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QUALIFICATION CONDITIONS IN SEMIALGEBRAIC

PROGRAMMING∗

JÉRÔME BOLTE† , ANTOINE HOCHART‡ , AND EDOUARD PAUWELS§

Abstract. For an arbitrary finite family of semialgebraic/definable functions, we consider the
corresponding inequality constraint set and we study qualification conditions for perturbations of
this set. In particular we prove that all positive diagonal perturbations, save perhaps a finite number
of them, ensure that any point within the feasible set satisfies the Mangasarian–Fromovitz constraint
qualification. Using the Milnor–Thom theorem, we provide a bound for the number of singular
perturbations when the constraints are polynomial functions. Examples show that the order of
magnitude of our exponential bound is relevant. Our perturbation approach provides a simple
protocol to build sequences of “regular” problems approximating an arbitrary semialgebraic/definable
problem. Applications to sequential quadratic programming methods and sum of squares relaxation
are provided.

Key words. constraint qualification, Mangasarian–Fromovitz, Arrow–Hurwicz–Uzawa, La-
grange multipliers, optimality conditions, tame programming
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1. Introduction. Constraint qualification conditions ensure that normal cones
are finitely generated by the gradients of the active constraints. When considering an
optimization problem, this fact immediately provides Lagrange/KKT necessary opti-
mality conditions, which are at the root of most resolution methods (see, e.g., [6,42]).
Finding settings in which qualification conditions are easy to formulate and easy to
verify is thus of fundamental importance. In a convex framework, the power of Slater’s
condition consists in its extreme simplicity: the resolution of a “simple” problem (e.g.,
finding an interior point), often done directly or through routine computations, guar-
antees the regularity of the problem.

In a nonconvex setting, the question becomes much more delicate but the wish
is the same: to describe normal cones as gradient-generated cones in order to derive
KKT conditions (see, e.g., [43]). Contrary to what happens for convex functions, the
knowledge of the functions at one point does not capture enough information about
the global geometry to infer well-posedness everywhere.1 Very smooth and simple
problems satisfying all possible natural conditions can generally present a failure of
qualification, for which the normal cone is not generated by the gradients of the active
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1Observe though that the local knowledge of a polynomial function implies the knowledge of

the function everywhere. But, as far as we know, this fact has never given birth to any simple
qualification condition.
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1868 JÉRÔME BOLTE, ANTOINE HOCHART, AND EDOUARD PAUWELS

D = C0 C−0.1 C0.1

Fig. 1. On the left, the constraint set D (see (1.1)): the bullet highlights a cusp, for us a failure
of constraint qualification. Middle and right: negative and positive perturbations of D = C0 make
the cusp disappear.

constraints, and thus KKT conditions cannot apply. In dimension 2 a typical failure
is a cusp, illustrated in Figure 1 for the constraint set

(1.1) D =
{
(x1, x2) ∈ R

2 | x3
1 + x2 6 0, x3

1 − x2 6 0
}
.

Since in this general setting simple qualification conditions are not available, sev-
eral researchers have considered the problem under the angle of perturbations. To our
knowledge, the first work in this direction was proposed by Spingarn and Rockafellar
[47]. Given differentiable functions g1, . . . , gm : Rn → R and a constraint set C =
{x ∈ R

n | g1(x) 6 0, . . . , gm(x) 6 0}, they indeed introduced the perturbed constraint
sets

Cµ := [g1 6 µ1, . . . , gm 6 µm] , where µ = (µ1, . . . , µm) ∈ R
m,

and studied their properties regarding qualification conditions. In what follows, a set
Cµ for which qualification conditions hold at each feasible point is said to be regu-
lar. Accordingly the corresponding perturbation µ is called regular. When m = 1,
one obviously recovers the usual definition of a regular value of a function (see, e.g.,
Milnor’s monograph [38]), and one guesses that a major role will be played by Sard-
type theorems. Recall that Sard’s original theorem (see, e.g., [38]) expresses that the
regular values of a sufficiently smooth function are generic within R

m. For m > 1,
the work on perturbed constraint sets by Spingarn and Rockafellar [47] dealt with the
genericity of regular values using a quite restrictive notion of qualification condition.
Works by Fujiwara [29], Scholtes and Stöhr [45], and Nie [41] gave further insights on
other different aspects but with the same type of qualification assumptions. When
the mappings gi are semialgebraic (or definable), the application of the definable
nonsmooth Sard’s theorem of Ioffe [32] yields stronger results since, in that case, reg-
ularity exactly corresponds to sets satisfying the Mangasarian–Fromovitz constraint
qualification everywhere (see Theorem 2.9). These aspects are discussed in detail in
section 2.

Genericity results have been the object of a recent revival in connection with semi-
algebraic optimization: see Bolte, Daniilidis, and Lewis [11], Daniilidis and Pang [18],
Drusvyatskiy, Ioffe, and Lewis [25], Lee and Pham [35], and Hà and Pham [31]. An
original feature of our work is to exploit the fact that genericity is a relative con-
cept. A property is indeed generic within some given family, but if one considers
smaller families, genericity may no longer hold. It is therefore important to identify
the smallest possible families in order to strengthen genericity results and to be able
to exploit them for improving effective optimization techniques (e.g., algorithms, ho-
motopy methods). In this regard, we address in section 3 the following two questions.
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QUALIFICATION CONDITIONS IN SEMIALGEBRAICITY 1869

– How do we perturb to ensure regularity? In other words, how can we build
simple problems (Pα)α∈R+

which are regular and whose values, val(Pα), con-
verge to that of the original problem, val(P0)?

– Can we go beyond mere genericity and quantify the number of singular (i.e.,
nonregular) values in the polynomial case?

Our first result, à la Morse–Sard, relies on definability assumptions of the data (e.g.,
semialgebraicity) and provides one-parameter families of regular constraint sets. This
is done by showing that any positive semiline R+ v, with v ∈ R

m
++, bears only finitely

many singular perturbations. For instance if we let α := (α, . . . , α), the sets (Cα)α∈R+

are regular for all α positive small enough; see Figure 1 for an illustration. When
some of the constraint functions are convex, our approach is considerably simplified:
we show indeed that a “partial Slater condition” allows us to restrict the perturbation
approach to nonconvex functions.

The strength of our results is well conveyed by the following general approximation
fact: for any objective f and for α small enough, we are able to build explicit well-
posed problems

(Pα) minimize f(x) subject to (s.t.) x ∈ Cα

which satisfy, under mild conditions, limα→0+ val(Pα) = val(P0). Our approach opens
the way to continuation methods (see [2] and references therein) or to more direct
diagonal methods as shown in our final section.

A natural question which immediately emerges is whether it is possible to count
the number of singular perturbations. When assuming further that the data are
polynomial functions whose degrees are bounded by d, we show by using the Milnor–
Thom theorem that the number of singular values for problems of the type (Pα) is
lower than d(2d− 1)n(2d+ 1)m. Examples show that in general the bound is indeed
exponential, even in the quadratic case with only one of the gi being nonconvex. The
worst-case bound described in this work is a rather negative result for semialgebraic
programming in the sense that it shows that there are instances for which singular
values are so clumped and numerous that perturbation techniques are ineffective.
That worst-case instances of general semialgebraic programming are out of reach of
modern methods became a well-known fact due to the pioneering work [7]. It would
be interesting to recast our findings from this perspective. For instance, our results
suggest that some constraint sets might have such a complex nature that most local
methods are inapplicable in practice, even after perturbation. On the other hand,
as suggested by real-life problems, regular instances are numerous in practice. This
shows the need to understand further the geometric factors or probabilistic priors on
the constraints that could make singular values less numerous or at least favorably
distributed.

In section 4, we provide two theoretical algorithmic illustrations of our results.
As a general fact, our diagonal perturbation scheme can be used in conjunction with
any algorithm whose behavior relies on constraint qualification assumptions. We
illustrate this principle with exact semidefinite programming relaxations in polyno-
mial programming, for which well-behaved constructions were proposed for regular
problems [1, 19, 20]. A second application of our general results is given by a class
of sequential quadratic programming methods, SQP for short. SQP methods are
widespread in practical applications; see, e.g., [3,13,26]. Convergence analysis of such
methods usually requires very strong qualification conditions in order to handle regu-
larity and infeasibility issues for minimizing sequences. We show how our perturbation
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1870 JÉRÔME BOLTE, ANTOINE HOCHART, AND EDOUARD PAUWELS

results provide a natural and strong tool for convergence analysis in the framework
of semialgebraic optimization.

2. Regular and singular perturbations of constraint sets.

2.1. Notation and definitions.

Constraint sets and qualification conditions. Let us consider the general
nonlinear optimization problem

minimize f(x)

(Pnlp) subject to g1(x) 6 0, . . . , gm(x) 6 0,

h1(x) = 0, . . . , hr(x) = 0,

where f , g1, . . . , gm, h1, . . . , hr are differentiable functions from R
n to R. We denote

by

C = [g1 6 0, . . . , gm 6 0] := {x ∈ R
n | g1(x) 6 0, . . . , gm(x) 6 0}

the inequality constraint set and by

M = [h1 = 0, . . . , hr = 0] := {x ∈ R
n | h1(x) = 0, . . . , hr(x) = 0}

the equality constraint set. For x ∈ C, we define the set of active constraints by

I(x) := {1 6 i 6 m | gi(x) = 0}.

We next recall a standard regularity condition.

Definition 2.1 (Mangasarian–Fromovitz constraint qualification). A point x ∈
C ∩M is said to satisfy the Mangasarian–Fromovitz constraint qualification (MFCQ)
if the gradient vectors ∇hj(x), j = 1, . . . , r, are linearly independent and there exists
y ∈ R

n such that

(2.1)

{
〈y,∇hj(x)〉 = 0, j = 1, . . . , r,

〈y,∇gi(x)〉 < 0, i ∈ I(x).

If there is no equality constraint, this condition is then called the Arrow–Hurwicz–
Uzawa constraint qualification. We say that MFCQ holds throughout C ∩M if it is
satisfied at every point in C ∩M .

Remark 2.2. By a straightforward application of the Hahn–Banach separation
theorem, the existence of a vector y ∈ R

n satisfying condition (2.1) is equivalent to

co {∇gi(x) | i ∈ I(x)} ∩ span {∇hj(x) | 1 6 j 6 r} = ∅,

where coX denotes the convex hull of any subset X ⊂ R
n, and spanX its linear span.

If there is no equality constraint, this characterization simply reads

0 /∈ co {∇gi(x) | i ∈ I(x)}.D
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QUALIFICATION CONDITIONS IN SEMIALGEBRAICITY 1871

Let us briefly recall that MFCQ guarantees the existence of Lagrange multipliers
at minimizers of problem (Pnlp): if a local minimizer x̄ of f on C∩M satisfies MFCQ,
then there exist multipliers λ1, . . . , λm ∈ R+ := [0,+∞) and κ1, . . . , κr ∈ R such that

(2.2)





∇f(x̄) +
m∑

i=1

λi∇gi(x̄) +
r∑

j=1

κj∇hj(x̄) = 0,

λi gi(x̄) = 0, i = 1, . . . ,m.

Any feasible point satisfying these conditions is called a Karush–Kuhn–Tucker (KKT)
point.

Remark 2.3 (Clarke regularity and MFCQ). A more geometrical way of for-
mulating the existence of Lagrange multipliers consists in interpreting the gradients
of active constraints as generators of a cone normal to the constraint set. In the
terminology of modern nonsmooth analysis, assuming that there are only inequal-
ity constraints in problem (Pnlp), this amounts to the normal regularity of the set
C = [g1 6 0, . . . , gm 6 0]. We next explain this fact.

Given a nonempty closed subset X ⊂ R
n, the Fréchet normal cone to X at point

x̄ ∈ X is defined by

N̂X(x̄) := {v ∈ R
n | 〈v, x− x̄〉 6 o(‖x− x̄‖), x ∈ X}.

It is immediate to prove that any solution to problem (Pnlp) satisfies

(2.3) ∇f(x) + N̂C(x) ∋ 0,

which suggests expressing N̂C(x) in terms of the initial data g1, . . . , gm. To do so, let
us introduce the limiting normal or Mordukhovich normal cone2 to X at x̄, denoted
by NX(x̄) and defined by

v ∈ NX(x̄) ⇐⇒ ∃xn → x̄, ∃ vn → v, vn ∈ N̂X(xn).

The set X is called regular at x̄ if N̂X(x̄) = NX(x̄).
By classical results of nonsmooth analysis, if the Mangasarian–Fromovitz con-

straint qualification holds throughout C, then C is regular at every point in C (see [43,
Thm. 6.14] or [15, Thm. 7.2.6]). In addition, we have, for all x ∈ C,

NC(x) =

{ ∑

i∈I(x)

λi ∇gi(x)

∣∣∣∣ λi > 0, i ∈ I(x)

}
,

which combined with (2.3) yields the claimed result.

Perturbations of constraint sets. For µ ∈ R
m and ν ∈ R

r, we denote by

Cµ := [g1 6 µ1, . . . , gm 6 µm] = {x ∈ R
n | g1(x) 6 µ1, . . . , gm(x) 6 µm},

Mν := [h1 = ν1, . . . , hr = νr] = {x ∈ R
n | h1(x) = ν1, . . . , hr(x) = νr}

the perturbed inequality and equality constraint sets of problem (Pnlp), respectively.
Also, we denote by

A := {(µ, ν) ∈ R
m × R

r | Cµ ∩Mν 6= ∅}

the set of admissible perturbations.

2See the pioneering work [39].
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Definition 2.4 (regular/singular perturbations). We say that (µ, ν) ∈ A is a
regular perturbation if MFCQ holds throughout Cµ ∩Mν and we denote by Areg the
collection of all regular perturbations:

Areg := {(µ, ν) ∈ A | MFCQ holds at every x ∈ Cµ ∩Mν}.

In contrast, an admissible perturbation (µ, ν) ∈ A is singular if MFCQ is not satisfied
at some point of Cµ ∩Mν . The subset of singular perturbations is given by

Asing := A \ Areg.

Up to an obvious change of definition, we shall use the same notation when there
is no equality constraint.

2.2. Metric regularity and constraint qualification. In this subsection, we
recall how the Mangasarian–Fromovitz constraint qualification can be interpreted in
terms of metric regularity of some set-valued mapping. For that purpose, we gather
below some classical notions in nonsmooth analysis (see [22, 40,43]).

A set-valued mapping F : Rp ⇒ R
q is a map sending each point of Rp to a subset

of Rq. We denote by graphF := {(x, y) ∈ R
p ×R

q | y ∈ F (x)} the graph of F and by
domF := {x ∈ R

p | F (x) 6= ∅} its domain.
The set-valued mapping F : Rp ⇒ R

q is metrically regular at (x̄, ȳ) ∈ graphF if
the graph of F is locally closed at (x̄, ȳ) and there exists a positive real number κ,
together with neighborhoods U and V of x̄ and ȳ, respectively, such that

dist(x, F−1(y)) 6 κ dist(y, F (x))

for all (x, y) ∈ U ×V . Here, dist(z,K) refers to the distance of any point z of a space
endowed with a norm ‖ · ‖ to any subset K of the same space, i.e., infk∈K ‖k − z‖.

We now come back to problem (Pnlp) and introduce the set-valued mapping
F : Rn ⇒ R

m+r defined by

(2.4) F (x) =




g1(x)
...

gm(x)
h1(x)

...
hr(x)




+ R
m
+ × {0}r,

where R
m
+ is the nonnegative orthant of Rm. Observe that (µ, ν) ∈ F (x) if and only

if x ∈ Cµ ∩Mν . Also notice that, by continuity of the constraint functions, graphF
is closed.

The following result, due to Robinson, characterizes the points satisfying MFCQ
in terms of the mapping F . For a thorough discussion and various proofs, we refer the
reader to [40]. Other approaches are [43, Ex. 9.44], [22, Ex. 4F.3], or [21, Thm. 4.1],
which avoid the use of coderivative calculus.

Theorem 2.5 (Robinson). The Mangasarian–Fromovitz constraint qualification
holds at point x ∈ Cµ ∩Mν if and only if the set-valued mapping F defined in (2.4)
is metrically regular at (x, (µ, ν)).
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2.3. Genericity of regular perturbations. Qualification conditions play an
important role in the analysis of nonlinear programming and the convergence of opti-
mization algorithms, yet checking these conditions at optimal points is hardly possible.
This is why one instead seeks local/global simple geometrical assumptions that auto-
matically warrant these conditions. Sard’s theorem provides results in this direction:
generic equations are well posed if the data are smooth enough or well structured
(e.g., analytic). Viewing constraint sets from this angle and following the pioneering
work [47], we establish here various genericity results for regular perturbations.

Smooth constraint functions. The first genericity result we present here con-
cerns a linear independence constraint qualification, a strong and quite stringent
qualification condition which is often considered in the literature when dealing with
“generic” instances of optimization problems (see, e.g., [36, 41]). This qualification
condition requires that the gradients of both the equality constraints and the active
inequality constraints are linearly independent. Note that it implies in particular
MFCQ.

Let us first recall the classical Sard theorem. For a differentiable map f : Rp → R
q,

a point x ∈ R
p is critical if the differential mapping of f at x is not surjective. A

critical value of f is the image of a critical point. Otherwise, v is said to be regular.

Sard’s Theorem 2.6 (see [38]). Let f : Rp → R
q be a map of class Ck with

k > max(0, p−q). Then the Lebesgue measure of the set of critical values of f is zero.

As a consequence of Sard’s theorem, we deduce that a perturbation of the con-
straint set of problem (Pnlp) is almost surely regular when the constraint functions
are smooth enough.

Theorem 2.7 (compare with [47, Thm. 1]). Let g1, . . . , gm, h1, . . . , hr be Ck con-
straint functions from R

n to R with k > max(0, n − r). Then the set of admissible
perturbations (µ, ν) ∈ R

m×R
r for which the linear independence constraint qualifica-

tion is not satisfied at every point of the set Cµ ∩Mν has Lebesgue measure zero. In
particular, the set Asing of singular perturbations has Lebesgue measure zero.

Definable constraint functions. The above result can be considerably relaxed
by replacing smoothness assumptions by mere definability. The results on definability
and tame geometry that we use hereafter are recalled in Appendix A.

Ioffe showed a nonsmooth version of Sard’s theorem for definable set-valued map-
pings. In this framework, a vector ȳ ∈ R

q is a critical value of any set-valued mapping
F : Rp ⇒ R

q if there exists a point x̄ ∈ R
p such that ȳ ∈ F (x̄) and F is not metrically

regular at (x̄, ȳ).

Nonsmooth Sard’s Theorem 2.8 (see [32, Thm. 1]). Let F : Rp ⇒ R
q be a

definable set-valued mapping with locally closed graph. Then the set of critical values
of F is a definable set in R

q whose dimension is less than q − 1.

Combining this result with Theorem 2.5, we readily get a geometric description of
regular perturbations for problem (Pnlp) when the constraint functions are definable
in the same o-minimal structure. Let us mention that we also use the fact that any
definable set A ⊂ R

p can be “stratified,” that is, written as a finite disjoint union of
smooth submanifolds of Rp that fit together in a “regular” manner. This implies in
particular that the dimension of A, i.e., the largest dimension of such submanifolds,
is strictly lower than p if and only if the complement of A is dense.

Theorem 2.9 (genericity of regular perturbations). Let g1, . . . , gm, h1, . . . , hr :
R

n → R be constraint functions that are definable in the same o-minimal structure.
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1874 JÉRÔME BOLTE, ANTOINE HOCHART, AND EDOUARD PAUWELS

Then the set Areg (resp., Asing) of regular (resp., singular) perturbations is definable
in R

m+r and Asing is a finite union of smooth submanifolds of Rm+r of dimension
strictly lower than m+ r.

Remark 2.10. Note that, in general, the set Asing of singular perturbations is not
closed. Consider for instance the semialgebraic functions defined on R

2 by

g1(x1, x2) = min

{
2x1 − 1,

1

|x1|

}
− x2,

h1(x1, x2) =
x1

1 + (x1)2
− x2, h2(x1, x2) =

x1

1 + (x1)2
+ x2.

For every ν ∈ (0, 1
2 ), the set [h1 = ν, h2 = ν] contains two distinct points, namely

( 1±
√
1−4ν2

2ν , 0), whereas [h1 = 0, h2 = 0] = {(0, 0)}. Let µν = 1+
√
1−4ν2

2ν . One easily
checks that, for the constraint set [g1 6 µ−1

ν , h1 = ν, h2 = ν] with ν ∈ (0, 1
2 ), MFCQ

fails at point (µν , 0) but it is satisfied at point ( 1−
√
1−4ν2

2ν , 0) where the inequality
constraint is not active. Hence (µ−1

ν , ν, ν) is a singular perturbation for all ν ∈ (0, 1
2 ).

However, when ν = 0 the singularity disappears and only the point (0, 0) remains, at
which MFCQ holds. In other words, (0, 0, 0) is regular.

2.4. Continuity properties of perturbations. We investigate below the con-
tinuity properties of the perturbed constraint sets and of the value function of prob-
lem (Pnlp). Recall beforehand that given any set-valued mapping F : Rp ⇒ R

q, the
outer limit, lim supx→x̄ F (x) ⊂ R

q, and the inner limit, lim infx→x̄ F (x) ⊂ R
q, of F

at any point x̄ ∈ R
p are respectively defined by the following:

y ∈ lim sup
x→x̄

F (x) ⇐⇒ ∃xn → x̄, ∃ yn → y ∀n ∈ N, yn ∈ F (xn),

y ∈ lim inf
x→x̄

F (x) ⇐⇒ ∀xn → x̄, ∃ yn → y, ∃n0 ∈ N ∀n > n0, yn ∈ F (xn).

Then we can define the notion of (semi)continuity for set-valued mappings.

Definition 2.11 (semicontinuity of set-valued mappings). A set-valued mapping
F : Rp ⇒ R

q is outer semicontinuous (resp., inner semicontinuous) at x̄ ∈ R
p if

lim sup
x→x̄

F (x) ⊂ F (x̄)
(
resp., lim inf

x→x̄
F (x) ⊃ F (x̄)

)
.

It is continuous at x̄ if it is both outer and inner semicontinuous.

A straightforward application of these definitions leads to the following elementary
lemma.

Lemma 2.12 (continuity of perturbed sets). Let g1, . . . , gm : Rn → R be continu-
ous functions. Assume that the constraint set C0 = [g1 6 0, . . . , gm 6 0] is nonempty.
Then the set-valued mapping R

m
+ ⇒ R

n, µ 7→ Cµ is continuous at 0.

Remark 2.13. It is in general necessary to consider nonnegative perturbations
in order to have continuity at 0. Indeed, for general perturbations, although the
inequality constraint set mapping R

m ⇒ R
n, µ 7→ Cµ is outer semicontinuous at 0

(this readily follows from the continuity of the constraint functions), it is not inner
semicontinuous. Consider for instance the following constraint set, defined for any
µ ∈ R

2 by

Cµ = {x ∈ R | 1− x2
6 µ1, (x+ 1)2 − 4 6 µ2}
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and check that C0 = [−3,−1]∪{1}. However, for all µ1 < 0 and µ2 < 0 small enough,
we have Cµ = [−1 − √4 + µ2,−

√
1− µ1] ⊂ [−3,−1]. Hence {1} cannot be in the

inner limit of Cµ as µ→ 0. Precisely, we have lim infµ→0 Cµ = [−3,−1].
As for the equality constraint set mapping R

r ⇒ R
n, ν 7→ Mν , it is also clearly

outer semicontinuous at 0 but not inner semicontinuous in general, even when re-
stricted to R

r
+. For instance, consider for ν ∈ R the constraint set

Mν = {x ∈ R | 9x(x2 − 1)− 2
√
3 = ν}

and check that M0 = {−1/
√
3, 2/

√
3}. However, for every ν > 0, Mν contains a

unique point, which converges to 2/
√
3 as ν tends to 0. As a consequence, the inner

limit of Mν at 0 can only contain this point. Studying the situation when ν < 0, one
readily see that, actually, lim infν→0 Mν = {2/

√
3}.

We now turn our attention to the behavior of the value function of perturbed
problems and we study the continuity at 0 of (µ, ν) 7→ min{f(x) | x ∈ Cµ ∩Mν}.
As a consequence of previous observations, continuity cannot occur in general when
equality constraints are present, and it is “necessary” to consider nonnegative pertur-
bations for the inequalities. The next result is a classical one; see, e.g., [14, Prop. 4.4].
In the following, we denote by R

m
++ the set of vectors in R

m with positive entries.

Lemma 2.14 (continuity of the value function). Let f, g1, . . . , gm : Rn → R be
continuous functions. Assume that the constraint set Cµ = [g1 6 µ1, . . . , gm 6 µm] is
nonempty for µ = 0 and bounded for some positive perturbation µ′ ∈ R

m
++. Then the

value function val : Rm
+ → R defined by val(µ) = minx∈Cµ

f(x) is continuous at 0:

min
x∈Cµ

f(x) −−−−→
µ→0,
µ∈R

m

+

min
x∈C0

f(x).

Proof. First, since C0 ⊂ Cµ for all µ ∈ R
m
+ , we have val(0) > lim supµ→0 val(µ).

Let (µn)n∈N be any sequence in R
m
+ converging to 0 and such that val(µn) con-

verges to some v ∈ R ∪ {−∞}. Since µ′ ∈ R
m
++, we may assume without loss of

generality that we have, for all integers n, µ′ − µn ∈ R
m
+ , so that Cµn

⊂ Cµ′ . Let
x∗
n ∈ argmin{f(x) | x ∈ Cµn

}, that is, x∗
n ∈ Cµn

and f(x∗
n) = val(µn). Since the

sequence (x∗
n)n∈N lies in the bounded set Cµ′ , it converges, up to an extraction, to

some point x∗. Therefore, we have v = f(x∗) with x∗ ∈ C0 by continuity of f and
µ 7→ Cµ (Lemma 2.12). We deduce that val(0) 6 lim infµ→0 val(µ), which concludes
the proof.

Note that, without the compactness assumption, the conclusion of Lemma 2.14
does not hold. Consider for instance the semialgebraic programming problem

minimize
1 + x2

1 + x4
subject to x ∈ R,

x2

1 + x4
6 α.

For all scalars α > 0, the value of the problem is val(α) = 0, whereas for α = 0 it is
val(0) = 1.

3. Finiteness of singular diagonal perturbations.

3.1. Geometric aspects of regular perturbations. Although Theorem 2.9
is a satisfying theoretical result, it does not give any structural information beyond di-
mension and definability. In particular it is not clear how the perturbations should be
chosen when dealing with concrete optimization problems. The following result shows
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that, under reasonable assumptions, small positive and small negative perturbations
µ of the inequality constraints are always regular, that is, MFCQ is satisfied at every
point in Cµ. For the sake of simplicity, we have chosen to state this result as well
as all the subsequent ones for constraint sets defined only by inequalities. Neverthe-
less, they all extend easily to the setting of inequality and equality constraints (with
perturbations applying only to the inequalities); see Remark 3.2(b) and Remarks 3.4,
3.6, 3.8 and 3.11.

Theorem 3.1 (small regular perturbations). Let g1, . . . , gm : Rn → R be differ-
entiable constraint functions that are definable in the same o-minimal structure.

(i) Outer regular perturbations. If C0 = [g1 6 0, . . . , gm 6 0] is nonempty,
then there exists ε0 > 0 such that (0, ε0)

m ⊂ Areg. In other words, for all
positive perturbations µ ∈ (0, ε0)

m, the Mangasarian–Fromovitz constraint
qualification holds throughout Cµ = [g1 6 µ1, . . . , gm 6 µm].

(ii) Inner regular perturbations. If [g1 < 0, . . . , gm < 0] is nonempty, then there
exists ε1 > 0 such that (−ε1, 0)m ⊂ Areg. In other words, for all negative per-
turbations µ ∈ (−ε1, 0)m, the Mangasarian–Fromovitz constraint qualification
holds throughout Cµ = [g1 6 µ1, . . . , gm 6 µm].

Proof. We only show (i). Item (ii) follows from very similar arguments. Let
us first notice that the constraint set mapping R

m
+ ⇒ R

n, µ 7→ Cµ is a definable
mapping. For each µ in R

m
++ we consider the subset S(µ) of Cµ consisting of the

points at which MFCQ is not satisfied. Following Remark 2.2, we have

(3.1) S(µ) =
{
x ∈ Cµ | 0 ∈ co {∇gi(x) | i ∈ I(x)}

}
.

This extends to a definable set-valued mapping S : Rm ⇒ R
n, µ 7→ S(µ) by setting

S(µ) = ∅ if µ 6∈ R
m
++.

Working towards a contradiction, we assume that 0 belongs to the closure of
domS. Using Curve Selection Lemma A.6, we obtain a definable C1 curve [0, 1) →
R

m, t 7→ µ(t) such that µ(t) ∈ domS for all t > 0 and µ(0) = 0. Monotonicity
Lemma A.4 combined with the fact that µ(t) ∈ domS ⊂ R

m
++ for t ∈ (0, 1) and

µ(0) = 0 ensures the existence of ε > 0 such that

(3.2) µ̇i(t) > 0, i = 1, . . . ,m, ∀ t ∈ (0, ε).

The set-valued mapping (0, ε) ⇒ R
n, t 7→ S(µ(t)) is definable and has nonempty

values, hence Definable Choice Lemma A.5 yields the existence of a definable curve
x : (0, ε) → R

n such that x(t) ∈ S(µ(t)) for all t. Shrinking ε if necessary (using
Monotonicity Lemma A.4) we can assume that x(·) is C1.

Given two definable functions a, b : (0, ε) → R, we can apply once more Mono-
tonicity Lemma A.4 to see that either a(t) = b(t) or a(t) > b(t) or b(t) > a(t) for t
sufficiently small. This implies in particular that there exists a positive real ε′ 6 ε and
a nonempty subset I ⊂ {1, . . . ,m} such that I(x(t)) = I for all t ∈ (0, ε′). Indeed,
recall that I(x(t)) = {1 6 i 6 m | gi(x(t)) = µi(t)}, where each pair of functions
(gi(x(·)), µi(·)), i = 1, . . . ,m, is definable. Hence I(x(t)) stabilizes for t > 0 suffi-
ciently small. Furthermore, for all t ∈ (0, ε), I(x(t)) is nonempty because otherwise
MFCQ would be satisfied at x(t), which would contradict the fact that x(t) ∈ S(µ(t)).

By definition of S, for all t ∈ (0, ε′) there exist coefficients λi(t) with i ∈ I such
that

λi(t) > 0, ∀i ∈ I, and
∑

i∈I

λi(t) = 1,
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and such that

(3.3)
∑

i∈I

λi(t)∇gi(x(t)) = 0.

Multiplying each member of the above equality by ẋ(t), one obtains
∑

i∈I

λi(t) 〈 ẋ(t),∇gi(x(t)) 〉 = 0,

which can also be written

∑

i∈I

λi(t)
d(gi ◦ x)

dt
(t) = 0.

Since each inequality constraint gi, i ∈ I, is active for all t ∈ (0, ε′), one gets
∑

i∈I

λi(t) µ̇i(t) = 0, t ∈ (0, ε′),

a contradiction: indeed (3.2) and the fact that I 6= ∅ indicate that the left-hand side
of the latter equality is positive for all t ∈ (0, ε′).

For (ii), it suffices to notice that Slater’s condition guarantees that the set Cµ

with µ ∈ (−∞, 0)m is nonempty for µ in a neighborhood of 0. The proof then follows
arguments similar to those developed for (i).

We next discuss some aspects of the hypotheses of Theorem 3.1.

Remark 3.2. (a) A similar result cannot be derived for joint perturbations (µ, ν)
of inequality and equality constraint sets. Consider for instance the functions defined
on R

2 by g(x1, x2) = x2 and h(x1, x2) = x2 − (x1)
2. For all perturbations µ ∈ R,

the constraint set Cµ ∩Mµ = [g 6 µ, h = µ] contains only the point (0, µ), at which
MFCQ does not hold since ∇g(0, µ) = ∇h(0, µ) = (0, 1). (See also Remark 2.10.)

(b) The conclusion of Theorem 3.1 still holds for perturbed constraint sets of
the form Cµ ∩M0. For this, one needs to assume that the equality constraint set
M0 = [h1 = 0, . . . , hr = 0] is defined by definable differentiable functions h1, . . . , hr :
R

n → R whose gradient vectors ∇hj(x), j = 1, . . . , r, are linearly independent for all
x ∈M0.

Sketch of proof. Only a few changes in the proof of the previous theorem are
necessary. The first one is the definition of the set-valued map S (see (3.1)), which
sends perturbation vectors µ ∈ R

m to the set of feasible points at which constraint
qualification conditions are not satisfied. In this new setting, it becomes

S(µ) =
{
x ∈ Cµ ∩M0 | co {∇gi(x) | i ∈ I(x)} ∩ span {∇hj(x) | 1 6 j 6 r} 6= ∅

}
.

The second change is (3.3), which characterizes the failure of the constraint qualifi-
cation at point x(t) ∈ S(µ(t)). Since the gradient vectors of the equality constraints
are linearly independent for all the feasible points, this failure of constraint qualifi-
cation must come from the absence of a vector y satisfying (2.1). Hence, following
Remark 2.2, the right-hand side of the equality must be replaced by a linear combi-
nation of the gradients ∇hj at point x(t), that is, (3.3) now reads

∑

i∈I

λi(t)∇gi(x(t)) =
r∑

j=1

κj(t)∇hj(x(t))
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for some coefficients κj(t) ∈ R, j = 1, . . . , r. Then the proof proceeds along the same
lines. In particular, multiplying the right-hand side of the previous equality by ẋ(t),
one obtains

r∑

j=1

κj(t) 〈 ẋ(t),∇hj(x(t)) 〉 =
r∑

j=1

κj(t)
d(hj ◦ x)

dt
(t) = 0

since each equality constraint hj , j = 1, . . . , r, is constant on the curve x.

(c) The use of small perturbation vectors which are not positive (or negative)
may not remove the absence of MFCQ. A simple example is given on R

2 by

g1(x1, x2) = (x1)
2 + (x2)

2 − 1 and g2(x1, x2) = (x1 − 2)2 + (x2)
2 − 1.

The sets [g1 6 0] and [g2 6 0] delineate two tangent discs. Therefore, MFCQ fails
at their contact point (1, 0). Consider the perturbation path t 7→ (µ1(t), µ2(t)) =
(t2 − 2t, t2 + 2t) which passes through (0, 0) with velocity (2,−2). It can be checked
that the constraint set [g1 6 µ1(t), g2 6 µ2(t)] is not regular at (1 − t, 0) for all
t ∈ (−1, 1).

(d) Even though definable functions are not the unique class of functions for
which a theorem similar to Theorem 3.1 can be derived,3 the definability assumption
in Theorem 3.1 cannot be replaced by mere smoothness. Many counterexamples
can be given, even when n = 1. Consider for instance the strictly increasing C∞
function g(x) =

∫ x

0
exp(−t−2) sin2(t−1)dt with x ∈ R, and the set [g 6 0] = (−∞, 0].

Obviously the set of regular perturbations Areg does not contain any segment of the
form (0, ε) with ε > 0.

We now provide a “partial perturbation version” of our main result, which can
be proved following the lines of Theorem 3.1. It relies on the assumption that the set
defined by the first p inequalities is regular.

Theorem 3.3 (partial constraint qualification). Let g1, . . . , gm : Rn → R be dif-
ferentiable functions that are definable in the same o-minimal structure. Assume that
C0 = [g1 6 0, . . . , gm 6 0] is nonempty and that the Mangasarian–Fromovitz con-
straint qualification holds throughout [g1 6 0, . . . , gp 6 0] for some positive integer
p < m. Then there exists ε > 0 such that, for all perturbations µp+1, . . . , µm ∈ (0, ε),
MFCQ holds throughout [g1 6 0, . . . , gp 6 0, gp+1 6 µp+1, . . . , gm 6 µm].

Remark 3.4. Similarly to Remark 3.2(b), Theorem 3.3 also holds in the setting
of fixed equality constraints, in addition to partially perturbed inequality constraints.

A simple but important corollary is a kind of partial Slater qualification condition.

Corollary 3.5 (partial Slater condition). Let g1, . . . , gm : Rn → R be differen-
tiable convex functions that are definable in the same o-minimal structure. Assume
that C0 6= ∅ and that gi(x0) < 0 for some x0 ∈ R

n and all i ∈ {1, . . . , p}, where
p < m. Then there exists ε > 0 such that, for all perturbations µp+1, . . . , µm ∈ (0, ε),
MFCQ holds throughout [g1 6 0, . . . , gp 6 0, gp+1 6 µp+1, . . . , gm 6 µm].

Remark 3.6. The above result is provided without equality constraints for the
sake of simplicity: the addition of a finite system of affine constraints4 is an easy task.

3One can think for instance of continuous convex functions.
4The linear independence assumption of Remark 3.2(b) is not necessary in this case.
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To conclude this subsection, let us emphasize that Theorem 3.1 applies to several
frameworks that are widely spread in practice, including polynomial, semialgebraic,
real analytic, and many other kinds of definable constraints.

3.2. Diagonal perturbations. When the constraint functions are definable in
the same o-minimal structure, then so are the sets of regular and singular perturba-
tions, since they can be described by a first-order formula (see also Theorem 2.9).
Thus, a direct application of Theorem 3.1 leads to the finiteness of singular perturba-
tions along any direction, and in particular along the diagonal, i.e., for perturbations
of the form (α, . . . , α) with α ∈ R. With a minor abuse of notation, for α ∈ R, we use
Cα := [g1 6 α, . . . , gm 6 α].

Corollary 3.7. Let g1, . . . , gm : R
n → R be differentiable functions that are

definable in the same o-minimal structure. Then, for all except finitely many pertur-
bations α ∈ R, the Mangasarian–Fromovitz constraint qualification holds throughout
Cα = [g1 6 α, . . . , gm 6 α]. The same conclusion holds for

[g1 6 0, . . . , gp 6 0, gp+1 6 α, . . . , gm 6 α]

if MFCQ holds throughout [g1 6 0, . . . , gp 6 0] for some p < m.

Remark 3.8 (equality and inequality constraint). Similarly to Remark 3.2(b),
the above result also holds for perturbed constrained sets of the form Cα∩M0, where
M0 is defined by definable functions that are differentiable and whose gradients are
independent at any point x ∈M0.

Remark 3.9 (diagonal perturbations through the nonsmooth Sard theorem).With
a slightly stronger regularity assumption, Corollary 3.7 can be seen as the nonsmooth
definable Sard-type theorem [10, Cor. 9]. We next explain this observation.

When dealing with diagonal perturbations α ∈ R, the constraint set Cα can be
represented as the lower level set of a single real-extended-valued function. Namely,
a point x is in Cα if and only if

max
16i6m

gi(x) 6 α.

Let us define g = max16i6m gi and let us assume that the constraint functions
g1, . . . , gm are C1. This implies that the basic chain rule of subdifferential calculus
applies to the function g (see [43, Thm. 10.6]). Thus we have, for all x ∈ R

n,

∂̂g(x) = ∂g(x) = co {∇gi(x) | 1 6 i 6 m, gi(x) = g(x)},
where, for any function f : Rn → R and any x ∈ R

n, ∂̂f(x) and ∂f(x) respectively
denote the Fréchet subdifferential and the limiting/Mordukhovich subdifferential of f
at x; see [43] for their constructions.

Now observe that α ∈ R is a singular perturbation, that is, MFCQ is not satisfied
at some point x ∈ Cα, if and only if g(x) = α and 0 ∈ ∂g(x). In other words,
the singular diagonal perturbations of the inequality constraint set of problem (Pnlp)
correspond to the critical values of g.

Thus, when the functions g1, . . . , gm are definable in the same o-minimal structure,
so is g, and the finiteness of the singular diagonal perturbations stated in Corollary 3.7
is equivalent to the finiteness of the critical values of the definable function g. Hence,
with continuously differentiable functions, Corollary 3.7 can be seen as a Sard-type
theorem for definable functions, which was proved in full generality in [10, Cor. 9].
These arguments can also be extended when equality constraints with linearly inde-
pendent gradients are added to the constraint set (see Remark 3.2(b)).
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3.3. A bound on the number of singular perturbations for polynomial

optimization. We consider here constraint sets defined by real polynomial functions
and we bound the number of singular values for the corresponding perturbed sets.

To tackle this problem, we evaluate the number of connected components of some
adequate real algebraic sets. A key result regarding this evaluation is provided by
the Milnor–Thom bound: given any polynomial map f : Rp → R

q, the number of
connected components of the set of zeros of f , {x ∈ R

p | f(x) = 0}, is bounded by

(3.4) d (2d− 1)p−1,

where d is the maximal degree of the polynomial functions fj for j = 1, . . . , q (see,
e.g., [4]).

Theorem 3.10. Let g1, . . . , gm : Rn → R be polynomial functions whose degrees
are bounded by d. Let {I, J} be a partition of the set of indices {1, . . . ,m}, possibly
trivial, such that the Mangasarian–Fromovitz constraint qualification holds throughout
[gj 6 0, j ∈ J ]. Then, for the perturbed sets [gi 6 α, gj 6 0, i ∈ I, j ∈ J ] with α
ranging in R, the number of singular perturbations is bounded by

d (2d− 1)n (2d+ 1)m.

Proof. Denoting by |J | the cardinality of J , we assume that |J | ∈ {0, . . . ,m− 1}
(otherwise I is empty and there is nothing to prove). For α ∈ R, let

CI,α := [gi 6 α, gj 6 0, i ∈ I, j ∈ J ].

If α is a singular perturbation, then there exists a point x ∈ CI,α for which 0 ∈
co {∇gi(x) | i ∈ I(x)}. So, there exists a subset of indices K ⊂ I(x), which we fix,
and positive scalars λi > 0, i ∈ K, such that

∑
i∈K λi∇gi(x) = 0 and

∑
i∈K λi = 1.

Furthermore, K 6⊂ J since MFCQ holds throughout [gj 6 0, j ∈ J ]. Let L be
the set of indices equal to I(x). Thus, the sets K and L being fixed, the tuple
(x, λ, α) ∈ R

n × R
K × R is a solution of the polynomial system

(3.5)





∑

i∈K

λi∇gi(x) = 0,

∑

i∈K

λi = 1,

gj(x) = α, j ∈ L ∩ I,

gj(x) = 0, j ∈ L ∩ J,

and satisfies the following additional constraints: λ ∈ R
K
++, gℓ(x) < α for all ℓ ∈ I \L,

and gℓ(x) < 0 for all ℓ ∈ J \ L.
The first step of the proof is to show that the number of singular perturbations

is bounded above by the number of connected components of the set of solutions of
(3.5) for all possible choices of K and L. This is done by constructing an injection
from the set of singular perturbations to these connected components.

Fix a singular value α and choose a subset L ⊂ {1, . . . ,m} with maximal cardi-
nality among all the sets of active constraints I(x) such that MFCQ is not satisfied
at x ∈ CI,α. Then pick a subset K ⊂ L with minimal cardinality among all the
subsets K ′ ⊂ L such that the system (3.5) with K replaced by K ′ has a solution
(x, λ, α) ∈ R

n ×R
K′ ×R with x ∈ CI,α and λ ∈ R

K′

+ . Let (x̄, λ̄, α) be such a solution
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QUALIFICATION CONDITIONS IN SEMIALGEBRAICITY 1881

for the particular choice of K and L. Note that K 6⊂ J since [gj 6 0, j ∈ J ] is regular.
Also note that λ̄ ∈ R

K
++ by minimality of |K|, and that gℓ(x̄) < α for all ℓ ∈ I \ L,

and gℓ(x̄) < 0 for all ℓ ∈ J \ L by maximality of |L|.
Let Q ⊂ R

n×R
K ×R be the connected component of the set of solutions of (3.5)

corresponding to K and L, containing the tuple (x̄, λ̄, α). We next prove that

Q ⊂ S(α,K,L) := {x ∈ CI,α | I(x) = L} × R
K
++ × {α}.

Working towards a contradiction, assume that the above inclusion does not hold.
There exists therefore a continuous path (x(·), λ(·), α(·)) from [0, 1] to Q such that

{
(x(0), λ(0), α(0)) = (x̄, λ̄, α),

(x(1), λ(1), α(1)) /∈ S(α,K,L).

Let t = sup{s ∈ [0, 1] | (x(s), λ(s), α(s)) ∈ S(α,K,L)}. By continuity we have
α(t) = α, x(t) ∈ CI,α, and λ(t) ∈ R

K
+ . If either I(x(t)) 6= L or λ(t) /∈ R

K
++, then there

is a contradiction with the maximality of |L| (since we already have L ⊂ I(x(t))) or
with the minimality of |K|. Hence, we have I(x(t)) = L and λ(t) ∈ R

K
++. Since in

addition x(t) ∈ CI,α and α(t) = α, we have (x(t), λ(t), α(t)) ∈ S(α,K,L). Finally, we
have t < 1 since (x(1), λ(1), α(1)) 6∈ S(α,K,L). Using the continuity of the path and
(3.5), there exists ε > 0 such that for all s ∈ [t, t + ε), we have x(s) ∈ CI,α(s) with
I(x(s)) = L and λ(s) ∈ R

K
++. This implies that α(s) is a singular perturbation for all

s ∈ [t, t+ ε). Combining the continuity of α(·) and Corollary 3.7, α(·) is constant on
[t, t+ ε). Hence, we have (x(s), λ(s), α(s)) ∈ S(α,K,L) for all s ∈ [t, t+ ε). From the
definition of t, we obtain t > t+ ε, which is contradictory since ε > 0.

Thus, for every singular perturbation α, there exist subsets K ⊂ L ⊂ {1, . . . ,m}
with K ∩ I 6= ∅ such that the set of solutions of the polynomial system (3.5) with this
choice of K and L has at least one connected component included in R

n×R
K ×{α}.

Hence the mapping sending every singular perturbation to this connected component
is injective. So we have just proved that the number of singular perturbations is upper
bounded by the number of connected components of the set of solutions of (3.5) for
all possible choices of K and L. We can then deduce from the Milnor–Thom bound
(3.4) an upper bound for the number of singular perturbations α by summation over
all possible choices of K and L.

Define p = |I| ∈ {1, . . . ,m}. In the computation below we denote by ℓ1, ℓ2 the
cardinality of L∩ I and L∩J , respectively, and by k1, k2 the cardinality of K ∩ I and
K ∩J , respectively. Since the system (3.5) has degree d and n+k1+k2+1 variables,
the number of singular perturbation is bounded by

∑

16ℓ16p
06ℓ26m−p

(
p

ℓ1

)(
m− p

ℓ2

) ∑

16k16ℓ1
06k26ℓ2

(
ℓ1
k1

)(
ℓ2
k2

)
d (2d− 1)n+k1+k2

= d (2d− 1)n (2d+ 1)m−p
(
(2d+ 1)p − 2p

)

= d (2d− 1)n (2d+ 1)m
(
1−

(
2

2d+ 1

)p)
.

To conclude, observe that

(3.6)
1

3
6 1−

(
2

2d+ 1

)p

6 1

for all d > 1 and 1 6 p 6 m.
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Remark 3.11. (a) As demonstrated in a forthcoming example, the choice of a
partition (I, J) has a very marginal impact on the global bound, which we have
neglected in our main estimate (3.4).5

(b) Let h1, . . . , hr : Rn → R be polynomial functions with maximal degree d such
that the set [h1 = 0, . . . , hr = 0] satisfies MFCQ (i.e, the first regularity assumption
in Definition 2.1). Then, with a minor adaptation of the above proof, we can show
that for the perturbed sets [gi 6 α, gj 6 0, i ∈ I, j ∈ J ] ∩ [h1 = 0, . . . , hr = 0] the
number of singular perturbations α ∈ R is bounded by

d (2d− 1)n+r(2d+ 1)m.

Indeed, if α is singular, then there exists a tuple (x, λ, κ, α) ∈ R
n × R

K
++ × R

r × R

that is a solution of a polynomial system similar to (3.5) with the following changes:
– add the r equality constraints hj(x) = 0, j = 1, . . . , r;
– replace the right-hand side of the first equality by the linear combination∑r

j=1 κj ∇hj(x).
The rest of the proof follows along the exact same lines, with a trivial adaptation of
the notation. We do not need here to take into account the values of the coefficients
κj , j = 1, . . . , r, contrary to those of the λi, i ∈ K. Using the same notation as in the
proof, this new system has degree d and n + k1 + k2 + r + 1 variables. Whence the
bound follows.

The Milnor–Thom bound (3.4) and a fortiori the bound in Theorem 3.10 are
not sharp, but one may ask whether they are of the right order of magnitude. The
following examples show that this is indeed the case, at least regarding the dependence
with respect to the degree d of the polynomials and the dimension n of the base space.
They also illustrate the absence of sensitivity of our bound with respect to the choice
of the partition (I, J).

Indeed, the examples show that even if all but one of the constraints define a
regular set, the number of singular perturbations generated by the last constraint is of
the right order. In the first example, which is thoroughly explained, the degree is fixed
to d = 2, and the number of singular perturbations is shown to be exponential with
respect to n. In the second example, the number of singular diagonal perturbations
is shown to be highly dependent on the degree d.

Example 3.12. Here, we construct an inequality constraint set in R
n defined by

n+1 polynomial functions of degree 2, n of which are convex. The number of singular
perturbations corresponding to a variation of the unique nonconvex constraint is 3n−1.

Let a ∈ R
n be a point in (−1, 1)n. Then, for α ∈ R, define the constraint set C0,α

as the set of points x ∈ R
n such that



g0(x) = 4n−

n∑

i=1

(xi − ai)
2
6 α,

gi(x) = (xi)
2
6 1, i = 1, . . . , n.

For α < 4n, the first inequality defines the complement in R
n of the open ball cen-

tered at point a with radius
√
4n− α, denoted by B(a,

√
4n− α). As for the last

n inequalities, they are convex and define the hypercube [−1, 1]n. Observe that for
α 6 0, C0,α is empty since [−1, 1]n is strictly included in B(a,

√
4n− α), whereas for

α > 4n, C0,α = [−1, 1]n.
5Our proof shows that it evolves within the interval [1/3, 1]; see (3.6).
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We next show that a perturbation α is singular whenever a face of [−1, 1]n and
the ball B(a,

√
4n− α) are tangent. First note that the constraint sets [g0 6 α] and

[g1 6 1, . . . , gn 6 1] both satisfy MFCQ. Hence, the constraint qualification for C0,α

may fail only at points where the constraint g0 and at least one of the constraints gi
with i ∈ {1, . . . , n} are active, that is, at intersection points between the boundary of
the hypercube [−1, 1]n and the boundary of the ball B(a,

√
4n− α).

Let z be such a point for a given α. There exists a nonempty subset of indices
I and integers vi ∈ {±1} for i ∈ I such that zi = vi for all i ∈ I and |zj | < 1 for
all j /∈ I. Then MFCQ is not satisfied at z if and only if the convex hull of the
gradients ∇g0(z) and ∇gi(z) with i ∈ I contains 0, and since [−1, 1]n is qualified,
this is equivalent to −∇g0(z) being in the convex cone generated by the gradients
∇gi(z), i ∈ I. Since −∇g0(z) = 2(z − a) and ∇gi(z) = 2viei for every i ∈ I, where
ei denotes the ith coordinate vector of Rn, the latter condition holds if and only if
zj = aj for all j /∈ I, i.e., if and only if z is the orthogonal projection of a on the face
F = {x ∈ R

n | xi = vi, i ∈ I, |xj | 6 1, j /∈ I}. In other words, MFCQ is not satisfied
at point z if and only if a face of the hypercube [−1, 1]n and the ball B(a,

√
4n− α)

are tangent at z.
Now, given k ∈ {0, . . . , n− 1} there are

(
n
k

)
2n−k faces of dimension k in the cube

[−1, 1]n. Thus, by adequately choosing a in (−1, 1)n so that, for all α, B(a,
√
4n− α)

is tangent to a unique face of [−1, 1]n at most, we deduce that the total number of
singular perturbations is

∑n−1
k=0

(
n
k

)
2n−k = 3n − 1. Figure 2 shows a representation of

C0,α in R
2 for each singular value α.

x11

x2

1

+
a

•
x11

x2

1

+
a

•

x11

x2

1

+
a•

x11

x2

1

+
a

•

x11

x2

1

+
a

•
x11

x2

1

+
a
•

x11

x2

1

+
a
•

x11

x2

1

+
a •

Fig. 2. Singular perturbations of a constraint set (hatched area) defined by degree 2 polynomials.

Remark 3.13. The dependence of the number of singular values in the previous
example, 3n− 1, with respect to m and n does not appear clearly since m = n+1. In
this regard, the gap between this number and the bound predicted by Theorem 3.10,
2 × 3n × 5n+1 = 10 × 15n, questions the relevance of the exponential term in m
appearing in Theorem 3.10. In order to better understand this dependence, we could
think of an example similar to Example 3.12 where the hypercube would be replaced
by a polytope with m facets, and hence is defined by m linear constraints (instead of
2n in Example 3.12). However, the maximum number of vertices of such a polytope,
given by the upper bound theorem [37], is asymptotically equal toO(m⌊n/2⌋) (see [46]).
Hence, such an example could not have a number of singular perturbations exponential
with respect to m. It then remains an open question to understand the dependence
of the maximum number of singular values with respect to m, n.
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Example 3.14. We build an example in R
n with n + 1 polynomial constraints,

degree 2d, and we show that the perturbation of a unique constraint generates at
least dn singular values.

For any even integer d, let us consider the polynomial Qd =
∏d

k=1(X
2 − k2). Let

H be the set of points x ∈ R
n such that gi(x) = Qd(xi) 6 0, i = 1, . . . , n. The set

H is a disjoint union of dn boxes. More precisely, since d is even, Qd is nonpositive
on the intervals [2k − 1, 2k], k = 1, . . . , d/2, and on their symmetrical images with
respect to 0. Then H is the (disjoint) union of the dn boxes

(3.7) H(v, k) :=
n∏

i=1

vi [2ki − 1, 2ki], v ∈ {±1}n, k ∈ {1, . . . , d/2}n .

Note that all the boxes (3.7) are included in [−d, d]n. Let a be some point in (−d, d)n
and, for α ∈ R, define C0,α as the set of points that are contained in H and that
satisfy in addition g0(x) = 4nd2 − ‖x− a‖2 6 α. Figure 3 displays C0,α for d = 4.

x11

x2

1

+
a

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Fig. 3. Constraint set (hatched area) defined by n + 1 polynomials of degree at most 2d with
dn singular perturbations (n = 2, d = 4).

Let us follow the arguments of Example 3.12. Observe that for each vertex
v ∈ {±1}n and for each tuple of indices k ∈ {1, . . . , d/2}n there exists a unique
perturbation α ∈ (0, 4nd2) such that MFCQ does not hold at point (2ki vi)16i6n,
that is, when the box H(v, k) defined in (3.7) and the sphere centered at a with ra-
dius

√
4nd2 − α have a unique contact point (see Figure 3). Finally, by adequately

choosing a, it is possible to show that all the dn singular perturbations mentioned
above are distinct.

4. Applications to optimization algorithms. We illustrate here the results
of section 3 through some classical algorithms for nonlinear optimization. Our ap-
proach consists in embedding the original problem within some one-parameter family
of optimization problems:

(Pα) minimize f(x)

subject to g1(x) 6 α, . . . , gm(x) 6 α,

where f, g1, . . . , gm : Rm → R are differentiable definable functions.
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A first obvious but important consequence is that any algorithm which is oper-
ational under the standard qualification condition can be applied to problem (Pα)
except perhaps for a finite number of parameters α. In view of the fact that val(Pα)
tends to val(P0) (see Lemma 2.14), it provides a natural way of approximating (P0).
This can be illustrated in a straightforward manner with many types of algorithms;
see, e.g., [6, 30, 42] and see also [2] for continuation techniques in optimization. Esti-
mating the complexity of such an approach is a matter for future research.6 In this
spirit of a direct approximation, we provide an illustration involving SDP relaxations
on the KKT ideal, which improves a series of results of [1, 19, 20].

Another family of applications considered below is provided by infeasible SQP
methods, which often require strong qualification conditions assumptions.

4.1. Infeasible sequential quadratic programming. We consider the ex-
tended sequential quadratic method, ESQM, proposed by Auslender [3] and based
on an ℓ∞ penalty function. Other methods could be treated such as, for instance,
Flechter’s Sℓ1QP [26]. We make the following very basic assumptions.

Assumption 4.1.
(i) Regularity. The functions f, g1, . . . , gm : Rn → R are C2 with Lipschitz con-

tinuous gradients. We denote by L,L1, . . . , Lm > 0 their Lipschitz constants,
respectively.

(ii) Compactness. The constraint sets Cα = [g1 6 α, . . . , gm 6 α] are compact
and nonempty for all α > 0.

(iii) Boundedness. infx∈Rn f(x) > −∞.

The general SQP method we consider, ESQM, is described below. The strength
of the following general convergence theorem is to rely merely on semialgebraic-
ity/definability and boundedness assumptions. In particular, it does not require any
qualification assumptions whatsoever. Another distinctive feature of this result is to
allow us to treat all at once many issues such as nonconvexity, continuum of station-
ary points, infeasibility, nonlinear constraints, or oscillations (see [12] for more on the
key issues).

ESQM Extended sequential quadratic method [3, 12].

Step 1: Choose x0 ∈ Cα, β0 > 0, δ > 0, λ > L, and λ′ > maxi Li, and set k ← 0.
Step 2: Compute xk+1 solution (along with some s ∈ R) of

minimize
s∈R, y∈Rn

f(xk) + 〈∇f(xk), y − xk〉+ βks+
λ+ βkλ

′

2
‖y − xk‖2

s.t. gi(xk) + 〈∇gi(xk), y − xk〉 6 α+ s , i = 1, . . . ,m,

s > 0.

Step 3: If gi(xk) + 〈∇gi(xk), xk+1 − xk〉 6 α, i = 1, . . . ,m, then βk+1 ← βk.
Else βk+1 ← βk + δ.

Step 4: k ← k + 1, go to Step 2.

Theorem 4.2 (large penalty parameters yield convergence of ESQM). Assume
that (i)–(iii) hold (smoothness, compactness, boundedness). For all parameters α > 0,
except for a finite number of them, there exists a number β(α) > 0 such that ESQM

6It is likely to be connected to the results from [27] and [28].
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initialized with any β0 > β(α) generates a sequence (xk)k∈N which converges to some
KKT point of problem (Pα).

Proof. Following Corollary 3.7, there exist a finite family of parameters A ⊂ R+

such that for all α /∈ AMFCQ holds throughout Cα. Let us fix a parameter α ∈ R+\A.
Then there exists a positive real number ε such that [α, α+ ε] ⊂ R+ \A. This implies
that for every x ∈ Cα+ε, if gj(x) > α for some index j, then there exist y ∈ R

n such
that 〈y,∇gi(x)〉 < 0 for all indices i such that gi(x) = max16ℓ6m gℓ(x). This follows
from the fact that x ∈ Cα′ , where α′ = max16i6m gi(x) is such that α 6 α′ 6 α+ ε,
so that MFCQ holds at x ∈ Cα′ .

Let fmin = infx∈Rn f(x) and g0 be the constant function equal to α. Set dk =
xk+1 − xk. For every k ∈ N, we have

1

βk+1
(f(xk+1)− fmin) + max

06i6m
gi(xk+1)

6
1

βk
(f(xk+1)− fmin) + max

06i6m
gi(xk+1)

6
1

βk
(f(xk) + 〈∇f(xk), dk〉 − fmin)

+ max
06i6m

(
gi(xk) + 〈∇gi(xk), dk〉

)
+

λ+ βkλ
′

2βk
‖dk‖2

6
1

βk
(f(xk)− fmin) + max

06i6m
gi(xk),

where the second inequality comes from the Lipschitz continuity of the gradients of
the functions involved and the third inequality follows from the minimization problem
in Step 2 of ESQM.

Now choose β0 > (f(x0) − fmin)/ε. By a trivial induction, we deduce that, for
every integer k ∈ N,

max
06i6m

gi(xk) 6
1

β0
(f(x0)− fmin) + max

06i6m
gi(x0) 6 α+ ε.

Hence, all the points xk generated by ESQM with the latter choice of β0 lie in Cα+ε

and so satisfy the following qualification condition (an essential ingredient in [12]): if
gj(x) > α for some index j and some x in R

n, then there exists y ∈ R
n such that

〈y,∇gi(x)〉 < 0 for all indices i such that gi(x) = max16ℓ6m gℓ(x).
The fact that any cluster point of (xk)k∈N is a KKT point of problem (Pα) readily

follows from [12, Thm. 2] (see also [3, Thm. 3.1]). The convergence of (xk)k∈N then
follows from [12, Thm. 3] and the definability assumptions.

Remark 4.3 (stabilization of penalty parameters).
(a) For a fixed α, the sequence of penalty parameters βk is constant after a finite

number of iterations. This was an essential result in [3] which still holds here.
(b) As in [12], rates of convergence are available when the data are in addition

real semialgebraic.

4.2. Exact relaxation in polynomial programming. A standard approach
for solving problem (Pα) when data are polynomial relies on hierarchies of semidefinite
programming (see [33, 34]). It is known that, generically, these hierarchies are exact,
meaning that they converge in a finite number of steps (see [41]), but this behavior
cannot be detected a priori. In order to construct SDP hierarchies with guaranteed
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finite convergence behavior, some authors introduced redundant constraints in the
hierarchies. The work presented in [20] investigates unconstrained problems and the
convergence of SDP hierarchies over the variety of critical points, while [19] considers
more generally KKT ideals. The recent work [1] extends these results further and
proposes a relaxation which is either exact or which detects in finitely many steps the
absence of “KKT minimizers” [1, Thm. 6.3].

A drawback of this method is that it fails whenever optimal solutions of prob-
lem (Pα) do not satisfy KKT conditions.7 Corollary 3.7 shows that this issue is only a
concern for finitely many values of the perturbation parameter α in (Pα) and that the
relaxation remains exact outside of this finite set. We point out that the constructions
presented in [19,20], similar in their approach, require much stronger assumptions on
the constraint ideal than the one we propose.

We now explain these facts; Appendix B contains the basic notation/definition
used below. We first describe the polynomial problem from which the relaxation in [1]
is constructed. Let α ∈ R be such that Cα = [g1 6 α, . . . , gm 6 α] is nonempty. The
Lagrangian associated with problem (Pα) is defined for x ∈ R

n and λ ∈ R
m by

Lα(x, λ) := f(x) +

m∑

i=1

λi (gi(x)− α).

Then we introduce the KKT ideal defined on R[x, λ] by

Iαkkt :=

〈
∂Lα

∂x1
, . . . ,

∂Lα

∂xn
, λ1 (g1 − α), . . . , λm (gm − α)

〉
.

Let {hα
1 , . . . , h

α
r } ⊂ R[x] be a generating family of the ideal Iαkkt ∩ R[x]:

〈hα
1 , . . . , h

α
r 〉 = Iαkkt ∩ R[x].

Note that such a family can be obtained by computing a Gröbner basis of Iαkkt
(see [17]). Adding these redundant constraints to problem (Pα) yields the follow-
ing polynomial problem:

minimize f(x)

(Pkkt
α ) subject to g1(x) 6 α, . . . , gm(x) 6 α,

hα
1 (x) = 0, . . . , hα

r (x) = 0.

Observe that any minimizer of problem (Pα) that is also a KKT point is a minimizer of
problem (Pkkt

α ). Hence, if the Mangasarian–Fromovitz constraint qualification holds
throughout Cα, then solving the former problem boils down to solving the latter.

We next introduce the SDP relaxation hierarchies proposed in [1] to solve prob-
lem (Pkkt

α ). For k ∈ N, the primal is given by

(4.1) pαk = inf
{
Λ(f) | Λ ∈ (R2k[x])

∗, Λ(1) = 1,

Λ(p) > 0 ∀p ∈ 〈hα
1 , . . . , h

α
r 〉2k +Pk(α− g1, . . . , α− gm)

}

and the dual problem is

(4.2) dαk = sup
{
γ ∈ R | f − γ ∈ 〈hα

1 , . . . , h
α
r 〉2k +Pk(α− g1, . . . , α− gm)

}
,

7Abril Bucero and Mourrain gave hints to deal with such a situation, but at the expense of an
increasing complexity in the construction of the hierarchies.
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where the notation for the truncated ideal 〈·〉2k and the truncated preordering Pk is
detailed in Appendix B. Let us mention however that the dual relaxation hierarchy is
based on an SOS representation of nonnegative polynomials, which uses a Schmüdgen-
type certificate. But contrary to Schmüdgen’s Positivstellensatz [44, Cor. 3], compact-
ness is not required here.

A straightforward combination of Corollary 3.7 and [1, Thm. 6.3] leads to the
following.

Proposition 4.4. Let f, g1, . . . , gm : Rn → R be polynomial functions such that
C0 = [g1 6 0, . . . , gm 6 0] is nonempty. Then, for all parameters α > 0, except for a
finite number of them, one of the following assertions holds:

(i) the relaxations (4.1) and (4.2) of problem (Pkkt
α ) are exact and provide the

value of problem (Pα), i.e., val(Pα) = dαk = pαk for all k large enough;8

(ii) for k large enough, the feasible set of problem (4.1) is empty and problem (Pα)
has no minimizer.

Appendix A. Reminder on semialgebraic and tame geometry. We
recall here the basic results of tame geometry that we use in the present work. Some
references on this topic are [16, 23,24].

Definition A.1 (see [16, Def. 1.4]). An o-minimal structure on (R,+, ·) is a
sequence of Boolean algebras O = (Op)p∈N where each Op is a family of subsets of Rp

and such that, for each p ∈ N, we have the following:
(i) if A belongs to Op, then A× R and R×A belong to Op+1;
(ii) if π : Rp+1 → R

p is the canonical projection onto R
p, then, for any A ∈ Op+1,

the set π(A) belongs to Op;
(iii) Op contains the family of real algebraic subsets of Rp, that is, every set of the

form {x ∈ R
p | g(x) = 0}, where g : Rp → R is a polynomial function;

(iv) the elements of O1 are exactly the finite unions of points and intervals.

A subset of Rp which belongs to an o-minimal structure O is said to be definable
(in O). A function f : A ⊂ R

p → R
q or a set-valued mapping F : A ⊂ R

p ⇒ R
q is

said to be definable in O if its graph is definable (in O) as a subset of Rp × R
q.

Example A.2. The simplest (and smallest) o-minimal structure is given by the
class SA of real semialgebraic objects. A set A ⊂ R

p is called semialgebraic if it is
of the form A =

⋃l
j=1

⋂k
i=1{x ∈ R

p | gij(x) < 0, hij(x) = 0}, where the functions
gij , hij : R

p → R are polynomial functions. The fact that SA is an o-minimal structure
relies mainly on the Tarski–Seidenberg principle (see [5]), which asserts that (ii) holds
true in this class.

Other examples like globally subanalytic sets or sets belonging to the log-exp
structure provide a vast field of sets and functions that are of primary importance for
optimizers. We will not give proper definitions of these structures in this paper, but
the interested reader may consult [24] or [8, 9, 32] for optimization-oriented subjects.

In this paper, we shall essentially use the classical results listed hereafter. In the
remainder of this subsection, we fix an o-minimal structure O on (R,+, ·).

Proposition A.3 (stability results). Let A ⊂ R
p and g : A → R

p be definable
objects.

8The result of Abril Bucero and Mourrain is actually more precise and establishes a link between
the minimizers of problem (4.1) and the ones of problem (Pα). We refer the reader to [1, Thm. 6.3]
for a comprehensive presentation.
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– If B ⊂ A is a definable set, then g(B) is definable.
– If C ⊂ R

q is a definable set, then g−1(C) is definable.
– If A is open and g is differentiable, then its derivative is definable.

Monotonicity Lemma A.4. Let f : I ⊂ R→ R be a definable function and let
k ∈ N. Then there exists a finite partition of I into p disjoint intervals I1, . . . , Ip such
that the restriction of f to each nontrivial interval Ij, j ∈ {1, . . . , p}, is Ck and either
constant or strictly monotone.

Definable Choice Lemma A.5. Let A ⊂ R
p × R

q be a definable set and let
π : Rp × R

q → R
p be the canonical projection onto R

p. Then there exists a definable
function f : π(A)→ R

q such that graph f ⊂ A.

Note that an equivalent formulation of the latter result can be stated in terms
of selection: if F : Rp ⇒ R

q is a definable set-valued mapping, then there exists a
definable function f : domF → R

q such that graph f ⊂ graphF .

Curve Selection Lemma A.6. Let A ⊂ R
p be a definable set, let x be an el-

ement of cl(A), the topological closure of A, and let k ∈ N be a fixed integer. Then
there exists a Ck definable path γ : [0, 1)→ R

p such that γ(0) = x and γ((0, 1)) ⊂ A.

Appendix B. Relaxation in polynomial programming: Definitions and

notation. By R[x] we denote the ring of real polynomials in the variable x =
(x1, . . . , xn). For any k ∈ N, we denote by Rk[x] the space of real polynomials whose
degree is bounded by k and we denote by (Rk[x])

∗ its dual space.
A polynomial p ∈ R[x] is a sum of squares (SOS) if p can be written as p =

∑
i∈I p

2
i

for some finite family of polynomials (pi)i∈I ⊂ R[x]. Denote by Σ[x] the space of SOS
polynomials.

Given any integer k ∈ N and any finite family {p1, . . . , pm} ⊂ R[x] of polynomials,
the k-truncated ideal on R[x] generated by this family is the subset of R[x] defined by

〈p1, . . . , pr〉k :=

{ m∑

i=1

qi pi

∣∣∣∣ qi ∈ R[x], deg(qi pi) 6 k, i = 1, . . . ,m

}
,

where deg(p) denotes the degree of any polynomial p ∈ R[x]. The ideal generated by
the family {p1, . . . , pm} is denoted and defined in a similar way but with no condition
required on the degree of the polynomials.

For a set I ⊂ {1, . . . ,m}, we denote by pI ∈ R[x] the polynomial defined by
pI :=

∏
i∈I pi, with the convention that p∅ = 1. Then we define the k-truncated

preordering of {p1, . . . , pm} by

Pk(p1, . . . , pm) :=

{∑

I

qI pI

∣∣∣∣ qI ∈ Σ[x], deg(qI pI) 6 2k, ∀I ⊂ {1, . . . ,m}
}
.
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7 (1990), pp. 183–234.
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