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Abstract. Near infrared spectroscopic (NIRS) data from different harvested
seasons may consist of different feature spaces even though the samples have the
same label values. This is because the spectral response could be affected by the
changes in environmental parameters, internal quality, and the reproducibility of
NIRS instruments. Thus, this study aims to investigate the ability of Joint
Distribution Adaptation (JDA) transfer learning algorithm in addressing the
assumption of traditional machine learning i.e. both training and testing data
must come from the same feature spaces and data distribution. First, NIRS data
acquired from two different harvested seasons were used as the source domain
and the target domain, respectively. Next, JDA was implemented to produce an
adaptation matrix using the source domain and transfer datasets. This adaptation
matrix would be used to transform the source and target domain datasets. After
that, a calibration model was developed by means of Partial Least Squares
(PLS) using the transformed training dataset; and validated using the trans-
formed independent testing dataset. The proposed JDA-PLS was compared to
the PLS without transfer learning as the baseline learning. Findings show that
the proposed JDA-PLS with 10 LVs achieved the lowest RMSEP of 1.134% and
the highest RP

2 of 0.826.
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1 Introduction

Near infrared spectroscopic (NIRS) is a promising non-destructive and fast technique to
evaluate the quantitative and qualitative of organic materials. Electromagnetic energy
of near infrared (NIR) spectrum is in a range of 750–2500 nm. The band range is
known as one of the high-energy vibrational spectroscopy [1]. Interaction of emitted
infrared radiation energy with samples is based on the chemical composition and
physical properties of the samples [2]. Essentially, the samples examined by the NIRS
consist of chemical bonds, i.e. C-H, N-H, C = O, that are able to absorb NIR energy
[2]. In order to acquire high-quality NIR spectra from the examined samples, selecting
the appropriate measurement setup is compulsory as the spectra are affected by the
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setup [3]. Usually, the selection of the setup is determined by the physical state of the
samples, e.g. reflection is preferable for solid samples [3]. In earlier studies of NIR
electromagnetic radiation, there was a long delay between the year it was discovered
until it found the first analytical application [4]. This is due to the fact that the bands in
NIR spectra are broad, correlated, and highly overlapping which required the presence
of mathematical tools to extract the analytical information from these featureless
spectra. Nowadays, with the progressive evolution in the NIRS instrument and math-
ematical resources, NIRS has been successfully explored and widely applied especially
in agriculture and recently it has successfully contributed to the post harvested decision
support system [5–7].

However, it is a tedious process, time-consuming, cost-intensive, and labour-
intensive to establish NIRS predictive model [8]. A big dataset of targeted NIR spectra
acquired from NIR data acquisition and chemical analysis needs to be collected and
processed. Unfortunately, NIR spectra of the same sample collected from one NIRS
device are different from another NIRS device, spectra collected from the same device
of the same type with the same target value, but different populations also give out
different spectra. The inconsistencies might be due to the measurement environmental
conditions, samples internal qualities, or comes from the manufacturing process of
NIRS instrument [9, 10]. Instead of performing calibration on a local dataset, cali-
bration by using a global dataset had been proposed [11]. The result showed a better
performance than using the local dataset, but the solution had high computational cost
to establish the model, time-consuming to form the global dataset, and expensive in
data collection. Thus, there is an urgent need for a robust and reliable model that can
make a benefit from existing collected data to evaluate future data coming from dif-
ferent sources [12].

Calibration transfer is one of the renowned chemometrics techniques in transferring
a calibration model between different spectrometers or generally is known as different
domains. Calibration transfer is performed by transferring the model calibrated using a
primary instrument to a secondary instruments using calibration transfer algorithm i.e.
Direct Standardization (DS). Nevertheless, the calibration transfer suffers from the
availability of standard samples with the same chemical constituents over time [13].
The reliance on standard samples for standardization remains a critical challenge for
on-site applications as instruments are not always in the same location and recalibration
needs sufficient labelled samples in each spectrometer. Hence, the calibration transfer
approach is not convenient as a long-term problem-solving solution.

Recently, transfer learning (TL) has greatly improved the performance of many
real-world applications in computer imaging and natural language processing [14–16].
The needs of TL occur when there was a limited labelled target domain dataset; while
the availability of a related source domain dataset is sufficient to establish a learning
model. Thus, the ability of TL to utilize knowledge present in labelled training data
from a source domain to enhance a model performance in a target domain may be an
alternative to address the limitation of calibration transfer. However, the studies of
transfer learning for NIRS is limited in numbers; and thus more studies in constructing
an efficient model using transfer learning are much needed [6, 17]. Thus, this study
aims to evaluate and analyse the performance of transferred models from different
domain feature spaces (across different harvest seasons) using transfer learning
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approach. Joint distribution adaptation (JDA) based Partial Least Squares (PLS) re-
gression is proposed to evaluate the performance of dry matter content (DMC) of NIR
mango predictive model across different harvested seasons.

2 Materials and Methods

2.1 Experimental Dataset

The effectiveness of the proposed method was evaluated through extensive experiments
on mango dataset. The dataset was acquired and provided by Anderson et al.
2020 using a portable F750 Produce Quality Meter (Felix Instruments, Camas, USA)
for the non-destructive NIR measurements; and an oven drying (UltraFD1000, Ezidri,
Beverley, Australia) for dry matter content (DMC) measurement [9]. The mango
dataset consisted of 11691 NIR spectra (684 – 990 nm) and DMC that measured from
4675 mango fruits from four harvested seasons in 2015, 2016, 2017, and 2018 [9, 18].

In this study, the mango dataset harvested in season 1 and season 4 were used. This
is because this study aims to focus on transferring knowledge from the past season to
recent season. Season 1 (i.e. 2015) was selected as the past season due to the distri-
bution type of dataset in season 1 only coming from hard green dataset; while season 4
(i.e. 2018) consists of hard green and ripen type datasets. Thus, we can investigate the
ability to transfer knowledge across harvested seasons with the different types of fruits.
Table 1 summarises the information of the source domain and the target domain, and
the data distribution for modelling the prediction model.

Table 1. Information of source domain, target domain and data distribution [9]

Source domain Target domain

Domain feature space,
D = {X, P(X)}

Season 1 Season 4

Task, T = {Y, f(x)} DMC DMC
Year harvested 2015–2016 2018–2019
Sample size 3914 1448
Range of DMC value (min. –
max.)

9.47–22.95 9.87–23.86

Type Hard Green 3914 560
Ripen 0 888

Number of samples for
calibration

3914 0

Number of samples for
transfer

0 14

Number of samples for
validation

0 58

Number of samples for
testing

0 1376
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There were 3914 NIR spectra from season 1 and 1448 NIR spectra from season 4.
Season 1 was fixed as the source domain; while season 4 was used as the target domain.
All the dataset in season 1 was used as the training dataset; 5% of the earliest harvested
mango dataset in season 4 was used as a transfer samples and validation dataset; while
95% of season 4 was used as the independent testing dataset.

2.2 Preprocessing of NIR Spectra and t-SNE Visualization

Spectra pre-processing is essential to eliminate or reduce phenomena such as back-
ground interference and instrument noises that existed in NIR spectra. Various pre-
processing methods are available and one of the most common is standard normal
variate (SNV) pre-treatment. The main purpose of data pre-processing is to reduce the
complexity of spectra interpretation before the calibration process and to improve the
accuracy of predicted models. In this study, three pre-processing were investigated to
study the compatibility with the transfer learning approach, i.e. SNV, Savitzky-Golay
(SG) and multiplicative scatter correction (MSC). SNV improves light scattering, MSC
is able to correct linear effects and wavelength-dependent variations, and SG can
eliminate spectrum baseline drift and reduce high-frequency noises. For the SG algo-
rithm, the result can be affected by the selected window width. Useful information
might be lost if the spectral distortion becomes severe due to the number of data points
in the window. However, the smoothness of the denoising result is not ideal if the
number of data points is too small. In this study, a second derivative based on a second-
order polynomial across 17 points (SG2nd17) over the wavelength range 684−990 nm
was adopted from previous work for comparison [9].

The relationship of DMC and 103 inputs per NIR spectra of mango harvested in
season 1 and season 4 was visualized using the t-distributed Stochastic Neighbour
Embedding (t-SNE) algorithm. t-SNE visualization algorithm was deployed to map the
103-dimensional NIR features into two-dimensional spaces using random walks on
neighbourhood graphs. t-SNE is a more preferable tool to visualize high dimensional as
compared with Principle Component Analysis (PCA) algorithm. This is because it
could retain the non-linear structure of data to the maximum extent [19].

2.3 JDA Based PLS

Transfer learning is addressing the challenge of the assumption of traditional machine
learning that training data and testing data must come from the same feature spaces and
same data distribution. However, minimizing the related but different distribution of
source and target domain dataset is difficult. Joint distribution adaptation (JDA) is the
kind of feature-based transfer learning method, which jointly adapt both the marginal
and conditional distributions in a principled dimensionality reduction procedure [20,
21]. Principal Component Analysis (PCA) is integrated with nonparametric Maximum
Mean Discrepancy (MMD) in order to generate a new feature representation that
closely matches the target domain. A detailed theoretic explanation about JDA can be
found in a research article developed by Long et al. [20].
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The objective of JDA is to find an orthogonal adaptation matrix such that the
difference in both marginal and conditional distributions are minimized. The objective
function is defined in Eq. (1).
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ATXHXTA

XC
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! "

þ kjjAjj22 ð1Þ
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problem. The MMD matrixes MC computed as stated in Eq. (2):
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where, Ds ¼ f x1; y1ð Þ; . . .; ðxn; yng is the labeled source domain, Dt ¼
f xnsþ 1ð Þ; . . .; ðxnsþ ntÞg is the unlabeled target domain. Once the adaption matrix A is
obtained, new feature representation Zns ¼ A:xns with labelled DMC mango can be
used to train a predictive model for target domain and make prediction with input as
Znt ¼ A:xnt .

There are few hyperparameters in JDA need to be considered for a tuning in order
to optimize the model performance. The hyperparameters are subspace bases, k and the
regularization coefficient, k. Grid search was implemented to structurally search the
optimal values. The algorithm is searching the optimal solution in a search space by
providing the minimum and maximum range for each hyperparameters. Table 2 shows
the hyperparameter tuning search space for JDA based PLS.

In the field of chemometrics in spectroscopy, PLS regression is one of the com-
monly applied calibration model. For the PLS regression algorithm, only one parameter
needs to be tuned i.e. number of Latent Variables (LVs). Thus, PLS was used as the
baseline regression (i.e. standard learning) in this research study. The number of LVs
was chosen based on the minimum value of root mean squares error validation
(RMSEV) of the established model. Figure 1 shows the comparison of basic workflow
for standard learning and transfer learning for the general type of data. The difference
between the two types of learning is the step where the transfer learning process takes

Table 2. Hyperparameter tuning search space for JDA based PLS algorithm.

Hyperparameter Initial implemented value Search space [min.: max.]
Subspace bases, K 20 [20: 100]
Regularization coefficient, k 0.1 [0.1: 1.0]
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place in the transfer learning – JDA based PLS before the calibration process. This is an
important step in order to analyse the information and minimize the difference between
source and target domain.

3 Model Evaluation

Statistical measurements root mean squared error (RMSE) and the coefficient of
determination (R2) are commonly used in NIRS model evaluation. A good NIRS model
shall have a lower RMSE and higher R2. Furthermore, to reflect the generalization
ability of the model, the performance of the NIRS model was evaluated using inde-
pendent training and testing datasets from different harvest seasons. The smaller the
RMSE, the closer the simulated value to the measured value.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 yp ( yi

! "2

n

s

ð3Þ

R2 ¼ 1(
Pn

i¼1 yp ( yi
! "2

Pn
i¼1 yp ( yi

! "2 ð4Þ

where yi and yp are the predicted and actual values of DMC mango, respectively. yi is
the mean of the DMC mango, and n is the sample size.

Fig. 1. Comparison of a) standard learning and b) transfer learning, the general process.
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4 Results and Discussion

t-SNE was performed to visually examine the feature space of NIRS spectra of the
source domain and target domain datasets. As shown in Fig. 2 , the clusters were
formed by the DMC level in each dataset. The target domain dataset (season 4), shows
the two obvious clusters that indicate two different types of mango, i.e. hard green and
ripen. The distribution of dataset season 1 and season 4 were overlapped with each
other for some of the data. In this way, it will be questioned whether the proposed
approach would be able to capture the common features between the source domain
and target domain. Besides, the graph plotting of t-SNE further demonstrated the
suitability of DMC prediction by using the NIR technique.

Table 3 tabulates the performance of DMC predictive models for NIRS mango. The
proposed JDA based PLS obtained the lowest RMSEP and the highest RP

2. This proves
the ability of JDA to minimize the difference of different feature spaces between season
1 and season 4. Furthermore, by only using the transformed season 1 dataset, JDA
based PLS successfully enhanced the performance of standard baseline learning of
PLS. In other words, JDA has addressed the limitation of PLS to sustain its robustness
across different harvest seasons that have different feature distributions.

For each learning approach, the PLS model that developed using different pre-
processing methods were included and compared to analyze the most appropriate pre-
processing method for the mango dataset with the different learning methods. When the
NIR spectra were pre-processed by MSC, SNV, and SG2nd pre-processing algorithms,

Fig. 2. t-SNE visualization of source domain – Season1 (blue) and target domain – Season 4
(red) feature spaces.
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JDA based PLS were degraded. This could be due to there were different noises
between season 1 and season 4. Season 4 consisted of ripen type of mango samples.
According to Seifert et al., scattering properties of fruit would change during matu-
ration process [22]. Thus, hard green and ripen fruit could have different scattering
effects. As a result, applying a same pre-processing method to both datasets would
degrade the model performance, compared with untreated NIR spectra. In other words,
applying an appropriate pre-treatment to the NIR spectra is important to preserve the
information in the spectra.

Meanwhile, for the performance of baseline learning, the PLS that used 14 LV’s
with SG2nd17 treatment shows the lowest RMSE of 1.555%, and the highest R2 of
0.812. This is aligned with the result that published by Ander-son et.al as SG2nd17 was
adapted from the previous study [9]. However, the model required the highest number
of LV than others as the input has become more complicated to establish good pre-
dictive model.

Figure 3(a) and (b) show the regression of JDA based PLS that used 10 LVs
without pretreatment; and that of baseline PLS that used 14 LVs with SG2nd17 pre-
treatment, respectively. For Fig. 3(a), 10 LVs were chosen based on the lowest vali-
dation result using the sample transfer dataset. The model reached RMSEP of 1.139%
when it was tested using the independent testing dataset (i.e. NIR mango harvested in
season 4). The RMSEP was drastically increased to 1.555% when the same dataset has
established a model using the baseline method, PLS without a transfer learning
approach. This shows that the generalization of the PLS was poor when it was applied
directly to another harvest season. When JDA transfer learning algorithm was inte-
grated, JDA based PLS achieved a lower RMSEP compared to that without JDA on the
different harvested seasons. This could be due to NIR spectral responses of an organic
sample are sensitive to the changes of the environment. Consequently, this shows that
the use of JDA was able to match or minimize the differences among different domain
distributions and to improve the robust of the predictive model across different harvest
seasons.

Table 3. Prediction model performances for NIRS mango DMC using transfer learning
approach (JDA based PLS) and standard learning approach (PLS).

Treatment LV RMSEC Rc
2 RMSEV RV

2 RMSEP RP
2

Transfer learning: JDA
based PLS

RAW 10 0.982 0.858 0.723 0.885 1.139 0.826
SNV 9 1.124 0.794 0.963 0.926 1.628 0.783
MSC 9 1.183 0.814 0.963 0.926 1.628 0.783
SG2nd17 8 1.282 0.723 0.469 0.951 1.715 0.694

Baseline method: PLS RAW 10 1.006 0.851 1.006 0.851 1.612 0.794
SNV 9 1.153 0.804 1.153 0.804 1.654 0.722
MSC 8 1.313 0.746 1.313 0.746 1.705 0.642
SG2nd17 14 0.719 0.920 0.719 0.920 1.555 0.812
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5 Conclusion

NIRS model may need to be recalibrated for NIRS data that have different distribution
of a similar type of samples. In this study, JDA based PLS (JDA-PLS) was introduced
and evaluated using two NIRS mango datasets that acquired from different harvested
seasons. The experimental results showed that the proposed JDA-PLS has a positive
result in transferring knowledge across different domain distributions (i.e. across dif-
ferent harvest seasons). Results show that the proposed JDA-PLS achieved the lowest
RMSEP of 1.139% and the highest RP

2 of 0.826. This result demonstrated that the
proposed JDA-PLS transfer learning approach is promising to overcome the concern of
NIRS models across different population samples that have different distributions.
Thus, this study suggests that the proposed solution can be further explored and utilized
for different cases and experimental design of transferring knowledge across NIR
samples as transfer learning for NIR still limited.
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