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Abstract. The use of meta-heuristics in Combinatorial Interaction Testing (CIT)
is becoming more and more popular due to their effectiveness and efficiency
over the traditional methods especially in authenticating electronic payment (e-
payment) transactions. Concomitantly, over the past two decades, there has been
a rise both in the development of metaheuristics and their application to diverse
theoretical and practical areas including CIT in e-payments. In the implementa-
tion of t-way strategies (the t is used to represent the interaction strength), mixed
results have been reported; some very exciting but, in other cases, the perfor-
mance of metaheuristics has been, to say the least, below par. This mixed trend
has led many researchers to explore alternate ways of improving the effectiveness
and efficiency of metaheuristics in CIT, hence this study. It must be emphasized,
however, that available literature indicates that no particular metaheuristic testing
strategy has had consistent superior performance over the others in diverse testing
environments and configurations. The need for effectiveness, therefore, necessi-
tates the need for algorithm hybridization to deploy only the component parts of
algorithms that have been proven to enhance overall search capabilities while at
the same time eliminating the demerits of particular algorithms in the hybridiza-
tion procedure. In this paper, therefore, a hybrid variant of the African Buffalo
Optimization (ABO) algorithm is proposed for CIT. Four hybrid variants of the
ABO are proposed through a deliberate improvement of the ABO with four algo-
rithmic components. Experimental procedures indicate that the hybridization of
the ABOwith these algorithmic components led to faster convergence and greater
effectiveness superior to the outcomes of existing techniques, thereby placing the
algorithm among the best when compared with other methods/techniques.
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1 Introduction

With the massive deployment of electronic payment systems, especially during this
period of Lockdown across many countries of the world as a result of the New Corona
Virus, otherwise called COVID-19, the need to examine the software used in e-payments
have not been greater in human history than at present. Differentmoney-transaction orga-
nizations, the world over have developed several payment platforms/software, many of
these software have, to say the least, been quite successful. However, the need for contin-
uous improvements cannot be over-emphasized. The need to ensure foolproof transac-
tions in our monetary systems has necessitated several research investigations to ensure
stability, reliability and security of financial transactions in our financial institutions.
This has led to the involvement of artificial intelligence techniques to assist is ascertain-
ing the reliability of existing financial software. One of the areas attracting researcher’s
attention in this regard is the use of optimization algorithms is software testing.

Optimization has gradually been entrenched in virtually all aspects of Software
Engineering ranging from software requirements engineering to software management,
software testing and software refactoring respectively. Optimization, fundamentally, is
sometimes defined as the application of economic principles to science and engineering
which basically deals with generating the highest amount of output with as little input as
possible [1]. In otherwords, optimization is the process of discovering the best alternative
out of a given number of alternatives utilizing limited inputs as much as possible [2]. In
the past few decades, there has been a marriage of convenience between optimization
and metaheuristic algorithms. Some of the popular metaheuristic algorithms include:
Simulated Annealing (SA) [3]; Tabu Search (TS) [5], African Buffalo Optimization
[6], Great Deluge (GD) [4];; Ant Colony Optimization (ACO) [3]; and Particle Swarm
Optimization (PSO) [7], etc.

Optimization becomes very important in Combinatorial Interaction Testing (CIT)
in order to identify the optimal cases from a large range of combinatorial values based
on the specified interaction strength (t) since the major task of CIT is to determine
the optimal test cases from among a large test suite. Since it may not be possible or
efficient to test every possible test combination in a large test suite, there is the need
for combinatorial optimization [8]. Combinatorial optimization is relevant in a situation
where an exhaustive search is practically impossible or totally inefficient when a choice
has to be made, thereby emphasizing the need for optimization search algorithms [9].

In most testing situations (similar to our focus in this study), CIT is a (NP-hard (Non-
Polynomial-hard) problem. The term NP-hard problem refers to classes of problems
that there exists no algorithm that provides a solution to the problem as well as the
verification of such solutions in a polynomial time. Polynomial time is simply a linear
time. This further underscore the need formetaheuristics. In response, today, the research
community has designed several metaheuristics which have been applied to several
NP-hard problems such as the travelling salesman’s problem [10]; N-Queen problems;
numerical function optimization [11]; and software testing [12] etc. With particular
reference to software testing, the PSO, SA, and (HS) [13] have proven to be quite
successful. It must, however, be emphasized that in spite of the huge contributions of the
above algorithms, there still exists the need for further improvements, hence this paper.
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The remainder of this paper is structured thus: section two gives a general overviewof
t-way testing in addition to discussing its theoretical background; section three presents a
review of some existing t-way strategies; section four examines the hybridization of vari-
ants of the ABO algorithm for an appropriate t-way test suite generation of an e-payment
system; section five is concerned with the experimental investigation of the ABO algo-
rithm for a t-way test suite of an e-payment system and discusses the experimental
outcomes while section six presents the conclusions drawn from the study.

2 Explanation of Background and History

2.1 The Need for T-Way Test Suite Generation for E-payment Platforms

Of the several CIT techniques in use, the t-way testing has proven to be one of the
most effective combinatorial techniques that can dramatically reduce the size of the test
parameters without compromising effectiveness. T-way testing, basically, is a sampling
mechanism used to generate test samples with a clear focus on the attitude of interaction
system’s component parts. To further elaborate on the need for t-way testing in test suite
reduction, consider the online payment systems such as MasterCard, Visa etc. Online
Payment systems enable customers to carry out banking transactions electronically.

To carry out an electronic payment transaction, a customer is required to simply fill
out the online Payment Details form and then submit to the merchant’s website. Usually,
the transaction form consists of six different inputs, namely: The Payment System (Visa,
MasterCard, PayPal, American Express etc.); Name on Card; Expiration Date (MM and
YY); Card Number; Card and Card’s CVV. In the Transaction Method, a customer is
required to choose the particular Payment method from among a number of choices
including: “Discover”; “Visa Card”; “American Express”; “MasterCard”; and “PayPal”.
The next input data is the Name on Card, then the Card Number which takes numeric
string values. Following this is the Card Expiration Date, which requires further numeric
inputs (i.e.MM takes values 1…12, andYY takes values 16…31). The last compulsory
input is the Card CVV which requires another numeric value. An example of the online
payment system is presented in Fig. 1.

Fig. 1. Electronic payment system

To exhaustively test the electronic payment system, 900 test cases are required [14].
Nevertheless, utilizing a two-way test suite reduces it to only 180 test cases [15]. In
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general, the test suite T is n × m array which consists of n rows of the generated test
cases and m columns in such a way that each test case becomes a combination of m
input values. Thus, whereas the t-way test suite T1 covers all valid pair values of input
parameters, one test case incorporates many pairs of input parameter values. Therefore,
a good software tester would need to discover an effective test suite T1 which is a subset
of T that should have the smallest number of rows and columns with the embedded
capacity of unravelling a defect wherever one exists.

In scientific literature, there exist many test suite generation strategies such as:
partition testing [16]; random testing [17]; combinatorial interaction testing [19]; etc.

2.2 Theoretical Foundation of T-Way Test Suite Generation

To formulate CIT, many researchers adopt Covering Array (CA). Basically, from liter-
ature, any system under test (SUT) is made up of a number of component parts which
interact with each other parts /parameters cooperatively with each component making
available its values to other components in the system. Please note that throughout this
paper, the symbols p, t, and v refer to number of parameters, interaction strength and
values, respectively [21, 22].

Similarly, it is important to emphasize that whenever the number of values (v) is the
same with the number of parameters (p), the covering array is assumed to be a uniform
Covering Array, CA (N, t, vp). For instance, anytime a covering array of CA (6; 2, 24) is
made up of six (6) rows of the test cases being generated from the four (4) columns of the
appropriate parameters with only two (2) values, then it is a case of a uniform Covering
Array. On the other hand, anytime the number of parameters being investigated does
not correlate (that is, when. each parameter under consideration generates a different
number of values), then such covering array is a the Coverage Array symbol of MCA
(N, t, v1 p1 v2 p2 v3 p3…..vj pj).

3 A Detailed Explanation of Recent Findings

3.1 Hybrid African Buffalo Optimization for T-Way Test Suite Generation

The primary objective of this section is to present an efficient, effective cum fast t-way
strategy for a good test suite generation based on a meta-heuristic algorithm for the
authentication of an electronic payment system. The need for hybridization emanates
from the effectiveness of hybrid algorithm over the classical algorithms because hybrid
algorithmdraws from the strength of each of the algorithms in the hybrid [23]. Hybridiza-
tion is a very successful concept in the development and use ofmeta heuristic algorithms.
In literature, many hybridization methods have been proposed by simply selecting two
algorithms to a new one [24]. Even though the exceptional performance of a new hybrid
is not guaranteed, some hybridization has been very successful [24].

Therefore, finding an effective way for algorithm-hybridization is still an open issue
for researchers [25]. To design an effective hybrid algorithm, there is the need for a thor-
ough grasp of the algorithms’ components and employ the concept of component grafting
[26]. In this study, first, a new t-way suite test generation strategy is proposed; called Buf-
falo Strategy (BS) based on the ABO algorithm [27, 28]. The ABO has been improved
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to obtain several hybridization variants of the original ABO. Lastly, the hybrid variants
of BS have been evaluated and their performance compared with existing strategies.

The ABO is one of the 21st century swarm intelligence-based algorithm. The ABO
was inspired by the unique intelligence displayed by migrant buffalos searching for food
in the African continent. ABO being is a swarm-based technique where simulates the
aggregate intelligence of individual buffalo as they optimize their search for food sources
[29]. ABO attempts to model three qualities of the African Buffalo as follows:

A. Extensive memory capacity of African Buffalos. These animals keep track of their
migrant paths for hundreds of miles;

B. Democratic nature: The major decisions of the herd are determined by “election”;
C. Cooperative behavior of buffalos: African Buffalos have two sounds: the alert

‘/waaa/’ sound prompting the herd to move since their present because location
is dangerous or unfavorable for some reasons; while the sound “/maaa/” requests
other Buffalos to stay in the same location [30].

The ABO algorithm starts by initializing a number of buffalos and then updates each
buffalo’s fitness using Eq. 1. At this point, the algorithm saves the fitness of each buffalo
bp and the global fitness overall of the herd bg. lpr1 and lpr2 are learning factors. The
three parts of Eq. 1 (i.e. wt , lpr1 × (bg − wt), and lpr2 × (bg − wt) represent: memory
capacity; the cooperative behavior of buffalos; and the intelligence part of the buffalos,
respectively. Equation 2, basically, is used to update the buffalo’s locations. Please note
that λ is a random number. The ABO algorithm searching strategy is governed by the
equations [31]:

m(t+1) = w(t) + lpr1 ∗ (bp − w(t)) + lpr2 ∗ (bg(t) − w(t)) (1)

and

Wk′ = (Wk + mk)
/
λ (2)

3.2 Buffalo Strategy T-Way Test Suite Generation for E-payment

In this section, our concern with the presentation of the Buffalo Strategy (BS) for the
design and implementation of a tway test suite generator [32]. BS uses the original
ABO in generating optimized test suite through a diligent search for particular test cases
which incorporates the maximum number of t-combinations of inputs at least once. It
treats a buffalo (that is, a feasible solution and interaction elements) within the search
space. Basically, BS starts by first generating all interaction elements that are within the
present search space into a list and representing them as component units of a population
of buffalos.

At the evaluation loop, which is the next step, the buffalos are repeatedly subjected
to a cycle of ABO search procedures in order to generate the expected final optimized
test suite. In general, the BS comprises of two steps:

• Produce interaction test elements;
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• Produce T-way Test Suite by diligent search procedures of the ABO to discover the
optimal test cases. Please see Fig. 2.

1. Producing Interaction Element Step:
Let IE be a set of Interaction Elements 
B = generate the smallest binary number contain t ones. 
Until all t binary number generated  

Generate all possible interaction elements for B
Add all possible interaction elements to 

IE B = Generate_next_binary_number(B).  

End loop  

2. Generating T-way Test Suite Step:
While IE is not empty do

//Perform search using ABO while <Max 

Generation  or stop criterion do 

For i =0 to buffalo_size loop 
Update buffalo’s fitness:

Update buffalos location

wk’= (wk + mk) / λ

Find the best buffalo   
End for 

End while 
Add the best buffalo into TS.  
Remove covered interactions elements from IE. 

End while

Fig. 2. BS for T-way test suite generation

3.3 Parameter Adjustment of BS

The behavior of BS is determined by the population size buffalo_size, learning factors
lp1 and lp2 as well as the iteration number n. As a result, these parameters need to be
properly tuned. To do this, one of the well-known covering arrays CA (N; 2, 105) is used.
To ensure systematic tuning, the values of two parameters are fixed as we investigate the
best value of the other parameter. For instance, the value of buffalo size is iteration fixed
(i.e. buffalo size = 10, and iteration = 30) and those of lp1 and lp2 (0.1, 0.2, 0.3… 0.6)
are investigated (See Tables 1 and Fig. 3). Moreover, the reverse process is performed
for each (See Table 3, and Table 4). To ensure reliability, BS is executed 20 times with
every parameter value, and the mean is recorded (See Table 1).
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Table 1. Mean Test Suite for CA (N; 2, 105) with varied value for Iteration and pollen size

Buffalo 
Size

Iteration 

5 10 20 30 40 50 100 200 300 500 700 

10 35.65 32.15 32.95 30.30 29.95 29.15 28.55 27.65 26.40 25.65 25.25 

20 32.20 29.65 28.80 28.45 27.55 27.40 26.95 25.10 24.95 24.80 24.50 

30 30.95 28.65 28.00 26.80 26.75 25.50 25.35 24.65 24.50 24.20 24.00 

50 29.05 26.65 27.20 25.95 25.95 25.15 25.55 24.10 24.00 23.00 23.40 

100 27.15 26.10 25.65 25.25 24.65 24.70 24.55 23.85 24.10 23.90 23.50 

200 26.25 25.15 24.80 24.65 24.50 24.35 24.00 23.40 23.50 23.90 23.75 

300 25.90 24.90 24.55 24.05 24.45 24.15 23.95 23.80 23.70 23.45 24.00 

500 24.80 24.50 24.15 24.05 23.70 23.80 24.10 23.35 23.55 23.80 23.65 

Fig. 3. Comparison of eBS with Computational-based Strategies

Table 1 clearly shows that using a large buffalo population leads to better results
and vice-versa. So using a large population of up to 30 buffalos, the performance of BS
improved significantly. Nonetheless, increasing the buffalo population to as many as 500
did not necessarily give better results. The best outcomes were realized when the buffalo
population size ranges from 50 to 100 buffalos. Also, as the iteration value increased,
the results improved (See Table 1). The best outcome was obtained when the iteration
number was between 300 and 500.

With regards to the learning factors lp1 and lp2 (See Table 2), results show that using
a higher value of lp1 and lp2 led to better results. Nevertheless, the best results were
obtained when lp1 and lp2 was between 0.4 and 0.6. To summarize, BS obtained the
optimal test suite when the buffalo population was between 50 and 100, iteration was
between 300 and 500 and learning parameters between 0.4 and 0.6.
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3.4 ABO-Based Strategies for Test Generation

From our experiments, the obtained results of BS using original ABO were very com-
petitive when compared with those from other strategies such as: Simulated Annealing
(SA); Harmony Search (HS); Particle Swarm Optimization (PSO) and Genetic Algo-
rithm (GA) One of the observed drawbacks of ABO-based strategy is low randomization
of the population.

Therefore, to enhance ABO’s performance, we added a few components consis-
tent with other efficient algorithms to the ABO algorithm. The additional components
required to enhance local intensification and global diversification are discussed below.

• Elitism Technique: Elitism Technique is simply a way to make the randomization
more efficient by replacing a part of the population to ensure that the solution quality
will not be degraded in the next iteration [33];

• Mutation operator: This helps the algorithms to ensure the diversification of solutions
of the population from one generation to the next. In mutation, one or more solution
values are changed.There are different types ofmutation including: Flip bit;Boundary;
Bit string mutation; Gaussian mutation [34]; etc.

• Local Search: This is a straight-forward and highly effective technique for finding a
local optimum solution. Local search deliberately moves from the current location
to one of the neighboring states while seeking a local optimum. That is to say, local
search emphasizes diligent exploitation of the search area that has a likelihood of good
solutions [35].

The hybridization ofABOwith the above components promotes greater search effec-
tiveness (See Figs. 3 and 5). In light of the greater effectiveness, this paper proposes four
different hybrid variants of BS: mutation Buffalo Strategy (mBS); local-search Buffalo
Strategy (lBS); elitism Buffalo Strategy (eBS); and elitism local-search Buffalo Strategy
(elBS). The eBS variant uses the elitism technique to fine-tune the buffalo population
randomly replacing the unprofitable buffalos with new ones. The mBS variant, on the
other hand, uses mutation operator to include diversity in the population of buffalos. On
its part, the lBS uses intensive local search to improve local intensification while the
elBS injects elements of both elitism technique and local search into BS.

3.5 Evaluation of Hybrid Variants of ABO

The four hybrid variants ofBSwere tested so as to select the best hybrid variantwhich can
compete with existing test generation strategies techniques (See Fig. 3). Determining the
optimal parameters of the various variants of BS parameters is challenging but necessary.
To achieve this, a detailed parametric study was conducted for BS parameters as can
be seen in Sect. 3.2. To do this, we deliberately chose the mutation rate to be 0.03 and
elitismprobability to be 0.25 as published in [36, 37], respectively.We applied theHybrid
Algorithms for three well-known covering array problems such as CA(N; 2, 105), and
CA(N; 2, 46) (See Fig. 4). The result is presented in Table 2.
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Table 2. Evolution of hybrid variants of ABO

Hybridization 
CA(N; 2, 105) CA(N; 2, 46) CA(N; 3, 56 ) 

Avg Best Time(s) Avg Best Time(s) Avg Best Time(s)

BS 142.0 141 9.42 25.7 25 1.03 221.4 220 108.89

eBS 122.4 120 7.89 23.5 22 1.09 198.2 197 155.35

lBS 127.10 126 35.34 23.9 23 5.01 204.8 202 11467.32

mBS 140.4 139 11.566 25.8 25 1.64 215 219.4 205.69

elBS 123.3 121 34.35 23.7 22 7.93 198.4 197 11472.83

The results in Table 2 show that all hybrid algorithm variants of BS outperformed
the original BS in terms of average test suite size and best test suite size. Similarly,
the results show that ABO-Elitism (eBS) produced better results than the other variants
of BS with average (122.4) and Best (120). Moreover, the performance of elBS with
average (123.3) and Best (121) is next to that of eBS. The next best performer is the
lBS with average (127.1) and Best (126). The least efficient performer is the mBS with
average (140.4) and Best (139).

In terms of time taken to achieve results, the eBS still maintained its superiority with
7.89 s, followed by BS with 9.42 s; mBS 11.566 s; elBS, 34.35 s and lBS, 35.34 s. From
this analysis, it is evident that, although the BS did not produce very good results, it is
an efficient algorithm since the CPU time correlates with less use of computer resources
to produce results [38]. Nevertheless, kudos to eBS for producing the best results in the
shortest possible time.

Fig. 4. Implementation of hybrid ABO-based Strategies

Next, we investigated the convergence behavior of hybrid ABO-based variants since
convergence behavior is an important issue in performance evaluation of any hybridiza-
tion (see Fig. 3). To evaluate the convergence rate of these hybrid variants of BS, we
executed the hybrid variants of BS 20 times with different test suite sizes and iteration
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limits (5, 10, 20, 30, 40, 50, 100, 200, 300, 500, and 1000). The mean value of the 20
runs for the two well-known covering arrays CA CA (N; 2, 105) and (N; 2, 46) are taken
(See Fig. 5).

Fig. 5. The Hybrid Variants of Buffalo Strategy’s Convergence Rates for CA (N; 2, 105) & (N;
2, 46)

As can be seen in Fig. 4, hybridizing ABO improved its convergence capacity; the
eBS and elBS converged faster than the other variants. This result shows that the addition
of an elitism component improved ABO’s result, speed and convergence capacity. This
is because the elitism mechanism ensures the retention of good solutions for the next
generation/iteration of the algorithm. Again, the elitism component makes for efficient
randomizations through the replacement of poorer quality solutions with new random
solutions.

3.6 More Experimental Evaluations and Comparative Analysis of Results

To further validate our earlier findings (see Section four), we investigated the efficiency
cum effectiveness of the selected strategy (the eBS algorithm) by comparing its results
with the existing t-way strategies in terms of test suite size. The outcome of this inves-
tigation is displayed in the tables and graphs below. Please note that all the experiments
in this study were performed on Core i7–3770 CPU@ 3.40 GHz–3.40 GHz, Windows
7 Operating System. Again, we used several benchmark problems popular with many
researchers [39–41]. The eBS parameters are: lpr1= 0.5, lpr2= 0.5, maximum iteration
= 400, buffalo size = 30 and elitism factor = 0.25. For convenience and reliability, the
experiments were divided into four configurations:

1. Comparing proposed strategy with results obtained earlier strategies [13, 40, 41] for
the different configuration.

2. Comparing proposed strategy with popular existing strategies for CA (N; t, 210),
where t varies from 2 to 10.

3. Comparing proposed strategy with preexisting popular strategies for CA (N; 4, 5P),
where p varies from 5 to 10

4. Comparing proposed strategy with existing popular strategies for CA (N; 4, v10),
where v varies from 2 to 7 The experimental outcomes are presented in Tables 3, 4
and Fig. 5.
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Table 3. Comparison with existing strategies (N; t, 210), CA (N; 4, 5P), P varied from 5 to 10

p 
Computational-based Strategies Meta-heuristic-based Strategies

IPOG ITCH Jenny PICT TConfig TVG GTWay MIPOG CTEXL PSO HSS CS eBS

5 908 837 810 773 849 731 625 779 NS 779 751 776 782

6 1239 1074 1072 1092 1128 1027 625 1001 NS 1001 990 991 985

7 1349 1248 1279 1320 1384 1216 1125 1209 NS 1209 1186 1200 1162

8 1792 1424 1468 1532 1595 1443 1384 1417 NS 1417 1358 1415 1329*

9 1793 1578 1643 1724 1795 1579 1543 1570 NS 1570 1530 1562 1486*

10 1965 1791 1812 1878 1971 1714 1643 1716 NS 1716 1624 1731 1622*

11 2091 1839 1957 2038 2122 1852 1722 1902 NS 1902 1860 2062 1787

12 2285 1964 2103 NA 2268 2022 1837 2015 NS 2015 2022 2223 1946

Table 4. Comparison with existing strategies CA (N; t, 210), CA(N; 4, v10) with v varied from 2
to 7

V  
Computational-based Strategies Meta-heuristic-based Strategies 

IPOG ITCH Jenny PICT TConfig TVG GTWay MIPOG CTEXL PSO HSS CS eBS

2 49 58 39 43 45 40 46 43 NA 34 37 28 28* 

3 241 336 221 231 235 228 224 217 NA 213 211 211 208* 

4 707 704 703 742 718 782 621 637 NA 685 691 698 666 

5 1965 1750 1719 1812 1878 1917 1714 1643 NA 1716 1624 1731 1622* 

6 3935 NA 3519 3735 NA 4159 3514 3657 NA 3880 3475 3894 3329* 

7 7061 NA 6462 NA NA 7854 6459 5927 NA NA 6398 NA 6261* 

In Table 3, different systems configurations were used by simply varying the number
of parameters (p), levels of interaction strength (t) and number of value (v) to compare
the effectiveness of eBS strategy with existing strategies. We were obliged to use N/A
in instances where comparative results were unavailable (such as the results for some
tools like the mAETG, AETG and CS).

The results presented in Table 3 show the minimum test suite size obtained by
existing strategies for different wellknown problems. All the systems addressed only
small measures of interaction strength (i.e. t= 2 and t= 3) because most computational-
based strategies are limited in terms of range of interaction strength. In this experiment,
eBS produced the smallest test suite size in two cases, CA (N; 2, 34), and CA (N; 2,
510). Even though the eBS was unable to produce the smallest size for all cases (See
Fig. 5), the novel strategy outperformed popular strategies such as PSO, ACO, CS and
HSS in many cases. In general, it is safe to say that the eBS produced very competitive
results since it matched the performance of GA, outperformed HSS, CS, ACO and PSO
but was only outperformed by SA.

Furthermore, Table 3 shows that, inmost cases, computational-based strategies (such
as mAETG, AETG, IPOG, TVG and Jenny) performed worse (with just two optimal
results) than the meta-heuristic-based strategies (with 12 optimal solutions): ACO, GA,
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PSO, eBS etc. Aside from the meta-heuristic-based strategies, the mAETG strategy
obtained close to optimum results in a few cases; while TVG had the worst results. The
table also shows SA, ACO and GA (see Problems 81, 86, 88-s14) generated some good
results in most cases whereas PSO, HSS, CS, and eBS (See Problems no 81, 83, 85)
generated some good results too. In fact, eBS had the optimum result in two instances
(see the shaded portions).

In addition, Tables 4 show the capacity of the eBS to address the problems of software
testing with a high configuration setting. In these experiments, we increased the three
parameter values of covering array v, t, and p. As can be seen in the tables, most of the
existing strategies were unable to produce good results beyond t > 6 due to their heavy
computation costs (as in the case of GA, ACO GA and PSO). Referring to the results,
eBS produced the optimum results in four cases (i.e. CA (N; 10, 210), CA (N; 3, 210),
CA (N; 4, 210), CA (N; 7, 210)). The eBS generated the best results in three out of the
eight instances. There were another three instances (see the shaded portions) where the
eBS produced the best results among other comparative metaheuristics.

Finally, Table 4 reports results for CA (N; 4, 5P) where P is varied from 5 to 10. The
comparative results indicate that eBS outperformed the other strategies in five out of the
six cases, when p is equal to 8, 9 and 10 respectively (See CA (N; 4, 58), CA (N; 4, 59)
and CA (N; 4, 510). In addition, the comparative performance of the eBS with existing
strategies, when v is varied from 2 to 7 (Table 4), shows that eBS produced satisfactory
test sizes for all cases. In all, it is safe to conclude that the proposed strategy outperformed
the existing metaheuristic strategies or at least produced competitive results equal to the
best results generated by other strategies.

4 Conclusion

In this paper, we proposed and evaluated a new t-way test suite strategy based on African
Buffalo Optimization, called the Buffalo Strategy (BS). Next, we investigated four
hybridization variants of the BS. The hybridization variants were obtained by employing
the concept of component-grafting such as Elitism Technique, Mutation operator and
Local Search into the BS. Experimental outcomes indicated that the Elitism-BS (eBS)
outperformed the other variants. The experimental output of the eBS was compared with
those from the existing strategies in the context of t-way test suite generation. The results
of eBS were very competitive. In some cases, the eBS outperformed the other strategies;
while, in a few other cases, the proposed strategy failed to produce optimum results.
Despite this, the results of eBS were still within an acceptable range. In the future, we
recommend further enhancement to improve the efficiency and effectiveness of eBS not
just by incorporating algorithm components but full hybridization with other algorithms,
such PSO, GA, ACO etc.
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