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Abstract

Several grass and broadleaf weed species around the world have evolved multiple-herbicide
resistance at alarmingly increasing rates. Research on the biochemical and molecular
resistance mechanisms of multiple-resistant weed populations indicate a prevalence of
herbicide metabolism catalyzed by enzyme systems such as cytochrome P450 monoox-
ygenases and glutathione S-transferases and, to a lesser extent, by glucosyl transferases. A
symposium was conducted to gain an understanding of the current state of research on
metabolic resistance mechanisms in weed species that pose major management problems
around the world. These topics, as well as future directions of investigations that were
identified in the symposium, are summarized herein. In addition, the latest information on
selected topics such as the role of safeners in inducing crop tolerance to herbicides, selectivity
to clomazone, glyphosate metabolism in crops and weeds, and bioactivation of natural
molecules is reviewed.

Introduction

A common mode of tolerance to herbicides in agronomic crops is by metabolism brought
about by enzyme systems such as cytochrome P450s (CYPs), glutathione S-transferases
(GSTs), and glucosyl transferases (GTs). These enzymes, as well as cofactors such as reduced
glutathione (GSH), are activated by certain chemicals called safeners (Riechers et al. 2010).
Safeners are applied in combination with herbicides to provide tolerance in grass crops such as
wheat (Triticum aestivum L.), rice (Oryza sativa L.), corn (Zea mays L.), and grain sorghum
[(Sorghum bicolor (L.) Moench.] against certain thiocarbamate, chloroacetamide, sulfonylurea
(SU), and aryoxyphenoxypropionate (AOPP) herbicides applied PRE or POST. Metabolism of
herbicides usually occurs in three phases: a conversion of the herbicide molecule into a more
hydrophilic metabolite (Phase 1); followed by conjugation to biomolecules such as glu-
tathione/sugar (Phase 2); and further conjugation/breakup/oxidation reactions with sub-
sequent transport to vacuoles or cell walls, where additional breakdown or sequestration
occurs (Phase 3).

The next and most important phase after the confirmation of herbicide resistance in a weed
population is the deciphering of the underlying resistance mechanism(s), which can greatly
determine the effectiveness of resistance management strategies. One of the common
mechanisms of resistance is metabolic deactivation, whereby the herbicide active ingredient is
transformed to nonphytotoxic metabolites (Yu and Powles 2014).

An immediate and urgent challenge for weed scientists is to understand and characterize
the basis of metabolic resistance to sustain the limited herbicide portfolio and develop inte-
grated weed management strategies. Metabolic resistance research in weeds has mostly been
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limited to grass species such as rigid ryegrass (Lolium rigidum
Gaudin), blackgrass (Alopecurus myusuroides Huds.), and
Echinochloa spp. However, dicot species such as waterhemp
[Amaranthus tuberculatus (Moq.) J. D. Sauer] and Palmer
amaranth (Amaranthus palmeri S. Watson) have evolved
resistance to herbicides with different mechanisms of action
by enhanced metabolic degradation. Thus, both grass and
dicot weed species that develop metabolic herbicide resistance
can pose a severe management challenge.

The main objective of this symposium was to gain an under-
standing of current research on metabolic resistance in weeds by
revisiting the history of related research, including crop tolerance;
reporting recent advances; and identifying future research
opportunities. This report is not an exhaustive all-encompassing
review of herbicide metabolism in crops and weeds; it is a com-
pilation of papers presented at a symposium during the 2018
Weed Science Society of America annual meeting.

Complex Signaling, Defense, and Detoxification Pathways
in Safener-treated Grain Sorghum Shoots

Induction of herbicide-detoxification enzymes catalyzing Phase I
to III metabolic reactions by safeners is well documented
(Cummins et al. 2011; Theodoulou et al. 2003; Zhang et al. 2007)
and has been reviewed extensively in recent years (Kraehmer et al.
2014; Riechers and Green 2017; Riechers et al. 2010). However,
identification of signaling genes and pathways leading to safener-
induced herbicide metabolism has remained mostly elusive.
Recent research findings have indicated oxidized lipids, or oxy-
lipins, play an important role in plant defense responses to abiotic
and biotic stresses (Hou et al. 2016; Mueller and Berger 2009) and
may also play a key role in safener-mediating signaling (Brazier-
Hicks et al. 2018; Matsumoto et al. 2015; Riechers et al. 2010;
Skipsey et al. 2011). In addition to oxylipins, plant hormones such
as salicylic acid and jasmonic acid (JA) regulate many plant
responses to pathogen attack or herbivore injury (Gao et al. 2015;
Koo 2018; Larrieu and Vernoux 2016) and may also function in
safener-regulated responses (Behringer et al. 2011).

Although a precise signaling cascade has yet to be established
for safener-regulated induction of herbicide detoxification in
cereal crops, several new hypotheses and research areas have
recently emerged involving oxylipins and other signaling mole-
cules that will be the subject of future studies. In addition to
unraveling the complex signaling pathways that lead to the
induction of enzymes involved in herbicide detoxification, recent
research has also shown that tissue- and cell-specific expression of
these enzymes may also play an important role in safener
mechanisms of action in cereal crops (reviewed by Riechers et al.
2010) and may potentially explain why dicot plants do not
respond to safener treatments with increased crop tolerance
despite increased gene and protein expression (DeRidder and
Goldsbrough 2006). These two topics will be the focus of the
following sections.

Oxylipin Involvement in Safener-mediated Signaling

A key finding from research in the mid-2000s was that several
classes of oxylipins (Mosblech et al. 2009; Mueller 2004) are
detected in plants following exposure to stresses, and subsequent
work demonstrated that oxylipins induce the expression of plant
defense and detoxification genes that mimic safener-induced
genes and proteins (Loeffler et al. 2005; Mueller et al. 2008;

Riechers et al. 2010; Zhang et al. 2007). Two major categories of
oxylipins have been detected in plants (Cuyamendous et al. 2015;
Durand et al. 2011; Mosblech et al. 2009; Mueller and Berger
2009): (1) phytoprostanes and phytofurans, which are categorized
based on their nonenzymatic formation via interaction of reactive
oxygen species with α-linolenic acid (ALA); and (2) enzymatic
conversion of ALA to 12-oxo-phytodienoic acid (OPDA) and
subsequent ß-oxidation to yield JA (Figure 1). Interestingly, the
enzyme catalyzing conversion of OPDA to 3-oxo-2-(2-pentenyl)-
cyclopentaneoctanoic acid (OPC-8:0, the precursor of JA), OPDA
reductase (OPR), has been frequently identified in transcript- or
protein-profiling studies of plant responses to stress (Okazaki and
Saito 2014; Taki et al. 2005; Yan et al. 2012), including safener-
treated plants and tissues (Riechers et al. 2010; Rishi et al. 2004;
Zhang et al. 2007).

Recent research has investigated possible links between
oxylipin-mediated defense signaling and safener mechanism of
action. The tau-class AtGSTU19 enzyme catalyzed the conjuga-
tion of GSH to OPDA (Dixon and Edwards 2010), leading to a
reduction in GSH reactivity. As mentioned earlier, OPR enzymes
reduce the double bond in the cyclopentenone ring of OPDA,
resulting in an analogous reduction in reactivity (i.e., electro-
philicity) but also leading toward biosynthesis of JA (Mueller and
Berger 2009). Root cultures from Arabidopsis mutants defective in

Figure 1. Representative structures of oxidized lipids (oxylipins) formed in plants.
Two classes of oxylipins are generated from α-linolenic acid as substrate; either
nonenzymatically formed (A, generalized phytofuran; or B, phytoprostane) via
interaction with reactive oxygen species or enzymatically synthesized (C, jasmonic
acid). For more details on structures and biosynthetic pathways see Cuyamendous
et al. (2015), Durand et al. (2011), and Mosblech et al. (2009).

150 Nandula et al.: Review of herbicide metabolism

https://www.cambridge.org/core/terms
https://doi.org/10.1017/wsc.2018.88
https://www.cambridge.org/core


fatty-acid desaturation (fad3-2/fad7-2/fad8), which are impaired
in forming the oxylipin precursor ALA, demonstrated a decreased
ability to respond to safener treatment when AtGSTU24 expres-
sion was measured and compared with expression in wild-type
Arabidopsis (Skipsey et al. 2011). Because these fad mutants
accumulate linoleic acid (18:2) instead of ALA (18:3), they are
unable to synthesize OPDA or phytoprostanes from ALA sub-
strate released via lipase activities (Christeller and Galis 2014).
The decreased ability of these mutant lines to respond to safener
treatment via induction of GST expression is consistent with a
link between safener-regulated responses and endogenous oxyli-
pin signaling.

Based on the literature regarding oxylipin-regulated gene
expression (Mueller and Berger 2009) and recent results with fad
mutants in Arabidopsis (Skipsey et al. 2011), it was postulated that
certain oxylipins may not only rapidly induce genes involved in
herbicide detoxification pathways but may also confer safener
activity in cereals (Brazier-Hicks et al. 2018; Riechers et al. 2010).
To directly test this hypothesis, a series of compounds modeled
on oxylipin structures were chemically synthesized and tested for
biological activity as herbicide safeners in rice (Brazier-Hicks et al.
2018), in comparison with the commercial rice safener fenclorim.
Three of the 21 compounds tested rapidly induced GST expres-
sion in Arabidopsis, but only showed minor whole-plant safening
activity against pretilachlor herbicide in rice seedlings. In addition
to possible species-specific differences in responses to these
potential crop-safening compounds (Brazier-Hicks et al. 2018),
metabolic pathways and turnover rates of oxylipins (Dueckershoff
et al. 2008) may differ significantly from those of commercial
safeners in tissues of cereal crop seedlings (Miller et al. 1996;
Riechers et al. 2010), therefore requiring further investigation.

Organ-, Tissue-, and Cell-Specific Expression of Safener-
induced Detoxification Enzymes

As described previously, although the precise signaling pathway
(s) that regulate gene expression within herbicide detoxification
pathways have not been elucidated, previous research demon-
strated that tau-class GST proteins and GST enzyme activities
involved in herbicide detoxification are highly expressed in the
outermost cells of wheat seedling coleoptiles after safener treat-
ment (Riechers et al. 2003). Interestingly, similar results were
found in safener-treated sorghum coleoptiles using the same tau-
class wheat GST antiserum (Figure 2). Additional research
examining stress-responsive gene expression in Arabidopsis cell
cultures (Mueller et al. 2008) and protein abundance in leaves
(Dueckershoff et al. 2008) showed that oxylipins (such as phy-
toprostanes or OPDA) trigger detoxification and defense
responses in a manner similar to safener treatments. Current
experiments were designed to test the hypothesis that safeners

Figure 2. Tissue distribution of glutathione S-transferase (GST) proteins in a cross
section of etiolated grain sorghum seedlings, probed with an antiserum raised
against the tau-class TtGSTU1 protein from wheat (Riechers et al. 2003). (A)
Unsafened (DMSO only) seedling, no primary antiserum (negative control); (B)
unsafened (DMSO only) seedling, probed with a 1:500 dilution of primary antiserum
raised against TtGSTU1; (C) seedling treated with 10 µM fluxofenim safener for 12 h,
probed with a 1:500 dilution of primary antiserum raised against TtGSTU1. Red
arrows in C mark the massive accumulations of immunoreactive GST proteins in the
outermost coleoptile and epidermal cells. Abbreviations: CL, coleoptile; LP, inner leaf
primordia.
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and phytoprostanes induce GST activity and the expression of
genes related to plant defense and detoxification in sorghum
shoot coleoptiles in an analogous manner (Riechers et al. 2018). A
cryostat-microtome sectioning method was developed to extract
high-quality RNA from the outermost cells of frozen coleoptiles
(excluding leaf tissues) for transcript profiling to enrich for
safener- and phytoprostane-responsive mRNAs at different time
points after treatment (Riechers et al. 2018). Current localization
experiments are using an antiserum raised against a specific phi-
class sorghum GST isozyme (SbGSTF1) to further investigate
tissue-specific expression of different GST subclasses (Labrou
et al. 2015) in safener-treated grain sorghum seedling tissues (as
shown in Figure 2).

Initial RNA-seq results have identified >10-fold increases in
transcripts of several detoxification genes, including multiple
GSTs, CYPs, and GTs, in safener-treated seedlings compared with
untreated controls (unpublished data). Moreover, transcripts
encoding proteins related to plant development and defense were
highly upregulated by safener, such as enzymes involved in lipid
signaling (including OPRs), hormone-related processes (i.e.,
synthesis of benzoic acid and salicylic acid), or auxin metabolism
and homeostasis. Transcripts encoding biosynthetic enzymes
possibly involved in chemical defense mechanisms in roots (Cook
et al. 2010) and shoots (Busk and Möller 2002; Halkier and Möller
1989) of sorghum seedlings were also strongly induced by safener
treatment in coleoptile tissues (unpublished data). These results
indicate that safeners may be utilizing signaling pathways and
enzymatic mechanisms related to generating allelochemicals
(Baerson et al. 2005) or other defense chemicals against abiotic or
biotic stresses, as well as upregulating enzymes with the putative
function of preventing autotoxicity from these chemicals in sor-
ghum seedlings (Bjarnholt et al. 2018).

Future Research Directions

Ongoing analyses using bioinformatics and comparative gene
expression approaches are aimed at further mining these RNA-
seq data to provide additional insight into how transcriptional
responses are reprogrammed in sorghum coleoptiles following
safener treatment (unpublished data). An emerging hypothesis
is that safeners regulate a specific, coordinated, and rapid
defense and detoxification response in cereal crop seedlings,
which includes both up- and downregulation of gene expres-
sion. This research helps to elucidate the yet-to-be discovered
mechanisms that trigger specific detoxification responses rela-
ted to safener-regulated protection of cereal crops and, as
mentioned previously, may also provide insights into the per-
plexing question of why safeners do not protect dicot crops
from herbicide injury (DeRidder and Goldsbrough 2006; Rie-
chers and Green 2017).

In summary, herbicide safeners are unique organic molecules
used for crop protection. Safeners increase the success of com-
mercializing new herbicides by providing a chemical tool to
enhance crop tolerance and/or crop–weed selectivity for active
ingredients that otherwise might be removed from primary
screens due to inadequate crop safety (Riechers and Green
2017), therefore providing an alternative to creating genetically
modified crops (Goodrich et al. 2018; Kraehmer et al. 2014).
Furthermore, safeners may expand the utility of existing herbi-
cides that do not exhibit adequate crop tolerance without a
safener as well as expand our basic knowledge of plant responses
to abiotic stresses.

Contributions of Metabolism to Clomazone Activity and
Selectivity

Clomazone (Figure 3), a 3-isoxazolidinone, was initially intro-
duced by FMC Corporation in the 1980s for weed management in
soybean [Glycine max (L.) Merr.] (Chang et al. 1987). Since that
time, use of clomazone (also known in the literature as FMC
57020 and dimethazone) expanded to several additional crops
(Anonymous 2018). Clomazone injury manifests itself as
bleaching of new leaves (Duke and Kenyon 1986). However,
attempts to tie the clomazone mechanism of action to inhibition
of phytoene desaturase or steps in the cytoplasmic isoprenoid
biosynthesis pathway were unsuccessful (Croteau 1992; Lutzov
et al. 1990; Weimer et al. 1992).

Seeking to expand the uses of clomazone shortly after its
commercialization, FMC explored the use of safeners. Naphthalic
anhydride seed treatment afforded some protection from
clomazone injury to corn, but this system was never commercially
developed. However, the organophosphate insecticides phorate
and disulfoton could protect cotton (Gossypium hirsutum L.)
from clomazone injury (Culpepper et al. 2001). This is still a
commercial practice. The clomazone label (Anonymous 2018)
contains specific language regarding use of the insecticides to
protect cotton from clomazone damage: “Do not apply Command
3ME Herbicide to cotton unless disulfoton or phorate organo-
phosphate insecticide is applied in-furrow with the seed at
planting time” and “Failure to apply either disulfoton or phorate
insecticides with Command in accordance with in-furrow label
use directions can result in crop phytotoxicity (bleaching) and/or
stand reduction.”

Phorate Effects on Clomazone Injury and Metabolism

A series of experiments were initiated, in cooperation with FMC,
to understand the mechanism of organophosphate safening of
cotton from clomazone, and the results were originally published
in two articles (Ferhatoglu et al. [2005] and Ferhatoglu and
Barrett [2006]). Briefly, the experimental system employed was to
place 7-d-old cotton seedlings into hydroponic solution with or
without clomazone and with or without phorate. The chlorophyll
and carotenoid content of the leaves emerging after the beginning
of the treatment was measured 6 d after the start of the experi-
ment. Complete experimental details are in Ferhatoglu et al.
(2005).

Clomazone (100 nM) reduced the levels of both chlorophyll
and carotenoids in the new cotton leaves approximately 80%
(Figure 4). Phorate (50 μM) partially reversed this reduction,
while 0.5 and 5 μM phorate were ineffective.

Figure 3. Structures of clomazone, 5-OH clomazone, and 5-keto clomazone.
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Phorate and other organophosphate insecticides are known
inhibitors of CYPs (Baerg et al. 1996; Diehl et al. 1995; Kreuz and
Fonne-Pfister 1992; Mougin et al 1991). They can act as herbicide
synergists by blocking the CYP-mediated detoxification of an
active herbicide molecule (Ahrens 1990; Chample and Shaner
1982).

To test whether phorate affected clomazone metabolism in
cotton plants, the roots of cotton seedlings were incubated for 8 h
in [14C]clomazone with or without 50 μM phorate; this was fol-
lowed by a 16-h chase period. The phorate reduced clomazone
metabolism in the shoots, but not the roots (Table 1). The phorate
treatment had no effect on the unextracted radioactivity. Phorate
also reduced clomazone metabolism in excised cotton shoots fed
[14C]clomazone with or without phorate through the cut stem
(Ferhatoglu et al. 2005).

Clomazone Metabolism in Microsomes

Isolated microsomes are an experimental system that can be used
for in vitro studies of pesticide, including herbicide, metabolism
by plant CYPs. While cotton microsomes with the capacity to
metabolize herbicides had been isolated (Frear 1968; Frear et al.
1969), microsomes isolated from etiolated corn shoots were used.
Phorate does reduce the effects of clomazone on chlorophyll and
carotenoid levels in new leaves of corn seedlings (Ferhatoglu et al.
2005).

Clomazone metabolism was present in microsomes prepared
from etiolated 3-d-old corn seedlings (Ferhatoglu et al. 2005).
Three clomazone metabolites eluting at 12.6, 15.4, and 23 min

were produced in the microsomes (Table 2). Naphthalic induced
activity for the metabolites eluting at 15.4 and 23 min but not at
12.6 min (Ferhatoglu et al. 2005). The metabolite eluting at
12.6 min was not NADPH dependent, so it is not a product of
CYP activity. Production of the metabolite eluting at 23 min was
totally inhibited by phorate, while the production of the meta-
bolite at 15.4 was unaffected. This showed that there were two
NADPH-dependent clomazone metabolism activities present in
the corn microsomes, presumably CYP mediated, and that one
was sensitive to phorate inhibition while the other was not. The
clomazone metabolite standards 2-chlorobenzyl alcohol and
5-OH clomazone, supplied by FMC, eluted at 15.4 and 23 min,
respectively. Therefore, the phorate sensitive activity is presumed
to be the production of 5-OH clomazone from clomazone.

The 5-OH clomazone can also cause bleaching in cotton
seedlings, reducing both chlorophyll and carotenoid levels in the
plants (unpublished data). The 5-OH clomazone was approxi-
mately 10% as toxic as clomazone, which is consistent with data
presented by Chang et al. (1987). However, phorate was ineffec-
tive as a safener for 5-OH clomazone.

Bioactivation of Clomazone

From this information, a working hypothesis was formed that
phorate inhibited the CYP responsible for the conversion of
clomazone to 5-OH clomazone (Figure 3), but phorate was
ineffective in preventing the formation of the actual toxicant, 5-
keto clomazone (Figure 3). This hypothesis was based on the
metabolic pathway for clomazone in soybean (El-Naggar et al.
1992), which has multiple pathways for clomazone degradation,
including the formation of 5-keto clomazone. In addition, 5-keto
clomazone is phytotoxic (Chang et al. 1987). Finally, with the
discovery of the plastidic isoprenoid pathway (Lichtenthaler 1999;
Lichtenthaler et al. 1997), it was possible to show that 5-keto-
clomazone, but not clomazone or 5-OH clomazone, inhibits plant
1-deoxy-D-xylulose-5-phosphate synthase (DXP synthase; Fer-
hatoglu and Barrett 2006), the first step in this pathway.

Clomazone Selectivity Is Complicated

In summary, for clomazone to be active, it must be bioactivated to
its 5-keto clomazone metabolite to be phytotoxic at its site of
action, DXP synthase, the first step in the chloroplastic isoprenoid
biosynthesis pathway. The first step in the conversion of clomazone
to 5-keto clomazone is the CYP-catalyzed formation of 5-OH
clomazone. Organophosphate insecticides such as phorate inhibit

Table 1. Effect of 50 μM phorate on [14C]clomazone metabolism in shoots and
roots of 7-d-old cotton seedlings.a

Radioactivityb

Tissue Phorate Clomazone Metabolites Unextracted

– – – – – – – – – –% of total recovered – – – – – – – – – – – – –

Shoot − 54 ± 2 42 ± 2 9 ± 4

Shoot + 71 ± 1c 27 ± 10c 9 ± 4

Root − 45 ± 4 55 ± 4 12 ± 3

Root + 44 ± 8 56 ± 8 14 ± 2

aSeedling roots in hydroponic solution were exposed to [14C]clomazone with and without
phorate for 8 h followed by a 16-h chase period before extraction.
bMean ± SD.
cA significant difference at P ≤ 0.05 compared with the control (no phorate) within the
same tissue and within the same column.

Figure 4. Effect of phorate on chlorophyll and carotenoid levels in new leaves of
cotton seedlings treated with 100 nM clomazone for 6 d.

Table 2. Induction of [14C]clomazone metabolism in corn microsomes by seed
treatment with naphthalic anhydride (0.5% w/w), seedling treatment with
ethanol (10% v/v), or a combination of the two.

Clomazone metabolite elution timea

Treatment 12.6 min 15.4 min 23 min

pmol metabolite − 1 mg microsomal
protein − 1 min − 1

None 229 ± 13 55 ± 10 a 3 ± 3 a

Naphthalic anhydride 244 ± 22 117 ± 27 b 73 ±2 b

Ethanol 261 ± 31 106 ± 38 b 15 ± 15 a

Naphthalic anhydride plus ethanol 207 ± 21 23 ± 23 a 42 ± 5 c

a Mean ± SD. Means within a column followed by different letters are significantly different
at P ≤ 0.05.
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this process and can safen a crop like cotton from clomazone.
While the formation of 5-keto clomazone from 5-OH clomazone is
also likely CYP catalyzed, additional studies would be required to
establish this. It would also be interesting to test whether CYP
inhibitors other than organophosphates could prevent this con-
version. It was apparent from this research that phorate, and
presumably other organophosphate insecticides, did not prevent
the conversion of 5-OH clomazone to 5-keto clomazone, as the
insecticide was ineffective as a safener for 5-OH clomazone.

This all means that clomazone selectivity is complicated. The
rates of conversion of clomazone conversion to 5-OH clomazone,
5-OH clomazone to 5-keto clomazone, and the conversion of all
three of these compounds to their own metabolites will combine
to determine how much 5-keto clomazone will be present in a
plant and for how long. The clomazone metabolic pathway in
tolerant soybean demonstrates this (El-Naggar et al. 1992). More
recently, Yasuor et al. (2010) proposed that changes in the rates of
the conversion of 5-OH clomazone to dihydroxy-clomazone and
clomazone to hydroxymethylclomazone plus 3′-hydro-
xyclomazone all contribute to clomazone resistance in rice bar-
nyardgrass [Echinochloa phyllopogon (Stapf.) Koss].

Glyphosate Metabolism in Crops and Weeds

Glyphosate was introduced to the herbicide market in 1974. It has
become the most heavily used herbicide in the world, in large part
because of the huge success of glyphosate-resistant (GR) crops (Duke
2018). Duke (1988) summarized the literature on glyphosate through
the mid-1980s, including its metabolic degradation, and concluded
that the evidence for plant metabolism of glyphosate was not con-
clusive because of the low or no levels of degradation reported,
sometimes over long periods of time. Evidence of its degradation by
microbes was clear, and it was speculated that reported plant
metabolism might have actually been microbial metabolism, either
in the plant samples or after extraction. Early work was also limited
by difficult analytical methods that have improved with time (Kos-
kinen et al. 2016). It later became unequivocal that many plant
species can metabolize glyphosate, especially to aminomethylphos-
ponic acid (AMPA) and glyoxylate (Duke 2011). Indeed, metabolism
of glyphosate to AMPA found in microbe-free cell cultures of soy-
bean, wheat, and corn proved that plant cells can metabolize gly-
phosate (Komoßa et al. 1992). In this system, soybean more readily
metabolized glyphosate than did wheat or corn.

The two most commonly reported routes of glyphosate meta-
bolism are to AMPA and glyoxylate by a glyphosate oxidoreductase
(GOX) and to sarcosine via a glyphosate C-P lyase. In most cases of
plant or microbe metabolism of glyphosate, the only metabolite
reported is AMPA. This may be because sarcosine is rarely looked
for; however, when it has been sought, it has almost always not been
found (e.g., Ribeiro et al. 2015). Metabolism of glyphosate to AMPA
has been verified in many plant species now, but the capability for
metabolism varies dramatically. For example, Reddy et al. (2008)
found a broad range of glyphosate to AMPAmetabolism in 11 plant
species, ranging from AMPA levels being half, one-fourth, or one-
sixth the concentration of glyphosate measured in treated tissues 7 d
after application in Illinois bundleflower [Desmanthus illinoensis
(Michx.) MacMill. ex B. L. Rob. and Fernald], sicklepod [Senna
obtusifolia (L.) H. S. Irwin & Barneby], and cowpea [Vigna
unguiculata (L.) Walp.], respectively, to no detectable AMPA in
Italian ryegrass [Lolium perenne L. ssp.multiflorum (Lam.) Husnot],
corn, and hemp sesbania [Sesbania herbacea (Mill.) McVaugh]. In

that study, each species was treated with the glyphosate rate that
inhibited growth 50%, so that differential phytotoxicity of glypho-
sate was unlikely to account for any differences in metabolism. Later
work found that corn did metabolize glyphosate to AMPA when
GR corn was treated with full recommended rates, and the AMPA
as a proportion of glyphosate was very low at most times after
application (Bernal et al. 2012; Reddy et al. 2018). So species that are
not reported to metabolize glyphosate may metabolize it very slowly
with levels of AMPA too low to detect at specific times after
application. GR crops are ideal for studying glyphosate metabolism,
because high rates of glyphosate are not phytotoxic, allowing
enzymatic degradation to occur unhindered with ample substrate.
Glyphosate metabolism in GR soybeans, maize, and canola (Bras-
sica napus L.) has been studied.

Metabolism of glyphosate to AMPA is significant in GR soy-
bean, with levels of ~ 2 to 3 and 7 to 25 μg of glyphosate and
AMPA g − 1 of dry harvested seed, respectively, from plants
treated with 1.26 kg ae ha− 1 of glyphosate at full bloom or 8 wk
after planting (Duke et al. 2003). This is not surprising, as gly-
phosate is phloem mobile, translocating to metabolic sinks such
as meristems and developing seeds (Duke 1988). Others have
found similar levels of glyphosate and AMPA in seed for GR
soybean (Bohm et al. 2014; Bøhn et al. 2014). In another study in
which GR soybean was treated with 0.87 kg ha− 1 glyphosate at
both 5 and 7 wk after planting, very high levels of glyphosate (8 to
15 μg g− 1 ) but very little AMPA (~0.1 μg g − 1) was detected in
leaf tissues (Duke et al. 2018). Harvested seed had much lower
levels of glyphosate, but relatively more AMPA. Whether the
AMPA in the seed was translocated there or was formed by
metabolism of glyphosate in the seed is unknown.

GR crops are essentially unharmed by glyphosate at rates
recommended for weed management (Nandula et al. 2007). But
AMPA is moderately phytotoxic (Hoagland 1980), and GR crops
are not resistant to AMPA (Reddy et al. 2004). Thus, if enough
AMPA were formed in a GR crop, it might cause phytotoxicity.
Under some environmental conditions, farmers have observed
moderate chlorosis after treatment of GR soybean with glyphosate
(termed “yellow flash” by farmers). This is a transient effect that
does not ultimately influence grain yield. In greenhouse studies,
this effect was found with AMPA and glyphosate treatments that
resulted in the same in vivo AMPA concentrations, whether from
AMPA or glyphosate treatment (Reddy et al. 2004). These results
suggest that yellow flash is due to accumulation of sufficient
AMPA for noticeable chlorosis.

GR corn metabolizes glyphosate to AMPA, but at a much lower
rate than GR soybean does (Bernal et al. 2012: Reddy et al. 2018).
The first GR canola commercially grown was the only GR crop that
contained a transgene for a microbial GOX, in addition to a gene
for a microbial GR 5-enolpyruvylshikimate-3-phosphate synthase
(EPSPS), the target of glyphosate (Green 2009). Very little gly-
phosate is converted to AMPA in non-GR canola, whereas virtually
all of the glyphosate applied to GR canola is converted to AMPA
within 7 d, when glyphosate is supplied in small amounts (Corrêa
et al. 2016) (Figure 5). Only AMPA and no glyphosate was found
in untreated leaves of treated plants. Whether the AMPA was
translocated to untreated leaves or formed by glyphosate metabo-
lism in those leaves was not determined. The relative contributions
to resistance of the GOX and GR EPSPS genes are unknown in GR
canola, but current commercial varieties of GR canola contain only
a GR EPSPS transgene, as do all other GR crops. Thus, whether the
canola GOX gene alone would provide adequate resistance for a
commercial GR crop is unknown.
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Several glyphosate metabolism transgenes have been proposed
for generation of GR crops. These include transgenes for an
engineered bacterial oxidase (Nicolia et al. 2014), a modified
bacterial glyphosate acetyltransferase (GAT) (Siehl et al. 2007),
and a decarboxylase-type enzyme that inactivates glyphosate
(Hammer et al. 2007). None of these transgenes have been used in
commercial GR crops, although the GAT genes came close to
commercialization (Green 2009).

Two generalizations can be made from existing glyphosate
metabolism literature regarding glyphosate metabolism in
non-transgenic plants. Legumes tend to have higher rates of
glyphosate metabolism than other species, and Poaceae species
usually have very low rates of metabolism. However, no
methodical, systematic survey exists that uses a consistent
experimental design and reliable assay methods of the capacity
for glyphosate metabolism in a wide range of taxonomically
diverse plant species.

Glyphosate is nonselective, but some species are more tolerant
than others. Because glyphosate is perhaps the slowest-acting
commercial herbicide, the plant has more time to metabolize it
before severe toxicity occurs. Thus, rapid metabolism could be a
tolerance mechanism. However, there is no good evidence that
this is the case. The ability to metabolize glyphosate did not
correlate well with the glyphosate I50 values for 10 species (Reddy
et al. 2008), although it was speculated that it might contribute to
tolerance in some species. A problem with this study is that
glyphosate and AMPA were determined at only one point in time
after glyphosate application. The dynamics of metabolism are
highly likely to vary between species, so determination of the
proportion of glyphosate metabolized over a critical period for
herbicide damage would be needed to better evaluate the role of
metabolism in producing tolerance.

Morningglory species (Ipomoea spp.) are among the most
glyphosate-tolerant weeds. Although there is no proof of evolved
resistance (Heap 2018), some claims have been made without
conclusive evidence (e.g., Debban et al. 2015). Glyphosate toler-
ance of pitted morningglory (Ipomoea lacunosa L.) biotypes
varied by as much as 2.6-fold, but this was not explained by
differential metabolism (Ribeiro et al. 2015). The most and least
susceptible biotypes both readily metabolized glyphosate to
AMPA at about the same rate, but there was differential trans-
location that was consistent with the differences in susceptibility.

Clearly, many plant species have a means of metabolizing
glyphosate to AMPA. Considering the tremendous selection
pressure that has resulted in several mechanisms of evolved
resistance to glyphosate (Sammons and Gaines 2014), one would
expect the enzyme(s) responsible for AMPA production to be
selected for, either to produce a mutated enzyme with greater
efficiency as a GOX or to generate greater amounts of GOX
enzyme. In their review, Sammons and Gaines state that meta-
bolism of glyphosate in plants is rare and are skeptical of reports
that metabolism is involved in reported resistance of sourgrass
[Digitaria insularis (L.) Mez ex Ekman] and horseweed (Erigeron
canadensis L.) to glyphosate, partly by conversion to sarcosine (de
Carvalho et al. 2012; Gonzalez-Torralva et al. 2012b). Similar
results were reported by some of the same authors for glyphosate
tolerance of velvet bean [Mucuna pruriens (L.) DC.] (Rojano-
Delgado et al. 2012). These papers are unusual, both in reporting
sarcosine and glyoxylate as plant metabolites of glyphosate and by
invoking metabolism as a resistance mechanism. Both sarcosine
and glyoxylate are plant metabolites that can be found in
untreated plants, so without 14C-labeling of these compounds
from [14C]glyphosate, the results are inconclusive. However, they
detected AMPA, a compound absent in plants not treated with

Figure 5. Metabolism of [14C]glyphosate 1 DAT in conventional (A, B) and glyphosate-resistant canola (C, D). The data are expressed as percent distribution of total radioactivity
in each leaf on the left side and as actual disintegrations per minute per gram dry weight (dpm g − 1 DW) of the leaves on the right. Black bars, glyphosate; gray bars, AMPA;
white bars, unknown metabolite(s). Error bars are ±1 SE. With permission from Corrêa et al. (2016).
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glyphosate, to support their claims. Using [14C]glyphosate, others
have found no metabolism of glyphosate in either susceptible or
resistant E. canadenesis or hairy fleabane (Erigeron bonariensis L.)
(Feng et al. 2004; Dinelli et al. 2006, 2008). Sammons and Gaines
(2014) did not include glyphosate metabolism as a proven
mechanism of evolved resistance to glyphosate.

More rapid metabolism of glyphosate in GR weeds has been
searched for without result in many papers looking for the
mechanism of glyphosate resistance. For example, although there
were no statistical differences in AMPA found in susceptible and
two GR A. palmeri biotypes, the resistant biotypes tended to have
more metabolism than the susceptible biotypes (Nandula et al.
2012). However, none of the biotypes accumulated much AMPA
at 7 d after treatment, with AMPA not reaching 1% of the gly-
phosate levels found in the tissues, except in the susceptible
biotype treated with a very low I50 rate (90 g ha− 1).

There are still important, unanswered questions about glyphosate
metabolism in plants, including the nature of the enzyme(s) that
metabolizes glyphosate to AMPA. Glycine oxidases from microbes
can act as a GOX enzyme (e.g., Pollegioni et al. 2011). At least some
legumes can oxidize glycine in nodules via a leghaemoglobin-
associated reaction (Lehtovaara 1978). But, nonnodulated species
and leaf tissues of legumes can convert glyphosate to AMPA and
glyoxylate. D-amino acid oxidase from Bradyrhizobium japonicum
can also oxidize glyphosate to AMPA and glyoxylate, and the
transgene for this enzyme can provide glyphosate resistance to
Arabidopsis thaliana L. (Han et al. 2015). However, equivalent gly-
cine and D-amino acid oxidases have not been identified in plants.
The clear ability of some plant species to oxidize glyphosate to
AMPA indicates that they have an enzyme similar to these microbial
enzymes. The enzymatic or other potential mechanisms of glypho-
sate conversion to AMPA are still a mystery.

An alternative explanation to direct metabolism of glyphosate by
plants is that some plants might have endophytes that can meta-
bolize glyphosate. Evidence is growing that endophytes can con-
tribute to metabolic degradation of herbicides (Tétard-Jones and
Edwards 2016), and some plant-associated microbes can clearly
metabolize glyphosate (e.g., Kryuchkova et al. 2014). The soybean
endophyte Burkholderia gladioli is resistant to glyphosate (Kuk-
linsky-Sobral et al. 2005), but whether this is due to metabolism is
unknown. There is no available proof of any endophyte-mediated
glyphosate metabolism in planta. Endophyte infection increases
with glyphosate resistance in L. perenne (Handayani et al. 2017), but
glyphosate metabolism in the populations was not determined, and
metabolism has been found to be very low and uninvolved in
Lolium perenne ssp. multiflorum resistance to glyphosate in other
places in the world (Barroso et al. 2018; Gonzalez-Torralva et al.
2012a). It is possible that there has been horizontal gene transfer of
a gene for an enzyme with GOX activity. But, it does not appear
that the extreme selection pressure caused by glyphosate in recent
decades has caused this to occur, as metabolism is not a firmly
established mechanism of weed resistance to glyphosate. This sup-
ports the view that horizontal gene transfer from microbes to plants
is not a common occurrence.

Bioactivation of Natural Phytotoxins: The Exception or
the Rule?

Evolution of Bioactive Natural Products

Within ecosystems, plants cohabit in association with a wide
variety of microorganisms, insects and nematodes, and other

plants. These constant multitrophic interactions have led to the
coevolution of positive interactions such as mutualistic and
symbiotic relationships and negative interactions such as com-
petitive and parasitic relationships. Within this context, patho-
gens have adapted to their plant hosts by deploying virulence
proteins that either suppress plant immune responses or increase
plant susceptibility. Plant–pathogen interactions also involve a
form of chemical warfare derived from novel metabolic pathways
(Schueffler and Anke 2014) that aims at strategically using one’s
opponent’s weakness to one’s benefit (Maor and Shirasu 2005;
Verhoeven et al. 2009). There is great interest in using these
natural phytotoxins to develop new herbicide chemical classes or
discover novel mechanisms of action (Duke and Dayan 2015).

These secondary metabolic pathways evolve through gene
duplication. This slow evolutionary process most often leads to
loss of function of the duplicated genes (pseudogenization), but
it occasionally leads to a beneficial gain of a new function
(neofunctionalization) (Moore and Purugganan 2005). Over time,
this has resulted in a vast array of structurally diverse biologically
active molecules (Flagel and Wendel 2009; Ober 2005). This
evolutionary process is similar to the high-throughput screens
developed by all major agrochemical companies searching for
new herbicides. While conventional in vitro screens test a large
number of compounds on a single enzyme target very rapidly,
natural high-throughput processes allow for the identification and
customization of molecules that optimize their in vivo activities.
More than 200,000 secondary metabolites have been character-
ized, and it is anticipated that many more will be discovered
(Clevenger et al. 2017).

Natural phytotoxins are typically small molecules that explore
chemical spaces not covered by herbicides obtained through the
usual organic synthetic approaches. Many of these chemicals have
novel mechanisms of action that target enzymes and/or pathways
that also exist in the organisms producing them. Consequently,
these molecules are often synthesized and/or stored as inactive
protoxins that are bioactivated in the target organisms. Bioacti-
vation may take different forms, such as removing protective
groups or adding functional groups. Alternatively, some organ-
isms produce the phytotoxins in their active forms but protect
themselves from autotoxicity by sequestering them in subcellular
compartments or specialized cells (Figure 6). A few examples of
the various mechanisms of bioactivation are examined in the
following sections.

Bioactivation by Removing Protective Groups

Some organisms produce toxins as protoxins that possesses
additional groups to protect themselves from autotoxicity. This is
often necessary, because these organisms have enzymes that are
sensitive to the toxin they produce. The conversion of the pro-
toxin bialaphos to the herbicidal L-phosphinothricin, the active

1- removing a protecting groupprotoxin-conjugate

toxin

removal

toxin

protoxin

addition

Inaccessible toxin Accessible toxin
release

2- adding a functionality

3- release from cellular

compartment

Figure 6. Various strategies used by organisms that produce protoxins requiring
bioactivation before interacting with their respective target sites.
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enantiomer of glufosinate, is perhaps the most well-known and
relevant example of bioactivation via cleavage of protective groups
(Figure 7A). Bialaphos is a tripeptide (L-alanyl-L-alanyl-phos-
phinothricin) produced by the soil bacteria Streptomyces hygro-
scopicus and Streptomyces viridochromogenes. This metabolite is
very rapidly bioactivated in planta by removing two alanine
residues to release L-phosphinothricin. Phosphinothricin is a
potent inhibitor of glutamine synthetase (Wild and Ziegler 1989),
a key enzyme responsible for glutamine biosynthesis and
ammonia detoxification. Organisms producing bialaphos also
have specific acetylases that rapidly deactivate L-phosphinothricin
as another mechanism of protection against the toxic effect of this
bioactive natural product. Another common bioactivation by
cleavage involves the removal of glycosides by glucosidases to
release herbicidal aglycones, such as is observed with podo-
phyllotoxin produced by the plant belonging to the Podophyllum
genus. Podophyllotoxin is an aryltetralin lignin that acts as a
natural mitotic inhibitor. While this molecule is used as a pre-
cursor for the semisynthesis of several anticancer pharmaceutical
drugs because of its antimitotic activity, podophyllotoxin would
cause great damage to the plants producing it. Consequently,
mayapple (Podophyllum peltatum L.) conjugates podophyllotoxin
with a glucose and stores it within the vacuole, preventing it from
interacting with the physiologically active cytosol and interfering
with numerous microtubule-driven processes. Interestingly, there
is a glucosidase present in the cytosol with high specificity for
podophyllotoxin-O-glucoside that is mostly inactive at physiolo-
gical pH of 7 but has its greatest activity at pH 4 (Dayan et al.
2003). These biochemical characteristics suggests that this glu-
cosidase would be recruited for the hydrolysis of the glucoside to
release the active aglycone upon injury to the leaf, which would
cause the pH to drop as the large volume of the vacuole mixes
with the cytoplasm.

Bioactivation by Adding Functional Groups

Other organisms produce toxins as protoxins that require the
addition of functional groups to activate the structures. Some
strains of Fusarium solani produce 2,5-anhydro-D-glucitol, a
sugar analogue that requires bioactivation to exert activity on its
target site (Dayan et al. 2002). 2,5-Anhydro-D-glucitol has no
known biological activity. However, up to milllimolar con-
centrations of this molecule is released by F. solani as it invades a
plant. Through the process of coevolution this pathogen has
exploited the biochemical machinery of its host plant to bioacti-
vate 2,5-anhydro-D-glucitol into a phytotoxin. 2,5-Anhydro-D-
glucitol is a sugar analogue that serves as a substrate for two
glycolytic kinases endogenous to the host plant (namely hex-
okinase and phosphofructokinase) (Figure 7B). The biochemical
functions of these kinases have been exploited to produce a
diphosphate derivative of 2,5-anhydro-D-glucitol. This bioacti-
vated toxin acts as a substrate analogue that inhibits fructose-1,6-
diphosphate aldolase, a key step in glycolysis (Dayan et al. 2002).

This type of protoxin bioactivation occurs by hijacking native
plant kinases to produce active phosphorylated phytotoxins. For
example, certain strains of S. hygroscopicus produce hydantocidin.
Upon phosphorylation, hydantocidin becomes an analogue of
inosine monophosphate, which is a potent inhibitor of adenylo-
succinate synthetase, an enzyme involved in purine biosynthesis
(Fonne-Pfister et al. 1996). Similarly, carbocyclic coformycin is a
protoxin produced by Sacchavothvix spp., whose mechanism of
action requires phosphorylation of its 5′-hydroxy group to

produce an irreversible inhibitor of adenosine monophosphate
deaminase (Dancer et al. 1997).

Bioactivation by Altering the Shape of a Phytotoxin

Sometimes, protoxins can be bioactivated as the result of more
subtle changes. For example, the gram-negative β-proteobacteria
Burkholderia sp. A396 produces large amount of romidepsin, a 16-
membered cyclic depsipeptide bridged by a 15-membered macro-
cyclic linked via a disulfide bridge. Reduction of the disulfide bridge
is catalyzed in planta by native enzymes and opens up the 15-
membered macrocyclic structure to release a long side chain. This
increases the potency of romidepsin on plant histone deacetylases.

Bioactivation by Release from Cellular Sequestration

Not all natural phytotoxins require bioactivation. In these cases,
the metabolites are already highly toxic, and organisms have
devised schemes to protect themselves from the lethal effect of

Figure 7. (A) Example of bioactivation of a protoxin by removal of a protective group.
Removal of the alanyl-alanyl conjugate from the inactive protoxin bialaphos
produced by Streptomyces hygroscopicus to release the active molecule l-phosphi-
nothricin, a potent inhibitor of plant glutamine synthetases. (B) Example of hijacking
of plant biochemical machinery to bioactivate a protoxin by adding an active
functionality. Phosphorylation of 2,5-anhydro-D-glucitol produced by Fusarium solani
NRRL 18883 via the action of the plant hexokinase and phosphofructokinase, leading
to the formation of a fructose-1,6-diphosphate analogue inhibitor of aldolase.
Abbreviations: AhG, 2,5-anhydro-D-glucitol; DHAP, dihydroxyacetone phosphate;
F-1,6-DP, fructose-1,6-diphosphate; F6P, fructose-6-phosphate; G3P, glyceraldehyde
3-phosphate; G6P, glucose-6-phosphate; PFK, phosphofructokinase.
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these compounds by compartmentalizing or exuding them. For
example, leptospermone is a metabolite produced by several plant
species (e.g., Callistemon spp., Leptospermum spp., and Eucalyptus
spp.). This molecule and several other analogues produced by
these plants are potent inhibitors of p-hydroxyphenylpyruvate
dioxygenase (HPPD) (Dayan et al. 2007). In fact, leptospermone
served as a template for the development of HPPD-inhibiting
herbicides (Beaudegnies et al. 2009). This β-triketone natural
product is produced exclusively in schizogenous glands
(Figure 8A). This allows the production of a potent toxin in a
cellular compartment isolated from the rest of the physiologically
active portion of the plant that possesses endogenous HPPD
enzyme sensitive to its own toxin.

As another example, sorgoleone is produced in most of the
species in the Sorghum genus. This lipid benzoquinone is a potent
photosystem II (PSII) inhibitor and competes for the binding site
of plastoquinone on the QB binding site in fashion similar to the
herbicide atrazine (Gonzalez et al. 1997). Isolated chloroplasts of
sorghum are just as sensitive to sorgoleone as other plant species.
However, sorghum is able to produce large amounts of this toxin
by compartmentalizing its biosynthesis to specialized root hair
cells that rapidly exude it from the root into the rhizosphere
(Dayan et al. 2009) (Figure 8B). Because sorgoleone does not
translocate from the root to the foliage, sorghum remains unin-
jured while repressing the growth of small-seeded weeds germi-
nating within its rhizosphere.

Bioactivation of Natural Phytotoxin—The Exception or the
Rule?

The short review above clearly shows that many phytotoxins are
produced as protoxins or must be sequestered by the producing

organism to avoid autotoxicity. This is particularly true if the
pathogen producing the toxin possess the enzyme target site
affected by the active form of the toxin. These complex systems
are the results of coevolution between plant biotic interactions
that cannot be achieved by the current approaches used by the
agrochemical industry. As to whether bioactivation of natural
phytotoxins is the exception or the rule, it is difficult to make a
definitive statement. Many toxins are active in themselves and do
not require bioactivation. However, evolutionary forces have
clearly identified processes that can be hijacked to bioactivate
certain molecules. These processes enable organisms to produce
protoxins that will only be active in the target organism.

Glutathione Transferases Associated with Non–Target Site
Resistance to Herbicides in Alopecurus myosuroides

GSTs (EC 2.5.1.18) are a superfamily of detoxifying enzymes that
have evolved into six discreet clades classified as the zeta, theta, phi,
tau, lambda, and dehydroascorbate reductase classes in plants
(Dixon and Edwards 2010). GSTs from the tau (GSTU) and phi
(GSTF) classes have long been associated with herbicide tolerance
and selectivity in crops through their ability to rapidly conjugate
and detoxify a range of chemistries (Cummins et al. 2011). Nor-
mally, the expression of GSTs is an order of magnitude lower in
weeds than in crops, leading to a corresponding reduced ability to
detoxify herbicides (Dixon and Edwards 2010). Repeated selection
with herbicides can lead to enhanced GST expression in weeds,
leading in turn to resistance. Consistent with this, transcripts
encoding GSTFs and GSTUs have been recently identified as being
enhanced in populations exhibiting non–target site herbicide
resistance (NTSR) in several weed species; notably wild oat (Avena
fatua L.) (Keith et al. 2017), American sloughgrass [Beckmannia
syzigachne (Steud.) Fernald] (Pan et al. 2016), shortawn foxtail
(Alopecurus aequalis Sobol.) (Zhao et al. 2017), annual ryegrass
(Lolium spp.) (Duhoux et al. 2017a), and A. myusuroides (Tétard-
Jones et al. 2018). Recent studies have demonstrated that the
enhanced expression of GSTs able to conjugate and detoxify
atrazine is responsible for evolved resistance to this herbicide in
populations of A. palmeri (Nakka et al. 2017a) and A. tuberculatus
(Evans et al. 2017). However, in A. myusuroides and A. fatua, the
GSTs upregulated in the NTSR populations have little activity
toward herbicides, even though their enhanced expression is inti-
mately linked to resistance (Burns et al. 2017; Cummins et al.
1999). Recent studies in A. myosuroides demonstrated that the phi
AmGSTF1, which has little conjugating activity toward herbicides,
was uniquely associated with all NTSR populations identified to
date (Tetard-Jones et al. 2018). Overexpression of AmGSTF1 in
Arabidopsis (A. thaliana ecotype Columbia-0), enhanced tolerance
to several herbicides, notably those that did not undergo glu-
tathionylation in the course of their detoxification (Cummins et al.
2013; Tétard-Jones et al. 2018). This suggested that GSTs must
possess alternative NTSR protective activities that do not directly
involve herbicide detoxification. However, it is known that the
complex NTSR trait in different weed species is multigenic
(Duhoux et al. 2017b; Keith et al. 2017; Tétard-Jones et al. 2018),
suggesting that a single GST cannot confer multiple resistance. In
further investigating the roles of these proteins in NTSR, we now
report the detailed characterization of the all detectable GSTs (the
“GSTome”), associated with herbicide resistance using a combi-
nation of transcriptomics, proteomics, and functional expression of
the respective recombinant enzymes.

Figure 8. Examples of cellular compartmentalizations. (A) Leptospermone is a potent
p-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor produced by a number of
plant species, including Callistemon spp., Leptospermum spp., and Eucalyptus spp.
This natural β-triketone is a potent inhibitor of HPPD. Plants produce it in specialized
glands isolated from the rest of the cells to avoid autotoxicity problems. (B)
Sorgoleone is a potent phytotoxin produced by most members of the Sorghum
genus. This lipid benzoquinone is produced exclusively in root hairs and exuded into
the rhizosphere.
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Analysis of AmGSTF1 Variants in Alopecurus myosuroides

Recent proteomic studies confirmed the presence of elevated levels
of the phi A. myosuroides AmGSTF1 polypeptides in multiple
NTSR populations, as compared with herbicide-sensitive (HS)
populations (Tétard-Jones et al. 2018). Closer examination of the
AmGSTF1 polypeptides revealed they were derived from two of
the four known isoforms (Supplementary Figure S1), namely the c
and d variants, previously identified in the screening of a cDNA
expression library prepared from the NTSR A. myosuroides
population, ‘Peldon’ (Cummins et al. 1999). Whereas only the c
and d variants were expressed as polypeptides, analysis of the
transcriptomic data showed that all four isoforms were present
as mRNAs in NTSR A. myosuroides (Tétard-Jones et al. 2018).
Differences were observed in the relative abundance of the
AmGSTF1 transcripts, with the c form generally more abundant
in leaves and the d form dominant in the stems. Previous
enzymatic and transgenic studies have exclusively concentrated
on the characterization of the AmGSTF1c isoform (Cummins et al.
2013). As the proteomic studies now showed that alternative
isoforms were also being expressed (Tétard-Jones et al. 2018), it
was clearly important to determine whether the variants were all
functionally equivalent. AmGSTF1a was selected for comparative
enzymatic analysis with AmGSTF1c, as the most variant isoform
(Supplementary Figure S1). The GST sequences were then sub-
cloned into the pET-STRP3 vector and expressed as Strep-tag II
fusion proteins in Escherichia coli (Dixon et al. 2009). The affinity-
purified enzymes were then assayed for glutathione transferase
and glutathione peroxidase (GPOX) activity, with the enzymes
showing similar activities and kinetic constants (Supplementary
Table S1). It was concluded that while AmGSTF1 is present as
multiple isoenzymes in A. myosuroides, the isoenzymes are func-
tionally identical and, as such, all further references to AmGSTF1
refer to the c isoform.

GST Genes Expression in NTSR Alopecurus myosuroides

To identify the full range of GST genes associated with NTSR in
A. myosuroides, the respective transcriptome contig sequences of
NTSR (‘Peldon’) as compared with the HS (‘Rothamsted’)
populations reported previously were examined (Tétard-Jones
et al. 2018). Using this approach, a total of 53 contigs corre-
sponding to GST genes were identified and analyzed by Blast
(BlastX) searches against the respective translated proteome
database (Tétard-Jones et al. 2018). This approach clustered the
contigs into 15 distinct GSTs, which on online protein blast
(BlastP) analysis, yielded eight GSTUs, six GSTFs, and one
lambda (L) GSTL gene (Supplementary Table S2). Of the phi
GSTs, isoforms of the previously undescribed AmGSTF2 and
AmGSTF3 genes were identified in addition to AmGSTF1. Of the
eight GSTU genes, one sequence corresponded to AmGSTU1
(Cummins et al. 2009). The remaining new unigenes were named
AmGSTU2 to AmGSTU7, of which AmGSTU2 was the most
highly represented in the NTSR populations (Tétard-Jones et al.
2018).

AmGSTU2 was selected for further characterization, with
multiple sequence variants, termed AmGSTU2a-f, recovered from
the Peldon cDNA library (Cummins et al. 1999). Phylogenetic
analysis identified orthologues in wheat, maize, and barley
(Hordeum vulgare L.). The phylogenetic analysis showed that
AmGSTU2a and AmGSTU2b (95% similarity) were most likely
derived from a lineage-specific duplication (Figure 9). Both were

members of a clade, also containing AmGSTU1, that is unique to
monocots (Brazier-Hicks et al. 2018). In contrast, AmGSTU3 to
AmGSTU7 were more evolutionarily diverse, sharing protein
sequence identities ranging from 36% to 76% and aligning to
several distinct tau class clades (Figure 9). Of the 15 upregulated
GST genes, AmGSTU2a was the most abundant at both transcript
and expressed protein levels (Tétard-Jones et al. 2018; Figure 10);
as such, it was selected for further characterization. The coding
sequence of AmGSTU2a was isolated by PCR from the Peldon
cDNA library and expressed as the respective Strep-tag II fusion
protein in E. coli. Enzyme activity assays of the recombinant
protein showed that while AmGSTU2a conjugated 1-chloro-2,4-
dinitrobenzene and the herbicides fenoxaprop-ethyl and metola-
chlor, it was inactive as a GPOX (Table 3). Similarly, the related
AmGSTU1 from A. myosuroides and an orthologue TaGSTU4
(69% identity) in wheat (Thom et al. 2002), also showed activity
toward multiple herbicides, suggesting this clade of tau GSTs is
important in detoxification.

GST Protein Expression in Alopecurus myosuroides

Proteomics was used to monitor changes in the GSTome in NTSR
populations either derived from different geographical locations
in the United Kingdom (Peldon, ‘Essex’, and ‘Oxford’) or by
repeated selection with the herbicides pendimethalin or fenox-
aprop as compared with HS plants (Tétard-Jones et al. 2018).
While 15 distinct GSTs showed induced transcriptional expres-
sion, only four of these genes were accompanied by increased
protein expression as determined by differential two-dimensional
proteomics of stem and leaf tissue (Figure 10). In the leaves, the c
and d isoforms of AmGSTF1 were the most highly abundant
GSTs detected by proteomics (Figure 10). In the case of
AmGSTU2, the 140-fold enhancement in transcripts in the stems
of Peldon versus HS plants was associated with only a 6-fold
increase in the respective protein abundance. In the stem tissue,
the enhancement of AmGSTF2, AmGSTU2, and the AmGSTF1c/
d isoforms in the NTSR Peldon, Oxford, and ‘pendimethalin’
populations, was clearly distinct from that determined in the
plants selected on fenoxaprop (Figure 10). This suggested that the
GSTome associated with NTSR in A. myosuroides could vary
depending on the history of herbicide selection.

As GSTUs and GSTFs are associated with a wide range of
plant stress responses (Dixon and Edwards 2010), it was then of
interest to determine whether the NTSR-associated GSTs were
perturbed by biotic and abiotic stress in A. myosuroides. As
described previously (Tétard-Jones et al. 2018), HS plants were
exposed to a range of stress treatments, including wounding, heat,
and drought, along with exposure to the herbicide safener clo-
quintocet mexyl. The results demonstrated that the changes in the
GSTome associated with NTSR could not be replicated by any of
the stresses, with the abundance of AmGSTU2 actually sup-
pressed by these treatments (Figure 10).

Conclusions on the Roles of GSTs in NTSR Alopecurus
myosuroides

A characteristic feature of the GSTs induced by NTSR was their
relative abundance and multiplicity in isoforms identified in the
transcriptome studies, as compared with the proteome experi-
ments. While the major phi AmGSTF1 was encoded by at least
four sequences (a to d isoforms) and the tau AmGSTU2 by six
open reading frames (a to f isoforms), at the level of protein
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expression they were represented by only two and one isoforms,
respectively (Figure 10). Similarly, the relative enhancement of the
transcripts encoding these GSTs was at least an order of magni-
tude greater than the changes determined in the abundance of the

respective proteins (Figure 10). The discrepancy between tran-
scriptome and proteome data for the GSTs demonstrates that the
respective genes are subject to major posttranscriptional regula-
tion either at the mRNA level or during translation or protein

Figure 9. Phylogenetic analysis of tau class of glutathione S-transferase (GSTUs) proteins in grass weeds and crop plants. Amino acid sequences of GSTUs from Alopecurus
myosuroides (red), barley (black), wheat (green), and maize (blue) were used for maximum-likelihood alignment for phylogenic analysis. The number on the branch represents
the bootstrap support values above 50%. The scale bar indicates the inferred number of substitutions per site. Clades comprising exclusively barley sequences were collapsed
into triangles.
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turnover. Similar discrepancies in transcriptome and proteome
expression patterns have been reported for GSTs in other plants
responding to stress conditions and may reflect the manner in
which these genes are evolving through the process of gene
duplication (Dixon and Edwards 2010). In this regard, it is
interesting that AmGSTU2 is orthologous to TaGSTU4, an
enzyme that displays a range of detoxifying activities following
minor changes in its coding sequence (Govindarajan et al. 2015).
We conclude that while AmGSTF1 and its variants have the
potential to evolve new signaling-related roles in NTSR, the
AmGSTU2 isoforms could rapidly develop new herbicide-
detoxifying activities. Further characterization of the functional
diversity of these GSTs in the future may help explain the mul-
tiple herbicide-resistant phenotypes observed in different NTSR
A. myosuroides populations.

Metabolic Herbicide Resistance in Lolium spp.

Resistance to small grain-selective acetolactate synthase (ALS)-
and acetyl CoA carboxylase (ACCase)-inhibiting herbicides is
common in Lolium spp. (L. rigidum, L. perenne) in the United
States, Europe, and especially Australia (Boutsalis et al. 2012;
Broster and Pratley 2006; Heap 2018; Owen et al. 2014). Both
target-site resistance (TSR) and NTSR mechanisms have evolved,
and these often co-occur within individuals and within popula-
tions (Han et al. 2016; Yu and Powles 2014). Metabolism-based
resistance in L. rigidum from Australia has evolved to wheat-
selective ACCase and ALS herbicides with a mosaic of different
cross-resistance and inheritance patterns indicative of multiple
resistance genes and pathways (reviewed in Yu and Powles 2014).
Resistance to the ACCase inhibitor diclofop has been experi-
mentally evolved from initially susceptible individuals (Manalil
et al. 2011; Neve and Powles 2005), and the high level of resis-
tance achieved is due to enhanced diclofop metabolism (Yu et al.
2013). Inheritance of the resistance is polygenic (Busi et al. 2013),

consistent with the hypothesis that multiple genes may contribute
to metabolic resistance. Interestingly, diclofop-susceptible popu-
lations were selected for even greater sensitivity (Manalil et al.
2012), and protection against diclofop due to enhanced metabo-
lism could be induced in susceptible individuals by 2,4-D appli-
cation (Han et al. 2013). Metabolic resistance to pyroxasulfone
was experimentally evolved from a population that already had
metabolic resistance to ACCase, ALS, and mitosis inhibitors (Busi
et al. 2012), but no pyroxasulfone resistance evolved following
repeated selection on a susceptible population. The experimen-
tally evolved pyroxasulfone resistance appeared to be controlled
by a single gene (Busi et al. 2014), and the population was also
cross-resistant to prosulfocarb and triallate, with a subsequent
selection using prosulfocarb resulting in higher prosulfocarb
resistance (Busi and Powles 2013, 2016). Pyroxasulfone resistance
in the experimentally evolved population is due to glutathione
conjugation and subsequent metabolic steps on pyroxasulfone,
with the first step likely mediated by GSTs (Busi et al. 2018).
Some insecticides can reverse metabolic resistance in L. rigidum
by inhibiting CYPs, including malathion for chlorsulfuron resis-
tance (Christopher et al. 1994) and amitrole for diclofop
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Figure 10. Relative abundance of GSTs in blackgrass determined in stem and leaf tissue in NTSR populations isolated from the field (‘Peldon’, ‘Oxford’) and from forced
selection with the herbicides pendimethalin, or fenoxaprop. Significant differences in fold-abundance (p< 0.05, fold change >1.5) were relative to equivalent herbicide sensitive
(HS) plants. The difference in transcript abundances (NTSR vs. HS) are presented in different color codes with red representing enhanced and green representing suppressed
transcript abundance. (NA= not analyzed).

Table 3. Activities of purified recombinant glutathione S-transferase (rGST)
enzymes from Alopecurus myusuroides in conjugating 1-chloro-2,4-dini-
trobenzene (CDNB) and herbicide substrates and as a glutathione peroxidase
acting on t-butyl hydroperoxide.

Specific activity (nkat mg − 1 rGST)

Substrate AmGSTF1c AmGSTU2a

CDNB 670 ± 36 608 ± 56

Metolachlor 16.9 ±4.9 10.4 ± 1.3

Fenoxaprop-ethyl 0.0 ± 0.0 0.6 ± 0.1

t-Butyl hydroperoxide 50.04 ± 13.3 0 ± 0
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resistance (Preston and Powles 1998). Phorate reverses chlorsul-
furon, pyroxasulfone, and trifluralin resistance, but antagonizes
the efficacy of prosulfocarb and triallate that normally are effec-
tive on L. rigidum (Busi et al. 2017). Enhanced metabolism for
herbicide resistance is still not completely understood and can
complicate L. rigidum management due to unpredictable cross-
resistance patterns (Preston 2004).

Metabolic resistance in L. rigidum has been associated with
increased expression of genes with roles in metabolism, such as
CYPs, GSTs, and GTs (Duhoux et al. 2015; Gaines et al. 2014).
Although not yet reported, metabolic herbicide resistance could
also be due to nonsynonymous mutations in metabolism genes,
resulting in faster herbicide metabolism due to changes in substrate
affinity. An RNA-seq transcriptome analysis was used to identify
genes conferring enhanced metabolic resistance in a L. rigidum
population experimentally evolved for diclofop resistance (Gaines
et al. 2014). Candidate transcripts identified as overexpressed in
resistant plants cosegregated with the resistance phenotype in an F2
population, including CYPs, GSTs, and GTs. A set of four tran-
scripts (two CYPs, one nitrogen monooxygenase, and one GT),
initially identified from the experimentally evolved diclofop-
resistant population, were upregulated in individuals from nine
unrelated L. rigidum populations with metabolic resistance (Gaines
et al. 2014). A cluster analysis demonstrated the potential of these
four transcriptional markers in resistance diagnostics when mul-
tiple individuals were sampled from different populations, as
herbicide-susceptible individuals clustered together and popula-
tions containing metabolic resistant individuals could be classified
as resistant (Figure 11). Candidate resistance genes from this L.
rigidum population are being functionally validated, and additional
populations from Australia with different metabolic resistance
patterns are being evaluated with transcriptomics for candidate
resistance genes. An RNA-seq analysis of ALS-resistant L. rigidum
from France identified a set of 19 transcripts associated with
metabolic ALS resistance (Duhoux et al. 2015). These 19 tran-
scriptional markers provided diagnostic prediction of herbicide
resistance in French Lolium spp. populations (Duhoux et al.
2017a). The functional role of transcriptional marker genes in
Lolium spp. has yet to be evaluated.

A major question for metabolic herbicide resistance is that
some genes associated with resistance across multiple populations

through RNA-seq studies may not have a functional role in
resistance, that is, they may not be the genes responsible for direct
metabolic modifications to herbicides. These genes could be
genetically linked to the major resistance gene(s), they could
be co-regulated by a common transcription factor, or they could
be co-regulated through chromatin structural changes. These
genes may have other functions in resistance besides direct her-
bicide metabolism, or they could have no functional role in
resistance at all. Improved basic knowledge about the molecular
genetic basis of metabolic resistance and linked or co-regulated
genes is necessary to develop metabolic resistance diagnostics
based on molecular markers.

Mechanisms of Multiple Resistance in Echinochloa
phyllopogon

Herbicide resistance in E. phyllopogon has been reported in
populations in France, Greece, Brazil, South Korea, and the United
States (Délye et al. 2015; Kaloumenos et al. 2012; Matzenbacher
et al. 2014; Song et al. 2017). The populations in France, Greece,
and Brazil are resistant to ALS inhibitors due mainly to TSR
mechanisms, although additional NTSR mechanisms were not
excluded. Conversely, populations in South Korea and the United
States are known to have NTSR mechanisms and exhibit resistance
to several herbicides with different modes of action. Here, the study
on the resistance mechanism of E. phyllopogon found in the United
States is reviewed.

Multiple Herbicide–Resistant Echinochloa phyllopogon

The Sacramento Valley of California is one of the largest rice
production areas in the United States. Since the introduction of
molinate and thiobencarb in the 1960s and 1980s, respectively,
the two thiocarbamate herbicides were preferentially used for
Echinochloa control (Fischer et al. 2000a). In 1994, another option
from Group 1, fenoxaprop-ethyl, was introduced for POST con-
trol of Echinochloa spp. (Williams 2000). Soon after, the failure in
control of E. phyllopogon by herbicides that previously controlled
it was reported by farmers (Fischer et al. 2000a). Greenhouse
experiments conducted on the plants collected from fields in 1997
revealed that the plants exhibited resistance to fenoxaprop-ethyl,

Figure 11. Transcriptional markers for metabolic herbicide resistance can be used to diagnose populations as resistant or susceptible (adapted from Gaines et al. 2014). A
cluster analysis of expression levels of four transcriptional markers (increased expression of two cytochrome P450s, one nitrogen monooxygenase, and one glucosyl
transferase) differentiates herbicide-susceptible individuals (samples ending in S, highlighted in boxes) from populations containing metabolic resistant individuals, which
could be classified as resistant based on their clustering. The results highlight the importance of sampling multiple individuals for transcriptional marker diagnostics.
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molinate, thiobencarb, and bispyribac-sodium, a herbicide that
was not released yet (Fischer et al. 2000a; Osuna et al. 2002).
Later, the research group revealed that the resistant E. phyllopogon
also exhibited resistance to cyhalofop-butyl, penoxsulam, bensul-
furon-methyl, quinclorac, and clomazone, most of which had not
been in use by 1997.

Mechanism of Resistance to ALS Inhibitors

Metabolism-based Resistance
Multiple herbicide–resistant E. phyllopogon is resistant to three
ALS-inhibiting herbicides, bispyribac-sodium, penoxsulam, and
bensulfuron-methyl, each belonging to a different chemical family.
There are several reports of resistance factors that were estimated
from different experiments in different cultivation conditions or
with different lines (Fischer et al. 2000a, 2000b; Osuna et al. 2002;
Yasuor et al. 2009). When compared under the same experimental
conditions, the resistance factor for line 511, which was the line
used for molecular analysis, was about 1,100-fold for bensulfuron-
methyl, 6.2-fold for penoxsulam (Iwakami et al. 2014a), and 1.8-
fold for bispyribac-sodium (unpublished data).

No difference was observed in the sensitivity of the target site to
these herbicides in vitro (Fischer et al. 2000b; Osuna et al. 2002;
Yasuor et al. 2009). In accordance with the enzyme assay, the
nucleotide sequences of the two copies of ALS genes were identical
between resistant and sensitive plants (Iwakami et al. 2012). These
studies confirm that ALS resistance is not caused by TSR. Studies
on metabolism were mainly conducted on penoxsulam using [14C]
penoxsulam. Resistant plants metabolized penoxsulam into polar
metabolites 2.8 times faster than sensitive plants (Yasuor et al.
2009). A CYP inhibitor, malathion, inhibited the metabolism of
penoxsulam. Similarly, faster metabolism in resistant plants was
confirmed in bensulfuron-methyl. The resistant plants metabolized
bensulfuron-methyl into a demethylated form (Iwakami et al.
2014a), which is known to lose ALS-inhibiting activity (Takeda
et al. 1986). Although metabolism was not tested for bispyribac-
sodium, Fischer et al. (2000b) revealed application of CYP inhibi-
tors partially reversed bispyribac-sodium resistance.

Isolation of CYP81A CYP Genes from Echinochloa phyllopogon
CYPs comprise a superfamily with hundreds of genes in plant
genomes (Nelson et al. 2004). A recent study by Guo et al. (2017)
revealed that a hexaploid close relative of E. phyllpogon,
barnyardgrass [Echinochloa crus-galli (L.) P. Beauv.], possesses as
many as 917 CYP genes in its genome, suggesting the number is
also large in tetraploid E. phyllopogon. The very large number of
genes has made the analysis of genes difficult, especially in weed
species with no reference genome sequence. Although a CYP gene
involved in rice tolerance to some herbicides has been identified
(Pan et al. 2006), no CYP genes involved in herbicide resistance in
weeds were identified before the study conducted in E. phyllopogon.
The CYP gene belongs to CYP81A subfamily (CYP81A6) and is
involved in tolerance to various ALS-inhibiting herbicides,
including bensulfuron-methyl.

Attempts to isolate CYP genes from E. phyllopogon were started
by nested degenerate PCR using the very few conserved regions of
P450 genes, resulting in the isolation of 39 putative P450 genes,
including seven CYP81A members (Iwakami et al. 2014b). Later,
degenerate PCR was used to exclusively amplify CYP81A genes and
succeeded in the isolation of five more CYP81A genes from resis-
tant plants (Iwakami et al. 2014a). Among the 12 CYP81A genes, 3
are putative pseudogenes with indels that cause frameshifts.

Comparisons of full-length sequences between the resistant and
sensitive plants found nonsynonymous substitutions in CYP81A21,
CYP81A22, and CYP81A26.

Characterization of CYP81A Genes
Transcript levels of the nine CYP81A genes, except the three
putative pseudogenes, were compared between resistant and
sensitive plants (Iwakami et al. 2014a). Two genes, CYP81A12 and
CYP81A21, were constitutively highly expressed in the resistant
plants. The two genes share extremely high similarity and were
estimated as homologues based on phylogenetic tree analysis. The
estimation of homologous relationships was also supported by
chromosome linkage analysis of the two genes (Iwakami et al.,
2014a). The analysis was performed using nucleotide poly-
morphisms found in both genes between the resistant and sen-
sitive plants. The results indicated there was no linkage between
the two genes, which implies that the two genes are on different
chromosomes, as expected from the homologous relationship.
Overexpression was also observed in CYP81A22, although the
overexpression was restricted to the roots of resistant plants.

Transgenic Arabidopsis expressing CYP81A12 or CYP81A21
exhibited significant resistance to bensulfuron-methyl (Iwakami
et al. 2014a). The resistance factors of the highly expressing lines
were more than 1,000-fold, suggesting the CYPs metabolize
bensulfuron-methyl very effectively. An in vivo bensulfuron-
methyl metabolism experiment using yeast revealed that the two
CYPs demethylate bensulfuron-methyl. The results explain the
higher amount of demethylated form of bensulfuron-methyl in
the resistant E. phyllopogon. Association of bensulfuron-methyl
resistance and the higher expressions of the two genes were
investigated in the F6 generation of the progenies of the resistant
and sensitive E. phyllopogon. The experiment showed that
bensulfuron-methyl resistance was associated with higher
expression in all the F6 lines tested. In contrast to CYP81A12 and
CYP81A21, CYP81A22 did not confer bensulfuron-methyl resis-
tance in Arabidopsis. Higher expression of CYP81A22 observed in
the resistant parent did not cosegregate with resistance in the
study of the F6 generation. Genotyping of F6 lines also revealed
that amino acid substitutions found in CYP81A21, CYP81A22,
and CYP81A26 were not associated with resistance. All the results
strongly suggest that bensulfuron-methyl resistance in E. phyllo-
pogon is caused by overexpression of CYP81A12 and CYP81A21.

The overexpression mechanism of the two genes was investi-
gated from the aspects of the promoter sequence and copy number
(Iwakami et al. 2014a). Polymorphisms between the resistant and
sensitive lines were observed in the promoter sequences of the two
genes, but neither of them cosegregated with resistance in the F6
lines. Also, no difference was detected in the copy number by
Southern blot analysis. Considering the two genes are on different
chromosomes and the resistance is under the control of a single
gene (or locus), it is likely that a single trans-element simulta-
neously regulates the expression of both genes.

Mechanism of Penoxsulam Resistance
It is reasonable to infer that the same mechanism that controls
bensulfuron-methyl resistance also controls the penoxsulam
resistance, based on the metabolism and inheritance studies
presented. As expected, bensulfuron-methyl and penoxsulam
resistance did not segregate in F6 lines (Iwakami et al. 2014a).
Arabidopsis lines transformed with CYP81A12 or CYP81A21
exhibited significant resistance to penoxsulam. Interestingly, the
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Arabidopsis that exhibited >1,000-fold resistance to bensulfuron-
methyl exhibited ~ 10-fold resistance to penoxsulam. These
results suggest that CYP81A12 and CYP81A21 metabolize
bensulfuron-methyl 100-fold more efficiently than penoxsulam.
This observation is consistent with the resistance levels to
bensulfuron-methyl (1,100-fold) and penoxsulam (6.2-fold) in E.
phyllopogon. In summary, the two CYP81A genes play a major
role in not only bensulfuron-methyl, but also penoxsulam
resistance.

Bispyribac-Sodium Resistance Mechanism Is Not Clear
In contrast to bensulfuron-methyl and penoxsulam, Arabidopsis
expressing CYP81A12 or CYP81A21 did not show any significant
resistance to bispyribac-sodium (unpublished data). The failure of
endowing resistance to Arabidopsis does not necessarily indicate the
genes are not involved in bispyribac-sodium resistance. RNAi
knockdown rice of CYP81A6, an ALS-inhibitor tolerance gene in
rice, has slightly higher sensitivity to bispyribac-sodium, although
the difference is not very clear (Saika et al. 2014). Therefore,
CYP81A CYPs may have functions of bispyribac-sodium metabo-
lism. More detailed studies will be required to investigate the
involvement of the P450 in resistance to bispyribac-sodium in
E. phyllopogon.

Mechanism of Resistance to ACCase Inhibitors

Resistant E. phyllopogon plants exhibit resistance to AOPPs,
fenoxaprop-ethyl and cyhalofop-butyl, with resistance factors of
10 and 19, respectively (Bakkali et al. 2007; Ruiz-Santaella et al.
2006). On the other hand, a cyclohexanedione ACCase inhibitor,
profoxydim, can effectively control resistant plants (Ruiz-San-
taella et al. 2003). ACCase sensitivity to fenoxaprop-ethyl did not
differ between the resistant and sensitive lines. Nucleotide
sequences of the carboxy transferase domain of ACCase, where all
the resistance-conferring amino acid substitutions were found in
other species, were compared between the resistant and sensitive
E. phyllopogon. In accordance with the enzyme sensitivity, no
resistance-conferring mutations were observed in the four copies
of ACCase genes in E. phyllopogon. These results indicate that the
ACCase resistance mechanism is non–target site based.

A metabolism study was performed for fenoxaprop-ethyl and
cyhalofop-butyl. Rapid accumulation of GSH-conjugated meta-
bolites in resistant plants strongly suggests that fenoxaprop-ethyl
resistance is caused by enhanced activity of GST (Bakkali et al.
2007). Resistant plants accumulated more polar metabolites of
cyhalofop-butyl than sensitive plants (Ruiz-Santaella et al., 2006).
The results suggest that a mechanism in addition to over-
expression of CYP81A12 and CYP81A21 endows multiple-
herbicide resistance in E. phyllopogon. The research to identify
specific GSTs is ongoing.

Mechanism of Resistance to Clomazone

Echinochloa phyllopogon in rice fields had no prior exposure to
clomazone. The resistance factor is not very high (2 times), so clo-
mazone resistance eluded classification in the first screening (Fischer
et al. 2000a; Yasuor et al. 2008). However, after the introduction of
clomazone in the Sacramento Valley, control failures with cloma-
zone were observed, leading to the findings of low-level resistance
(Yasuor et al. 2008). A detailed study of clomazone resistance
revealed that the resistant plants more rapidly metabolize clomazone
into oxidative forms than sensitive plants, as described earlier: 5-OH

clomazone is converted to dihydroxy-clomazone and clomazone to
hydroxymethylclomazone and 3′-hydroxyclomazone (Yasuor et al.
2010). Therefore, it is possible that CYPs are involved in the reaction.

Mechanism of Resistance to Quinclorac

Enhanced metabolism has not been proposed as a weed resistance
mechanism to quinclorac (Yasuor et al. 2012). Therefore, factors
related to the mechanism of action of auxin herbicides were
addressed.

The resistance factor to quinclorac is different between the
methods of quinclorac application: foliar spray application, 6-fold;
hydroponic root application, 17-fold (Yasuor et al. 2012). As with
other auxin herbicides, quinclorac is known to induce high levels of
ethylene production, which is highly related with plant sensitivity to
quinclorac (Grossmann and Kwiatkowski 1993). This correlation is
not fully understood, but it is thought to be caused by hydrogen
cyanide (HCN) accumulation in plants as a by-product of ethylene
production. Yasuor et al. (2012) compared the ethylene production
of resistant and sensitive E. phyllopogon and found resistant plants
produced significantly lower ethylene. Another interesting finding
from their research was that resistant plants have higher activity of
β-cyanoalanine synthase (β-CAS), an enzyme that detoxifies HCN.
The authors concluded that quinclorac resistance in the resistant E.
phyllopogon is caused by insensitivity along the ethylene production
pathway and enhanced β-CAS activity.

Future Work

As reviewed here, extensive work on ALS-inhibitor resistance
resulted in the identification of CYP involvement in resistance in E.
phyllopogon. These genes may explain resistance to other herbicides
such as clomazone, for which enhanced oxidation of clomazone was
reported. On the other hand, the involvement of other herbicide-
metabolizing genes, namely GSTs, are suggested in the case of
fenoxaprop-ethyl resistance. Furthermore, even non–metabolism
based resistance is suggested in quinclorac resistance. A hint to
elucidate the apparently complicated mechanism(s) of multiple-
herbicide resistance may come from analyses of thiocarbamate
(molinate and thiobencarb) resistance, which have not yet been
investigated. Although findings of resistant populations in the
Sacramento Valley occurred right after introduction of fenoxaprop-
ethyl, the driving force of resistance evolution may be continuous
application of thiocarbamates for more than 20 yr. Therefore, elu-
cidation of the resistance mechanism to thiocarbamates might
provide an insight into how the evolution of multiple-herbicide
resistance occurred in E. phyllopogon. A preliminary work suggested
concerted upregulation of several gene families involved in herbicide
metabolism (unpublished data), as has been reported in other
metabolism-based resistant weeds (Duhoux et al. 2015, 2017a;
Gaines et al. 2014; Gardin et al. 2015). Approaches such as genomics
and transcriptomics will shed further light on the mystery of rapid
evolution of resistance to multiple herbicides in E. phyllopogon.

Multiple Resistance and Metabolic Resistance Mechanisms
in Junglerice (Echinochloa colona)

A junglerice [(Echinochloa colona (L.) Link] biotype MS1, col-
lected from a rice field in Sunflower County, MI, was resistant to
ALS-inhibiting imazethapyr and cross-resistant to other ALS
inhibitors such as imazamox (3.3-fold), penoxsulam (9.4-fold),
and bispyribac-sodium (7.2-fold) (Riar et. al. 2012). In
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preliminary experiments, the addition of malathion to penox-
sulam and imazethapyr reduced shoot dry weight and/or
increased mortality compared with the respective herbicides
applied alone, indicating possible involvement of herbicide
metabolism driven by CYPs as a mechanism of resistance. ALS
enzyme assays or ALS gene-sequencing analysis did not indicate
a modified target site–based resistance in the MS1 biotype (Riar
et. al. 2013). Lower levels of translocation of [14C]bispyribac and
[14C]imazamox in the MS1 biotype compared with a susceptible
biotype were recorded, perhaps indicating that metabolism is
involved (Riar et. al. 2013). Additionally, the MS1 biotype was
resistant to fenoxaprop-P-ethyl, an ACCase inhibitor (11-fold;
but susceptible to sethoxydim and clethodim at field rates)
(Wright et. al. 2016). Sequencing of ACCase of MS1 did not
reveal the presence of any known resistance-conferring point
mutations. An enzyme assay confirmed that the ACCase in the
MSI biotype was herbicide sensitive. Further investigations with
two CYP inhibitors, malathion and piperonyl butoxide, and a
GST inhibitor, 4-chloro-7-nitrobenzofurazan (CNBF), did not
indicate involvement of any metabolic enzymes inhibited by
these compounds (Wright et al. 2016).

No reference genome is available for E. colona. RNA-seq
analysis of changes in gene expression in the MS1 and a sus-
ceptible biotype before and after imazamox treatment was con-
ducted to generate a reference leaf transcriptome (Wright et al.
2017). Differentially expressed transcripts between resistant MS1
and susceptible plants included transcription factors, protein-
modifying enzymes, and enzymes involved in metabolism and
signaling, which are involved in abiotic stress response in other
plants. These results suggest that imazamox exposure induced a
stress response. A time-course study examining a subset of
transcripts showed that expression peaked within 4 to 12 h and
then returned to untreated levels within 48 h of exposure. Two
additional biotypes showed a similar change in gene expression at
4 h after herbicide exposure compared with the resistant and
sensitive biotypes. Thus, within 48 h, E. colona mounted a stress
response to imazamox exposure (Wright et al. 2017).

The MSI biotype was resistant to propanil and quinclorac as
well (Wright et al. 2018). Differential gene expression analysis of
resistant and sensitive plants revealed that 170 transcripts were
upregulated in resistant plants relative to sensitive plants, and 160
transcripts were upregulated in sensitive plants. In addition, 507
transcripts were only expressed in resistant plants, and 562 only
in sensitive plants. A subset of these transcripts was investigated
further using quantitative PCR (qPCR) to compare gene expres-
sion in resistant plants with expression in additional sensitive
biotypes. The qPCR analysis identified two transcripts, a kinase
and a GST that were significantly upregulated in resistant plants
compared with the sensitive plants. A third transcript, encoding
an F-box protein, was downregulated in the resistant plants
relative to the sensitive plants. As no CYPs were differentially
expressed between the resistant and sensitive plants, a single-
nucleotide polymorphism analysis was performed, revealing sev-
eral nonsynonymous point mutations of interest. These candidate
genes will require further study to elucidate the resistance
mechanisms present in the resistant biotype (Wright et al. 2018).

Metabolism-based Multiple Resistance in Amaranthus
palmeri

As a result of extensive and intensive selection of PRE and/or
POST use of most commonly used herbicides in cropping

systems, A. palmeri has evolved resistance to multiple modes of
action, for example, microtubule, EPSPS, ALS, PSII, HPPD, and,
more recently, protoporphyrinogen oxidase (PPO) inhibitors
(Heap 2018). Besides herbicide selection, other factors such as
biological characteristics of weed species, genetic factors, char-
acteristics of herbicides, and agronomic practices also play an
important role in the evolution and spread of herbicide resistance
in weed species (Powles and Yu 2010). Amaranthus palmeri
characteristics such as high fecundity, germination percentage,
wide window of emergence, seed dispersal, and short longevity
facilitate the evolution of resistance in response to herbicide
selection. Recent advances in agronomic practices have increased
adoption of no-till or reduced-tillage practices in crop production
to prevent soil erosion and conserve moisture (Kihara et al. 2012).
Consequently, the use of herbicides for weed management
became indispensable in crop production in many parts of the
world, creating greater herbicide selection.

Evolution of Multiple Herbicide Resistance in Amaranthus
palmeri in Kansas

Amaranthus palmeri populations resistant to four mechanism of
actions of herbicides—PSII, ALS, EPSPS, and HPPD inhibitors—
have been reported in Kansas (Heap 2018). Several populations of
A. palmeri with resistance to at least two of these herbicide modes
of action are common in Kansas. However, a single population of
A. palmeri (KSR) in central Kansas (Stafford County) with
resistance to PSII and HPPD inhibitors was first confirmed in
2012 (Thompson 2012) in a field where there was no previous
history of applications of HPPD inhibitors but a long history of
PSII- and ALS-inhibiting herbicides. This population was ori-
ginally found resistant to Huskie®, a premix of pyrasulfotole
(HPPD inhibitor) and bromoxynil (PSII inhibitor) in the field.
Later, resistance to atrazine (Nakka et al. 2017a; Thompson et al.
2012), chlorsulfuron (Nakka et al. 2017b), and several HPPD
inhibitors (e.g., mesotrione, tembotrione, and topramezone)
(Nakka et al. 2017c; Thompson et al. 2012) was confirmed and
characterized in this population. Investigation of the mechanism
of resistance to atrazine, chlorsulfuron, and mesotrione in this
population enabled addressing why this population was predis-
posed to evolve resistance to HPPD inhibitors even though there
was no selection of HPPD inhibitors.

Mechanism of Atrazine Resistance in KSR Amaranthus
palmeri

Several mutations in the psbA gene, which codes for D1 protein,
the target site of PSII inhibitors (triazine, triazinone, uracil, nitrile,
etc.), resulted in the evolution of resistance or cross-resistance to
different classes of PSII inhibitors (Arntz et al. 2000; Gronwald
1994; Oettmeier 1999). Furthermore, such resistance to atrazine
has been found to be associated with fitness costs as well (Conard
and Radosevich 1979). However, enhanced metabolism of atra-
zine or simazine via GST activity has also been reported in many
triazine-resistant weed species (Burnet et al. 1993; Cummins et al.
1999; Gray et al. 1996; Ma et al. 2013). Similarly, crops such as
corn or sorghum are also naturally tolerant to triazines due to
rapid metabolism of these herbicides mediated by GST activity.

A high level of resistance to atrazine was confirmed in KSR A.
palmeri exhibiting up to 200-fold resistance relative to a known
susceptible population (Nakka et al. 2017a). No known mutation
in the psbA gene conferring the most common substitution (Ser-
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264-Gly) was found in KSR A. palmeri (Nakka et al. 2017a). Also,
the resistance trait is not maternally inherited, but rather is
transmitted by a nuclear gene in this population (Nakka et al.
2017a). On the other hand, the KSR A. palmeri rapidly conjugated
[U-14C] atrazine, possibly via GSH mediated by GST activity,
within 4 h after treatment (Nakka et al. 2017a).

Mechanism of Chlorsulfuron Resistance in KSR Amaranthus
palmeri

The ALS enzyme, which is the target site of ALS inhibitors, cata-
lyzes an important step in the biosynthesis of the branched-chain
amino acids valine, leucine, and isoleucine in plants and micro-
organisms (Dailey and Cronan 1986; Shaner 1991). SU herbicides
such as chlorsulfuron are active on several weed species, including
A. palmeri. However, A. palmeri resistance to ALS inhibitors is
widespread across many states in the United States, including
Kansas (Heap 2018). ALS inhibitor–resistant A. palmeri was first
documented in Kansas in 1993 (Horak and Peterson 1995).

A high level of resistance to ALS inhibitors due to several point
mutations in the ALS gene has been reported in many weed
species (Foes et al. 1999; Guttieri et al. 1995; Patzoldt and Tranel
2007; Shaner 1991; Tranel et al. 2016; Varanasi et al. 2015).
Nonetheless, enhanced metabolism of ALS inhibitors contributing
to resistance has also been found in a number of weeds, for
example, L. rigidum (Christopher et al. 1991; Cotterman and Saari
1992), wild mustard (Sinapsis arvensis L.) (Veldhuis et al. 2000),
and A. tuberculatus (Guo et al. 2015). Increased activity of CYPs
in the metabolism of this group of herbicides has been reported
(Brown 1990; Christopher et al. 1994).

The KSR A. palmeri exhibited >275 times more resistance to
chlorsulfuron relative to a known susceptible population (Nakka
et al. 2017b). Such a high level of resistance to ALS inhibitors has
also been reported in other Amaranthus species, including
redroot pigweed (Amaranthus retroflexus L.) (Scarabel et al.
2007), Powell amaranth (Amaranthus powellii S. Watson) (Fer-
guson et al. 2001), prostrate pigweed (Amaranthus blitoides S.
Watson) (Sibony et al. 2001; Sibony and Rubin 2003), smooth
pigweed (Amaranthus hybridus L.) (Whaley et al. 2006, 2007),
and common waterhemp (Amaranthus rudis J. D. Sauer) (Pat-
zoldt and Tranel 2007).

Upon sequencing of an ~2-kb length of the ALS gene covering
all known mutations at eight codon positions in KSR A. palmeri,
only 30% of plants showed the single-nucleotide polymorphism,
resulting in an amino acid substitution of proline (CCC) to serine
(TCC) at position 197 of the ALS gene. The remaining 70% of
KSR plants did not show any mutations (Nakka et al. 2017b).
Further, whole-plant response of KSR A. palmeri treated with a
combination of chlorsulfuron and malathion (an organopho-
sphate insecticide, known to inhibit the activity of CYPs) showed
reduction in biomass accumulation when compared with plants
that were treated with either malathion or chlorsulfuron alone or
nontreated plants (Nakka et al. 2017b), indicating the synergistic
effect of malathion on chlorsulfuron. These data suggest that KSR
A. palmeri exhibits two different mechanisms of ALS-inhibitor
resistance: (1) detoxification of chlorsulfuron, possibly as a result
of CYP activity; and (2) a point mutation (Pro-197-Ser) in the
ALS gene. However, metabolism-based resistance appears to exist
predominantly in KSR A. palmeri (Nakka et al. 2017b). The KSR
A. palmeri population is a prime example of a weed population
exhibiting coexistence of both TSR and metabolism-based resis-
tance to ALS inhibitors.

Mechanism of Mesotrione Resistance in KSR Amaranthus
palmeri

Herbicides such as mesotrione that inhibit HPPD enzyme are
widely used to control a broad spectrum of weeds in agriculture.
Mesotrione inhibits carotenoid biosynthesis, resulting in pigment
degradation and, eventually, plant death. However, crops such as
corn can rapidly metabolize these herbicides via ring hydroxyla-
tion mediated by cytochrome P450 monooxygenase(s) combined
with reduced uptake (Mitchell et al. 2001). To date, only two weed
species, A. rudis and A. palmeri, have evolved resistance to HPPD
inhibitors (Heap 2018). HPPD inhibitor–resistant A. rudis was
first reported in Illinois in 2009 (Hausman et al. 2011). This
biotype of A. rudis was also found to be resistant to atrazine.
Detoxification of mesotrione, possibly mediated by CYP and
atrazine via GST-mediated conjugation, has been attributed to
mesotrione and atrazine resistance, respectively, in this A. rudis
population (Ma et al. 2013).

The HPPD-inhibitor resistance in KSR A. palmeri was docu-
mented in Kansas in 2012 (Thompson et al. 2012), and later in
Nebraska in a cornfield that had a history of continuous use of
HPPD inhibitors (Sandell et al. 2012). As mentioned earlier, the
field where KSR A. palmeri was found had no previous history of
use of HPPD inhibitors. The KSR A. palmeri was up to 18 times
more resistant to mesotrione compared with a known sensitive
population (Nakka et al. 2017c). There was no difference in
uptake or translocation of mesotrione or its metabolites between
KSR and a known susceptible A. palmeri biotype (Nakka et al.
2017c). However, similar to mesotrione-resistant A. rudis, KSR
A. palmeri also rapidly metabolized [14C]mesotrione. At 4 and
24 h after treatment about 50% and 90% of parent [14C]meso-
trione was metabolized, respectively, in KSR plants (Nakka et al.
2017c). Furthermore, the KSR plants were found to detoxify 50%
of mesotrione in a shorter time compared with corn or A. rudis
(Ma et al. 2013; Nakka et al. 2017c).

To assess the possibility of coexistence of TSR and NTSR to
HPPD inhibitors in KSR A. palmeri, as was observed for ALS
inhibitors, the HPPD gene was sequenced and amplified for KSR
and a susceptible A. palmeri. However, no mutations or ampli-
fication of the HPPD gene that can confer resistance to meso-
trione was found (Nakka et al. 2017c). Interestingly, the KSR
plants exhibited increased constitutive expression of HPPD
transcript and protein (Nakka et al. 2017c). The mesotrione-
resistant KSR plants showed at least 8- to 12-fold increase
in HPPD mRNA levels (normalized against β-tubulin and
carbamoyl-phosphate synthase) relative to susceptible plants.
Also, the HPPD protein expression correlated with the transcript
expression (Nakka et al. 2017c). The upregulation of HPPD
transcript in KSR plants could have occurred via changes in the
cis- or trans-acting elements or alterations in the promoter region
of the HPPD gene. Overall, the mesotrione resistance in KSR A.
palmeri is conferred predominantly because of rapid detoxifica-
tion of mesotrione, although increased HPPD gene and protein
expression also plays a role in the resistance mechanism.

The Predominance of Metabolism-based Multiple-Herbicide
Resistance in KSR

The KSR A. palmeri clearly showed the predominance of
metabolism-based resistance to multiple herbicides (Figure 12).
The exact chronology of the evolution of resistance to PSII or ALS
inhibitors, in this population is unknown. However, in Kansas,
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resistance to ALS inhibitors in A. palmeri was documented before
resistance to PSII inhibitors (Heap 2018), but the resistance to
HPPD inhibitors evolved more recently in this population
(Thompson 2012). It is believed that resistance to ALS inhibitors
may have evolved before resistance to PSII inhibitors in the KSR
A. palmeri population as well. Regardless, the predominance of
metabolism-based resistance to ALS and PSII inhibitors mediated
by CYP or GST activity during the phase I and II detoxification
process suggests the presence of increased activity of these
enzymes, which potentially predisposed this population to
detoxify other xenobiotics such as HPPD inhibitors, even though
no selection pressure from this herbicide was imposed on this
population. The role of specific genes of the CYP enzyme family
in detoxification of chlorsulfuron or GSTs in atrazine metabolism
is yet to be uncovered. Thus, the prevalence of metabolism-based
resistance to ALS and PSII inhibitors may have predisposed this
population to evolve resistance to HPPD inhibitors. Current
research suggests that the metabolism-based herbicide resistance
can be a serious threat to weed management, especially in weeds
such as A. palmeri, which is one of the top-ranked economically
important weeds across the United States.

Biochemical Mechanisms Conferring Multiple Herbicide
Resistance in Amaranthus tuberculatus

Amaranthus tuberculatus is a problematic, summer annual
broadleaf weed species severely affecting maize, soybean, sor-
ghum, and cotton production in the United States (Hager et al.
2002; Heap 2018; Steckel and Sprague 2004). The C4 carbon-
fixation pathway and prolonged emergence period are two factors
that allow A. tuberculatus to compete with crops in the field,
especially under hot and dry weather conditions (Steckel 2007).
No new herbicide modes of action have been commercialized in
the past three decades (Duke 2012). Genes conferring resistance
are easily spread throughout natural A. tuberculatus popula-
tions by pollen flow due to the obligate-outcrossing nature of
A. tuberculatus, which makes effective herbicide options for
management of this weed even more limited (Costea et al. 2005;
Steckel 2007).

An A. tuberculatus population (named MCR) from central
Illinois was the first reported natural weed population to evolve
resistance to HPPD-inhibiting herbicides (Hausman et al. 2011),
chronologically representing the fifth herbicide site-of-action
group for resistance in A. tuberculatus (Heap 2018). A different
A. tuberculatus population from Nebraska (named NEB) also
demonstrated resistance to HPPD-inhibiting herbicides (Kaundun
et al. 2017), and another A. tuberculatus population from Nebraska
exhibited resistance to the synthetic auxin herbicide 2,4-D
(Figueiredo et al. 2018). In each of these cases, rapid herbicide
metabolism contributed to or conferred resistance in the
population, as described in the following sections.

In addition to HPPD-inhibitor resistance in MCR, this
population is resistant to s-triazines, ALS-inhibiting herbi-
cides, and the foliar-applied PPO-inhibiting herbicide
carfentrazone-ethyl (Ma et al. 2015; unpublished data). Neither
altered target sites (HPPD for mesotrione or psbA encoding the
D1 protein in PSII for s-triazines) nor increased uptake of
mesotrione or atrazine was detected in the MCR population.
Biochemical studies using excised leaves and whole plants
derived from vegetative clones demonstrated that elevated
rates of metabolism, through distinct detoxification pathways,

contribute to herbicide resistance in MCR (Ma et al. 2013).
These metabolic pathways include: (1) oxidative metabolism
(presumably via CYPs) for two HPPD-inhibiting herbicides,
mesotrione (Ma et al. 2013) and topramezone (Ma et al. 2018),
as well as the ALS-inhibiting herbicide primisulfuron-methyl
(Guo et al. 2015; Ma et al. 2015); and (2) GSH conjugation
catalyzed by GSTs for atrazine (Evans et al. 2017; Ma et al. 2013;
Ma et al. 2016). The use of an excised leaf assay and vegetatively
cloned plants ensured that the herbicide-metabolism assay was
independent of whole-plant translocation patterns and that
identical A. tuberculatus genotypes were analyzed within a
biochemical time-course analysis (Ma et al. 2015). The CYP
inhibitors malathion and tetcyclacis decreased mesotrione
metabolism and further reduced the biomass of MCR plants
when applied with mesotrione (Ma et al. 2013). Additionally,
malathion resulted in a greater injury to MCR from ALS-
inhibiting herbicides, including primisulfuron, cloransulam,
sulfometuron, pyrithiobac, and imazethapyr (Guo et al. 2015).
Treatment with the GST inhibitor CNBF followed by an atrazine
PRE or POST application significantly enhanced biomass
reduction in another atrazine-resistant A. tuberculatus popula-
tion from central Illinois (ACR) compared with the atrazine-
only treatment (Ma et al. 2016). These increased herbicide
activities when applied with metabolic inhibitors to resistant A.
tuberculatus further support metabolism-based resistance
mechanisms to multiple herbicides in A. tuberculatus. Similarly,
rapid mesotrione metabolism via 4-hydroxylation of the dione
ring was detected in the NEB population compared with a
sensitive population (Kaundun et al. 2017). Rapid metabolism of
2,4-D contributes to resistance in another A. tuberculatus popu-
lation from Nebraska, which is also potentially mediated by CYP
activity (Figueiredo et al. 2018).

Genetic and Molecular Basis of Multiple-Herbicide Resistance
in A. tuberculatus

Metabolism-based herbicide resistance can confer unpredictable
and complicated cross- or multiple resistance to herbicides with
the same or different sites of action, which could be controlled
by quantitative trait(s) (Délye 2013). A genetic study using F2
segregating lines of multiple herbicide–resistant (MCR) and
sensitive A. tuberculatus populations demonstrated that atrazine
resistance in the MCR population is conferred by a single,
incompletely dominant nuclear gene, whereas the inheritance of
mesotrione resistance in the MCR population is more complex
and appears to be a multigenic trait (Huffman et al. 2015).
Following up on the atrazine resistance trait in the MCR and
ACR populations, traditional protein purification and proteomic
methods tested the hypothesis that enhanced metabolic detox-
ification of atrazine occurs by a distinct GST isozyme (Evans
et al. 2017), which ultimately confers atrazine resistance in the
MCR population. Several GST proteins were identified by liquid
chromatography–mass spectrometry in affinity-purified frac-
tions from A. tuberculatus using peptide sequence similarity
with GSTs from Arabidopsis or other dicots. Elevated, con-
stitutively expressed transcript levels of one phi-class GST
(named AtuGSTF2) strongly correlated with atrazine resistance
in A. tuberculatus (MCR and ACR populations) and an F2
population that segregates for metabolic atrazine resistance
(Huffman et al. 2015). This correlation indicates that AtuGSTF2
is the predominant GST protein that confers atrazine resistance
in A. tuberculatus (Evans et al. 2017), although additional
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Figure 12. Predominance of metabolism-based resistance to photosystem II (PSII), acetolactate synthase (ALS), and p-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors in a multiple- resistant Amaranthus palmeri evolved in
Stafford County, KS.
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research involving gene cloning, promoter analysis, and gen-
eration of transgenic plants overexpressing AtuGSTF2 is
required to further support this hypothesis.

Ongoing Research Investigating Unique Mechanisms
Conferring Resistance to Topramezone and Carfentrazone-
Ethyl in Amaranthus tuberculatus

The MCR population also demonstrated resistance to toprame-
zone (Hausman et al. 2011), another HPPD inhibitor having a
distinct pyrazole structure (Ndikuryayo et al. 2017) compared
with the triketone structures of mesotrione and tembotrione
(Figure 13). Initial biochemical studies with excised leaves and
whole plants indicated that an elevated rate of oxidative meta-
bolism confers topramezone resistance in the MCR population
relative to two HPPD-sensitive A. tuberculatus populations (Ma
et al. 2018). However, the metabolic route for topramezone
identified in MCR is different from the rapid initial N-deme-
thylation reaction that occurs in tolerant maize (Grossmann and
Ehrhardt 2007). Recent research determined that two hydroxy-
topramezone metabolites are predominantly formed in MCR,
which are only present in minor amounts in maize and HPPD-
sensitive A. tuberculatus (Lygin et al. 2018). Finally, MCR dis-
played foliar resistance to carfentrazone-ethyl but sensitivity to
diphenylethers, a different class of PPO inhibitors compared with
carfentrazone-ethyl (an aryl triazinone). Carfentrazone-ethyl
resistance in the MCR population is not due to a glycine codon
deletion or arginine substitution in the PPO2 enzyme; it is more
likely conferred through an NTSR mechanism such as enhanced
oxidative metabolism (unpublished data), although additional
research is required to test this hypothesis.

Conclusions

Several weed populations around the world have evolved resis-
tance to herbicides by metabolizing herbicide active ingredients to
non-phytotoxic metabolites. Characterization of metabolic resis-
tance mechanisms and underlying biochemical and molecular
regulation is a difficult and arduous process. However, recent
strides made through the use of contemporary approaches and
procedures have made it possible to delineate roles of enzyme
systems such as CYPs, GSTs, and GTs in metabolic and multiple
resistance to herbicides in plants, including both crops and weeds,
as outlined in this review. These biochemical and molecular
mechanisms conferring resistance to multiple herbicides with
different sites of action indicate weeds possess multiple genes
encoding diverse metabolic enzymes, which ultimately result in
complex, herbicide-dependent, cross- or multiple-resistance pat-
terns. Cross- and multiple herbicide resistance could pose serious
challenges for weed management in the future, especially if these
resistance mechanisms do not confer a fitness cost to the plant
in the absence of herbicide (Délye 2013; Yu and Powles 2014).
Additionally, herbicide resistance due to rapid herbicide
metabolism has the potential to confer resistance not only to
existing commercial herbicides, but also to new or yet-to-be-
discovered active ingredients (Yu and Powles 2014). A better
understanding of the biochemical, molecular, and genetic
mechanisms conferring metabolic resistance to multiple her-
bicides provides insights into evolving weed populations in
response to selection pressures and development of innovative
and integrated resistant weed management strategies and
demonstrates an urgent need for discovery of a new herbicide
site of action (Duke 2012).
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