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Abstract

Methods for explaining the sources of inconsistency of over-
constrained systems find an ever-increasing number of appli-
cations, ranging from diagnosis and configuration to ontology
debugging and axiom pinpointing in description logics. Ef-
ficient enumeration of minimal correction subsets (MCSes),
defined as sets of constraints whose removal from the sys-
tem restores feasibility, is a central task in such domains. In
this work, we propose a novel approach to speeding up MCS
enumeration over conjunctive normal form propositional for-
mulas by caching of so-called premise sets (PSes) seen dur-
ing the enumeration process. Contrasting to earlier work, we
move from caching unsatisfiable cores to caching PSes and
propose a more effective way of implementing the cache. The
proposed techniques noticeably improves on the performance
of state-of-the-art MCS enumeration algorithms in practice.

Introduction

The analysis of overconstrained systems finds a wide range
of important Al applications, including numerous problems
of diagnosis, such as type debugging (Stuckey, Sulzmann,
and Wazny 2003; de la Banda, Stuckey, and Wazny 2003;
Bailey and Stuckey 2005), software fault localization (Jose
and Majumdar 2011; Roychoudhury and Chandra 2016),
spreadsheet debugging (Jannach et al. 2014), axiom pin-
pointing in description logics (Baader and Suntisrivaraporn
2008; Sebastiani and Vescovi 2009), and model based diag-
nosis in general (Reiter 1987), among many others. Central
to the analysis of overconstrained systems are the tasks of
finding minimal explanations of inconsistency and minimal
relaxations to recover consistency. In specific settings, enu-
meration of explanations or relaxations, i.e., the task of find-
ing many instead of only a single explanation or relaxation,
is crucial for understanding the underlying sources of incon-
sistency. For example, enumeration of minimal relaxations
is essential in software fault localization (Jose and Majum-
dar 2011). Furthermore, in settings where the automatic
analysis of minimal relaxations or minimal explanations is
viable, there is a natural demand for high-performance al-
gorithms, capable of computing high numbers of minimal
relaxations or explanations.
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The focus of this work is on the central task of enumer-
ating minimal relaxations in the concrete setting of analyz-
ing overconstrained (or inconsistent) propositional formulas
in conjunctive normal form (CNF). In the context of CNFs
formulas, minimal relaxations to restore consistency are
called minimal correction subsets (MCSes), whereas mini-
mal explanations of inconsistency are referred to as minimal
unsatisfiable subsets (MUSes). The development of prac-
tical algorithms for MCS extraction has received notable
attention recently (Bailey and Stuckey 2005; Liffiton and
Sakallah 2008; Felfernig, Schubert, and Zehentner 2012;
Nohrer, Biere, and Egyed 2012; Marques-Silva et al. 2013;
Bacchus et al. 2014; Grégoire, Lagniez, and Mazure 2014;
Mencia, Previti, and Marques-Silva 2015; Mencia et al.
2016). Furthermore, recent algorithmic advances for the
computationally hard task of extracting a single MCS has
enabled more efficient practical approaches to MCS enu-
meration (Marques-Silva et al. 2013; Mencia, Previti, and
Marques-Silva 2015).

Here we take on caching (or memoization) as a comple-
mentary approach to improving MCS enumeration. While
subformula caching has been earlier used to speeding up
propositional model counting (Sang et al. 2004; Thurley
2006; Kitching and Bacchus 2007; Bacchus, Dalmao, and
Pitassi 2009; Beame et al. 2010; Kopp, Singla, and Kautz
2016), caching in the context of MCS enumeration was only
very recently proposed as a means of further scaling up
MCS enumeration (Previti et al. 2017). Specifically, Previti
et al. (2017) proposed caching unsatisfiable subsets of con-
straints seen during the MCS enumeration process within a
SAT-based MCS enumeration algorithm, thereby avoiding
some of the potentially time-consuming SAT solvers calls
by querying the cache—implemented itself using another
SAT solver—for an unsatisfiable core that would render the
SAT solver call unnecessary. The empirical evidence pro-
vided in (Previti et al. 2017) suggests that the proposed ap-
proach of caching unsatisfiable subsets of constraints seen
during MCS enumeration can speed up a specific MCS enu-
meration approach (namely, ELS, or extended linear search).

In this work, we take the idea of employing caching
as a means of speeding up state-of-the-art MCS enumera-
tion algorithms further. Specifically, instead of caching un-
satisfiable subsets, we propose to cache so-called premise
sets (Kullmann 2011). While unsatisfiable subsets and



premise sets are closely related concepts—as we will
explain—a single cached premise set can account for multi-
ple unsatisfiable subsets. Thus, by caching premise sets in-
stead of unsatisfiable subsets, caching can—and, as we will
empirically show, will—become noticeably more effective
in speeding up MCS enumeration. Furthermore, instead of
the rudimentary approach to implementing the cache pro-
posed in (Previti et al. 2017), we develop an alternative, ded-
icated way of implementing caching of premise sets, which
brings further practical gains in terms of the efficiency of
MCS enumeration in practice.

Satisfiability and MCSes

Propositional formulas are represented in conjunctive nor-
mal form (CNF) and defined over a set of propositional vari-
ables X = {x1,...,2,}. A literal is a variable x or its nega-
tion —x. A clause is a disjunction of literals, and a formula
F is a conjunction of clauses. CNF formulas can also be
viewed as sets of clauses, and clauses as sets of literals. Both
representations are used interchangeably. L(F) will refer to
the set of literals appearing in JF.

A truth assignment is a (partial) mapping from X to
{0,1}, u : X — {0,1}. The truth assignment is referred to
as total if the mapping is total. Truth assignments induce val-
uations of literals, clauses and formulas, as follows. A literal
x takes the value assigned to variable x, and —x takes the
complemented value. A clause c takes value 0 (i.e., is falsi-
fied) if all of its literals take value O; otherwise it takes value
1 (i.e., it is satisfied). A formula F takes value 1 if all of its
clauses take value 1; otherwise it takes value 0. With a slight
abuse of notation, we write y(c) and (F) for the valuation
of a clause c and of a formula F given the truth assignment
1. A formula F is satisfiable if there exists an assignment
such that p(F) = 1 (also represented as ;1 = F); otherwise
F is unsatisfiable. For each p such that p(F) = 1, we say
that 1 is a model of F. Boolean satisfiability (SAT) is the
decision problem for propositional formulas, well-known to
be NP-complete (Cook 1971).

Logical entailment is characterized in terms of models.
Given F and G two propositional formulas, F entails G
(written F = G) iff all the models of F are also models of
G. Throughout the paper, we will refer to backbone (or im-
plied) literals of a formula F (Kilby et al. 2005), defined as
literals [ such that F |=1.

Central to this work is the concept of minimal correction
subsets (MCSes), which are defined in the standard way for
a given unsatisfiable CNF formula F as follows (Liffiton and
Sakallah 2008).

Definition 1 C C F is a minimal correction subset (MCS)
if and only if F \ C is satisfiable and Ve € C, F \ (C\ {c})
is unsatisfiable.

Tightly connected to MCSes are the concepts of maximal
satisfiable subsets (MSSes) and minimal unsatisfiable sub-
sets (MUSes), which will also by useful throughout.

Definition 2 S C F is a maximal satisfiable subset (MSS)
if and only if S is satisfiable and Ve € F\ 8,8 U {c} is
unsatisfiable.
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Figure 1: Unsatisfiable CNF formula and its core structure.

Definition 3 M C F is a minimal unsatisfiable sub-
set (MUS) of F if and only if M is unsatisfiable and
Ve € M, M\ {c} is satisfiable.

We will refer to (not necessarily minimal) unsatisfiable sub-
sets as unsatisfiable cores. Each MCS C is the complement
of some MSS S with respect to F. Moreover, a well-known
hitting set duality tightly relates MUSes and MCSes (Reiter
1987), and has been investigated in different settings (Birn-
baum and Lozinskii 2003; Bailey and Stuckey 2005; Liffiton
and Sakallah 2008; Slaney 2014).

Example 1 Consider the unsatisfiable CNF formula c; N\
--+ N cg as shown in Figure 1. This formula has three
MUSes: Ml = {61362303304}) MZ = {61362305306};
Ms = {cg,c7,c8}. Two of a total of 12 MCSes of this for-
mula are C; = {c3,c} and Cy = {ca, c5,cr}, representing
minimal hitting sets of the set of MUSes.

In the following, we will consider the general setting,
where a formula is composed of two disjoint sets of clauses,
ie., F = Fg U Fg (Biere et al. 2009, Chap. 19), where
F denotes the hard clauses (which must be satisfied) and
Fg denotes the soft clauses (which may be relaxed, i.e., left
not satisfied). In this standard setting in terms of MCS enu-
meration, MCSes, MSSes, and MUSes are defined as mini-
mal/maximal subsets of the soft clauses which satisfy the re-
spective conditions when considered together with the hard
clauses.

Algorithms for MCS extraction fall into two broad cat-
egories. One approach involves a modified search algo-
rithm (Bacchus et al. 2014), where the condition of min-
imality is enforced. Another approach involves sequences
of calls to a SAT solver (i.e., an NP oracle (Bailey and
Stuckey 2005; Liffiton and Sakallah 2008; Felfernig, Schu-
bert, and Zehentner 2012; Nohrer, Biere, and Egyed 2012;
Marques-Silva et al. 2013; Grégoire, Lagniez, and Mazure
2014; Mencia, Previti, and Marques-Silva 2015; Mencia et
al. 2016). For this second approach, important differences
include how the calls to the SAT solver are organized, and
optimizations aiming at reducing the number of SAT solver
calls.



Algorithm 1: MCS enumeration (general structure)

Algorithm 2: LBX

1 Procedure MCS—Enum (F = {Fp, Fs})
(st, u) = SAT(Fir)
while st do
C + ComputeMCS(F, i)
ReportMCS(C)
BlockMCS(F,C)
(st, ) = SAT(Fn)
// All MCSes of F reported

N S AW

MCS Enumeration

We continue by overviewing MCS extraction and enumer-
ation approaches, focusing on state-of-the-art algorithms
which are based on querying a SAT solver on subsets of an
unsatisfiable formula 7 = {Fy, Fs} partitioned into hard
and soft clauses. We will represent a call to the SAT solver
by (st,u, C) < SAT(G), where st is a Boolean value de-
noting whether the formula G is satisfiable or not, and p is a
model of G whenever st is true. If unsatisfiable, C' will store
an unsatisfiable core!, that is an unsatisfiable subset of G.

Most of the best-performing MCS enumeration algo-
rithms share the general structure depicted in Algorithm
1. Tteratively, a model u}=Fp is computed. This model
is then used as a seed for computing an MCS C of F,
which will be a subset of the clauses in Fg not satisfied
by p. After computing an MCS, it is reported and blocked
in order to avoid repetitions along the enumeration pro-
cess. The blocking of an MCS C is done by adding the
clause \/;cpc)(1) to Fp. This enforces subsequent mod-
els of Fp to satisfy at least one of the clauses in C, so
that no superset of C will be ever considered afterwards
in the lookout for new MCSes. Algorithm 1 terminates
when Fp becomes unsatisfiable, performing as many iter-
ations as the number of MCSes of F, which can be ex-
ponential in the worst case (Liffiton and Sakallah 2008;
O’Sullivan et al. 2007).

The efficiency of Algorithm 1 is highly dependent on the
underlying method for computing one MCS at each iter-
ation. To this end, a large body of MCS extraction algo-
rithms have been proposed in the literature, with different
query complexities that provide theoretical guarantees in ef-
ficiency, as well as optimization techniques often useful in
practice (Marques-Silva et al. 2013).

In general, these algorithms maintain a partition of F =
(S,U), where S is a satisfiable subformula and U/ represents
its complement, i.e., clauses either known to be inconsistent
with S and thus belonging to an MCS or clauses that still
need to be tested. S is initialized with all the clauses in F
satisfied by the seed p = Fpr, and U is initially composed of
the clauses falsified by p. MCS extraction algorithms aim at
extending S as much as possible, keeping the invariant that

!On the implementation level, using the so-called assumptions
interface of a SAT solver, cores are represented via selector (or
blocking/relaxation/assumption) variables with which clauses are
instrumented.
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1 Function LBX (F, i)
(S,U) + InitPartition(F,u)
(£,B) « (L), 0)
while £ # () do
l + RemoveLiteral(L)
(st,u,C) = SAT(SUBU{l})
if st then
(S,U) < UpdatesatClauses(u,S,U)
L+ LNLU)
else
B+ BU{-l}
return 7 \ S

o R 9 R W N

// MCS of F

S is satisfiable. At termination, S will be an MSS of F, and
U will correspond to an MCS.

Conceptually, one of the simplest MCS extraction algo-
rithms is linear search (LS), sometimes referred to as the
grow procedure (Bailey and Stuckey 2005). LS iterates over
the clauses ¢ € U, calling the SAT solver on S U {c}. If
satisfiable, ¢ is moved to S; otherwise, it remains in ¢/. This
algorithm performs as many queries to the SAT solver as the
number of clauses in Fg in the worst case, i.e., it has a query
complexity of O(|Fgs|). Linear search, as well as other algo-
rithms, has been improved by means of optimization tech-
niques (Marques-Silva et al. 2013), including the employ-
ment of models found in satisfiable calls, backbone literals
or disjoint unsatisfiable cores. The resulting algorithm is re-
ferred to as enhanced linear search (ELS).

Several other algorithms whose query complexity is char-
acterized in terms of the number of clauses in the formula
have been proposed. Some of them present superlinear query
complexity, such as dichotomic search (O’Sullivan et al.
2007), FastDiag (Felfernig, Schubert, and Zehentner 2012),
or CMP (Grégoire, Lagniez, and Mazure 2014) in its ba-
sic form (without optimizations). Other recent algorithms
require a number of calls sublinear on the number of soft
clauses, such as LOPZ or UBS (Mencia et al. 2016). Be-
sides, based on the use of SAT with preferences, relaxation
search (RS) (Bacchus et al. 2014) requires a single call to a
modified SAT solver for the task of computing an MCS.

Alternatively, algorithms that exhibit a query complexity
bounded on the number of variables of F exist as well. This
holds, e.g., for LBX (for Literal-Based eXtractor), proposed
in (Mencia, Previti, and Marques-Silva 2015) and shown in
Algorithm 2. LBX stems from the observation that the back-
bone literals entailed from an MSS falsify all the clauses in
the corresponding MCS. Thus, the computation of one MCS
is reduced to the task of identifying the necessary backbone
literals of S. In addition to the sets S and ¢/, it maintains two
additional sets: £ containing literals to be tested and B, con-
sisting of the backbone literals identified so far. LBX starts
by initializing the partition (S,U) from the model u = Fpy
that is given as an argument (line 2). Then, the set £ is ini-
tialized with all the literals appearing in i, i.e., L(U), while
B is initially empty. At each step, while there are literals in



L, one literal [ is selected and removed from £, and the SAT
solver is queried on S U B U {l}. The set B is added to the
formula to speed up the solving process, with no effect on its
satisfiability. If the outcome is unsatisfiable, —{ is recorded
as a backbone literal and added to B (line 11); otherwise
all the clauses in U/ satisfied by the computed model p are
moved to S (line 8) and the set £ is updated so that it does
not contain any literal not in L(I/) (line 9).

An algorithm that has been shown very effective at MCS
enumeration is CLD (Marques-Silva et al. 2013). This
algorithm makes use of so-called D clauses, defined as
Vier@) (D). In contrast to other methods, CLD ftries to ex-

tend S by calling the SAT solver on the formula S U {D},
i.e., it checks whether there exists at least one clause in U/
that is consistent with S. Satisfiable outcomes result in the
update of the sets S and U/ according to the obtained models.
CLD terminates upon an unsatisfiable call, meaning that the
set U represents an MCS.

Many of the algorithms presented above have specifically
targeted the task of extracting a single MCS from hard unsat-
isfiable CNF formulas. This holds, e.g., for CMP, LOPZ, and
UBS which, consequently, have not been implemented nor
evaluated for enumerating MCSes. To our best knowledge,
the best-performing MCS enumeration algorithms among
the ones mentioned above are ELS and CLD (Marques-Silva
et al. 2013).

Recently, considerable improvements in MCS enumera-
tion have been made by instrumenting a caching (or mem-
oization) mechanism within the algorithm ELS (Previti et
al. 2017). This approach make use of the observation that
queries to the SAT solver are similar to each other in the
computation of subsequent MCSes. Thus, whenever a call
to the SAT solver on a subformula is found unsatisfiable,
the resulting unsatisfiable core is stored in a global cache.
Afterwards, for testing the satisfiability of S U {c} at each
iteration of ELS, the cache is queried first in order to deter-
mine whether there exists a previously found unsatisfiable
core contained in S U {c}. If it is the case, the formula is
declared unsatisfiable, hence saving a potentially expensive
call to the SAT solver. Otherwise, the SAT solver is called
normally. Implementation-wise, the algorithm makes use of
selector variables s; that are associated with each clause ¢;
in the formula, and are used to activate (insert) or deactivate
(delete) the clauses. The cache is implemented by means
of a Horn formula D, which can be queried in polynomial
time, containing for each unsatisfiable core C' found in the
enumeration process, a clause \/ . . (—s;). For querying the
cache on a formula SU{c}, the selector variables associated
toit, i.e., A= {s; | ¢; € SU{c}}, are set as assumptions,
calling a SAT solver on D U A.

Premise Sets

With background on MCS enumeration and the recently pro-
posed core caching presented in the specific context of the
ELS algorithm, we will now turn to the main contributions
of this work. We start by defining premise sets (Kullmann
2011), which will be objects we will cache during MCS enu-
meration.

6636

Definition 4 A set of clauses P is a premise set (PS) for a
clause ¢ if P|=c. A premise set P is minimal (an MPS) if
VP’ C P we have that P’ [~ c.

Unless explicitly specified, we will identify a PS as a set
of clauses that entails a unit clause (i.e, an implied or back-
bone literal).

Example 2 Consider the CNF formula

c C2 c3
F =21 A (—21 Va2) A (m23 V 24) (1)
Here x5 is an implied literal and the minimal premise set
that implies o is the set of clauses {c1,ca}. Also x4 is an
implied literal and the minimal premise set for it is the unit
clause cy itself.

Most modern SAT solvers come with the ability to com-
pute cores of unsatisfiable formulas. Recall that a core is a
subset of the original formula that is still unsatisfiable. Sup-
pose now to have a satisfiable formula S such that S |=[. By
definition, the formula S U {—l} is unsatisfiable, and a SAT
solver will provide a set of clauses C' C S U {—l} represent-
ing a core. As S is satisfiable by construction, C' is guaran-
teed to contain —/, and C'\ {—l} is the PS we are looking
for.

The following proposition relates unsatisfiable cores and
PSes; essentially, cores can be obtained from known PSes.

Proposition 1 Suppose P, and Py are two PSes of a for-
mula F such that Py =1 and Py |=—l. Then Py U Py is a
core of F.

The following two examples give intuition on why—
instead of caching unsatisfiable cores—it can be beneficial
to consider caching premise sets during the MCS enumera-
tion process.

Example 3 Recall the unsatisfiable CNF formula ¢y \- - - N\
cg as shown in Figure 1 in Example 1. This formula has three
MUSes: My = {c1,c0,c3,¢c4}, Mo = {c1,c0,05,¢6},
Ms = {cg,c7,c8}. Notice that My and My share the
two clauses ¢y and co. The set {c1,ca} is a PS which im-
plies the literal p. Two possible MCSes for this formula are
C1 ={cs,c6} and Coy = {cu, c5, c7}. The two clauses c3 and
¢s share the literal —p. So, suppose that C; = {cs, cs} was
the first MCS computed using Algorithm 2. When we com-
pute the next MCS Cy = {cu,c5,c7}, LBX as presented in
Algorithm 2 tests again the literal | calling the SAT solver
on the formula {c, ¢z, c3, co, cs } U{—p}. However, because
of the previously computed MCS Cy we know already that
{c1,c2} Ep. Thus, we are calling the SAT solver when it
would be unnecessary.

Example 4 Consider a set of MUSes { My, ..., M, } such
that M; = G A Q;, with G =1 being a PS and Q,,, # Q,
for m # n. LBX (Algorithm 2) will test multiple times the
literal —l.

Thus, compared to caching cores, as presented in (Previti
etal. 2017), caching PSes has the advantage of avoiding test-
ing literals that belong to MUSes never seen before. More-
over, caching PSes is a natural choice in conjunction with
LBX, which tests one literal at a time; in case a tested literal
is implied, it is straightforward to obtain a PS from the SAT
solver.



Premise Set Caching

As described in the previous section, PSes are shared among
multiple MUSes, and hence, intuitively, PSes are recom-
puted by a SAT solver multiple times during the MCS enu-
meration process. As a consequence, storing already dis-
covered PSes has the potential to save a possibly consid-
erable number of SAT calls. Incremental SAT solving can
in part record previously discovered PSes, but this is limited
to those that were discovered recently during the last MCS
extraction and subject to the clause deletion policy of a SAT
solver. In this section, we present a new caching mechanism
that stores PSes and cooperates with a SAT solver by shar-
ing information. In one direction, the SAT solver informs
the cache when a newly discovered PS is found. In the other
direction, the cache informs the solver of all the backbone
literals that it knows to be implied by the current formula.

PS Caching for MCS Enumeration
The following proposition is at the basis of PS caching.

Proposition 2 Given a set of clauses S and a literal 1, if
Skl then S’ El foreach S’ O S.

Example 5 Consider as an example that during the MCS
enumeration process, we have already discovered the PS
{c1,ca,c3} implying the literal xy. If during the extraction
of another MCS, we have that the set of satisfied clauses S
is such that {cy, co, c3} C S, then we know immediately that
a1 is implied by S without the need to query the SAT solver.

In order for this idea to be effective in practice, we need
a fast mechanism that checks whether the current formula &
contains a previously found PS. This mechanism is imple-
mented by means of an external cache whose only require-
ment is to provide two operations:

1. Cache.add(P, [) and
2. Cache.entails(S, 1),

where P is a PS, [ is a literal and S is a set of (satisfiable)
clauses.

The MCS algorithm and the PS cache interact as follows.
Whenever a new PS P is found by the SAT solver, the PS is
added to the cache by calling Cache.add(P, [). On the other
hand, when a literal [ has to be tested, before calling the SAT
solver the cache is queried through Cache.entails(S, [). An
intuitive way to check whether S C S would be to test if
for all ¢ € S’ we have that ¢ € S. However, consider the
following. Let F be an unsatisfiable CNF formula, S C F
and Y = F\ S. We have that S’ C F is a subset of S iff
S'NU = (). This leads to the following, practically motivated
considerations.

1. The set U of falsified clauses can be (much) smaller than
the set of satisfied clauses S.

In order to prove P C S, for a given P |=1 in the cache,
we need to prove that there is no ¢ € U with ¢ € P. Thus,
if we find a clause ¢ € U that is also in P, we cannot
conclude that S |=1.

We will present the idea of caching PSes in the context
of LBX (Algorithm 3) as a natural candidate for integrating
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Algorithm 3: LBX with PS caching

1 Function LBX-CACHE (F, )
(S,U) < InitPartition(F,u)
(£,B) + (L(U),0)
while £ # 0 do
| + RemoveLiteral(L)
if Cache.entails(S, —[) then
B+ BU{-l}
continue
(st,u,C) = SAT(SUBU{I})
if st then
(S,U) + UpdateSatClauses(u,S,U)
L+ LNLU)
else
B+ BU{-l}
P=C\{l}
Cache.add(P, —l)
return 7 \ S

C=TN- R B N T O CE &

e <
AR W N = O

// MCS of F

ot
2

PS caching into. Whenever the output of the SAT solver on
S U {l} is unsatisfiable, it returns a core C' explaining the
reason for unsatisfiability. Since the set of clauses S is satis-
fiable, the core C' is guaranteed to contain the literal [. The
premise set P = C'\ {l} can be extracted by simply remov-
ing [ from C. The main difference between LBX with PS
caching (Algorithm 3) and LBX (Algorithm 2) are lines 6
and 16. Line 6 checks if a previously found PS implying
=l is contained in S. If this is the case, —[ is added to the
set of known backbone and the call to the solver at line 9
is skipped. Otherwise, the algorithm proceeds LBX, except
when the SAT solver report unsatisfiability. In this case, the
returned PS is added to the cache for future computation.
Notice that the PS is guaranteed to be a new one, since other-
wise the call at line 6 would have succeeded. Table 1 shows
an example run of Algorithm 3 on the formula in Figure 1.

Example 6 The first column shows the split (S, L) pro-
duced by the last assignment (the set of falsified clauses U
is omitted for space reasons). The pairs (S, L) marked with
x’ represent the splits produced by an initial assignment.
Those without represent the splits produced during the it-
erations. Due to the lack of SAT outcomes for this simple
example, UpdateSatClauses(u,S,U) is actually never
called and the set S remains the same within the computa-
tion of a single MCS. The second column is where the cache
is queried in order to check if a literal | is entailed because of
a previously discovered PS. If the cache is not able to return
a positive answetr, in the third column a SAT solver is called
in order to test the formula S U {l}. If the outcome is unsat-
isfiable, then the premise set implying —l is stored into the
cache and the literal =l is added to the set B of known back-
bone literals. During the computation of the first MCS Cy,
the premise sets implying p, —r, q are collected by the SAT
solver (SAT(S U{l})) and stored into the cache. While test-
ing the literal —p, during the extraction of the second MCS,
the cache reports that p is known to be implied (due to the
previously stored PS {c1,c2} C S) and we can skip a call



Table 1: Example execution of Algorithm 3.

2

(S, L) Cache = -l (l € L) SAT(S U{l}) P B
*({c1, c2, a5 05,7, s}, {—p, 7, —q}) Cache = p SAT(SU{wHED | {c.ca}lEp {r}
({c1 e, ¢4, 05, ¢7,c8}, {r, q}) Cache = —r SAT(SU{r}) E0 {ea} Eor {p,—r}
({01702704705707708}7{_‘q}) CG/Che%q SAT(SU {ﬂQ}) |:@ {07,08} ):q {pa ﬂ"A7Q}
L£=170, C = 03706}
(S, L) Cache ==l (l € L) SAT(S U {l}) P B
x({c1, 2,3, c6, 7}, {r,—p,q,s}) Cache =1 SAT(SU{—rHED | {c1,c2,c3} Er {r}
({017027037C67C7}7{_'paqv_‘s}) Cache =P - - {Tvp}
({c1,c2,¢3,¢6,¢7},{q, 7s}) Cache = ~q SAT(SU {¢q}) E0 {es} E g {r,p,~q}
({c1, ca,¢3,¢6,c7}, {—s}) Cache £ s SAT(SU{-sHED | {cs,crfEs | {r,p,—q, s}

L= @, CQ — {04305508}

to the SAT solver. Notice that we can infer the entailment of
p without even having computed a core containing cs.

Caching of cores for the computation of the second MCS
in this particular case would not have been of any help when
testing literals in the clause cs.

Caching of PSes has the potential of making use of the
structure of instance when MUSes are likely to share PSes
(recall Examples 3 and 4). Intuitively, we expect caching
PSes to be preferable to caching cores for instances with
many MUSes intersecting with each other, while cores to
be better when there are many disjoint MUSes. However,
also in cases where cores would be preferable, Proposition 1
allows for obtaining cores from PSes.

Finally, we observed that, in practice, it is not uncommon
that the initial partitioning at line 2 of Algorithm 3 splits the
formula in two sets S and U such that I/ is already an MCS.
This may be due to a close proximity of MCSes, which
would then result in some MCSes being computed without
the need of any SAT calls, but instead, only relying on the
PSes stored in the cache.

Implementing PS Caching

In contrast to Previti et al. (2017), we develop a dedicated
approach to implementing the PS cache, whereas Previti et
al. (2017) rely on an external SAT solver for implementing
the core cache. In more detail, we propose to implement the
PS cache by means of a distinct clause-PS occurrence list for
each literal, so that when testing literal / only PSes relative
to [ are checked. The occurrence list stores for each clause
¢ € F apointer to the set of PSes (if any) that contains that
clause. So, if a clause ¢ € U, we immediately know the set
of PSes that do not imply [. If after checking all the clauses
in U there is at least one known PS that did not appear in
any of the sets pointed by those clauses in the occurrence
list, then the literal / is implied.

Finally, we note that while we presented an extension of
LBX with PS caching, the use of PS caching is not limited to
LBX. Indeed, PS caching has the advantage of being directly
available for a broader range of state-of-the-art MCS algo-
rithms (including CLD and ELS, for example). As a more
concrete other example, consider CLD, to which PS caching
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can be integrated as follows. Suppose that S U {D} is un-
satisfiable, with D being the D-clause employed in the CLD
algorithm and S satisfiable. Since S U { D} is unsatisfiable,
Skl foralll € D. In order to return a PS for each lit-
eral after proving unsatisfiability, clauses can be propagated
incrementally one-by-one (through their selector variables
on the implementation level). As soon as a specific literal is
assigned through unit propagation, the clauses (selector vari-
ables) used for making the assignment are part of the PS.

Experiments

We integrated the ideas presented in the preceding sec-
tions to the state-of-the-art MCS enumeration algorithm
LBX (Mencia, Previti, and Marques-Silva 2015), using Min-
isat 2.2.0 (Eén and Sorensson 2004) as the underlying SAT
solver. The implementation is available at https://www.cs.
helsinki.fi/group/coreo/Ibx-cache/. We will compare the perfor-
mance of LBX with caching to that of ELS intrumented
with unsatisfiability core caching, as proposed in (Previti et
al. 2017), as well as CLD (Marques-Silva et al. 2013). For
a cleaner integration of PS caching, our implementation of
LBX does not include the additional optimizations proposed
in (Mencia, Previti, and Marques-Silva 2015). As a result,
we observed that our implementation of LBX shows similar
performance as ELS when computing a single MCS. Fol-
lowing Previti et al. (2017), we used as benchmarks 811 in-
stances from (Marques-Silva et al. 2013) originally used for
benchmarking algorithms for extracting a single MCS, with
the motivation that in terms of the harder task of MCS enu-
meration, it can be especially beneficial to employ caching
on such hard instances. Expectedly, complete enumeration
of MCSes is not possible for most of the benchmark. The
experiments were run under Linux on 2-GHz machines. A
per-instance memory limit of 8 GB and a per-instance time
limit of 1800 seconds was enforced. We will compare the
number of MCSes enumerated by the different approaches
under the time limit.

The results are shown in Figures 2—4, with direct compar-
isons of LBX using PS caching with LBX without caching
(Figure 2), ELS with core caching (Figure 3), and CLD (Fig-
ure 4), respectively. Integrating PS caching into LBX notice-
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ably improves its performance on essentially all instances
(Figure 2), the benefits of caching PSes clearly outweigh-
ing any possible overheads due to the lightweight PS cache
maintenance. The improvement tends to be more signifi-
cant when the SAT solver calls are expensive and/or when
there are many MCSes. Caching of PSes tends to be benefi-
cial also on non-trivial instances with relatively few MCSes,
since then the SAT solver calls are more time-consuming.
Furthermore, with only few MCSes, querying the cache is
less expensive, as it will contain fewer PSes. Similar per-
formance gains can be observed when comparing LBX us-
ing PS caching with the recently proposed approach of core
caching for ELS (Figure 3): LBX using PS caching per-
forms noticeably better on a great majority of the bench-
marks, and there are only a few instances on which ELS
using core caching manages to enumerate more MCSes. Fi-
nally, we consider the relative performance of LBX using
PS caching and CLD (Figure 4). Here we observe that CLD
achieves better performance only on instances on which the
number of MCSes enumerated by both approaches is small.
On a majority of instances, however, LBX using PS caching
dominates CLD by several orders of magnitude.

We also observed PS caching is also successful in terms
of empirical cache hit rates; on a majority of benchmarks
cache hit rates are high, up to 90%. All in all, integrating
the proposed PS caching approach to LBX evidently makes
MCS enumeration more scalable compared to the enumera-
tion capabilities of these state-of-the-art approaches.

Conclusions

The enumeration of minimal correction subsets is a cen-
tral task in the analysis of overconstrained systems, with
various real-world applications. Complementing recent ad-
vances in state-of-the-art algorithms for MCS enumera-
tion, we proposed a novel approach to caching so-called
premise sets during the MCS enumeration process. The ap-
proach is applicable widely in conjunction with state-of-the-
art MCS enumeration algorithms. Empirically, we explained
how premise set caching can be integrated into the LBX al-
gorithm for MCS enumeration. Moreover, we showed that
premise set caching noticeably improves on the scalability
of MCS enumeration of state-of-the-art algorithms. In de-
tail, PS caching noticeably improves the enumeration perfor-
mance of LBX, making it very competitive against the com-
plementary CLD algorithm, and is noticeably more effec-
tive than a recent unsatisfiable core caching approach pro-
posed for the ELS algorithm. In terms of future work, there
is potential for obtaining further speed-ups e.g. by develop-
ing heuristics for caching both PSes and unsatisfiable cores
based on the underlying structural properties of instances.
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