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A B S T R A C T

The computer vision community is currently focusing on solving action recognition problems in real videos, which contain thousands of 
samples with many challenges. In this process, Deep Convolutional Neural Networks (D-CNNs) have played a significant role in advancing 
the state-of-the-art in various vision-based action re-cognition systems. Recently, the introduction of residual connections in conjunction 
with a more traditional CNN model in a single architecture called Residual Network (ResNet) has shown impressive performance and great 
potential for image recognition tasks. In this paper, we investigate and apply deep ResNets for human action recognition using skeletal data 
provided by depth sensors. Firstly, the 3D coordinates of the human body joints carried in skeleton sequences are transformed into image-

based representations and stored as RGB images. These color images are able to capture the spatial-temporal evolutions of 3D motions from 
skeleton sequences and can be efficiently learned by D-CNNs. We then propose a novel deep learning architecture based on ResNets to learn 
features from obtained color-based representations and classify them into action classes. The proposed method is evaluated on three 
challenging benchmark datasets including MSR Action 3D, KARD, and NTU-RGB+D datasets. Experimental results demonstrate that our 
method achieves state-of-the-art performance for all these bench-marks whilst requiring less computation resource. In particular, the 
proposed method surpasses previous ap-proaches by a significant margin of 3.4% on MSR Action 3D dataset, 0.67% on KARD dataset, and 
2.5% on NTU-RGB+D dataset.

1. Introduction

Human Action Recognition (HAR) is one of the key fields in com-

puter vision and plays an important role in many intelligent systems

involving video surveillance, human-machine interaction, self-driving

cars, robot vision and so on. The main goal of this field is to determine,

and then recognize what humans do in unknown videos. Although

significant progress has been made in the last years, accurate action

recognition in videos is still a challenging task due to many obstacles

such as viewpoint, occlusion or lighting conditions (Poppe, 2010).

Traditional studies on HAR mainly focus on the use of hand-crafted

local features such as Cuboids (Dollár et al., 2005) or HOG/HOF

(Laptev et al., 2008) that are provided by 2D cameras. These ap-

proaches typically recognize human actions based on the appearance

and movements of human body parts in videos. Another approach is to

use Genetic Programming (GP) for generating spatio-temporal

descriptors of motions (Liu et al., 2012). However, one of the major

limitations of the 2D data is the absence of 3D structure from the scene.

Therefore, single modality action recognition on RGB sequences is not

enough to overcome the challenges in HAR, especially in realistic vi-

deos. Recently, the rapid development of depth-sensing time-of-flight

camera technology has helped in dealing with problems, which are

considered complex for traditional cameras. Depth cameras, e.g., Mi-

crosoft Kinect TMsensor (Cruz et al., 2012; Han et al., 2013) or ASUS

Xtion (ASUS, 2018), are able to provide detailed information about the

3D structure of the human motion. Thus, many approaches have been

proposed for recognizing actions based on RGB sequences, depth

(Baek et al., 2017), or combining these two data types (RGB-D)

(Wang et al., 2014) , which are provided by depth sensors. Moreover,

they are also able to provide real-time skeleton estimation algorithms

(Shotton et al., 2013) that help to describe actions in a more precise and

effective way. The skeleton-based representations have the advantage
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of lower dimensionality than RGB/RGB-D-based representations. This

benefit makes action recognition systems become simpler and faster.

Therefore, exploiting the 3D skeletal data provided by depth sensors for

HAR is a promising research direction. In fact, many skeleton-based

action recognition approaches have been proposed (Chaudhry et al.,

2013; Ding et al., 2016; Vemulapalli et al., 2014; Wang et al., 2012; Xia

et al., 2012b).

In recent years, approaches based on Convolutional Neural

Networks (CNNs) have achieved outstanding results in many image

recognition tasks (Karpathy et al., 2014; Krizhevsky et al., 2012). After

the success of AlexNet (Krizhevsky et al., 2012) in the ImageNet com-

petition (Russakovsky et al., 2015), a new direction of research has

been opened for finding higher performing CNN architectures. As a

result, there are many signs that seem to indicate that the learning

performance of CNNs can be significantly improved by increasing their

depth (Simonyan and Zisserman, 2014b; Szegedy et al., 2015;

Telgarsky, 2016). In the literature of HAR, many studies have indicated

that CNNs have the ability to learn complex motion features better than

hand-crafted approaches (see Fig. 1). However, most authors have just

focused on the use of relatively small and simple CNNs such as AlexNet

(Krizhevsky et al., 2012) and have not yet fully exploited the potential

of recent state-of-the-art very deep CNN architectures. In addition, most

existing CNN-based approaches use RGB, depth or RGB-D sequences as

the input to learning models. Although RGB-D images are informative

for action recognition, however, the computation complexity of these

models will increases rapidly when the dimension of the input features

is large. This makes models become more complex, slower and less

practical for solving large-scale problems as well as real-time applica-

tions.

In this paper, we aim to take full advantages of 3D skeleton-based

representations and the ability of learning highly hierarchical image

features of Deep Convolutional Neural Networks (D-CNNs) to build an

end-to-end learning framework for HAR from skeletal data. To this end,

all the 3D coordinates of the skeletal joints in the body provided by

Kinect sensors are represented as 3D arrays and then stored as RGB

images by using a simple skeleton-to-image encoding method. The main

goal of this processing step is to ensure that the color images effectively

represents the spatio-temporal structure of the human action carried in

skeleton sequences and they are compatible by the deep learning net-

works as D-CNNs. To learn image features and recognize their labels,

we propose to use Residual Networks (ResNets) (He et al., 2016) – a

very deep and recent state-of-the-art CNN for image recognition. In the

hope of achieving higher levels of performance, we propose a novel

deep architecture based on the original ResNets, which is easier to

optimize and able to prevent overfitting better. We evaluate the pro-

posed method on three benchmark skeleton datasets (MSR Action 3D

Li et al., 2010; Kinect Activity Recognition Dataset - KARD Gaglio et al.,

2015; NTU-RGB+D Shahroudy et al., 2016) and obtain state-of-the-art

recognition accuracies on all these datasets. Furthermore, we also point

out the effectiveness of our learning framework in terms of computa-

tional complexity, the ability to prevent overfitting and to reduce the

effect of degradation phenomenon in training very deep networks.

The contributions of our work lie in the following aspects:

• Firstly, we propose an end-to-end learning framework based on

ResNets to effectively learn the spatial-temporal evolutions carried

in RGB images which encoded from skeleton sequences for 3D

human action recognition. To the best of our knowledge, this is the

first time ResNet-based models are applied successfully on skeletal

data to recognize human actions.

• Secondly, we present a novel ResNet building unit to construct very

deep ResNets. Our experiments on action recognition tasks prove

that the proposed architecture is able to learn features better than

the original ResNet model (He et al., 2016). This architecture is

general and could be applied for various image recognition pro-

blems, not only the human action recognition.

• Finally, we show the effectiveness of our learning framework on

action recognition tasks by achieving the state-of-the-art perfor-

mance on three benchmark datasets including the most challenging

skeleton benchmark currently available, whilst requiring less com-

putation.

The rest of the paper is organized as follows: Section 2 discusses

related works. In Section 3, we present the details of our proposed

method. Datasets and experiments are described in Section 4. Experi-

mental results are shown in Section 5. In Section 6, we discuss classi-

fication accuracy, overfitting issues, degradation phenomenon and

computational efficiency of the proposed deep learning networks. This

section will also discuss about different factors that affect the recogni-

tion rate. Finally, Section 7 concludes the paper and discusses our fu-

ture work.

Fig. 1. The recognition performance of hand-crafted and deep learning approaches reported on the Cross-View evaluation criteria of NTU-RGB+D dataset (Shahroudy et al., 2016). The

traditional approaches are marked with circles (Evangelidis et al., 2014; Hu et al., 2015; Ohn-Bar and Trivedi, 2013; Oreifej and Liu, 2013; Yang and Tian, 2014). The deep learning based

approaches are marked with squares (Du et al., 2015; Li et al., 2017; Liu et al., 2016; Shahroudy et al., 2016; Song et al., 2017).



2. Related work

Our study is closely related to two major topics: skeleton-based

action recognition and designing D-CNN architectures for visual re-

cognition tasks. This section presents some key studies on these topics.

We first discuss previous works on skeleton-based action recognition.

Then, we introduce an overview of the development of D-CNNs and

their potential for HAR. Related to HAR based on RGB/RGB-D se-

quences, we refer the interested reader to the most successful ap-

proaches including Bag of Words (BoWs) (Liu et al., 2017a; Peng et al.,

2016; Wang and Schmid, 2013), Dynamic Image Networks (Bilen et al.,

2016) and D-CNNs to learn RGB representation from raw data (Ng

et al., 2015; Simonyan and Zisserman, 2014a).

2.1. Skeleton-based action recognition

The 3D skeletal data provided by depth sensors has been extensively

exploited for HAR. Recent skeleton-based action recognition methods

can be divided into two main groups. The first group combines hand-

crafted skeleton features and graphical models to recognize actions. The

spatio-temporal representations from skeleton sequences are often

modeled by several common probabilistic graphical models such as

Hidden Markov Model (HMM) (Lv and Nevatia, 2006; Wang et al.,

2012; Yang et al., 2013), Latent Dirichlet Allocation (LDA) (Blei et al.,

2003; Liu et al., 2012) or Conditional Random Field (CRF)

(Koppula and Saxena, 2013). In addition, Fourier Temporal Pyramid

(FTP) (Hu et al., 2015; Vemulapalli et al., 2014; Wang et al., 2012) has

also been used to capture the temporal dynamics of actions and then to

predict their labels. Another solution based on shape analysis methods

has been exploited for skeleton-based human action (Amor et al., 2016;

Devanne et al., 2013). Specifically, the authors defined an action as a

sequence of skeletal shapes and analyzed them by a statistical shape

analysis tool such as the geometry of Kendall’s shape manifold. Typical

classifiers, e.g., K-Nearest-Neighbor (KNN) or Support Vector Machine

(SVM) were then used for classification. Although promising results

have been achieved, however, most of these works require a lot of

feature engineering. E.g., the skeleton sequences often need to be seg-

mented and aligned for HMM- and CRF-based approaches. Meanwhile,

FTP-based approaches cannot globally capture the temporal sequences

of actions.

The second group of methods is based on Recurrent Neural

Networks with Long Short-Term Memory Network (RNN-LSTMs)

(Hochreiter and Schmidhuber, 1997). The architecture of an RNN-

LSTM network allows to store and access the long range contextual

information of a temporal sequence. As human skeleton-based action

recognition can be regarded as a time-series problem (Gong et al.,

2014), RNN-LSTMs can be used to learn human motion features from

skeletal data. For that reason, many authors have explored RNN-LSTMs

for 3D HAR from skeleton sequences (Du et al., 2015; Ling et al., 2016;

Liu et al., 2016; Shahroudy et al., 2016; Veeriah et al., 2015; Zhu et al.,

2016). To better capture the spatio-temporal dynamics carried in ske-

letons, some authors used a CNN as a visual feature extractor, combined

with a RNN-LSTM in a unified framework for modeling human motions

(Kim and Reiter, 2017; Mahasseni and Todorovic, 2016; Shi and Kim,

2017). Although RNN-LSTM-based approaches have been reported to

provide good performance. However, there are some limitations that

are difficult to overcome. I.e., the use of RNNs can lead to overfitting

problems when the number of input features is not enough for training

network. Meanwhile, the computational time can become a serious

problem when the input features increase.

2.2. D-CNNs for visual recognition

CNNs have led to a series of breakthroughs in image recognition and

related tasks. Recently, there is growing evidence that D-CNN models

can improve performance in image recognition (Simonyan and

Zisserman, 2014b; Szegedy et al., 2015). However, deep networks are

very difficult to train. Two main reasons that impede the convergence

of deeper networks are vanishing gradients problems (Glorot and

Bengio, 2010) and degradation phenomenon (He and Sun, 2015). The

vanishing gradients problem occurs when the network is deep enough,

the error signal from the output layer can be completely attenuated on

its way back to the input layer. This obstacle has been solved by nor-

malized initialization (He et al., 2015; LeCun et al., 1998), especially by

using Batch Normalization (Ioffe and Szegedy, 2015a). When the deep

networks start converging, a degradation phenomenon occurs (see an

example in Fig. 2). If we add more layers to a deep network, this can

lead to higher training and/or testing error (He and Sun, 2015). This

phenomenon is not as simple as an overfitting problem. To reduce the

effect of vanishing gradients problems and degradation phenomenon,

He et al. (2016) introduced Residual Networks (ResNets) with the

presence of shortcut connections parallel to their traditional

Fig. 2. (a) Training error and (b) test error on CIFAR-10 (Krizhevsky, 2009) with 20-layer and 56-layer CNNs reported by He et al. (2016). The deeper network has higher error for both

training and test phases.

Fig. 3. Illustration of the joint positions in the human body extracted by Kinect v2 sensor

(Microsoft, 2014). A sequence of skeletons is able to describe correctly what a person

performs in unseen videos.



convolutional layers. This idea helps ResNets to improve the informa-

tion flow across layers. Experimental results on two well-known data-

sets including CIFAR-10 (Krizhevsky, 2009) and ImageNet

(Russakovsky et al., 2015) confirmed that ResNets can improve the

recognition performance and reduce degradation phenomenon.

Several authors have exploited the feature learning ability of CNNs

on skeletal data (Hou et al., 2017; Li et al., 2017; Song et al., 2017;

Wang et al., 2016). However, such studies mainly focus on finding good

skeletal representations and learning features with simple CNN archi-

tectures. In contrast, in this paper we concentrate on exploiting the

power of D-CNNs for action recognition using a simple skeleton-based

representation. We investigate and design a novel deep learning fra-

mework based on ResNet (He et al., 2016) to learn action features from

skeleton sequences and then classify them into classes. Our experi-

mental results show state-of-the-art performance on the MSR Action 3D

(Li et al., 2010), KARD (Gaglio et al., 2015) and NTU-RGB+D

(Shahroudy et al., 2016) datasets. Besides, our proposed solution is

general and can be applied on various different types of input data. For

instance, this idea could be applied on the motion capture (MoCap)

data provided by inertial sensors.

3. Method

This section presents our proposed method. We first describe a

technique allowing to encode the spatio-temporal information of ske-

leton sequences into RGB images. Then, a novel ResNet architecture is

proposed for learning and recognizing actions from obtained RGB

images. Before that, in order to put our method into context, it is useful

to review the central ideas behind the original ResNet (He et al., 2016)

architecture.

3.1. Encoding skeletal data into RGB images

Currently, the real-time skeleton estimation algorithms have been

integrated into commercial depth cameras (Shotton et al., 2013). This

technology allows to quickly and easily extract the position of the joints

in the human body (Fig. 3), which is suitable for the problem of 3D

action recognition. One of the major challenges in exploiting CNN-

based methods for skeleton-based action recognition is how a temporal

skeleton sequence can be effectively represented and fed to CNNs for

learning data features and perform classification. As CNNs are able to

work well on still images, the idea therefore is to encode the spatial and

temporal dynamics of skeleton sequences into 2D image structures. In

general, two essential elements for recognizing actions are static pos-

tures and their temporal dynamics. These two elements can be trans-

formed into the static spatial structure of a color image (Bilen et al.,

2016; Hou et al., 2017; Wang et al., 2016). Then, a representation

Fig. 4. Illustration of the color encoding process. Here, N denotes the number of frames in each skeleton sequence. K denotes the number of joints in each frame. The value of K depends

on the depth sensors and data acquisition settings.

Fig. 5. Arranging pixels in RGB images according to human body physical structure.

Fig. 6. Output of the encoding process obtained from some samples of the MSR Action 3D

dataset (Li et al., 2010). In our experiments, all images were resized to 32 × 32 pixels

before feeding into the deep learning networks. Best viewed in color.



learning model such as CNNs can be deployed to learn image features

and classify them into classes in order to recognize the original skeleton

sequences.

Given a skeleton sequence S with N frames, denoting as S =

…F F F{ , , , }N1 2 . To represent the spatio-temporal information of a ske-

leton sequence as an RGB image, we transform the 3D joint coordinates

(xi, yi, zi) carried in each skeleton {Fn}, n∈ [1, N] into the range of [0,

255] by normalizing these coordinates via a transformation function F

( · ) as follows:

′ ′ ′ =x y z x y zF( , , ) ( , , )i i i i i i (1)

C

C C
′ = × −

−
x

x
255

( min{ })

max{ } min{ }
i

i
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C

C C
′ = × −

−
y

y
255

( min{ })

max{ } min{ }i
i

(3)

C

C C
′ = × −

−
z

z
255

( min{ })

max{ } min{ }
i

i

(4)

where Cmin{ } and Cmax{ } are the maximum and minimum values of

all coordinates, respectively. The new coordinate space is quantified to

integral image representation and three coordinates ′ ′ ′x y z( , , )i i i are

considered as the three components R,G,B of a color-pixel ( ′=xi R; ′=yi
G; ′=zi B). As shown in Fig. 4, each skeleton sequence is encoded into an

RGB image. By this transformation, the raw data of skeleton sequences

are converted to 3D tensors, which will then be fed into the learning

model as the input features.

The order of joints in each frame is non-homogeneous for many

skeleton datasets. Thus, it is necessary to rearrange joints and find a

better representations in which different actions can be easily dis-

tinguished by the learning model. In other words, the image-based re-

presentation needs to contain discriminative features – a key factor to

ensure the success of the CNNs during learning process. Naturally, the

human body is structured by four limbs and one trunk. Simple actions

can be performed through the movements of a limb while more com-

plex actions come from the movements of a group of limbs in con-

junction with the whole body. Inspired by this idea, (Du et al., 2015)

proposed a simple and effective technique for representing skeleton

sequences according to human body physical structure. To keep the

local motion characteristics and to generate more discriminative fea-

tures in image-based representations, we divide each skeleton frame

into five parts, including two arms (P1, P2), two legs (P4, P5), and one

trunk (P3). In each part from P1 to P5, the joints are concatenated

according to their physical connections. We then rearrange these parts

in a sequential order, i.e., P1 → P2 → P3 → P4 → P5. The whole

process of rearranging all frames in a sequence can be done by re-

arranging the order of the rows of pixels in RGB-based representations

as illustrated in Fig. 5. Some skeleton-based representations obtained

from the MSR Action 3D dataset (Li et al., 2010) are shown in Fig. 6.

3.2. Deep residual network

A simple difference between ResNets and traditional CNNs is that

ResNets provide a clear path for gradients to back propagate to early

layers during training. A deep ResNet is a modularized architecture that

is constructed from multiple ResNet building units. Each unit has

shortcut connection in parallel with traditional convolutional layers,

which connects the input feature directly to its output. Considering the

input feature of the lth layer as xl, traditional CNNs (Fig. 7(a)) learn a

mapping function: F=+x x( )l l1 where +xl 1 is the output of the lth layer,

F (·) is a non-linear transformation that can be implemented by the

combination of Batch Normalization (BN) (Ioffe and Szegedy, 2015b),

Rectified Linear Units (ReLU) (Nair and Hinton, 2010) and Convolu-

tions. Different from traditional CNNs, a ResNet building unit

(Fig. 7(b)) performs the following computations:

F W= ++x x id xReLU( ( , ) ( ))l l l l1 (5)

where xl and +xl 1 are input and output features of the lth ResNet unit,

respectively; id(x) is the identity function =id x x( )l l andWl is a set of

weights and biases associated with the lth ResNet unit. The detailed

architecture of an original ResNet unit is shown in Fig. 8(a). In this

architecture, F (·) consists of a series of layers: Convolution-BN-ReLU-

Fig. 7. (a) Information flow executed by a traditional CNN; (b) Information flow executed

by a ResNet building unit (He et al., 2016).

Fig. 8. (a) A ResNet building unit that was proposed in the original paper (He et al.,

2016); (b) Our proposed ResNet building. The symbol ⊕ denotes element-wise addition.

Table 1

The list of actions in three subsets AS1, AS2, and AS3 of the MSR Action 3D dataset

(Li et al., 2010).

AS1 AS2 AS3

Horizontal arm wave High arm wave High throw
Hammer Hand catch Forward kick
Forward punch Draw x Side kick
High throw Draw tick Jogging
Hand clap Draw circle Tennis swing
Bend Two hand wave Tennis serve
Tennis serve Forward kick Golf swing
Pickup & Throw Side-boxing Pickup & Throw



Convolution-BN. The ReLU (Nair and Hinton, 2010) is applied after

each element-wise addition .

3.3. An improved residual network for skeleton-based action recognition

The original ResNet architecture has a direct path for propagating

information within a residual unit. However, the presence of non-linear

activations as ReLUs (Nair and Hinton, 2010) behind element-wise

additions (see Fig. 8(a)) means that the signal cannot be directly

propagated from one block to any other block. To solve this problem,

we propose an improved ResNet building block in which the signal can

be directly propagated from any unit to another, both forward and

backward for the entire network. The idea is to replace ReLU layers

after each element-wise addition by identity mappings id( · ) for all

units. That way, the information flow across each new ResNet unit can

be rewritten as:

F Wid y x( ) ( ,l l l1

Eq. (6) suggests that the feature xL of any deeper unit L can be re-

presented according to the feature xl of any shallower unit l:

F W∑= +
=

−
x x x( , )L l

i l

L

i i

1

(7)

Also, the feature xL can be represented according to the input feature x0
of the first ResNet unit:

F W∑= +
=

−
x x x( , )L

i

L

i i0

0

1

(8)

Eq. (8) indicates that we have created a direct path that helps the signal

to be directly propagated in forward pass through the entire network.

Considering now the backpropagation information, let L be the loss

function that the network needs to optimize during the supervised

training stage. From the chain rule of backpropagation (LeCun et al.,

1989) and Eq. (7), we can express the backpropagation information

through layers as:

L L L F W∂
∂

= ∂
∂

∂
∂

= ∂
∂

∂ + ∑
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x x
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or:
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In Eq. (10), the gradient
L∂
∂xl

depends on two elements
L∂
∂xL

and

L
F W⎜ ⎟

∂
∂

⎛
⎝
∂
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⎠=
−

x x
x( , ) ,

L l
i l

L
i i

1
in which the term

L∂
∂xL

is independent of any

weight layers. This additive term ensures that the information flow can

be easily propagated back from any deeper unit L to any shallower unit

l. Based on the above analyses, it can be concluded that if we replace

ReLU layers after element-wise additions by identity mappings, each

ResNet unit will have a direct path to the gradients from the loss

function and to the input signal. In other words, the information flow

can be directly propagated from any unit to another, both forward and

backward for the entire network.

To implement the computations as described in Eq. (6), we remove

all ReLU layers behind element-wise additions . In addition, BN is used

before each convolutional layer, ReLU is adopted right after BN. This

order allows to improve regularization of the network. Dropout

(Hinton et al., 2012) with a rate of 0.5 is used to prevent overfitting and

located between two convolutional layers. With this architecture, the

mapping function F (·) is executed via a sequence of layers: BN-ReLU-

Convolution-BN-ReLU-Dropout-Convolution as shown in Fig. 8(b).

Table 2

The list of action classes in each subset of the KARD dataset (Gaglio et al., 2015).

Action Set 1 Action Set 2 Action Set 3

Horizontal arm wave High arm wave Draw tick
Two-hand wave Side kick Drink
Bend Catch cap Sit down
Phone call Draw tick Phone call
Stand up Hand clap Take umbrella
Forward kick Forward kick Toss paper
Draw X Bend High throw
Walk Sit down Horiz. arm wave

Fig. 9. Some action classes of the NTU-RGB+D dataset (Shahroudy et al., 2016).

Fig. 10. Configuration of 25 body joints in each frame of the NTU+RGBD dataset

(Shahroudy et al., 2016).

Table 3

Recognition accuracy obtained by the proposed method on AS1, AS2, and AS3 subsets of

the MSR Action 3D dataset (Li et al., 2010). The best accuracy rates and configuration are

highlighted in bold.

Model AS1 AS2 AS3 Aver.

Original-ResNet-20 99.5% 98.6% 99.9% 99.33%

Original-ResNet-32 99.5% 99.1% 99.9% 99.50%

Original-ResNet-44 99.6% 98.5% 100% 99.37%

Original-ResNet-56 99.3% 98.4% 99.5% 99.07%

Original-ResNet-110 99.7% 99.2% 99.8% 99.57%

Proposed-ResNet-20 99.8% 99.4% 100% 99.73%

Proposed-ResNet-32 99.8% 99.8% 100% 99.87%

Proposed-ResNet-44 99.9% 99.8% 100% 99.90%

Proposed-ResNet-56 99.9% 99.1% 99.6% 99.53%

Proposed-ResNet-110 99.9% 99.5% 100% 99.80%

xl+ = = ) + xl (6)



4. Experiments

In this section, we experiment the proposed method on three 3D

skeleton datasets. We first present the datasets and their evaluation

criteria. Some data augmentation techniques that are used for gen-

erating more training data are then described. Finally, implementation

details of our deep networks are provided.

4.1. Datasets and evaluation criteria

In this work, we evaluate the proposed deep learning framework on

MSR Action 3D (Li et al., 2010), KARD (Gaglio et al., 2015) and NTU-

RGB+D (Shahroudy et al., 2016). For each dataset, we follow the same

evaluation criteria as provided in the original papers. For the interested

reader, some public RGB-D datasets for HAR can be found in recent

surveys (Liu et al., 2017b; Zhang et al., 2016).

4.1.1. MSR Action 3D dataset
The MSR Action 3D dataset1 (Li et al., 2010) consists of 20 different

action classes. Each action is performed by 10 subjects for three times.

There are 567 skeleton sequences in total. However, 10 sequences are

not valid since the skeletons were either missing. Therefore, our ex-

periment was conducted on 557 sequences. For each skeleton frame,

the 3D coordinates of 20 joints are provided. The authors of this dataset

suggested dividing the whole dataset into three subsets, named AS1,

AS2, and AS3. The list of actions for each subset is shown in Table 1. For

each subset, we follow the cross-subject evaluation method used by

many other authors working with this dataset. More specifically, a half

of the dataset (subjects with IDs: 1, 3, 5, 7, 9) is selected for training and

the rest (subjects with IDs: 2, 4, 6, 8, 10) for test.

4.1.2. Kinect Activity Recognition Dataset (KARD)
This dataset2 (Gaglio et al., 2015) contains 18 actions, performed by

10 subjects and each subject repeated each action three times. KARD

provides 540 skeleton sequences in total. Each frame comprises 15

joints. The authors suggested the different evaluation methods on this

dataset in which the whole dataset is divided into three subsets as

shown in Table 2. For each subset, three experiments have been pro-

posed. Experiment A uses one-third of the dataset for training and the

rest for test. Meanwhile, experiment B uses two-third of the dataset for

training and one-third for test. Finally, experiment C uses a half of the

dataset for training and the remainder for testing.

4.1.3. NTU-RGB+D action recognition dataset
The NTU-RGB+D3 (Shahroudy et al., 2016) is a very large-scale

dataset. To the best of our knowledge, this is the largest and state-of-

the-art RGB-D/skeleton dataset for HAR currently available. It provides

more than 56 thousand video samples and 4 million frames, collected

from 40 distinct subjects for 60 different action classes. Fig. 9 shows

some action classes of this dataset. The full list of action classes is

provided in Appendix A.

The 3D skeletal data contains the 3D coordinates of 25 major body

joints (Fig. 10) provided by Kinect v2 sensor. Therefore, its skeletal data

describes more accurately about human movements. The author of this

dataset suggested two different evaluation criteria including Cross-

Subject and Cross-View. For Cross-Subject evaluation, the sequences

performed by 20 subjects with IDs: 1, 2, 4, 5, 8, 9, 13, 14, 15, 16, 17, 18,

Table 4

Recognition accuracy obtained by the proposed method on KARD dataset (Gaglio et al., 2015). The best accuracy rates

and configuration are highlighted in bold.

Activity Set 1 Activity Set 2 Activity Set 3

Model Exp. A Exp. B Exp. C Exp. A Exp. B Exp. C Exp. A Exp. B Exp. C

Original-Resnet-20 100% 100% 100% 100% 100% 100% 99.8% 100% 99.8%

Original-ResNet-32 100% 100% 100% 100% 100% 100% 99.8% 99.9% 99.8%

Original-ResNet-44 100% 100% 100% 100% 100% 100% 99.7% 99.7% 99.7%

Original-ResNet-56 99.9% 100% 100% 100% 100% 99.9% 99.5% 99.9% 99.8%

Original-ResNet-110 99.8% 100% 99.8% 99.9% 100% 99.9% 99.3% 100% 99.7%

Proposed-Resnet-20 100% 100% 100% 100% 100% 100% 99.8% 100% 99.9%

Proposed-ResNet-32 100% 100% 100% 100% 100% 100% 99.8% 99.9% 99.8%

Proposed-ResNet-44 100% = 100% 100% 100% 100% 100% 99.9% 99.9% 100%

Proposed-ResNet-56 100% 100% 100% 100% 100% 100% 99.7% 100% 99.8%

Proposed-ResNet-110 99.9% 100% 99.9% 100% 100% 100% 99.7% 100% 99.8%

Table 5

Comparing our best performance (Proposed-ResNet-44) with other approaches on the

MSR Action 3D dataset (Li et al., 2010). All methods use the same experimental protocol.

Method AS1 AS2 AS3 Aver.

Li et al. (2010) 72.90% 71.90% 79.20% 74.67%

Vieira et al. (2012) 84.70% 81.30% 88.40% 84.80%

Xia et al. (2012a) 87.98% 85.48% 63.46% 78.97%

Chaaraoui et al. (2013) 92.38% 86.61% 96.40% 91.80%

Chen et al. (2013) 96.20% 83.20% 92.00% 90.47%

Luo et al. (2013) 97.20% 95.50% 99.10% 97.26%

Gowayyed et al. (2013) 92.39% 90.18% 91.43% 91.26%

Hussein et al. (2013) 88.04% 89.29% 94.29% 90.53%

Qin et al. (2013) 81.00% 79.00% 82.00% 80.66%

Liang and Zheng (2013) 73.70% 81.50% 81.60% 78.93%

Evangelidis et al. (2014) 88.39% 86.61% 94.59% 89.86%

Ilias et al. (2014) 91.23% 90.09% 99.50% 93.61%

Gao et al. (2014) 92.00% 85.00% 93.00% 90.00%

Vieira et al. (2014) 91.70% 72.20% 98.60% 87.50%

Chen et al. (2015) 98.10% 92.00% 94.60% 94.90%

(Du et al., 2015) 93.33% 94.64% 95.50% 94.49%

Xu et al. (2015) 99.10% 92.90% 96.40% 96.10%

Jin et al. (2017) 99.10% 92.30% 98.20% 96.50%

Our best model (Proposed-ResNet-44) 99.90% 99.80% 100% 99.90%

Table 6

Average recognition accuracy of the best proposed model (Proposed-ResNet-44) for ex-

periments A, B and C compared to other approaches on the whole KARD dataset

(Gaglio et al., 2015).

Method Exp. A Exp. B Exp. C Aver.

Gaglio et al. (2015) 89.73% 94.50% 88.27% 90.83%

Cippitelli et al. (2016b) 96.47% 98.27% 96.87% 97.20%

Ling et al. (2016) 98.90% 99.60% 99.43% 99.31%

Our best model (Proposed-ResNet-44) 99.97% 99.97% 100% 99.98%

1 The MSR Action 3D dataset can be obtained at: https://www.uow.edu.au/

~wanqing/#Datasets.
2 The KARD dataset can be obtained at: https://data.mendeley.com/datasets/

k28dtm7tr6/1.
3 The NTU-RGB+D dataset can be obtained at: http://rose1.ntu.edu.sg/Datasets/

actionRecognition.asp with authorization.



19, 25, 27, 28, 31, 34, 35, and 38 are used for training and the rest

sequences are used as testing data. In the Cross-View evaluation, the

sequences provided by cameras 2 and 3 are used for training while

sequences from camera 1 are used for test.

4.2. Data augmentation

Very deep neural networks require a lot of data to train.

Unfortunately, we have only 557 skeleton sequences on MSR Action 3D

dataset (Li et al., 2010) and 540 sequences on KARD (Gaglio et al.,

2015). Thus, to prevent overfitting, some data augmentation techniques

Fig. 11. Data augmentation techniques applied on MSR Action 3D dataset.

Fig. 12. Learning curves on MSR Action 3D (Li et al., 2010), KARD (Gaglio et al., 2015) and NTU-RGB+D (Shahroudy et al., 2016) datasets. Dashed lines denote training errors, bold lines

denote test errors. We recommend the reader to use a computer and zoom in to see these figures.



have been applied. The random cropping, flip horizontally and verti-

cally techniques were used to generate more training samples. Speci-

fically, 8 × cropping has been applied on 40 × 40 images to create

32 × 32 images. Then, their horizontally and vertically flipped images

are created. For the NTU-RGB+D dataset (Shahroudy et al., 2016), due

to the very large-scale of this dataset, data augmentation techniques

were not applied.

4.3. Implementation details

Different configurations of ResNet with 20-layers, 32-layers, 44-

layers, 56-layers, and 110-layers were designed, based on the original

Resnet (He et al., 2016) building unit (Fig. 8(a)) and the proposed

ResNet building unit (Fig. 8(b)). Totally, we have ten different ResNets.

The baseline of the proposed architectures can be found in Appendix B.

All networks are designed for the acceptable images with the size of 32

× 32 pixels as input features and classifying them into n categories

corresponding to n action classes in each dataset. In the experiments,

we use a mini-batch of size 128 for 20-layer, 32-layer, 44-layer, and 56-

layer networks and a mini-batch of size 64 for 110-layer networks. We

initialize the weights randomly and train all networks in an end-to-end

manner using Stochastic Gradient Descent (SGD) algorithm

(Bottou, 2010) for 200 epochs from scratch. The learning rate starts

from 0.01 for the first 75 epochs, 0.001 for the next 75 epochs and

0.0001 for the remaining 50 epochs. The weight decay is set at 0.0001

and the momentum at 0.9. In this project, MatConvNet4 (Vedaldi and

Lenc, 2015) is used to implement the solution. Our code, models, and

pre-trained models will be shared with the community at: https://

github.com/huyhieupham.

5. Experimental results

This section reports our experimental results. To show the effec-

tiveness of the proposed method, the achieved results are compared

with the state-of-the-art methods in literature. All these comparisons

are made under the same evaluation criteria.

5.1. Results on MSR Action 3D dataset

The experimental results on MSR Action 3D dataset (Li et al., 2010)

are shown in Table 3. We achieved the best classification accuracy with

the 44-layer ResNet model which is constructed from the proposed

ResNet building unit. Specifically, classification accuracies are 99.9%

on AS1, 99.8% on AS2, and 100% on AS3. We obtained a total average

accuracy of 99.9%. Table 5 compares the performance between our best

result with the state-of-the-art methods reported on this benchmark.

This comparison indicates that the proposed model outperforms many

Model Cross-Subject Cross-View

Original-ResNet-20 73.90% 80.80%

Original-ResNet-32 75.40% 81.60%

Original-ResNet-44 75.20% 81.50%

Original-ResNet-56 75.00% 81.50%

Original-ResNet-110 73.80% 80.00%

Proposed-ResNet-20 76.80% 83.80%

Proposed-ResNet-32 76.70% 84.70%

Proposed-ResNet-44 77.20% 84.80%

Proposed-ResNet-56 78.20% 85.60%

Proposed-ResNet-110 78.00% 84.60%

Table 8

Performance comparison of our proposed ResNet models with the state-of-the-art

methods on the Cross-Subject evaluation criteria of NTU-RGB+D dataset

(Shahroudy et al., 2016).

Method (protocol of Shahroudy et al., 2016) Cross-Subject

HON4D (Oreifej and Liu, 2013) 30.56%

Super Normal Vector (Yang and Tian, 2014) 31.82%

HOG2 (Ohn-Bar and Trivedi, 2013) 32.24%

Skeletal Quads (Evangelidis et al., 2014) 38.62%

Shuffle and Learn (Misra et al., 2016) 47.50%

Key poses+ SVM (Cippitelli et al., 2016a) 48.90%

Lie Group (Vemulapalli et al., 2014) 50.08%

HBRNN-L (Du et al., 2015) 59.07%

FTP Dynamic Skeletons (Hu et al., 2015) 60.23%

P-LSTM (Shahroudy et al., 2016) 62.93%

RNN Encoder-Decoder (Luo et al., 2017) 66.20%

ST-LSTM (Liu et al., 2016) 69.20%

STA-LSTM (Song et al., 2017) 73.40%

Res-TCN (Kim and Reiter, 2017) 74.30%

DSSCA - SSLM (Shahroudy et al., 2017) 74.86%

Joint Distance Maps+CNN (Li et al., 2017) 76.20%

Our best model (Proposed-ResNet-56) 78.20%

Table 9

Performance comparison of our proposed ResNet models with the state-of-the-art

methods on the Cross-View evaluation criteria of NTU-RGB+D dataset (Shahroudy et al.,

2016).

Method (protocol of Shahroudy et al., 2016) Cross-View

HON4D (Oreifej and Liu, 2013) 7.26%

Super Normal Vector (Yang and Tian, 2014) 13.61%

HOG2 (Ohn-Bar and Trivedi, 2013) 22.27%

Skeletal Quads (Evangelidis et al., 2014) 41.36%

Lie Group (Vemulapalli et al., 2014) 52.76%

Key poses+ SVM (Cippitelli et al., 2016a) 57.70%

HBRNN-L (Du et al., 2015) 63.97%

FTP Dynamic Skeletons (Hu et al., 2015) 65.22%

P-LSTM (Shahroudy et al., 2016) 70.27%

ST-LSTM (Liu et al., 2016) 77.7%

STA-LSTM (Song et al., 2017) 81.2%

Joint Distance Maps+CNN (Li et al., 2017) 82.3%

Res-TCN (Kim and Reiter, 2017) 83.1%

Our best model (Proposed-ResNet-56) 85.60%

Table 10

The best of our results compared to the best prior results on MSR Action 3D, KARD, and

NTU-RGB+D datasets.

MRS 3D KARD NTU-RGB+D NTU-RGB+D

(overall) (overall) Cross-Subject Cross-View

Prior works 96.50% 99.31% 76.20% 83.10%

Our results 99.90% 99.98% 78.20% 85.60%

Improvements 3.40% 0.67% 2.00% 2.50%

Table 11

Relationship between the number of layers and its performance on three benchmarks.

denotes the best network based on the original ResNet architecture and denotes the best

network based on the proposed ResNet architecture.

# Network layers MSR Action 3D KARD NTU-RGB+D

110

56

44

32

20

4MatconvNet is an open source library for implementing Convolutional Neural

Networks (CNNs) in the Matlab environment and can be downloaded at address: http://

www.vlfeat.org/matconvnet/.

Table 7
Recognition accuracy on NTU-RGB+D dataset (Shahroudy et al., 2016) for Cross-Subject 
and Cross-View evaluations. The best accuracy rates and configuration are highlighted in 
bold.



prior works, in which we improved the accuracy rate by 3.4% com-

pared to the best previous published results. Fig. 12(a) and (b) show the

learning curves of all networks on AS1 subset.

5.2. Results on KARD dataset

The experimental results on KARD dataset (Gaglio et al., 2015) are

reported in Table 4. It can be observed the same learning behavior as

experiments on MSR Action 3D dataset, in which the best results are

achieved by the proposed 44-layer ResNet model. Table 6 provides the

accuracy comparison between this model and other approaches on the

whole KARD dataset. Based on these comparisons, it can be concluded

that our approach outperformed the prior state-of-the-art on this

benchmark. Fig. 12(c) and (d) show the learning curves of all networks

on Activity Set 1 subset for Experiment C (Fig. 11).

5.3. Results on NTU RGB-D dataset

Table 7 shows the experimental results on NTU-RGB+D dataset

(Shahroudy et al., 2016). The best network achieved an accuracy of

78.2% on the Cross-Subject evaluation and 85.6% on the Cross-View.

The performance comparison between the proposed method and the

state-of-the-art methods on these two evaluations are provided in

Tables 8 and 9. These results showed that our proposed method can

deal with very large-scale datasets and outperforms various state-of-

the-art approaches for both evaluations. Comparing with the best

published result reported by Li et al. (2017) for the Cross-Subject eva-

luation, our method significantly surpassed this result by a margin of

+2.0%. For the Cross-View evaluation, we outperformed the state-of-

the-art accuracy in Kim and Reiter (2017) by a margin of +2.5%.

Fig. 12(e) and (f) show the learning curves of all networks in these

Fig. 13. Training and test errors (%) by the Proposed-ResNet-20 network on the MSR Action 3D/AS1 dataset (Li et al., 2010): (a) resizing images using Bicubic interpolation; (b) resizing

images using Nearest-neighbor interpolation.

Fig. 14. Training and test errors (%) by the Proposed-ResNet-20 network on the MSR Action 3D/AS1 dataset (Li et al., 2010): (a) rearranging skeletons according to human body physical

structure; (b) using the joints order provided by the Kinect SDK without rearranging skeletons.



experiments.

6. Discussion

An efficient and effective deep learning framework for HAR should

be able to recognize actions with high accuracy and to have the ability

to prevent overfitting. Additionally, another important factor is com-

putational efficiency. In this section, these aspects of the proposed

method will be evaluated. We also discuss the degradation phenomenon

– an important aspect in training very deep learning networks.

6.1. Classification accuracy

In Section 5, we evaluated the proposed learning framework on

three well-known benchmark datasets. We demonstrate empirically

that our method outperforms many previous studies on all these data-

sets under the same experimental protocols. The improvements on each

benchmark are shown in Table 10. It is clear that in terms of accuracy,

our learning model is effective for solving the problems of HAR.

6.2. Overfitting issues and degradation phenomenon

Considering the accuracies obtained by our proposed ResNet ar-

chitecture and comparing them to the results obtained by the original

ResNet architecture, we observed that our proposed networks are able

to reduce the effects of the degradation phenomenon for both training

and test phases. E.g., the proposed 56-layer networks achieved better

results than 20-layer, 32-layer, and 44-layer networks on NTU-RGB+D

dataset. Meanwhile, the original ResNet with 32-layer is the best net-

work on this benchmark. The same learning behaviors are found in

experiments on the MSR Action 3D and KARD datasets (Table 11). It

should be noted that degradation phenomena depend considerably on

the size of datasets5. This is the reason why the 110-layer network got

higher errors than several other networks.

The difference between training error and test error on the learning

curves shows the ability of overfitting prevention. Our experimental

results on three action benchmarks provided that the proposed ResNet

architectures are capable of reducing overfitting in comparison with the

original architecture. We believe this result comes from the combina-

tion between the use of BN (Ioffe and Szegedy, 2015b) before con-

volutional layers and Dropout (Hinton et al., 2012) in each ResNet unit.

6.3. Effect of image resizing methods on recognition result

D-CNNs work with fixed size tensors. Thus, before feeding image-

based representations to ResNets, all these images were resized to a

fixed size of 32 × 32 pixels. The resizing step may lead to the change

in the accuracy rate. To identify the effects of different resizing methods

on the recognition performance of the proposed model, we conducted

an additional experiment on the MSR Action 3D/AS1 dataset (Li et al.,

2010) with Proposed-ResNet-20 network. In this experiment, two dif-

ferent resizing methods, including Nearest-Neighbor interpolation and

Bicubic interpolation were used for resizing image-based representa-

tions before feeding to deep networks. Experimental results indicate

that the difference between the accuracy rates is very small ( =∆ 0.3%;

see Fig. 13).

6.4. Effect of joint order on recognition result

In our study, each skeleton was divided into five parts and con-

catenated in a certain order in order to keep the local motion char-

acteristics and to generate discriminative features in image-based re-

presentations. To clarify the effect of order of joints in skeletons, we

have tried to remove the step of rearranging joints in our im-

plementation and perform experiments with the order of joints pro-

vided by the Kinect SDK. We observed a dramatically decrease in the

recognition accuracy ( =∆ 9.0%) as shown in Fig. 14.

6.5. Computational efficiency

We take the Cross-View evaluation criterion of the NTU-RGB+D

dataset (Shahroudy et al., 2016) and the Proposed-ResNet-56 network

to illustrate the computational efficiency of our learning framework. As

shown in Fig. 15, the proposed method has main components, including

Stage 1 the encoding process from skeletons to RGB images, Stage 2 the

supervised training stage, and Stage 3 the prediction stage. With the

implementation in Matlab using MatConvNet toolbox (Vedaldi and

Lenc, 2015) on a single NVIDIA GeForce GTX 1080 Ti GPU system,6

without parallel processing, we take × −7.83 10 3 s per skeleton sequence

during training. After about 80 epochs, our network starts converging

with an accuracy around 85%. While the prediction time, including the

time for encoding skeletons into RGB images and classification by pre-

trained ResNet, takes 0.128 s per skeleton sequence. This speed is fast

enough to respond to many real-time applications. Our method is

therefore more practical for large-scale problems and real-time appli-

cations (Table 12).

7. Conclusion and future work

We have presented a novel deep learning framework based on

ResNets for human action recognition with skeletal data. The idea is to

combine two important factors, i.e., a good spatio-temporal re-

presentation of 3D motion and a powerful deep learning model. By

encoding skeleton sequences into RGB images and proposing a novel

ResNet architecture for learning human action from these images,

higher levels of performance have been achieved. We show that the

Fig. 15. Three main phases in the proposed method.

Table 12

Execution time of each component of our method.

Component Average processing time

Stage 1 × −7.83 10 3 s per sequence

Stage 2 × −1.27 10 3 s per sequence

Stage 3 0.128 s per sequence

5 Personal communication with H. Zang from the Rutgers University, USA and Amazon

AI.

6 For more information about the specifications of this GPU, please refer to: https://

www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1080-ti/.
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Below is the list of the action classes provided by the NTU-RGB+D dataset (Shahroudy et al., 2016), it contains 60 different actions captured by

Kinect v2 sensors:

Drinking, eating, brushing teeth, brushing hair, dropping, picking up, throwing, sitting down, standing up, clapping, reading, writing, tearing up paper,
wearing jacket, taking off jacket, wearing a shoe, taking off a shoe, wearing on glasses, taking off glasses, puting on a hat/cap, taking off a hat/cap, cheering
up, hand waving, kicking something, reaching into self pocket, hopping, jumping up, making/answering a phone call, playing with phone, typing, pointing to
something, taking selfie, checking time, rubbing two hands together, bowing, shaking head, wiping face, saluting, putting palms together, crossing hands in front.
sneezing/coughing, staggering, falling down, touching head, touching chest, touching back, touching neck, vomiting, fanning self. punching/slapping other
person, kicking other person, pushing other person, patting others back, pointing to the other person, hugging, giving something to other person, touching other
person’s pocket, handshaking, walking towards each other, and walking apart from each other.

Appendix B. Network structures

This section describes the network architectures in detail. To build 20-layer, 32-layer, 44-layer, 56-layer, and 110-layer networks, we stack the

proposed ResNet building units as following:

Baseline 20-layer ResNet architecture

3×3 Conv., 16 filters, BN, ReLU

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters

Global mean pooling

FC layer with n units where n is equal the number of action class.

Softmax layer

Baseline 32-layer ResNet architecture

3x3 Conv., 16 filters, BN, ReLU

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters

approach is effective for recognizing actions as we achieved state-of-
the-art performance on three well-established datasets, while requiring 
less computation resource. We are currently extending the skeleton 
encoding method in which the Euclidean distance and the orientation 
relationship between joints are exploited. In addition, to achieve a 
better feature learning and classification framework, we aim to design 
and train some new and potential D-CNN architectures based on the 
idea of ResNet (He et al., 2016) such as Inception-ResNet-v2 
(Szegedy et al., 2017) and Densely Connected Convolutional Networks 
(DenseNet) (Huang et al., 2016). The preliminary results are encoura-
ging. We hope that our study opens a new door for the research com-

munity on exploiting the potentials of very deep networks for human 
action recognition.

Appendix A. List of action classes from the NTU-RGB+D dataset



Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters

Residual block: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters

Global mean pooling

FC layer with n units where n is equal the number of action class.

Softmax layer

Baseline 44-layer ResNet architecture

3x3 Conv., 16 filters, BN, ReLU

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters

Global mean pooling

FC layer with n units, where n is equal the number of action class.

Softmax layer

Baseline 56-layer ResNet architecture

3x3 Conv., 16 filters, BN, ReLU

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters



Global mean pooling

FC layer with n units, where n is equal the number of action class.

Softmax layer

Baseline 110-layer ResNet architecture

3x3 Conv., 16 filters, BN, ReLU

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,16 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,32 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters

Residual unit: BN-ReLU-Conv.-BN-ReLU-Dropout-Conv.,64 filters

Global mean pooling

FC layer with n units, where n is equal the number of action class.

Softmax layer
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