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PACS 42.65.Yj – Optical parametric oscillators and amplifiers
PACS 42.65.Sf – Dynamics of nonlinear optical systems; optical instabilities, optical chaos and

complexity, and optical spatio-temporal dynamics
PACS 42.50.Nn – Quantum optical phenomena in absorbing, amplifying, dispersive and conducting

media; cooperative phenomena in quantum optical systems

Abstract – Breaking the symmetry in a coupled wave system can result in unusual amplification 9

behavior. In the case of difference parametric amplification the resonant pump frequency is equal 10

to the difference, instead of the sum, frequency of the normal modes. We show that sign reversal 11

in the symmetry relation of parametric coupling give rise to difference parametric amplification as 12

a dual of optical parametric amplification. For optical systems, our result can potentially be used 13

for efficient XUV amplification. 14

15

Parametric processes are essential to quantum optical applications including frequency 16

conversion, quantum communication, and nonclassical state generation [1–4]. In particular, 17

the application of squeezed light in precision measurement has led to enhanced sensitivity 18

for gravitational wave detection [5]. Parametric interaction occurs when driving a nonlinear 19

dipole with two frequency inputs. In a doubly resonant cavity, two non-degenerate target 20

frequencies, ωe > ωg, can be parametrically coupled to a pump frequency through a nonlinear 21

medium [6, 7]. When the pump frequency ν is equal to the sum-frequency Σω ≡ ωe + ωg 22

or the difference-frequency ∆ω ≡ ωe − ωg, resonant parametric interaction occurs. A sum- 23

frequency will facilitate energy transfer from the pump field Ep to the target fields Ee,g, 24

leading to amplification. A difference-frequency will promote energy exchange between the 25

target fields without changing their total energy [8]. In the framework of quantum optics, 26

the former corresponds to anti-Jaynes-Cummings interaction and the latter amounts to 27

Jaynes-Cummings interaction [9, 10]. 28

In a recent proposal by Svidzinsky et al. [11], a semiclassical approach was used to 29

show that Jaynes-Cummings interaction could lead to strong amplification of light in a 30

superradiant atomic gas, if such a coupled system is driven with an external difference- 31

frequency pump. This quickly leads to the conceptual difficulty that energy conservation is 32

violated. In optical parametric amplification (OPA) energy transfers from the pump field to 33

the target fields because one sum-frequency photon, having higher energy, breaks into two 34

target-frequency photons with smaller energy [10]. In the case where the difference-frequency 35

pump drives the amplification, such a photon picture cannot apply since the energy of one 36
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Wayne Cheng-Wei Huang 1,2 Herman Batelaan 1

difference-frequency photon is less than the total energy of two target-frequency photons. 37

Assuming that this effect exists, what is then the mechanism for energy transfer? To shed 38

light on this puzzle, we turn to Maxwell equations where OPA was originally studied [12–14]. 39

In this Letter, we show that difference parametric amplification (DPA), i.e. amplification 40

based on a difference-frequency drive, does not violate energy conservation at the level of 41

classical physics. We illustrate the dualism between DPA and OPA through the symmetry 42

relation of parametric coupling. Given that quantum mechanics is a more superior theory 43

than classical mechanics, a corresponding quantum mechanism should exist. We argue that 44

the combination of DPA and the Jaynes-Cummings Hamiltonian will lead to non-Hermiticity. 45

This gives rise to complex-valued expectation values and may explain why the photon picture 46

does not apply for DPA. 47

We note that DPA, if realized, presents potential advantages for delivering efficient XUV 48

amplification. The state-of-the-art upconversion light sources are based on either multipho- 49

ton excitation or higher-harmonic generation [15–17]. These processes suffer from deterio- 50

rating conversion efficiency as the target frequency gets into the ultraviolet regime [18–20]. 51

In contrast, DPA remains as a first-order nonlinear process regardless of how high the target 52

frequency is. This feature renders DPA a potential mechanism for efficient amplification in 53

the XUV regime. 54

To illustrate the concept of DPA and its connection to OPA, we start with Maxwell
equations for waves in a nonlinear medium [8],

∇2E− ε(1)

c2
∂2E

∂t2
=

4π

c2
∂2PNL

∂t2
(1)

where ε(1) represents the linear dielectric response of the medium which, for simplicity, is
assumed to be isotropic dispersionless. The dipole moment of the nonlinear medium PNL

acts as a driving source and couples the target field E with a pump field Ep through PNL =
χ(2)EpE, where χ(2) is a dielectric tensor that characterizes the second-order nonlinear
response of the medium. Based on eq. (1), we consider the wave dynamics of two eigenmodes
Ee,g of frequencies ωe,g in a doubly resonant cavity (See fig. 1). We assume small normal
mode splitting compared to the eigenfrequencies, 0 < ωe − ωg � ωe,g. Through a second-
order nonlinear medium, the two target fields Ee,g are parametrically coupled by an injected
pump field Ep. The coupled wave equations can be derived from eq. (1),

d2Ee
dt2

= −ω2
eEe + χgEgEp

d2Eg
dt2

= −ω2
gEg + χeEeEp

, (2)

Fig. 1: Parametric pumping for two coupled cavities. The transmissivity of the coupling mirrors
(dashed line) determines the strength of normal mode splitting, hence the difference-frequency
between the two cavity modes ∆ω ≡ ωe −ωg. The nonlinear medium (blue) is assumed to mediate
parametric interaction between the cavity modes Ee,g and the pump Ep with nonlinear coupling
parameters χe,g.
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
d2

dt2

(
Ẽee−iωet + Ẽe

∗
eiωet

)
+ ω2

e

(
Ẽee−iωet + Ẽe

∗
eiωet

)
=
χg
2

(
Ẽge−iωgt + Ẽg

∗
eiωgt

)(
Ẽpe−iνt + Ẽg

∗
eiνt
)

d2

dt2

(
Ẽge−iωgt + Ẽg

∗
eiωgt

)
+ ω2

g

(
Ẽge−iωgt + Ẽg

∗
eiωgt

)
=
χe
2

(
Ẽee−iωet + Ẽe

∗
eiωet

)(
Ẽpe−iνt + Ẽg

∗
eiνt
) ,

(3)

where χg and χe are the nonlinear coupling parameters for Eg and Ee respectively. Conven-
tionally, the nonlinear coupling is symmetric with respect to the target frequencies, χg = χe.
However, here we make the distinction and extend the analysis to the more general case
where the two coupling parameters can be made different, χg 6= χe. In addition, we remark
that eq. (2) is the diagonalized representation for all parametrically coupled systems, includ-
ing the cases discussed in reference [11,21–23]. Given the pump field Ep(t) = A0 cos (νt+ φ),

the coupled equations can be transformed with the complex notation E = (Ẽ + Ẽ∗)/2 and
rotating-wave frame Ẽ(t) = Ẽ(t)e−iωt to where Ẽp ≡ A0e

−iφ is the pump amplitude. To
simplify the above equations, we eliminate the non-resonant terms with the rotating-wave ap-
proximation. Also, we will use the slow-varying approximation, dEe,g(t)/dt� ωe,gEe,g(t), to
reflect the slow-varying envelop Ee,g(t) and focus only on the fast dynamics at the timescales
1/ωe,g. Under these assumptions, eq. (3) becomes

dẼe
dt

=
iχg
4ωe

(
ẼgẼpe−i∆t + Ẽg

∗Ẽpe−i∆st
)

dẼg
dt

=
iχe
4ωg

(
ẼeẼp

∗
ei∆t + Ẽe

∗Ẽpe−i∆st
) , (4)

where ∆ ≡ ν −∆ω and ∆s ≡ ν −Σω are the pump detunings from the difference-frequency 55

∆ω ≡ ωe − ωg and the sum-frequency Σω ≡ ωe + ωg, respectively. Later, the validity of 56

the approximations will be shown by the agreement between the analytical solution and the 57

numerical simulation of eq. (2). 58

In OPA, the pump frequency is close to the sum-frequency ν ≈ Σω (|∆| � 0), and eq. (4)
can be further simplified by making again the rotating-wave approximation,

dẼe
dt

= αsẼg
∗
e−i∆st

dẼg
dt

= βsẼe
∗
e−i∆st

, (5)

where the gain parameters are defined as αs ≡ iχgẼp/4ωe and βs ≡ iχeẼp/4ωg. The target

field solutions Ẽe,g(t) can be derived accordingly,

Ẽe(t) =

{
Ẽe(0)

[
cosh

(
Ωst

2

)
+
i∆s

Ωs
sinh

(
Ωst

2

)]
+Ẽ∗g (0)

2αs
Ωs

sinh

(
Ωst

2

)}
e−i(ωe+∆s/2)t,

Ẽg(t) =

{
Ẽg(0)

[
cosh

(
Ω∗st

2

)
+
i∆s

Ω∗s
sinh

(
Ω∗st

2

)]
+Ẽ∗e (0)

2βs
Ω∗s

sinh

(
Ω∗st

2

)}
e−i(ωg+∆s/2)t,

(6)
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Fig. 2: Comparison between analytical solutions and simulations for amplification via parametric
pumping. (a)(b) Provided a negative symmetry relation χeχg < 0, amplification of the target fields
Ee,g can only be achieved through a difference-frequency pump ν = ∆ω. The upper right insets
give the temporal evolution of the target fields. Here, initial conditions Ẽe(0) = 1 and Ẽg(0) = 0
are assumed. Fourier spectra of the fields show a single spectral peak at the respective frequen-
cies ωe/2π = 1460 Hz and ωg/2π = 1240 Hz (bottom panels). The width of the spectral peaks
characterizes the exponential growth rate of the field amplitude (top panels). A good agreement is
found between the analytical solutions (black and red) and the simulation (blue). (c)(d) Provided a
positive symmetry relation χeχg > 0, amplification can only be attained through a sum-frequency
pump ν = Σω. The temporal behavior and spectral property are similar to the case of a difference-
frequency pump. The temporal evolution is plotted at the timescale T ≡ 2π/Ω and Ts ≡ 2π/Ωs for
DPA and OPA respectively.

where the OPA gain rate is Ωs =
√
−∆2

s + 4αsβ∗s . The analytical solution to eq. (2) is thus59

Ee,g(t) = (Ẽe,g(t) + Ẽ∗e,g(t))/2. Seeing from eq. (6), we notice that the dynamic behavior of60

the coupled wave system is fully determined by what we call the symmetry relation herein,61

the sign of χeχg. Assuming a sufficiently strong pump, |Ẽp| > 4|∆s|
√
ωeωg/|χeχg|, the62

positive symmetry relation χeχg > 0 implies that αsβ
∗
s = χeχg|Ẽp|2/16ωeωg > 0. This63

guarantees a real-valued OPA gain rate, Ωs ∈ <, and gives rise to exponential amplification64

of the target fields under a sum-frequency pump, as expected for OPA.65

When a difference-frequency pump ν ≈ ∆ω is used instead, the coupled equations in
eq. (4) become


dẼe
dt

= αẼge−i∆t

dẼg
dt

= βẼeei∆t
. (7)

The use of a difference-frequency pump results in a new set of gain parameters α ≡ iχgẼp/4ωe

p-4



Dualism between Optical and Difference Parametric Amplification

Fig. 3: Parametric resonance and Fourier spectra for OPA and DPA. (Field amplitude in logarithmic
color scale) (a) Pronounced amplification of the two target frequencies ωe/2π = 1460 Hz and
ωg/2π = 1240 Hz appear for resonant pumping at the sum-frequency ν/2π = 2680 Hz (OPA) and
the difference-frequency pump at ν/2π = 220 Hz (DPA). (b)(c) The parameter regimes (χe, χg) for
OPA and DPA are mutually exclusive. Initial conditions Ẽe(0) = 1 and Ẽg(0) = 0 are assumed

and β ≡ iχeẼp
∗
/4ωg, and the solutions for the target fields Ẽe,g(t) are

Ẽe(t) =

{
Ẽe(0)

[
cosh

(
Ωt

2

)
+
i∆

Ω
sinh

(
Ωt

2

)]
+Ẽg(0)

2α

Ω
sinh

(
Ωt

2

)}
e−i(ωe+∆/2)t,

Ẽg(t) =

{
Ẽg(0)

[
cosh

(
Ωt

2

)
− i∆

Ω
sinh

(
Ωt

2

)]
+Ẽe(0)

2β

Ω
sinh

(
Ωt

2

)}
e−i(ωg−∆/2)t,

(8)

where the DPA gain rate is Ω =
√
−∆2 + 4αβ. The important difference in the gain66

parameters α and β makes it possible to attain amplification through a difference-frequency67

pump and a negative symmetry relation χeχg < 0 (αβ = −χeχg|Ẽp|2/16ωeωg > 0). With a68

sufficiently strong pump, |Ẽp| > 4|∆|
√
ωeωg/|χeχg|, eq. (8) implies that the target field can69

be exponentially amplified with a real-valued DPA gain rate, Ω ∈ <.70

We compare the analytical solutions, eqs. (6) and (8), to the simulation results of eq. (2),71

assuming the positive symmetry relation for ν = Σω and the negative symmetry relation for72

ν = ∆ω. The good agreement in both cases justifies the use of rotating-wave approximation73

and the slow-varying approximation in the analysis (See fig. 2). Without loss of generality,74

the target frequencies are taken to be ωg/2π = 1240 Hz and ωe/2π = 1460 Hz from acoustic75

waves. This makes the simulation less stiff as the ratio between the target frequency and76

the difference-frequency ∆ω/2π = 220 Hz is kept within 10. Generally, the solutions can be77

applied to any frequency regime. 78

While the resonant frequencies for OPA (ν = Σω) and DPA (ν = ∆ω) are vastly apart,
both give rise to amplification of the same target frequencies ωe,g with mutually exclusive
parameter regimes, χeχg > 0 and χeχg < 0 (See fig. 3). The dualism between OPA and
DPA is made clear when considering the energy flows in the coupled wave system. Using
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Fig. 4: Temporal evolution of energy flow in OPA and DPA. (a) Provided a positive symmetry
relation χeχg > 0, a difference-frequency pump ν = ∆ω promotes energy exchange between the
target fields Ee,g. Energy flows in the two fields have opposite signs. A positive sign represents
energy gain; a negative sign represents energy loss. The negative energy flow is flipped to positive as
the energy of the respective field is depleted (inset). Initial conditions Ẽe(0) = 1 and Ẽg(0) = 0 are
assumed. (b) Under a negative symmetry relation χeχg < 0, a difference-frequency pump ν = ∆ω
can cause amplification for the two target fields (DPA). The total energy of the fields increases over
time. (c) With the same nonlinear coupling parameters as (a), a sum-frequency pump ν = Σω
can cause field amplification as in the case of (b) (OPA). (d) Given the same nonlinear coupling
parameters as (c), a sum-frequency pump ν = Σω will induce energy exchange between the two
target fields as in the case of (a). These four scenarios indicate that the roles of a difference-frequency
pump and a sum-frequency pump are exchanged in the two mutually exclusive parameter regimes
χeχg > 0 and χeχg < 0.

eq. (2), the energy transfer to a field can be calculated through the driving term χe,gEe,gEp,

We,g = ε0E
2
e,g = ε0

∫
dt

(
dEe,g
dt

χe,gEe,gEp

)
. (9)

According to eq. (8), a difference-frequency pump ν = ∆ω with positive symmetry relation
χeχg > 0 gives the solution

Ee(t) =Qe(0) cos (ωet) cos (bt/2),

Eg(t) =
χeA0Qe(0)

2ωgb
sin (ωgt) sin (bt/2),

(10)

where φ = 0 is assumed. The initial conditions are set to be Ẽe(0) = Qe(0) and Ẽg(0) = 0.
Parameters a and b are defined as the real and imaginary parts of the DPA gain rate
Ω = a + ib. With the positive symmetry relation χeχg > 0, it follows that a = 0 but
b 6= 0. The energy flow in the fields can be subsequently computed with the slow-varying
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approximation,

dWe(t)

dt
≈− ε0χeχg

(
A2

0Q
2
e(0)

4b

)(
ωe
ωg

)
sin (ωet) sin (ωgt)

× cos (∆ωt) sin (bt),

dWg(t)

dt
≈ε0χ2

e

(
A2

0Q
2
e(0)

4b

)
cos (ωet) cos (ωgt)

× cos (∆ωt) sin (bt).

(11)

As shown in fig. 4(a), the energy flow in the two target fields have similar strength but 79

opposite sign, implying that energy is exchanged between the two fields. When the energy 80

of a field is depleted, the sign of its energy flow is reversed. The depletion rate is characterized 81

by the imaginary part of the DPA gain rate b. 82

In the case of DPA (negative symmetry relation χeχg < 0), the field solutions are

Ee(t) =Qe(0) cos (ωet) cosh (at/2),

Eg(t) =
χeA0Qe(0)

2ωga
sin (ωgt) sinh (at/2).

(12)

The sinusoidal functions in eq. (10) are now replaced by hyperbolic functions because a 6= 0
but b = 0. The corresponding energy flows are

dWe(t)

dt
≈− ε0χeχg

(
A2

0Q
2
e(0)

4a

)(
ωe
ωg

)
sin (ωet) sin (ωgt)

× cos (∆ωt) sinh (at),

dWg(t)

dt
≈ε0χ2

e

(
A2

0Q
2
e(0)

4a

)
cos (ωet) cos (ωgt)

× cos (∆ωt) sinh (at).

(13)

The negative symmetry relation makes the energy flows in both target fields obtain a positive 83

sign, leading to simultaneous excitation of the two fields (See fig. 4(b)). The modulation 84

term cos (∆ωt) indicates that energy is pumped into the target fields at the rate of the 85

difference-frequency. The fast oscillations in the energy flow are out of phase, suggesting 86

that the fields take turns to draw energy from the pump. The hyperbolic term sinh (at) 87

shows the exponential energy growth in the two fields at the rate a, which is the real part 88

of the DPA gain rate. 89

Remarkably, the dynamic behavior of the target fields in the two parameter regimes 90

(χeχg > 0 and χeχg < 0) are reversed if the coupled wave system is provided with a 91

sum-frequency pump ν = Σω. Under the positive symmetry relation χeχg > 0, as in the 92

scheme of OPA, the system will undergo the same amplification as described by eq. (13) 93

with the parameter a replaced by the real part of the OPA gain rate, as = Re(Ωs) (See 94

fig. 4(c)). When the symmetry relation is negative χeχg < 0, energy is exchanged between 95

the two target fields in a conservative way, as shown in fig. 4(d). This behavior can be 96

described by eq. (11) with the parameter b replace by the imaginary part of the OPA gain 97

rate, bs = Im(Ωs). 98

The four scenarios summarized in fig. 4 illustrate the dualism between OPA and DPA.
The sign reversal in the symmetry relation switches the roles of a sum-frequency pump
and a difference-frequency pump in the coupled wave system. While the positive symmetry
relation χeχg > 0 promotes OPA, the negative symmetry relation χeχg < 0 facilitates
DPA. The symmetry relation reflects the symmetry built into the coupling mechanism. To
provide a physical context for discussion, we devise a thought experiment where transition
between OPA and DPA is controlled by a single knob. In fig. 5(a), two identical microwave

p-7
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Fig. 5: Theoretical demonstration of transition from OPA to DPA with a change in a single physical
parameter xr. (a) A coupled coplanar waveguide cavity is doubly-resonant at ωe,g. Parametric
pumping is achieved through a feedback loop in two steps. First, cavity field signals ωe,g are passed
from a receiver antenna to an ideal mixer to be mixed with a pump signal ν. Second, the output
signal ωe,g ±ν of the mixer is sent to a driver antenna to pump the coupled cavity. The inset shows
the spatial phase profiles of the cavity modes cos (kexr) (red) and cos (kgxr) (black). When the
receiver antenna (blue) is parked in the regimes in-between the nodes (pink), parametric coupling
via the feedback loop will take a negative symmetry relation χeχg < 0, which facilitates DPA. (b)
Pumping the cavity at the sum-frequency ν = Σω shows amplification in the regimes of positive
symmetry χeχg > 0. (c) Pumping the cavity at the difference-frequency ν = ∆ω gives rise to field
amplification in the regimes in-between the nodes, as indicated in the inset of (a). Initial conditions
Ẽe(0) = 1 and Ẽg(0) = 0 are assumed.

coplanar waveguide cavities are capacitively coupled. Normal mode splitting makes two close
eigenfrequencies ωe,g. Parametric pumping for the cavity modes is provided by a feedback
loop in two steps. First, the field signal Ee(xr, t)+Eg(xr, t) is taken from a receiver antenna
sitting at xr and mixed with a pump signal Ep = A0 cos (νt+ φ) through an ideal mixer
of output efficiency χ. Second, the output signal from the mixer is fed to a driver antenna
as the pump for the coupled cavity. Assuming that the driver antenna is sensitive to the
spatial phase of the fields [24], coupling to each mode will then have the spatial dependence
cos (kexd) and cos (kgxd), where ke,g = ωe,g/c and xd is the position of the driver antenna.
The coupled wave system can be modeled by Maxwell equations, Substituting in eq. (14)
the cavity modes Ee,g(xd, t) = cos (ke,gxd)Ee,g(t), the equation can be simplified with the
rotating-wave approximation,

d2

dt2
Ee(t) = −ω2

eEe(t) + χgEg(t)Ep(t)

d2

dt2
Eg(t) = −ω2

gEg(t) + χeEe(t)Ep(t)

, (15)

where the effective nonlinear coupling parameters turn out to be χe,g(xr) ≡ χ cos (ke,gxr).
Solutions to eq. (15) will mimic eqs. (6) and (8) because eq. (15) has the same form as



(
∂2

∂t2
− c2 ∂

2

∂x2

)
Ee(xd, t) = χ cos (kexd) (Ee(xr, t) + Eg(xr, t))Ep(t)

(
∂2

∂t2
− c2 ∂

2

∂x2

)
Eg(xd, t) = χ cos (kgxd) (Ee(xr, t) + Eg(xr, t))Ep(t)

. (14)
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eq. (2). Assuming resonant pumping, the amplification solutions are

Ee(t) = Ee(0) cos (ωet) cosh (Ω0t/2),

Eg(t) =
χ cos (kexr)A0Ee(0)

2ωgΩ0
sin (ωgt) sinh (Ω0t/2)

(16)

where Ω0 =
√
±χ2 cos (kexr) cos (kgxr)A2

0/4ωeωg, and initial conditions are Ẽe(0) = Ee(0)

and Ẽg(0) = 0. The ± sign in Ω0 corresponds to the sum-frequency pump ν = Σω (+) and
the difference-frequency pump ν = ∆ω (−). As the wavelengths of the two cavity modes
are slightly off, the nonlinear coupling can be either symmetric (same sign) or asymmetric
(opposite sign) depending on the position of the receiver antenna xr. For the symmetric
case we say that the symmetry relation is positive (χeχg > 0), and for the asymmetric case
the symmetry relation is negative (χeχg < 0). In the example of fig. 5(c), the cavity is
pumped with the difference frequency ν = ∆ω. As the receiver antenna moves across the
spatial phase profiles of the cavity modes, amplification (DPA) occurs in the regimes

xr ∈ ((2m+ 1)λe/4, (2m+ 1)λg/4) , (17)

where λe,g = 2π/ke,g and m is an integer. In these regimes, the symmetry relation is 99

negative χeχg = χ2 cos (kexr) cos (kgxr) < 0. Outside of these regimes, OPA can occur with 100

a sum-frequency pump (See fig. 5(b)). Dualism between DPA and OPA is manifested as the 101

position of the receiver antenna changes the symmetry nature in the coupling. 102

Finally, we address the problem of photon conservation in DPA. The standard Hamilto-
nian for second-order nonlinear interaction is Ĥs = Ĥ0 + h̄χ(2)(â†eâ

†
gẼp+ âeâgẼ

∗
p + â†eâgẼp+

âeâ
†
gẼ
∗
p) [10], where χ(2) is a real-valued parameter. The two terms â†eâ

†
gẼp and âeâgẼ

∗
p

describe the anti-Jaynes-Cummings interaction that supports OPA. The photon picture for
OPA is that one sum-frequency photon breaks into two lower energy photons at the target
frequencies. The other two terms â†eâgẼp and âeâ

†
gẼ
∗
p are the Jaynes-Cummings interaction

which promotes energy exchange between the target fields. If we generalize the three-body
Hamiltonian with nonlinear coupling parameters χe and χg,

Ĥg = Ĥ0 + h̄(χgâ
†
eâ
†
gẼp + χeâeâgẼ

∗
p

+ χgâ
†
eâgẼp + χeâeâ

†
gẼ
∗
p),

(18)

the generalized Hamiltonian Ĥg will yield a set of quantum Heisenberg equations that resem- 103

ble eq. (4). Note that the standard Hamiltonian Ĥs is resumed by choosing χe = χg = χ(2)
104

in Ĥg. The generalized Hamiltonian Ĥg in eq. (18) leads to solutions for âe(t) and âg(t) 105

similar to eqs. (6) and (8). In particular, when the symmetry relation is negative χeχg < 0, 106

a difference-frequency pump can give rise to an amplification solution. However, while the 107

quantum solutions are similar to those from the classical analysis, expectation values of 108

operators do not agree with corresponding classical observables. In the case of χe 6= χg, 109

or χe = χg = iχ(2), the generalized Hamiltonian Ĥg becomes non-Hermitian and the ex- 110

pectation value of total energy 〈Hg〉 is complex-valued, which is undesirable. Although the 111

difficulty of applying the photon picture for DPA does not exclude the possibility of real- 112

izing DPA, as it is predicted by a classical analysis, the incompatibility does suggest that 113

the quantization of DPA is not straightforward in the framework of conventional nonlinear 114

optics and further theoretical works are needed. 115

In conclusion, we derive from Maxwell equations the classical solutions for DPA as an 116

alternative pathway of parametric amplification. In contrast to OPA, amplification in DPA 117

requires a difference-frequency pump and negative symmetry relation of parametric coupling. 118

We illustrate the dualism between OPA and DPA by showing their corresponding roles in 119

mutually exclusive parameter regimes. As the DPA gain rate Ω =
√
−∆2 − χeχg|Ẽp|2/4ωeωg 120

p-9
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scales weakly with increasing target frequencies ωe,g, DPA could be suitable for efficient X- 121

ray amplification. 122

∗ ∗ ∗

The authors thank Da-Wei Wang, Luojia Wang, Xiwen Zhang, Anatoly Svidzinsky, 123

Wolfgang Schleich and Marlan Scully for advice. W. C. Huang wishes to give special 124

thanks to Steve Payne and William Seward for helpful discussions. This work utilized high- 125

performance computing resources from the Holland Computing Center of the University of 126

Nebraska. Funding for this work comes from NSF EPS-1430519 and NSF PHY-1602755.127

REFERENCES128

[1] A. Dutt, K. Luke, S. Manipatruni, A. L. Gaeta, P. Nussenzveig, and M. Lipson, Phys. Rev.129

Applied 3, 044005 (2015).130

[2] X. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech,131

J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, Nature 489,132

269 (2012).133

[3] D. M. Meekhof, C. Monroe, B. E. King, W. M. Itano, and D. J. Wineland, Phys. Rev. Lett.134

76, 1796 (1996).135

[4] B. Vlastakis, G. Kirchmair, Z. Leghtas, S. E. Nigg, L. Frunzio, S. M. Girvin, M. Mirrahimi,136

M. H. Devoret, R. J. Schoelkopf, Science 342, 607 (2013).137

[5] The LIGO Scientific Collaboration, Nat. Photon. 7, 613 (2013).138

[6] F. G. Colville, M. J. Padgett, and M. H. Dunn, Appl. Phys. Lett. 64, 21 (1994).139
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