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ASSOCIATED PRIMES AND SYZYGIES OF LINKED MODULES

OLGUR CELIKBAS, MOHAMMAD T. DIBAEI,

MOHSEN GHEIBI, ARASH SADEGHI AND RYO TAKAHASHI

Abstract. Motivated by the notion of geometrically linked ideals, we show that over a Gorenstein local

ring R, if a Cohen-Macaulay R-module M of grade g is linked to an R-module N by a Gorenstein ideal

c, such that AssR(M)∩AssR(N) = ∅, then M ⊗R N is isomorphic to direct sum of copies of R/a, where

a is a Gorenstein ideal of R of grade g + 1. We give a criterion for the depth of a local ring (R,m, k) in

terms of the homological dimensions of the modules linked to the syzygies of the residue field k. As a

result we characterize a local ring (R,m, k) in terms of the homological dimensions of the modules linked

to the syzygies of k.

1. Introduction

Peskine and Szpiro [28], introduced the notion of linkage and geometric linkage of projective algebraic

varieties; recall that two unmixed projective varieties X and Y of codimension g are geometrically linked

if X and Y have no common components and the scheme theoretic union X∪Y is a complete intersection.

More generally, two non-zero proper ideals I and J in a local ring R are said to be linked by an ideal

c contained in I ∩ J if I = (c :R J) and J = (c :R I) (denoted I ∼
c
J). If in addition, AssR(R/I) ∩

AssR(R/J) = ∅, then I and J are said to be geometrically linked by c. If c = 0 we just say I is linked

(or geometrically linked) to J . In their landmark paper [28], Peskine and Szpiro prove the following:

Theorem [Peskine-Szpiro]. Let R be a Gorenstein local ring and let I be a Cohen-Macaulay ideal of

grade g (i.e. R/I is Cohen-Macaulay ring). Suppose that I is geometrically linked to an ideal J by a

Gorenstein ideal c (i.e. R/c is a Gorenstein ring). Then I + J is a Gorenstein ideal of grade g + 1.

Therefore a new Gorenstein ideal can be obtained from the sum of geometrically linked ideals.

Another important result about geometrically linked ideals was proved by Ulrich in [31]. Recall that

an ideal I of a local ring R is called licci (in the linkage class of a complete intersection) if there exists a

chain of linked ideals I ∼
c1
I1 ∼

c2
· · · ∼

cn
In, where c1, · · · , cn, and In can be generated by a regular sequence.

Ulrich showed that if R is a Gorenstein local ring, then the sum of two geometrically linked licci ideals

of R is again a licci ideal. Also Huneke [21], showed that if R is Gorenstein and I is a licci ideal then the

Koszul homologies Hi(I) of I are Cohen-Macaulay, for all i ≥ 0. So over a Gorenstein local ring, finding

geometrically linked ideals is useful and important for finding other nice ideals. For more results about

geometrically linked ideals, see [28], [31], [24], [20] and [29].
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Linkage of ideals has been generalized to modules by Yoshino and Isogawa [32], by Marsinkovsky and

Strooker [26] and by Nagel [27], in different ways and, based on these generalizations, several works have

been done on studying classic results of linkage in the context of modules; see for example [10], [11], [12]

and [23]. In this paper, we are interested in linkage of modules in the sense of [26].

Let R be a commutative Noetherian local ring, M a finitely generated R-module, and F1
f→ F0 →

M → 0 a minimal free presentation of M . The image of f is called the first syzygy of M and it is

denoted ΩM . The transpose of M (denoted TrM) is defined to be the cokernel of the induced map

f∗ : HomR(F0, R) → HomR(F1, R). According to [26], M is horizontally linked to an R-module N if

M ∼= ΩTrN and N ∼= ΩTrM . The transpose and syzygy functors and their compositions already have

been studied by Auslander and Bridger; see [2]. Two R–modules M and N are said to be linked by an

ideal c ⊆ AnnR(M) ∩ AnnR(N) (denoted M ∼
c
N), if M is horizontally linked to N over R/c. It turns

out that two ideals I and J of R are linked by an ideal c ⊆ I ∩ J if and only if the R-module R/I is

linked to R/J by c; see [26].

According to the notion of the geometrically linked ideals, the first purpose of this paper is to study

linked modules that have no common associated primes. In section 3, we give a generalization of the

above theorem. More precisely, we prove the following:

Theorem 1.1. Let R be a Cohen-Macaulay local ring, K a semidualizing R-module and M a GK- perfect

R-module of grade n < dimR. Assume M is linked to N by a GK- Gorenstein ideal c, and AssR(M) ∩
AssR(N) = ∅. Then M ⊗R N is free over S := R/(AnnR(M) + AnnR(N)) and AnnR(M) + AnnR(N) is

a GK- Gorenstein ideal of grade n+ 1.

For definition of semidualizing module, GK- perfect module, and GK- Gorenstein ideal, see section 2.

Along with studying the results of geometrically linked ideals in the context of modules, also we prove

the following:

Theorem 1.2. Let R be a generically Gorenstein unmixed local ring of dimension d ≥ 1, and let M be

a finitely generated R-module. Assume M is horizontally linked to λM . Then the following statements

are equivalent:

(i) AssR(M) ∩AssR(λM) = ∅.
(ii) AnnR(M) is geometrically linked to AnnR(λM).

(iii) AnnR(M) is linked to AnnR(λM) and TorR1 (M,λM) = 0.

(iv) M is free over R/AnnR(M) and Ext1R(M,M) = 0.

Our next aim in this paper is to study the properties of a local ring (R,m, k) by looking at linkage of

syzygy modules of k. Dutta [13] showed that if some syzygy module of the residue field k has a non-zero

direct summand of finite projective dimension, then R is regular. Motivated by Dutta’s Theorem, a

natural question is what properties does the ring R have if an R-module linked to a syzygy of k, has a

non-zero direct summand of finite projective dimension? We prove the following result in section 5:

Theorem 1.3. Let (R,m, k) be a local ring and let n ≥ 0 be an integer. Let X be a non-zero direct

summand of λΩnk. Then the following statements are equivalent.

(i) pd(X) <∞.

(ii) pd(X) = n.
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(iii) depthR > n.

Also, we show that a similar assertion holds if a module horizontally linked to Ωnk has finite complete

intersection dimension or finite Gorenstein dimensions.

2. Preliminaries

In the present section we recall some preliminary results from the literature that we need for the rest

of the paper.

Throughout R is a commutative Noetherian local ring and all modules over R are assumed to be

finitely generated. For a finitely generated R–module M , let F1 → F0 → M → 0 be a minimal free

presentation of M . Then by applying (−)∗ = HomR(−, R), there exists an exact sequence

(2.1) 0 −→M∗ → F ∗0
f∗

→ F ∗1 → TrM → 0.

If M is stable (i.e. has no free direct summand) then TrTrM ∼= M , and 2.1 gives a minimal presentation

of TrM (see [4, Theorem 32.13]). As in [26], for a non-zero R-module M we will set λM to be the first

syzygy module of TrM i.e. λM = ΩTrM . Hence M is horizontally linked to λM if and only if M ∼= λ2M .

In this case, we briefly say M is horizontally linked. Also, if an ideal I is linked (geometrically linked) to

(0 :R I), we just say I is linked (geometrically linked) ideal of R. Note that M is a free R-module if and

only if λM = 0.

In the following, we recall some basic properties of linkage of modules that we need for the rest of

paper.

Proposition 2.1. [26, Proposition 3] Let R be a local ring and let M be a horizontally linked R-module.

Then M and λM are stable R-modules.

Let R be a ring. An R-moduleM is called a syzygy module if there exists an injective R-homomorphism

ι : M → F , where F is a free R-module.

Proposition 2.2. Let R be a ring and let M be an R-module. Then M is a syzygy module if and only

if Ext1R(TrM,R) = 0 (see [2, Theorem 2.17]).

Theorem 2.3. [26, Theorem 2] Let R be a local ring and let M be an R-module. Then the following

statements are equivalent.

(i) M is horizontally linked.

(ii) M is stable and Ext1R(TrM,R) = 0.

(iii) M is stable and a syzygy module.

Proposition 2.4. [14, Theorem 3.5] Let R be a generically Gorenstein local ring, i.e., Rp is Gorenstein

ring, for all p ∈ AssR. An R-module M is a syzygy module if and only if AssR(M) ⊆ Ass(R).

Let R be a local ring. Two R-modules M and N are called stably isomorphic (denoted M ∼=
st
N) if

there exist free R-modules F and G such that M ⊕ F ∼= N ⊕G. The next proposition follows from the

exact sequence (2.1) and Theorem 2.3.

Proposition 2.5. Let R be a local ring and M be an R-module. Then
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(i) ΩλM ∼=
st
M∗, and if M is horizontally linked, then ΩM ∼= (λM)∗,

(ii) (λΩnM)∗ ∼=
st

Ωn+1M and λ2ΩnM ∼=
st

ΩnM , for all n ≥ 1.

The following result describes an interesting relation between the set of associated primes of horizon-

tally linked modules and associated primes of the base ring.

Proposition 2.6. [26, Proposition 6] Let R be an unmixed (i.e. Ass(R) consists of minimal prime ideals)

local ring and let M be a horizontally linked R-module. Then AssR(M) ∪AssR(λM) = Ass(R).

Next, we recall the definition of Gorenstein dimension which has been introduced by Auslander and

Bridger [2].

Definition 2.7. A finitely generated R-module M is called totally reflexive or of G-dimension zero if the

natural homomorphism M →M∗∗ is an isomorphism and ExtiR(M,R) = 0 = ExtiR(M∗, R) for all i > 0.

We recall that the infimum of n for which there exists an exact sequence

0→ Xn → · · · → X0 →M → 0,

such that each Xi is totally reflexive, is called the Gorenstein dimension of M . If M has Gorenstein

dimension n, we write G-dim(M) = n. Therefore M is totally reflexive if and only if G-dim(M) ≤ 0,

where it follows by convention that G-dim(0) = −∞.

More generally, let M and K be R–modules, and set M† = HomR(M,K). The module M is called

K-reflexive if the canonical map M →M†† is bijective. The Gorenstein dimension has been extended to

GK- dimension by Foxby in [15] and by Golod in [17].

Definition 2.8. The module M is said to have GK- dimension zero if

(i) M is K-reflexive,

(ii) ExtiR(M,K) = 0, for all i > 0,

(iii) ExtiR(M†,K) = 0, for all i > 0.

A GK- resolution of a finite R–module M is a right acyclic complex of modules of GK- dimension zero

whose 0th homology module is M . The module M is said to have finite GK- dimension, denoted by

GK-dimR(M), if it has a GK- resolution of finite length.

Definition 2.9. An R–module K is called semidualizing (or suitable), if

(i) the homothety morphism R→ HomR(K,K) is an isomorphism,

(ii) ExtiR(K,K) = 0 for all i > 0.

Semidualizing modules are studied in [15] and [17]. It is clear that R itself is a semidualizing R–module.

Also if R is Cohen-Macaulay then its canonical module (if it exists) is a semidualizing module. We recall

the following definitions from [17].

Definition 2.10. An R–module M is called GK- perfect if gradeR(M) = GK-dimR(M). An ideal I is

called GK- perfect if R/I is GK- perfect R–module. An R–module M is called GK- Gorenstein if M is

GK- perfect and ExtnR(M,K) is cyclic, where n = GK-dimR(M). An ideal I is called GK- Gorenstein if

R/I is GK- Gorenstein R–module.
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Note that if K is a semidualizing R–module and I is a GK- Gorenstein ideal of GK- dimension n, then

ExtnR(R/I,K) ∼= R/I(see [17, 10]).

Lemma 2.11. [17, Corollary] Let I be an ideal of R. Assume that K is an R–module and that n

is a fixed integer. If ExtjR(R/I,K) = 0 for all j 6= n then there is an isomorphism of functors

ExtiR/I(−,Ext
n
R(R/I,K)) ∼= Extn+iR (−,K) on the category of R/I–modules for all i ≥ 0.

Theorem 2.12. [17, Proposition 5]. Let I be a GK- perfect ideal, and let K be a semidualizing R–module.

Set C = Ext
grade(I)
R (R/I,K). Then the following statements hold.

(i) C is a semidualizing R/I–module.

(ii) If M is a R/I–module then GK-dimR(M) < ∞ if and only if GC-dimR/I(M) < ∞, and if these

dimensions are finite then GK-dimR(M) = grade(I) + GC-dimR/I(M).

3. Linkage of modules and geometrically linked ideals

The purpose of this section is to study the conditions under which the annihilator of a linked mod-

ule is a geometrically linked ideal. We start with the following well-known proposition which gives a

characterization of geometrically linked ideals, and motivation for the results of sections 3 and 4.

Proposition 3.1. Let R be an unmixed ring, I an ideal of grade zero and linked to an ideal J. Then the

following statements are equivalent.

(i) I is geometrically linked to J .

(ii) gradeR(I + J) > 0.

(iii) I ∩ J = 0.

(iv) TorR1 (R/I,R/J) = 0.

(v) Ext1R(R/I,R/I) = 0.

(vi) Ext1R(R/J,R/J) = 0.

Proof. The equivalence of (i), (ii), (iii) and (iv) can be easily checked; see [28] and [29, Proposition 2.3].

(v)⇐⇒(i) Consider the exact sequence 0 −→ I −→ R −→ R/I −→ 0. Applying HomR(−, R/I), we

get the exact sequence

0→ HomR(R/I,R/I)
α→ HomR(R,R/I)→ HomR(I,R/I)→ Ext1R(R/I,R/I)→ 0.

As α is an isomorphism, one has Ext1R(R/I,R/I) ∼= HomR(I,R/I) ∼= HomR(HomR(R/J,R), R/I). It

follows that Ext1R(R/I,R/I) = 0 if and only if HomR(HomR(R/J,R), R/I) = 0 if and only if AssR(R/I)∩
AssR(R/J) = ∅; see [6, Exercise 1.2.27]. �

We will need the following elementary lemma:

Lemma 3.2. Let R be an unmixed local ring, and let M be a horizontally linked R–module. Then

AssR(M) = AssR(R/AnnR(M)).

Proof. Set I = AnnR(M). There is an inclusion R/I ↪→ HomR(M,M) which implies that AssR(R/I) ⊆
AssR(M). Conversely let p ∈ AssR(M). By 2.6, AssR(M) ⊆ Ass(R), and so p ∈ Ass(R). Hence p is

minimal over I and so p ∈ AssR(R/I). �
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Proposition 3.3. Let R be an unmixed local ring and let M be an R-module. Assume M is horizontally

linked to λM , and that AssR(M) ∩ AssR(λM) = ∅. Then M and λM are free over R/AnnR(M) and

R/AnnR(λM), respectively, and AnnR(M) is geometrically linked to AnnR(λM).

Proof. Let F1 → F0 → M → 0 be a minimal free presentation of M . Then we have an exact sequence

0→M∗ → F ∗0 → λM → 0. Set I = AnnR(M) and J = AnnR(λM). Applying −⊗RR/J gives the exact

sequence

M∗ ⊗R R/J
f−→ F ∗0 ⊗R R/J −→ λM ⊗R R/J −→ 0.

Since AssR(M)∩AssR(λM) = ∅, we have AssR(M)∩AssR(R/J) = ∅ by 3.2. Hence we have SuppR(M∗⊗R
R/J) ∩ AssR(R/J) = ∅. This implies that HomR(M∗ ⊗R R/J,R/J) = 0; see [6, Exercise 1.2.27]. Hence

f = 0 and the exact sequence above implies that F ∗0 ⊗R R/J ∼= λM ⊗R R/J ∼= λM . Symmetrically,

F0 ⊗R R/I ∼= M .

For the second part, note that as M is a free R/I-module we may assume that M = R/I. Since M is

horizontally linked, I is linked to J ; see [26, Lemma 3], and as AssR(R/I)∩AssR(R/J) = ∅, I and J are

geometrically linked. �

Now we prove Theorem 1.1

Proof of Theorem 1.1. Set R := R/c. As c is a GK- Gorenstein ideal, R is a Cohen-Macaulay ring and

ExtnR(R,K) ∼= R. Note that grade(M) = grade(c) by [11, Lemma 5.8]. Therefore M and hence N , are

totally reflexive R-modules, by Theorem 2.12. Note that p ∈ AssR(M) if and only if p/c ∈ AssRM . Hence

by Proposition 3.3, M and N are free over R/AnnR(M) and R/AnnR(N), respectively, and AnnR(M) is

geometrically linked to AnnR(N). Thus M⊗RN is a free T -module, where T = R
(AnnR(M)+AnnR(N)) . But

as M is totally reflexive, it follows that R/AnnR(M) and R/AnnR(N) are totally reflexive R-modules.

Set I = AnnR(M) and J = AnnR(N). By 3.1 (iii), I ∩ J = 0 and hence one has gradeR(I + J) > 0, by

3.1 (ii). There is an exact sequence 0 → R → R/I ⊕ R/J → T → 0. Since R/I and R/J are totally

reflexive R-modules, it follows that Exti
R

(T,R) = 0 for all i 6= 1. Also, by applying (−)∗ = HomR(−, R)

to the above exact sequence, we get the commutative diagram with exact rows:

0 −−−−→ (R/I)∗ ⊕ (R/J)∗ −−−−→ (R)∗ −−−−→ Ext1
R

(T,R) −−−−→ 0

∼=
y ∼=

y
0 −−−−→ I + J −−−−→ R −−−−→ T −−−−→ 0.

It follows that Ext1
R

(T,R) ∼= T . Therefore AnnR(M) + AnnR(N) is a GK- Gorenstein ideal of grade n+ 1

by Lemma 2.11. �

Let R be an unmixed local ring of dimension d ≥ 1 and let M be a horizontally linked R-module. It

follows from 3.3 and 3.1 that if AssR(M) ∩ AssR(λM) = ∅, then TorR1 (M,λN) = 0. Consider the exact

sequence

0 −→ TorR1 (M,λM) −→M ⊗RM∗ −→M ⊗R F ∗0 .

Therefore if TorR1 (M,λM) = 0 then depthR(M ⊗R M∗) > 0. In particular, if R is a domain, then

TorR1 (M,λM) = 0 if and only if M ⊗R M∗ is a torsion-free R-module if and only if λM ⊗R (λM)∗ is a

torsion-free R-module. Huneke and Wiegand [22] conjectured that if R is a one-dimensional Gorenstein
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domain and M is a finitely generated torsion-free R-module such that M ⊗R M∗ also is torsion-free

then M is free. The Huneke-Wiegand conjecture holds over one-dimensional hypersurface rings and

also some classes of numerical semigroup rings; see [22], [16], and [18], and it is still open for complete

intersection rings of higher codimension. Therefore, the Huneke-Wiegand conjecture states that over a

one-dimensional Gorenstein local domain R, there exists no horizontally linked R-module M such that

TorR1 (M,λM) = 0.

Without assuming R is domain, we are interested in conditions on the base ring R and a horizon-

tally linked R-module M such that vanishing of TorR1 (M,λM) implies that AssR(M) ∩ AssR(λM) = ∅,
and hence M is a free R/AnnR(M)-module. However, in general vanishing of TorR1 (M,λM) does not

guarantee that AssR(M) ∩AssR(λM) = ∅; see Example 4.4.

An R-module M is called generically free if Mp is a free Rp-module, for all p ∈ Ass(R).

Lemma 3.4. Let R be a generically Gorenstein unmixed local ring and let M be a horizontally linked

R–module. Then the following statements are equivalent.

(i) SuppR(TorR1 (M,λM)) ∩Ass(R) = ∅.
(ii) M is generically free.

Proof. (i)⇒(ii). Let p ∈ Ass(R). Since R is unmixed, p is a minimal prime ideal of R, and so Rp

is Artinian Gorenstein local ring. By assumption Tor
Rp

1 (Mp, (λM)p) = 0 and since (λM)p is stably

isomorphic to λRp
Mp, we get Tor

Rp

1 (Mp, λRp
Mp) = 0. Hence it is enough to show that if R is an

Artinian Gorenstein local ring and M is an R-module such that TorR1 (M,λM) = 0 then M is free.

Indeed, since TorR1 (M,λM) = 0 so HomR(TorR1 (M,λM), R) = 0 and as R is Artinian Gorenstein ring,

the isomorphism HomR(TorR1 (M,λM), R) ∼= Ext1R(M, (λM)∗); see for example [14, page 7]; implies that

Ext1R(M, (λM)∗) = 0. But by 2.5, (λM)∗ ∼=
st

ΩM . Hence Ext1R(M,ΩM) = 0 and so M is free R-module.

Conversely, if M is generically free R–module, then Tor
Rp

1 (Mp, (λM)p) = 0, for all p ∈ AssR. Hence

SuppR(TorR1 (M,λM)) ∩AssR(R) = ∅ and we are done. �

Definition 3.5. An R-module M is said to have constant rank n on a subset S of SpecR if Mp is a free

Rp-module with rank n for all p ∈ S.

Proposition 3.6. Let R be a generically Gorenstein unmixed local ring and let M be a finitely generated

R-module. Assume M is horizontally linked to λM with TorR1 (M,λM) = 0. If AnnR(M) 6= 0, then

AnnR(M) is geometrically linked to (0 :R AnnR(M)). Moreover if λM is of constant rank on AssR(λM),

then AssR(M) ∩AssR(λM) = ∅.

Proof. Set I = AnnR(M). By 3.2 and 2.6, AssR(R/I) = AssR(M) ⊆ Ass(R). Hence, by 2.4, R/I is

a horizontally linked R-module and so I is a linked ideal. Let p ∈ AssR(M) = AssR(R/I), and set

J = (0 :R I). Since by Lemma 3.4, Mp is a free Rp–module, IRp = 0, and since J = (0 :R I), we have

JRp = Rp. Hence J * p and so p /∈ AssR(R/J). This means that I and J have no common associated

prime ideal.

Now assume that λM has constant rank on AssR(λM). There is an exact sequence 0 → M∗ →
F → λM → 0, where F is a free module. Choose p, q ∈ Ass(R) such that p ∈ AssRM and q ∈
Ass(R)\AssR(M). Note that as AnnR(M) is geometrically linked, Lemma 3.2 implies that such q exists.

Also note that by 2.6, we have AssR(M) ⊆ Ass(R) and AssR(λM) ⊆ Ass(R). Hence, localizing the exact
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sequence above at p and q, we get rank (λM)p 6= rank (λM)q. Since λM has constant rank on AssR(λM)

we must have (λM)p = 0. Thus AssR(M) and AssR(λM) have empty intersection. �

The assumption AnnR(M) 6= 0 in Proposition 3.6 is crucial. In section 4, we give an example of a

module M over a one-dimensional Gorenstein local ring R, such that M is horizontally linked to λM ,

TorR1 (M,λM) = 0, and λM has constant rank on AssR(λM), but AssR(M) ∩AssR(λM) 6= ∅; see 4.4.

Now we prove Theorem 1.2.

Proof of Theorem 1.2. Set I = AnnR(M) and J = AnnR(λM).

(i)⇒(ii) follows from Proposition 3.3.

(ii)⇒(i) and (ii)⇒(iv). We have AssR(R/I) ∩ AssR(R/J) = ∅. Hence by Lemma 3.2, AssR(M) ∩
AssR(λM) = ∅ and therefore, M is free R/I-module, by Proposition 3.3. Hence Ext1R(M,M) = 0, by

Proposition 3.1.

(iv)⇒(iii) follows from Proposition 3.1.

(iii)⇒(ii) By Proposition 3.6, I is geometrically linked to (0 :R I) and as (0 :R I) = J , we are done. �

As an application of Proposition 3.3 and Proposition 3.6, we prove the following result, which is related

to Huneke-Wiegand conjecture in a sense.

Theorem 3.7. Let R be a Cohen-Macaulay local domain of dimension d ≥ 1 admitting a canonical

module ωR. Let M be a torsion-free R-module such that M ⊗R HomR(M,ωR) also is torsion-free R-

module. Assume R ∼= S/p, where S is a Gorenstein local ring and p is a geometrically linked prime ideal

of S. If AnnS(ΩSM) 6= 0, then M is a free R-module.

Before the proof, we need the following lemma:

Lemma 3.8. Let R be a generically Gorenstein unmixed local ring of dimension d ≥ 1 and let M be a

horizontally linked R-module. Assume AnnRM is a non-zero prime ideal of R. Then TorR1 (M,λM) = 0

if and only if AnnRM is a geometrically linked ideal of R and AssR(M ⊗RM∗) ⊆ AssR(M).

Proof. Let F1 → F0 → M → 0 be the minimal free presentation of M and consider the exact sequence

0→M∗ → F ∗0 → λM → 0. By applying −⊗RM we get the exact sequence

(3.8.1) 0→ TorR1 (M,λM)→M ⊗RM∗ →M ⊗ F ∗0 .

Now if TorR1 (M,λM) = 0 then by Proposition 3.6, AnnRM is a geometrically linked ideal of R and the

exact sequence 3.8.1 implies that AssR(M ⊗RM∗) ⊆ AssR(M).

Set p = AnnRM . Since p is geometrically linked to (0 :R p), one has p ∩ (0 :R p) = 0 and therefore

(0 :R p) * p. Hence pRp = 0 and so Rp is a field. Thus Mp is a free Rp-module. Hence by 3.4

SuppR(TorR1 (M,λM)) ∩ Ass(R) = ∅. By the exact sequence 3.8.1 we have AssR(TorR1 (M,λM)) ⊆
AssR(M ⊗R M∗) and since AssR(M ⊗R M∗) ⊆ AssR(M) = {p} ⊂ AssR so AssR(TorR1 (M,λM)) = ∅.
Thus Tor1R(M,λM) = 0. �
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Proof of Theorem 3.7. Since p ∈ Ass(S), one has dimR = dimS. Therefore from the natural isomor-

phisms

M ⊗R HomR(M,ωR) ∼= M ⊗S HomR(M,ωR)

∼= M ⊗S HomR(M,HomS(R,S))

∼= M ⊗S HomS(M ⊗R R,S)

∼= M ⊗S HomS(M,S),

we see that AssS(M ⊗S HomS(M,S)) = {p}. Since M is a stable S-module, it is horizontally linked as S-

module; see 2.4. Denote by λSM , the linkage of M over S. Since AssS(M) = AssS(M⊗SHomS(M,S)) =

{p}, we get TorS1 (M,λSM) = 0, by 3.8.

Assume AnnS(ΩSM) 6= 0. Since by 2.5, ΩSM ∼= HomS(λSM,S), one has AnnS(λSM) 6= 0 and as

AssS(M) = {p}, M has constant rank on AssS(M). Thus, it follows from Proposition 3.6 that AssS(M)∩
AssS(λSM) = ∅ and so M is a free S/AnnS(M)-module, by Proposition 3.3. But as AnnS(M) = p, M

is a free R–module. �

Corollary 3.9. Let R be a Cohen-Macaulay local domain with canonical module ωR. Then R is Goren-

stein if and only if R is a homomorphic image of a reduced Gorenstein local ring S with dimS = dimR

and AnnS(ΩSωR) 6= 0.

Proof. If R is Gorenstein then by setting S = R we are done. Conversely, if S is domain then we must

have S ∼= R and so there is nothing to prove. Assume that S is not domain and so there is a minimal

prime ideal p of S such that R ∼= S/p. Hence by 2.4, p is a linked ideal of S. Note that as S is reduced,

then p is a geometrically linked ideal. Indeed, by setting I = (0 :S p) we get I ∩ p = 0 because otherwise

S has a nilpotent element which is a contradiction. Since ωR ⊗R HomR(ωR, ωR) is torsion-free, Theorem

3.7 implies that ωR is a free R-module and so R is Gorenstein. �

Proposition 3.10. Let R be a generically Gorenstein unmixed local ring, and let M be a horizontally

linked R–module. Assume AnnR(M) 6= 0 and that TorR1 (M,λM) = 0. If there exists a positive odd

integer n such that ΩnM has constant rank on AssR(ΩnM), and the sequence of the Betti numbers

β0(M), · · · , βn−1(M) is non-decreasing, then AssR(M) ∩AssR(λM) = ∅.

Proof. Set βi = βi(M). Let · · · → F1 → F0 →M → 0 be the minimal free resolution of M and consider

the exact sequence

0→ ΩnM → Fn−1 → · · · → F0 →M → 0.

Note that by 3.6, Ass(R) \ AssR(M) 6= ∅. Choose p, q ∈ Ass(R) such that p ∈ AssR(M) and q ∈
Ass(R) \AssR(M). Localizing the last exact sequence at p and q, by 3.4 we get the equations

(3.10.1) rankRp
(ΩnM)p =

n−1∑
i=0

(−1)iβi − rankRp
Mp

and

(3.10.2) rankRq
(ΩnM)q =

n−1∑
i=0

(−1)iβi.

Therefore, as ΩnM has constant rank on AssR(ΩnM), we must have either AssR(ΩnM) ⊆ AssR(M)

or AssR(M) ∩ AssR(ΩnM) = ∅. If AssR(ΩnM) ⊆ AssR(M) then (ΩnM)q = 0 and 3.10.2 implies that
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i=0 (−1)i−1βi = βn−1 ≥ βn−2. Canceling βn−2 and continuing in this way, we eventually obtain β0 ≤ 0

which is impossible.

Hence AssR(M) ∩AssR(ΩnM) = ∅ and by localizing the exact sequence

0→ ΩnM → Fn−1 → · · · → F1 → ΩM → 0

at any p ∈ AssR(M) and noting that βi is non-decreasing, we get rankRp
(ΩM)p =

∑n−1
i=1 (−1)i−1βi ≤ 0. It

follows that (ΩM)p = 0, for all p ∈ AssR(M). As ΩM ∼= (λM)∗, by 2.5, so AssR(M)∩AssR(λM) = ∅. �

4. One-dimensional gorenstein rings

In this section we give an example of a horizontally linked module M over a one-dimensional

Gorenstein local ring R such that TorR1 (M,λM) = 0, λM has constant rank on AssR(λM), but

AssR(M) ∩ AssR(λM) 6= ∅. First we prove a duality between Ext∗R(M,M) and TorR∗ (M,λM); see 4.2,

which has its own interest.

Lemma 4.1. Let (R,m) be a Cohen-Macaulay local ring of dimension d ≥ 1, admitting a canonical module

ωR. Let M and N be maximal Cohen-Macaulay R–modules such that TorRi (M,N) is of finite length, for all

i ≥ 1. Set (−)∨ = HomR(−, E(R/m)) and (−)† = HomR(−, ωR). Then Exti+dR (M,N†) ∼= TorRi (M,N)∨,

for all i ≥ 1.

Proof. There is a third quadrant spectral sequence

Ep,q2 = ExtpR(TorRq (M,N), ωR) =⇒
p

Extp+qR (M,N†).

As TorRq (M,N) is of finite length, for all q ≥ 1, it follows that ExtpR(TorRq (M,N), ωR) = 0, for all p 6= d

and all q ≥ 1. Therefore

Ep,q2 =


ExtpR(M ⊗R N,ωR) 0 ≤ p ≤ d,

ExtdR(TorRq (M,N), ωR) q > 0,

0 otherwise.

Therefore, as the map dp,qr : Ep,qr → Ep+2,q−1
r is of bidegree (r, 1 − r), for all r ≥ 2, one can easily

verify that that dp,qr = 0, for all p, q, and r. Hence Ep,q2 = Ep,q∞ , for all p and q and so Extq+dR (M,N†) ∼=
ExtdR(TorRq (M,N), ωR) for all q > 0. Now, the Local Duality Theorem (see [6, Theorem 3.5.8]) implies

that ExtdR(TorRq (M,N), ωR) ∼= Γm(TorRq (M,N))∨ = TorRq (M,N)∨. �

Proposition 4.2. Let (R,m) be a Gorenstein local ring of dimension one, and let M be a maximal Cohen-

Macaulay R–module. Assume either TorRi (M,λM) is of finite length, for all i ≥ 1, or TorR1 (M,λM) = 0.

Then for all i > 0,

ExtiR(M,M) ∼= HomR(TorRi (M,λM), E(R/m)).

Proof. Note that if TorR1 (M,λM) = 0 then M is locally free on the punctured spectrum of R, by 3.4, and

so TorRi (M,λM) is of finite length, for all i ≥ 1. As R is Gorenstein, then we have (λM)† ∼= (λM)∗ and

(λM)∗ is stably isomorphic to ΩM . Thus we get Exti+1
R (M, (λM)∗) ∼= ExtiR(M,M), for all i > 0. Now

the result follows by Lemma 4.1. �
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Corollary 4.3. Let R be a Gorenstein local ring of dimension one and M be a horizontally linked R-

module with TorR1 (M,λM) = 0. Then for all n ≥ 0 and all i ≥ 1, TorRi (M,λM) ∼= TorRi (ΩnM,λΩnM).

In particular, TorR1 (M,λM) = 0 if and only if TorR1 (ΩnM,λΩnM) = 0, for some (and hence all) n ≥ 0.

Proof. For each n ≥ 0 and i ≥ 1, one has ExtiR(M,M) ∼= ExtiR(ΩnM,ΩnM). Thus the result follows from

Proposition 4.2. �

In the following example, we use Macaulay 2 for the computations.

Example 4.4. Let k be a field and R = k[[x, y, z, t]]/(xy, yz, zt, xt + yt + t2, x2 + xz + xt), which

is a Gorenstein local ring of dimension one. Let I = (x, z) and J = (y). Then R/I is horizontally

linked to R/J . One has Ass(R) = {(z, y, x + t), (z, x, y + t), (x, z, t), (t, y, x), (t, y, x + z)}, AssR(R/I) =

{(z, x, y + t), (x, z, t)} and AssR(R/J) = {(z, y, x + t), (t, y, x), (t, y, x + z)}. Hence I is geometrically

linked to J and so TorR1 (R/I,R/J) = 0. Set M = λΩ(R/I) = λI. Then M is horizontally linked and

λM ∼= I. Hence AnnR(λM) = J and note that λM is not free R/J-module. By the last corollary we

have TorR1 (M,λM) = 0. Also note that λM has constant rank equal to one on AssR(λM) = AssR(R/J).

Therefore we must have AnnR(M) = 0 because otherwise λM would be a free R/J-module, by 3.6.

Therefore AssR(M) ∩AssR(λM) 6= ∅.

Recall that a complete resolution of a finitely generated module M over a local ring (R,m) is a diagram

T
ν−→ F

π−→M , where F is a free resolution of M , and T is an exact complex of finitely generated free

modules

T : · · · −→ Ti+1
di+1−→ Ti

di−→ Ti−1 −→ · · · ,

such that HomR(T, R) is exact, ν is a morphism of complexes, and νi is bijection for all i � 0. A

complete resolution T of M is called minimal if Im (di) ⊆ mTi−1, for all i ∈ Z. It is well known that

if R is Gorenstein, then every finitely generated R-module admits a minimal complete resolution. In

particular, if M is maximal Cohen-Macaulay, then M ∼= Im (d0).

Theorem 4.5. Let R be a Gorenstein local domain of dimension one and let M be a torsion-free R-

module such that M ⊗RM∗ also is a torsion-free R-module. Assume R ∼= S/p, where S is a Gorenstein

local ring and p is a geometrically linked prime ideal of S. Let T be a minimal complete resolution of M

over S. If AnnS(Ω−1S M) 6= 0, then M is a free R-module.

Proof. As we saw in the proof of 3.7, M is horizontally linked over S and one has TorS1 (M,λSM) = 0. Set

N = Ω−1S M . Since AnnS(N) 6= 0, N is an stable S-module and so it is horizontally linked S-module; see

2.3. Note that as M ∼= ΩSN , one has TorS1 (N,λSN) = 0, by 4.3. Also, note that since AssS(M) = {p},
M has constant rank on AssS(M). Therefore, by 3.10 and 3.3, N is free over S/AnnS(N) and λSN is

free over S/AnnS(λSN). As M ∼= HomS(λSN,S), it follows that AnnS(λSN) = p, and M is isomorphic

to a direct sum of copies of HomS(S/p, S). But, since R and S are Gorenstein, HomS(S/p, S) ∼= R. Hence

M is a free R-module. �

5. Modules horizontally linked to the syzygies of the residue field

As mentioned before, a module is horizontally linked if and only if it is stable and a syzygy module.

Therefore for an R-modules M and each n ≥ 1, ΩnM is horizontally linked if and only if ΩnM is stable.
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In this section we are interested in the properties of modules that are horizontally linked to the syzygies

of the residue field. We start with the following lemma that we need for the rest of the paper.

Lemma 5.1. Let R be a local ring and let M be a non-zero finitely generated R-module.

(i) If M = F ⊕N with F a free R-module, then λM ∼= λN .

(ii) If M is non-free and a syzygy module, then λM is stable.

Proof. We only prove (ii). Assume M = F ⊕N where F is a free R-module and N is a non-zero stable

R-module. By (i), λM = λN and by 2.3, N is horizontally linked. Now 2.1 implies that λM is stable. �

Lemma 5.2. Let R be a local ring and let M be a non-zero R-module. If n > max{0, depth(R) −
depth(M)}, then ΩnM is stable R-module; see for example [3, Corollary 1.2.5].

Theorem 5.3. Let R be a local ring which is not a field. Let M be a non-zero R-module and let n ≥ 0.

Assume λΩnM ∼= X ⊕ Y for some non-zero R-module X. Then:

(i) TorRn (M,X) 6= 0.

(ii) If pd(X) <∞ then depthR ≥ 1 and n ≤ pd(X) < depth(R)− depth(M).

Proof. (i) If n = 0 we have nothing to prove. Suppose n ≥ 1 and assume to the contrary that

TorRn (M,X) = 0. Consider the short exact sequence

(5.3.1) 0→ λΩnM → F → TrΩnM → 0

which follows from the definition of the linkage, where F is free. By using [30, Lemma 3.1], we obtain

the following short exact sequences from (5.3.1)

(5.3.2) 0→ X → B → TrΩnM → 0

(5.3.3) 0→ F → A⊕B → TrΩnM → 0,

where A and B are R-modules. Since M and X are non-zero, and that n ≥ 1, Ext1R(TrΩnM,R) = 0, by

2.2. This implies that (5.3.3) splits, so A⊕B ∼= F ⊕TrΩnM . It follows from the Auslander- Bridger four

term exact sequence [2, Theorem 2.8] that Ext1R(TrΩnM,X) ↪→ TorRn (M,X) = 0. Thus (5.3.2) splits too,

and so B ∼= X ⊕ TrΩnM . Hence

(5.3.4) F ⊕ TrΩnM ∼= A⊕X ⊕ TrΩnM

Now the cancelation property (see [25, Corollary 1.16]) applied to (5.3.4) shows that F ∼= A⊕X, i.e., X

is free; which is a contradiction, by 5.1 (ii). This proves (i).

(ii) Assume pd(X) < ∞. If depthR = 0 then Auslander-Buchsbaum formula implies that X is free

and by the last part n = 0. By Lemma 5.1 (i), we may assume that M is stable. Let F1 → F0 →M → 0

be the minimal presentation of M . Then F ∗0 → F ∗1 → TrM → 0 is the minimal presentation of TrM .

But since X ⊕ Y = λM = ΩTrM and X is free, this contradicts 5.2. Thus depthR ≥ 1.

For the next part, we proceed by induction on depthM . If depthRM = 0 then we need to show

that pd(X) < depthR. But, as depthR ≥ 1 and X is a syzygy module, depthRX ≥ 1. Hence by the

Auslander-Buchsbaum formula pd(X) < depthR.

Let depthM ≥ 1 and choose x to be regular on R, M and λΩnM . As TorRi (R/(x),M) =

TorRi (R/(x), λΩnM) = 0 for all i > 0, it follows that λR/(x)Ω
n(M/xM) ∼= λΩnM/xλΩnM ∼=
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X/xX⊕Y/xY . By induction, pdR/(x)(X/xX) < depthR/(x)−depthR/(x)M/xM = depthR−depthRM .

Since pdR/(x)(X/xX) = pd(X), we are done. �

Now Theorem 1.3 follows from the next corollary.

Corollary 5.4. Let (R,m, k) be a local ring, L a finite length R-module, and n ≥ 0 an integer. Assume

that λΩnL ∼= X ⊕ Y for some non-zero R-module X. Then the following statements are equivalent.

(i) pd(X) <∞.

(ii) pd(X) = n.

(iii) depthR > n.

Proof. (i)=⇒(iii) Follows from 5.3 (ii).

(iii)=⇒(ii) Assume depthR > n. Note that as TorRn (X,L) 6= 0, by 5.3 (i), therefore pd(X) ≥ n. We

show that pd(λΩnL) ≤ n and hence pd(X) ≤ n. Consider the exact sequence which is part of a minimal

free resolution of L:

G = (0→ ΩnL→ Fn−1 → · · · → F1 → F0 → L→ 0)

Since depthR > n and L is finite length, by dualizing G, we obtain the exact sequence:

G∗ = (0→ F ∗0 → F ∗1 → · · · → F ∗n−1 → (ΩnL)∗ → 0).

It follows that pd(ΩnL)∗ ≤ n− 1 and so pd(λΩnL) ≤ n.

(ii)=⇒(i) It is clear. �

Corollary 5.5. Let R be a local ring and let M be a non-zero R-module of finite injective dimension. Let

n ≥ 0 be a positive integer such that ΩnM ∼= X⊕Y for some non-zero R-module X with G-dim(X) <∞.

Then pd(X) <∞.

Proof. Choose i ≥ max{n, depthR−depthM}. Then ΩiM ∼= Ωi−nX⊕Ωi−nY . Hence λΩiM ∼= λΩi−nX⊕
λΩi−nY and by 5.3 (i), if λΩi−nX 6= 0 then TorRi (M,λΩi−nX) 6= 0. But as id(M) < ∞ and Ωi−nX is

totally reflexive, TorRi (M,λΩi−nX) = 0; see [9, Corollary 2.4.4]. Thus we must have λΩi−nX = 0 and

therefore Ωi−nX is zero or free. �

Corollary 5.6. ([19, Theorem 3.2 (i)]) Let R be a local ring and let M be a non-zero R-module. Assume

id(M) <∞ and G-dim(M) <∞. Then R is Gorenstein.

Proof. We conclude from 5.5 that pd(M) <∞. Now Foxby’s result [15], implies that R is Gorenstein. �

Our aim in the rest of the paper is to prove a counterpart of 5.4 in case of finite Gorenstein and

complete intersection dimension. Recall from [5] that a diagram of local ring maps R→ R′ � Q is called

a quasi-deformation provided that R → R′ is flat and the kernel of the surjection R′ � Q is generated

by a Q-regular sequence. The complete intersection dimension of M is:

CI-dim(M) = inf{pdQ(M ⊗R R′)− pdQ(R′) | R→ R′ � Q is a quasi-deformation}.

Lemma 5.7. Let R be a local ring, M an R-module, and let n ≥ depth(R). Then the following conditions

are equivalent:

(i) G-dim(TrΩnM) <∞.
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(ii) G-dim(M) <∞.

(iii) G-dim(TrΩnM) ≤ 0.

(iv) G-dim(ΩnM) ≤ 0.

Proof. Note that (ii)⇐⇒ (iv) and (iii) =⇒ (i) follow by definition. Moreover as the transpose of a totally

reflexive module is also totally reflexive, (iii) ⇐⇒ (iv) is clear. Hence it is enough to show that (i) =⇒
(iii).

Set t = depthR and assume G-dim(TrΩnM) < ∞. Note that depth(ΩnM)p ≥ min{n, depth(Rp)},
for all p ∈ SuppR(ΩnM). It follows from [7, Theorem 5.8 (1)] that ExtiR(TrΩnM,R) = 0 for all i =

1, . . . , t. Since G-dim(TrΩnM) = sup{i ∈ Z : ExtiR(TrΩnM,R) 6= 0}; see [9, Theorem 1.2.7 (iii)], if

G-dim(TrΩnM) > 0, then we must have G-dim(TrΩnM) > t, which is impossible, by Auslander-Bridger

formula; see [9]. Consequently G-dim(TrΩnM) ≤ 0 and (iii) follows. �

Theorem 5.8. Let (R,m, k) be a local ring, let M be an R-module of finite length, and let n ≥ 0 be

an integer. Let H-dim stand for one of projective, complete intersection or Gorenstein dimension, and

assume H-dimR(M) =∞. Then the following conditions are equivalent:

(i) depth(R) ≤ n.

(ii) H-dim(λΩnM) =∞.

In particular depthR = inf{n|H-dim(λΩnM) =∞}.

Proof. (i)=⇒(ii) Let n ≥ depthR and assume to the contrary that H-dim(λΩnM) < ∞. If

H-dim(λΩnM) = G-dim(λΩnM), then it follows that G-dim(TrΩnM) < ∞ and by Lemma 5.7,

G-dim(ΩnM) <∞ and hence G-dim(M) <∞ which is a contradiction.

If H-dim(λΩnM) = CI-dimR(λΩnM), then G-dim(λΩnM) <∞ and so G-dim(TrΩnM) <∞. Hence by

Lemma 5.7, G-dimR(TrΩnM) ≤ 0 and so CI-dimR(TrΩnM) ≤ 0. Thus CI-dimR(ΩnM) = 0, by [8, Lemma

3.2 (i)]. Hence CI-dimR(M) <∞, which is a contradiction.

(ii)=⇒(i) First assume n = 0 and H-dim(λM) =∞. We show that depth(R) = 0. Consider the exact

sequence 0 → M∗ → F → λM → 0, where F is a free R-module. Since H-dim(λM) = ∞, one has

M∗ 6= 0. Therefore, as M is a finite length R-module, one gets depth(R) = 0.

Now assume n > 0. It is enough to show that if depth(R) > n then H-dim(λΩnM) < ∞ and this

follows by the same argument of 5.4 (iii)=⇒(ii). �

Corollary 5.9. Let (R,m, k) be a local ring, n ≥ depthR be a positive integer. Then the following

statements are true.

(i) R is Gorenstein if and only if G-dimR(λΩnk) <∞.

(ii) R is a complete intersection if and only if CI-dimR(λΩnk) <∞.
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de Recerca Matemàtica during the conference; Opening Perspectives in Algebra, Representations, and

Topology, in May 2015. The authors acknowledge the kind hospitality of CRM and thank the institute

for providing an excellent research environment.

Part of this work was completed when Gheibi visited Celikbas at the University of Connecticut in

October 2015. Gheibi thanks Jerzy Weyman and Roger Wiegand for supporting his visit, and is grateful

for the kind hospitality of the UConn Department of Mathematics.



ASSOCIATED PRIMES AND SYZYGIES OF LINKED MODULES 15

The authors thank Roger Wiegand for his careful comments and suggestions on the manuscript, and

Thanh Vu for his help with Example 4.4. The authors also thank the referee for his/her comments and

suggestions that have improved the paper.

References

[1] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Second edition, Springer-Verlag, 1992. 3

[2] M. Auslander and M. Bridger, Stable module theory, Mem. of the AMS 94, Amer. Math. Soc., Providence 1969. 2, 3,

4, 12

[3] L. L. Avramov, Infinite free resolution, Six lectures on commutative algebra (Bellaterra, 1996), 1–118, Progr. Math.,

166, Birkhauser, Basel, 1998. 12

[4] L. L. Avramov, H.-B. Foxby, Locally Gorenstein homomorphisms, Amer. J. Math. 114 (1992), 1007–1047. 3

[5] L. L. Avramov, V. N. Gasharov and I. V. Peeva, Complete intersection dimension, Publ. Math. I.H.E.S. 86 (1997),

67-114. 13

[6] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge Studies in Advanced Mathematics, 39. Cambridge Uni-

versity Press, Cambridge, 1993. 5, 6, 10

[7] O. Celikbas, M. Gheibi, A. Sadeghi and M. Zargar, Homological Dimensions of Rigid Modules, arXiv:1405.5188v2. 14

[8] O. Celikbas, A. Sadeghi and R. Takahashi, Bounds on depth of tensor products of modules, J. Pure Appl. Algebra 219,

no. 5, 1670–1684 (2015). 14

[9] L. W. Christensen, Gorenstein dimensions. Lecture Notes in Mathematics, 1747. Springer-Verlag, Berlin, 2000. 13, 14

[10] M. T. Dibaei, M. Gheibi, S. H. Hassanzadeh and A. Sadeghi, Linkage of modules over CohenMacaulay rings, Journal

of Algebra, 335 (2011) 177–187. 2

[11] M. T. Dibaei and A. Sadeghi, Linkage of finite Gorenstein dimension modules, Journal of Algebra, Volume 376, 15

February 2013, Pages 261–278. 2, 6

[12] M. T. Dibaei, A. Sadeghi, Linkage of modules and the Serre conditions, J. Pure Appl. Algebra 219 (2015), 4458–4478.

2

[13] S. P. Dutta, Syzygies and homological conjectures, Commutative Algebra, Berkeley, CA, 1987; Math. Sci. Res. Inst.

Publ., Vol. 15, Springer, New York, 1989, 139–156. 2

[14] E. G. Evans, P. Griffith, Syzygies, London Math. Soc. 106, Lecture Note Series. Cambridge University Press, Cambridge-

New York, 1985. 3, 7

[15] H. B. Foxby, Gorenstein modules and related modules, Math. Scand. 31 (1972), 267–284 (1973). 4, 13
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