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Abstract
Two-colormultiphoton emission frompolycrystalline tungsten nanotips has been demonstrated
using two-color laser fields. The two-color photoemission is assisted by a three-photonmulticolor
quantumchannel, which leads to a twofold increase in quantumefficiency.Weak-field control of two-
colormultiphoton emissionwas achieved by changing the efficiency of the quantum channel with
pulse delay. The result of this study complements two-color tunneling photoemission in strongfields,
and has potential applications for nanowire-based photonic devices.Moreover, the demonstrated
two-colormultiphoton emissionmay be important for realizing ultrafast spin-polarized electron
sources via optically injected spin current.

1. Introduction

Electron photoemission has played an important role in the advancement of ultrafast science [1, 2]. Recent
studies of photoelectrons demonstrate the feasibility of using tip-like nanostructures as ultrafast light detectors
and ultrafast electron sources [3–5]. In these studies, carrier-envelope phasewas used for ultrafast control of
tunneling photoemission in strong fields. However, suchmethods are not effective in theweak-field regime, as
photoemission inweakfields is accomplished throughmultiphoton processes [6]. The perturbative nature of
such processesmakes photoemission insensitive to the instantaneous field and the carrier-envelope phase. The
weak-field regime is especially important for nanotip photoemission because in this regime high repetition rates
are easily accessible, which can lead to bright photoemission electron sources while avoiding laser induced
damage.

In this report, we showweak-field control of two-color photoemission fromananotip by opening a
multicolor quantum channel. In the strong-field regime, two-color photoemission is controlled by the
asymmetric waveformof a two-colorfieldwhich facilitates directional tunneling [7–10]. In theweak-field
regime, two-color photoemission control will, however, be based on opening and closing amulticolor quantum
channel formultiphoton emission.Multicolor quantum channels aremultiphoton transitions inwhich photons
of different colors are simultaneously absorbed or emitted [11]. Given afixed photonflux, amulticolor quantum
channel can be used as a valve to control the output photocurrent.

The opening of amulticolor quantum channel can lead to a twofold increase in quantum efficiency. The
multicolor quantum channel and the associated increase in quantum efficiency have potential applications for
nanowire-based photonic devices [12–14].With the appropriate work function and laser wavelengths, ultrafast
control inweakfieldsmay be obtained through quantum interference between single-color andmulticolor
quantum channels [15–17]. The demonstrated two-colormultiphoton emissionmay also provide a pathway for
realizing ultrafast spin-polarized electron sources via optically injected spin current [18–20].

2. Experimental setup

Tungsten nanotips were used in our experiment because they are robust photoelectron emitters. The tipswere
prepared by electrochemically etching a polycrystalline tungstenwire. Tip radii were estimated to be around 50
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nm [21]. A schematic of the experimental setup is given infigure 1. A linearly-polarized, 400 nmpulsewas
generated collinearly from a linearly-polarized, 800 nmpulse using a frequency-doubling crystal (BBOType I,
thickness 0.5 mm). The 800 nmpulsewas provided by an amplified laser. The two pulses were separated by a
dichroic beamsplitter as they entered aMach-Zehnder interferometer. A high-passfilter was placed in the
optical armof the 400 nmpulse to eliminate the residual 800 nm light. Polarizations of the 800 and 400 nm fields
were independently rotatedwith half-waveplates. Polarization angles of the 800 and 400 nm fields were set at
+48° and−64°with respect to themaximum emission angle, whichwe define as the tip axis.We interpreted this
axis to coincide with the crystalline facet normal. The two polarization angles were chosen to keep the total
electron count rates below the repetition rate of the amplified laser (1 kHz). A translation stage with a piezo-
transducer and amicrometer was used to control the temporal overlap of the two pulses. Using FROG and
frequency-summing, the pulse duration of the 800 nmand 400 nmpulses weremeasured to be approximately
1×102 fs and 4×102 fs respectively [22]. In the vacuum chamber, a gold-coated off-axis parabolicmirror
focused the 800 nmand 400 nmbeams to a spot size of 7.8 μmand 5.5 μmdiameter respectively. The nanotip
was negatively biased at−170VwithoutDC emission. TheDC field strength at the tip apex is estimated to be

= ´E 8.5 10dc
8 Vm–1, using =E V krdc dc with tip voltage =V 170dc V, tip radius r=50 nm, andfield

enhancement factor k=4 [6]. A neutral density filter was placed in the optical armof the 800 nmpulse to
reduce its power. Peak intensities of the 800 nmand 400 nmpulses were estimated to be 6.7× 1011 W cm–2

(solid triangle infigure 2) and 2.2× 1010 W cm–2 (solid square infigure 2) at the focus, respectively. The relative
intensity values w wI I2 were chosen so that signals from two-color and single-colormultiphoton emission had
comparable strength. Photoelectrons were collectedwith a channeltron detector and recorded by a counter with
a 10 s average.

3. Results

The intensity dependence of single-color photoemissionwas recorded. Laser parameters were set in theweak-
field regime, so thatmultiphoton emissionwas dominant over tunneling photoemission [6]. Infigure 2, the
linear slopes confirm themultiphoton nature of the photoemission processes. For an 800 nm field, the slope of
n=4 indicates a four-photon emission process. For a 400 nm field, the slope of n=2 indicates a two-photon
emission process. The inferredwork function of the tungsten nanotip is between 4.5 and 6 eV, consistent with
previously reported values [21]. The highwork function can be accounted for by low electron emitting facets
such as theW(011) crystalline plane [23]. Assuming a nominal work function of 6 eV, the Schottky effect gives an
effective work function of 4.9 eV [6]. The signature ofmultiphoton emissionmotivates the use of high-order
time-dependent perturbation theory. The emission probabilities through the 800 and 400 nm single-color

Figure 1. Schematic of the experimental setup. A tungsten nanotip is irradiated by two-color fields. The two-colormultiphoton
emission is assisted by themulticolor quantum channel. Top right:multicolor quantum channels (dashed arrow) open up as the two-
color pulses overlap. Bottom left: aMach-Zehnder interferometer controls the delay τ of the 800 nmpulse. AcronymsVA,DC,DBS,
HF,ND, andHWP stand for variable attenuator, frequency-doubling crystal, dichroic beamsplitter, high-pass filter, neutral density
filter, and half-waveplate.
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multiphoton channels are =w w∣ ∣( )P C 4 2 and =w w∣ ∣( )P C2 2
2 2, where the corresponding probability amplitudes are
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Here w and w2 denote the 800 and 400 nmfields respectively. Notations ñ∣ f and ñ∣i represent initial andfinal
states, while ñ∣m , ñ∣n , and ñ∣k are intermediate states. Summations are over all virtual transitions. As the tip size is
small compared to laserwavelengths, the dipole approximation is assumed. The interactionHamiltonian is
taken to be

= -w w w w
ˆ ( ) ˆ ( ) ( )( )H t dE t , 2x

,2 ,2

where d̂ is the dipole operator, and w w( )( )E tx
,2 is the projected field along the tip axis. From equation (1), it can be

derived that the 800 nmand 400 nm single-color photoemission scalewith field intensities and polarization
angles as

qµw w w( ) ( )P I cos , 34 8

qµw w w( ) ( )P I cos , 42 2
2 4

2

where w w( )I I2 and qw (q w2 ) are the field intensity and polarization angle of the 800 nm (400 nm) pulse.When the
800 and 400 nmpulses overlap, the background-subtracted data shows a linear slope of n=3 (see figure 2),
evidencing the presence of amulticolor quantum channel. The three-photon two-color quantum channel has
the emission probability amplitude
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where tw is the delay of the w-pulse. Summations are over all virtual transitions and permutations w w( )p , 2
between wĤ and wĤ2 . The emission probability through themulticolor quantum channel is =w w w w+ +∣ ∣( )P C2 2

3 2,
and it scales withfield intensities and polarization angles as

Figure 2. Intensity dependence of single-color and two-colormultiphoton emission. The single-color signals are plotted against
single-color field intensities, wI and wI2 . To compare emission curves for different wavelengths, single-color data are shifted by scaling
the intensities to ´ wI0.1 and ´ wI25 2 . Themulticolor signal is background-subtracted and plotted against the two-color field
intensity ºw w w w( )I I I,2

2
2

1 3. Dashed lines with slopes =n 4, 3, and 2 are guides to the eye. Insets (a), (b), and (c) show the
corresponding diagrams for the 800 nm four-photon, the 400 nm two-photon, and the two-color three-photon processes described in
equations (3),(4),and(6).
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q qµw w w w w w+ ( ) ( ) ( )P I I cos cos . 62
2

2
4 2

2

One important remark is thatmultiphoton emission depends onfield intensities, while tunneling emission
depends on thefields themselves. This is because photoemission in theweak fields is accomplished through
multiphoton transitions, as described by perturbative amplitudes which depend on the time integral of the
interaction, rather than the instantaneouslymodifiedwork function as used in the description of tunneling
photoemission. As a result,multiphoton emission depends on only the polarization of bothfields with respect to
the tip axis, while tunneling emission also depends on the relative polarization between the fields.

Polarizationmeasurements support this picture of two-colormultiphoton emission. Varying qw while
keeping q = - w 642 fixed,makes the two-color photoemission varywith qw( )cos4 , as shown in the top panel of
figure 3. This agrees with equation (6). The zero polarization angles, q =w 0 and q =w 02 , are alignedwith the tip
axis. Unlike two-color tunneling photoemission, the relative polarization angle q q-w w2 does not play a
significant role here (see equation (6)). This is clearly indicated by the data, where the two-color signal is
symmetric with respect to the tip axis (q = w 0 ) instead of the fixed 400 nmpolarization angle (q = - w 642 ). In
themiddle panel offigure 3, red triangles (blue squares) gives the single-color polarization dependence, which is
obtained by sending in only the 800 nm (400 nm) pulse and varying qw (q w2 ). This agrees with equation (3)
(equation (4)) and shows that the two-color signal has a broader polarizationwidth than the 800 nm single-color
signal (see top panel black curve andmiddle panel red curve offigure 3). This is because the two w-photons
absorbed in themulticolor channel give a polarization dependence of qw( )cos4 , while the four w-photons
absorbed in the 800 nm single-color channel give a dependence of qw( )cos8 .

In the bottompanel offigure 3, the additivity

º
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+

w w
w w w w

w w
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7,2
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2

is given as a function of qw. Additivity is a convenientmeasure for collaborative effects in nonlinear systems [21].
A value of zeromeans that the systembehaves in a linear fashion. Deviation from zero for a nonlinear system
indicates the presence of collaborative effects. Additivity also characterizes quantum efficiency. =w wA 1,2

corresponds to a twofold increase in quantumefficiency. Substituting = + +w w w w w w+P P P P,2 2 2 to equation (7)
and using equations (3),(4),and(6), gives the additivity

q
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where c1 and c2 are parameters controlled by thefield intensities. The additivity shows a doublemaxima because
the single-color signal in the denominator is narrower than the two-color signal in the numerator.

Time-delaymeasurements show the opening of themulticolor quantum channel. In the top panel of
figure 4, the time-delay electron correlation spectrum shows a clear peak that is due to two-colormultiphoton
emission. Numerically solving the Schrödinger equation using theHamiltonian in equation (2) and a 2-level

Figure 3.Polarization dependence of single-color and two-colormultiphoton emission. Top: the background-subtracted two-color
signal (black circle) shows a q( )cos w

4 polarization dependence, implying that themulticolor quantum channel involves two
w-photons.Middle: the 800 nm and 400 nm signals scalewith four-photon polarization dependence qw( )cos8 and two-photon
polarization dependence q w( )cos4

2 , respectively. Bottom: the doublemaxima in additivity w wA ,2 confirms that fewer w-photons are
absorbed in themulticolor quantum channel than in the 800 nm single-color channel.
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model, gives good agreement with the data. In the bottompanel offigure 4, the twofold increase in quantum
efficiency is shown to be stable with increasing two-colorfield intensity ºw w w w( )I I I,2

2
2

1 3.
Notably, no fringes were observed in the electron correlation spectrum (inset of top panel, figure 4),

implying that themulticolor quantum channel is controlled by the pulse delay but not the relative phase between
the twofields. In contrast to two-color tunneling photoemission, phase effects in two-colormultiphoton
emission occur only if quantum interference is allowed. This requires that identical initial and final states can be
reached throughmultiple quantum channels. The fact that we do not observe fringes in the electron correlation
spectrum suggests that the final states reached by themultiphoton channels are not the same.

During the review process of this paper, a similar work fromHommelhoff’s groupwas published, where they
observed interference fringes in the electron correlation spectrum [24]. In their experiment, a single crystalline
W(310)nanotipwith an effective work function 3.6 eVwas irradiatedwith 1560 and 780 nm femtosecond
pulses. The observed fringes are attributed to the presence of a strong intermediate state right below the effective
work function. The intermediate state facilitates quantum interference between the four-photon 1560 nm
channel and the three-photonmulticolor channel. As polycrystalline tungsten nanotips were used in our
experiment, it is likely that therewas no such intermediate state, thus no interferencewas possible. Nevertheless,
it is noteworthy that themodel developed through our experiment is able to predict the shape of the observed
fringe pattern and the periodicity inHommelhoff’s experiment, for which they stated ‘... fail to describe the
sinusoidal shape observed in the experiment’ [24].

The experimental parameters they usedwere such that photoemission from the two-photon 780 nmchannel
is negligible, so interference occurs between only twomultiphoton channels. For the four-photon 1560 nm
channel, the emission probability amplitude is similar to equation (1),
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where ν stands for the 1560 nmfield, and tn is the delay of the ν-pluse. The accumulated phase factor is
nt+ n( )iexp 4 because four tn-dependent factors are involved. The positive sign indicates the absorption of ν-

photons. For the three-photonmulticolor channel, the emission probability amplitude is similar to equation (5),
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Figure 4.Electron correlation spectrumof two-colormultiphoton emission. Top: the overlap of the two-color pulses opens the
multicolor quantum channel (black circle). Simulation based on two-colormultiphoton emission gives good agreement with the data
(black line). Top inset: no fringes were observed in the electron correlation spectrum. The translation stagewas parked at
t = ´w 6.7 10 fs (black cross), while the piezo-transducer scanned through a delay range of 40 fs. Bottom: the twofold increase in
quantum efficiency is stable with increasing two-color field intensity w wI ,2 .
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where n2 denotes the 780 nmfield. The accumulated phase factor is nt+ w( )iexp 2 due to the absorption of two
ν-photons. Using nt= +n n n( )( )C f iexp 44 and t nt= +n n n n n n+ + ( ) ( )( )C f g iexp 22

3
2 , where qµn n n( )f I cos2 4 and

q qµn n n n n n+ ( ) ( )f I I cos cos2 2
2

2 are real-valued constants, and tn( )g is a normalized real-valued convolution
function, it can be shown that the interference fringes follow a sinusoidal pattern
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t j t

= + + +

= + + D
n n n n n n n n n n

n n n n n n n n

+ + +

+ +

( ) ∣ ∣ ∣ ∣
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )P C C C C C C

f f g f f g2 cos , 11qm

4 2
2

3 2 4
2

3 4
2

3

2
2

2 2
2

where the phase difference between the two interfering quantum channels is j ntD = n2qm . This result remains
the same if the n2 -pulse is delayed instead. The fringe periodicity from the above equation is p n= =T 2 2 2.6
fs, which corresponds to an oscillation frequency of 385 THz. The single-color signal nf

2 gives an offset to the

electron correlation spectrum. Themulticolor signal tn n n+ ( )f g
2

2 2 gives a peak similar to that observed in our
experiment (see figure 4). Visibility of the fringes is determined by the ratio between the interference signal and
the sumof the single-color andmulticolor signals,
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where a1 and a2 are parameters determined bymaterial properties. The above analysis provides a physically
motivatedmodel that accounts for both ours andHommelhoff’s results, including the sinusoidal fringe shape,
the 390THz fringe oscillation frequency, and the power dependence of the fringe visibility.

4.Discussion: ultrafast spin-polarized electron sources

The observed two-colormultiphoton emission shows thatmulticolor quantum channels can be of comparable
strength to single-color quantum channels. This provides the basis for realizing an ultrafast spin-polarized
electron source using two-colormultiphoton emission fromananotip. An ultrafast spin-polarized
nanostructured electron source is important for ultrafast electronmicroscopy and ultrafast electron diffraction
[25–28]. The state-of-the-art spin-polarized electron source is based on aNEA-GaAs photocathode, which is not
ultrafast [29–31]. Using two-color pulses, Sipe and colleagues have demonstrated ultrafast control for optically
injected spin currents on semiconductor surfaces [18–20]. In ZnSe, two single-color quantum channels were
interfered to create a net spin current [19]; one channel is 400 nmone-photon excitation from valence to
conduction band, and the other is 800 nm two-photon excitation.We envision that such a technique can be used
for spin current injection at the apex of a semiconductor nanotip, followed by extraction of spin-polarized
electrons via two-colormultiphoton photoemission [31]. The nanotip allows the use of low-intensity fields, as
compared to surface emission, and leads to a spatially coherent electron source [32, 33]. Although our
experiment did not show interference effects, the demonstratedmulticolor quantum channel and its control
may be used for launching and extracting ultrafast spin-polarized photoelectrons in appropriatematerials.

5. Conclusion

In conclusion, two-colormultiphoton emission from a tungsten nanotip has been demonstrated. The two-color
multiphoton emission is assisted by a three-photonmulticolor quantum channel. Themulticolor channel led to
a twofold increase in quantum efficiency. Control of two-colormultiphoton emissionwas achieved by opening
and closing themulticolor quantum channel with pulse delay. The demonstrated two-colormultiphoton
emission provides a pathway for the possible realization of ultrafast spin-polarized electron sources via optically
injected spin current.
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