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Wisconsin-Madison, Madison, United States

Abstract Macrophage activation/polarization to distinct functional states is critically supported

by metabolic shifts. How polarizing signals coordinate metabolic and functional reprogramming,

and the potential implications for control of macrophage activation, remains poorly understood.

Here we show that IL-4 signaling co-opts the Akt-mTORC1 pathway to regulate Acly, a key enzyme

in Ac-CoA synthesis, leading to increased histone acetylation and M2 gene induction. Only a subset

of M2 genes is controlled in this way, including those regulating cellular proliferation and

chemokine production. Moreover, metabolic signals impinge on the Akt-mTORC1 axis for such

control of M2 activation. We propose that Akt-mTORC1 signaling calibrates metabolic state to

energetically demanding aspects of M2 activation, which may define a new role for metabolism in

supporting macrophage activation.

DOI: 10.7554/eLife.11612.001

Introduction
Macrophages are pleiotropic cells that assume a variety of functions depending on tissue of residence

and tissue state. Their ability to acquire diverse, context-dependent activities requires activation (or

polarization) to distinct functional states, triggered by various factors including microbial products,

cytokines, and growth factors (Davies et al., 2013; Murray and Wynn, 2011). M1 or classical activa-

tion is triggered during infection by microbial products including LPS, leading to the transcriptional

upregulation of genes encoding antimicrobial activities and inflammatory cytokines. M2 or alternative

activation is triggered by IL-4 and IL-13 produced during parasite infections, and activates the tran-

scription factor Stat6 to induce a transcriptional program that coordinates fibrosis, tissue remodeling,

and Type 2 inflammation (Davies et al., 2013; Murray and Wynn, 2011). Therefore, the induction of

multi-component transcriptional programs underpins macrophage activation.

While macrophage activation is relatively well-understood at the level of signal transduction, tran-

scriptional regulation, and acquisition of new effector activities, the metabolic underpinnings remain

less clear. An emerging view is that macrophage activation to particular states is associated with
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distinct metabolic shifts (Pearce and Everts, 2015; Galván-Peña and O’Neill, 2014; Biswas and

Mantovani, 2012). For example, M1 macrophages upregulate glucose and glutamine utilization

(Tannahill et al., 2013; Cramer et al., 2003), while M2 macrophages augment b-oxidation and glu-

tamine consumption (Vats et al., 2006; Jha et al., 2015). Importantly, such metabolic shifts critically

support macrophage activation. Increased glycolytic flux in M1 macrophages is coupled to de novo

lipogenesis, which enables ER and Golgi expansion and production of high levels of inflammatory

cytokines (Everts et al., 2014). Another consequence of enhanced glycolysis is accumulation of the

TCA cycle metabolite succinate, leading to stabilization of the transcription factor HIF-1a and tran-

scriptional induction of Il1b and other target genes in the M1 macrophage (Tannahill et al., 2013).

How oxidative metabolism boosts M2 activation is not clear, but glutamine metabolism fuels produc-

tion of UDP-GlcNAC, an important modification of multiple M2 markers (Jha et al., 2015).

Consistent with the idea that macrophage activation is supported by metabolic shifts, recent stud-

ies indicate that macrophage polarizing signals impinge on metabolic signaling pathways. Polarizing

signals like LPS and IL-4 regulate the activity of Akt, mTORC1, and AMPK (Everts et al., 2014;

Byles et al., 2013; Cheng et al., 2014; Weichhart et al., 2008), presumably to coordinate metabolic

processes that critically underlie macrophage polarization. Limited studies indicate that perturbing

the activity of these metabolic regulators impairs macrophage metabolism and activation

(Everts et al., 2014; Cheng et al., 2014). For example, Akt mediates enhanced glycolysis to support

lipid synthesis and inflammatory cytokine secretion in M1 macrophages (Everts et al., 2014). Akt simi-

larly stimulates glucose-fueled lipid synthesis in growing and proliferating cells, where lipids are used

to build cellular membranes (Robey and Hay, 2009). Therefore, M1 macrophages co-opt a metabolic

process (Akt-dependent lipogenesis) in order to coordinate a macrophage-specific function

eLife digest Macrophages are immune cells that are found in most of the tissues of the body.

Exactly what the macrophages do depends on which tissue they are in, and the state of the tissue.

For example, M2 macrophages can multiply in numbers, heal wounds or help to fight off parasites

depending on the signals they receive from their environment. Conversely, when macrophages

sense pathogens such as bacteria they can also become M1 macrophages, which produce

inflammatory molecules that help kill the invading bacteria.

As a macrophage transforms into a more specialized state, its metabolism – the set of chemical

reactions the cell performs in order to survive and thrive – also changes. This shift appears to play an

important role in activating the macrophages and determining how they’ll specialize. However, little

is known about how metabolism exerts this control.

The metabolism of a cell can be investigated in part by studying the molecules, or “metabolites”,

that the cell produces. Covarrubias et al. studied what happens when unspecialized macrophages

from mice were activated by a signaling molecule called IL-4. This signaling molecule causes the

cells to become M2 macrophages, and the experiments revealed that IL-4 signaling controls the

amount of a metabolite called acetyl-CoA in the cells.

Acetyl-CoA can influence how the DNA of a gene is packaged in a cell, and thus affect whether a

gene is switched on and “expressed” or not. Covarrubias et al. therefore also analyzed a major

metabolic sensing pathway – the Akt-mTORC1 pathway – and showed how this pathway was able to

act as a nutrient sensor for the macrophage and control the enzyme responsible for making acetyl-

CoA. Therefore, the Akt-mTORC1 pathway can control the level of gene expression changes in the

macrophages as a result of IL-4 signaling.

The analysis showed that the increase in acetyl-CoA levels increases the expression of some of

the genes that cause the M2 macrophages to change state and develop their specialist behaviors.

However, only a subset of these genes – those that encode metabolically demanding activities such

as immune cell trafficking – have their expression controlled in this way. Further studies are now

needed to investigate whether other macrophage types use the same pathways to control their

responses.

DOI: 10.7554/eLife.11612.002
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(inflammatory cytokine secretion). In general, however, how polarizing signals control metabolic shifts,

and the full implications of this for control of macrophage activation, remains poorly understood.

Here we show that integration of the Akt-mTORC1 pathway into IL-4 signaling allows for selective

control of some M2 responses. Control is exerted at the level of Acly, a key enzyme in Ac-CoA pro-

duction, thereby modulating histone acetylation and transcriptional induction of a subset of M2

genes. Consistent with its role as an important metabolic sensor, the Akt-mTORC1 pathway couples

metabolic input to such gene-specific control. Our findings also reveal subsets of the M2 response,

including chemokine production and cellular proliferation, that are linked to metabolic state by Akt-

mTORC1 signaling.

Results

Akt regulates increased glucose metabolism in M2 macrophages
Akt is a major metabolic regulator implicated in M2 activation (Byles et al., 2013; Ruckerl et al.,

2012), but the underlying mechanisms remain poorly characterized. To begin to address this question,

we employed unbiased metabolic profiling of M2 macrophages, using LC/MS-based metabolomics

and a platform that measures ~290 small metabolites representative of all major pathways of interme-

diary metabolism (Ben-Sahra et al., 2013). Top enriched pathways include urea cycle and arginine and

proline metabolism, consistent with previous studies indicating upregulation of arginine metabolism in

M2 macrophages (Van Dyken and Locksley, 2013), as well as amino acid utilization and metabolism

and nucleotide metabolism (Figure 1A, Supplementary file 1). Other top enriched pathways include

glycolysis, amino sugar metabolism, and glycine, serine, and threonine metabolism, suggesting

altered flux through glycolysis and glycolytic shunts (Figure 1A, Supplementary file 1).

As M2 activation is thought to be sustained by fatty acid rather than glucose utilization

(Cramer et al., 2003; Vats et al., 2006), we decided to re-examine the role of glycolysis in M2 mac-

rophages. We found that BMDMs increased glucose uptake in a time-dependent manner in

response to IL-4 treatment. Such increase was reduced by cotreatment with the Akt inhibitor

MK2206 (Figure 1B), indicating control by Akt and consistent with a role for Akt in regulating glycol-

ysis in many settings (Robey and Hay, 2009). Moreover, enhanced glucose consumption in M2 mac-

rophages was associated with an Akt-dependent increase in both glycolysis and oxidative

metabolism, as indicated by extracellular flux assays (Figure 1C). Importantly, glycolytic flux was

needed for optimal implementation of the M2 program. Similar to the b-oxidation inhibitor eto-

moxir, the glycolysis inhibitor 2-DG reduced IL-4-mediated induction of some M2 genes (Figure 1D).

Therefore, Akt mediates enhanced glucose consumption in M2 macrophages, and this contributes

to induction of M2 gene expression. Such glucose consumption may also fuel production of UDP-

Glc-NAc, the substrate for glycosylation of some M2 markers (Jha et al., 2015). In contrast, Akt

does not control b-oxidation in M2 macrophages (Figure 1E).

IL-4 signaling activates Akt to allow for selective control of M2 gene
induction
Because the increase in glucose utilization was relatively modest, we considered that Akt could play

additional roles in control of M2 activation and turned to an analysis of M2 gene regulation. We

examined induction of Retnla, Arg1, Mgl2, Chi3l3, Cd36, and Fabp4, “hallmark” M2 genes com-

monly used in studies of M2 activation (Van Dyken and Locksley, 2013). Consistent with the role of

Stat6 as a transcriptional master regulator of M2 activation (Odegaard and Chawla, 2011), induc-

tion of these M2 genes was ablated in Stat6 KO BMDMs (Figure 2—figure supplement 1A). Impor-

tantly and as reported (Byles et al., 2013; Ruckerl et al., 2012), Akt activity controlled the induction

of a subset of M2 genes. In the presence of the Akt inhibitor MK2206, induction of Arg1, Retnla,

and Mgl2 was reduced ~40–80%, while Chi3l3, Cd36, and Fabp4 were not affected (or even super-

inducible) (Figure 2A). Use of a structurally distinct Akt inhibitor, Aktviii, yielded similar results, sug-

gesting specificity in inhibition (data not shown). Below, these two groups of genes will be referred

to as Akt-dependent and Akt-independent M2 genes, respectively.

The IL-4R activates Jak-Stat signaling as well as Akt-mTORC1 signaling in macrophages

(Byles et al., 2013) (Figure 2—figure supplement 1B). Receptor ligation activates the latent activity

of Jak1 and Jak3 kinases, leading to phosphorylation and activation of Stat6, as well as engagement
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of the adaptor protein IRS2. IRS2 recruits PI3K, which generates PIP3 from PIP2 leading to phosphor-

ylation and activation of Akt. Activated Akt phosphorylates and inactivates the TSC complex, a nega-

tive regulator of mTORC1, to activate mTORC1. While the precise relationship between Jak-Stat

and Akt-mTORC1 signaling remains unclear, the data in Figure 2A and Figure 2—figure supple-

ment 1A suggest that they may operate in parallel and independently downstream of the IL-4R.

Indeed, IL-4-mediated increases in Stat6 activation, as indicated by phosphorylation on Y641, was

not affected in the presence of an Akt inhibitor (Figure 2B). Stat6 activity as measured by a Stat6-

dependent luciferase reporter was also not impaired by inhibition of Akt activity (Figure 2—figure

supplement 1C). Conversely, WT and Stat6 KO BMDMs could similarly activate Akt, as indicated by

phosphorylation on S473, as well as mTORC1, as indicated by phosphorylation of the mTORC1 tar-

get S6K, in response to IL-4 (Figure 2B). These findings support the idea that the Jak-Stat and Akt-

mTORC1 pathways are independent signaling branches downstream of the IL-4R, and suggest a

basis by which all M2 genes are controlled by Stat6 while a subset receives additional inputs from

the Akt-mTORC1 pathway.

How might Akt signaling regulate a subset of M2 genes? A seminal study from Wellen and col-

leagues indicated that in cancer cells and differentiating adipocytes, metabolic state is linked to gene

expression via effects on histone acetylation (Wellen et al., 2009), thus we hypothesized that Akt may

Figure 1. Akt regulates enhanced glucose utilization in M2 macrophages. (A) Top metabolic pathways enriched in macrophages stimulated for 12 hr

with IL-4 (relative to unstimulated macrophages) as identified by LC/MS-based metabolomics profiling. (B) M2 macrophages increase glucose uptake in

an Akt-dependent manner. BMDMs were treated with IL-4 for the indicated time periods (left) or 16 hr +/- the Akt inhibitor MK2206 (Akti) (right),

followed by analysis of uptake of 3H-deoxy-D-glucose. (C) Increased glucose utilization in M2 macrophages is associated with enhanced oxidative

metabolism and glycolysis. BMDMs were treated with IL-4 for 20 hr +/- Akt inhibitor, followed by analysis of spare respiratory capacity (SRC) and

aerobic glycolysis (ECAR) in extracellular flux analyses. (D) M2 gene induction is sensitive to the glycolysis inhibitor 2-deoxyglucose (2-DG). BMDMs

were treated with IL-4 for 16 hr +/- 2-DG or the b-oxidation inhibitor etomoxir pretreatment, followed by analysis of M2 gene induction by qPCR. (E) Akt

does not regulate b-oxidation in M2 macrophages. BMDMs stimulated for 36 hr with IL-4 +/- Akt inhibitor pretreatment were incubated for 3 hr with
3H-palmitate for analysis of b-oxidation. The student’s t-test was used to determine statistical significance, defined as *P<0.05, **P<0.01, and

***P<0.001.

DOI: 10.7554/eLife.11612.003
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control histone acetylation to regulate M2 gene expression. Indeed, IL-4-treatment of BMDMs

enhanced global acetylation of H3 and H4 histones, as indicated by western blot of whole cell lysates

(Figure 2C, Figure 2—figure supplement 2A,B). Importantly, IL-4-inducible increases in global H3

and H4 acetylation were reduced by cotreatment with an Akt inhibitor, indicating at least partial

dependence on Akt (Figure 2—figure supplement 2A,B). In contrast, tubulin acetylation was not

modulated by IL-4 treatment (Figure 2—figure supplement 2A,B). We next examined gene-specific

patterns of H3 and H4 acetylation by chromatin immunoprecipitation (ChIP) experiments. IL-4 treat-

ment increased H3 and H4 acetylation at promoters of M2 genes (Figure 2D,E, Figure 2—figure sup-

plement 2C), with the degree of inducible acetylation correlating fairly well with the degree of gene

induction (Figure 2A). Interestingly, such increases in H3 and H4 acetylation were reduced by an Akt

inhibitor at M2 genes induced in an Akt-dependent manner (Arg1, Retnla, Mgl2), but not at M2 genes

induced independently of Akt (Chi3l3, Cd36, Fabp4) (Figure 2D,E). Pol II recruitment to M2 gene pro-

moters paralleled H3 and H4 acetylation, and was controlled by Akt at M2 genes induced in an Akt-

dependent manner (Figure 2—figure supplement 2D). Together, these findings support the hypoth-

esis that Akt regulates histone acetylation and Pol II recruitment at a subset of M2 genes.

Figure 2. Akt regulates inducible histone acetylation at some M2 genes. (A) Akt activity stimulates induction of a subset of M2 genes. BMDMs were

stimulated with IL-4 for 16 hr +/- the Akt inhibitor MK2206 (Akti) pretreatment, followed by analysis of M2 gene induction by qPCR. (B) The Jak-Stat and

Akt-mTORC1 pathways are activated independently downstream of the IL-4R. WT and Stat6 KO BMDMs were stimulated with IL-4 +/- Akt inhibitor as

indicated. Analysis of Stat6, Akt, and mTORC1 activation was assessed by western blotting. (C) IL-4 induces a global increase in histone H3 acetylation.

BMDMs were stimulated with IL-4 over the time course indicated, followed by analysis of histone H3 acetylation by western blotting. Bottom,

quantitation of acetylated H3 over total H3. (D, E) Akt regulates inducible H3 (D) and H4 (E) acetylation at some M2 genes. BMDMs stimulated with IL-4

for 16 hr +/- Akt inhibitor pretreatment were subject to ChIP analysis using antibodies to acetylated H3 or acetylated H4. Enrichment of the indicated

M2 gene promoters was assessed by qRT-PCR. The student’s t-test was used to determine statistical significance, defined as *P<0.05, **P<0.01, and

***P<0.001.

DOI: 10.7554/eLife.11612.004

The following figure supplements are available for figure 2:

Figure supplement 1. Stat6 and Akt-mTORC1 pathways are independent signaling branches downstream of the IL-4R.

DOI: 10.7554/eLife.11612.005

Figure supplement 2. Akt regulates inducible histone acetylation at some M2 genes.

DOI: 10.7554/eLife.11612.006
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Akt regulates Acly phosphorylation to control Ac-CoA production in M2
macrophages
How might Akt regulate increased histone acetylation in M2 macrophages? We hypothesized that

Akt may control production of Ac-CoA, the metabolic substrate for histone acetylation. Using quan-

titative stable isotope dilution-LC-MS, we found that IL-4 treatment led to a maximal increase in Ac-

CoA levels of ~40–75% (Figure 3A,C). A key regulator of Ac-CoA production is the enzyme Acly,

which cleaves cytosolic citrate to produce a nuclear-cytoplasmic pool of Ac-CoA (Wellen et al.,

2009). Akt has been shown to phosphorylate and activate Acly (Berwick et al., 2002; Lee et al.,

2014), and we found that in M2 macrophages, IL-4 treatment stimulated the activating phosphoryla-

tion of Acly in an Akt-dependent manner (Figure 3B, Figure 3—figure supplement 1A). Use of

lysates from MEFs transfected with ACLY siRNA confirmed specificity in detection of phosphorylated

and total Acly (Figure 3—figure supplement 1B). Importantly, cotreatment with Akt or Acly inhibi-

tors blocked the IL-4-mediated increases in Ac-CoA levels (Figure 3C), indicating Akt- and Acly-

mediated control of Ac-CoA production in M2 macrophages. Conversely, citrate, the substrate for

the Acly reaction, accumulated in the presence of the inhibitors (Figure 3—figure supplement 1C).

Figure 3. The Akt-Acly axis regulates inducible Ac-CoA production in M2 macrophages. (A) IL-4 treatment increases Ac-CoA production. BMDMs were

stimulated for the indicated time periods with IL-4, followed by analysis of Ac-CoA levels by LC-MS. (B) Akt regulates IL-4-inducible Acly

phosphorylation. BMDMs were stimulated as indicated, followed by analysis of Acly phosphorylation by western blotting. Arrow indicates phospho-

Acly. (C) Akt and Acly regulate IL-4-inducible production of Ac-CoA. BMDMs stimulated for 16 hr with IL-4 +/- inhibitor pretreatment were analyzed for

levels of Ac-CoA by LC-MS. (D) BMDMs were stimulated or not for 12 hr with IL-4, followed by a 2 hr incubation with 13C6-glucose,
13C16-palmitate, or

13C5-glutamine. Carbon tracing into Ac-CoA was assessed by LC-MS. Data shows arbitrary units of labeled 13C (M+2) in the different conditions. The

student’s t-test was used to determine statistical significance, defined as *P<0.05, **P<0.01, and ***P<0.001.

DOI: 10.7554/eLife.11612.007

The following figure supplement is available for figure 3:

Figure supplement 1. Akt regulates Acly to control inducible Ac-CoA production in M2 macrophages.

DOI: 10.7554/eLife.11612.008
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Next, we asked about the carbon source of the Ac-CoA that supports optimal M2 gene induction.

Untreated or IL-4-treated BMDMs were incubated with 13C6-glucose,
13C16-palmitate, 13C5-glutamine,

followed by carbon tracing into Ac-CoA as assessed by LC-MS (Figure 3D). IL-4 treatment enhanced
13C (M+2) Ac-CoA labeling regardless of the tracer, indicating that all three metabolic fuels contrib-

uted to the elevated Ac-CoA pool. The highest labeling was observed in BMDMs fed palmitate. While

LC-MS does not specifically measure the nuclear-cytosolic pool of Ac-CoA, these data suggests that

palmitate may be the major carbon source for histone acetylation in M2 macrophages (Figure 3D).

Acly regulates gene-specific histone acetylation to control M2
activation
These data prompted us to investigate a role for Acly in M2 activation. Indeed, the Acly inhibitor SB-

204990 reduced IL-4-mediated induction of Akt-dependent M2 genes (Arg1, Retnla, Mgl2) but not

Akt-independent M2 genes (Chi3l3, Fabp4, Cd36) (Figure 4A). The structurally distinct Acly inhibitor

MEDICA 16 had similar effects, indicating specificity in inhibition (data not shown). Moreover, SB-

204990 treatment attenuated IL-4-mediated increases in H3 and H4 acetylation at promoters of Akt-

dependent M2 genes, but not Akt-independent M2 genes (Figure 4B, Figure 4—figure

Figure 4. Acly controls inducible histone acetylation at some M2 genes. (A) Acly regulates induction of some M2 genes. BMDMs stimulated for 16 hr

with IL-4 +/- Acly inhibitor pretreatment were analyzed for M2 gene induction by qRT-PCR. (B) Acly regulates inducible H3 acetylation at some M2

genes. BMDMs stimulated for 16 hr with IL-4 +/- Acly inhibitor pretreatment were subject to ChIP analysis using antibodies to acetylated H3.

Enrichment of the indicated M2 gene promoters was assessed by qRT-PCR. (C) The p300 inhibitor C646 reduces induction of some M2 genes. BMDMs

stimulated for 16 hr with IL-4 +/- C646 pretreatment were analyzed for M2 gene induction by qRT-PCR. (D) Akt and Acly control IL-4-inducible arginase

activity. BMDMs were stimulated for IL-4 for 24 hr +/- inhibitor pretreatment, followed by analysis of arginase activity in cellular lysates as assessed by

urea production. The student’s t-test was used to determine statistical significance, defined as *P<0.05, **P<0.01, and ***P<0.001.

DOI: 10.7554/eLife.11612.009

The following figure supplements are available for figure 4:

Figure supplement 1. Acly controls inducible histone acetylation at some M2 genes.

DOI: 10.7554/eLife.11612.010

Figure supplement 2. Akt-Acly signaling regulates M2 activation in peritoneal macrophages.

DOI: 10.7554/eLife.11612.011
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supplement 1A). Likewise, SB-204990 treatment diminished Pol II recruitment at Akt-dependent M2

genes (Figure 4—figure supplement 1B).

Because Akt and Acly regulate a global increase in Ac-CoA levels (Figure 3C) but control induc-

ible histone acetylation only at some M2 gene promoters (Figure 2D,E, 4B, and Figure 4—figure

supplement 1A), Ac-CoA production is necessary but not sufficient for stimulating gene-specific

increases in histone acetylation, which must be conferred by specific transcription factors and histone

acetyltransferases (HATs). The activity of some HATs, including p300, is regulated by Ac-CoA levels

and metabolic status (Mariño et al., 2014; Pietrocola et al., 2015). Interestingly, the p300 inhibitor

C646 reduced induction of Akt-dependent but not Akt-independent M2 genes (Figure 4C). There-

fore, p300 may link the Akt/Acly-dependent rise in Ac-CoA levels to increased histone acetylation

and gene induction at some Akt-dependent M2 genes, while distinct HATs at Akt-independent

genes are insensitive to such modulation of Ac-CoA levels.

Arginase activity is a hallmark feature of M2 activation that supports collagen production and

polyamine synthesis (Van Dyken and Locksley, 2013). Consistent with effects on induction of Arg1,

arginase activity was regulated by Acly and Akt (Figure 4D). Additionally, Akt and Acly inhibitors

reduced induction of Akt-dependent M2 genes in peritoneal-elicited macrophages, indicating that

control of M2 activation by the Akt-Acly axis may be applicable to multiple macrophage populations

(Figure 4—figure supplement 2). Finally, induction of M2 gene expression by IL-13, a cytokine

closely related to IL-4 that also triggers M2 activation (Van Dyken and Locksley, 2013), was also

dependent on Akt and Acly (data not shown).

mTORC1 regulates Acly protein levels in M2 macrophages
Our findings that Akt regulates Acly activity to control Ac-CoA production and M2 activation led us

to consider a role for mTORC1 in this process. mTORC1 is a key downstream effector of Akt signal-

ing and their activities are intricately linked in many settings ([Dibble and Manning, 2013;

Pollizzi and Powell, 2014; Laplante and Sabatini, 2012] and Figure 2—figure supplement 1B).

Indeed, we found that induction of Akt-dependent M2 genes was deficient in BMDMs lacking Rap-

tor, a defining subunit of the mTORC1 complex (Dibble and Manning, 2013). In contrast, induction

of Akt-independent M2 genes was not reduced (Figure 5A). mTORC1 is known to stimulate Acly

expression (Porstmann et al., 2008; Düvel et al., 2010), and we found that Raptor-deficient

BMDMs expressed lower levels of Acly protein (Figure 5B). Conversely, BMDMs with constitutive

mTORC1 activity resulting from deletion of Tsc1 (Byles et al., 2013), a negative regulator of

mTORC1 (Dibble and Manning, 2013), displayed elevated Acly levels that were reduced by

Figure 5. mTORC1 controls Acly protein levels to regulate M2 activation. (A) mTORC1 regulates M2 activation. M2 gene expression in Raptorfl/fl and

Raptor4/4 BMDMs stimulated with IL-4 for 16 hr as assessed by qRT-PCR. (B) mTORC1 regulates Acly protein levels. Acly protein expression in

Raptorfl/fl and Raptor4/4 BMDMs stimulated as indicated.

DOI: 10.7554/eLife.11612.012

The following figure supplement is available for figure 5:

Figure supplement 1. mTORC1 activity regulates levels of Acly.

DOI: 10.7554/eLife.11612.013
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treatment with the mTORC1 inhibitor rapamycin (Figure 5—figure supplement 1). Additionally, we

noted that IL-4-inducible Acly phosphorylation was reduced in Raptor-deficient BMDMs (Figure 5B).

This raises the possibility that mTORC1 could also regulate Acly activating phosphorylation, through

mechanisms that remain to be clarified in future studies. Taken together, these data indicate that

the Akt-mTORC1 axis controls Acly activating phosphorylation and protein levels, likely contributing

to its control of M2 activation.

The Akt-mTORC1 pathway couples metabolic input to induction of
some M2 genes
The Akt-mTORC1 pathway is a major metabolic sensor, and mTORC1 activity in particular is con-

trolled by amino acid levels, ADP/ATP levels, and other metabolic inputs (Dibble and Manning,

2013; Laplante and Sabatini, 2012). Therefore, we considered that incorporation of the Akt-

mTORC1 pathway into IL-4 signaling, parallel to canonical Jak-Stat signaling, may allow particular

subsets of the M2 transcriptional program to integrate signals reflecting the cellular metabolic state

(Figure 6A). Amino acids directly and potently regulate mTORC1 activity independent of the TSC

complex (Dibble and Manning, 2013; Laplante and Sabatini, 2012) and can also activate Akt in

some contexts (Tato et al., 2011; Novellasdemunt et al., 2013), hence we varied amino acid con-

centrations as a way to modulate Akt-mTORC1 activity. As expected, mTORC1 activity, as assessed

by phosphorylation of its downstream target S6K, was greatly reduced in amino acid deficient media

and intermediate in media containing low levels of amino acids (Figure 6B). In line with (Tato et al.,

2011; Novellasdemunt et al., 2013), increasing amino acid levels also augmented Akt activation, as

indicated by enhanced phosphorylation on two critical residues, T308 and S473 (Figure 6B). Titrat-

ing amino acids had no effect on Stat6 phosphorylation and activation (Figure 6B), validating the

use of this experimental model to modulate the Akt-mTORC1 axis independent of canonical Stat6

signaling. Consistent with effects on mTORC1 and Akt activity, amino acid levels dose dependently

increased Acly phosphorylation and protein levels (Figure 6B) as well as Ac-CoA production

(Figure 6C). Importantly, amino acids potentiated induction of Akt-dependent but not Akt-indepen-

dent M2 genes (Figure 6D). This effect of amino acids was at least partially Raptor-dependent, indi-

cating a critical role for mTORC1 in this process (Figure 6—figure supplement 1).

We also examined M2 activation using the complementary model of leucine deprivation, since

leucine is particularly critical in regulation of mTORC1 activity (Hara et al., 1998). Here comparisons

were made between culture conditions that differed only in the presence or absence of one amino

acid, without significant effects on total levels of amino acids. Culture in leucine-deficient media

attenuated IL-4-inducible mTORC1 and Akt activity and Acly phosphorylation, but not Stat6 phos-

phorylation (Figure 6E). Importantly, leucine deficiency selectively reduced expression of Akt-depen-

dent M2 genes (Figure 6F). Taken together, these results indicate that amino acids and likely other

metabolic inputs feed into the Akt-mTORC1 axis to calibrate M2 activation to the metabolic state

(Figure 6A).

Finally, we found that physiological changes to nutrient levels can modulate M2 activation in adi-

pose tissue macrophages (ATMs). ATM M2 polarization is thought to critically maintain insulin sensi-

tivity in white adipose tissue, so such feeding-induced increases in M2 activation may coordinate

responses to nutrient influx to mediate metabolic homeostasis in the postprandial

state (Odegaard and Chawla, 2011). Specifically, we found that Akt activation was increased in the

fed state compared to the fasted state in the ATM-containing stromal vascular (SVF) fraction of the

white adipose tissue (Figure 6—figure supplement 2A). Although we were unable to reliably detect

pAcly or Acly in the SVF for technical reasons, global H3 acetylation (Figure 6—figure supplement

2A–B) and M2 gene expression (Figure 6—figure supplement 2C) followed a similar pattern and

were elevated in the fed state. Expression of all M2 genes was elevated in the fed state (Figure 6—

figure supplement 2C), consistent with an important role for IL-13, a critical regulator of ATM M2

polarization (Odegaard and Chawla, 2011) that is increased in the fed state (Figure 6—figure sup-

plement 2D), in feeding-induced ATM polarization, although postprandial elevations in nutrients like

amino acids and glucose may also contribute. Therefore, feeding-inducible Akt activity correlated

with increases in histone acetylation and M2 activation in ATMs.
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Akt and Acly regulate functional subsets of the M2 program
We employed genome wide transcriptional profiling to obtain a comprehensive view of regulation

of M2 activation by the Akt-Acly pathway. BMDMs were treated for 16 hr with IL-4 with or without

Akt or Acly inhibitors, followed by RNA seq (Figure 7) or microarray analysis (data not shown). In the

RNA seq analysis, 758 genes were induced >2.0 fold by IL-4, of which 91were downregulated >30%

by both Akt and Acly inhibitors (including Arg1, Retnla, and Mgl2), confirming critical roles for Akt

and Acly in control of M2 activation as well as substantial overlap in the activities of the two proteins

(Figure 7A,B). A subset of Akt inhibitor sensitive genes was sensitive to Acly inhibitor (91/327), in

line with a broader role for Akt in control of cell physiology. In contrast, most genes sensitive to Acly

inhibitor were sensitive to Akt inhibitor (91/118). This indicates that in the context of M2 activation,

Figure 6. The Akt-mTORC1-Acly axis links metabolic input to control of M2 activation. (A) Proposed model for how Akt-mTORC1-Acly signaling exerts

gene-specific control of M2 activation. Akt-TORC1-Acly signaling integrates metabolic input to control levels of Ac-CoA production, which modulates

histone acetylation and gene induction at some M2 genes by HATs such as p300. (B) Amino acid levels modulate the activity of the Akt-mTORC1-Acly

axis. BMDMs cultured in media containing varying levels of amino acids (normal, low, or no) were stimulated with IL-4 for the indicated time periods,

followed by analysis of Akt, mTORC1, and Acly activity by western blotting. (C) Amino acid levels modulate Ac-CoA production. BMDMs stimulated as

in B. were harvested for LC-MS analysis of Ac-CoA levels after 12 hr IL-4 stimulation. (D) Amino acid levels modulate induction of some M2 genes.

BMDMs stimulated as in B. were harvested for qRT-PCR analysis of M2 gene induction after 9 hr IL-4 stimulation. (E) Leucine deficiency attenuates the

activity of the Akt-mTORC1-Acly axis. BMDMs cultured in leucine-replete or leucine-deficient media were stimulated with IL-4 for the indicated time

periods, followed by analysis of Akt, mTORC1, and Acly activity by western blotting. Right, quantitation of Acly phosphorylation. (F) Leucine deficiency

reduces induction of some M2 genes. BMDMs stimulated as in E. were harvested for qRT-PCR analysis of M2 gene induction after 16 hr IL-4 stimulation.

The student’s t-test was used to determine statistical significance, defined as *P<0.05, **P<0.01, and ***P<0.001.

DOI: 10.7554/eLife.11612.014

The following figure supplements are available for figure 6:

Figure supplement 1. Amino acid levels modulate M2 gene expression in part through Raptor.

DOI: 10.7554/eLife.11612.015

Figure supplement 2. Feeding and fasting regulate M2 polarization of adipose tissue macrophages.

DOI: 10.7554/eLife.11612.016
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Acly is a major target of Akt and is critically controlled by Akt activity, likely in regulation of Ac-CoA

production and histone acetylation at M2 genes (Figure 7A,B).

Gene enrichment analysis of the 91 Akt- and Acly-coregulated genes identified preferential

enrichment of several pathways, including cell cycle and DNA replication (Figure 7C,D). IL-4 trig-

gered BrdU labeling of a subset of BMDMs in vitro (data not shown) and proliferation of macro-

phages in vivo (Ruckerl et al., 2012), thus IL-4 may stimulate macrophage proliferation in an Akt-

and Acly-dependent manner. Consistently, metabolic processes underlying cellular proliferation

were among the top enriched pathways in our metabolomics analysis, including nucleotide

Figure 7. The Akt-Acly axis controls functional subsets of the M2 program. (A) Venn diagram depicting the number of IL-4-inducible genes regulated

by Akt and/or Acly signaling. (B) Heatmap of normalized rank ordered Log2 RPKM values of top 50 IL-4 response genes co-regulated by Akt and

Acly. (C) Heatmap of enriched KEGG pathways within the cohort of IL-4-inducible genes. (D) Heatmap of enriched Gene Ontology terms within the

cohort of IL-4-inducible genes. (E) qPCR analysis validates regulation of chemokine and Ear genes by Akt-Acly signaling. BMDMs were stimulated with

IL-4 for 16 hr +/- Akt or Acly inhibitor. (F) ELISA analysis indicates that Akt-Acly signaling regulates production of CCL17 and CCL24. BMDMs were

stimulated with IL-4 for 36 hr +/- Akt or Acly inhibitor. The student’s t-test was used to determine statistical significance, defined as *P<0.05, **P<0.01,

and ***P<0.001.

DOI: 10.7554/eLife.11612.017

The following figure supplement is available for figure 7:

Figure supplement 1. Working models.

DOI: 10.7554/eLife.11612.018

Covarrubias et al. eLife 2016;5:e11612. DOI: 10.7554/eLife.11612 11 of 19

Research article Cell biology Immunology

http://dx.doi.org/10.7554/eLife.11612.017
http://dx.doi.org/10.7554/eLife.11612.018
http://dx.doi.org/10.7554/eLife.11612


metabolism and protein biosynthesis (Figure 1A). Interestingly, chemokines were also enriched in

Akt- and Acly-coregulated genes (Figure 7C–D), including Ccl2, Ccl7, Ccl17, and Ccl24. Akt- and

Acly-dependent induction of CCL17 and CCL24 was confirmed by qRT-PCR and ELISA (Figure 7E–

F). Finally, genes in the eosinophil associated ribonucleases (Ear) family were found to be regulated

by Akt and Acly. While barely missing the stringent cutoffs that we set for the RNA-seq analysis,

qPCR analysis confirmed coregulation of Ear2, Ear11, and Ear12 genes by the Akt-Acly pathway

(Figure 7E). Ear genes are of interest because Ear2 and Ear11 are thought to have chemoattractant

activity for dendritic cells and macrophages and are known to be highly induced in settings of Type

2 inflammation (Cormier et al., 2002; Yamada et al., 2015). Therefore, the transcriptional profiling

analysis indicated that the Akt-Acly pathway controls selective subsets of the M2 program to allow

their modulation by metabolic input (Figure 7—figure supplement 1A). As M2 macrophages play a

key role in metabolic homeostasis, parasite infection, allergic diseases, and wound healing and tissue

repair (Van Dyken and Locksley, 2013; Odegaard and Chawla, 2011), these findings are relevant

for metabolic control of macrophage function in diverse contexts.

Discussion
The Akt-mTORC1 pathway has a well-established role in promoting anabolic metabolism in grow-

ing/proliferating cells, tumor cells, and metabolic tissues. In the context of cellular proliferation, for

example, Akt-mTORC1 activity couples growth factor signaling and nutrient availability to the syn-

thesis of proteins, lipids, and nucleotides (Dibble and Manning, 2013). In contrast, the role of the

Akt-mTORC1 pathway in macrophages is much less intuitive. What is the teleological rationale for

control of macrophage activation by Akt-mTORC1 signaling (and metabolism more generally)?

Here we propose that IL-4 signaling co-opted the Akt-mTORC1 pathway to couple metabolic input

to regulation of certain components of the M2 response, including chemokines and cellular prolifera-

tion (Figure 7—figure supplement 1A). This is supported by our findings that IL-4 signaling leads to

parallel and independent activation of the Akt-mTORC1 pathway and the canonical Jak-Stat pathway,

allowing the Akt-mTORC1 axis to regulate a subset of M2 genes through control of Acly activity/

expression, Ac-CoA production, and histone acetylation. Why should some but not other components

of the M2 response be regulated in this way? Control of cellular proliferation is intuitive, since Akt-

mTORC1 signaling acts as a metabolic checkpoint in the context of cellular division to allow growth

and proliferation only when nutrients are abundant. What about chemokines? We propose that che-

mokines may be controlled by the Akt-mTORC1 pathway because of their key role in amplifying ener-

getically costly immune responses (Hotamisligil and Erbay, 2008). This allows metabolic status to

calibrate immune responses such that inflammation is amplified and sustained only under metaboli-

cally favorable conditions. Interestingly, previous studies have shown that a critical role for Akt-

mTORC1 signaling in activated CD8 T cells is to support their migration to sites of inflammation

(Finlay and Cantrell, 2011). Therefore, Akt-mTORC1 signaling regulates both facets of immune

response amplification, i.e., the ability of tissue-resident sentinel cells to mobilize activated leukocytes

and of activated T cells to be recruited. Together these findings add another dimension to our emerg-

ing understanding of how metabolism supports leukocyte activation and immune responses.

As discussed above, the Akt/Acly-dependent rise in Ac-CoA production is necessary but not suffi-

cient for stimulating gene-specific increases in histone acetylation. Such specificity is most likely con-

ferred by HATs with distinct Km (Pietrocola et al., 2015). Indeed, our analysis suggests that p300

may preferentially regulate at least a subset of the Akt-dependent M2 genes (Figure 4C). Its high

Km (Mariño et al., 2014; Pietrocola et al., 2015) may allow p300 to link metabolic status and Akt/

mTORC1 activity, in the form of Ac-CoA levels, to histone acetylation and transcriptional induction

at some M2 genes (Figure 7—figure supplement 1B). In contrast, HATs at Akt-independent M2

genes may have a low Km and are thus insensitive to such modulation of Ac-CoA levels. Presumably,

differential HAT recruitment is mediated by distinct transcription factors at Akt-dependent and inde-

pendent M2 genes, which would be important to address in future studies.

Although Akt activity has been linked to M2 activation, (Byles et al., 2013; Ruckerl et al., 2012),

the role of mTORC1 remained unclear. Here, we use Raptor4/4 BMDMs to show that mTORC1

activity stimulates M2 activation (Figure 5A). Furthermore, amino acids modulate mTORC1 activity

(Figure 6B) to potentiate M2 gene induction in a Raptor-dependent manner (Figure 6D, Figure 6—

figure supplement 1). Together these findings indicate that the Akt-mTORC1 signaling module

Covarrubias et al. eLife 2016;5:e11612. DOI: 10.7554/eLife.11612 12 of 19

Research article Cell biology Immunology

http://dx.doi.org/10.7554/eLife.11612


supports M2 activation. Acly appears to be a key target, with its expression levels and activating

phosphorylation controlled by mTORC1 and Akt respectively. In seeming contrast to these data indi-

cating that mTORC1 supports M2 activation, we and others have shown that aberrantly increased

mTORC1 activity in Tsc1-deficient BMDMs attenuates M2 activation (Byles et al., 2013; Zhu et al.,

2014). We hypothesize that the difference between the two models reflects divergent control of M2

activation by physiological and pathophysiological mTORC1 activity respectively. Downstream of the

insulin receptor, such context-dependent roles of mTORC1 are well-established. In lean/healthy ani-

mals, mTORC1 critically mediates insulin signaling in metabolic tissues (to coordinate postprandial

nutrient storage), but in obesity, chronic nutrient excess leads to an aberrant increase in mTORC1

activity that contributes directly to insulin resistance and metabolic dysregulation (Laplante and

Sabatini, 2012). Similarly, while physiological mTORC1 activity couples metabolic input to M2 acti-

vation, pathophysiological mTORC1 activation during chronic nutrient excess may impair M2 activa-

tion. It would be interesting to see if the latter is true in adipose tissue macrophages in the context

of diet-induced obesity, and if so, the consequences for tissue inflammation and metabolic

homeostasis.

Interestingly, while inducible Akt phosphorylation occurred within minutes of IL-4 stimulation

(Figure 2B), inducible Acly phosphorylation was detected with slightly delayed kinetics (~2 h,

Figure 5B and data not shown). Such delay may reflect a need for other inputs that facilitate Akt-

mediated Acly phosphorylation, or the reduced sensitivity and dynamic range of the pAcly antibody

compared to the pAkt antibodies. Once pAcly is detectable at ~2 h, Akt and Acly phosphorylation

nicely parallel and steadily increase up to (and perhaps beyond) 8 hr (Figure 5B). As expected,

inducible Akt and Acly phosphorylation precede increases in global histone acetylation, which is

observed starting only at 4 hr (Figure 2C). However, Ac-CoA levels increase only 8 hr after IL-4 stim-

ulation (Figure 3A). One possibility, supported by the increase in global histone acetylation at 4 h, is

that diversion of Ac-CoA into acetylated histones diminishes the free Ac-CoA pool. Another possibil-

ity is that because the LC-MS analysis measures bulk Ac-CoA rather than the nuclear-cytoplasmic

pool relevant for histone acetylation, changes in mitochondrial Ac-CoA levels could be confounding.

Again, global histone acetylation, which may more accurately reflect nuclear-cytoplasmic pools of

Ac-CoA, increases 4 hr after IL-4 treatment (Figure 2C), as does gene-specific increases in histone

acetylation at Akt-dependent M2 genes (Figure 2—figure supplement 2C). Therefore, we believe

that the preponderance of the data support our model that IL-4 triggers Ac-CoA production and his-

tone acetylation as a consequence of Akt-mediated Acly activation.

Metabolic status has long been proposed to modulate epigenetic control of gene expression

(Teperino et al., 2010; Kaelin and McKnight, 2013; Gut and Verdin, 2013), but only recently have

a handful of studies linked physiological changes in metabolite levels to chromatin regulation of

gene expression (Wellen et al., 2009; Lee et al., 2014; Shimazu et al., 2013; Carey et al., 2015).

Here we show how the Akt-mTORC1 axis couples metabolic input in the form of Ac-CoA levels to

histone acetylation and gene regulation, and importantly, to control specific subsets of the M2 pro-

gram. In addition to a recent study (Lee et al., 2014), this is only the second example of how Akt-

Acly signaling controls gene regulation through histone acetylation. Other macrophage polarizing

signals and common gamma chain cytokines (gc) (e.g. IL-2, IL-15) engage the Akt-mTORC1 axis, thus

our findings may have implications for multiple programs of macrophage polarization and leukocyte

activation. Canonical signaling downstream of the polarizing signal or gc specifies which genes are

induced, while regulation of Ac-CoA levels and histone acetylation by the Akt-mTORC1-Acly path-

way allows metabolic input to calibrate genes encoding energetically demanding processes; it would

be informative in future studies to determine the nature of these processes. Alternatively, Ac-CoA

can be synthesized independently of the Akt-mTORC1-Acly axis by AceCS1 (Hallows et al., 2006)

or nuclear pyruvate dehydrogenase (Sutendra et al., 2014) to mediate histone acetylation. AceCS1

activity is controlled by SIRT1, thus providing a means for Ac-CoA production and histone acetyla-

tion in conditions of low energy or nutrients (Hallows et al., 2006). Therefore, future studies to

determine how gene-specific histone acetylation is regulated during different macrophage activation

programs are warranted. These studies could pave the way towards new therapeutic approaches of

modulating macrophage function in diverse contexts, including Type 2 inflammation, metabolic

homeostasis, and antimicrobial immunity.

Covarrubias et al. eLife 2016;5:e11612. DOI: 10.7554/eLife.11612 13 of 19

Research article Cell biology Immunology

http://dx.doi.org/10.7554/eLife.11612


Materials and methods

BMDM culture and stimulations
BMDM cultures were established as described (Byles et al., 2013). For stimulations, BMDMs were

pretreated for 1 hr with inhibitors followed by addition of 10 ng/ml IL-4 for 16 hr unless otherwise

indicated. Inhibitors were used as follows: AKT inhibitor MK-2206, 2–5 mM (Selleck, Houston, TX);

ACLY inhibitor SB-204990, 40 mM (Tocris, United Kingdom); p300 inhibitor C646, 10 mM; etomoxir,

200 mM (Sigma, St. Louis, MO), and 2-deoxy-glucose, 1 mM (Sigma). For amino acid titration experi-

ments, BMDMs were plated in DMEM containing low levels of amino acids for 6 hr (to deplete cellu-

lar amino acid pools) prior to changing the media to DMEM with varying levels of amino acids (no,

low, or normal) +/- IL-4 for 16 hr. Normal is normal tissue culture media, while low indicates media

containing 5% of the normal levels of amino acids (obtained by mixing normal media and media lack-

ing amino acids). In experiments with leucine free media, BMDMs were stimulated in complete

DMEM or –Leu complete DMEM (Crystalgen, Commack, NY) +/- IL-4 for 16 hr. Tsc14/4 BMDMs

were described previously (Byles et al., 2013). BMDMs from UbiquitinC-CreERT2 Raptorfl/fl mice

were treated with tamoxifen to delete Raptor; parallel treatment of Raptorfl/fl BMDMs were used as

controls.

Mice
C57BL/6 mice were used for in vivo studies and as a source of BMDMs. Mice were maintained at

Harvard Medical School and all procedures were performed in accordance with the guidelines set

forth by the Institutional Animal Care and Use Committees at the institution. To generate Ubiqui-

tinC-CreERT2 Raptorfl/fl mice, previously described Raptorfl/fl mice (Sengupta et al., 2010) were

crossed with UbiquitinC-CreERT2 mice (The Jackson Laboratory, Bar Harbor, ME) in David Sabatini’s

laboratory at the Whitehead Institute in Cambridge, Massachusetts, in accordance with the guide-

lines set forth by the Institutional Animal Care and Use Committee at the institution.

Immunoblotting
Cells were lysed directly in 6X SDS loading buffer (histone western blots) or in 1% NP-40 buffer (all

other western blots). Protein concentration was determined using the Bradford method. Primary

antibodies were purchased from Cell Signaling except for a-Tubulin (Sigma), acetylated Tubulin

(Sigma), acetylated H3 (Millipore, Germany), acetylated H4 (Millipore), and total H4

(Abcam, Cambridge, MA).

Arginase assay
Arginase assay was done as described (Byles et al., 2013).

Extracellular flux assays
Oxygen consumption and extracellular acidification rates were measured with a XF96 extracellular

flux analyzer (Seahorse Bioscience, North Billerica, MA). Seahorse assay media containing 11 mM

glucose or plain assay media was used for the mitochondrial and glycolysis stress tests respectively.

OCR measurements were taken before and after the sequential addition of 1 mM oligomycin, 1.5 mM

FCCP and 2 mM antimycin/rotenone (Sigma). ECAR measurements were taken before and after the

sequential addition of 11 mM glucose, 1 mM oligomycin and 0.5 M 2-DG (Sigma). Values were nor-

malized with Hoechst 33342 staining (Life Technologies, Carlsbad, CA).

Glucose uptake
BMDMs were washed with Krebs-Ringer bicarbonate HEPES (KRBH) buffer once, followed by addi-

tion of 400 ml KRBH buffer. 100 ml loading buffer (KRBH buffer with 0.5 mM 2-deoxy-D-glucose

(Sigma) and 1 mCi/well 3H-deoxy-D-glucose (2-3H[G]) (PerkinElmer, Waltham, MA, 1 mCi/ml in EtOH:

water [9:1]) was added and incubated at 37˚C for exactly 15 min. 20 ml stop solution (1.5 mM cyto-

chalasin B (Sigma) in DMSO) was added, and the cells were washed with KRBH buffer before lysis in

0.1 N NaOH. The glucose uptake rate was determined by normalizing cellular 3H-deoxy-D-glucose

count to protein concentrations.
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Fatty acid oxidation
Fatty acid oxidation was done as described (Byles et al., 2013).

Chromatin immunoprecipitation
ChIP was done as described (Byles et al., 2013), using acetylated H3 (Millipore 06–599), acetylated

H4 (Millipore 06–866), or IgG (Santa Cruz, Dallas, TX, SC-2027) antibodies. Fold enrichment was cal-

culated as ChIP signals normalized to input. ChIP primer sequences as well as position relative to

transcription start site (TSS) are provided in Supplementary file 2.

Gene expression
RNA was isolated using RNA-Bee (Tel-Test, Friendswood, TX) per manufacturers protocol. cDNA

synthesis was done using High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster

City, CA). A Bio-Rad C1000 Thermocycler was used for qPCR, and data was analyzed by means of

the CFX Manger Software (Bio-Rad, Hercules, CA) using the delta/delta CT method. BMDM samples

were normalized to hypoxanthine phosphoribosyltransferase while ex vivo samples were normalized

to the macrophage marker CD68.

Dual luciferase assays
BMDMs were electroporated using mouse macrophage nucleofector kit (Lonza, Hopkinton, MA) and

the Amaxa machine with STAT6-Firefly luciferase (Addgene, Cambridge, MA, plasmid #35554) along

with Renilla–Luciferase plasmid as a transfection control. BMDMs were stimulated with or without 10

ng/ml IL-4 4 hr post electroporation for another 24 hr. Cell lysates were collected and analyzed using

the Promega Dual-Luciferase Reporter Assay System.

Acyl-CoA mass spectometry
BMDMs were lysed in 800 ml ice cold 10% TCA (Tricholoracetic acid). Sc5-sulfosalicylic acid (SSA),

ammonium formate, [13C6]-glucose, sodium [13C16]-palmitate, and analytical standards for acyl-CoAs

were from Sigma-Aldrich (St. Louis, MO). Optima LC-MS grade methanol, ammonium acetate, ace-

tonitrile (ACN) and water were purchased from Fisher Scientific (Pittsburgh, PA). Calcium [13C3
15N1]-

pantothenate was purchased from Isosciences (King of Prussia, PA). [13C3
15N1]-acyl-CoA internal

standards for quantitation were generated by pan6 deficient yeast culture as previously described

(Snyder et al., 2015), with 100 mL of extract spiked into samples before extraction. Standard curves

were prepared using the same batch of internal standard, and all samples were extracted by solid

phase extraction as previously described (Basu and Blair, 2012). Acyl-CoAs were analyzed as previ-

ously described for quantitation (Basu et al., 2011) and for isotopolog analysis (Worth et al., 2014)

by liquid chromatography-tandem mass spectrometry on an Agilent 1200 coupled to an API4000 in

the positive ion mode monitoring the acyl-CoA specific neutral loss of 507 amu from each acyl-CoA,

internal standard and isotopolog. For carbon tracing experiments, BMDMs were treated with 10 ng/

ml IL-4 for 12 hr before the addition of tracers (2g/L 13C6-glucose, 50 mM 13C16-palmitate, or 2 mM
13C5-glutamine) for another 2 hr.

Steady state metabolomics
BMDMs were stimulated for 10 hr with IL-4 before media was refreshed by addition of complete

RPMI with IL-4 for another 2 hr. Preparation of cellular extracts was done as described (Ben-

Sahra et al., 2013). Steady state metabolomics was done at Beth Israel Deaconess Medical Center

Mass Spectrometry Facility. Data analysis was performed as described (Ben-Sahra et al., 2013).

RNA-seq library construction, mapping, and analysis
Strand-specific libraries were generated using 500ng RNA input using TruSeq library preparation kit

(Illumina, San Diego, CA). cDNA libraries were multiplexed using specific unique adaptors and

sequenced using Illumina NextSeq 500 under single end 75bp read length parameters. Reads were

aligned to the mouse mm10 reference genome using TopHat using default settings (Langmead et al.,

2009). Alignments were restricted to uniquely mapping reads, with up to 2 mismatches permitted.

RPKM was calculated as described for mm10 Refseq genes by counting exonic reads and dividing by

mRNA length (Mortazavi et al., 2008). Coexpressed gene classes were generated with Cluster3 by
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applying k-means clustering to mean-centered log2 (FPKM) expression values. Differential analyses

was performed using DEseq (Anders and Huber, 2010) using default parameters for the indicated

comparisons. Cohort of IL-4 inducible genes was defined by following: >2 RPKM, Log2fold>1.0,

DESeq P-adj<0.05 yielding 758 IL-4 inducible genes. Inhibition by AKT or ACLY inhibitors defined as

30% reduction in RPKM and DESeq P-adj <0.05. Enrichment of KEGG pathways and Gene Ontology

(GO) terms analysis performed using DAVID (Huang et al., 2008).

Feeding/fasting experiments
8–10 week old C57BL/6 mice were fasted overnight or allowed to feed ad-libitum. Mice were sacri-

ficed the next morning and the perigonadal adipose tissue was excised. A small section of whole

adipose tissue (WAT) was homogenized in RNA-Bee for analysis of gene expression in unfractio-

nated WAT. The remaining adipose tissue was minced and digested in 5 ml Krebs ringer buffer

(KRBH) containing 2% fatty acid free BSA and 2 mg/ml collagenase (Sigma, C2674) for 20 min at

37˚C. The resulting cell suspension was filtered through a 250 mm nylon mesh and centrifuged at

1200 RPM to obtain a cell pellet corresponding to the stromal vascular fraction (SVF), which was

lysed for RNA extraction or western blotting.

Statistical analysis
Statistical analysis was carried out using Prism (GraphPad) software. The student’s t-test was used to

determine statistical significance, defined as *P<0.05, **P<0.01, and ***P<0.001.
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