amount of total energy varies little de-
pending on the flexibility. The average, for each of the variants of
our approach as well as for the modified GreenSlot algorithm, are
between 55.7 kWh and 56.6 kWh. This value is as high as 60.5 kWh
for the original GreenSlot variant. By contrast, the solutions from
the lower boundmethod give an energy consumption of 50.4 kWh.

The shape of the grid energy consumed curves, from Fig. 12(a),
are similar for the different heuristics and for the lower bound. The
absolute difference between the lower bound and the best result
of all the heuristics increases with the flexibility factor for small
values (from 3.8 kWh for flexf = 0 to 5.4 kWh for flexf = 4). For
higher flexibility factors, the difference is almost constant (5.6 kWh
and 5.4 kWh respectively for flexf = 8 and flexf = 16).

Fig. 12(b) shows the percentage of the energy consumed pro-
vided by the renewable sources. The method used to compute
the lower bound of the grid consumption does not give an upper
bound to the percentage of renewable energy used. However, those
values help to take into account the differences in total energy
consumption.

The lower bound shown in Figs. 12(a) and 12(b), demonstrates
that the heuristic we propose provides gain of the same order of
magnitude of what could possibly be reachable under our hypoth-
esis.

6. Discussion

One of the interesting findings of our experiments concerns
the impact, on the performances of the tested heuristics, of work-
load flexibility (e.g. the average time available for scheduling each
task and meeting their due dates). While the increase of flexibil-
ity allows, as expected, to improve the results in terms of non-
renewable energy and cost saving, it also leads to an increase of SLA
violations. It may seem counter-intuitive, but is easily explained
by the increased usage of computing resources when the energy
is available. As some tasks, with important flexibility, are delayed
to be executed at those moments, a task with low flexibility
submitted when all machines are already reserved is likely to be
scheduled after its due date. It may be possible to overcome this
issue by using a heuristic which takes into account a prediction of
tasks submitted in the future, in order to keep some computing
resources available for them.

The relationship between the workload flexibility and the re-
duction of the cost and of the grid energy use seems quite com-
plex. Beyond a certain flexibility (flexf > 8 in our experiments),
increasing it still allows to give better results, but proportionally
less important towhat is achievable by increasing it asmuch below
this threshold. This finding is reinforced by the results of our lower
bound of grid consumption. The saving of grid energy as a function
of the flexibility factor behave almost linearly for flexf ∈ [0, 4],
as shown in Fig. 12. However, we believe that it is particularly
related to the profile of the renewable source we used. Indeed,
our simulated solar panels give a very regular power, as if every
day was perfectly sunny. If, instead, we had simulated a more
realistic weather, a cloudy day would involve to move as much
tasks as possible to thenext day, and thereforewouldprobably take
advantage of tasks with very high flexibility.

Contrary to other studies, like [12,13], our work shows how the
potential energy saving of a renewable-aware scheduler is con-
strained by the SLA negotiated with the users. Also, we believe it is
important to define ametricwhich gives the amount of freedom for
the scheduling of a workload. The definition of this metric would
depend on the kind of workload considered. In the case of a batch

(a) Energy consumption from the grid.

(b) Portion of renewable energy in the total consumption.

Fig. 12. Comparison of the results between different approaches and the lower
bound of grid consumption.

tasks with due dates, a more generic equivalent of our flexibility
factor may be used (for example a measurement of the average or
median of the flexibility of the tasks). We see two major reasons
for defining such metrics. Firstly it would make possible to com-
pare more easily the performances of different approaches, and to
evaluate a given approach with several well identified hypothesis
of SLA level. Secondly it would allow to measure it in real data
centers, either to predict the performances of a given approach for
this specific data center, or to use this measurement as a reference
for future researches.

The aforementioned relationship between SLA and potential
energy saving could also be used to study possible green pricing
for data center operators. The operators can promote lower SLA
level to the users, by the way of incentive schemes, in order to save
energy and money. Such incentives may concern the price of the
jobs, but not necessarily limited to that. Indeed, other parameters
also play a role in the energy saving behavior of individuals [47].

The results of the several variants of our ABBSH algorithm show
that all of them reduce both grid energy usage and energy cost
compared to a traditional scheduler. Taking the grid energy price
into account (with the electrical attractiveness variant B) leads to a
small increase of non-renewable energy use, but allows an impor-
tant reduction of the grid energy cost, as illustrated by Figs. 11(b)
and 11(c). The fuzzy-based multi-objective method provides, in
overall, the most interesting trade-off between respect of SLA and
energy or cost saving.



By introducing some modifications into the GreenSlot sched-
uler [12], we adapted it to the kind of workload we used for
validating our approach, as evidenced by the results from Fig. 8.
In the original article, the authors used a very grid-oriented sci-
entific workload. In contrast, the workload we used, based on
the traces of a Google cloud cluster, is more representative of a
typical batchworkload executed in cloud infrastructures, likemap-
reduce jobs or periodic indexing tasks. With our modifications, the
performances of GreenSlot are quite similar with those of ABBSH.
Whereas GreenSlot is a bit more efficient than our heuristics with
a medium flexibility, our approach gives slightly better results for
workloads with low flexibility (flexf ≤ 4).

A notable fact is the proximity of the results of both approaches.
For every flexibility factor value, and for both grid energy con-
sumption and cost, the results of our best heuristic and those of
the modified version of GreenSlot are included into a 5% interval.
We believe that such close results for two different heuristic-
based approaches suggest they are near to a local optimum of this
kind of online and greedy heuristics. The results of the proposed
lower bound gives only a partial answer. Looking to the absolute
difference of the grid consumption with the tested heuristics and
to the percentage of renewable energy used, it seems possible to
slightly improve our approach. Unfortunately, we are currently
unable to tell exactly how much improvement can be done, as
this lower bound does not take some of the characteristics of the
problem into account (such as the cost of powering on and off
the machines). Trying to solve the formal optimization problem,
at least for small instances, would allow to identify exactly the
improvement margin we can expect.

The ABBSH algorithm we propose has only a partial knowl-
edge of the electrical infrastructure, provided by the results of
the attractiveness function. By reaching results close to GreenSlot,
an approach which requires a total knowledge of the electrical
model, our work shows that it is possible to use efficiently the
renewable energy in a data center with separated (electrical and
IT) management systems. However, with the presented approach,
both systems simply cooperate with the other, and the scheduling
algorithm is not designed to minimize the amount of communica-
tion needed to find a solution.

7. Conclusion and future work

In this paper, we presented ABBSH, a new algorithm with sev-
eral variants for scheduling batch tasks with awareness of renew-
able energy and electricity cost. Our scheduler, contrary to other
approaches, never deals directly with the model of the electrical
infrastructure, but instead uses partial and abstracted information.
By using those hints to guide the scheduler, our approach gives
results close to, or slightly better, to another scheduler of the
literature which has a full knowledge of the electrical model.

Moreover, our results give insights on the relationship between
the magnitude of the SLA negotiated for the tasks of the workload,
and the performances of the different heuristics studied. With SLA
allowing more freedom on the time a submitted task should be
executed, a renewable-aware scheduler can take more efficiently
advantage of the intermittent nature of most renewable energy
sources. As an indirect consequence, this increases the part of the
computing resources used when the energy is the more available,
leading to an inability to satisfy stricter SLAs of tasks submitted at
these times.

The performances of the different heuristics are also compared
to a lower bound of the grid energy consumption. The results
show that our approach performs already well and gives an idea of
maximum margin of improvement. In addition, such lower bound
formulation with lower complexity than the real optimization
problem can be used to continue to investigate on the relationship
between SLA and possible cost and energy savings.

Our future works will focus on three main areas. Firstly, as 
stated previously, we would like to compare the performances 
of our heuristics with the optimal schedule. For this purpose, we 
plan to solve a MILP formulation of the optimization problem. 
This may also help to figure out situations where our scheduling 
algorithm is far from the optimal, giving some clues to improve it. 
Secondly, we are currently working in improving and integrating 
our modifications into DCworms, the data center simulator we 
used for our experiments. By providing a data center simulator able 
to simulate a complex electrical infrastructure, we hope to make 
it easier for other researchers to study scheduling policies with 
on-site renewable energy sources. Finally, another direction of our 
work is to go beyond the cooperation and to explore further the de-
centralized aspect of our scheduling algorithm. Indeed, we would 
like to develop an approach based on a collaborative negotiation 
between electrical and IT management systems, and to study the 
relationship between the amount of information exchanged and 
the quality of the resulting solution.

As the proposed work is complementary to a large number of 
approaches using broader points of view, there are also a large 
number of opportunities to add external elements to the model 
such as a cooling infrastructure or other energy storage systems 
such as full cells, along with specific optimizations for these ele-
ments.
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