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A B S T R A C T   

Wild pigs (Sus scrofa) cause extensive damage to agricultural crops, resulting in lost production and income. A 
major challenge associated with assessing damage to crops is locating and quantifying damaged areas within 
agricultural fields. We evaluated a novel method using multispectral high-resolution aerial imagery, collected 
from sensors mounted on unmanned aircraft systems (UAS), and feature extraction techniques to detect and map 
areas of corn fields damaged by wild pigs in southern Missouri, USA. Damaged areas were extracted from ortho- 
mosaics using visible and near-infrared band combinations, an object-based classification approach, and hier-
archical learning cycles. To validate estimates we also collected ground reference data immediately following 
flights. Overall accuracy of damage estimates to corn fields were similar among band combinations evaluated, 
ranging from 74% to 98% when using visible and near-infrared information, compared to 72%–94% with visible 
information alone. By including near-infrared with visible information, though, we found higher average kappa 
values (0.76) than with visible information (0.60) alone. We demonstrated that UAS are an appropriate platform 
for collecting high-resolution multispectral imagery of corn fields and that object-oriented classifiers can be 
effectively used to delineate areas damaged by wild pigs. The proposed approach outlines a new monitoring 
technique that can efficiently estimate damage to entire corn fields caused by wild pigs and also has potential to 
be applied to other crop types.   

1. Introduction 

Wild pig (Sus scrofa) populations in the U.S. have swelled to more 
than six million individuals and they have been documented in at least 
41 states (U.S. Department of Agriculture, 2015; Snow et al., 2017). 
With increasing populations and densities of wild pigs come higher 
levels of damage to agricultural and natural resources (Barrios-Garcia 
and Ballairi, 2012; Bevins et al., 2017; Seward et al., 2004). Wild pig 
damage to agricultural crops and control costs in the U.S. each year is 
conservatively estimated to be $1.5 billion (Pimentel, 2007). Anderson 
et al. (2016) reported that U.S. producers of corn, soybeans, wheat, rice, 
peanuts, and sorghum in 10 southern states lost $190 million in crop 
production in 2014 due to wild pigs. Income lost to crop consumption, 
associated trampling, and control costs may be substantial to 

agricultural producers, especially when profit margins are small 
(Anderson et al., 2016). More accurate, cost-effective, and repeatable 
approaches for detecting and estimating damage caused by wild pigs are 
needed to fully understand these impacts to agricultural producers, 
support economic assessments, and document effectiveness of control 
measures. 

Wild pigs have a very plastic diet and feed opportunistically on many 
plants and animals (Seward et al., 2004; Ditchkoff and Mayer, 2009; 
Barrios-Garcia and Ballairi, 2012). Wild pigs also exhibit seasonal and 
interannual preferences in diet, with agricultural crops often being 
preferred when available (Ditchkoff and Mayer, 2009; Morelle and 
Lejeune, 2015; Lombardini et al., 2017). Damage to crops begins 
immediately after planting (Engeman et al., 2018), persists through 
harvest (Schley et al., 2008), and includes consumption, rooting, and 
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trampling. The distance between crop fields and permanent vegetative 
cover is also a likely factor determining levels of crop loss (Schley et al., 
2008; Morelle and Lejeune, 2015; Bobek et al., 2017). 

Unmanned aircraft systems (UAS) outfitted with highly sensitive 
sensors are a relatively new technology with the ability to collect 
remotely sensed data at very high spatial (e.g. 5–10 cm) and temporal 
resolutions (e.g. daily or even hourly revisit times), thus they can assist 
with precision agriculture (Candiago et al., 2015; Christiansen et al., 
2017; Hunt and Daughtry, 2018), rangeland monitoring (Laliberte et al., 
2010; Laliberte et al., 2011; Sankey et al., 2018), forest mapping 
(Wallace et al., 2012; Getzin et al., 2014; Birdal et al., 2017), ecosystem 
monitoring (Habel et al., 2018), invasive species mapping (Samiappan 
et al., 2017), and detecting and monitoring pest infestations (Lehmann 
et al., 2015; Puig et al., 2015). Data collected by UAS have also been 
used recently to estimate damage to agricultural crops by wild pigs 
(Michez et al., 2016; Rutten et al., 2018; Samiappan et al., 2018). In 
particular, Michez et al. (2016) used a crop height model and manual 
ortho-photo delineation to estimate damage to corn. Kuzelka and Surovy 
(2018) used a similar crop height approach to delineate wild pig damage 
to wheat. Samiappan et al. (2018) used visible information and textural 
analysis classifiers to delineate damaged areas in corn fields. 

Remotely sensed image classification historically relied on per-pixel 
based processing to classify and extract objects of interest, frequently 
using unsupervised and supervised algorithms and spectral information 
alone (Jensen, 1996; Lu and Weng, 2007). However, today’s 
high-resolution satellite and UAS imagery has posed problems for these 
conventional classification techniques (Myint et al. 2006, 2011). New 
object-based classifiers use spectral, spatial, and iterative learning 
techniques to classify features (Quackenbush, 2004; Opitz and Blundell, 
2008; Gustafson et al., 2018). Object-based classifiers quantify features 
based on specific properties, such as color, texture, shape, area, and 
scale (Opitz and Blundell, 2008; Miller et al., 2009; Momm and Easson, 
2011). By using these properties the classifier is iteratively trained to 
classify and extract targeted outputs from remotely sensed data with 
highly accurate results (Miller et al., 2009; Myint et al., 2011). 

We evaluated the ability of UAS, multispectral information, and 
feature extraction software for detecting and mapping wild pig damage 

to production corn fields. We proposed that the addition of near infrared 
information collected by UAS sensors could increase classification ac-
curacy by adding additional information to further discriminate be-
tween soil, and damaged versus undamaged vegetation. Specifically, our 
objectives were to: 1) use object-based classification methods to pre-
cisely detect and extract areas damaged by wild pigs, and 2) compare 
accuracy of damage estimates using only visible information to those 
using visible and near-infrared information. 

2. Methods 

2.1. Study sites 

We conducted our study in portions of Bollinger, Dade, and McDo-
nald counties, Missouri, USA (Fig. 1). All UAS flights occurred over corn 
fields (n ¼ 5), ranging in size from 2 to 25 ha. Corn and soybeans were 
the primary agricultural crops grown in the region and producers typi-
cally rotated crops on an annual basis. Topography within fields was 
generally flat, with gentle rolling river drainages in adjacent areas. 
Fields were chosen based on historical or existing damage from wild pigs 
and damage was visually verified prior to all UAS survey flights. 

2.2. UAS imagery acquisition 

Surveys to locate and quantify damage were conducted with a 3DR 
Solo multirotor UAS (3D Robotics, Berkeley, CA, USA) equipped with a 
RedEdge multispectral sensor (MicaSense Inc., Seattle, WA, USA). The 
RedEdge sensor captured reflectance data in 5 discrete spectral bands: 
blue, green, red, red edge, and near infrared, centered on 475, 560, 668, 
717, and 840 nm, respectively. Front and side overlap between images 
was 75% and autonomous flight planning was conducted by Tower 
mission planning software (3D Robotics, Inc, Berkeley, CA, USA). All 
surveys were conducted at approximately 122m (400 ft) above ground 
level, which yielded a ground-sampling distance of 8.37 cm/pixel. We 
conducted two flights during the corn growing season: Flight 1 (8/1/ 
17–8/3/17) and Flight 2 (8/29/17–8/31/17). Flight 1 was conducted 
when corn kernels were at the R4 growth stage or the dough stage. Flight 

Fig. 1. Bollinger, Dade, and McDonald counties, southern Missouri.  
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2 was conducted when corn was physiologically mature or directly 
before harvest. Ortho-mosaics were created using automated image 
matching software (Pix4D, Lausanne, Switzerland). We increased the 
spatial accuracy of ortho-mosaics by collecting ground control points 
(GCPs) prior to all UAS flights using a sub-meter global positioning 
system (GPS) unit (Trimble, Sunnyvale, CA, USA; 1-sec logging interval) 
and incorporated these GCPs into the mosaicking workflow. A 
Normalized Difference Vegetation Index (NDVI) layer was also created 
in Pix4D. Normalized Difference Vegetation Index is a vegetation index 
used to measure and monitor photosynthetically active vegetation, 
which in our case was to delineate healthy or non-damaged, uniform 
plant structure from damaged plants. The NDVI was calculated as NDVI 
¼ (NIR – Red)/(NIR þ Red) where NIR and Red are the amount if near- 
infrared and red light reflected by vegetation. 

2.3. Automated feature extraction 

Areas damaged by wild pigs generally had unique spectral signatures 
and textural patterns, compared to areas of undamaged corn or other 
areas in fields. We used Feature Analyst (FA; Overwatch Systems Ltd, 
2010), a machine learning add-in for ArcGIS (ESRI, Redlands, CA, USA), 
to automate extraction of damaged areas from ortho-mosaiced UAS 
imagery. Feature Analyst is a semi-automated, object-orientated soft-
ware application that uses spectral and spatial information to classify 
and extract features of interest. 

Extracting areas damaged by wild pigs from the UAS imagery using 
FA software was a hierarchical learning process consisting of three 
repeatable phases (Fig. 2): collecting training samples, supervised 
learning to ‘train’ and define target features, and clutter removal. We 
digitized 3 areas (i.e. polygons) of wild pig damage of varying size, 
shape, and color from each ortho-mosaiced field. These areas defined 
our training samples; they represented areas of wild pig damage for each 
field. To streamline the learning process we experimented with choosing 
training samples from only one field and then applying those sample 
properties to the other fields. This resulted in poor results for some fields 
and is consistent to the findings of Aksoy et al. (2010) and Olowokudejo 
and Piwowar (2013). 

Initial supervised learning testing revealed that the NDVI layer 
generally worked best to broadly identify areas of damage and non- 
damage that we could then filter with FA hierarchical learning tools. 
We chose the ‘natural feature’ algorithm from the FA supervised 
learning tool, which functions to find individual features on the land-
scape. Feature analyst used contextual information (i.e. size, shape, and 
pattern) of pixels within and around our training samples to classify 
each pixel in the image. We limited our analysis to only include areas 
within field perimeters to reduce confusion during the classification 
process and processing time. Final outputs were filtered to only include 
damage areas �1 m2 to reduce the number of small polygons scattered 
throughout the fields. 

Initial output was a layer identifying areas matching the spectral and 
contextual signatures of the training samples. The output included 
correctly classified areas of damage, as well as false positives and missed 
features. We used the remove clutter option to “teach” FA what was 
correct and incorrect from the previous iteration of supervised learning. 
A second iteration of supervised learning was then run to refine the 
model, using both the NDVI layer as well as the 5-band multispectral 

UAS imagery to extract damaged areas. This process was repeated for 
each field. 

We also wanted to test the above method for estimating wild pig 
damage when only using visible spectrum information (i.e. red, green, 
and blue bands), which is what most standard UAS sensors capture. The 
same training samples were used, but initial supervised learning only 
included visible information (Fig. 2). As before, this analysis only 
included areas within the perimeter of fields and outputs were filtered to 
include damage areas �1 m2. 

2.4. Accuracy assessment 

In conjunction with UAS flights, a subset of in-field areas damaged by 
wild pigs were located and mapped with Trimble GPS units. Wild pigs 
trample and knock down standing corn stalks to gain access to high 
caloric kernels of corn (Fig. 3). These ground reference data were used to 
assess accuracy of wild pig damage estimates identified via the FA 
classification process. 

We assessed accuracy of the final classification using a confusion 
matrix (Congalton, 1991) and stratified random sample schema. It has 
been demonstrated that 50 points per class is adequate for estimating the 
accuracy of land-use or land-cover classifications (Congalton, 1991). To 
estimate accuracy at the field level we used a sampling scheme of 100 
hundred points per field or 50 points per class (i.e. damage and 
non-damage), resulting in 500 random points total for the five study 
fields. Each random point was overlaid on the FA classification, 
ortho-mosaic, and ground reference data and visually coded damage or 
non-damage. From the confusion matrix we calculated overall accuracy, 
producer’s accuracy (error of omission), user’s accuracy (error of com-
mission), and Kappa coefficients. The Kappa coefficient is a measure of 
how well a classifier performed by accounting for the possibility of 
agreement occurring by chance (Congalton, 2001; Viera and Garrett, 
2008). Kappa coefficients ranging from 0.41 to 0.60 indicated a mod-
erate level of agreement with ground reference data. Kappa coefficients 

Fig. 2. Simplified flow diagram for Feature Analyst process to extract wild pig damage.  

Fig. 3. Common example of wild pig damage to corn in southern Missouri, Aug 
3, 2017. 

J.W. Fischer et al.                                                                                                                                                                                                                              



Crop Protection 125 (2019) 104865

4

ranging from 0.61 to 0.80 indicated a substantial level of agreement. 

3. Results 

When incorporating both visible and near-infrared information into 
the FA classification, overall accuracies ranged from 74% to 98% 
(Table 1). User accuracies varied from 48.0% to 100% for the damage 
class and from 96.0% to 100% for the corn class (Table 1). Across all 
fields the kappa value was 0.76, which indicated a substantial level of 
agreement between the classification and ground reference sites. 

Overall accuracies were slightly less when using only visible infor-
mation (range: 72–94%; Table 1). User accuracies varied from 44.0% to 
98.0% for the damage class and from 90.0% to 100% for the corn class 
(Table 1). Three fields in particular (i.e. 2, 4, and 5) all had low user’s 
accuracy values for the damage class, meaning that only 44.0–48.0% of 

the areas identified as damage were actually damage. The overall kappa 
value across all fields was 0.60, which indicated a moderate level of 
agreement. 

Estimates of total area damaged ranged from 0.05% to 12.66% for 
the FA classification which incorporated both visible and near-infrared 
information (Table 2). All percentage estimates of total area damaged 
were less when incorporating only visible information, except field 4, 
and ranged from 0.04% to 5.70%. Visual examination of both classifi-
cations compared to ground reference areas often revealed that the FA 
classification that incorporated both visible and near-infrared informa-
tion more accurately included areas within damage site perimeters and 
mirrored ground reference damage boundaries compared to just the 
visible information classification which tended to underestimated 
damage (Fig. 4) 

4. Discussion 

Feature Analyst proved useful for delineating wild pig damage in 
corn fields. We tested many different combinations of FA functions via a 
trial-and-error process to determine which parameters were optimal for 
this application and needed to ultimately balance damage estimates 
between overestimation to underestimation. Once established though, 
only two cycles of hierarchical learning were needed to get detailed 
maps of damage sites. Initial testing revealed that damage training 
samples needed to extend all the way to the edge of damaged areas and 
that samples needed to include areas of the ortho-mosaic with differing 
image brightness. The arrival of afternoon clouds during most UAS 
flights led to mosaics that varied in image brightness and luminance. We 
also determined that using training sample characteristics from one field 
and applying those same characteristics to all fields led to poor results. 
Not all fields were planted with the same seed varieties or at the same 
growth stage, leading to different maturity dates and reflectance values. 
Subsequently, we identified training samples unique to each field and 
conducted our feature extraction at the field level. 

Our approach, using UAS and multispectral information, proved 
useful for identifying areas in corn fields that were damaged by wild 
pigs. Four of five classified fields had substantial levels of agreement 
between ground reference data and the automated damage map. The 
one field with only a moderate level of agreement had little damage and 
was further along in the maturation process, making it a challenge to 
obtain representative training samples and also a thinning canopy which 
resulted in more exposed soil to the multispectral sensor which may 
have confused the FA tool. Accurately estimating damage caused by wild 
pigs, or any other wildlife, is difficult and time consuming (Engeman 
et al., 2018), especially in large fields and when crops grow beyond the 
height of the observer. The ortho-mosaics generated from the UAS 
provided a ‘bird’s-eye’ view of fields that quickly and efficiently 

Table 1 
Summary of accuracy of Feature Analyst generated object classifications, which used 5 (blue, green, red, red edge, and near infrared) and 3 discrete spectral bands 
(blue, green, red) to delineate damage to corn fields in southern Missouri, USA, during 2017.   

Field 1 Field 2 Field 3 Field 4 Field 5 

Producer’s 
accuracy 

User’s 
accuracy 

Producer’s 
accuracy 

User’s 
accuracy 

Producer’s 
accuracy 

User’s 
accuracy 

Producer’s 
accuracy 

User’s 
accuracy 

Producer’s 
accuracy 

User’s 
accuracy 

Damagea 96.1% 98.0% 100.0% 70.0% 98.0% 98.0% 100.0% 74.0% 100.0% 48.0% 
Corna 98.0% 96.0% 76.9% 100.0% 98.0% 98.0% 79.4% 100.0% 65.8% 100.0% 
Overall 

accuracya 
97.0% 85.0% 98.0% 87.0% 74.0% 

Kappaa 0.94 0.70 0.96 0.74 0.48 
Damageb 90.7% 98.0% 100.0% 48.0% 97.5% 78.0% 100.0% 44.0% 100.0% 46.0% 
Cornb 97.8% 90.0% 65.8% 100.0% 81.7% 98.0% 64.1% 100.0% 64.9% 100.0% 
Overall 

accuracyb 
94.0% 74.0% 88.0% 72.0% 73.0% 

Kappab 0.88 0.48 0.76 0.44 0.46  

a Blue, green, red, red edge, and near-infrared spectral bands. 
b Blue, green, red spectral bands. 

Table 2 
Estimated area of corn fields damaged by wild pigs, using semi-automated 
feature extraction techniques, during 2017 in southern Missouri, USA.  

Bands Field Field area (ha) Damaged area (ha) Damaged area (%) 

R,G,B, 
RE, 
NIR 

Field 1 1.58 0.2 12.66% 
Field 2 13.99 0.19 1.36% 
Field 3 24.89 0.18 0.72% 
Field 4 23.89 0.07 0.29% 
Field 5 10.39 0.005 0.05% 
Total 74.74 0.645 3.02% 

R,G,B Field 1 1.58 0.09 5.70% 
Field 2 13.99 0.05 0.36% 
Field 3 24.89 0.13 0.52% 
Field 4 23.89 0.11 0.46% 
Field 5 10.39 0.004 0.04% 
Total 74.74 0.384 1.41%  

Fig. 4. Small portion of field 1 illustrating wild pig damage to corn and esti-
mates of damage with Feature Analyst classification using (A) visible and near- 
infrared information (yellow) and only (B) visible information (yellow). The 
hashed black and grey line is the field boundary. 
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highlighted patterns of wild pig damage throughout the field. These 
results highlighted the utility of sensors that capture multispectral data, 
which can then be used to calculate numerous vegetation indices and 
improve the accuracy of mapping products. 

Although inaccuracies in classification maps and estimated damage 
areas will exist for any UAS-based approach, we consider our method to 
be an objective, time-efficient, and accurate approach. Past studies, 
using visible or crop height information, have indicated that UAS-based 
imagery approaches underestimate damage caused by wild pigs (Michez 
et al., 2016; Samiappan et al., 2018). Some of this error was due to 
ortho-mosaic and classification procedures, while other error was due to 
alignment errors of ground reference data and damage maps. Initially 
we observed a slight shift in our ortho-mosaics, however this was 
removed by incorporating ground control points into the mosaicking 
process. 

Estimates of area damaged by wild pigs (0.005–0.2 ha) were similar 
to estimates in Mississippi using UAS and segmentation-based fractal 
texture analysis (Samiappan et al., 2018), but considerably less than 
estimates in northern Belgium using UAS and geographic object-based 
image analysis (Rutten et al., 2018). This may be the result of wild pig 
elimination programs occurring across Missouri and much the U.S., 
which has presumably lowered wild pig densities (Centner and Shuman, 
2015; U.S. Department of Agriculture, 2015). Future work includes 
estimating wild pig abundance near crop fields that have been damaged 
and establishing relationships between wild pig densities and amounts 
of damage (Davis et al., 2018). 

Unmanned aircraft systems are an emerging technology and are 
quickly becoming ubiquitous in natural resource disciplines and preci-
sion agriculture industries (Anderson and Gaston, 2013; Christiansen 
et al., 2017; Hunt and Daughtry, 2018). In contrast to fixed-wing 
aircraft, UAS can quickly be deployed to capture the temporal nature 
of the feature(s) being mapped, which in our case was crop damage. 
Increased spatial resolution and easily interchangeable sensors are also 
transforming ecological investigations that use UAS. More accurately 
determining when and where crop damage occurs could lead to better 
management decisions regarding tools and techniques needed to reduce 
or minimize wild pig damage. 

Wildlife damage to corn, and other crops, may be substantial and 
caused by a variety of wildlife species (i.e. white-tailed deer (Odocoileus 
virginianus), raccoons (Procyon lotor), black bear (Ursus americanus), plus 
many birds and rodents; Wywialowski 1996; Tzilkowski et al., 2002; 
Devault et al., 2007). We witnessed one corn field that appeared to be 
damaged by wild pigs, but was actually heavily damaged by raccoons. 
We excluded this field from our analysis, but acknowledge that this 
damage looked similar to wild pig damage and could confuse 
object-oriented classifications. Also complicating the classification pro-
cess might be areas in fields that appear to be damaged by wildlife, but 
are actually areas damaged by unusually high winds, flooding, failed 
seed germination, or impacted by insects or heavy equipment. We 
recommend always complimenting image classifications with thorough 
site visits and ground referencing to accurately identify the wildlife 
species causing damage. 
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