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1 Introduction 

Lipids are organic biomolecules synthesized in a defined way, barely or non-dissolvable in 

water.1 They contribute to energy storing, cellular and subcellular membrane assembly and 

functionality,2 signaling3 and surfactant formation in animals.4 Lipidomics, a subgroup of 

metabolome analyses in the -omics cascade that has emerged in 2003,5 comprises of the 

identification and quantitation of organic lipids and their derivative variants. The suffix “-

omics”, derived from the words “genome” and “genomics”, indicates a form of totality. It is 

mostly associated with the Human Genome Project (HGP), which mapped out the entire 

genome (i.e. all deoxy-ribonucleic acid-sequences of all chromosomes) of the human species 

from both a physical and functional standpoint. HGP was proposed in 1984 and funded in the 

years 1988-2003.6 

Though found surprisingly complex, the idea of obtaining a total map of biomolecules and 

their metabolic interactions remained. Globally since then, -omics research of biomolecules 

other than DNA have become an ever-increasing interest of biomolecular and biochemical 

laboratories. Lipidomics can give an insight to inner workings of an organism. It can explain 

the physiology of multiple interlinked organs, a single organ, biological tissue, individual cells, 

or biofluids. Furthermore, reliable information can be obtained from the lipidome’s metabolic 

expression which can be changed due to a disease and detectable biomarker lipids.4, 7 

The following literature is focused especially on glycerophospholipids (GPs). In addition, an 

overview to basic glycerolipids (GLs) and sphingolipids (SPs) is established, which evidently 

affects the emphasis and narration of lipid class representations in this review. Thus, elaborate 

exposition of the following lipids and lipid-derived sub- and main classes were left out: 

polyketides (PKs), cholesterol-based sterols (ST) such as cholesteric esters (CEs), prenol lipids 

(PR), saccharolipids (SLs) and high/low density lipoproteins (HDL/LDL). Lesser attention is 

focused to sphingosine-1-phosphate (S1P) and sphinganine-1-phosphate (SA1P). 

Particularly, the abbreviation for fatty acids is noted as FA, though strictly speaking Fahy et 

al.4 defines the abbreviation FA for fatty acyls. As a lipid class, fatty acyls extend to lipid sub-

classes such as fatty esters, fatty acyl thioester derivatives with the coenzymes A or ACP, fatty 

amides and eicosanoids.4 Anyhow, throughout the thesis FA is used as the general symbol for 

fatty acids. 
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2 Lipids 

2.1 Classification and nomenclature of lipids 

According to the definition by Fahy et al.,1 lipids are “hydrophobic or amphipathic small 

molecules that may originate entirely or in part by carbanion-based condensations of 

thioesters and/or by carbocation-based condensations of isoprene units”. The classification 

for lipids was published in 2009. For example, the glycerophospholipid abbreviations were 

changed, replacing complex abbreviations like GPCho/GPEtn/GPSer/GPA/GPI with 

PC/PE/PS/PA/PI.8 The current classification system with the newest recorded updates was 

reported by the lipidomics gateway LIPID MAPS® consortium on March 20th 2017. 

 Lipids are characterized according the backbone structure. Many lipids belong to esterified 

fatty acids due to chains bound to one or more hydroxyl groups of the glycerol headgroup 

(glycerolipids, glycerophospholipids), a sphingosine headgroup (sphingolipids) or a sugar 

backbone (saccharolipids). Furthermore, the three carbons of the glycerol molecule can be 

stereospecifically numbered (sn), and thus indicating the carbon to which a specific fatty acid 

is esterified. Other groups are specifically defined by their characteristic hydrocarbon 

structure (fatty acyls, prenol lipids, sterols and polyketides).9  

 

2.2 Lipid types 

Fatty acids (FA) are fundamental elements of more complex lipids (e.g. for triacylglycerols). 

These rather simple building blocks include fatty acids and their modifications (e.g. 

heteroatom-substituted FAs and esterified conjugates, e.g. acyl carnitines [AcCA] or 

bis(monomyristoylglycero)phosphate [BMP]), which may include branched or cyclic 

functionalities.4 Their name is determined by the amount of carbon in its hydrocarbon chain 

including the number of double bonds (e.g. dodecane-2,4-dienoic acid: FA[12:2]). 

In detail, lipids are primarily based on the fatty acid (FA) synthesis of excess acetyl coenzyme 

A and assisted by NADPH10 in the cell’s cytoplasm.11 In a model proposed by Nelson and Cox,10 

the synthesis is a six-step process that involves most notably the derivatives of acetyl 

coenzyme A with the acyl carrier protein (ACP). The ACP is a part of a larger enzyme complex 

which holds the metabolite backbone. As for the reactants, an initial thioester carbon chain is 

modified into a malonyl body, which is further lengthened through a catalysed loop of acetyl 

group addition. The loop includes catalysed reduction steps of the thioesters keto-groups (and 
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their leftover double bonds) with NADPH and concludes with the freeing of the synthesized 

FA conjugate base from the ACP (either fully saturated or unsaturated).12 According to 

Dennis,10 the formed FAs are typically esterified further near other biomolecule’s hydroxyl 

bonds (e.g. glycerol), this to stabilize the otherwise reactive FA.10 This FA synthesis is the 

biological basis for the more complex lipids. 

Most of the other lipids are either synthesized in the endoplasmatic reticulum, Golgi 

apparatus or the mitochondria.13 Glycerolipids (GL) are mono- (MG), di- (DG) or trisubstituted 

(TG) glycerols, the substituents being commonly esterified fatty acid chains.10 In literature, 

mono- di- and triacylglycerides may also be used as the alias. Figure 1 illustrates the naming of 

any lipid with FA chains, with a TG as an example. Specific identification of FA chains is usually 

done with tandem mass spectrometric methods. 

 

Figure 1. Simple triglyceride (TG) structure. The FA chain length. The positions of a fatty acid 

on a glycerol-molecule are named sn1 (upper carbon of the glycerol body, if k>n), sn2 

(middle carbon of the glycerol body) and sn3 (lower carbon of the glycerol body, if k>n) 

respectively, when the analyte can be stereoisomerically determined (i.e. on the stereo-

molecular species level). If individual chain lengths (and their positions) cannot be 

determined, the number of the carbon atoms and double bonds are expressed as separate 

sums. 
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Glycerophospholipids (GPs) are derived from glycerolipids by adding a phosphate-linked 

“head group” (typically) to the sn3-carbon of the glycerol. GPs have both passive roles as the 

lipid bilayer cell membrane components, and active roles as key components in metabolic 

pathways and cell signaling. The most abundant lipid in eukaryotic cells is 

phosphatidylcholines (PC) followed by phosphatidylethanolamine (PE) and their derivatives.4 

Other GP sub-groups include phosphatidic acid (PA), phosphatidylserine (PS), 

phosphatidylinositol (PI), phosphatidylglycerols (PG) and PG-derived cardiolipins (CL).4 

A sum-up of possible GLs and GPs is illustrated in Figure 2. Lyso-phosphatidyl lipids (LPLs) are 

termed separately due to their lack of a radyl group in a glycerophospholipid structure. This 

means that one sn-site is reduced to a hydroxyl group from the GP initial structure to a 

hydroxyl group, e.g. lysoPC (LPC).9 

 

 

Figure 2. Glycerophospholipid structure variations according to sub-class, where the glycerol 

head group is depicted as black, and the characteristic molecules bound to it as blue. The 

characteristic molecules other than FA chains are mostly esterified to the sn1 position in 

organism. Structures derived from ref. 14 

 



6 
 

GPs may appear with FAs both bound with ester or ether groups, the latter being defined as 

plasmalogens (PLs). They cover approximately one fifth of the glycerophospholipids in 

eukaryotic organisms.4 PLs are divided into two categories: plasmanyls and plasmenyls. 

Plasmanyls are noted due to an oxygen bridge with an “O-” at the fatty acid chain (e.g. PI[O-

18:0/17:0]) or due to a phosphorus bridge with a “P-“ in a case of a plasmenyl group with an 

ester bond conjugated to a double bond of the FA (e.g. PI[P-18:0, 17:0]).4  

Sphingolipids (SP), characteristic for eukaryotic cells,15 have a sphingosine base as the basic 

backbone (Figure 3), but they contain various kinds of lipids in their structures. The backbone 

“is […] synthesized de novo from serine and a long-chain fatty acyl coenzyme A [in mammals]” 

and from there modified into a specific subclasses.4 One of these sub-classes are ceramides 

(Cer), which are sphingoid bases having amine-bonds with FA molecules. Furthermore, a 

sphingomyelin (SM) is an interrelated15 phospho-SP that combines a ceramide with 

phosphatidylcholine (Cer-PC) or with ethanolamine (Cer-PE). SPs are demonstrated visually in 

Figure 3. 

 

 

 

Figure 3. Typical sphingolipid structures. R1 is an amine that usually has a fatty acid linked to 

it with an amide bond (blue). R2 on the other hand is either a free hydroxyl group as in 

ceramides but occupied with a characteristic phosporylated molecule in SMs (red). 

Structures derived from ref. 14 
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3 Chromatographic lipidomics 
Not all lipids are visible when directly analyzing biological organisms or materials. Therefore, 

extraction and separation techniques have been developed to isolate only the analytes the 

research is interested in. As some techniques are specifically better or worse for certain lipid 

classes and sample types, prior knowledge must be considered before choosing a method. For 

identification, lipid species are usually reported by their adduct m/z ratio. 

 

3.1 Sample preparation 
In lipidomics, sample preparation primarily aims for reproducible and representative 

biochemical analyses. Analysis of structure and concentration- in assistance need to be in 

correlation with proper storage conditions such as low temperature and other measures 

against degradation or other alteration in the sample’s lipidome. All this may be achieved 

through delaying of several decomposition processes, optimization of lipid recovery, 

concentration enhancement of the sample or analyte modification through derivatization. 

Additionally, costs, availability of resources, time constraints, method complexity, and 

environmental issues are important factors affecting the execution of sample preparation.16 

The decomposition of the relatively chemically stable group of lipids is considered mainly in 

the biological way. Directly after isolation from an organism, self-degradation of analytes 

initiates via enzyme activation at room temperature. To avoid this, proteins must be 

precipitated, usually by introducing a degradation agent like methanol (MeOH) or isopropanol 

(IPA)48, alternatively, by snap freezing the sample for storage. Protein precipitation includes 

simplified liquid matrix and thus allows improved sensitivity in detection.17  

Considering chemical degradation, double bonds of unsaturated fatty acids are susceptible to 

peroxidation, hydrolytic degradation, and oxidation. Especially after isolation and extraction, 

antioxidative properties of biological compounds are disposed of or lost when the sample is 

stored in an improper manner. Apart from oxidation, major factors contributing to 

degradation are formation of ice crystals combined with osmotic shock when freezing the 

sample. Osmotic shock occurs when freezing of water decreases the volume of liquid water. 

Thus, the process assists in the breaking of structures (e.g. membranes) between lipids and 

enzymes that may act on them.18 



8 
 

As to biological matrices, extraction and analysis should be done as soon as possible after 

sampling. Jurowski et al.18 reported drastic changes in the lipid composition of plasma, when 

the sample was stored for 1-3 years in -20 ˚C. Furthermore, Jurowski et al.18 observed an 

increase in concentration saturated FAs and decrease of unsaturated polyFAs, which distorted 

the results. They proposed this to be due to enzymes and antioxidants’ activity, which 

eventually degraded the amounts of stored lipids.18 Furthermore, the recent review by 

Hyötyläinen and Orešič19 inform a drop in LPC-concentrations which can be detected in less 

than two hours (storage temperature 4 ˚C). However, an increase was seen during 24 hours, 

potentially due to activity of the phospholipid-splicing phospholipase A2. On the other hand, 

most PCs and sphingolipids seemed to stay stable for this time even at room temperature.19 

According to the study, erythrocyte FAs in plasma already degraded within one week at 

storage temperatures between 4 ˚C and -20 ˚C. Jurowski et al.18 concluded that -60 ˚C was 

enough for recognizing “virtually no change” within one year of storaging.18 Hyötyläinen and 

Orešič19 agreed the stable storage of -80 ˚C for at least six months, but a change was seen at 

a time span of five years.19 As an example of other studies about degradation in living 

organisms, Lam et al.5 reviewed an observed phospholipase D conversion of PCs to PAs by Zien 

et al.20 in the Arabidopsis plant.5 During negative mode ESI-ionization, Tumanov et al.21 

claimed to observe a bias in LPA quantitation. The concentration of LPAs can be easily 

overestimated due to typical over-abundance of LPCs combined with their choline moiety loss 

during ionization.21  

In the Folch-method22 about 5% of proteins are left in the organic phase, which may contribute 

to matrix effects and higher background noise.17 In comparison to Folch, BUME23 is an 

extraction method considered superior from the environmental, economical and preparative 

standpoints, since extraction needs no chloroform and less solvent. This allows to extract all 

matrices into milliliter volumes with comparatively lowered safety hazards.24-27 

For samples with low lipid concentrations, solid phase extraction (SPE)28, 29 or lyophilization 

(i.e. freeze-drying)29 can be considered to concentrate a sample for the analysis of already low 

abundance lipids. Here, SPE may substitute the extraction procedure entirely. Moreover, Teo 

et al.29 introduces the concept of energy-based extraction methods (i.e. pressurized liquid, 

microwave- or ultrasonic-assisted extraction) alongside polarity-based extraction methods 

(i.e. single solvent, liquid-liquid, solid phase extraction plus supercritical fluid extraction 
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[Jurovski et al.]18), out of which the latter is used more frequently in lipidomics studies.29 

Energy-based techniques heat up the extraction system to achieve a faster and more efficient 

extraction.29 

Apparently, even lipid extractions on chips and in tubes to obtain high reproducibility and 

recovery have been studied: Bang et al.30 used a SPE-like superabsorbent polymer (SAP) device 

for small sample sizes to minimize carry-over of aqueous solvent. As the aqueous solvent is 

gelated into polymer, the organic solvent can be collected with lipid recoveries similar or 

greater to the Folch extraction.30 

Further extractions have included variations of methods mentioned before, 18, 22-29 as well as 

other single solvent or liquid-liquid extractions (e.g. acetonitrile or chloroform/methanol 

2:1)31, 32, QuEChERS,30  “Bligh and Dyer”,33 and methyl-tert-butylether (MTBE, i.e. Matyash)19 

extraction procedures. All extraction methods have been discussed and compared in a 

broader manner by Pöhö,34 Reis et al.,26 Hyötyläinen et Orešič,19 Jurowski et al.,18 Zhang et 

al.35 and Ulmer et al.36 The extraction methods are compiled in Table 1 below. 

Table 1. Extraction and sample purification methods used in lipidomics 

Class Technique Citation 

Polarity-based Single solvent extractions 31, 32, 37 

Polarity-based Liquid-liquid extractions 31, 32, 37 

Polarity-based Single solvent mixtures 31, 32 

Polarity-based Bligh and Dyer 33 

Polarity-based BUME 23 

Polarity-based Folch 22 

Polarity-based MTBE 19 

Polarity-based QuEChERS 30 

Polarity-based Supercritical fluid extraction (SFE) 18, 29 

Polarity-based Solid phase extraction (SPE) 28, 29 

Polarity-based Superabsorbent polymer extraction (SPE) 30 

Energy-based Microwave-assisted extraction (MAE) 18, 29 

Energy-based Ultrasonic-assisted extraction (UAE) 18, 29 

Energy-based Pressurized liquid extraction 18, 29 
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3.2 Sample composition 

Lipidomics has an important role in the profiling of isolated cell types (e.g. cancer cell lines or 

bacteria18) as well as biological materials directly from a subject (e.g. plasma38, 39 and human 

amniotic membrane40). The selection of experimental settings consist of in vitro cell culture 

experiments and in vivo clinical sample analyses. The aspects of lipidomic profiling in other 

than biological material (e.g. environmental samples,41 foodstuffs42 and nano-tailored 

products43) are not included in the literature review, since the attention is to focus on the 

experimental settings in determination of lipids.  

Another distinction can be made between solid and liquid matrices, which must be 

homogenized and prepared for maximal representative results. Moreover, food products42 

and synthesized lipid structures,43 such as nanoscale liposomes have been studied as well. In 

context, all samples analyzed in the experimental part can be considered biofluids: in vitro 

samples included conditioned cell culture medium (CM, a suspension acquired from cells), and 

in vivo clinical samples targeting to human amniotic fluid, plasma and most of all ascites.  

According to Ghosh and Nisala7 suggested that even human tears include 600 identified lipids.7 

Thus, it can be assumed that a single-cell suspension could be more dilute, less diverse and 

easier to analyze than an aqueous liquid from a multicelled, complex organism. CMs of cell 

cultures (e.g. cancer cell lines) are isolated and characterized to understand single lipid 

components in the context of a multivariate tissue.7  

Furthermore, Ghosh and Nishala7 describe plasma as a complicated though easily available 

matrix with a wide range of GPs, SLs, CEs and TGs to name a few.7 This is understandable, since 

the bloodstream of an organism is linked to the most of its individual cells, able to transport 

nutrition, hormones or cell metabolites of used molecular structures (e.g. dead blood cells). 

However, Hyötyläinen and Orešič19 report serum to have a more stable lipid profile than 

plasma. Hence, a potential alternative for a more reliable analysis. For plasma, their review 

suggests differences within sample types such as lower lipid content in citric acid containing 

plasma compared to EDTA modified plasma.19 

Amniotic fluid was used during method development as an easily obtainable alternative for 

ascites. Lipids in amniotic fluid were indicators for the stages of pregnancy or pregnancy 

complications, e.g. total lipid and phospholipid concentration was observed to increase from 



11 
 

24 weeks of gestation until labor. Thus, routine test for fetal development through the 

lechitin/sphingomyelin -ratio could be used for a longer time. Furthermore, lipidomic profiles 

of amniotic fluid have been observed to be different between infants born term or pre-term.7  

The primary ascites sample matrix of the experimental study is abnormal formation of intra-

peritoneal fluid in the patient’s abdominal cavity.44 It is divided into two types according to its 

formation: non-inflammation induced (e.g. hydrostats- or osmosis-produced) transudates and 

inflammation-accompanied exudates. Transudates are suspect of de-compensation of blood 

circulation, kidneys, or liver, whereas exudates are formed from the oozing of ruptured or 

otherwise damaged cell tissue resulting in complications found around cysts of ovarian cancer 

tumors. In contrast to commonly clear transudates in the intraperitoneal space, exudates are 

noticed to have higher protein-concentrations due to their less filtrated nature.44 

 

3.3 Standards and normalization 
A conventional targeted approach needs a lot of calibration standards in lipidomics.45 It is not 

feasible to calibrate all lipids individually. Thus, a simpler compromise on class-representative 

lipid standards with optimally chemical similarities are often applied in lipidomic studies. 

Ideally, however, standards and analytes should be chemically equivalent. 

Normalization of data aims for stabilization of random and systematic errors contributing to 

the fluctuation of results, effected typically on peak areas. Normalization can be achieved via 

an internal standard (ISTD) or a surrogate. An ISTD is added to samples before analyses to 

account for instrumental fluctuations. A surrogate is added before sampling or storage. A 

chemically similar surrogate simulates chemical modifications of analyte that it mimics. 

In state-of-the-art lipidomics, a pool of all samples forming a quality control sample (QC 

sample) is fancied. The QC sample goes through the same sample preparation as a single 

sample and is then used to screen matrix effects and possible instrument fluctuation in the 

method. Thus, it is used as a reference to each individual sample aliquot and their average 

matrix effects. 

Though expensive, the most used ISTDs are deuterated standards, most often by Avanti Polar 

Lipids (Alabaster, AL, USA). Typically, the protons are deuterated at the FA end of the carbon 

chain with either 7 or 9 deuterium atoms. For representative standards in analysis, a self-made 
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or commercial standard mixture is typically used (e.g. a SPLASH mix37 or well-known organic 

standard [porcine brain, chicken egg, e. coli]51). The molecular ion and its fragments that still 

include the deuterated FA chain experience a noticeable shift in their m/z value compared to 

their non-deuterated counterparts. Since fragmentation is identical for both variants, this m/z 

differentiation is ideal for ISTD normalization via EICs.126 

4 High-performance liquid chromatography in lipidomics 
High-performance liquid chromatography (HPLC) is a method for separation of analytes in a 

liquid mobile phase through partitioning (typically adsorption) of analytes with a stationary 

phase. As the mobile phase encounters the stationary phase in a column, analytes will pursue 

an equilibrium. Hence, the analytes are retained depending on the strength of the interaction 

between the stationary phase and the mobile phase. A modern HPLC-instrument consists of a 

pump, an autosampler, a column compartment, a detector with a data recording system, 

appropriate tubing, and bottles for eluents and waste. For high resolution MS, a reference 

solution for tuning of the mass spectrometer is included. 

Though reversed phase (RP) column LC is dominant in chromatographic lipidomics research, 

since it separates the lipid species by subspecies polarity and FA chain length, studies for 

normal phase (NP) hydrophilic interaction chromatography (HILIC) separation by polar head 

groups has increased. According to a Scifinder search (with duplicates removed), an increasing 

trend on HILIC publications can be observed (Figure 4). 

 

Figure 4. Publication trend on HILIC-articles in lipidomics over the last eight years 

(Date: 16.07.2019) 

Jeucken et al.46 used an UHPLC HILIC column to separate HeLa-cell lipid metabolites. A 96-well 

of HeLa cell units was filled and cultivated in the presence and absence of lipid metabolic 
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pathway inhibitors, to see what changes in the lipidome expression occur in an altered 

metabolic state. Since there is no separation by the FA chain lengths in NP, the precursors 

(and their m/z ratio) affecting the RTs and fragmentation patterns can give information on the 

nonpolar lipid species present in each cell culture. However, the identification of different 

chain lengths and saturation states calls for high resolution MS for compensation of the 

separation, as is done by Jeucken et al.46 A downside of HILIC is the observed retention of 

inorganic ions, which may lead to distorted adduct formation, decreased quantitation 

repeatability and co-elution.47  

Additives (e.g. acids, bases or organic/inorganic salts) are ion ligands used in promille and 

millimolar amounts for the enhancing of detection parameters, namely increased ionization 

efficiency and method sensitivity. Increased sensitivity leads to better analyte peak shapes 

and detected lipid coverage of low-abundance analytes.48  

Additives are typically dissolved in only the aqueous solvent for convenience or both aqueous 

and organic solvents to stabilize the adduct concentration throughout a gradient run. An 

additive ion may form complexes with a neutral species before detection due to forming an 

adduct. It can also quench and suppress oppositely charged ion species. Furthermore, 

additives enable the controlling of predictable adduct formation ratios, if weaker ligands are 

present or if the concentration of considerable ligands is negligible. Moreover, as Erngren et 

al.47 has demonstrated with positive mode ionization, inorganic ions are retained in a NP 

separation column, thus leading to possible co-elution, complex adduct or cluster formation 

and decreased repeatability in quantitation.47 This may also be the reason for the usage of 

post-column additive addition used by Monnin et al.48  

Monnin et al.48 compared the performance of the additives acetic acid (AcA) versus AmOH 

post-column in negative ionization mode, AmAc versus AmOH in the mobile phase and AcA . 

AmAc versus AmAc/AcA as the mobile phase. Generally, additive ions form pseudo-neutral 

adducts that also change the interaction between the analyte and the stationary phase via 

adduct-driven polarity manipulation of a compound. For the gas-phase additive introduction 

with AcA versus AmOH in negative mode, the importance of proton affinity between additives 

was inspected. Despite its higher proton affinity, 0.1 AmOH% contributed to more suppression 

than 0.02% AcA.48 For the in-solvent experiment with AcA versus AmOH in negative ionization 

mode, though the GP population was at an optimal degree of ionization with 0.1% AmOH, 
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severe 4.4-1000 fold suppression was experienced compared to 0.1% AcA despite the 2.3-3.2 

fold suppression for PEs.48 Comparing the adducts with experimentally optimized ratios 0.02% 

AcA, 10 mM AmAc and their combination in negative ESI mode, AcA turned out to outperform 

both variants except for the lipid classes PA(<AmAc, included mixed results), PE(<<AmAc/AcA), 

PC (<<AmAc<AmAc/AcA), LPC(<AmAc/AcA), LSM(no signal<AmAc/AcA<AmAc) and 

Cer(<<AmAc<AmAc/AcA) in their peak areas.  On the flipside, the signal increase caused by 

the additives remarkably broadened LPA and PA peaks, not to mention a slighter tailing and 

peak broadening for PS compounds.48  

For understanding a metabo-lipidomic system, one must first map out the lipidome or -at 

least- the critical lipid subset. Merrill Jr. et al.49 designed a workflow for SP analysis of a 

lyophilized cell culture by using multiple LC-MS/MS protocols. Though these protocols for 

specific SP subclasses were introduced in 2005,49 performing a comprehensive lipid polarity 

range analysis is still sought for until today. However, since these four protocols have distinct 

target groups to analyze, prior knowledge to whether some SPs are present or not may allow 

the leaving out of some sample analyses. On another note, Merril Jr. et al.49 mentions the 

interconnection between SPs and their derivatives which reminds of the biochemical 

equilibrium present in a biological system. 

When chromatographic methods were developed, the term ultra-high-performance liquid 

chromatography (UHPLC) was introduced to describe a fast chromatography with “nano-

columns” by Jorgenson in 1997.50 In an article by Fekete et al.,50 the pressure needed for a 

reasonable flow rate through less than 2 µm sized particles in columns was made commercially 

possible in 2004.50 The UHPLC instrument is left with fields to improve like (1) the upper 

pressure limit or flow rate, (2) column temperature modulation for stationary and mobile 

phase heating, (3) dead volume expulsion to avoid peak broadening (e.g. extra-column 

dispersion), (4) handling of the improper isocratic mixing that leads to dwell volume of a 

gradient (combatted by additional mixing devices in the instrument), (5) minimization of 

column frictional heating, and (6) increasing of the sensitivity-defining data acquisition rate of 

detectors.50 UHPLC benefitted of better throughput and resolution compared to traditional 

HPLC. Its success was followed by a near exponential growth of UHPLC and UHPLC-MS 

publications in the following ten years.50  
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Resolution of a UHPLC method is very high. Therefore, it can combat the spectral interferences 

of co-elution observed in conventional HPLC. Based on Danne-Rasche et al.52 a Venn diagram 

showed only some lipid species to be detectable with more sensitive methods (i.e. UHPLC and 

nanoLC) than conventional HPLC (Figure 5). Additionally, the illustration introduces a nanoLC-

technique where the column material is packed in a narrow-bore capillary, which will be 

discussed later. 

 

Figure 5. Yeast lipidome coverage with HPLC, UHPLC, and nano-LC. A)Venn diagram for total lipid 

coverage of different chromatographic techniques, B)molecular species and species level compared 

to each other and C)Lipid class coverage comparison52  

This figure was borrowed from Reprinted with permission from ref 52 © 2018 American Chemical 

Society 

Teo et al.29 studied various biofluids and tissues analyzed with different chromatographic 

techniques and their ionization methods until 2015. Primarily, GLs; GPs; SPs and occasional 

STs of both liquid biological materials (e.g. blood components and secretions) and solid tissues 

(e.g. eyeball, fibroblasts and skin) have been studied with LC.29 Jurovski et al.18 also includes 

FAs and CEs as major classes studied in clinical samples. 

Since the variation even within lipid classes is enormous, it is not surprising that the polarity 

of their species varies a lot. Figure 6 demonstrates the lipid-subclass range of four distinct 

chromatographic approaches, of which they form two pairs (one a RP, one a NP separation 

strategy in each pair). The subclasses in (a) include lipids of the nonpolar kind, whereas the 

separations of (b) are modelled for the polar lipid subclasses. Self-evidently, the lyso-forms 

are more polar than their counterparts with an extra FA chain. Particularly, polar (b) and mid-

polar (PS, PG, PI, Cer) lipids seem to be species often analysed with negative mode, though 

more species are primarily found with positive mode. From the GLs only MG has a FA chain 
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count small enough to be rather polar. As a thumb rule, SPs are on the mid-polar lipid 

spectrum if they include amide-bound FA chains. 

 

Figure 6. ‘(a)’ Nonpolar and ‘(b)’ polar lipid subclass separation techniques.  

Reprinted with permission from ref 21, DOI: 0958-1669/© 2016 S. Tumanov and JJ Kamphorst. 

Published by Elsevier Ltd, an open access article under the CC BY license. 
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5 Mass spectrometry of lipids 

Modern lipid analyses from simple profiling to complex metabolite interaction mapping are 

primarily conducted via mass spectrometric (MS) methods and techniques. Holcapek et al.3 

divided mass spectrometry into three major approaches in lipidomics: direct infusion MS 

(DIMS, i.e. shotgun lipidomics, flow injection MS), chromatographic methods coupled with 

MS, and desorption techniques in MS.3, 53  

DIMS is a fast technique that analyzes a homogenous sample throughout runs. Thus, it is a 

very appealing method for tandem mass spectrometric methods with multiple precursors or 

fragments to be monitored. However, DIMS needs very high resolving power, proper dilution 

of samples to avoid instrument contamination or detector saturation. Furthermore, prior 

knowledge on spectral interference must be available for correcting quantitation data and 

considering possibility of identical isomer fragmentation behavior.53 Furthemore, matrix 

effects (though equally strong throughout runs) can be high depending on a sample’s 

properties.54 

Chromatographic techniques, meaning gas chromatography-MS (GC-MS), HPLC-MS, ion 

mobility MS (not a chromatographic method), and supercritical fluid chromatography-MS 

(SFC-MS)- have the advantage of separation efficiency, which enables improved sensitivity 

compared to DIMS. GC-MS usually needs derivatization to improve volatility and sensitivity of 

specific lipid class analyses, which is rarely needed for HPLC. However, a comprehensive time-

consuming lipidomic analyses can be achieved with both optimal chromatographic 

performance (preparative extraction, LC parameters, column, etc.) and high resolution 

(maximal ionization in an ion source, with a high resolution mass spectrometer).3 Not only is 

analytes separation in HPLC-MS slow compared to other methods, equilibration between runs 

increases run sequence as well.55 Lísa et al.55 reported an up-trend for the column domain 

with particle size less than 2 µm hybrid silica SFC-MS metabolomic experiments in the year 

2017. One reason for the trend could be the quickness of separation done in both polar and 

nonpolar systems.55 Hyphenated chromatography with mass spectrometry enables two-

dimensional MS when using two orthogonal columns, which gave more information about 

analytes than a corresponding complex and time-consuming chromatographic method. 
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Desorption techniques are ideal for mass-spectrometric imaging (MSI) techniques of material 

surfaces, such as tissues or cells.3 Since locating the origin of the lipids is not possible in 

conventional LC-MS, desorption techniques offer a fast solution to the task. Holcapek et al.3 

(2018) and Yang et al.53 (2017) mentioned only matrix-assisted laser desorption-ionization MS 

(MALDI-MS) as a desorption technique used in metabolomics. Furthermore, Yang regarded 

proficient properties of MALDI-MS to be easy sample preparation, quickness of 

measurements, and possibility to re-analyze samples with this barely destructive method. 

Disadvantages are met at low mass range which is typically distorted by matrix. Low 

repeatability is an issue when sample spots are analyzed, in-source fragmentation (‘post 

source decay’) and formation of multiple adducts.53 

A mass spectrometer is used to measure charged molecules and their abundances of observed 

mass-to-charge (m/z) in proportion to the m/z of carbon (molar mass 12.00 Da). Before 

measuring, in a hyphenated HPLC-MS method dissolved molecules are ionized and the ions 

are transferred into gas phase as fine spray in an ion source. It couples the HPLC instrument 

with the mass spectrometer and, hereby, enables dissolved components to ionize and to form 

ionized gas molecules. This flux of ions is then focused and dispersed with electric and/or 

magnetic optics, filtered with a mass analyzer, and finally detected with a mass sensitive 

detector plugged to a data processor.  

Efficiency of mass detection is not only determined by the properties of the detector, but also 

by the converter transferring information to the computer/recorder. Hence, limitations to 

collect strong analyte signals leads to saturation of a mass detector and unreliable results in 

quantitation. Other measuring devices such as ion mobility MS, Raman, or even other scanning 

mass spectrometers such as NMR may be included in the instrumental sequence to enhance 

identification and acquisition of chemical information.54 
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5.1.1 Ion source and ionization 

After the chromatographic separation, the mobile phase is directed from the HPLC totally or 

partially into an ion source. As to an electrospray ionization source (ESI source), it can be 

directed orthogonally towards the mass analyzer. Then, the ESI source applies a high voltage 

on its metal-coated capillary to eject a fraction of the LC mobile phase flow. As a result, a fine 

spray of ions is produced and charged liquid droplets are transcended into the gas phase. Only 

a fraction of the mobile phase is directed to the ESI source. It enables reproducible ion flow 

and transfers a limited amount of the liquid mobile phase.56 

The composition of the arriving mobile phase into an ion source determines the chemical, 

electroconductive and rheological (e.g. viscosity, surface tension) properties of the sprayed 

liquid, thus contributing to possible matrix effects (i.e. signal suppression, signal 

enhancement) and rate of ionization. These properties can be adjusted with additives, which 

are commonly used as potential contributors to adduct-formation with analytes.56 

The voltage applied to the capillary tip in ESI needs to give sufficient electrical potential to 

eject a proton (H+) from a molecule or energy to transfer a proton to a molecule. The polarity 

of the ions produced are reciprocally activated by a steel tip polarity. With increasing voltage, 

ions with multiple charges are encountered.57 

Classically, single or multiple charged analyte ions from suitable ionization circumstances 

appear via radical-assisted deprotonation ([M-nH]n-) or protonation ([M+nH]n+). However, 

analyte signals may also be expressed in escort with an additional ion. The resulting 

combination is called an adduct ion, which may be formed with organic or inorganic ions. The 

formation of complex adduct variations is claimed as characteristic for ESI, as mentioned by 

Erngren et al.47 The discovery of adducts has emphasized the increasing trend of additive 

buffers for both buffering of the pH during analysis and increasing of analyte sensitivity 

through increased intensity of the adduct ions. Furthermore, di- or trimers of analyte ions may 

be formed. In essence, adduct and dimer formation during ionization needs to be controlled 

for absolute quantification of the analyte. 

As additives affect the pH of a solution, the pH affects ionization efficiency of the analytes by 

regulating the concentration of charge carriers. Furthermore, ion formation occurs both in the 

solvent and ESI tip. Monnin et al.48 investigated this pre- and post-column dual jet additive 

introduction in negative ESI mode, since this enabled the inspection of both the ionization and 
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adduct formation processes in-solvent and aerosol formation. Effects were mixed according 

to lipid class (Figure 7). 

 

Figure 7. Normalized analyte peak areas in comparison to additive introduction strategy. 

Reprinted with permission from ref 48 © 2017 John Wiley & Sons, Ltd. 

 

At the correct potential and pneumatically assisted ejection, the repulsion of same-charge 

droplets on the capillary tip in a mass interface produces a jet-plume shape called the Taylor-

cone. Considered a reproducible and well-documented ejection shape, the Taylor cone 

includes charged ions that are attracted with an opposite charge (i.e. a counter electrode) and 

moved as clusters into the mass analyzer, while neutral species are separated and left further 

away.56 

Though the behavior of ion formation in the ESI-source is not yet completely understood, 

three models are used to explain ion formation: the charged residue model (CRM) and ion 

evaporation model (IEM). A combination of the two, the ion emission model, has been 

proposed as well.58 CRM predicts the emergence of a single ion from a small and ever 

evaporating solvent droplet. On the other hand, IEM describes the ejection of small molecules 

from solvent droplets in the Taylor cone. The droplets become smaller, when their surface 

charges increase and surface areas decrease. The surface tension (Rayleigh limit) is overcome 

by the surface charge for ejecting the small ions.59, 60  

Rarely, APCI sources (ionization with a corona discharge needle, some LC/MS devices have 

interchangeable ESI/APCI interfaces) are used instead of ESI sources in UHPLC-lipidomic 
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studies.46, 61, 62 This technique has the advantage that it has more similar response factors 

among the various lipid classes in the positive ionization mode. On the downside, APCI is less 

sensitive than ESI, and lipid headgroups are lost due the harsher ionization conditions. 

Furthermore, low resolution and low mass-accuracy instruments such as linear ion traps, 

cannot discriminate between nominally isobaric diacyl- and ether lipid species by MS1 alone.46 

 

5.1.2 Mass analyzer 

Mass analyzers aim to modify the stream of ions fed by the ion source. The mass analyzer is 

chosen to measure the abundances at a specific m/z range or separate species in a definite 

time frame. This means that the time for a single mass spectrum scan (i.e. the scan rate) 

increases its acquisition time. The longer a single m/z abundance is screened, the more there 

are m/z species in detection.  

Evidently, when the abundance of one m/z species takes 100 milliseconds to be collected, 10 

collected m/z data points of a mass spectrum take one second to be collected. Therefore, 

scanning instruments may be adjusted in targeted analysis to collect only discrete m/z 

abundances instead of fully scanning the mass range.  

Not only can a scan be cut to small ranges, it may also be limited to discrete m/z ion species. 

This kind of very specific scanning is known as selected ion monitoring (SIM), which gives a 

basis to qualitative analyses with high scan rate tandem mass spectrometry. The SIM 

technique enables longer individual acquisition times and shorter scans, thus, higher 

sensitivity and throughput. In turn, by decreasing the individual acquisition times more data 

points (i.e. mass spectra) can be collected, which increases resolution between peaks detected 

in the chromatogram.  

In addition to scanning mass analyzers, there are instruments that can measure at once the 

full range of m/z with abundances. These analyzers are either based on the mathematical 

Fourier transform-deconvolution of a single signal into all its basic sine-wave signals (e.g. 

Orbitrap and ion-cyclotron resonance mass analyzer) or comparison of flight times in a 

controlled environment (e.g. time of flight instruments). Such instruments have the high 

throughput-advantage, meaning that more measurements can be made in a much shorter 

time in contrast to scanning instruments. Furthermore, mass analyzers with indirect 
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measuring systems, as in the case of Fourier transform mass spectrometers, have the 

multiplex-advantages. This means that mass spectra can be measured fast and at multiple 

times, thus increasing the total resolution of such instruments by comparing sequential image 

currents with each other. 

Another class of mass analyzers are ion traps. These instruments collect and store an entity of 

ions, then analyzing them separately from the continuous flow. The operations possible to 

conduct (e.g. scanning, SIM) are once again dictated by the mechanism of the mass analyzers. 

Since a mass analyzer instrument is very dependent of its vacuum created by an external high-

efficiency pump, imperfect vacuum in the TOF may lead to in-source fragmentation, which is 

frequent in lipidomics. In nanoscale, in-source fragmentation is induced via the impact of 

analytes and remaining air molecules. For example, DGs lose neutral water from their 

structure.19 

Lipidomic studies usually prefer high resolution MS instruments (i.e. instruments reaching a 

less than 2 ppm mass accuracy) with MS/MS capabilities. For this reason, a good compromise 

for this has been a QTOF, since it possesses moderate resolution and the possibility of MS/MS 

experiments for both untargeted and targeted analysis. However, method sensitivity is 

decreased in exchange of selectivity when conducting a MS/MS analysis instead of a TOF-only 

scan. Table 2 sums up the yearly mass analyser profile in UHPLC-MS research. 

 

Table 2. UHPLC-MS mass analyzers. The visual mass analyzer ratio is calculated separately for each 

year 

 

n: amount of articles 

 

Instrument 2017 (n=25) 2018 (n=27) 2019 (n=14)

IM-QTOF 1 1 0

LTQ 0 0 1

LTQ-Orbitrap 0 2 0

N/A 0 1 0

Orbitrap 6 2 1

QOrbitrap 5 9 4

QqQ 3 1 0

QTOF 9 9 7

Qtrap 0 2 1

UHR-QTOF 1 0 0
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As another mass analyzer favorite, the Orbitrap stands out with its exceptional resolution. This  

makes it an attractive choice for targeted  (quantitative) analysis, while the identification of 

lipids can be conducted with another mass. However, even untargeted approaches can be 

considered with an Orbitrap since the recent developments in identification softwares. The 

emergence of a newly commercialized “Q-Orbitrap” can be observed to have increased in 

usage.  

5.1.2.1 Triple quadrupole 

A triple quadrupole mass analyzer (QqQ) is a scanning instrument with three quadruple- or 

multipoles, i.e. two mass filters (Q1 and Q3) and a collision cell (q2). Collision induced 

dissociation (CID) is conducted in the collision cell by introducing an inert collision gas (e.g. N2, 

Ar, He) to ions, leading to collision and potential fragmentation of analyte ions. Q1 may be 

used to select precursors to collide, Q3 for the scanning of specific m/z fragment ions. QqQs 

are frequently used for low-resolution mass spectrometric measurements.62-66 These include 

both fragment studies with selected ion, selected reaction and multiple reaction monitoring 

(SIM,62 SRM64 and MRM63, 65, 66) as well as qualitative and quantitative untargeted methods.62, 

65, 66  

Figure 8 demonstrates the basic structure of a QqQ instrument without the detector following 

after Q3. Due to extensive research around quadrupole instruments, the quadrupoles may 

have been substituted by multipoles (e.g. hexa- or octopoles) for improved instrument 

selectivity.56 Furthermore, no optics for ion stream focusing were noted as they vary largely 

among the different instruments made by different companies. 

 
Figure 8. Inner workings of a QqQ performing a precursor ion scan. The orange line 

represents the ion current that goes through the mass analyzer. Image is inspired by Ref. 56 
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5.1.2.2 Time of flight 

The time of flight mass spectrometer (TOF) is a universal mass analyzer, known as an 

instrument that analyzes ions “all at once”. Ions are pulsed into a free drift tube, where their 

drift time from a laser-pulsing site to the detector is recorded in sequence. Most TOF 

instruments include an ion mirror to increase the path length of freely drifting ions to improve 

resolution in exchange of sensitivity. Furthermore, phase-shifts of identical m/z-species but 

with unequally pulsed kinetic energies are corrected (i.e. time-lag focusing). Modern TOF-

instruments of today are regarded as very fast, accurate and sensitive, well resolved and 

equipped with practically unlimited range. 

By substituting Q3 of a QqQ with a TOF mass analyzer, a QTOF is produced. A QTOF instrument 

enables both high throughput and acquisition of tandem mass spectrometric information in 

one run, though affecting the sensitivity by exchanging it with more selectivity. In other words, 

it combines the tandem mass spectrometric capabilities of a triple quadrupole and the TOF. 

The ESI-interfaced QTOF is a frequent choice for lipidomic studies alongside the ever so 

popular Orbitrap. As all m/z abundances can be measured practically simultaneously upon 

detection in a TOF, it enables the storage of a full m/z-scan for post-analysis irrelevant to the 

on-going study. As an instrumental example, Figure 9 describes the inner structure of an ion 

mobility QTOF (IM-QTOF). 

 

Figure 9. The Agilent IM-QTOF used in the experimental part, an example of a QTOF instrument. 

Displayed are the ionization source, single bore capillary leading to the ion mobility system: a front 

funnel, trapping funnel, drift tube and rear funnel; the QTOF part includes a mass filter (Q1), collision 

cell (q2) and TOF unit (Q3) including an ion pulser, reflectron and detector.  

Reprinted from ref 67 © Agilent Technologies, Inc., 2013 
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5.1.3 Tandem mass spectrometry 

Tandem mass spectrometry (MS(/MS)n-1 or MSn for n scans/selections) is the practice of 

scanning or selecting a set of ions, fragmenting them in controlled circumstances, scanning or 

selecting once more, and possibly repeating the process until detection. This can be achieved 

with either tandem in space, where separate conjoined mass analyzers scan or select m/z ions 

between fragmentation and detection, or using tandem in time, where the same mass 

analyzer instrument (so far, only an ion trap device) may scan or select the ions indefinitely. A 

scan consists of selected m/z ion species is called a precursor, their fragments after collision 

product ions. Tandem MS enables improved selectivity in targeted analysis as well as more 

structural information in non-targeted analysis, isomer verification, and though depending on 

its scan mode. 

A common mechanism for controlled fragmentation is analyte ion collision with accelerated 

inert gas (e.g. Ar, He, or N2), resulting in controlled CID. CID is commonly achieved in either a 

QqQ or ion trap mass analyzer. As the collision gas hits the right group or structure in a 

molecule, the ionized molecule is spliced into smaller parts. The potential used for the collision 

gas acceleration is commonly between 1-20 keV.68 Other fragmentation methods such as 

multistage fragmentation or ozone dissociation5 were not considered since such technology 

was neither trending69 nor observable in the dataset. 

Scan modes, i.e. m/z separation operations consecutively combined with collisions and 

detection, introduce various ways to acquire information on qualitative and quantitative 

properties of analytes. Lately, metabolomics studies have started to frequently use the 

definition data-dependent and data independent analyses (DDA and DIA). DDA needs pre-

selected data to conduct a MSMS-experiment, whereas DIA only needs the collision energy 

used.70  

DDA scan modes include a product ion scan, a precursor ion scan (PIS), a neutral loss scan 

(NLS), and a selected reaction monitoring (SRM) scan. In a product ion scan, precursors are 

selected and collided to fully scan the profile of the product ions. In a precursor ion scan (PIS) 

a m/z range is first scanned, only to monitor specific fragments after CID. In a neutral loss scan 

(NLS) both initial analytes and their CID fragments are scanned to find a molar mass shift of 

m/z species abundances. In selected reaction monitoring (SRM) both precursors and product 

ions are selected to prove the presence of a specific analyte in a sample.  
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The Agilent MassHunter Workstation for data acquisition of a QTOF proposes two DIA scans 

(all ions scan and autoMS) and a DDA (targeted MS) scan. In an all ions scan, both a full scan 

and universal fragmentation is done in turns In an autoMS-scan, computer-assisted 

fragmentation of the most abundant or most preferred ions takes place and in targeted MS a 

targeted precursor ion scan only commences at a defined RT for defined m/z ions.71 

 

6 Ion-mobility spectrometry 
As a charged particle is moving against an inert gas with known velocity, its movement can be 

rotationally averaged. Ion mobility spectrometry (IMS) observes this by recording the drift 

time of an ion species in an electric field.71 

As the Mason-Schamp equation71 (equation 1.1) states (exclusively for uniform drift tubes), 

the buffer-gas specific drift time (Ω) is directly proportional to the collisional cross-section 

(CCS) -the averaged effective area of the analyte that collides with the inert buffer gas. 

Ω = 𝑡𝑑𝑟𝑖𝑓𝑡 ∗
𝑧

𝛽∗√(
𝑚𝐼

𝑚𝐵+𝑚𝐼
)
= (𝑡𝑡𝑜𝑡 − 𝑡𝑓𝑖𝑥) ∗

𝑧

𝛽∗√[
𝑚𝐼

𝑚𝐵+𝑚𝐼
]
  (1.1) 

𝛽 =
√18𝜋∗𝑒∗𝐸∗760∗𝑇𝑖𝑛𝑠𝑡𝑟

16∗√𝑘𝐵𝑇𝑖𝑛𝑠𝑡𝑟∗𝐿∗𝑃∗273.2∗𝑁
= 1.3074 ∗

𝑒∗𝐸∗𝑇𝑖𝑛𝑠𝑡𝑟

√𝑘𝐵𝑇𝑖𝑛𝑠𝑡𝑟∗𝐿∗𝑃∗𝑁
 (1.2) 

𝛽 = 5.6369𝐸 − 8 ∗
𝐸∗𝑇𝑖𝑛𝑠𝑡𝑟

√𝑇𝑖𝑛𝑠𝑡𝑟∗𝐿∗𝑃∗𝑁
   (1.3) 

, where z is the charge of an analyte, 𝑡𝑑𝑟𝑖𝑓𝑡 the drift time acquired by subtracting the fixed 

time not included in the drift tube (tfix) from the total time spent in the ion mobility section of 

the instrument (ttot), mI the mass of an analyte ion and mB the mass of the buffer gas molecule. 

The constants in the equations of 𝛽 include the elementary charge 𝑒 (1.602 x 10-19  C), the 

Boltzmann constant 𝑘𝐵 (1.3806 x 10-23 m2kgs-2K-1), and the instrumental parameters of the 

drift cell: the electric field 𝐸, temperature 𝑇𝑖𝑛𝑠𝑡𝑟, the length 𝐿 of the drift tube, the pressure 𝑃 

and the number density 𝑁. Hence the theoretical CCS value of the analytes can be measured 

via their drift times, no calibration standards are necessarily needed.71 

Some QTOF-instruments are equipped with an IMS module, enabling further identification 

tactics with another molecular property dimension. However, identifying CCS values of 

molecules in ion mobility-mass spectrometry mode (IM-MS mode) decreases the amount of 

ions ending up at the TOF, which in turn decreases sensitivity in the analyzer. 
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7 Data-analysis and processing 
Pre-processing softwares have been developed to convert experimental data, correct 

baselines, refine chromatograms by filtering out background noise and even discarding noisy 

data entirely.72 For both identification and quantitation, the supply of commercial, open-

source and home-made tools for primary processing have exploded as already reviewed by 

Pöhö34 as well as Sethi and Brietzke.54 This can also be said for statistical tools, analysis 

softwares and algorithms, which enable visualization and perceiving of patterns for large 

datasets.71, 72 

For pre-processing and extracting of information, data was typically analyzed via a specifically 

tailored automatic data-processing software e.g. Markerlynx, MZmine, Qualitative Workflows 

or XCMS. Metabolic profiling of data was done with similar programs, e.g. Metaboanalyst or 

MeV.72 Another popular solution were manually crafted solutions self-programmed in a 

coding language. Popular software environment languages for data processing included 

MatLab, Python, R (base for XCMS and MeV) and SPSS. Self-evidently, manual programming 

from the ground up or with borrowed code demands more computational expertise from the 

researcher. However, Koelmel et al.’s73 article, which compared available identification 

algorithms with the commercial R-based LipidMatch-tool, mentions most lipid identification 

softwares to be written with “middle level languages […] such as C++”.73  

Metabolic correlation and significance analysis of lipids is typically conducted with a set of 

visual chemometric analyses and statistical methods. Chemometric methods include a typical 

overview on analyte clusters, the principal component analysis (PCA);72 regression analysis of 

partial least-squares data-analysis (PLS-DA) and/or orthogonal projections to latent structures 

data-analysis (OPLS-DA);137 a (relative or actual) concentration boxplot or heatmap;34 analyte 

interaction study via hierarchical cluster analysis (HCA) or pathway analysis; importance 

testing of PLS-DA variables  with variable importance projection (VIP);72 visualizations such as 

the Bland-Altman or volcano plot for significant outlier detection; and/or method or sample 

comparisons with Venn diagrams. 

Principal component analysis pursues to flatten a large dataset with multiple variables to find 

the most important two sources of variation, i.e. principal components. This is done by 

comparing the variation between all variables and flattening these into only two dimensions 

with matrix operations. This way, most important information of the multivariate data is 
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found. e.g. to divide analytes into different groups and characterizing them.74 PLS-DA, on the 

other hand, approaches the flattening of multivariate data parallel (whereas OPLS-DA 

orthogonal) to the partial least square plateau of the dataset.75 Moreover, HCA displays 

clusters of sample components that correlate with each other. The recognition of this 

correlation is derived from information often visualized in heatmaps,76 which include a matrix 

including the analyzed samples sorted with found lipid species in them, color-scaled in the 

concentration or change of concentration the analyte has experienced. 

Typical statistical methods include a null hypothesis to test dataset similarity. With the p-value 

parametric Student t- or with the non-parametric Mann Whitney U-test; and analysis of 

variance (ANOVA) for more than two variables. Additionally, statistical tests have correction 

methods such as Benjamini-Hochberg77 to calculate the false discovery rate (FDR) for 

minimizing false positives in a dataset. 

The Mann-Whitney U-test78 (also known as the Wilcoxon rank-sum test) is used to non-

parametrically evaluate the similarity of two independent dataset medians with a null 

hypothesis. For two sets with same or different sample sizes, the values of both datasets are 

sorted from smallest to largest. The ranking value is divided among identical values (e.g. for 

values 2 and 2: 1.5 & 1.5). Then, the separately ranked sample value sets are summed 

individually, and if one of the sums is critical value range of a u-test table, the null hypothesis 

can be rejected. 78 Akin to the Student t-test, the u-test with large sample sizes is evaluated by 

determining the z-score of a normal distribution.78 

In the Benjamini-Hochberg method77 p-values of two sample sets (i.e. control and test group) 

are inflated mathematically to reveal possible false positives. Since affected and unaffected 

lipids represent two distinct normal distributions, false positives can be ideally seen as a 

separate normal distribution at big sample sizes. In the method, (lipid species’) p-values are 

put into “bins” adjusted as big as the significance that is desired for the p-values (e.g. P=0.1, 

10% significance). The bins are then ranked from smallest to largest p-value, after which 

individual p-values are “modified” from largest-to-smallest. The largest p-value keeps its 

value, but the second largest p-value is determined as the smaller value of two options: either 

it is the value preceding it, or the value calculated with a separate equation.79 
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For instance, Tietz-Bogert et al.80 calculated the FDR for a lipido-metabolomic study 

researching significant biomarkers of primary sclerosing cholangitis,80 a disorder in the bile 

duct of unknown origin. The lipid species’ concentration between control samples to the 

clinical samples of diseased patients in both portal blood and bile were compared to exclude 

FDR-values under 0.01 from the dataset.80 

Since targeted and untargeted methods are two distinctively different approaches, so are 

their means of data processing. Gorrochategui et al.72 describes the targeted processing of 

metabolites in five phases (for more detailed flowcharts, I recommend to read the full article): 

at first, raw data is acquired via conduct analysis and a referential database is picked by either 

using a predefined local, open-source or commercial database. Alternatively, an in-house 

database can be created via standard compound analysis. Next, metabolites are isolated via 

pre-processing of data, which is followed by identification of the metabolites, quantification 

and chemometric/statistical evaluation. The evaluation may be conducted manually or with 

the help of a program. Finally, the processed data and its results are interpreted considering 

the initial hypothesis proposed. Despite the high sensitivity and accuracy, a targeted approach 

is only limited to the predefined database. Thus, Gorrochategui72 predicts future methods 

with not only targeted, but also untargeted elements.72 

Untargeted lipid metabolomics analysis follows a similar, though 9-stepped path. Raw data is 

acquired, the stored data file converted and exported via a tool compatible with the acquisition 

software, and the file is imported into a specifically tailored or universal interface for pre-

processing. For lipid metabolome analysis, biomarkers and metabolites can be screened with 

either statistical tests or chemometric analyses and then identified, both of which are 

irrelevant for profiling of the sample’s lipidome. Identification proceeds through either 

commercial, open-source or self-acquired data libraries. Finally, the data is interpreted 

through prior knowledge or a proposed hypothesis.72 
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8 Development of ultra-high performance chromatography  

8.1 Emerging trends in lipidomics 

The use of unconventional non-chromatographic methods has increased during the time 

frame of 2017-05/2019. For example, mass spectrometric imaging (MSI), once synonymous 

with desorption techniques like desorption ESI (DESI) and matrix-assisted laser desorption 

ionization MS (MALDI-MS) has expanded to other strategies. Methods not discussed in this 

review include secondary ion MS (SIMS),2 nanostructure initiator MS (NIMS),2 laser ablation 

ESI (LAESI)81 and direct analysis in real time (DART).   

Li et al.82 conducted MALDI-MS imaging experiments with a FT-ICR mass spectrometer to 

analyze liver cancer in situ on human patients. The scarcely studied metabolic lipid profiling of 

hepatocellular carcinoma revealed down-regulation of TGs with less than two double-bonds 

and ceramides, and conversely, up-regulation in only GPs and SM. Particularly, new 

information on TG, PC, PE and PI trends was uncovered in the study.82 

As a side note, the decline of chip analysis in UHPLC research done in 2014-2017 can be 

observed: only a limited amount of articles including that technology, such as on-chip analysis 

or microchip NSI.83-85 Thus, the study field was excluded from this literature review. 

A biocompatible surface probe (BCSP) was used as a solid phase microextraction (SPME) 

device, which is directly immersed on the precise position of the probe surface to be 

analyzed.81 However, this introduces an additional step to the analysis procedure since the 

analytes are desorbed from the adsorbent into a solvent-prefilled nanospray tip after loading 

of the material.81 

In addition, liquid extraction surface analysis (LESA) has shown promises as an alternative 

surface analysis method. In LESA a liquid solvent is temporarily applied on the sample’s 

surface, is aspired back into the injection pipette and analyzed. In practice, Zong et al.85 

conducted such an analysis with an LTQ mass spectrometer hyphenated with an NSI source to 

a microchip nozzle array. Then, the equilibrated liquid was transferred from a single-use 

pipette to the single-use chip. LESA is an in situ qualitative analysis method apparently capable 

of lipidomic profiling (at least in vivo) and metabolic differentiation (e.g. increased anti-

oxidant activity in multidrug-resistant MCF-7/ADR in comparison to the baseline cells).85  
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A potent complementary method, nondestructive imaging achieved with Coherent Raman 

scattering (CRS) has been tested by Kim et al.86 and reviewed by Gupta et al.87 For CRS imaging 

to work, a material must either be active at the anti-Stokes frequency (for coherent anti-

Stokes Raman scattering, CARS, which follows a quadratic signal) or else must be stimulated 

(for stimulated Raman scattering, SRS, which follows a linear signal).Two types of intensity 

measurements can be made in SRS: signal capture of stimulated frequencies or the loss of 

signal intensity, both at specific Raman wavelengths.  

The resolution of MALDI-MS (~10 µm)2 can be compared with that of CRS (~0.1 µm)87 by 

analyzing single cells (single cell size: ~8 µm x 12 µm)82. For example, Kim et al.86 encapsulated 

water-oil emulsified microalgae cell solution carried with PDMS that splits the cell solution 

with a T-junction into droplet culture chambers. After isolation into the chambers, cell solution 

taken from a cell culture plate could be analyzed in vivo with a CRS technique. Microalgae are 

speculated to be potential renewable biofuels in the future.86 

Nanospray ionization (NSI) lipidomics was heavily dominated by shotgun lipidomics between 

2017-05/2019. As DIMS injections reach equilibrium before 30 seconds,81 a rapid analysis time 

of 1 minute allows very high throughput compared to separation techniques. NSI increased 

the sensitivity of the method substantially, which was important considering that DIMS needs 

high signal strength for the deconvolution of data and identification of analytes with very 

similar RTs. However, DIMS is inherently prone to low abundance analytes and spectral 

overlap of isomer or stereo-chemical species, because the method includes no separation (e.g. 

PCs and PEs with same m/z ratios21). This also explains the trend of more derivatization in 

DIMS compared to HPLC. DIMS is considered a method for moderate lipid abundances, as 

extensive abundances of lipids lead to the need for higher resolution.2 

Looking back on the 35 year long (1982-2017) MS development harnessed in lipidomics, 

Gross2 defines the present problem of lipid analysis as the lack of specifity. Apparently, 

unidentified contaminants in multiple reaction monitoring (MRM) experiments lead to a high 

false discovery rate and deviation in quantitation results.2 Moreover, as the average 

identification accuracy of UHPLC-ESI-MS in both mass spectrometric modes lies around 89-

105% (±10%, n=5, Attachment 1), 28, 64, 65, 88, 89 false positives remain at estimated values of 

57% for positive and 27% for negative ionization mode.51 With an algorithm-assisted nanoLC-
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NSI-method, the RSD of the mass spectrometer’s response was <10% (positive and 

negative)52. 

In 2017, Lam et al.5 reviewed accurate quantitation practices including identification. Though 

qualitative analysis plays an integral role, quantification is also dependent on other 

parameters which can be roughly divided into pre-, post- and analytical factors. By my 

interpretation, pre-analytical factors include matrix- and analyte-altering inter-batch effects5 

caused by a typically extended time of clinical sample acquisition and storage, and intra-batch5 

effects caused by sample preparation, i.e. alterations between storage and analysis. Analytical 

factors for optimal quantification include instrumental properties and calibration, method 

settings, circumstances of analysis and method performance, whereas post-analytical factors 

affecting quantitative representativeness include data pre-processing, prior data processing 

and validation steps. 

Knowledge of molecular properties in addition to the usage of supporting standards and 

samples are key elements to proper quantification. Molecular properties include polarity and 

chemical structure, both of which lead to characteristic ionization and fragmentation 

behavior. Furthermore, ideal internal calibration standards with the same head groups and 

similar but not identical FAs (e.g. odd-numbered [<1% abundant in higher organisms] or 

isotope-labeled FAs) are preferred for normalization.5 External calibration standards such as 

the QC sample may account for the post-calibration of systematic errors.5 Also, mathematical 

model-based in silico algorithms can be applied to correct systematically biased data, 

diminishing the need for qualitative standards.5  

Deuterated standards as surrogates, ISTDs and representative standards are needed in 

lipodomics. In spite of those targeted standards, the progress in the power and speed of 

computers have allowed algorithm-based library identifications72, 73. Therefore, analyses5 in 

silico can be conducted independently without lipid standards. The Attachment 3 shows that 

in cases of 26 out of 58 analyses included no standards. Most probably it will be the trend to 

use validated commercial and/or in-house accumulated libraries for identification. As another 

alternative for single or representative standards, they may be substituted with (mostly 

biological) standard reference materials (e.g. porcine brain, egg) that include a known set of 

lipids. 



33 
 

Without even mentioning the false negatives, the search for a sufficiently reliable though 

nimble method is still on-going. Identification of analytes can be improved by increasing the 

“dimensions” with which they are evaluated, i.e. by analyzing more of their independent 

properties (RT, m/z, CCS, MS/MS, Raman). Table 3 gives insight to the strategies used for 

identification, starting from interface-driven one-dimensional to multi-dimensional 

identification (1D-3D), or alternatively via a routine software. Approximately half of the 56 

nanoLC/UHPLC lipid articles were automated identification analyses.30, 35-37, 41, 46, 51, 55, 61, 63, 91, 94-99, 

105-111, 117-119 

 

 

 

 

Table 3. Dimensions (1D-3D) and specific means of identification (Matching) with UHPLC-MS. 

Citation Approach Identification Matching details Year 

90 UT 1D manual m/z spectra 2017 

39 UT 2D manual molecular ion 2017 

62 UT 2D manual APCI fragmentation pattern 2017 

45 T/UT 3D manual molecular ion, C isotope pattern  2017 

91 UT 3D manual POS: data-dependent CID 2017 

82 UT 3D manual MSE 2017 

42 T 3D manual MSE, PRM 2017 

92 UT 3D manual MS/MS fragment spectra 2017 

65 UT 3D manual MRM 2017 

66 UT 3D manual RT, m/z, MRM 2017 

93 UT 3D manual PIS? 2017 

30 T/UT Routine software iLipid 1.2 (homemade) 2017 

91 UT Routine software NEG: LiPilot 2017 

94 UT Routine software SIMLIPID c6.01 2017 

95 UT Routine software GeneData 2017 

96 UT Routine software LipidSearch 2017 

51 relT Routine software Lipidfrag 2017 

97 UT Routine software MetaboAnalyst 2017 

55 T/UT Routine software MassLynx 2017 

98 UT Routine software Mzmine, LipidMatch 2017 

99 UT Routine software Lipidsearch 4.0 2017 

35 UT Routine software Lipidsearch 2017 

41 UT Routine software Progenesis QI 2.2 2017 
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Citation Approach Identification Matching details Year 

100 UT 2D manual SRM 2018 

79 UT 2D manual Molecular ion 2018 

15 T 2D manual RT, m/z 2018 

101 UT 3D manual MS/MS spectra 2018 

80 UT 3D manual MS/MS spectra 2018 

102 T/UT 3D manual C-isotope profile (relative to ISTD) 2018 

52 UT 3D manual PRM, MS/MS fragment spectra 2018 

103 UT 3D manual SRM 2018 

104 UT 3D manual Product ion scan 2018 

88 UT 3D manual MS spectra match, CCS 2018 

28 T 3D manual MRM transition, 1-2 qualitative ions 2018 

64 T 3D manual precursor ion, product ion 2018 

105 UT Routine software SIMLIPID 2018 

106 UT Routine software LipidSearch 2018 

107 UT Routine software LipidView 2018 

108 T/UT Routine software XCMS: RT, m/z, I, MS/MS 2018 

109 UT Routine software Lipidmaps 2018 

36 T Routine software LipidSearch 2018 

110 UT Routine software MS-DIAL (spectra matching) 2018 

111 UT Routine software MassLynx 2018 

63 PT Routine software LipidSearch: RT, m/z, MS/MS  2018 

61 UT Routine software MS-DIAL 2018 

112 T/UT 2D manual RT, m/z  2019 

113 UT 2D manual RT, m/z 2019 

114 UT 3D manual MRM (GPs) or product ion mode (FAs) 2019 

115 UT 3D manual MSE 2019 

89 relT/T 3D manual MRM or PIS 2019 

116 T 3D manual MRM 2019 

117 UT Routine software LipidMatch 2019 

46 UT Routine software R: XCMS 2019 

118 UT Routine software MetaboAnalyst 2019 

37 UT Routine software MS-DIAL 2019 

119 UT Routine software MS-DIAL, MS-FINDER 2019 

relT: relatively targeted analysis approach, i.e. analysis with computer-generated data library  

T: targeted analysis approach, UT: untargeted analysis approach 
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8.2 Samples in lipidomic studies 
Conventional (i.e. classical) biological materials are materials that are commonly investigated 

medical routine analysis matrices such as urine, faecal matter and the separate components 

of blood, and unconventional biological materials samples that are often acquired through 

procedures requiring more effort (e.g. surgery): hence, used for supplementary diagnostics. 

Just like Jurovski et al.18 reviewed lipidomics studies between 2014-2016, the UHPLC-research 

located on the time frame of 2017-05/2019 also trended towards classical biological materials. 

Indeed, the samples of Table 4 and Table 5 leaned overwhelmingly towards methods 

encompassing blood components (e.g. plasma and exosomes), mostly TGs for GLs, PCs; PEs; 

LPCs and LPEs for GPs (GPs are included in 87% of the studies between 2017-05/2019), and 

SMs for SPs. In contrast, urine samples were exceptionally represented 2014-2016, whereas 

liver tissue was the next frequent matrix between 2017-05/2019.  

 

Table 4. Classical biological material types. Extension to Jurovski et al.’s18 Supplementary 

Table.  

Biological samples Lipid classes Reference(s) 

cl
as

si
ca

l b
io

lo
gi

ca
l m

at
er

ia
ls

 (
co

n
ve

n
ti

o
n

al
) 

Urine AcCa, MG, DG, TG, PC, PE, LPC, Cer, SM, CEs 7, 91 

faecal matter FA, GPs, STs, SPs, PRs, PKs 45, 102 

blood derivatives:     

x plasma FA, MG, DG, TG, PA, PC(+PLs), PE(+PLs), PI, PS, LPA, 

LPC, LPE, Cer(+Hex/Hex2/sulfoHex), SM, S, SA, 

cholesterol, CEs, SLs, STs 

7, 28, 79, 36*, 55, 61-

63, 79, 89, 93, 94, 97, 

100, 110, 111, 113, 

115, 120 

x serum MG, DG, TG, PA, PC(+PLs), PE(+PLs), PG, PI, PS, LPA, 

LPC, LPE, Cer(+HexCer/Hex2Cer), SM, S, CEs, STs, PRs 

7, 15, 96, 104, 106, 

108, 115 

x erytrocytes PC(+PLs), PE(+PLs), LPC, LPE, Hex2Cer, SM 55 

x blood platelets AcCa, FA, DG, TG, PA, PC, PE, PG, PI, PS, LPA, LPC, LPE, 

Cer, SM 

119 

*NIST SRM 1950 plasma 

Hex: for hexosyl, Hex2: dihexosyl, S: sphingosine, SA: sphinganine 

bolded articles: reviews,  
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Table 5. Alternative bioloical materials. Extension to Supplementary Table 1 by Jurovski et 

al.18 Hex is an abbreviation for hexosyl, Hex2 for dihexosyl 

Biological samples Lipid classes Reference(s) 

al
te

rn
at

iv
e 

b
io

lo
gi

ca
l m

at
er

ia
ls

 (
u

n
co

n
ve

n
ti

o
n

al
) 

aqueous humor   7, 30 

Bile   80 

cerebrospinal fluid (CSF)   7 

colon derived suspension   112 

Milk DG, TG, PC, SM 88 

tear drops   7 

cells and cell lines:     

x exosomes FA, GLs 7, 91, 105 

x liposomes FA 121 

x alveolar cells PC, PE(+PLs), PS, LPC, LPE, SM, Cer, HexCer 92 

x lipid droplets   87 

tissues:     

x adipose tissue Cer, SM 15 

x lung tissue AcCa, FA, TG, PC(+PLS), PE(+PLs), PG, PI, PS, LPC, 

LPE, LPI, LPS, Cer, SLs 

110, 113 

x renal tissue FA, GLs, GPs, SLs, STs, PRs 104 

x myocardial tissue FA, CL, DG, TG, PA, PC, PE, PG, PI, PS LPC, LPE, 

Cer, cholesterol 

90, 96 

x brain tissue Cer, SM, thromboxane, prostaglandins 15, 63, 64 

x liver tissue DG, TG, PA, PC(+PLs), PE(+PLs), PG, PI, PS, LPA, 

LPC, LPE, LPG, LPI, LPS, Cer(+HexCer), SM, STs 

15, 30, 63, 82, 92, 98 

x colonic tissue   112 

x tumor tissue PC(+PLs), PE(+PLs), LPC, LPE, Hex2Cer, SM 55 

bolded articles: reviews 

 

The range of unconventional biological extracts and tissues was, as described by Jurovski et 

al.,18: very broad. Furthermore, in vitro biological cell culture analyses reached a high variation 
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of studies among themselves, which lead to include them separately in Table 6. Finally, even 

more exotic sample types hard to categorize were listed in Table 7. The multi-matrix approach 

was a pool of plasma, urine and faecal matter of the same patient.63 Other details can be 

purchased from the references in Tables 6 and 7 

 

Table 6. Cell culture matrices analyzed with UHPLC-MS techniques.  

Hex is an abbreviation for hexosyl, Hex2 for dihexosyl 

Biological samples Lipid classes Reference(s) 

C
el

l c
u

lt
u

re
s 

HC1* DG, CL, BMP, PE(+OxPE), PG, PS, LPE, PRs 117 

HCC827 (+HCC827-GR)   65 

HeLa CL, DG, TG, PC, PE, PG, PI, PS, LPC, LPE, 

Cer(+HexCer), SM 

46, 37 

Huh7 LPC, LPE 101 

HTC-116   65 

Huh7 LPC, LPE 101 

MDCK (+MDCK-GR)   65, 15 

OVCAR-3   65 

OxWR* CL, DG, BMP, PE, PG, PS, LPE, PRs 117 

PANC-1 CE, DG, TG, PC, PE, PI, PS, LPC, Cer, SM 35 

PC-9 (+PC-9-GR)   65 

PC12 PC, PE, PI, PS 116 

RAW 264.7 (macrophages)** GLs, PA, PC, PE, PG, PI, PS, LPLs, SPs, CEs, 

cholesterol 

99, 66 

SKOV-3   65 

Bladder cancer cell   63 

Melanoma B16*** Cer, SM 15 

Primary CD4+T 

lymphocytes*** 

Cer, SM 15 

Yeast PA, PC, PE, PG, PI, PS 52 

*anaerobic, oxalobacter formigenes ; **widest lipid range ; ***mouse 
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Table 7. Special matrices analyzed with UHPLC-MS techniques 

Biological samples Lipid classes Reference(s) 

B
o

ta
n

y 

(p
la

n
ts

) 

leaves, new shootsA  DG, TG, PC, PE, PG, PI, PS, CEs, SLs 95 

BerriesB TG, PC, STs 118 

bee pollen DG, TG, LPC, Cer 99 

Si
m

p
le

 

o
rg

an
is

m
 C.Elegans DG, TG, PC(+PLs), PE(+PLs), PS, LPC, LPE, Cer, SM 51, 92 

Earthworm LPC, LPE, LPI, LPS 107 

larvae (lysphlebia japonica) TG, PA, PC(+PLs), PE(+PLs), PG, PI, PS, LPC, LPE, PG, PI, SPs, SLs 109 

Sp
ec

ia
l 

m
at

ri
x multi-matrix analysis   63 

Buttermilk (foodstuff) TG, PC, PE, PI, PS, LPC, LPE, SM 42 

*Camellia sinensis L. ; **Sambucus nigra 

8.3 High resolution chromatographic techniques in lipidomics 
Table 8 includes both the stationary and mobile phase properties used in analysis, including the 

gradient (e.g. curved gradient following an exponential or logarithmic function, stepped gradient, 

linear gradients etc.). More detailed column information was included separately in Attachment 2.  

The methods within LC separation techniques (HPLC, UHPLC or nanoLC) differ in their different 

stationary (i.e. column packing, type and dimensions) and mobile phases (i.e. solvent(s), gradient, 

additives) used for analyte interaction optimization. Considering the column and solvent choices made 

by various researches, the most popular column (n=52) for comprehensive lipidomics were variations 

of C18, the most popular solvent combination (n=27) being variations of 60:40 ACN:H2O  and 90:10 

IPA:ACN with the most typical additive combination (n=25) of 5-10 mM ammonium formiate (AmFo) 

and 0.1-0.05% of formic acid (FoA). Sometimes, only AmFo (n=6) or FoA (n=7) was used. Other used 

additives (n<6) included ammonium acetate (AmAc), acetic acid (AcA), ammonium hydroxide and 

ammonium carbonate.  

In the time frame of 2017-05/2019, occasional polar BEH produced amide80 and HILIC46, 55 column 

method analyses were conducted along with C863, 95, 119 and phenyl112 methods. The trend towards 

nonpolar stationary phases is probably due to the easy identification between lipid classes according 

to their retention time and head group product ions, after the lipids have been separated according to 

their nonpolar structure (but not vice versa). Other solvent combinations included water and MeOH, 

water:ACN and IPA:MeOH:ACN, water:ACN and ACN:acetone, and their dilutions with an extra 

proportion of water or ACN in either the polar A- or organic B-solvent.
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Table 8. Stationary phase (column) and mobile phase (gradient, solvent+additive) information (detailed column and additive information in Attachment 2)  

Precolumn Gradient Column Solvent A (v/v ratios) Solvent B (v/v ratios) Solvent C Additives Year Citation 

yes step-pit-step T3 C18 1:1 MeOH:H2O (pH 7.5) (PG;PS) 6:4 MeOH:ACN (GP;PS)   AmFo, FoA 2017 42 

  exp curved C18 GOLD 19:19:2 ACN:MeOH:H2O IPA   AmFo, FoA 2017 66 

    T3 C18 3:4:3 ACN:acetone:IPA (DG;TG) 3:7 ACN:IPA (DG;TG)   AmOH 2017 42 

  Curved C18 BEH 40:60 ACN:H2O 90:10 IPA:ACN   AmAc, AcA 2017 121 

  Linear N/A 40:60 ACN:H2O 90:10 IPA:ACN   AmAc 2017 93 

  s-curve C18 50:50 ACN:H2O 95:5 IPA:ACN   AmFo, FoA 2017 35 

  reversed, log curved C18 CSH 50:50 IPA:ACN H2O   AmFo, FoA 2017 97 

  
abrupt change + smooth 
s-curve 

C18 60:40  MeOH/H2O 60:40 MeOH:IPA   AmAc, AcA 2017 65 

  Linear C18  60:40 ACN:H2O 90:10 IPA:ACN   AmAc 2017 99 

  two-stepped C18  60:40 ACN:H2O 90:10 IPA:ACN   AmFo, FoA 2017 51 

  3-stepped, inclined C18 CSH 60:40 ACN:H2O 90:10 IPA:ACN   - 2017 90 

  4linear-3ramp C18 CSH 60:40 ACN:H2O 90:10 IPA:ACN   AmAc, FoA 2017 39 

  Linear C18 CSH 60:40 ACN:H2O 90:10 IPA:ACN   AmAc 2017 99 

  N/A C18 CSH 60:40 ACN:H2O 90:10 IPA:ACN   AmFo, FoA 2017 30 

  Linear C18 GOLD 60:40 ACN:H2O 90:10 IPA:ACN   AmFo 2017 96 

  Linear C18 BEH 90:10 ACN:H2O 90:80:1 IPA:ACN:H2O   AmFo, FoA 2017 98 

  log curved C18 BEH* 90:10 H2O:ACN 20:20:60 MeOH:ACN:IPA   AmFo, FoA 2017 91 

  Linear T3 C18 90:10 IPA:ACN 30:70 H2O:ACN   AmFo 2017 82 

  Linear HILIC BEH 96:4 ACN:H2O H2O   AmAc 2017 55 

  Linear C8 BEH H2O 2:5 IPA:ACN   AmFo, FoA 2017 92 

  linear;isocratic C18 BEH H2O 50:50 IPA:ACN   - 2017 121 

  linear, isocratic C18  H2O 60:36:4 IPA:ACN:H2O   AmFo 2017 62 

  log curved C8 H2O 70:30 ACN:IPA   AmAc, FoA 2017 95 

  log curved A->B->C C18 BEH H2O ACN 90:10 IPA:ACN FoA 2017 94 

  Linear C18 T3 H2O ACN   FoA 2017 41 

  s-curve, plateau C18 BEH H2O MeOH   AmAc 2017 45 
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Precolumn Gradient Column Solvent A (v/v ratios) Solvent B (v/v ratios) Solvent C Additives Year Citation 

  N/A C18 CSH 40:60 ACN:H2O 90:10 IPA:ACN   AmFo, FoA 2018 110 

  Isocratic C18  45:55 ACN:H2O     AcA 2018 64 

  2-stepped, exp curved  C18 BEH 60:40 ACN:H2O 81:10:9 IPA:ACN:H2O   AmFo, FoA 2018 104 

  3-stepped, inclined C18 CSH 60:40 ACN:H2O 90:10 ACN:IPA   AmFo, FoA 2018 79 

  Linear C18 60:40 ACN:H2O 90:10 IPA:ACN   AmFo 2018 108 

  three-stepped C18 60:40 ACN:H2O 90:10 IPA:ACN   AmAc 2018 107 

yes three-stepped C18 CSH 60:40 ACN:H2O 90:10 IPA:ACN   AmFo, FoA 2018 88 

  Linear C18 GOLD 60:40 ACN:H2O 90:10 IPA:ACN   AmFo 2018 106 

yes exp curved, drop C18* 60:40 ACN:H2O 90:10 IPA:ACN   AmFo, FoA 2018 52 

yes s-curve, drop  C18* 60:40 ACN:H2O 90:10 IPA:ACN   AmFo, FoA 2018 52 

  Stepped C8 BEH 60:40 ACN:H2O 90:10 IPA:ACN   AmAc 2018 63 

  Stepped C8 BEH 60:40 ACN:H2O 90:10 IPA:ACN   AmAc 2018 63 

  Linear C18 BEH 60:40 ACN:H2O 90:10 IPA:ACN?   AmFo 2018 15 

    C18 BEH 60:40 ACN:H2O 90:8:2 IPA:ACN:H2O   AmFo, FoA 2018 36 

yes log curved C18 BEH* 90:10 H2O:ACN 20:20:60 MeOH:ACN:IPA   AmFo, FoA 2018 100 

yes log curved C18 BEH* 90:10 H2O:ACN 20:20:60 MeOH:ACN:IPA   AmFo, FoA 2018 103 

  3-stepped curve C18 RRHD H2O 90:10 ACN:H2O   AmAc, AcA 2018 28 

  invert s-curve C18 H2O ACN   FoA 2018 61 

  curved A->B->C C18 BEH H2O ACN 90:10 IPA:ACN FoA 2018 105 

  exp curved C18 BEH H2O ACN   AcA 2018 101 

  s-curve C18 HSS H2O ACN   FoA 2018 102 

  N/A Amide H2O MeOH   AmHCO3 2018 80 

  N/A Amide H2O MeOH   AmFo 2018 80 

  N/A C18 BEH H2O MeOH   PFPA, FoA 2018 80 

  N/A C18 BEH H2O MeOH   PFPA, FoA 2018 80 

  Linear C18 CSH H2O MeOH   FoA 2018 111 

  s-curve C18 HSS H2O MeOH   FoA 2018 79 
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Precolumn Gradient Column Solvent A (v/v ratios) Solvent B (v/v ratios) Solvent C Additives Year Citation 

 log curved C18 BEH* 10:90 H2O:ACN 20:20:60 MeOH:ACN:IPA  AmFo, NH3 2019 38 

  left-skewed pyramid C18 CSH 40:60 ACN:H2O 90:10 IPA:CAN   AmFo, FoA 2019 113 

  Linear C18 50:50 ACN:H2O 20:80 IPA:MeOH   AmAc 2019 116 

yes N/A C18 CSH 60:40 ACN:H2O 90:10 ACN:H2O   AmFo, FoA 2019 115 

yes s-curve C18 CSH 60:40 ACN:H2O 90:10 IPA:ACN   AmFo, FoA 2019 37 

yes s-curve C18 BEH 60:40 ACN:H2O 90:8:2 IPA:ACN:H2O   AmFo, FoA 2019 117 

  N/A (linear? A->B) HILIC 90:10 ACN:acetone 70:30 ACN:H2O   AmFo, FoA 2019 46 

  N/A (linear? A->B) HILIC  90:10 ACN:acetone 70:30 ACN:H2O   AmFo, FoA 2019 46 

yes linear (j-curve) C8  H2O 55:40:5 ACN:IPA:H2O   AmAc 2019 119 

  s-curve C18 H2O 75:25 IPA:ACN   AmFo 2019 118 

  s-curve C18 H2O 75:25 IPA:ACN   AmAc 2019 118 

  Linear C18 H2O MeOH   AmAc, FoA 2019 114 

  Linear C18  H2O MeOH   AmAc, FoA 2019 114 

yes s-curve Phenyl H2O MeOH   AmAc 2019 112 

  Linear C18 BEH MeOH 2:5 ACN:IPA   AmAc, FoA 2019 89 

*nano-LC 

BEH: ethylene bridged hybrid, CSH: charged surface hybrid, HSS: high strength silica,  

Exp: exponentially (curved gradient), log: logarithmically (curved gradient)
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However, because of the wide range of similar methods, Table 9 includes an averaged value 

on all for the RT, flow rate, column compartment temperature and particle size. Attachment 

4 gives more detailed information on the individual methods (both UHPLC/MS and nanoLC). 

In 2018, an outlier runtime of 110 minutes was excluded from the average.52 

 

Table 9. Average experimental conditions. For explicit details to the UHPLC-MS settings, see 
Attachment 4. 

 t (min) Flow (ml/min) T[column] (˚C) Ø (um) 

Parameter Average SD Average2 SD2 Average3 SD3 Average4 SD4 

2017 (n=25) 22 8.9 0.3 0.09 42 12.3 1.8 0.3 

2018 (n=26+1) * 21 6.8 0.4 0.12 49 12.1 2.0 0.4 

2019 (n=14) 18 8.3 0.5 0.22 44 12.3 2.0 0.5 

TOTAL 22 14 0.38 0.13 48 11 1.9 0.4 

Ø: particle size of the column packing that is used, *: +1 is an outlier excluded from the calculation 

The usage of pre-columns in UHPLC has increased within the time frame as majority of the 

total 10 articles37, 42, 52, 88, 100, 103, 112, 115, 117, 119 are centered around 2019,37, 112, 115, 117, 119 though 

overall pre-columns were still neglected by the majority of the UHPLC studies. Indeed, it could 

be speculated that researches in the lipidomics field preferred reproducibility (i.e. most 

studies are without a pre-column), lower backpressure and/or smaller risk of increased void 

volume over column safety and matrix filtering.  

Nano-LC is the rather new practice of using packed capillary columns with conventional 

column packing material. All experimenters (Lee100, Yang91, Danne-Rasche52 and Kim103) 

created a capillary column by unpacking a commercial column and repacking it into a nano- 

or narrowbore capillary. Table 10 includes analysis parameters for used in nanoLC-studies: the 

mass analyzer, runtime t, flow rate, column compartment temperature T[column] and particle 

size Ø.  

Table 10. Experimental conditions for nanoLC experiments. 

Mass analyser 
(nanoLC) t (min) 

Flow 
(µl/min) 

T[column] 
(˚C) Ø (um) Year Citation 

LTQ Velos ion trap, Velos TSQ vantage QqQ 46 0.35 - 1.7 2017 100 

LTQ Velos ion trap, Velos TSQ vantage QqQ 51 0.30 - 1.7 2018 91 

LTQ Velos ion trap, Velos TSQ vantage QqQ 49 0.30  - 1.7 2018 103 

LTQ Velos ion trap, Velos TSQ vantage QqQ 40 0.30  - 1.7 2018 103 

LTQ Velos ion trap, Velos TSQ vantage QqQ 54 0.30 - 1.7 2019 38 

      Ø: particle size of the column packing that is used 
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In contrast to a faster UHPLC separation compared to HPLC, the “loading time” preceeding the 

sample elution is extended due to the low flow rate in the µl/min range.38 Recalling the yeast 

lipidome analysis by Danne-Rasche,52 nano-LC showed to have even more capacity for analyte 

identification than UHPLC, with both an extremely broad identification range and a sensitivity 

in the low fmol scale. The study compared the sensitivities of HPLC- and nanoLC diameter 

columns, reaching the low fmol range with almost every GL, GP, SP and their lipid derivatives 

they analyzed in positive mode (Figure 10). For example, the calibration curve for PE 17:0/14:1 

demonstrates a linear relationship for up to 10 fmol in positive and <1 fmol in negative mode. 

By contrast, positive mode HPLC reached for the same analyte around 100 fmol in positive 

and 10 fmol in negative mode. The exact lipid species are found in detail from the original 

source.52 Similarly, Kim et al.103 achieved a LOD-range from 59 fmol (LPC(17:0)) to 507 fmol 

(LPG(14:0)). 

 

 

Figure 10. A) Sensitivity comparison of HPLC and nanoLC modes with ray diagrams, 

furthermore, demonstrations of calibration curves for B) PE(17:0/14:1) and C) 

GlcCer(18:1;2/12:0;0). CerP: ceramide 1-phosphate, GlcCer: glukosylceramide, LacCer: 

lactosylceramide, LCB: long-chained sphingoid base, LCBP: long-chained sphingoid base 1-

phosphate. Reprinted with permission from Ref 52, © 2018 American Chemical Society 
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An accurate mass is an exact mass with instrument resolution high enough to be determined 

2 µg/ml level or lower. Table 11 includes a variety of instrument approaches, their chosen mass 

accuracies and reported resolution. Indeed, the emergence of the Q-Orbitrap and NSI has 

increased the resolution capabilities extremely (>35 000 /m) for lipidomic studies. The 

emphasis on mass accuracy or resolution is usually chosen depending on whether 

identification or quantitation is preferred. Also, when looking at analytes of low concentration, 

higher mass accuracy is often preferred in exchange for lower resolution to increase 

sensitivity. Usually, some sensitivity is sacrificed for the sake of improved comprehensive 

identification, which in turn is usually compensated by increased injection volume and a bigger 

analyte mass window for more features.52 QTOF experiments have typically a mass accuracy 

of less than 3-30 µg/ml, whereas Orbitrap-experiments had a range of 0.01-15 µg/ml. 

A slight trend of multiple studies on bigger lipid structures (e.g. cell cultures, exosomes,91, 105 

lipid droplets87 and liposomes121) can be observed. This can be partly explained with the newly 

trending asymmetric flow field flow fractionation (AF4)91, 100, 103 instruments with their ability 

to rather precisely separate biomolecules by mass into smaller fractions before primary 

analysis. 

Table 11 shows the LC- (e.g. UHPLC, nanoLC), ionization (e.g. APCI, ESI or heated ESI [HESI]) and 

supporting approaches (e.g. AF4) with the mass spectrometer that was used, not to mention 

the reported mass accuracy/isolation window and resolution. Discussed in chapter 8.5, the 

new MS/MS method, sequential window acquisition of all theoretical fragment ion mass 

spectra (SWATH), has emerged lately.37, 61, 119 

In UHPLC-MS lipidomics, the concept of using a pooled QC sample between analysis runs has 

been standardized in the ranks of lipidome researchers: in the years 2017 (11/25), 2018 

(14/22) and 2019 (8/10) published papers showed a trend of increased pooled sample usage 

(even in qualitative analysis). The QC-sample is used to control possible instrument fluctuation 

and works as a reference point to each individual sample aliquot and their matrix effects. 
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Table 11. Mass accuracies and instrument resolutions for various lipidomic approaches. K=*1000 

Approach Mass accuracy (ppm) Resolution Citation 

UHPLC-QTOF-MS/MS ≤10   79 

AF4, nanoLC-ESI-MS/MS ≤3   100 

AF4, nanoLC-ESI-MS/MS ≤3   91 

AF4, nanoLC-ESI-MS/MS ≤3   103 

nanoLC-NSI-QTOF ≤3 70K 52 

nanoLC-NSI-QTOF-MS/MS ≤3 17.5K 52 

UHPLC-ESI/APCI-QTOF   20K 61 

UHPLC-ESI/APCI-QTOF-MS/MS (SWATH)   15K 61 

UHPLC-ESI-IMS-QTOF-MS/MS ≤0.01   55 

UHPLC-ESI-LTQ-Orbitrap ≤0.01 20K 111 

UHPLC-ESI-LTQ-Orbitrap-MS/MS ≤0.01 18K 111 

UHPLC-ESI-MS/MS ≤6   28 

UHPLC-ESI-Orbitrap ≤10 10K 95 

UHPLC-ESI-QOrbitrap ≤1 70K 117 

UHPLC-ESI-QOrbitrap-MS/MS ≤3, ≤10 LPL(>110K), 
GP(>90K), 
TG(>80K), CL(>70K) 

92 

UHPLC-ESI-QOrbitrap-MS/MS <1   115 

UHPLC-ESI-Qorbitrap-MS/MS ≤1 35K 117 

UHPLC-ESI-QOrbitrap-MS/MS ≤2.5 35K 98 

UHPLC-ESI-QOrbitrap-MS/MS ≤5 100K 93 

UHPLC-ESI-QTOF ≤3 12K 15 

UHPLC-ESI-QTOF-MS/MS ≤10   51 

UHPLC-ESI-QTOF-MS/MS <5   107 

UHPLC-ESI-QTOF-MS/MS ≤5   82 

UHPLC-ESI-QTOF-MS/MS ≤10 35K 30 

UHPLC-ESI-QTOF-MS/MS ≤15   89 

UHPLC-ESI-QTOF-MS/MS ≤8   118 

UHPLC-ESI-QTOF-MS/MS ≤30   108 

UHPLC-ESI-QTOF-MS/MS ≤30   109 

UHPLC-ESI-QTOF-MS/MS (SWATH) ≤2 >15K 119 

UHPLC-ESI-QTOF-MS/MS? ≤10   41 

UHPLC-HESI-LTQ-Orbitrap-MS/MS ≤10 60K 121 

UHPLC-HESI-Orbitrap ≤3   45 

UHPLC-HESI-QOrbitrap ≤6   112 

UHPLC-HESI-QOrbitrap ≤6 140K 102 

UHPLC-HESI-QOrbitrap ≤10   110 

UHPLC-HESI-QOrbitrap ≤5 70K 99 

UHPLC-HESI-QOrbitrap-MS/MS ≤10 35K 80 

UHPLC-HESI-QOrbitrap-MS/MS ≤5 60K 113 

UHPLC-HESI-QOrbitrap-MS/MS ≤0.35   36 

UHPLC-HESI-QOrbitrap-MS/MS ≤5 15K 99 

UHPLC-HESI-QOrbitrap-MS/MS ≤5   35 

UHPLC-Zspray-IMS-QTOF ≤10 25K 39 
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8.4 Overview on research topics 

Research articles could be roughly divided into four topics: (1) method development of 

analytical methods and techniques, (2) physiological or metabolomic profiling of organism’s 

lipids or their output via specific lipid group analysis, (3) disease profiling of living organisms, 

their expressed biomarkers or tumor tissue as is often the case in cancer research, (4) and 

product analysis (e.g. nano-tailored liposome drugs).   In Figure 11, a quick analysis on the 

major categories was done to compare the ratio of publication in each category. Biomarker 

analysis of diseases is a subcategory of metabolic profiling. UHPLC-MS has established itself 

as a method specialized in lipid metabolome research. 

 

 

 

Figure 11. Research topics with UHPLC-MS techniques between 2017-05/2019. 

Out of these 63 articles, 7.94% (5 articles) were nanoLC, and 1.59% (1 article) included a SFC 

study. *5, **4 and ***1 article(s) had another distinct topic alongside them.  

(number of articles per topic in parentheses). 
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Like Taylor et al.69 observed, environmental analysis was still scarce in lipidomic research. This 

is backed up by the fact that, according to the article search of my review, only Ribeiro et al.41 

concluded an environmental UHPLC-study between 2017-05/2019, namely a lipidomic 

analysis of tap and mineral water.41 

In Table 12, all lipid groups discussed in the articles are displayed. Also, sub-groups, the 

totality of identified lipids, and biomarker lipids were included. In total, a range of 5-700 

total lipids and 5-87 proposed biomarkers were discussed in the articles. Typical GLs in 

articles included DGs and TGs, with MGs or BMP.117  

Lipid groups not discussed in this study can be found in Attachment 5. In addition to extensive 

fatty acyl research in physiological profiling,28, 45, 64, 99 lipido-metabolomic46, 79, 117 and disease 

biomarker studies 7, 89, 104, 105, 110, 111, 119 (including BMPs and CLs) CEs were frequently found in 

both method development35, 37, 55, 62, 63 and cancer research.35, 55, 91, 108 

Table 12. Common lipids according to research topic and identification approach. If “Identified 

lipids” are indicated as a sum without any explanation, it means that the first number is the 

amount of lipids found in positive and the second in negative mode (positive+negative). 

Citation Theme T/relT/UT G
Ls

 

G
P

s 

P
Ls

 

O
x 

LP
Ls

 

SP
s 

H
ex

 

Identified 
lipids 

Bio-
markers 

88 Method development UT 2 1       1   429  
51 Method development relT 1 4       1     

92 Method development UT 2 3 1   2 1 1   

92 Method development UT 2 4 2   2 2     

92 Method development UT   3 1   2 2 1   

52 Method development UT   6 6         436  
30 Method development T/UT 2 6     5 2   207  
37 Method development UT 2 4     2 *   292+206  
36 Method development T 1 4     2 1   22  
63 Method development PT 2 2 2   2 2 2 515+630+640 [D] 

62 Method development UT 2 3     1 2   104  
121 Method development UT               403  

35 Method development / cancer research UT 2 4     2 2   226-414  
98 Method development / Metabolomics UT * *           83 8 

55 Method development / cancer research T/UT 3 5     3 2 1 132  
91 Cancer research UT 2 1 1     2 1 286 34 

82 Cancer research UT 2 2            50 

108 Cancer research T/UT 3 5 3     3 2 493 
14+10+2 

[B] 
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Citation Theme T/relT/UT G
Ls

 

G
P

s 

P
Ls

 

O
x 

LP
Ls

 

SP
s 

H
ex

 

Identified 
lipids 

Bio-
markers 

101 Diseases and Biomarkers UT         2     24  
114 Diseases and Biomarkers UT   4     2 1   129  
106 Diseases and Biomarkers UT 3 6     3 3   749 16 

90 Diseases and Biomarkers UT 1 2           12 9 

104 Diseases and Biomarkers UT * *       *   179  
104 Diseases and Biomarkers  * *       *   196  

96 Diseases and Biomarkers UT 1 2     1 1   746 11 

96 Diseases and Biomarkers  2 2     1 1     

97 Diseases and Biomarkers UT 3 5       4   261+39 7 

100 Diseases and Biomarkers UT 1 2 1   2 2   365 19 

103 Diseases and Biomarkers UT 2 2 1   2 2 3 363 28 

105 Diseases and Biomarkers UT 1 1           Features Features 

7 Diseases and Biomarkers  2 4       1    >25 

89 Diseases and Biomarkers relT/T               81 [A] 17 [A] 

113 Diseases and Biomarkers UT                77 

119 Diseases and Biomarkers UT 2 5     3 2    77 

110 Diseases and Biomarkers UT 1 5 2   3 1   188+62 87 

111 Diseases and Biomarkers  2 1     1 1     

39 Drug-testing UT 1 1     1 1   155  
42 Foodstuff profiling T 1 4     2 1   81  
79 Metabolomics UT 1 5     1 *   61  

107 Metabolomics UT         4       

115 Metabolomics UT 2 4     *       

95 Metabolomics UT 2 5       1   178  
117 Metabolomics UT 1 4 1 1 1     97  
117 Metabolomics  1 3 1   1       

120 Metabolomics UT 1 2     2 1   226  
46 Metabolomics UT  5       1   249+451  

118 Metabolomics UT 1 1           7  
116 Metabolomics T   4           22 5 

66 Metabolomics UT 3 6     6 7   523  
45 Physiological profiling T/UT   *       *   Features  
28 Physiological profiling T                 

15 Physiological profiling T           2   45  
109 Physiological profiling UT 1 6 2   2 2   283  

61 Physiological profiling UT               12  
64 Physiological profiling T               5  
99 Physiological profiling UT     1     1   184+150  
93 Physiological profiling UT 2 1            35 

*: Lipid subgroups could not be determined 
T/relT/UT: targeted/relatively targeted/untargeted  
[A] for hyperlipidemia: plasma(74, 57 biomarkers), VLDL(74, 52 biomarkers), LDL(76, 42 biomarkers), HDL(73, 41 biomarkers) 
[B] non-small cell lung cancer+lung benign disease+healthy controls 
[C] metabolites 

[D] in plasma+tissue+cell 
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Moving on, Table 13 sums up the lipid group ratios within all 58 articles that mentioned the 

lipid groups they were investigating. GPs constituted the majority of lipids studied (86%), 

mentioning basic GPs at 46, LPLs at 29 and PLs at 12 occasions. Next come the GLs with 42 

articles (72%) and SPs with 39 articles (67%), out of which 7 reports with SPs (mostly for 

method development) included various hexosyl ceramides (“Hex”). 

When the research topics are concerned, a slight majority of the articles in the dataset were 

disease biomarker studies (33%). No substantial amount of variation could be observed in the 

average (between 1-5) or standard deviation of lipid groups discussed in one paper per topic. 

However, the range of how many of the eight lipid classes were discussed did differ: disease 

biomarker studies had the broadest range for having biomarkers searched from 1-7 lipid 

classes. Conversely, cancer research had the most focused range by analysing lipids from 2-4 

groups per paper. 

 

Table 13. Percentages of lipid groups discussed in all articles (Article%=N/NTOTAL, NTOTAL=58). 

Also, the average (AVE), standard deviation (SD) and Range of lipid groups in each category. 

FAcyls GL GP SP CE SL ST PR PK Lipoprotein 

33 % 72 % 86 % 67 % 19 % 16 % 14 % 9 % 2 % 2 % 

                    

  N Article% 
AVE 
(group) 

SD 
(group) Range         

Method 
development 13 26 % 3.2 1.1 1-5         

Cancer 5 9 % 3.6 0.8 2-4         

Diseases 16 28% 3.4 1.5 1-7         

Metabolism 13 22 % 3.3 1.1 1-4         

Physiology 9 16 % 2.4 1.6 1-6         

 

The next five chapters include analyses on each five themes of research: comparison or 

introduction to new applications and methods, physiological profiling of biological and 

synthetic materials, analyses on metabolic pathways, lipidomic characterization of diseases 

and their biomarkers and studies on cancer in a lipidomic context. 
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8.4.1 Method development 

The wide range of articles introducing a new or improved lipidomic UHPLC/MS or nanoLC/MS 

method (Table 14) can be further categorized into sub-groups based on different phases of an 

analytical method. Though many of these studies concentrate on either sample preparation,30, 

35-37 development of the chromatography52, 92, 99, 102, 121 or MS(/MS)55, 62, 65, 102 approaches, 

occasional computational methods for the improvement of measurement performance98 and 

data analysis51, 73, 88 appear every now and then.  

Xuan et al.63 conducted a multimatrix analysis in negative and positive ESI-mode. Three 

conventional biological materials (plasma, tissue and cells) of the same patient were pooled 

to increase repeatability and lipid coverage. Apparently, this improved the identification of 

diabetes patients via biomarkers.  

 

Table 14. New analytic method development (“Method Dev.”) and application enhancements 

in lipidomics (18 articles) 

Year Citation Theme Subtheme 

2017 51 Method Dev. Improvement to in-silico fragmentation prediction 

2017 92 Method Dev. Ultrahigh preformance chromatography lipidomics 

2017 30 Method Dev. Super absorbent polymer extraction chip testing 

2017 86 Method Dev. Single-cell resolution, PDMS microfluid droplet chip Raman method 

2017 73 Method Dev. LipidMatch comparison to other software 

2017 62 Method Dev. Method development, low resolution MS identification 

2017 121 Method Dev. in vitro method, excessive adipocyte lipolysis 

2017 55 
Method Dev. / 
Cancer research 

Comparison of LC/MS, SCF/MS and DIMS, kidney cancer patient 
analysis 

2017 99 
Method Dev. / 
Cancer research Bee pollen analysis, method validation 

2017 35 
Method Dev. / 
Cancer research Lipid extraction comparison with pancreatic cancer cell line 

2017 65 
Method Dev. / 
Cancer research 

Quantitative analysis PIS 184 optimization for PC and SM, cancer cell 
lines 

2017 98 
Method Dev. / 
Metabolomics 

Data processing improvements, nonalcoholic fatty liver disease 
analysis 

2018 88 Method Dev. Machine learning algorithms for CCS values 

2018 52 Method Dev. Reproducible nano-LC NSI method 

2018 102 Method Dev. Multi-matrix platform validation 

2018 36 Method Dev. Optimization of established extraction techniques 

2018 63 Method Dev. Multimatrix method development, a mixture of untargeted/targeted  

2019 37 Method Dev. Extraction comparison ("IPA-75", "IPA-90" vs. B&D), MS-DIAL, SWATH 
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8.4.2 Physiological profiling 

Determining an organism’s lipidome may both act as a fingerprint to the species in question, 

a distribution of traits in a population as well as a baseline or reference for possible changes 

of the organism’s state. All articles concerning this type of research were listed in Table 15. 

As an example, Meulebroek et al.45 developed a method which may cover all eight lipid classes 

via faecal matter, using a polarity-switching UHPLC-interfaced Orbitrap. With this, healthy 

controls and type 2 diabetes patients were monitored, their lipidomic profiles compared with 

each other.45 

Instead of trying to analyze as many lipids as possible, Manni et al.15 focused selectively on 

multiple tissue’s and cell culture’s 12 Cer:s and 31 SMs in positive mode. Tissue types in this 

targeted approach included adipose tissue (human, rat), liver (dog, human, rat, mouse), brain 

(rat, mouse) and serum (human, rat, mouse)15 For more exotic lipid classes, Drotleff et al.61 

identified and quantified ST hormones from plasma, and, similarly, Gobo et al.64 cerebral 

prostaglandins from brain tissue.  

 

Table 15. Research on physiological profiling (9 articles) 

Year Citation Theme Subject 

2017 45 
Physiological 
profiling Human gut phenotype profiling 

2017 42 
Physiological 
profiling Buttermilk profiling 

2017 93 
Physiological 
profiling Distinguishing between canine breeds  

2018 28 
Physiological 
profiling Oxylipin analysis in human patients 

2018 15 
Physiological 
profiling SM and Cer in multiple tissues/cell cultures of humans, dogs, mice and rats 

2018 109 
Physiological 
profiling Larvae profiling (Lysphlebia japonica) 

2018 61 
Physiological 
profiling Steroid hormone quantification in human plasma 

2018 64 
Physiological 
profiling In vivo prostaglandin identification and quantitation in human brain tissue 

2019 87 
Physiological 
profiling Coherent Raman scattering (CRS), non-destructive lipid/metabolite profiling 
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8.4.3 Metabolic lipid profiling and pathway analysis 

Metabolic lipidomix included a discrete comparison of two different diets or other similar 

analyses between controlled base and altered states of an organism’s lipidome (Table 16). 

Though like physiological profiling, metabolic lipid profiling takes the analysis a step further 

by investigating not only the lipid compounds but also the dependence/correlation between 

lipid species.  

Equilibria between lipids in a lipidome may give insight to an organism’s metabolism either in 

a system or between systems under certain conditions. For instance, Cheema et al.94 studied 

rhesus monkeys’ (Macaca Mulatta) metabolomic response to a potential radiation 

countermeasure agent: gamma-tocotrienol (GT3).94 GT3-dysregulated biomarker lipids in 

serum after radiation included stearic acid, PC(20:5/20:5), PI(20:4) and PS(16:0/21:0). 

Moreover, antioxidants and anti-inflammatory metabolites, including docosahexaenoic acid 

(DHA, i.e. FA(22:6)), showed an increase in the nonhuman primates within 1-3 days. Thus, 

Cheema et al.94 argues GT3 to be a potential anti-radiation agent when taken 24 hours prior 

to radiation exposure. 

As another example, Zalloua et al.115 noted a correlation between serum SMs and plasma 

cholesterol (i.e. LDL, HDL and total cholesterol). 34 metabolite features (m/z 750-810, 

associated with SMs) expressed a strong correlation to cholesterols. 

Table 16. Metabolomics research topics (11 articles) 

Year Citation Theme Subject 

2017 98 Applications / 
Metabolomics 

Nonalcoholic fatty liver disease profiling, improved data-analysis 

2017 94 Metabolomics Radiation countermeasure mechanism, GT3 inhibitor test 

2017 95 Metabolomics Fertilization of plants 

2017 66 Metabolomics Inflammatory macrophage characterization 

2018 79 Metabolomics Ketogenic diet, consequent metabolic perturbations, odd carbon lipids 

2018 107 Metabolomics Bioaccumulation & metabolomic response to chiral PCB 91 

2019 115 Metabolomics Correlation between serum SMs and plasma cholesterol 

2019 117 Metabolomics Oxalobacter profiling for oxalate-based disease research 

2019 46 Metabolomics High-throughput 96-well cell culture assay 

2019 118 Metabolomics Elevated CO2 concentration, leaves & berries of the black elder plant 

2019 116 Metabolomics Metabolism changes upon PCB153/PC12 exposure 
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8.4.4 Diseases and biomarker analysis 

Hyötyläinen and Orešič122 describe a model for the development of a complex disorder in an 

organism: an accumulation of environmental triggers (e.g. changes in one’s lifestyle or 

exposure to a stressor) lead the organism to initiate allostatic adaptation, i.e. the organism’s 

countermeasure to maintain homeostasis. When triggers concerning a specific lipidomic 

pathway achieve an extended time to stress the organism, an allostatic load will accumulate 

(early phase of a clinical condition) until the organism either recovers from the load or fails in 

the process. Upon failure, a breakdown of the allostatic adaptation can be observed as an 

over- or decompensation of the metabolic pathway biomarkers; a time/concentration 

threshold essential for clinical diagnostics.122 Biomarkers studied between 2017-05/2019 and 

in the fashion of this disease model were listed in Table 17. 

 

Table 17. UHPLC-research (16 Articles) on lipidomic pathway-based diseases and potential 

biomarkers 

Year Citation Theme Subject 

2017 90 Diseases and Biomarkers Diabetic cardiomyopathy 

2017 96 Diseases and Biomarkers 
Lethal ventricular tachyarrhytmia induced by myocardial ion 
channel diseases & infarction 

2017 97 Diseases and Biomarkers Atheroslerotic dyslipidemia via a high-fat diet on mice 

2018 101 Diseases and Biomarkers In vitro Coronavirus-infection of cell cultures 

2018 80 Diseases and Biomarkers Primary sclerosing cholangitis 

2018 106 Diseases and Biomarkers 
Lethal ventricular tachyarrhytmia induced by myocardial ion 
channel diseases 

2018 104 Diseases and Biomarkers Glyoxylate-induced nephrolithiasis 

2018 100 Diseases and Biomarkers Acute coronary syndrome 

2018 103 Diseases and Biomarkers Alzheimer's disease and amnestic mild cognitive impairment 

2018 105 Diseases and Biomarkers Plasma derived exosomal biomarkers, radiation exposure 

2018 110 Diseases and Biomarkers Dysregulation in respiratory syncytial virus pneumonia (mouse) 

2018 111 Diseases and Biomarkers Regulation of rosuvastatin in lipidemia patients 

2019 114 Diseases and Biomarkers Obesity biomarkers (rhesus monkey) 

2019 89 Diseases and Biomarkers 
VLDL, LDL and HDL CEs during lipidemia (golden hamster), 
unsaturation correlation with logarithmic mathematical model 

2019 113 Diseases and Biomarkers GL-induced acute lung injury (lipopolysaccharides, mouse) 

2019 119 Diseases and Biomarkers Blood platelets in coronary artery disease 
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8.4.5 Cancer lipidomics 

As a subclass for metabolic lipid profiling, lipidomic cancer research pursues a better 

understanding of the unknown pathways, mechanisms and pathological characteristics (e.g. 

metastasis) of different cancer types. It encompasses both in vitro cancer cell line research 

and in vivo animal/clinical experiments concerning cancer lipidomics. Lee et al.38 studied 5 

different cancer types in human patients (n=84) and profiled their plasma-lipidomic changes 

in contrast to a control group (n=20). A total of 50 biomarkers were found among the typical 

set of DGs, TGs, GPs and SPs. In greater detail, an over two-fold change (typically a decrease) 

with a significance of 95% or 99% was found for 32 biomarkers for liver, 16 for gastric, 25 for 

lung, 23 for colorectal and 14 for thyroid cancer.38 

Articles on lipidomic cancer research were listed in Table 18. As another example, Li et al.99 

proposed bee pollen to have anti-inflammatory properties suitable for the soothing of cancer 

patient’s inflammation of tumors. As observed, bee pollen inhibits nitrous monoxide (NO) 

production and restrains several messenger-ribonucleic acids (mRNAs) associated with 

inflammatory response proteins (cytokines) in LPS-stimulated RAW 264.7 cancer cells. 

Furthermore, bee pollen has an abundance of phospholipids, unsaturated FAs, and cytokine 

inhibition properties as fish oil. This suggests bee pollen to have similar benefits, though it 

would be cheaper to produce.99 

 

Table 18. Lipidomic UHPLC-research (9 articles) focusing on cancer 

Year Citation Theme Subject 

2017 55 Applications / 
Cancer research 

Kidney cancer, human patients; Comparison of LC/MS;SCF/MS;DIMS  

2017 99 Applications / 
Cancer research 

Bee pollen anti-inflammatory properties on cancer cells 

2017 35 Applications / 
Cancer research 

Lipid extraction comparison with pancreatic cancer cell line 

2017 65 Applications / 
Cancer research 

Cancer cell lines, Quantitative analysis, PC/SM PIS-184 optimization 

2017 91 Cancer research Urinary exosomes in prostate cancer patients 

2017 82 Cancer research Hepatocellular carcinoma in cancer patients 

2018 38 Cancer research Review comparing plasmalipid profiles of liver, lung, gastric, 
colorectal and thyroid cancer, nanoflow UHPLC 

2018 108 Cancer research Non-small cell lung cancer serum biomarker identification 

2019 112 Cancer research Colorectal cancer, Validation of colon cell/tissue analysis  
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8.5 Tandem mass spectrometry 
All tandem mass spectrometric information was listed in Table 19. At rare occasions, a DDA 

method was noted as a “Top10 ddMS2” analysis52, 70, 113, 36 instead as a conventional product 

ion scan, PIS, or SRM. Also, MRM analyses were plenty. Interestingly, parallel reaction 

monitoring (PRM) constitutes a new type of tandem MS for the popular DDA and MRM 

methods that have been used for decades.52, 70, 61 Since high resolution mass spectrometers 

combined with high computing capacity enable high processing and acquisition capacity of 

data, PRM aims to measure all fragments of the pre-defined ions instead than a mere subset, 

as in MRM. Consequently, PRM techniques enhance the selectivity of metabolic or lipidomic 

identification.70 

MSE- or all ions scans constituted a majority of the DIA methods. As such, only SWATH was 

reported as an alternative to this DIA method in the dataset, though other DIA methods exist 

(e.g. autoMSMS). SWATH operates on a defined mass range by consequtively fragmenting all 

precursors in a given time frame. Compared to DDA methods, it has a better detection rate, 

broader analyte range and higher specifity.119 

Table 19. MS and MS/MS chromatographic methods 

Approach ESI mode MS/MS? Tandem mode Year Citation 

UHPLC-ESI-IMS-QTOF Positive No - 2018 88 

UHPLC-ESI-QTOF-MS/MS positive, negative Yes PIS? 2017 51 

UHPLC-ESI-QOrbitrap-MS/MS positive, negative Yes MSE 2017 92 

nLC-NSI-QTOF-MS/MS positive, negative Yes Top10 ddMS2, PRM 2018 52 

UHPLC-HESI-Orbitrap polarity switching No - 2017 45 

UHPLC-ESI-MS/MS Negative Yes enh. product ion scan, MRM 2018 28 

UHPLC-ESI-QTOF-MS/MS positive, negative yes MSE, PRM 2017 42 

UHPLC-ESI-QTOF-MS/MS positive, negative Yes MSE 2017 94 

UHPLC-QTOF-MS/MS positive, negative Yes PIS? 2018 79 

UHPLC-ESI-QTOF-MS/MS positive, negative Yes PIS? 2018 107 

UHPLC-ESI-QOrbitrap-MS/MS positive, negative Yes MSE 2019 115 

UHPLC-Zspray-IMS-QTOF positive, negative No - 2017 39 

UHPLC-QTOF-MS/MS positive, negative yes PIS 2018 101 

UHPLC-ESI-QTOF-MS/MS positive, negative yes 
MRM (GPs), product ion 
mode (FAs) 2019 114 

UHPLC-HESI-QOrbitrap-MS/MS positive, negative yes MRM 2018 80 

UHPLC-ESI-QOrbitrap positive, negative No - 2018 106 

UHPLC-ESI-QTOF Positive No - 2017 90 

nLC-NSI-QTOF-MS/MS Positive, negative yes SRM 2019 38 

UHPLC-ESI-MS/MS-TOF positive, negative yes product ion scan 2018 104 

UHPLC-ESI-QOrbitrap positive, negative no - 2017 96 
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Approach ESI mode MS/MS? Tandem mode Year Citation 

UHPLC-ESI-QTOF-MS/MS positive, negative yes MSE 2017 97 

AF4, nLC-ESI-MS/MS polarity switching yes SRM 2018 100 

AF4, nLC-ESI-MS/MS positive, negative yes SRM, PIS 2017 91 

AF4, nLC-ESI-MS/MS positive, negative yes SRM 2018 103 

UHPLC-HESI-QOrbitrap Polarity switching no - 2019 112 

UHPLC-ESI-QTOF-MS/MS positive, negative yes MSE 2017 82 

UHPLC-ESI-Orbitrap positive, negative no - 2017 95 

UHPLC-ESI-QTOF-MS/MS positive, negative yes MSE 2018 105 

UHPLC-ESI-QOrbitrap-MS/MS positive, negative yes N/A 2019 117 

UHPLC-HESI-QOrbitrap polarity switching no - 2018 102 

UHPLC-ESI-QTOF-MSMS positive, negative yes MSE 2017 30 

nLC-ESI-MS/MS positive, negative yes SRM 2019 87 

UHPLC-APCI-QLIT-MS/MS or Positive no   2019 46 

UHPLC-HESI-OrbiFusion-MS/MS Negative no   2019 46 

UHPLC-ESI-QTOF-MS/MS Positive yes dMRM, PIS 2019 89 

UHPLC-ESI-QTOF-MS/MS positive, negative yes MSE 2019 118 

UHPLC-ESI-QTOF-MS/MS positive, negative yes MSE 2018 108 

UHPLC-ESI-Qtrap-MS/MS positive, negative yes MRM 2019 116 

UHPLC-ESI-QTOF Positive no?   2018 15 

UHPLC-ESI-QTOF-MS/MS positive, negative yes SWATH 2019 37 

UHPLC-HESI-QOrbitrap-MS/MS positive, negative yes Top10-ddMS2 2019 113 

UHPLC-ESI-QTOF-MS/MS positive, negative yes PIS 2018 109 

UHPLC-ESI-QTOF-MS/MS positive, negative yes SWATH 2019 119 

UHPLC-HESI-QOrbitrap-MS/MS positive, negative yes top10-ddMS2 2018 36 

UHPLC-HESI-QOrbitrap positive, negative yes N/A 2018 110 

UHPLC-ESI-LTQ-Orbitrap-
MS/MS positive, negative yes MSE, MRM 2018 111 

UHPLC-ESI-QQQ-MS/MS positive, negative yes MRM 2018 63 

UHPLC-ESI(neg: APCI)-QTOF-
MS/MS positive, negative yes SWATH, PRM 2018 61 

UHPLC-ESI-QQQ Negative yes SRM 2018 64 

UHPLC-ESI-IMS-QTOF-MS/MS Positive yes N/A 2017 55 

UHPLC-ESI-QOrbitrap-MS/MS polarity switching yes N/A 2017 98 

UHPLC-HESI-QOrbitrap-MS/MS positive, negative yes product ion scan 2017 99 

UHPLC-HESI-QOrbitrap-MS/MS positive, negative yes PIS 2017 35 

UHPLC-ESI-QTOF-MS/MS? Positive yes MSE 2017 41 

UHPLC-ESI(/APCI)-QQQ-MS/MS polarity switching yes SIM 2017 62 

UHPLC-ESI-QqQ-MS/MS 
positive (SPs), 
negative (SM) yes MRM 2017 65 

UHPLC-ESI-QqQ-MS/MS positive, negative yes MRM 2017 66 

UHPLC-ESI-QOrbitrap-MS/MS positive, negative yes N/A 2017 93 

UHPLC-HESI-LTQ-Orbitrap-
MS/MS positive, negative yes PIS 2017 121 

Enh.=enhanced 
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8.6 Analysis tools and statistical methods 
Apart from the arithmetic average, (relative) standard deviation, linear regression and p-value 

calculations, statistical methods of lipidomic research has broadened into a far broader variety 

of numeric tests and visualization techniques. Classical analysis of variance (ANOVA)95, 105 for 

multiple36, 95, 105 and Student t-tests for two variables116 were occasionally used.  

A t-test designed for comparing two independent variables (e.g. patient versus control group 

lipidome, the lipidome before versus after drug ingestion) may be unreliable, if the sample 

size is small (n<30) and other than normal distributions arise through the data.117 This is the 

case in most of the sample sizes in the experiments of the 39 articles (for 21 articles, sample 

size was not available), since the average was around n=11±11 when the outliers n=283109 and 

n=10,1159 were removed (for 10 control samples: 7-16 or ~3063, 111). Instead, a Mann-Whitney 

U test fitted for non-Gaussian distribution data combined with a Benjamini-Hochberg (or 

Bonferroni-Holm117) false discovery rate (FDR) estimate. These have been applied in multiple 

studies to limit uncertainty. Furthermore, Paepe et al.102 used cross-validated ANOVA (CV-

ANOVA) to improve reliability. In Figure 12, all statistical tools used in the articles were listed 

by the relative frequency each year. 

 

Briefly, combined studies of machine learning/software evaluation and UHPLC-MS lipidomic 

analysis were met in a set of articles.51, 88, 93, 96, 108 As machine learning knowledge has boomed, 

an increasing supply of automated lipidomic analysis,  ROC/AUC cross-validation analysis,96 

random forest, neural network,73,  in silico spectra51 and CCS value88 generation algorithms 

have emerged. 

In addition to home-made databases,63, 89, 105, 108, 109 commercial and open-source libraries 

have gained popularity and variety in both lipid range and search tools. These libraries 

included CEU Mass Mediator,105, 117 ChemSpider,41, 54 Foodb,118 Greazy,73 HMDB,54, 79, 82, 90, 104, 

105, 111, 117, 118, 121 KEGG,108, 111 LipidBlast,39, 51, 88, 110 LipidMatch,73 LIPID MAPS/Lipidomics 

Gateway,39, 54, 55 79, 82, 89, 90, 92, 104, 106, 111, 121 MassBank,51 MetaboAnalyst,108 MetLin,79, 104, 111, 117 

Program R’s MeV package (version 4.5.1),96 MS-DIAL,73 MZmine,73 NIST (e.g. NIST14),88 

PubChem41 and Reactome.106 
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Figure 12. Percentages of statistical methods found in the defined three years. Special statistical tests and 

techniques not discussed included foreground class probablilities,51 a neural network pattern; radial 

basis function/linear basis function (RBF/LBF),88 ingenuity pathway analysis (IPA),94 paired t-test,94 

over-representation analysis,80 cross-validated ANOVA,45 Turkey test,104 , relative frequency 

analysis,118 random forest generation,93, 94, 118 Hodges-Lehmann estimator,109 principal component 

variable grouping,119 principal component linear discriminant analysis,93 root mean squared error 

cross validation121 and Shapiro-Wilk normal distribution testing.115 

 

Established chemometric methods such as PCA (principal component analysis, multivariate 

technique) and PLS-DA (Partial least squares regression - Discriminant Analysis) have kept 

their position as most common tools for visualizing analyte groupings (PCA) and metabolic 

changes (PLS-DA). Moreover, the importance of orthogonal projections to latent structures 

discriminant analysis (OPLS-DA, orthogonal partial least squares discriminant analysis) has 

increased since Pöhö’s review in 2013.34 Also, VIP (Verification and Identification Protective 

data handling) has emerged as an emphasis estimator of PLS-DA variables. 66, 96, 101, 105, 106, 111 

In contrast, boxplot usage has declined in the face of volcano plots alongside heat maps with 

included or separate hierarchical cluster analysis (HCA) figures. Just like with the statistical 

tools, chemometric methods and plot types were listed in Figure 13. 

 

 

0%

10%

20%

30%

40%

50%

t-test U-test ANOVA FDR Special tests ROC, AUC No tests

Statistical methods 2017-2019

2017 (25+3) 2018 (22) 2019 (12)



59 
 

 

 

Figure 13. Chemometric method ratios and figure/plot types found in the defined three years.  

Interactive Network…: interactive network analysis. Special tests included a spider web diagram,52 a 

clustered image map,97 a chord diagram,46 cross-validated PCA,45, 112 three-dimensional PLS-DA111 and 

two-way PLS (O2PLS)121 

 

8.7 Quantitative and qualitative lipid analysis 
Identification “dimensions” (e.g. CCS [collision cross-section], MS/MS, Raman) are often 

added to the RT and m/z aspects of species, up to the point where the identification process 

is automated with softwares often written with “middle level languages”.73 These 

identification platforms usually work by either measured parameter, spectral library or mixed 

comparisons (open-source, commercial or self-acquired).  

Statistical tools and chemometric softwares have been developed to enable false positive 

analysis and pattern recognition for large datasets for an abundance of lipid analytes.71, 72 This 

combination of identification and statistical tools enhances the specifity of a method, making 

it possible to quantify an analyte more reliably. 

Interference due to analyte degradation before analysis (i.e. inter- and intra-batch effects),5 

for instrumental reasons, in the data or spectra all affect the representativeness of the species’ 

quantitation. Especially during method development and data-analysis, knowledge of 
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molecular properties in addition to supporting standard and sample analyses are essential for 

executing proper quantification. For example, alterations take place due to biological or 

instrumental reasons, as is the case with phospholipase D conversion of PCs to PAs as is the 

case in the Arabidopsis plant,5 or a bias in LPA quantitation due to LPA-increase via in-source 

fragmentation of lyso-phospholipids (LPCs).21 

Ideally for surrogates and internal calibration, near to identical lipid species with odd-

numbered FAs, which are <1% abundant in higher organisms,5 or isotope-labeled FAs (e.g. 

deuterated or C-13 labeled) are often used. As retention times for interferents differ, an 

internal standard should be as equally retained as possible to representatively mimic the 

matrix effects experienced by the analyte. However, usually only one internal standard is used 

to normalize analyte data (e.g. peak areas) and correct experimental and instrumental 

fluctuations, as is the case for calibration standards as well. 

If standard addition is neglected,64 a typical and effective quantitative analysis in lipidomics is 

achieved with a single point calibration (e.g. with a deuterated standard) or calibration curve, 

of which the former takes less effort but the latter is more precise. Moreover, prior knowledge 

to an analyte’s chemical properties can help to predict unwanted analyte/analyte population 

manipulations that distort the estimations for, say, measured analyte concentration. These 

properties include the polarity and chemical structure of an analyte, both of which lead to 

characteristic ionization and fragmentation behavior. For example, if fragmentation takes 

place where it cannot be observed (e.g. in-source) or if decomposition of another analyte 

affects concentrations of other analytes, measures must be taken to account for this in the 

quantitative calculations. In-source fragmentation correction may be solved with a fitting 

representative calibration standard that has the same experimental conditions (including 

matrix and sample preparation) and, thus, same modifications as the analyte. Saturation and 

peak broadening may also distort the quantitation result, as the peak shape is compromised. 

For chromatographic lipid analyses in our UHPLC-dataset, 57 out of 61 studies used RP 

columns. In contrast, 4 NP analyses were conducted. The trend towards NP stationary phases 

may stem from the easier identification between nonpolar structure separation and MS/MS 

identification by lipid class product ions. Examples of RP-UHPLC separation zones can be 

observed in Figure 14. 
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Figure 14. C18 and C30 columns used for plasma HPLC/MS in a)positive and b)negative ESI 

mode, with the solvents 50:50 ACN:H2O and 85:10:5 IPA:ACN:H2O (5 mM AmFo). The 

columns used were Accuore C18 (solid core, 2.6 µm), HypersilGold C18 (fully porous, 1.9 

µm), Accuore C30 (solid core, 2.6 µm), Acclaim C30 (fully porous, 1.9 µm) and Acclaim C30 

(fully porous, 3.0 µm) 

Reprinted from ref 123 © 2019 Elsevier B.V. All rights reserved. 

ChE: cholesteryl ester, Co: coenzyme, SiE: sitosterol ester, StE: sterol ester, WE: wax ester  
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In the UHPLC/MS article dataset, chromatograms were shown surprisingly rarely which may 

be linked to the high frequency of automation (about half of these articles used automated 

identification via a database library platform).  

As seen by a standard separation by Pham et al.124 (Figure 15), HILIC separates all lipid classes 

neatly from each other compared to C30. In my experience, the C30-produced chromatogram 

is very representative for other RP-column separation chromatograms such as C8 or C18, both 

of which have at least one bulk where multiple GPs are retained. Nevertheless, a large quantity 

of lipid species may be identified more easily with RPLC, since separation to nonpolar qualities 

of analytes (i.e. FA chains) occurs as opposed to HILIC. Furthermore, HILIC is susceptible to 

distorted adduct formation, decreased quantitation repeatability and co-elution due to the 

stationary phase’s capacity to retain inorganic ions.47 Alternatively, resolution may 

compensate up to a point for the separation efficiency.46 

 

 

 

 

Figure 15. Chromatograms of a HILIC and a C30 HPLC/MS separation in negative mode. 

Reprinted from ref 124 © 2019, Springer Nature 

SF: N/A (steroidogenic factor?), SQDG: sulfoquinovosyl diacylglycerol, MMPE: monomethyl 

phosphatidylethanolamine, DLCL: dilysocardiolipin, MGDG: monogalactosyldiacylglycerol 
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As representative UHPLC/MS chromatograms and their lipid distributions, Figure 16 shows 

EICs of multiple lipids in both positive and negative mode. Some programs combine EICs to 

improve peak shape and identification.  

 

 

Figure 16. EICs for A: positive and B: negative mode UHPLC ESI with a C8 column, solvents 
H2O and 50:40:5 ACN:IPA:H2O (10 mM AmAc). Reprinted from ref 119 © 2018 Elsevier B.V. 
All rights reserved AC: acyl carnitine, POVPC: 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-
phosphatidylcholine 
 

 

Nano-LC seemed to have even more capacity for analyte identification than UHPLC, since it 

has both an extremely broad lipid range52 and a sensitivity in the low fmol scale.103 Moreover, 

a lipid standard C18-filled capillary separation in both positive and negative mode ESI takes 

approximately as long as a HPLC/MS analysis (Figure 17).  
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Figure 17. Positive and negative ion mode chromatograms for nanoLC MS/MS with a C18 
column, with the solvents 90:10 H2O:ACN and 20:20:60 MeOH:ACN:IPA (5 mM AmFo, 0.05% 
FoA). Reprinted from ref 103 © 2018 Elsevier B.V. All rights reserved. 
 
 

Lipidomic profiles differ a lot from sample to sample, though some consistencies remain: in 

most mammalian cells, ~60% of lipids are usually GPs and ~10% SPs, PCs and PEs usually rank 

highest in GP and SMs in SPs by concentration in a given sample. To demonstrate the 

difference in the lipidome of a medium, Figure 18 demonstrates this by comparing kidney and 

serum chromatograms acquired through the same method and treatment of samples. The 

functionality between the occurring variety of lipidomes in fluids and solids (even by their 

individual cell organelles) is yet to be uncovered, as is the connection between lipidome 

structure and functionality in the first place.  

Researchers like van Meer et al.13 have attempted to find and describe poorly understood 

aspects of lipidomes. This includes functions such as inter- and intracellular signalling, in-cell 
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lipid transport (especially non-vesicular mechanisms) and macromolecular assemblies 

including lipids (e.g. lipid rafts, liquid-ordered and liquid-disordered systems).13 

 

 
Figure 18. Kidney (a) and serum (b) profile chromatograms in positive mode UHPLC ESI with 
a C18 column separation, solvents 60:40 ACN:H2O and 81:10:9 IPA:ACN:H2O (10 mM AmFo, 
0.1% FoA). Reprinted from ref 104 © 2018 Elsevier B.V.  
 
 
For MS/MS identification, Chao et al.104 documented product ion spectra for typical species 

found in mouse serum (Figure 19). The spectra acquired served for the manual identification 

of molecular species (i.e. where FA chain lengths are determined) and lipid class confirmation 

via fragmentation experiments. The next step would be the determination of the 

stereochemical sn-position, which may be possible with a datalibrary comparison of known 

spectra.  
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Figure 19. Fragmentation patterns for multiple species (molecular ion is marked with a dot). 
Positive ESI mass spectra acquired via product ion scans with a QTOF. Reprinted from ref 104 
© 2018 Elsevier B.V.  

 
 

As for negative mode ESI, Figure 20 depicts a product ion scan of the same PI-species in two 

different separations. As observed, the fragmentation patterns deviate slightly, possibly due 

to different matrix effects. Similarly, Figure 21 displays negative ion patterns typical to 

multiple lipid classes (i.e. headgroups) respectively. 

 

 
Figure 20. Product ion mass spectra of PI(38:4) in negative mode, one HILIC-, one C30-separation.  
(c) and (d) are scans before, (e) and (f) scans after the fragmentation of the m/z species 885. 

Reprinted from ref 124 © 2019, Springer Nature 
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Figure 21. Product ion scans of negative mode HILIC-separated lipids from a standard mix 
(molecular ion is marked with an arrow). Reprinted from ref 124 © 2019, Springer Nature 
MMPE: monomethyl-phosphatidylethanolamine,  
DMPE: dimethyl-phosphatidylethanolamine 
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9 Discussion 

According to lipidomic research, some lipids are only observable in the column domain with 

particle size less than 2 µm compared to a conventional HPLC separation,52 making UHPLC the 

best method for repeatable and rather comprehensive lipid identification96, 106 and pathway 

analysis.109 However, UHPLC is a relatively new method with expensive instrumentation and 

maintenance. This may also explain the smaller amount of UHPLC article publications 

compared to HPLC research. 

In 57 out of 58 studies -with 5 reviews subtracted from the total 63 articles- with an average 

runtime range of 18-23 minutes used mainly RP UHPLC techniques (C18: n=52). A minority of 

pre-columns was used in UHPLC experiments, presumably to avoid risk of void volume and 

preserve reproducibility among lipidomic UHPLC-studies.  As for the mobile phase consistency, 

variations of ACN:H2O and IPA:ACN gradients (n=27) were used. The most typical additives in 

buffer solutions are  ammonium formate and formic acid (n=25). The trend of overwhelming 

RPLC over NPLC in UHPLC research may be due to the effective separation of nonpolar 

structures (i.e. by fatty acid chain lengths) between lipid species. Since Monnin et al.48 used 

additives to increase sensitivity and improve peak shape for certain adducts, it could be 

stipulated that additive introduction (i.e. addition of source chemical for achieving specific 

ligand formation) could bring greater uniformity among lipid polarity if the complex affinity is 

strong enough.  

46 out of 58 studies focused specifically on identification of GPs, out of which 29 included LPLs 

and 12 PLs. 42 articles on GLs were especially interested in DGs and TGs, and out of 39 articles 

on SPs, 7 included reports on SP hexosyl metabolites. On average, 3 lipid classes were included 

per a paper, though the maximum of lipid classes analysed in one study included 7 groups. 

Lipids were reported from a range of 5-700 total lipids and 5-87 potential biomarkers. Apart 

from the studied lipids (GLs, GPs and SPs), CEs7, 35, 37,55, 62, 63, 66, 91, 101, 106, 108, 114, 115 and FAs7, 28, 

36, 45, 46, 64, 79, 89, 99, 104, 105, 110, 111, 117, 119, 121 were often reported. 

Conventional biological material topics i.e. research on routine in vivo analysis samples 

included six (6) categories of matrices: primarily blood derivatives (plasma, serum, 

erythrocytes and blood platelets), faecal matter, and urine. One paper even proposed a 

multimatrix analysis by pooling plasma, faecal matter, and urine in one sample to increase 
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method repeatability and lipid coverage.102 Unconventional biological materials, i.e. harder-

to-get in vivo samples, consisted of 18 different biofluid and tissue types, of which the most 

frequent topic of interest being liver tissue.15, 30, 63, 82, 92, 98 In addition, experiments with 18 

different cell lines were found to be cultured in vitro, and more exotic samples like plant, 

entire organism and food product analyses were occasionaly conducted in the set of articles. 

Not only have new applications emerged due to improved computer algorithms, but also the 

amount of commercial, open-source and in-house software platforms and data libraries for 

automated identification. Out of the 59 articles, approximately half of the studies used 

automation platforms for identification. Current improvements in identification have been 

found at the dawn of higher computing power and software development for lipidomic 

analysis. This has given way to machine learning for in silico-based analyses, a boom in 

lipidomic and metabolomic tools and MS/MS methods such as parallel reaction monitoring- 

data-dependent acquisition PRM (DDA)42, 52, 61 and all ions in data-independent acquisition in 

MSE mode (MSE-mode, DIA)30, 41, 42, 82, 92, 94, 97, 105, 108, 111, 115, 118. Furthermore, recent DIA 

research has used sequential window acquisition of all theoretical fragment ion spectra in 

mass spectrometry (SWATH MS).  The PRM-like consecutive fragmentation of all precursors 

has an improved detection rate, broader analyte range, and specifity in any given 

fragmentation frame compared to DDA methods.37, 61, 119 Similar though not yet observed in 

the UHPLC-lipidomics articles, sliding window adduct removal method (SWARM), i.e. adduct 

signal overlap correction for low-to moderate resolution mass spectra has also appeared. 

Introduced by Kitov et al.125 for proteomics, SWARM is based on the statistical basis of ESI 

adduct formation, which produces systematic noise patterns that can be corrected. 

Due to the inherent delocalization of analytes and the slow pace of chromatographic methods, 

imaging techniques have diverted towards alternative methods. Alongside rather 

standardized DIMS, MALDI-MS and DESI and other MSI methods,3, 53, 81, 82 more experimental 

approaches like probe,81 CRS,86, 87 and LESA52 techniques have started to be the trend. Further 

outside of lipidomics research, the iKnife, an “intelligent” scalpel using rapid evaporative 

ionization mass spectrometry (REIMS, i.e. ionization with electrically burning tissue) had 

reached surgical environment testing in 2018.127 In 2017, LESA-type analyses with a MS-linked 

“pen” was tested and proposed by Zhang et al. as a non-destructive alternative for 

histopathologic tissue diagnosis.128 Though a high resolution is obtained in MS, the small 
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probe is impractical for moving.  However, the surgical in situ MSI technology may help for 

cutting corners in metabolomic and lipidomic “shotgun”-research. In my opinion, however, an 

in-depth understanding of the biochemical properties, as well as of the 

physiological/metabolic network, is needed to understand lipidomic or metabolomic 

pathways in a complex matrix. Moreover, a new way for improved identification and 

quantitation in lipidomic studies has been found: The utilization of the lipidome isotope 

labelling of yeast (LILY) standard.126 To achieve a labelled array of standard analytes, yeast is 

fed with 99% 13C6 D-glucose.126  

Moreover, an interdisciplinary analysis on multifunctional and computational methods in 

lipidomic analytics will be crucial for effectively improving the practice and understanding of 

available tools. Multifunctional methods include statistical and chemometric analyses, 

whereas computational methods include algorithms, data-processing interfaces, specific 

software, and machine learning strategies. Both method categories have been attempted to 

refine with tailored software platforms for necessary data pre-processing, pattern recognition 

and analysis of large datasets, resulting in an immense amount of data-processing interfaces 

to choose from. On average, the sample sizes were rather small, most probably due to the 

scarce availability of subjects or organisms to analyse. Student t-tests and ANOVA were used 

for null hypothesis testing, and an increase of Mann-Whitney U-tests and false discovery rate 

corrections with Benjamini-Hochberg FDR77 could be observed.  For chemometric methods, 

the routine boxplots and heatmaps, HCA, PCA, PLS-DA and occasional VIP corrections for PLS-

DA analyses were accompanied with an increased usage of volcano plots and OPLS-DA, where 

an orthogonal plane of principal components is sought for. 

High resolution UHPLC-MS is a highly sensitive separation method currently most suitably 

used for complex biomarker analysis and pathway identification. This information is important 

for metabolism-acquainted clinicians tackling highly complex metabolic systems, e.g. cancer 

and other metabolic disorders. Alas, the complexity of metabolism and its multiple aspects 

are rather inaccessible to health professionals unacquainted with the field. As diagnosing of 

diseases is desired as robust and exact as possible in the future, complex program-assisted 

lipidomics with direct, chromatographic and desorption-based methods show promises for 

comprehensive in-depth groundwork of the lipidomics area. 



71 
 

 

 

 

 

 

 

 

 

II Experimental part: Lipidomic profiling of Ascites -  

Method development for the identification and quantitation of 

lipids  
 

     

 

 

 

 

Master’s Thesis/ Pro Gradu 

BSc Henri Avela 

Johannes-Kepler Universität Linz 

Technical chemistry Dept. 

 

Supervisors:  

Prof. Christian Klampfl 

MSc Bernd Reichl 

10/2018-03/2019 

 

 



72 
 

10 Introduction 
Ovary or ovarial cancer (OC) is “cancer originating in the cells of ovaries or fallopian tubes”.129 

It is at present the most deadly gynecological disease globally129, 130  and, according to a global 

report by the World Cancer Research Fund (WCRF), the 18th most occurring cancer overall 

with a yearly diagnosis count of 250 000-300 000 each year.131 Only occurring in the female 

reproductive system, it is “the [7th-8th] most commonly occurring cancer in women”,129, 131 not 

to mention the 6th most deadly cancer on the global scale according to the European Institute 

of Women’s Health. Furthermore, Europe has the highest rates of ovarial cancer occurrences 

continentally: with near to 43 000 deaths per year and over 65 000 diagnoses in 2012.129 

With no effective screening programs yet proven,132 pathological research around 

metabolomic processes of ovarial cancer is on-going in the year of 2019. The suffix “-omics”, 

derived from the word “genomics”, indicates a form of totality. It is mostly associated with 

the Human Genome Project (HGP), which mapped out the entire genome (i.e. all deoxy-

ribonucleic acid-sequences of all chromosomes) of the human species, proposed in 1984 and 

funded between 1988-2003. Though found surprisingly complex, the idea of obtaining a total 

matrix of a biomolecule-group giving insight to diseases and physiological functions remained. 

Since the HGP, -omics research of biomolecule groups other than DNA have become an ever-

increasing interest of biomolecular and -chemical laboratories globally. Lipidomics, a subgroup 

of metabolome analysis in the omics cascade, comprises of the mapping out of organic lipids 

and lipid metabolites, thus hoping to gain more information of the system at hand.  

As one alternative, the field of lipidomics has been widely studied for both pathological 

diagnostics and identification of biomarkers.4 For ovarial cancer, Perrotti et al’s review on 

multiple large studies (n>40) strongly suggests an increase of LPLs (specifically LPAs, which 

have been proposed as early-detection plasma biomarkers) and a change in the FA profile. 

Here, one explanation for LPL was suggested133 In addition, Zhang et al found potential 

biomarkers in the groups of TGs (decreased), PCs and LPCs (increased).138 This would back up 

the up-regulation of PC 32:3, 34:1 and 36:2, moreover: the increased LPC levels caused by 

“deregulation of phospholipase A2” mentioned by Perrotti et al. Back in 2008, Qadir and Malik 

also reported decreases in TG levels as well as HDL-cholesterol, cholesterol and LDL-

cholesterol of ovarial cancer patients.134 Furthermore, Perrotti et al mentions Zhao et al’s 

research on the GP PL-profiling of ovarial cancer patients.133 
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11 Experimental 

11.1  Chemicals and Solvents 

The reagents and eluents used in the analysis are listed in Table 20. The table includes 

information of the deuterium-labelled and plasma-imitating Splash® Lipidomix® mixture by 

Avanti Polar Lipids Inc., which contributed as a one-to-ten dilutable standard for method 

development and an inspiration for the surrogate concentrations used in the clinical sample 

targeted analysis. 

 

Table 20. Chemicals and solvents used for the analysis 
 

 
 

* AA: absolute analytical grade 

** Produced directly with Milli-Q Elix 3, Milli-Q Reference A+ and Q-POD 

*** Exact mass calculated with chemical formulas via the SIS Isotope Distribution Calculator: 
https://www.sisweb.com/mstools/isotope.htm 

**** Each individual standard sold separately had the purity of >99%, the Splash® Lipidomix® (however) had the marking N/A   

 

11.2 Sample overview and ethics statement 
The Ethics Committee of the Federal State Upper Austria agreed upon the plausibility of the 

lipid analyses in blood, amniotic fluid and ascites. The decision can be found with the EK Nr. 

1163/2018. The prepared and analyzed clinical samples were obtained from the Kepler 

University Hospital Department of Gynecology, Obsterics and Gynaecological Endocrinology, 

where both sampling and pre-preparation took place.  

https://www.sisweb.com/mstools/isotope.htm


74 
 

First, in vitro CMs from three different cancer cell lines and two in vivo amniotic fluid samples 

were prepared and analyzed. These samples were analyzed for both sample preparation 

training and method development, but first and foremost to attain information about adduct 

formation of all lipid classes to be investigated. Having a better understanding of class-specific 

adducts, a lipid extract from EDTA-plasma was injected and analyzed. Plasma, a commonly 

studied medium in lipid biomarker research,135 was chosen as a basis for the generation of an 

in-house database. 

Finally, ascites samples were prepared with two different preparation techniques and 

analyzed predominantly with the Agilent in-house database (personal compound database 

library, PCDL) created during the preceding plasma analysis. In addition, a Douglas lavage fluid 

(DLF) sample collected from an endometriosis patient was included. Not being present in 

healthy individuals, control samples like these were typically acquired from “nonmalignant 

patients” (e.g. patients with liver failure).136 As such, the DLF collected from the rectouteral 

pouch of Douglas – the lowest part of a female’s peritoneal cavity – was assumed to be an 

ideal control sample for ascites. 

 

11.3  Sample preparation 
Samples were taken in the operating room of the Kepler University Hospital, transferred and 

stored in their pathology department. At the Department of Gynecology, samples were pre-

prepared by a collaborating scientist using the following protocol: the samples were 

immediately placed on ice, centrifuged at 4 ˚C with 500 rpm in ten minutes (500’10), phase-

separated into supernatant and cell pellet, after which the supernatant was further 

centrifuged at 4 ˚C with 2500 rpm for 30 minutes (2500’30), filtered through a 0.22 µm filter, 

snap-frozen and finally stored at -80 ˚C before shipment on dry ice to the JKU, Institute of 

Analytical Chemistry, to be once again stored in a -80 ˚C freezer prior to analysis.  

Acquired sample fluids were obtained at the Institute of Analytical Chemistry in Eppendorf 

tubes, aliquoted, then put to -80 ˚C and possibly sampled after only one freeze-thaw-cycle. To 

avoid enzymatic activity, oxidation, hydrolyzation and other degradation, the storage was 

performed at -80 ˚C.8   
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Two sample preparation methods -BUME and Folch- were compared through analysis of 

ascites and Douglas fluid. For the amniotic fluid and CM samples during pre-experiments, only 

the Folch-method was applied: a 100 µl volume of each respective sample was pipetted into 

a 15 ml Falcon tube and mixed with 2 ml of a 1:2 methanol/chloroform (MeOH/Chloroform) 

mixture. The mixture was vortexed and shaken for one hour at 1500 rpm (1500’60) in a 

Thermal Shake Lite thermoshaker by VWR (Radnor, Pennysylvania, USA). After shaking, 400 µl 

H2O was added and the two immiscible phases vortexed together. The resulting emulsion was 

centrifuged with 4700 rpm at 10 ˚C for 8 minutes (4700’8) to separate the water/MeOH phase 

from the organic chloroform phase. The lower organic phase was collected under the 

denaturated protein plug formed between the two phases. Special care was taken not to 

include any solids in the resulting isolate, thus the plug was pushed aside by keeping the tip 

of the pipette towards the Eppendorf tube wall and far enough from the solid phase. A second 

extraction was performed with an addition of 400 µl 1:1 MeOH/chloroform mixture, 

vortexing, centrifugation and organic phase recovery. Finally, the combined isolate was dried 

under an inert nitrogen gas flow and dissolved into 1 ml of MeOH. The resulting samples were 

divided into five aliquots with 200 µl each. The samples that were not immediately analyzed 

were stored at -80 ˚C.118 In the course of the study, the Folch method was scaled down to half 

the volume for a 50 µl plasma sample, which allowed the sample to be prepared in a 1.5 ml 

Eppendorf tube.  

Instead of scaling the sample preparation down to 50 µl (as was done with ascites), 100 µl of 

DLF and ascites were prepared with the BUME method: the sample was mixed with 150 µl of 

a 3:1 BUME mixture and shaken for 10 minutes. 75 µl of 3:1 heptane/ethylacetate was added 

and the mixture further mixed for 5 minutes. 150 µl of 1% acetic acid (AcA) was added, 

followed by another shaking period of 5 minutes. Finally, the sample was centrifuged at 1000G 

for 5 minutes, after which the upper organic phase was collected. The second extraction 

consisted of another mixing of 125 µl 3:1 heptane/ethylacetate with the polar phase, 5 

minutes mixing and centrifugation at 1000G and organic phase recovery. As before with the 

Folch procedure, the organic solvent was evaporated, the sample reconstituted into 1.0 ml of 

MeOH and finally aliquoted. 
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11.4 Instruments and Analysis 
Basic laboratory equipment such as an AT261 balance by the former Mettler (now Mettler 

Toledo. Columbus, Ohio, USA), a VV3 vortex (VWR), a Thermal Shake Lite thermoshaker (VWR) 

for one hour shaking, Eppendorf Reference and Research microliter pipettes (Hamburg, 

Germany) and a temperature-adjustable Megastar 1.6R centrifuge (VWR) were used for 

sample preparation. For method optimization and biological sample analysis, a 1260 series 

HPLC system and a 6560 QTOF interfaced with a Dual AJS ESI-source, all by Agilent 

Technologies (Santa Clara, CA, USA), was used.  Because the QTOF included an IMS section, 

ion mobility measurements could be included into the analysis for improved analyte 

identification.  

Final analysis parameters used after method development are listed I Table 21. In summary: 

column type, compartment temperature, flow rate, injection volume and gradient were 

optimized for analysis. Subsequently, the included ESI-parameters were optimized due to 

problems addressed during method development in negative mode. Bad ionization efficiency 

with the stated parameters lead to the complete exclusion of negative mode data. 

Table 21. Analysis parameters. Quat=quaternary, Iso=isocratic 

Parameter Value 

Autosampler temperature [°C] 6 

Hyphenation Dual AJS ESI, Electrospray ionization 

Polarity Mode Positive 

-sheath gas flow [l/min] 12 
-drying gas flow [l/min] 11 
-nebulizer pressure [psi] 30 
-gas temperature [°C] 350 
-capillary voltage [V] 3800 
-nozzle voltage 700 

Guard column Security C18, Phenomenex 

- dimensions [mm] 4 * 3 

Column Eclipse Plus C8, Agilent 

- dimensions [mm] 3.0 * 150 
- particle size [um] 3.5 

Compartment temperature [°C] 50 

Eluent A (pump 1) H2O:ACN (60:40), 10 mM AmAc 1 mM acetic acid 

Eluent B (pump 2) IPA:ACN (90:10) 

- flow rate Quat pump [ml/min] 0.7 
- flow rate Iso pump [ml/min] 
- gradient 

1.0 
Table X3 

Injection volume [μl] 20 

ACN: acetonitrile, AmAc: ammonium acetate, IPA: isopropanol, 2-propanol 
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The HPLC instrumentation included two pumps: a quaternary pump for the conventional HPLC 

instrument and an isocratic pump that continuously fed the ESI with a standard mix of 

instrument reference masses. The reference masses increased the mass accuracy of the 

instrument and allowed a post-acquisition mass calibration with the IM-MS Reprocessor tool 

(Agilent). 

 

11.4.1.1 Data processing 

All data-analysis of the spectra was conducted with the software solutions belonging to the 

Agilent MassHunter-family. Workstation Data Acquisition was used for the management and 

data collection of the HPLC/IMQTOF-instrument.  

The aim for the IM-MS Reprocessor was the post-acquisition mass calibration of IM-MS data 

files against defined reference masses. These data files were then further processed with the 

single-field tune information by using the IM-MS Browser B.08.00. This step was done to 

calibrate measured flight times against CCS values of the Agilent tune mix. Through this, CCS 

values could be determined for all unknown compounds afterwards. After these calibrations, 

data were further processed using Mass Profiler software. This separate software finds in a 

first step features based on chromatographic peak shape, m/z, RT and CCSs that fulfil the 

requirements of the filtering (e.g. minimum signal intensity, limitation to first n hits etc.). The 

hits found by the program were then compared to the PCDL in assistance of ID Browser 

B.08.00. Information of the final PCDL is available in Attachment 7, the experimentally 

attained CCS values and species in Attachment 8. All IMS-measurements were conducted with 

nitrogen gas (N2). 

Fitting of theoretical spectra, available CCSs and RTs with measured values contributed to 

scores (0-100%) for each compound hit. Thus, the data accumulated in the PCDL directly 

affected the results of further identifications, be it collected theoretically (e.g. in silico m/z 

species) or experimentally (e.g. RTs and identified compound name). Indeed, false positives 

are a major issue when accumulating in-house databases. 

Quantification of the lipids was conducted via a single point calibration with a surrogate mix 

mimicking one-to-ten diluted Avanti’s Splash Lipidomix® dissolved in methanol (i.e. a 
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concentration of lipids comparable to plasma), created from single deuterated standards. 

Surrogate mix composition and concentrations were compounded in Table 22. 

Table 22. Surrogate mix composition 

Name c(mg/l)  Name c(mg/l) 

PC(15:0/18:1(d7)) 15.6  DG(15:0/18:1(d7)) 0.88 

PE(15:0/18:1(d7)) 0.53  TG(15:0/15:0/18:1(d7)) 5.28 

PS(15:0/18:1(d7)) 0.39  SM(18:1(d9)) 3 

LPC(18:1(d9)) 2.5  Cer2(d9) 0.2 

LPE(18:1(d9)) 0.5    

 

12 Results and Discussion 

12.1 Optimization of the method, pre-experiments  

12.1.1 Liquid chromatography  

Multiple mixtures of H2O and one or two organic solvents (MeOH, ethanol [EtOH], IPA, ACN) 

in multiple proportions were tried to no avail. The idea was to decrease or even substitute the 

use of IPA, which is known as a solvent with moderate matrix effect and high backpressure. 

For the separation of lipids, ACN as an organic phase was too weak. EtOH showed promising 

separation efficiency, but a full-fledged method would have taken too long to produce. Hence, 

the initial solvent mixtures A and B were used (A[60:40] H2O:ACN and B[90:10] IPA:ACN).  

For pre-optimization of the method, 7 ul of Splash mix was injected with a flow rate of 1 

ml/min. The gradient was as follows: for the C18 column, the initial plateau of 60% B was kept 

between 0 and 8 minutes of detection, a ramp towards 97% B between 8 and 25 minutes 

established, and a 97% B plateau between 25 to 40 minutes held, followed by a post-time 

phase between 40 to 55 minutes; for the C8 column, the initial plateau of 40% B was kept 

between 0 and 8 minutes of detection, a ramp towards 70% between 8 and 9 minutes 

established, a 70% B plateau between 9 to 16 minutes held, another ramp towards 90% B 

conducted between 16 and 17 minutes, and finally a 90% B plateau kept between 17 to 25 

minutes, followed by a post-time phase between 25 to 35 minutes. The comparison was done 

to test the suitability for both high-throughput and reasonable resolution analysis. When 

deciding on the column and method to use, the separation efficiency of the representative 

lipid group standards with the C8 column (Figure 22) was considered better for its shorter 

runtime and comparable peak shapes with the C18 column in exchange of lower and broader 

signals (Figure 23). 
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For a more simplified analysis, ranges where analytes retained at once were classified as bulks 

(Bulk 1: 11-16 minutes, Bulk 2: 18-21 minutes). In addition, potential bulks between 3-5 

minutes (LPC, LPE) and around 12 minutes (PI, PG, very close to Bulk 1) was present. 

 

Figure 22. The initial HPLC method with a C8-column.  Representative deuterated standard 

extracted ion chromatograms (EICs) are displayed. 

 

Figure 23. The initial lipid extraction method with a C18-column. 

Representative deuterated standard EICs are displayed. 

 

Next, a three-stepped gradient was chosen and improved experimentally to separate analytes 

more efficiently in the first five minutes of the runtime (Table 23). 
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Table 23. The optimized gradient 

Time (min) Solution A (%) Solution B (%) 

0 55 % 45 % 

8 55 % 45 % 

9 30 % 70 % 

20 30 % 70 % 

21 10 % 90 % 

30 10 % 90 % 

40  Posttime 

 

 

 

The flow rate’s effect on the resolving power was inspected at 0.5, 0.7 and 1.0 ml/min (Figure 

24). According to visual comparison of the three total ion chromatograms (TICs), a flow rate 

of 0.7 ml/min was chosen. As flow rate was increased, peaks after 10 minutes experienced 

only a slight shift in their retention times. This could point out to strong interaction between 

the column and the analytes, as the analytes after 10 minutes must have reached equilibrium 

with the packing material even at double the flow rate.  
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Figure 24. Chromatograms for flow rate optimization 

After defining the flow to be used during analysis, the temperature was tuned manually with 

the help of separate runs (Figure 25). Not only were the RTs shifted to the left with increasing 

temperature and the background during the second “bulk” (Bulk 1: 11-16 minutes, Bulk 2: 18-

21 minutes) substantially reduced, but peak broadening of the broadest peak at around 15.5 

minutes was suppressed. Though some peaks were separated better than others, some peaks 

merged with each other or lost intensity. 
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Figure 25. Chromatograms for temperature optimization 

By only changing the starting conditions of the gradient from 40% B to 45% B, the separation 

of the second “bulk” of peaks were resolved in an improved manner (Figure 26). However, as 

the temperature was increased from 50 ˚C to 55 ˚C, a sharp up to three-fold decrease in signal 

sensitivity was observed. This could be explained with lipid degradation in high temperatures. 
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Figure 26. Modifications in gradient starting conditions and temperature 

(final method in the middle) 

In summary, the chromatograms with deviating run parameters were compared with each 

other visually in Table 24 and Table 25. Thereby many factors could be considered at once in 

a more analytic manner. Improving separation and peak intensity I of simultaneously retained 

peak “bulks” were considered (Bulk 1: 11-16 minutes, Bulk 2: 18-21 minutes). 
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A shorter retention time, higher intensity or better separation efficiency was considered an 

improvement if other parameters stood the same or improved as well. However, as stated 

before, the flow rate was compromised because of the back pressure. 

 

Table 24. Visual analysis of runs with different flow rates and gradients. Grey indicates the 

parameter staying the same, red as the parameter worsening from the perspective of 

performance and green as improving the chromatography (RT=retention time, I=intensity, 

STD=method that is compared) 

Name Description Gradient Bulk 1 (RT, I) Bulk 2 (RT,I) Separation 

40%_45C 0.5 lower flow (ml/min) Step later, lower later, higher Same 

40%_45C 0.7 middle flow (ml/min) Step later, same later, higher Same 

40%_45C 1.0 max flow (ml/min) Step STD STD STD 

35%_45C 1.0 Middle Step later, lower later, lower same/worse 

30%_45C 1.0 Lower Step later, lower later, lower Worse 

30%_45C 1.0 lin1 linear to 17 Linear later, lower earlier,lower Worse 

30%_45C 1.0 lin2 Linear to 22 Linear later, lower later, lower worse 

 

Table 25. Visual analysis of runs with different starting conditions and temperature 

(RT=retention time, I=intensity, STD=method that is compared) 

 

12.1.2 Ion mobility and Mass spectrometry  

The instrument was calibrated for a m/z range of under 3200 via a IM-QTOF tune before 

running the sequence. Mass spectrometer resolution for the calibration masses had to be 

>10,000 with IMS-QTOF and >20,000 for QTOF only, with a relative standard deviation of less 

than 1%. These criteria were met with a great margin to the limits mentioned above.  

Collision energy experiments were executed in the form of autoMSMS. After some RTs and 

precursors were attained, the search for more fragmentation patterns was refined with a 

targeted MSMS approach: proper lipid adducts for each respective lipid class were established 

via a pre-optimization analysis (Attachment 6). Then, these precursors were added to the 

exclude-list at a discrete RT-range, including the rest of the lipids on the PCDL in the targets 

to be analyzed at their own RT. 

Name Description Gradient Bulk 1 (RT, I) Bulk 2 (RT, I) Separation 

40%_45C 1.0 STD Step STD STD STD 

40%_50C 1.0 higher temp Step earlier,higher earlier,higher same 

40%_55C 1.0 higher temp Step earlier,higher earlier,higher better? 

45%_45C 1.0 B 40%->45% Step earlier,higher earlier,higher better 

45%_50C 1.0 Final method Step earlier,higher earlier,higher better 

45%_55C  Step earlier,lower earlier,lower same 
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A ramped CE profile between collision energies of 10, 15, 20 and 25 was evaluated to obtain 

the best fragmentation spectrum of the target analytes. These collision energies with arbitrary 

units of the instrument were tested in autoMS-mode and listed in Table 26. An optimal 

collision energy was determined so that the analyte was fragmented formidably, as long as 

the precursor ion was still separable from the background noise 

 

 

Table 26. Optimized collision energies for lipid analytes. Bolded m/z fragments were verified 

via the Lipidmaps® mass-spectral Database 

Name Adduct m/z RT (min) CE () Characteristic fragments 

LPC(16:0) 1 H 496.3403 2.373 25  

LPC(18:0) 2 Na 546.3536 2.43 20 104.1068, 184.0744 

LPC(18:1) 2 H 522.356 2.749 20 104.1066, 184.0733, 504.3408* 

LPE(20:0) H 510.356 2.951 25  

LPC(18:0) 3 Na 546.3536 3.281 20  

DG(34:1) 1 Na-H2O 599.5015 10.504 25  

DG(34:0) Na-H2O 601.5172 10.721 25  

DG(36:2) 1 Na 643.5277 10.933 20  

PS(34:1) H 704.5594 11.6 20 184.0733, 124.9995 

PE(34:1) 1 H 718.5387 11.872 25  

PC(34:2) 1 H 758.57 12.055 25  

PC(34:0) Na 784.5832 12.186 15  

SM(d36:1) H 731.6067 12.318 25  

PE(34:0) Na-H2O 724.5257 12.365 20  

PI(34:0) H-H2O 829.5571 12.637 25  

PE(38:1) 2 H 774.6013 12.863 25  

PS(38:1) H 818.5911 13 25 184.0743, 283.2609, 650.0833 

SM(d40:0) H 785.6537 13.291 25  

SM(d40:2) H 789.685 13.308 25  

DG(34:1) 3 H 595.5302 13.77 25 577.5, 339.3 

SM(d40:1) H 787.6693 13.968 20 104.1066, 184.073, 439.2024, 495.2649, 551.3269  

DG(36:2) 1 Na 643.5277 13.971 20  

TG(50:1) 2 NH4 850.7864 23.203 20 265.2515, 239.2358, 551.5013, 577.5191 

      

*characteristic fragment is observed before fragmentation operation => water neutral loss? 

RT=retention time, CE=collision energy (Agilent arbitrary units) 
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12.1.3 Data-analysis 

12.1.3.1 Generation of an in-house database 

Around 3000 GLs, GPs and SLs were extracted from the LIPID MAPS Structure Database 

(LMSD).14 The extraction was performed by first choosing and downloading classes via the 

classification-based search of the LMSD, then limiting the possible lipids by removing 

deuterated and uneven fatty acyl chain species manually. Because the data analysis was 

intended to be performed mainly manually, the amount of analytes had to be decreased 

drastically. Further filtering of the lipid list was done by removing exact mass duplicates with 

Excel; this achieved lists with only one representative structural isomer for any possible 

variation of a subgroup’s species’ chemical formula. However, some overlap and thus removal 

of lipid class species with same exact masses may have taken place. 

As the number of analytes was still impractical for the analysis at hand (~800 species), GL- and 

GPL-species were skimmed by their combined FA-carbon atom and double bond count. The 

filtering was done by excluding remaining lipids from a discrete molar mass range: for DGs this 

range included the species 30:0-40:6, for TGs 46:0-60:9,  for PCs/PSs/PEs/PGs/PIs/PAs 30:0-

40:2 and for the lyso-forms of PEs and PCs 14:0-22:6. The methoxy-forms of GPs (06 suffix of 

GP) was cut out entirely. From start to end, Figure 27 illustrates the filtering process of PCDL 

formulas. 

FAs were entirely cut out of the list, since no reliable signals were found during analysis. This 

is backed up by Tumanov et al, who claim the column and solvent combination not to be suited 

for FA separation. Instead, a more polar mobile phase is needed for a FAs as well as PAs.21   

Creation and management of the PCDL was performed with the Agilent MassHunter PCDL 

Manager B.08.00, starting at first with only the name and the chemical formula of a 

compound. With the remaining 834 lipids (includes FAs), a test PCDL for adduct analysis was 

produced containing 102 manually picked lipids. The choice which lipids to include was a rough 

sketch of probable lipids. Again, this information can be retrieved from Attachment 8. Multiple 

adducts were documented for the upcoming quantitation, as the less abundant adduct was 

under the limit of saturation at times. Non-saturated signals were preferred, if the calibration 

and its respective peak area could be determined. 
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Figure 27. Selection of analytes and their formulas. 

1st analysis: analysis conducted with CMs and amniotic fluid 

2nd analysis: analysis conducted with plasma sample (overlap with 1st analysis) 

 

As our perception of important common lipids improved, another 114 new and around 18 

previously identified lipids were chosen to fill out various gaps in RTs and CCS values. The list 

included a handful of representatives of the groups MG, DG, TG, PC, PE, LPC, LPE, PS, PG, PI, 

Cer, SM CerPC and SM CerPE; now with more naturally abundant choices. The widely studied 

biomarker sphingosine-1-phosphate (S1P) and sphinganine-1-phosphate (SA1P) was also 

included in the PCDL. 

 

12.2 Method optimization with plasma 
The Folch-prepared plasma sample was used as the basis for the in-house built database for 

targeted lipidomic analysis in ascites. Having around 130 lipids with their respective formulas 

included in the PCDL, 70 RTs were spotted via Feature finding of Qualitative Workflows 

B.08.00. Furthermore, 36 CCS values were found for different lipid species via the Mass 

Profiler tool. The final PCDL used in the analysis can be further inspected in Attachment 8. 

Qualitative Navigator B.08.00 was used for double checking deuterated standards that were 

not directly found via the exact masses included in the PCDL; some standards present in the 

surrogate mix were only found via separate inspection of the exact masses and their known 

retention times from earlier pre-experiments. In addition, 24 collision energies were 

optimized for potential MS/MS fragmentation analyses in the future. 
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12.2.1 Matrix effect analysis 

Before identifying and quantitating lipids, matrix effects of all sample analytes in addition to 

pre-preparation added surrogates, were studied with the chromatographic method optimized 

for analysis. Samples included both the pooled QC sample, which included all control DLF and 

ascites samples in equal proportions by volume, and the control and prior samples separately. 

In hindsight though, this analysis only applied for the suppression of the ceramide peak area 

and its RT proximity (12.44 min). As different analytes are retained at a different RT, so is the 

case with matrix components, which varies the matrix effects along the runtime of a 

chromatogram. However, this can be circumvented in relative quantitation with an ISTD or 

surrogate.19 Also, positive and negative mode are not directly comparable with each other as 

there are no complementary ions to be ionized.  

The ISTD peak area included in ascites and DLF samples (~33 ppm) was retrieved from the all 

ions data and plotted as a function of time in Figure 28 positive and Figure 29 negative mode. 

As can be observed, a four- to near tenfold peak area was found for the surrogate in 

comparison to the clinical samples and their QC pools in positive ESI-mode. Thus, rather strong 

matrix-based ion suppression can be suggested during the analysis of these samples. 

However, it must be noted that the suppression of the pooled QC sample was greater than 

that of the individual samples. Speculatively, it could be a specific sample’s contamination or 

the fact that a mixed sample degrades faster. 

The DLF in both extractions showed a comparable matrix effect as in ascites, which pointed to 

at least similar suppression in both fluids. Both BUME and Folch showed a similar pattern, as 

all four samples were measured in the same order in sequence. In conclusion, the QC sample’s 

three measurements before, in between and after the actual samples were evaluated as 

rather stable compared to each other, hence showing good instrumental stability and 

justifying the decision to only normalize the samples with the representative surrogates. DLF 

samples had ISTD peak areas in the same range as ascites samples, insinuating towards similar 

matrix effects occurring in both media. 

In negative mode, even for the ISTD of the surrogate mix blank a three-fold suppression was 

observed. This is backed by Monnin et al, who observed in negative mode a “2- to 1000-fold 

signal suppression of all lipid classes” with ammonium hydroxide additive in comparison to 

acetic acid additive only, which in turn had an “2- to 19-fold” increase in intensity for all other 
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lipid subclasses except for the decreased signals for Cers and PCs. Apparently, even the lipid 

coverage increased by 21-50% by using only acetic acid instead of ammonium acetate, by 

direct consequence of the ionization efficiency improvement.48 

 

Figure 28. Peak areas of the deuterated internal standard (ceramide) in positive mode,  

as a function of time. The two line-graphs depict a set of four ascites samples extracted by 

either Folch (F) or BUME (B) to compare individual matrix effects among themselves, 

juxtapose their combined shape among the extraction methods or to set the samples against 

control sample (triangles) or the blank (surrogate). 

 

Figure 29. Peak areas of the deuterated internal standard in negative mode as a function of 

time, scaled to compare it more easily with positive mode.  
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12.2.2 Ascites and DLF samples 

Increased injection volumes (from 10 µl plasma to 20 µl ascites) were used in the hope of 

finding low-abundance species. This combined with other factors (e.g. surprisingly high-

abundance concentrations of lipids in aqueous solutions, co-elution) lead to frequent 

saturation of the detector. Though this was an expected hindrance to the accurate 

quantitation of lipids, it did work as a compromise to qualitatively detect both low-abundance 

and mid- to high-abundance species in the biological sample. 

As stated in the experimental chapter, four ascites samples in addition to a DLF control sample 

were analyzed with a PCDL compounded from plasma sample analysis. The aim of the study 

was to profile common lipid species -preferably at least one of each lipid class of interest- in 

the ascites microenvironment. Chromatograms of the plasma sample, surrogate mix blank, 

DLF control samples and ascites samples were collected in Attachment 9. 

After the preparative analysis and compounding of the PCDL the lipid groups DG, TG, PC, LPC, 

PE, LPE, PS, SM CerPC and SM CerPE were represented; in plasma, a low score of possible lipid 

classes PG, PI and Cer was observed; and finally, MG, S1P and sphinganine-1-phosphocholine 

were never found. 

When ascites samples, DLF control samples, QC samples and the tenfold diluted surrogate 

mix were run with the optimized HPLC-IMS-MS method, a qualitative analysis with the PCDL 

was conducted to retrieve scored hits from the all ions scan data. The chromatographic data 

were analysed with Mass Profiler’s ID Browser B.08.00: features with an exact mass window 

of 10 ppm were searched for, after which found features were identified and scored by 

comparing the experimental data (RT, CCS, m/z) with the PCDL data. 

Table 27 summarizes the identification of lipids with both BUME and Folch as the sample 

preparation technique of ascites. With BUME, more hits were found for individual lipid 

species and a slightly greater amount of lipid species was attained. 
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Table 27. Summary of all lipid species identified with the PCDL: the totality of lipids identified 

in both analyses with the BUME and Folch extraction (TOT), total amount found in “BUME” 

or “Folch”, the amount of “SHARED” and extraction-“SPECIFIC” analytes, and single 

extraction-specific identifications (o.o.w. single). In addition, species pairs with “2 isomers” 

were noted   

 

 

Moreover, lipid species hits were analyzed in a more detailled fashion to evaluate the 

plausibility and commonality of analytes (Table 28). Again, BUME tallied a higher amount of 

hits among and within extracted lipid species hits and the four ascites samples. The hits had 

scores over 79 and were manually controlled. 

 

Table 28. Visualized amount of all hits found in respectively four prepared ascites samples  

(Folch or BUME). An empty field means no hits were found, full blue field means the analyte 

was found in all four ascites samples. The red fields show a respective (Σ) and combined 

(Tot.) total of species found when neglecting their isomers; isomers were denoted with a 

number at the end of their name. 

 

Folch BUME Folch BUME

DG(34:1) 1 PE(32:0)

DG(34:1) 3 PE(34:0)

DG(36:2) 1 PE(34:1) 1

DG(36:2) 2 PE(34:1) 2 o.o.w. single / analytes found in only one sample

LPC(16:0) 1 PE(34:2)

LPC(18:0) 1 PE(38:1) 2 TOT SHARED SPECIFIC o.o.w. single

LPC(18:0) 2 PE(O-34:1) 38 32 6 1

LPC(18:0) 3 SM(d36:1)

LPC(18:1) 1 SM(d36:2) BUME o.o.w. single 2 isomers

LPC(18:1) 2 SM(d40:0) 35 10 7

LPE(16:0) SM(d40:1) Folch o.o.w. single 2 isomers

LPE(18:0) 1 SM(d40:2) 33 16 6

LPE(18:0) 2 TG(48:0) 2

LPE(18:1) TG(50:1) 1

LPE(20:0) TG(52:1) 3

PC(34:0) TG(52:2)

PC(34:1) 1 Σ (no isomers) 25 27

PC(34:1) 2 Tot. (no isomers) 28

PC(34:2) 1

PC(34:2) 2

PC(O-34:1) 1

PE

SM

TG

DG

LPC

LPE

PC
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Out of all the found lipids in total, 19 were present in three or all the ascites samples. Thus, 

these lipids were trusted to be most abundant in the clinical samples. This made them most 

likely to be relatively quantifiable by normalization and a one-point calibration with their 

representative deuterated surrogates.  

The normalized peak areas were sorted out by lipid subclass and put into a histogram as a 

function of individual samples in Figure 30. After excluding the outlier samples LA-979 and LA-

170 from properly stored and prepared ascites samples, the found lipid group concentrations 

of the ascites samples were in the range of 10-18.5 ppm for SM (DLF: 7 ppm), 0.08-0.7 ppm 

for DG (DLF: 0.08 ppm), 0.21-1.75 ppm for LPC (DLF: 0.4-1.66 ppm), 0.04-0.21 ppm for LPE 

(DLF: 0.06-0.15 ppm), 0.08-2.92 ppm for PE (DLF: 0.42 ppm) and 0.08-2.08 ppm for PC (DLF: 

N/A). Many, though not all, of the DLF lipid concentrations were representatively present 

compared to the ascites samples. However, the representativeness (i.e. homogeneity) of lipid 

species and classes should be checked case by case for applications. 

After sampling of ascites in the operating room and transfer to the pathology department, 

some samples experienced deviating states and paths: a coagulation was formed due to 

processing purposes in LA-979 before centrifugation, leading to a suspicion of blood platelet 

lipid contamination. The coagulate-mixture was centrifuged along with the cell-pellet and pre-

prepared accordingly. As another divergence, though fundamentally the same medium, the 

LA-170 ascites sample spent its first one week after sampling and centrifugation by protocol 

under 4 ̊ C instead of staying under the safest storing temperature of -80 ̊ C. The comparatively 

high concentrations of PCs in LA-979 and its large deviation at several species could hint 

towards the possible platelet contamination mentioned before. Similarly, the minimal 

concentrations observed in LA-170 communicate of a larger degradation of lipids, probably 

the result of the broken cold-chain before sample preparation. However, LA-827 and LA-833 

concentrations stood surprisingly equal throughout lipid species. 

Through more visual examination, lipid classes appeared to have distinct characteristics. If 

most abundant lipids express the most typical FAs (palmitic acid FA(16:N) and stearic acid 

FA(18:N)), the abundance of  mixed DG(34:1) was greater than the isomers of two possible 

stearic acids in DG(36:1). In contrast, LPCs could have stearic acid chains, which can be further 

backed up by the concentration trend of the normalized PC graphs (“PC(34:2) 1” and “PC(34:1) 

2” have been scaled by dividing by a factor of 10). 
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Moreover, LPEs and PEs showed a trend of longer FA chain lengths being more common 

compared with PCs and LPCs. This was observed and confirmed by other research team 

members in other lipidomics experiments. In conclusion, SM(40:N) had distinctly higher 

concentrations for double bonds with N=2 than N=1 or 0. 

 

 
Figure 30. Relative concentration multipliers of normalized lipids. The lipids were sorted out 

according to their sample ID, lipid group and and lipid classes. The last number insinuates of 

a possible isomer. *: PC(34:1) 2 and PC(34:2) 1 was scaled to LPE(20:0) by dividing them by 

10 
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13 Conclusions 
Chromatographic methods in lipidomics are used to achieve either very selective or all-

encompassing analyses for lipid classes, identifying lipid species from their molecular up to 

stereochemical structure. The review of the literature part studied and compared 63 articles 

between the years 2017-05/2019 to detect any trends and commonalities for the individual 

years and full time-frame. Apparently, HPLC/MS is an insufficient method for fully 

encompassing low-abundance lipids, which is why UHPLC/MS is needed. UHPLC/MS was 

mostly used for metabolic profiling where its large analyte range due to high sensitivity, 

separation efficiency and resolution excels in performance compared to other methods. 

Sample preparation revolved around methods already established in lipidomics, e.g. Folch, 

Bligh and Dyer, and Matyash extractions from both biological tissues and fluids. If no ISTD 

normalization is conducted, special care must be taken to ensure specifity of the extraction 

for the lipid classes to be analysed: each extraction has their own extraction efficiency profile 

since lipids range from very nonpolar to polar species. Similarly, chromatographic methods 

revolved heavily around RPLC (UHPLC, nanoLC, SFC) while imaging techniques are spreading 

towards newly developed non-chromatographic methods (e.g. CRS, LESA) alongside DIMS and 

desorption techniques. RPLC was probably preferred due to easy lipid head group MS/MS 

identification and separation according to FAs and other nonpolar structures, but not vice 

versa like in NPLC. 

According to my findings, the field of lipidomics is divided between studies using isotope-

labeled standards or fully standardless algorithm-based analyses. Since computational 

methods alongside chemometric and statistical methods have increased in both importance 

and usage for cross-validation and data-analysis, lipidomics needs interdisciplinary studies to 

reach its full potential with big and complex datasets.  
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In the experimental part, a HPLC-MS method enhanced with IMS data was optimized for 

lipidomic analysis. Main glycero-, glycerophospho- and sphingolipids found in ascites samples 

were extracted and identified via a three-dimensional feature finding and identification 

analysis (including chromatographic separation, ion mobilities, and mass-to-charge ratios) in 

an all ions scan. An all ions scan was conducted for potential MS/MS fragmentation behaviour 

post-analysis, in addition to the conventional m/z- and CCS-values gathering for identification. 

The targeted analysis of the lipids was conducted with the assistance of a PCDL-list including 

common lipids in plasma, which in turn was created at the beginning of the study by 

accumulating information of supposed lipids in a single plasma sample. The initial set of 

plasma lipids was narrowed down from the vast LIPID MAPS Database into around 130 

potential lipids including all lipid subgroups of interest.  

During analysis, 70 RTs and 36 CCS values were found and added to the PCDL, leading to a 

total of 36 identified lipids found in ascites with a Mass Profiler library search score of over 

79%. The score was determined by the fit of the theoretically (exact mass, formula of the 

compound) or experimentally (RTs, CCS values) claimed values in the PCDL compared to the 

instrumentally observed properties. 

Possible errors and fields to improve are various: special care should be taken to keep the 

cold-chain uninterrupted and freeze-thaw cycles should be minimized. Furthermore, 

supportive research should be increased prior to choosing the right lipid analytes to be 

studied: some research representative clinical samples among the irrelevant ones. Limitations 

of this study could be addressed with research concentrating specifically on low-abundant 

lipids and the methods surrounding the topic (e.g. SPE, affinity chromatography and other 

concentration or depletion methods), studies on in-source fragmentation and fragmentation 

behaviour in MS/MS for identification purposes and optimization of sample dilution and 

injection volume to avoid unnecessary detector saturation. Saturation leads to the broadening 

of peaks, thus, to higher uncertainty in quantitation. Furthermore, the analysis in negative 

mode was left out entirely due to unfitting ESI-parameters and signal suppression proposedly 

caused by the ammonium additive. Lowest limit of detection (LOD) was observed when 

analysing the twentyfold dilution of the Splash mix: added deuterated Cer2 had a 

concentration of 0.1 mg/l, LPE, PE and PS a concentration of 0.25 mg/l. As the calibration of 
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representative samples included only one point and the samples were injected only once, no 

linearity or repeatability could be evaluated.  

In hindsight, by using plasma as a feature-finding base we could only observe commonalities 

between this medium and the clinical samples. As there is wide heterogeneity between lipid 

arrangements of biological systems such as ascites and plasma, it may have been merely a 

snippet of the ascites lipidome that was observed. 
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16 Appendix 
 

Attachment 1. Collected identification accuracy extremes (Acc. min/max) for UHPLC-MS 

lipidomic techniques 

Citation Acc. min Acc. max 

88 0.892 0.927 

28 0.99 0.999 

89 0.949 1.051 

64 0.706 1.226 

65 0.889 1.051 

AVERAGE 89 % 105 % 

SD 10 % 10 % 
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Attachment 2. Further information about the columns and additives in the literature part 

Year Citation Precolumn Column Particle 
size (um) 

Additives 

2017 42 VanGuard 10x2.1 
mm 

Acquity HSS T3 100x2.1 
mm 

1.8 A&B: 5 mM AmFo, 0.5% FoA 

2017 66   Hypersil GOLD 100x2.1 1.9 A&B: 20 mM AmFo, 0.1% FoA 

2017 42 VanGuard 10x2.1 
mm 

Acquity HSS T3 100x2.1 
mm 

1.8 A&B: 0.1% NH4OH 

2017 121   Acquity BEH C18 100x2.1 
mm 

1.7 - 

2017 93   N/A 1.7 A&B: 10 mM AmAc 

2017 35   Ascentis Express C18 
100x2.1 mm  

2.7 A&B: 5 mM, 0.1 FoA 

2017 97   CORTECS™ C18 100x2.1 
mm 

1.6 B: 10 mM AmFo; 0.01% FoA 

2017 65   Eclipse Plus C18 100x2.1 1.8 A: 10 mM AmAc 0.2% AcA 

2017 99   CORTECS C18 100x2.1 mm 2.7 A&B: 10 mM AmAc 

2017 51   Waters Cortecs C18 
150x2.1 mm 

1.6 A&B: 10 mM AmFo, 0.1% FoA 

2017 90   Acquity CSH C18 50x2.1 
mm 

1.7 - 

2017 39   Acquity CSH C18 1.7 A&B: 10 mM AmAc;0.1% FoA 

2017 99   XSelect CSH C18 100x2.1 
mm 

2.5 A&B: 10 mM AmAc 

2017 30   Acquity CSH C18 100x2.1 
mm 

2.1 A&B: 10 mM AmFo, 0.1% FoA 

2017 96 
 

hypersil GOLD C18 
100x2.1 mm 

1.9 A&B: 10 mM AmFo 

2017 98   BEH C18 50x2.1 mm 1.7 A&B: 10 mM AmFo, 0.1% FoA 

2017 91 
 

BEH C18 70x0.1 mm 1.7 A&B: 5 mM AmFo, 0.05% FoA 

2017 82 
 

HSS T3 100x2.1 mm 1.7 A&B: 10 mM AmFo 

2017 55   BEH HILIC 150x2.1 mm 1.7 A&B: 7 mM AmAc 

2017 92 
 

Waters BEH C8 100x1 mm 1.7 A&B: 10 mM AmFo, 0.1% FoA 

2017 121   Acquity BEH C18 100x2.1 
mm 

1.7 A: 10 mM AmAc, 0.1% FoA 

2017 62   Titan C18 100x2.1 mm 1.9 A: 20 mM AmFo 

2017 95   C8 100x2.1 mm 1.8 A&B: 10 mM AmAc, 0.1% AcA 

2017 94 
 

Acquity BEH C18 50x2.1 
mm 

1.7 0.1% FoA 

2017 41   Acquity HSS T3 100x2.1 
mm 

1.8 A&B: 0.1% FoA 

2017 45 
 

Acquity BEH 150x2.1 mm 1.7 3.5 mM AmAc 
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Year Citation Precolumn Column Particle size (um) Additives 

2018 110   CSH C18 100x2.1 mm 2.6 A&B: 5 mM AmFo, 0.1% 
FoA 

2018 64   Poroshell 120EC C18 
50x3.0 mm 

2.7 0.02% AcA 

2018 104   Xbridge™ BEH C18 100x2.1 
mm 

2.5 A&B: 10 mM AmFo 0.1% 
FoA 

2018 79   Acquity C18 CSH 100x2.1 
mm 

1.7 0.1% FoA, 10 mM AmFo 

2018 108   Kinetex C18 100x2.1 mm 1.7 A&B: 10 mM AmFo 

2018 107   Kinetex C18 100x2.1 mm 2.6 A: 5 mM AmAc 

2018 88 UPLC CSH C18 
VanGuard 5x2.1 mm 

Waters Acquity UPLC CSH 
C18 100x2.1 mm 

1.7 A&B: 10 mM AmFo, 0.1% 
FoA 

2018 106   hypersil GOLD C18 100x2.1 
mm 

1.9 A&B: 10 mM AmFo 

2018 52 Supelco guard 
cartage 5x2.1 mm 

Nanobore + Ascentis 
Express C18 150x2.1 mm 

2.7 A&B: 10 mM AmFo, 0.1% 
FoA 

2018 52 Supelco guard 
cartage 5x2.1 mm 

Nanobore + Ascentis 
Express C18 150x2.1 mm 

2.7   

2018 63   BEH C8 100x2.1 mm 1.7 A&B: 10 mM AmAc 

2018 63   BEH C8 100x2.1 mm 1.7 A&B: 10 mM AmAc 

2018 63   BEH C8 100x2.1 mm 1.7 A&B: 10 mM AmAc 

2018 15   Acquity BEH C18 100x2.1 
mm 

3.5 A&B: 10 mM AmFo 

2018 36   BEH C18 100x2.1 mm N/A A&B: 10 mM AmFo, 0.1% 
FoA 

2018 100 ODS-P Watchers® 
C18 5x0.1 3 um* 

Xbridge® BEH C18 70x0.1 
mm** 

1.7 A&B: 5 mM AmFo, 0.05% 
FoA 

2018 103 ODS-P Watchers® 
C18 5x0.1 3 um* 

Xbridge® BEH C18 70x0.1 
mm** 

1.7 A&B: 5 mM AmFo, 0.05% 
FoA 

2018 28   ZorBAX RRHD Eclipse Plus 
C18 100x4.6 mm 

1.8 A&B: 12 mM AmAc, A: 
+0.02% AcA 

2018 61   Kinetex C18 50x2.1 mm 2.6 A&B: 0.1% FoA 

2018 105 - Acquity BEH C18 50x2.1 
mm 

1.7 A&B: 0.1% FoA 

2018 101 - Acquity BEH C18 100x2.1 
mm 

1.7 A: 0.1% AcA 

2018 102   Acquity HSS T3 C18 
150x2.1 mm 

1.7 A&B: 0.1% FoA 

2018 80   Waters BEH Amide 150x2.1 
mm 

1.7 6.5 mM AmHCO3 

2018 80   Waters BEH Amide 150x2.1 
mm 

1.7 10 mM AmFo 

2018 80   Waters BEH C18 100x2.1 
mm  

1.7 0.05% PFPA, 0.1%FoA 

2018 80   Waters BEH C18 100x2.1 
mm  

1.7 0.05% PFPA, 0.01%FoA 

2018 111   BEH C18 100x2.1 mm 1.7 A&B: 0.1% FoA 

2018 79   Acquity C18 HSS 100x2.1 
mm  

1.8 0.1% FoA 
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Year Citation Precolumn Column Particle size (um) Additives 

2019 38  Xbridge® BEH C18 70x0.02 
mm** 

1.7 A&B: 5 mM AmFo,  
0.05% NH4OH  

2019 113   CSH C18 100x2.1 mm 1.7 A&B: 5 mM FoA, 0.1% FoA 

2019 116   Xbridge C18  100x2.1 mm 1.7 A&B: 5 mM AmAc 

2019 115 Acquity CSH Acquity CSH C18 1.7 A&B: 0.1% AmFo 0.1% FoA 

2019 37 CSH C18 VanGuard 
5x2.1 mm 

Acquity CSH C18 100x2.1 
mm 

1.7 A&B: 10 mM FoA, 0.1% 
FoA 

2019 117 BEH C18 VanGuard Acquity BEH C18 50x2.1 
mm 

1.7 A&B: 10 mM AmFo, 0.1% 
FoA 

2019 46   HILIC 50x4.6 mm 1.7 B: 10 mM AmFo, A&B: 
0.1% FoA 

2019 46   HILIC 50x4.6 mm 1.7 B: 10 mM AmFo, A&B: 
0.1% FoA 

2019 119 C8 Security guard 
Ultra 2.1 um 

Kinetex C8 150x2.1 1.7 A&B: 10 mM AmAc 

2019 118   C18 150x2.1 mm 1.7  positive: A&B: 10 mM 
AmFo 

2019 118   C18 150x2.1 mm 1.7 negative: A&B: 10 mM 
AmAc 

2019 114 - ZORBAX Eclipse Plus C18 
100x2.1 mm 

1.8 B: 10 mM AmAc, 0.01% 
FoA 

2019 114   ZORBAX Eclipse Plus C18 
100x2.1 mm 

1.8 B: 10 mM AmAc, 0.01% 
FoA 

2019 112 Hypersil GOLD 
50x2.1 mm 

Acquity BEH Phenyl 
150x2.1 mm  

1.7 3.5 AmAc 

2019 89   BEH C18 100x2.1 mm 2.6 A&B: 10 mM AmAc, 0.1% 
FoA 
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Attachment 3. Standards for identification and quantitation. Surrogates and internal standards not 

included 

Citation Standards for identification/calibration T/PT/UT 
Quantitation? ISTD? 
Surrogate? 

88 Representative standards UT no, no, no 

51 
Reference lipid matrix (e.g. chicken egg PC, e. coli extract, 
PS porcine brain…) PT no, no, no 

92 Single representative standards UT Yes, no, yes (odd carb) 

52 6 representative standards UT 
yes, no, yes 
(deuterated) 

45 127 representative standards T/UT 
yes, no, yes 
(deuterated) 

28 50 single standards T yes, no, yes 

42 Single standards, reference matrix (butterBCR-519) T yes, no, yes 

94 None UT no, yes, no 

79 None UT relative, no, yes 

107 None UT relative, no, yes 

115 None UT relative, no, yes 

39 None UT relative, no, yes 

101 4 FAs, LPC and LPE respective representative standards UT relative, no, yes 

114 N/A UT yes, no, yes 

80 N/A UT yes, no, yes 

106 19 representative standards UT no, no, yes 

90 None UT (yes), no, no 

104 None UT no, no, yes 

96 None UT relative,  no, yes 

97 None UT no, no, yes 

100 32 representative standards UT relative, yes, no 

91 14+15 representative standards UT relative?, yes, no 

103 12+13 representative standards UT relative?, yes, no 

112 28 from 6 classes T/UT no, no, yes 

82 N/A UT no, no, no 

38 38 standards T/UT yes, no, yes 

95 N/A UT no, no, no 

105 None UT relative, no, yes 

117 None UT relative, no, yes 

102 291 target analytes T/UT no, no, yes 

30 
Reference lipid matrix, SPLASH, pseudo-plasma premixed 
standard solution T/UT yes, no, yes 

86 None     

120 19 representative standards UT yes, no, yes? 

46 None UT relative, no, no 

89 17 CEs PT/T yes, no, yes 

118 None UT no, no, no 

108 PC, PE (both deuterated) T/UT yes, yes?, no? 
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Citation Standards for identification/calibration T/PT/UT 
Quantitation? ISTD? 
Surrogate? 

116 22 standards T relative, no, yes 

15 SPLASH? T yes, no, yes 

37 SPLASH UT no, no, yes 

113 None UT relative, no, yes 

109 None UT relative, no, no 

119 N/A UT yes, yes, no 

36 standard reference material T no, no, yes 

110 None UT relative, no, yes 

111 Representative standards UT yes, no, yes 

63 7 representative standards PT relative, no, yes 

61 12 standard reference steroids UT relative, no, yes 

64 5 standard reference prostaglandins T yes*, no, yes 

55 Representative standards T/UT yes, no, yes 

98 Representative standards UT yes, no, yes 

99 N/A UT relative, no, yes 

35 N/A UT no, no, yes 

41 None UT no, no, yes 

62 56 representative standards UT no, no, yes 

65 N/A UT relative, no, no 

66 24 representative standards UT yes, no, yes 

93 None UT no, no, no 

121 1 representative standard UT relative, no, yes 

SPLASH= deuterium-labelled, plasma-imitating Splash® Lipidomix® mixture, Avanti Polar Lipids Inc. 

*quantification with standard addition 
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Attachment 4. Method parameters for UHPLC/MS methods 2017, 2018 and 2019. Column 

compartment temperatures marked with yellow are assumed to have a standard room 

temperature. 

Mass analyser t (min) 
Flow 
(ml/min) 

T[column] (˚C) Ø (um) Year Citation 

IM-QTOF 10 0.4 40 1.7 2017 55 

Orbitrap 15.5 0.4 25 1.7 2017 93 

Orbitrap 20 0.3 40 1.7 2017 45 

Orbitrap 22 0.4 60 1.7 2017 95 

Orbitrap 25 0.2 55 1.7 2017 121 

Orbitrap 31 0.2 55 1.7 2017 121 

Orbitrap 40 0.15 50 1.7 2017 92 

QOrbitrap 20 0.35 45 1.9 2017 96 

QOrbitrap 23 N/A 50 1.7 2017 98 

QOrbitrap 25 N/A 25 2.7 2017 35 

QOrbitrap 27 0.25 25 2.7 2017 99 

QOrbitrap 28 0.25 25 2.5 2017 99 

QqQ 18.1 0.3 40 1.8 2017 65 

QqQ 25 0.4 40 1.9 2017 62 

QqQ 30 0.25 40 1.9 2017 66 

QTOF 4.6 0.5 45 1.8 2017 41 

QTOF 12 0.4 25 1.8 2017 42 

QTOF 12 4.00E-01 55 1.8 2017 82 

QTOF 13 0.5 60 1.7 2017 94 

QTOF 18 0.4 25 1.8 2017 42 

QTOF 20 0.3 55 1.7 2017 90 

QTOF 20 0.4 25 1.7 2017 30 

QTOF 22 0.4 55 1.7 2017 39 

QTOF 45 0.3 50 1.6 2017 97 

UHR-QTOF N/A 0.25 50 1.6 2017 51 
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Mass analyser t (min) 
Flow 

(ml/min) 
T[column] (˚C) Ø (um) Year Citation 

IM-QTOF 15 0.6 65 1.7 2018 88 

LTQ-Orbitrap 8 0.4 50 1.7 2018 111 

LTQ-Orbitrap 20 0.26 55 1.7 2018 63 

N/A 15 0.15 60 1.7 2018 15 

Orbitrap 110 0.6 60 2.7 2018 52 

Orbitrap 110 0.6 60 2.7 2018 52 

QOrbitrap 18 0.4 45 2.1 2018 102 

QOrbitrap 20 0.26 55 1.7 2018 63 

QOrbitrap 20 0.35 45 1.9 2018 106 

QOrbitrap 22 0.35 60 1.7 2018 36 

QOrbitrap 30 0.3 60 1.7 2018 110 

QOrbitrap  N/A 25 1.7 2018 80 

QOrbitrap   N/A 25 1.7 2018 80 

QOrbitrap   N/A 25 1.7 2018 80 

QOrbitrap  N/A 25 1.7 2018 80 

QQQ 3 0.4 23 2.7 2018 64 

QTOF 5 0.3 30 2.6 2018 61 

QTOF 13 0.5 60 1.7 2018 105 

QTOF 13.5 0.3 25 1.7 2018 108 

QTOF 15 0.3 50 2.6 2018 107 

QTOF 20 0.5 55 1.7 2018 79 

QTOF 20 0.3 45 2.5 2018 104 

QTOF 28 0.5 55 1.8 2018 79 

QTOF N/A N/A 25 N/A 2018 109 

Qtrap 20 0.26 55 1.7 2018 63 

Qtrap 30 0.4 45 1.7 2018 101 

Qtrap 35 0.5 30 1.8 2018 28 

LTQ 4 1 25 2.6 2019 46 

Orbitrap Fusion 4 1 25 2.6 2019 46 

QOrbitrap 15 0.4 60 1.7 2019 113 

QOrbitrap 20 0.4 40 1.7 2019 112 

QOrbitrap 23 0.5 25 1.7 2019 117 

QOrbitrap 24 0.4 55 1.7 2019 115 

QTOF 13 0.5 40 1.8 2019 114 

QTOF 13 0.5 50 1.8 2019 114 

QTOF 15 0.6 65 1.7 2019 37 

QTOF 21 0.3 40 1.7 2019 89 

QTOF 27 0.3 50 1.7 2019 118 

QTOF 27 0.3 50 1.7 2019 118 

QTOF 34 0.4 50 2.6 2019 119 

Qtrap 15 0.45 40 3.5 2019 116 

AVERAGE 22 0.38 48 1.9    

SD 14 0.13 11 0.4     

LTQ=linear trap quadrupole/linear ion trap (LIT), Qtrap=quadrupole ion trap (QIT),  

UHR-QTOF=ultra-high resolution QTOF 
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Attachment 5. Extension of lipid classes analyzed in different research articles (2017-05/2019) 

Citation Theme 
T/relT 
/UT/PT FA

cy
ls

 

C
Es

 

SL
s 

ST
s 

P
R

s 

P
K

s 

H
D

Ls
 

LD
Ls

 

V
LD

Ls
 

Identified 
lipids 

Bio-
markers 

88 
Method 
development UT                   429  

51 
Method 
development relT                     

92 
Method 
development UT                     

92 
Method 
development UT                     

92 
Method 
development UT                     

52 
Method 
development UT                   436  

30 
Method 
development T/UT     * *           207  

37 
Method 
development UT   *               292+206  

36 
Method 
development T 1                 22  

63 
Method 
development PT   *               515+630+640 [D] 

62 
Method 
development UT   *               104  

121 
Method 
development UT *                 403  

35 

Method 
development / 
cancer research UT   *               226-414  

98 

Method 
development / 
Metabolics UT     *             83 8 

55 

Method 
development 
/cancer 
research T/UT   *               132  

91 
Cancer 
research UT   *               286 34 

82 
Cancer 
research UT                    50 

108 
Cancer 
research T/UT   *               493 

14+10+2 
[B] 

101 Diseases UT                   24  
114 Diseases UT                   129  
106 Diseases UT   * *             749 16 

90 Diseases UT             1     12 9 

104 Diseases UT *   * * *         179  
104 Diseases *   * * *         196  
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Citation Theme 
T/relT 
/UT/PT FA

cy
ls

 

C
Es

 

SL
s 

ST
s 

P
R

s 

P
K

s 

H
D

Ls
 

LD
Ls

 

V
LD

Ls
 

Identified 
lipids 

Bio-
markers 

96 Diseases UT                   746 11 

96 Diseases                     

97 Diseases UT       *           261+39 7 

100 Diseases UT       *           365 19 

103 Diseases UT                   363 28 

105 Diseases UT 1                 Features Features 

7 Diseases 1 *                >25 

89 Diseases relT/T 1           * * * 81 [A] 17 [A] 

113 Diseases UT     *              77 

119 Diseases UT 2                  77 

110 Diseases UT 2   *             188+62 87 

111 Diseases UT 1                 188 [C]  
111 Diseases 1                   

39 Drug-testing UT                   155  

42 
Foodstuff 
profiling T                   81  

79 Metabolomics UT *                 61  
107 Metabolomics UT                     

115 Metabolomics UT   *                 

95 Metabolomics UT     3             178  
117 Metabolomics UT 1       1         97  
117 Metabolomics 1       1           

120 Metabolomics UT             * *   226  
46 Metabolomics UT 1                 249+451  

118 Metabolomics UT       1           7  
116 Metabolomics T                   22 5 

66 Metabolomics UT   *               523  
45 Physiology T/UT *     * * *       Features  
28 Physiology T *                   

15 Physiology T                   45  
109 Physiology UT     1             283  

61 Physiology UT       **           12  
64 Physiology T ***                 5  
99 Physiology UT 2                 184+150  
93 Physiology UT                    35 

*Lipid classes not counted 

**15 steroids 

***5 prostaglandins 

 
[A] for hyperlipidemia: plasma(74, 57 biomarkers), VLDL(74, 52 
biomarkers), LDL(76, 42 biomarkers), HDL(73, 41 biomarkers)  
[B] non-small cell lung cancer+lung benign disease+healthy 
controls 

[C] metabolites 
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Attachment 6. Potential ion species table of two amniotic fluid samples and three cell culture 

CMs.  
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Attachment 7.  Final PCDL 

 

 

 

 

 

 

 

 

Name Mass Retention Time NumSpectra CCS Count Name Mass Retention Time NumSpectra CCS Count

15:0-18:1(d7) DG 587.5506 10.89 0 1 PE(32:0) 691.5152 11.033 0 0

15:0-18:1(d7) PA 667.5169 0 0 PE(34:0) 719.5465 12.365 0 1

15:0-18:1(d7) PC 752.6061 12.212 0 1 PE(34:1) 1 717.5309 11.872 0 1

15:0-18:1(d7) PE 710.5591 12.024 0 2 PE(34:1) 2 717.5309 12.298 0 0

15:0-18:1(d7) PI 829.5698 0 0 PE(34:2) 715.5152 11.441 0 0

15:0-18:1(d7) PS 754.549 10.954 0 1 PE(38:1) 1 773.5935 12.236 1 0

15:0-18:1(d7) TG 811.7646 23.001 0 2 PE(38:1) 2 773.5935 12.863 1 1

18:1(d7) LPC 528.3921 2.817 0 4 PE(O-32:0) 677.5359 12.83 0 0

18:1(d7) LPE 486.3451 2.8 0 3 PE(O-34:0) 705.5672 11.847 0 0

18:1(d7) MG 363.3366 0 0 PE(O-34:1) 703.5516 11.6 0 1

18:1(d9) SM 737.6397 11.816 0 4 PG(32:0) 722.5098 11.6 0 0

Cer(d34:0) 539.5277 0 0 PG(34:0) 750.5411 0 0

Cer(d36:0) 567.559 22.774 0 0 PG(34:1) 748.5254 0 0

Cer(d36:0) 2 495.3325 1 0 PG(38:1) 804.588 13.341 0 0

Cer(d36:1) 565.5434 0 0 PG(38:2) 1 802.5724 12.615 0 0

Cer(d42:0(2OH)) 683.6428 22.837 0 0 PG(38:2) 2 802.5724 12.895 0 0

Cer(d46:0) 707.7156 16.573 0 0 PG(38:3) 800.5567 12.12 0 0

Cer2(d9) 546.5686 12.435 0 6 PI(32:0) 810.5258 0 0

DG(34:0) 596.538 10.721 0 1 PI(34:0) 824.5779 12.637 0 1

DG(34:1) 1 594.5223 10.504 0 1 PI(34:1) 822.5622 11.128 0 1

DG(34:1) 2 594.5223 10.851 0 0 PS(32:0) 735.505 0 0

DG(34:1) 3 594.5223 13.77 0 2 PS(34:0) 763.5363 0 0

DG(36:2) 1 620.538 10.933 1 1 PS(34:1) 761.5207 0 0

DG(36:2) 2 620.538 13.971 1 1 SM(d34:0) 704.5832 11.821 0 0

LPC(16:0) 1 495.3325 2.373 1 1 SM(d36:0) 732.6145 0 0

LPC(18:0) 1 523.3638 3.528 1 0 SM(d36:1) 730.5989 12.318 1 2

LPC(18:0) 2 523.3638 2.43 1 1 SM(d36:2) 728.5832 11.824 0 0

LPC(18:0) 3 523.3638 3.281 1 1 SM(d40:0) 784.6458 13.291 0 2

LPC(18:1) 1 521.3481 2.147 6 0 SM(d40:1) 786.6615 13.968 1 2

LPC(18:1) 2 521.3481 2.749 6 2 SM(d40:2) 788.6771 13.308 1 1

LPE(16:0) 453.2855 2.571 0 0 TG(48:0) 1 806.7363 23.17 0 0

LPE(18:0) 1 481.3168 2.183 2 1 TG(48:0) 2 806.7363 23.434 0 0

LPE(18:0) 2 481.3168 3.627 2 0 TG(50:0) 834.7676 0 0

LPE(18:1) 479.3012 2.799 0 0 TG(50:1) 1 832.752 22.709 5 0

LPE(20:0) 509.3481 2.951 1 2 TG(50:1) 2 832.752 23.203 5 1

MG(16:0) 330.277 3.988 0 0 TG(52:1) 1 860.7833 22.902 1 0

MG(18:1) 356.2927 4.413 0 0 TG(52:1) 2 860.7833 22.989 1 0

PC(32:0) 733.5622 0 0 TG(52:1) 3 860.7833 23.402 1 0

PC(34:0) 761.5935 12.186 2 1 TG(52:2) 858.7676 22.791 0 0

PC(34:1) 1 759.5778 11.671 1 0

PC(34:1) 2 759.5778 12.52 1 2

PC(34:2) 1 757.5622 11.873 0 2

PC(34:2) 2 757.5622 12.055 0 1

PC(O-32:0) 719.5829 0 0

PC(O-34:0) 747.6142 0 1

PC(O-34:1) 1 745.5985 12.414 0 0

PC(O-34:1) 2 745.5985 24.968 0 0
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Attachment 8. CCS values for attained adduct ion species 

Name Ion Species CCS Date_mode Formula 

15:0-18:1(d7) PE (M-H)- 245.81 20190307_NEG C38 H67 D7 N O8 P 

18:1(d7) LPE (M-H)- 199.68 20190307_NEG C23 H39 D7 N O7 P 

Cer2(d9) (M-H)- 229.44 20190307_NEG C34 H58 D9 N O3 

Cer2(d9) (M+CH3COO)- 239.23 20190307_NEG C34 H58 D9 N O3 

LPE(18:0) 1 (M-H)- 203.21 20190130_NEG C23 H48 N O7 P 

PC(34:1) 2 (M+CH3COO)- 273.31 20190130_NEG C42 H82 N O8 P 

PC(34:2) 1 (M+CH3COO)- 272.16 20190130_NEG C42 H80 N O8 P 

PI(34:1) (M+CH3COO)-[-H2O] 273.66 20190130_NEG C43 H83 O12 P 

 

Name Ion Species CCS Date_mode Formula 

15:0-18:1(d7) DG (M+H)+[-H2O] 238.46 20190307_POS C36 H61 D7 O5 

15:0-18:1(d7) PC (M+H)+ 265.96 20190307_POS C41 H73 D7 N O8 P 

15:0-18:1(d7) PE (M+H)+ 252.95 20190307_POS C38 H67 D7 N O8 P 

15:0-18:1(d7) PS (M+H)+ 260 20190307_POS C39 H67 D7 N O10 P 

15:0-18:1(d7) TG (M+Na)+ 288.69 20190307_POS C51 H89 D7 O6 

15:0-18:1(d7) TG (M+NH4)+ 290.39 20190307_POS C51 H89 D7 O6 

18:1(d7) LPC (2M+H)+ 308.23 20190307_POS C26 H45 D7 N O7 P 

18:1(d7) LPC (2M+Na)+ 311.99 20190307_POS C26 H45 D7 N O7 P 

18:1(d7) LPC (M+H)+ 217.18 20190307_POS C26 H45 D7 N O7 P 

18:1(d7) LPC (M+Na)+ 220 20190307_POS C26 H45 D7 N O7 P 

18:1(d7) LPE (M+H)+ 201.36 20190307_POS C23 H39 D7 N O7 P 

18:1(d7) LPE (M+H)+[-H2O] 200.82 20190307_POS C23 H39 D7 N O7 P 

18:1(d9) SM (2M+H)+ 385.1 20190307_POS C41 H72 D9 N2 O6 P 

18:1(d9) SM (M+H)+ 267.45 20190307_POS C41 H72 D9 N2 O6 P 

18:1(d9) SM (M+H)+ 273.7 20190307_POS C41 H72 D9 N2 O6 P 

18:1(d9) SM (M+Na)+ 267.98 20190307_POS C41 H72 D9 N2 O6 P 

Cer2(d9) (2M+Na)+ 348.31 20190307_POS C34 H58 D9 N O3 

Cer2(d9) (M+H)+ 238.97 20190307_POS C34 H58 D9 N O3 

Cer2(d9) (M+H)+[-H2O] 235.62 20190307_POS C34 H58 D9 N O3 

Cer2(d9) (M+Na)+ 233.8 20190307_POS C34 H58 D9 N O3 

DG(34:0) (M+Na)+[-H2O] 241.27 20190130_POS C37 H72 O5 

DG(34:1) 1 (M+Na)+[-H2O] 240.91 20190130_POS C37 H70 O5 

DG(34:1) 3 (M+Na)+ 241.61 20190130_POS C37 H70 O5 

DG(36:2) 1 (M+H)+[-H2O] 243.73 20190130_POS C39 H72 O5 

LPC(16:0) 1 (M+H)+ 213.78 20190130_POS C24 H50 N O7 P 

LPC(18:0) 2 (M+Na)+ 215.21 20190130_POS C26 H54 N O7 P 

LPC(18:0) 3 (M+H)+ 222.46 20190130_POS C26 H54 N O7 P 

LPC(18:1) 2 (M+H)+ 216.85 20190130_POS C26 H52 N O7 P 

LPC(18:1) 2 (M+H)+[-H2O] 213.2 20190130_POS C26 H52 N O7 P 

LPC(18:1) 2 (M+H)+ 216.85 20190130_POS C26 H52 N O7 P 

LPE(20:0) (M+H)+ 217.42 20190130_POS C25 H52 N O7 P 

LPE(20:0) (M+H)+ 217.42 20190130_POS C25 H52 N O7 P 

PC(34:0) (M+Na)+ 270.82 20190130_POS C42 H84 N O8 P 



125 
 

Name Ion Species CCS Date_mode Formula 

PC(34:1) 2 (2M+H)+ 391.59 20190130_POS C42 H82 N O8 P 

PC(34:1) 2 (2M+H)+ 391.59 20190130_POS C42 H82 N O8 P 

PC(34:2) 1 (M+Na)+ 212.1 20190130_POS C42 H80 N O8 P 

PC(34:2) 2 (M+H)+ 266.15 20190130_POS C42 H80 N O8 P 

PC(O-34:0) (M+Na)+ 271.38 20190130_POS C42 H86 N O7 P 

PE(34:0) (M+Na)+[-H2O] 260.3 20190130_POS C39 H78 N O8 P 

PE(34:1) 1 (M+H)+ 255.94 20190130_POS C39 H76 N O8 P 

PE(38:1) 2 (M+H)+ 271.43 20190130_POS C43 H84 N O8 P 

PE(O-34:1) (M+NH4)+[-H2O] 264.48 20190130_POS C39 H78 N O7 P 

SM(d36:1) (M+H)+ 270.96 20190130_POS C41 H83 N2 O6 P 

SM(d36:1) (M+Na)+ 271.25 20190130_POS C41 H83 N2 O6 P 

SM(d36:1) (M+H)+ 270.96 20190130_POS C41 H83 N2 O6 P 

SM(d40:0) (M+H)+ 279.71 20190130_POS C45 H89 N2 O6 P 

SM(d40:0) (M+Na)+ 278.62 20190130_POS C45 H89 N2 O6 P 

SM(d40:0) (M+H)+ 279.71 20190130_POS C45 H89 N2 O6 P 

SM(d40:1) (M+H)+ 281.86 20190130_POS C45 H87 N2 O6 P 

SM(d40:1) (M+Na)+ 281.87 20190130_POS C45 H87 N2 O6 P 

SM(d40:2) (M+Na)+ 282.86 20190130_POS C45 H93 N2 O6 P 

TG(50:1) 2 (M+NH4)+ 297.07 20190130_POS C53 H100 O6 
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Attachment 9. From left to right, all ions chromatograms of the plasma sample, blank (surrogate 

mix), control samples (LA-670 DLF F&B) and ascites samples (LA-170 F&B, LA-827 F&B, LA-833 F&B 

and LA-979 F&B) 
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