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nature-Guided Synthesis of 
Advanced Bio-Lubricants
trevor Romsdahl  1, Asghar Shirani2, Robert e. Minto3, chunyu Zhang4, edgar B. cahoon  5, 
Kent D. chapman1 & Diana Berman2

Design of environmentally friendly lubricants derived from renewable resources is highly desirable for 
many practical applications. Here, Orychophragmus violaceus (ov) seed oil is found to have superior 
lubrication properties, and this is based on the unusual structural features of the major lipid species—
triacylglycerol (tAG) estolides. ov tAG estolides contain two non-hydroxylated, glycerol-bound 
fatty acids (fAs) and one dihydroxylated fA with an estolide branch. estolide branch chains vary in 
composition and length, leading to their thermal stability and functional properties. Using this concept, 
nature-guided estolides of castor oil were synthesized. As predicted, they showed improved lubrication 
properties similar to ov seed oil. our results demonstrate a structure-based design of novel lubricants 
inspired by natural materials.

Increasing transportation and other industrial activities since the beginning of the last century have consumed 
much of the world’s non-renewable petroleum-based energy resources, and a significant portion of the energy 
produced is spent in overcoming the friction of moving mechanical systems1,2. Many research efforts are dedi-
cated to the understanding of the fundamental mechanisms of friction, and creating new ways to achieve higher 
efficiency and longer durability in all types of sliding, rolling, or rotating contacts3,4. Introducing an oil lubricant 
into the sliding contact is the commonly-used and most effective method for reducing friction and wear, prolong-
ing the lifetime of today’s moving mechanical assemblies5. Lubricants reduce friction by reducing sliding contact 
interfaces from metal-to-metal contacts or by forming a low-shear, high-durability boundary film on rubbing 
surfaces6. The petroleum industry offers a wide range of lubricant compositions exhibiting targeted physical and 
chemical characteristics for specific applications.

Use of conventional and synthetic oils and their products is often associated with producing hazardous waste 
and dangerous exhaust7. While being effective for lubrication applications, synthetic oils and their derivatives 
often are not appropriate for a range of bio-friendly applications, such as those in marine, food and medical 
industries; in addition, synthetic oils lead to adverse impacts to the environment8. Petroleum-based oils usually 
exhibit a low flash point leading to instability of lubrication properties and rapid degradation during thermal 
cycling9.

In an effort to design better lubricants that are environmentally-friendly, nature has provided inspiration. 
Plant-based oils often naturally demonstrate excellent lubrication characteristics, whereas lubrication with 
conventional and synthetic oils requires blending of several selected base oils with additive(s). Rapeseed-based 
lubricants are widely used in food and detergent manufacturing10,11. Jojoba oil has been tested as a blending 
component in lubricating oil formulations to improve their viscosity, anticorrosion and antifoaming proper-
ties12,13. Castor is one of the oldest cultivated crops for vegetable oil production, and a source of a hydroxy fatty 
acids (hFAs), which makes its production extremely important to the global chemical industry14,15. Compared to 
standard lubricants, castor oil demonstrates higher viscosity, density, thermal conductivity, and pour point values. 
Castor oil has also been suggested as a base oil for making 100% biodegradable greases and oleogels16. However, 
the origin of functional characteristics of the bio-oils is poorly understood and their use is limited to as-received, 
cold-pressed or refined liquids. Improvement in the lubrication characteristics of renewable lubricants is, there-
fore, highly desirable with multiple efforts being dedicated to this goal17–19.
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Recently, dihydroxy FAs were described in an obscure Brassicaceae species, Orychophragmus violaceus, as 
nebraskanic acid (7,18-(OH)2-24:1Δ15) and wuhanic acid (7,18-(OH)2-24:2Δ15,21)20. Preliminary studies suggested 
this oil possessed excellent lubricity properties at high temperature, likely due to the unusual dihydroxy fatty acid 
content of the oil. However, we show here that it is not the hFA content per se, but rather the presence of oligo-
meric estolides naturally found in the seed oil that affords its superior lubricity properties.

The OH functional groups of hFAs can be exploited for industrial applications such as by esterifying other 
FAs to the free OH groups to create estolides or by polymerization of FAs through ester linkages between hFAs. 
Synthetic estolides can be produced chemically by acid-catalyzed reactions or by reverse catalysis with lipases 
to drive the esterification of hFAs21,22. Varying the type of FAs in estolide synthesis changes the properties of the 
resulting estolide-containing oil that may improve or alter the properties for a desired application. The value of 
estolides comes from their higher oxidative stability, greater lubricity, and low temperature properties compared 
with typical petroleum-based oils23. Previously, estolides of various types have been found to occur naturally in 
plants that produce hFAs including ricinoleoyl estolides from castor, estolide TAGs in various Physaria species, 
Heliophila amplexicaulis, Mallotus philippensis, Trewia nudiflora, Chamaepeuce afra, and Sapium sebiferum, and 
an estolide of digalactosyldiacylglycerol from Avena sativa24–29. However, the amounts of estolides in these exam-
ples are generally quite low, and rarely do polymeric TAG estolides accumulate in seed storage tissues. By contrast, 
in this study, naturally occurring TAG estolides were found to comprise the entirety of the seed oil content from 
Orychophragmus violaceus (Ov). Additional detailed tribology analyses of Ov oil and fractions of capped and 
uncapped estolides from the seed oil indicated greater thermal stability, oxidative stability, and lubricity compared 
to castor oil at a wide range of temperatures. Further, the structure-function relationship in naturally occurring 
TAG estolides of Ov guided the improvement of bio-based lubricants for environmentally acceptable industrial 
applications.

Results and Discussion
Oil pressed from Ov seeds showed superior performance characteristics compared with the industry standard 
castor oil. For comparative purposes, the structures of O. violaceus TAG estolides, castor TAGs, and synthetic 
castor TAG capped estolides are shown in Fig. 1. Both oils demonstrated good wetting characteristics of the steel 
surfaces (Supplemental Fig. 1). The friction and wear of steel surfaces lubricated with Ov oil in comparison to 

Figure 1. Biobased lipids of interest. (a) A representative TAG estolide from Ov seed oil consisting of a triacyl 
TAG estolide (132:10-8OH, same as in Fig. 5b). (b) Tri-ricinolein, the major hydroxy TAG of castor oil with 
three ricinoleate moieties. (c) A representative of a synthetic estolide made from castor oil with the base hydroxy 
TAG tri-ricinolein and palmitoyl moieties added to each OH (same as in Fig. 7e; also compare 1b and 1c).
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castor oil showed lower values at all temperatures measured (Fig. 2, Supplemental Figs 2, 3). The coefficient of 
friction (CoF) for Ov oil showed up to a threefold reduction at elevated temperatures. For all temperatures, the 
wear rate of Ov oil lubricated steel surfaces was less by at least an order of magnitude (Fig. 2).

To better understand the protective properties of Ov oil, the wear tracks formed with Ov oil at 100 °C were 
compared to those generated with castor oil (Fig. 3). Raman mapping of the iron oxide peak at ~675 cm−1 indi-
cated much higher corrosion of steel inside the wear track formed during sliding in castor oil (Fig. 3d). In con-
trast, Ov oil demonstrated excellent protection against oxidation of the surface, which was attributed to the 
degradation resistance of the oil and uniformity of the protective lubricative layer (Fig. 3c). Scanning electron 
microscopy energy dispersive x-ray spectroscopy (SEM-EDS) analysis of the wear track confirmed the oxidative 
resistance of metals lubricated with Ov oil (Fig. 3e,f, Supplemental Fig. 4). Together, these results suggest that 
Ov oil enables suppression of steel surface oxidation under high contact pressure and shear conditions and leads 
to better lubricative characteristics of the oil. Interestingly, no carbon contrast is observed inside the wear track, 
indicating that Ov oil lubricity originates from the oil itself rather than from tribochemically driven formation 
of protective layers30–32. These results suggest that Ov oil shows high stability to variation in the local heating 
induced by the applied stresses a the sliding interface.

To further assess thermal stability of Ov and castor seed oils, electrospray ionization mass spectrometry 
(ESI-MS) was used to determine how the components of each oil changed following exposure to temperatures 
ranging from 100 °C to 300 °C (Fig. 4). Few changes were seen in either Ov or castor oils from temperatures 100 °C 
to 250 °C. At 300 °C, most of the m/z peaks from Ov seed oil were reduced or absent (Fig. 4a). In contrast, castor 
oil showed a marked decrease in hydroxy TAG content at 300 °C, from m/z 870 to 960 (Fig. 4b). Diacylglycerol 
m/z peaks appeared to increase in intensity from m/z 610 to 730. These observations suggest thermal degradation 
of castor oil occurs by fragmentation of glycerol-bound FAs. Several other peaks increased in intensity just below 
the m/z range of hydroxy TAG from 780 to 840. Additionally, peaks between m/z of 1050 and 1250 increased. 
The m/z peak at 1217.991 was selected for matrix assisted laser desorption ionization (MALDI)-MS/MS analysis 
to determine the identity of this novel peak present only at 300 °C treated oil but absent at lower temperatures. 
Fragmentation of the parent ion suggested a TAG estolide of tri-ricinolein with an additional linoleate esterified 
to one of the hFAs (Fig. 4c).

The superior lubrication properties of Ov oil likely were derived from chemical structures of its components, 
and, while the oil was known to contain dihydroxy fatty acids, analysis of the oil by ESI-MS revealed a complex 
mixture of TAG estolides with many high-mass m/z values not generally encountered in other seed oils (Fig. 5). 
These m/z values were far higher than the calculated values of TAG or hydroxy TAG containing nebraskanic or 

Figure 2. Lubrication characteristics of Ov oil and castor oil. (a) Schematic of experimental setup. Coefficient 
of friction (CoF) for the tribological tests performed with Ov oil and castor oil at different temperatures for the 
duration of 3000 cycles. (b) CoF measurements for Ov and castor oils at 25 °C, 100 °C, 150 °C, and 200 °C. (c) 
Wear rate of steel surfaces used in CoF measurements for both Ov and castor oils.

https://doi.org/10.1038/s41598-019-48165-6
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wuhanic acid moieties. High-performance thin layer-chromatography (HPTLC)-separated Ov oil revealed that 
essentially all of the oil was in the form of TAG estolides of high m/z (Fig. 5a). ESI-MS/MS and MALDI-MS/MS 
confirmed the presence of TAG estolides, and a representative analysis by high-resolution MS on a MALDI-LTQ 
orbitrap mass spectrometer showed one of the abundant species at m/z 2156.773 as having three dihydroxy very 
long chain fatty acids (VLCFAs) esterified to a glycerol-bound dihydroxy VLCFA (Fig. 5b). The parent ion mass 
of m/z 2156.8 indicated a sodiated uncapped triacyl TAG estolide of 132:10-8OH (132 FA carbon atoms: 10 total 
double bonds: and 8 total hydroxy substitutions). Strong fragment ions were found at m/z 1876.535, 1758.438, 
1556.268, 1478.202, 1380.128, and 1177.955. Neighboring fragment ion peaks differing by approximately 2 amu 
suggested overlapping isobaric molecular species within the MS/MS spectrum (Fig. 5b). The m/z fragment peaks 
at 1177.955 and 1556.268 both suggest a single glycerol-bound hFA with an estolide branch chain rather than 
multiple hFAs bound to the glycerol backbone. The most abundant diacyl TAG estolide showed a similar arrange-
ment with normal FAs on two of the carbons in the glycerol backbone and a branched estolide on a dihydroxy 
VLCFA esterified to the third carbon on the glycerol backbone (Supplemental Fig. 5).

Proton NMR data for the unfractionated estolide oil displayed considerable similarity to the spectra for methyl 
wuhanate, the methyl ester derived from the most abundant acyl chain in Ov oil20 (Fig. 6). The relative intensities 
of the methine resonances of the estolide, the more downfield signal corresponding to the free C-18 alcohol, and 
the upfield free C-7 alcohol were approximately 1.9:0.6:2.6, indicating that the major site of branching is at the 
homoallyl C-18 alcohol, with an average of 1.9 estolide linkages per glycerol. For the triacylglycerol, two sets of 
doublet of doublet (dd) resonances for the methylene hydrogens of the glycerol backbone are located at δ 4.12 and 
4.27 ppm (Fig. 6a). Benzoylation of Ov oil resulted in a second set of estolide methine signals (δ 5.1), mirroring 
observations with castor oil. Whereas in benzoylation at C-12 of castor oil resulted in typical two dd resonances 
for the methylene groups in the glycerol backbone (Fig. 6b), similar modification of C-7 resulted in new multiplet 
features and supported C-7 as the predominant location of unesterified OH groups (Fig. 6c).

TAG estolides terminating with an hFA are considered “uncapped” estolides while those terminating with a 
non-hydroxy FA are considered “capped” estolides. HPTLC separated the Ov TAG estolides by whether they were 
capped or uncapped and by the degree of acylation in the estolide branch chain (Fig. 5a, HPTLC bands 1–3 are 
capped, 4–6 are uncapped). Considering that uncapped TAG estolides may have different tribological properties 
in comparison to the properties of capped TAG estolides, the two types were chromatographically separated to 
determine CoFs at different temperatures (Fig. 7, Supplemental Fig. 6). At 25 °C the uncapped TAG estolides 
had a lower CoF relative to the capped TAG estolides, but at 100 °C capped TAG estolides showed a lower CoF 
(Fig. 7a,b). By contrast, at both temperatures a mixture of capped and uncapped TAG estolides (natural Ov oil) 

Figure 3. Analysis of the wear tracks formed in Ov and castor oil. Analysis of the wear track formed after the 
100 °C tribotest of sliding steel surfaces lubricated with Ov oil (a) and castor oil (b). Raman 2D map of the 
iron oxide peak (at ~675 cm−1) of Ov oil (c) indicates very little oxidation of the steel surface during sliding in 
contrast to castor oil (d). Detailed EDS analysis of oxygen, O, and carbon, C, for the wear tracks formed during 
lubrication with Ov oil (e) and castor oil (f) further confirms the better oxidation resistance and protection 
properties of Ov oil.

https://doi.org/10.1038/s41598-019-48165-6
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had a lower CoF, suggesting that both types of TAG estolides contributed to the improved tribological properties 
observed in Ov oil.

Previously, the improved properties of castor oil over other plant-derived oils were attributed to the pres-
ence of hFAs33. However, the unique estolide structures of Ov oil result in its superior performance over castor 
oil. With the knowledge that TAG estolides of Ov oil affect its performance, a path is suggested for improving 
lubrication characteristics of other plant-based oils. Here synthetic TAG estolides were made from castor oil 
by esterifying the hydroxyl groups of ricinoleate with palmitate (Fig. 7e), and then used to measure the CoF 
at 25 °C and 100 °C compared to unmodified castor oil. The synthetic castor estolides differed from Ov TAG 
estolides by being entirely “capped” with palmitate esterified to every available OH of tri-ricinolein. The synthetic 
castor estolides showed a lower CoF and wear at 25 °C and 100 °C relative to unmodified castor oil (Fig. 7c,d, 
Supplemental Fig. 7), consistent with previous results21–23, and further supporting the evidence that the presence 
of TAG estolides, and not only of hFAs, improve the tribological properties of plant seed oils. Even at higher tem-
peratures, the synthetic castor estolides show better lubrication characteristics (Supplemental Fig. 8). The wear 
tracks of the steel surfaces used to measure CoFs of synthetic estoylated castor oil was also less than unmodified 
castor oil (Supplemental Figs 7, 9 and 10). Additionally, the synthetic castor estolides showed greater thermal sta-
bility compared to unmodified castor oil. At 300 °C fully estoylated tri-ricinolein showed fragmentation, decreas-
ing its intensity, and subsequently increasing the intensity of synthetic castor estolides with 0, 1, or 2 estolide 
acylations (Fig. 7f).

The recent discovery of very long chain dihydroxy fatty acids in O. violaceus seeds prompted a preliminary 
functional examination of the seed oil20. It was originally presumed that the hFA content of the oil afforded the 
excellent high temperature lubricity properties. However, here we report that essentially all of the dihydroxy FA 
in O. violaceus oil is in the form of branched estolides esterified to TAGs, and we conclude that it is not hFA per 
se, but rather the estolide nature of the seed oil that is responsible for its enhanced lubricity properties, especially 
over castor oil. Discovering the estoylated nature of Ov oil served as a guide to further improve castor oil. This 
provides an example of designing a synthetic oil based on properties derived from a naturally occurring seed oil. 
Additionally, the observations of mixed, capped, and uncapped Ov TAG estolides suggest oil blends may produce 
favorable properties. Together this study revealed an unusual mixture of complex lipids in Orychophragmus vio-
laceus seeds formed from dihydroxy VLCFAs to TAG estolides with a long polymerized estolide branch chain, 
and showed the chemistry of unusual lipids from nature provides new insights into designing and understanding 

Figure 4. Thermal stability of Ov and castor oils. ESI-MS analysis of Ov (a) and castor (b) oil from 100 °C to 
300 °C. At 300 °C, castor oil appears to show fragmentation. High-mass m/z peaks appeared in castor oil at 
300 °C, such as at m/z 1217.991, further analyzed with MALDI-MS/MS (c) and found to be an oleoyl estolide of 
tri-ricinolein.

https://doi.org/10.1038/s41598-019-48165-6
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synthetic oils for improved and varied properties. Finally, Ov seed oil may offer a source of a functional plant- 
based oil as an alternative to petroleum-based oils as well as a unique chemical feedstock for synthesizing other 
useful bioproducts, such as plant oil-based polymers.

Methods
orychophragmus violaceus seed oil extraction. Approximately 30 mg of O. violaceus seeds were used 
per extraction for oil used in MS applications. Seeds were homogenized by bead beating for 45 sec with glass 
beads (Biospec Mini-Bead-Beater-16, Bartlesville, OK, USA) in 1 ml of 70 °C isopropanol with 0.01% butylated 
hydroxytoluene (BHT, w/v). An additional 1 ml of 70 °C isopropanol was added to wash out homogenization 
tubes and collected with homogenized sample. The homogenized seeds were incubated at 70 °C for 30 min to 
extract total lipids. Following incubation, 1 ml of CHCl3 and 0.45 ml of distilled water were added to each extrac-
tion. Samples were left to extract overnight at 4 °C. Extracted samples had an additional 2 ml of isopropanol, 1 ml 
of CHCl3, and 0.45 ml of water added before vortexing and centrifugation to sediment homogenized material. 
The supernatant was transferred to fresh tubes and then partitioned with the addition of 1 ml of CHCl3 and 2 ml 
of 1 M KCl. Partitioned samples were vortexed and centrifuged. The aqueous top layer was aspirated off, and this 
washing was repeated two more times. Following the wash, the organic layer was evaporated to dryness under 
nitrogen gas. Dried extracts were resuspended in 1 ml of CHCl3 until prepared for MS analysis.

tribology tests. The Ov oil used for tribology tests was extracted directly from the seeds of Ov plants by cold 
pressing and filtering through a paper filter (Sigma Aldrich). The density of the Ov oil was measured to be 0.905 g/
cm3. The viscosity of the Ov oil measured with Brookfield DV-II + viscometer was 1209 centipoise. Density and 
viscosity of the cold-pressed castor oil used as a baseline for the comparison analysis were 0.959 g/cm3 and 612 

Figure 5. Ov TAG estolide structure characterization. HPTLC (a, left) separated Ov oil into six bands: (1) 
capped monoacyl TAG estolide (red), (2) capped diacyl TAG estolide (dark blue), (3) capped triacyl TAG 
estolide (dark green), (4) uncapped monoacyl TAG estolide (dark red), (5) uncapped diacyl TAG estolide (light 
blue), and (6) uncapped triacyl TAG estolide (green). ESI-MS analysis of Ov seed oil showed peaks of high m/z 
values (a, black and below). The labels G-L denote to ions corresponding to the main species in each isolated 
HPTLC band (mass spectral traces are plotted next to the HPTLC in the stated color). Further MS/MS analysis 
and m/z values showed that the remaining species were present during the analysis of the crude oil: (A) PC 
and diacyl estolide fragments, (B) doubly charged diacyl TAG estolide, (C) hydroxy TAG as possible in-source 
fragmentation, (D) doubly charged capped triacyl TAG estolide, (E) doubly charged uncapped triacyl TAG 
estolides, and (F) triacyl estolide fragments. (b) MALDI-MS/MS of the uncapped triacyl TAG estolide 132:10-
8OH shows fragmentation at glycerol and estolide ester linkages. Full-length HPTLC image is presented in 
Supplemental Fig. 11.

https://doi.org/10.1038/s41598-019-48165-6
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centipoises, correspondingly. The dependence of the kinematic viscosity values for the oils on the temperature 
conditions is summarized in Supplemental Fig. 10. Pour point and volatility of the oils were measured according 
to the ASTM D97 and ASTM C681 standards correspondingly. A summary of the measured properties of the oils 
is presented in Supplemental Table 1.

The tribology tests were done using an Anton Paar macroscale pin-on-disk tribometer with the 10 μN sen-
sitivity of the frictional force sensor. The tests were performed at least 3 times to ensure reproducibility of the 
results. The tribology tests were performed in a linear reciprocating mode with 10 mm running distance and 1 Hz 
frequency of reciprocating motion. For the elevated temperature tests performed in the range of 25 up to 300 °C, 
the temperature readings were demonstrating ± 1 °C accuracy and stability.

Testing of the lubrication efficiency of the Ov oil was performed using mirror-polished (roughness ~ 
20–30 nm) 440 C stainless steel flat and ball (6 mm in diameter) samples. The samples were heat treated to demon-
strate the maximum hardness of 58 ± 2 HRC. Both the substrate and counterbody were cleaned by acetone before 
running the tests. The samples were submerged with 1.5 ml of oil during the tribology tests. The tests were per-
formed at a maximum contact pressure of 1.5 GPa, indicating the boundary lubrication regime.

characterization of the wear. After the tests, to perform further characterization of the wear tracks 
formed, the excess of oil was removed and the samples were rinsed with acetone followed by isopropanol.

The wear volume of wear scar on the pin side was calculated based on the following equations

π
=













+





V h d h
6

3
4 (1)

2
2

Figure 6. Complete 500-MHz proton NMR spectrum for unfractionated Ov estolide oil in CDCl3 at 28 °C. Full 
spectrum (bottom) shows estolide, glycerol methylene, and hydroxy-bearing methine resonances within the 
region from δ 5.24 – 3.5 ppm, as well as other signals corresponding to the acyl chains. (a–d) Show an expansion 
of the methine on the carboxyl side of an estolide ester (δ~4.9) and the doublet of doublet (dd) resonances 
for the methylene hydrogens of the glycerol backbone at approximately δ 4.1 and 4.3 ppm. (a) Expansion 
for Ov oil with the estolide signal at δ 4.86. Spectral data is shown for benzoylated castor oil (b), where the 
homoallylic estolide methine at C-12 is further downfield at δ 5.15 but the glycerol resonances are unperturbed. 
In benzoylated Ov oil (c), both naturally occurring and benzoyl estolides linkages are observed. Of note, signals 
from the glycerol backbone are more complex, altered by the proximate benzoyl ester at C-7, possibly stemming 
from magnetic anisotropy. In panel (d), the smaller, downfield multiplet for the methine of the free C-18 
alcohol and the prominent broad methine resonance at C-7 for the free hydroxyl group in Ov oil are observed, 
consistent with the estolides primarily occurring at C-18 on wuhanic/nebraskanic chains.

https://doi.org/10.1038/s41598-019-48165-6
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where d is the wear scar diameter, r is the radius of the ball, and

= − −h r r d
4 (2)

2
2

The optical images of the wear tracks were acquired using a Zeiss optical microscope. The micrographs 
and Energy Dispersive Spectroscopy (EDS) mapping were done by using FEI Quanta 200 Scanning Electron 
Microscope (SEM) equipped with EDS. The oxidation of the wear tracks was further characterized by Raman 
analysis performed using Nicolet Almega XR Dispersive Raman spectrometer with a green laser (wavelength of 
534 nm).

Figure 7. Lubrication properties of separated Ov estolides and synthetic castor estolides. Capped (red), 
uncapped (gray), and mixed (green) Ov TAG estolides showed different CoF at 25 °C (a) and 100 °C (b). 
Coefficient of friction results for castor oil with estolides (blue) and unmodified castor oil (black) at 25 °C (c) 
and 100 °C (d). (e) MALDI-MS/MS confirmed the structure of synthetic castor estolides with esterified 16:0. 
(f) ESI-MS of synthetic castor estolides showed fragmentation of the esterified 16:0 unlike the fragmentation of 
hydroxy TAG of unmodified castor oil, as seen in Fig. 4b.
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HptLc, eSi-MS, and MS/MS analysis of ov oil. Extracts used for HPTLC separation were diluted 1:10 in 
CHCl3. Diluted lipid extract was spotted in a series of 2 μl spots on to an HPTLC plate (EMD Millipore HPTLC, Ca. 
no. 1.51160.0001). Spotted HPTLC plates were run in a solvent system of 70:30:1 diethyl ether/heptane/acetic acid. 
One lane of the HPTLC plate was cut off and then charred by spraying with an aqueous solution of 10% cuprous 
sulfate with 8% phosphoric acid. Sprayed cut section of the HPTLC plate was charred in a hot oven until dark bands 
were visible. The cut section of the HPTLC plate that was charred was used to guide the scraping of the bands from 
the uncharred portion of the HPTLC plate. Bands were scraped off the HPTLC plate using a razor blade. Scrapings 
for each apparent band were collected separately and then extracted with 1 ml of CHCl3/MeOH (1:1, v/v) three 
times. Extracted washes were collected together and evaporated under nitrogen until dryness until prepared for 
ESI-MS analysis. Full TLC image is included in the Supplementary Information (Supplemental Fig. 11).

Extracted seed oil and extracted lipids scratched off from HPTLC plate used in ESI-MS analysis were diluted 
and resuspended in 1:100 concentration in CHCl3/MeOH/500 mM ammonium acetate (1:1:0.02, v/v/v) prior 
to analysis. From seed oils assayed for thermal stability and friction coefficients, 30 mg of spent seed oil was 
massed and then dissolved 1:100 (wt/v) in CHCl3/MeOH (2:1, v/v) until prepared for ESI-MS analysis in which 
dissolved oil was diluted 1:100 further in CHCl3/MeOH/500 mM ammonium acetate (1:1:0.02, v/v/v) prior to 
analysis. Samples were analyzed by direct infusion ESI-MS using an API 3000 triple quadrupole mass spectrom-
eter (Applied Biosystems). The following parameters were set during analysis: injection rate of 20 μl/min, source 
temperature of 100 °C, curtain gas of 10, nebulizing gas of 12, ionspray voltage of + 5500 V, declustering potential 
of 100 V, other parameters were left as default. Total ion scans were collected from m/z of 700 to 2500 with a scan 
time of 1.8 sec for extracted seed oils, and collected from m/z 200 to 700 and 700 to 2500 for spent seed oil used 
in thermal stability assays. Product ion scans were collected using the same set parameters with the following 
exceptions: collisional energy between 35 and 45 V, and collisional cell exit potential of 14 V. Samples used in 
product ion scans to determine OH binding of the estolide branch from the glycerol bound hydroxy FA in nega-
tive ionization mode were conducted with the same parameters described above with the following modifications: 
ionization mode set to negative, ion spray voltage of −4500 V, declustering potential of −60 V, collisional energy 
between −45 V and −60 V, collected from m/z 50 to 850 with a scan time of 1 sec. Data was collected using 
Analyst software (Sciex), exported as individual text files, and then analyzed.

tAG estolide nomenclature. TAG estolides are referred to by a nomenclature with the following structure: 
aa:bb-nOH, where ‘aa’ refers to the number of C in the FA moieties, ‘bb’ refers to the number of unsaturations, 
and ‘n’ refers to the number of OH groups from the dihydroxy FAs present. For example, the uncapped diacyl 
TAG estolide of 108:8-6OH (Supplemental Fig. 5) contains 108 C in the FAs, 8 unsaturations, and 6 OH groups 
from the dihydroxy FAs. TAG estolides with hFAs at the terminal end of the estolide branch chain are called 
“uncapped”, while those TAG estolides with nonhydroxy FAs at the terminal end are “capped” TAG estolides.

Solid phase extraction separation of ov tAG estolides. To determine the individual tribological 
properties of capped and uncapped TAG estolides, each type was separated using solid phase extraction (SPE) 
on a Supelco Discovery DSC-Si 6 ml, SPE cartridge (Sigma Aldrich cat. no. 52655-U). Ov oil was extracted in 
the same manner described above from approximately 2 g of seeds. Oil extracts were dissolved in 2 ml of hexane 
and divided into four portions roughly representing 500 μl. Each divided portion was loaded on to an individual 
SPE cartridge and let flow through. The solvents used to elute the TAG estolides through the column include, in 
the order used: 6 ml of hexane/diethyl ether (4:1, v/v) collected in 0.5 ml fractions, 5 ml of methanol collected in 
1 ml fractions, and 3 ml of chloroform collected in a single fraction. Following the collection of the fractions, 2 μl 
were spotted on to an HPTLC plate to estimate the efficacy of separation. Solvent conditions and detection for 
TLC analysis were the same as described above. Those fractions deemed to contain only capped or only uncapped 
TAG estolides were combined to form one collected sample of either capped TAG estolides or uncapped TAG 
estolides. Fractions containing a mixture of both capped and uncapped TAG estolides were pooled into a single 
collected sample to be used as a comparison to the samples containing only capped or uncapped TAG estolides. 
Additionally, another 1 g of Ov seeds were extracted and separated by SPE, but had all collected fractions com-
bined as a control unseparated oil to compare to Ov oil separated into capped, uncapped, and mixed samples. In 
both the separated and unseparated oils, a waxy, resinous material eluted during the chloroform wash and was 
collected but not mixed into any of the collected or pooled fractions as its identity could not be determined by 
TLC. On the TLC plate, this fraction remained as a spot at the origin with no apparent migration. The separated 
TAG estolides were then used in tribological measurements to determine the properties of each kind of TAG 
estolides relative to the unseparated Ov oil, labeled as “mixed.”

MALDi-MS and MS/MS analysis of ov seed oil. Extracted O. violaceus oil was analyzed by MALDI-MS/
MS using a MALDI-LTQ-Orbitrap-XL mass spectrometer (ThermoScientific) by spotting 5 μl of 1:10 oil diluted 
in CHCl3 on to a Superfrost Plus microscope slide (Fisherbrand), dried under a stream of nitrogen gas. Dried 
spots were coated with 2,5-dihydroxybenzoic acid (2,5-DHB) by sublimation. Mass spectrometer parameters 
were set as follows: laser energy of 12 μJ/pulse, 10 laser shots per step, normalized collision energy of 40, and an 
activation time of 35 ms. The MS/MS scan of the uncapped diacyl-estolide 108:8-6OH was selected for the sodi-
ated parent ion of m/z 1778.50 and collected from a m/z range of 485 to 1800. The MS/MS scan of the uncapped 
triacyl-estolide 132:10-8OH was selected for the sodiated parent ion of m/z 2156.8 and collected from a m/z range 
of 590 to 2200. Data were averaged across 50 steps and exported from Xcalibur software (ThermoScientific).

Synthesis of synthetic palmitoylated (16:0) estolides of castor oil. In a dry 250-mL 
one-necked round-bottom flask equipped with a septum and mineral oil bubbler, was placed a palmitic 
acid (40.44 g, 0.158 mmol, 3.62 equiv), toluene (40 mL), and a football-shaped stir bar. To the suspension, 
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N,N-dimethylformamide (250 μL) was added to the suspension followed by oxalyl chloride (12.9 mL, 0.152 mol, 
3.5 equiv) in five portions over one hour. During the course of the reaction, gas was rapidly evolved with very 
little heat production. After stirring for 4 h, a homogeneous, colorless solution resulted. Nitrogen gas was bubbled 
through the solution for 15 minutes to reduce the dissolved HCl content.

A second dry 250-mL one-necked round-bottom flask equipped with a dropping funnel and N2 gas inlet was 
loaded with castor oil (40.34 g, estimated molecular weight 933 g/mol, 0.0435 mol, 1.00 equiv), toluene (30 mL), 
and pyridine (12.7 mL, 0.158 mol, 3.62 equiv). The dropping funnel was loaded with palmitoyl chloride solution 
that was added over 25 min, using an ice-bath to moderate reaction temperature to < 30 °C. After stirring at 20 °C 
for 17 h, the resulting solution was extracted with toluene (20 mL) and water (75 mL). The organic phase was then 
washed with 50% (w/v) N,N-dimethylamino-2-ethanol (deanol; 3 × 25 mL) at 80 °C, water (2 × 50 mL), and 1 N 
HCl (100 mL then 50 mL). The organic phase and the upper portion of the aqueous phase were filtered through 
Celite to remove solids. The hazy solution was then washed with water (3 × 50 mL) and saturated brine (25 mL). 
After drying over MgSO4 and vacuum filtration, the solvent was removed at 50 °C using a rotary evaporator, the 
final yield of pale yellow estolide oil was 60.08 g (89%).

IR (KBr film, neat) 2922, 2852, 1734, 1465, 1166, 722 cm−1; 1H NMR (500 MHz, CDCl3) δ 5.4–5.5 (m, 2.71 H), 
5.3 (m, 3.53 H), 5.24 (m, 1 H), 4.86 (m, 2.67 H, estolide RR′CHOpalmitoyl), 4.28 (dd, 2 H), 4.13 (dd, 2 H), 2.3 
(m 19.6 H), 2.0 (m, 6.53 H), 1.6 (m, 12.4 H), 1.5 (m, 5.76 H), 1.2–1.35 (m, 123 H), 0.85 (m, 18 H); 13C{1H} NMR 
(125.7 MHz) δ 173.5, 173.2, 132.4, 124.4, 73.6, 68.9, 62.0, 34.7, 34.1, 34.0, 33.6, 32.0, 31.9, 31.7, 29.7, 29.62, 29.58, 
29.52, 29.46, 29.32, 29.27, 29.15, 29.1, 29.05, 29.01, 27.3, 25.3, 25.1, 24.83, 24.80, 22.6, 22.5, 14.05, 14.00.

Benzoylation of castor and Ov oil was accomplished using a similar procedure.

Data Availability
The authors declare that data supporting the findings of this study are available within the article and its supple-
mental information files.
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