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ABSTRACT: HCl gas hydrolysis of a bacterial cellulose (BC) aerogel
followed by 2,2,6,6-tetramethylpiperidine-1-oxyl radical-mediated oxidation
was used to produce hydrolyzed BC with carboxylate groups, which
subsequently disintegrated into a stable dispersion of cellulose nanocrystals
(CNCs). The degree of polymerization was successfully reduced from 2160
to 220 with a CNC yield of >80%.
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■ INTRODUCTION
Cellulose nanocrystals (CNCs), isolated from plant-based
fibers or a microbial cultivation product, are a premium
example of a modern renewable nanomaterial.1 Aside from its
fully biobased origin, it is biodegradable, nontoxic, and
possesses chirality as well as high mechanical strength.2

Proposed applications for CNCs include composites,3 chiral
templates,4 biomedical devices,5 and responsive materials,6 to
name a few. However, the sustainable aspect of CNCs is
compromised by its production, generally performed with ca.
65% aqueous sulfuric acid, leading to difficult purification
procedures, high water consumption, and poor yields.7−10 To
tackle these problems, our group recently introduced a method
that utilizes HCl vapor11 or gas12 for cellulose hydrolysis and
subsequent CNC manufacturing. The approach has several
advantages: it leaves solid fibers as a product and they are far
easier to purify than an aqueous reaction mixture, resulting in
higher yields and minimal water consumption.12 Moreover, the
gaseous acid is easier to recover and recycle than a liquid/solid
reaction product. On the other hand, the major problem with
the HCl gas process lies in the difficult dispersion of uncharged
CNCs from the already hydrolyzed fiber matrix. A proof-of-
concept with dispersion in formic acid exhibited sizable CNC
yields of >97% but formic acid with heavy (tens of hours)
sonication is scarcely a viable dispersion medium even under
laboratory conditions.11 Attempts with alternative dispersion

methods have failed to reach the remarkable yields.13,14 Here,
we want to communicate a straightforward way to utilize HCl
gas for manufacturing CNCs in high yields from a
commercially available bacterial cellulose (BC) substrate.
Although more than often quoted to be highly crystalline,
BC has been shown to possess a so-called leveling-off degree of
polymerization (LODP)15 and it also has been utilized in CNC
preparation.16,17 The actual isolation of CNCs was facilitated
by a second step with oxidation catalyzed by N-oxoammonium
cation of 2,2,6,6- tetramethylpiperidine-1-oxyl (TEMPO) that
imparts charge on the CNC surface, enabling aqueous
dispersion of CNCs.

■ RESULTS AND DISCUSSION

The full procedure for obtaining CNCs from BC is depicted in
Figure 1. Unlike hierarchically arranged cellulose microfibrils in
plant cell walls, BC is readily excreted by certain microbes into
an isotropic network of microfibrils, forming a hydrogel of pure
cellulose with high accessibility. First, the BC cubes intended
for dessert foodstuff were washed with mild alkali to remove
sugars and other taste ingredients to obtain a pure BC hydrogel
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(see Figure 2a−c for visual appearance). The following drying
step from hydrogel into aerogel was crucial: freeze-drying had

to be performed to pristine, wet BC, which was then frozen by
the emerging vacuum during the first seconds of the process
(Figure 2d, Figure S2). Usually in freeze-drying, the sample is
frozen before placing it in the vacuum. However, when a wet,
unfrozen sample is positioned under a vacuum of a freeze-drier,
it freezes almost immediately due to three different factors: (i)
depression of the melting point, (ii) evaporative cooling of the
sample as the water immediately starts to vaporize, and (iii) a
compressive decrease of temperature as pressure is decreased.
This resulted in Brunauer−Emmett−Teller (BET) surface area
of 29 m2/g (Figure S5). By contrast, when the sample was
frozen before placing it in a freeze-dryer, as is the case in
conventional freeze-drying, the surface area was far smaller
(BET area 16 m2/g, Figures S2, S6). This can also be visually
observed from Figure 2e. Furthermore, merging several cubes
together by blending and subsequent drying led to severe loss
in accessibility, as attested by a weak hydrolysis effect (see
Figure 3). The reason behind the distinctions in the freezing
methods (Figure 2d vs 2e) may lie in different routes to
crystallization of water but a systematic study is outside the
scope of this letter.
Purified and freeze-dried bacterial cellulose (BC) cubes were

hydrolyzed (dry matter content 94%) with HCl gas (1 bar
pressure). The degree of polymerization (DP) was decreased

from 2590 to 220 over 21 h (Figure 3), indicating the cleavage
of disordered cellulose between the crystallites in semicrystal-
line cellulose microfibrils, i.e., LODP, necessary for CNC
isolation. This DP decrease correlates well with the LODP
value reported earlier for BC.15 The yield of 21 h hydrolysis
after rinsing with water was 86.8%. Akin to the plant-based
cellulose in fiber form,11 the bulk of the hydrolysis occurred
within minutes of exposing the correctly dried BC to 1 bar HCl
(g). Moreover, the BET surface area of BC increased from 29
to 52 m2/g upon hydrolysis (Figures S5, S7). After TEMPO-
mediated oxidation, the final product with a carboxylate
content of 1.0 mmol COOH/g BC (Figure S1) turned to gel
after purification. The zeta potential of the CNCs amounted to
ca. 40 mV (Table S2). The yield of TEMPO-mediated
oxidation was 93.1%, resulting in a total yield (hydrolysis and
oxidation) of 80.8% after purification by centrifugation.
Hydrolyzed and TEMPO-oxidized BC was finally disinte-

grated into CNCs by sonication, as visualized with atomic
force microscopy (AFM) imaging and transmission electron
microscopy (TEM) (Figure 4a,b). To prevent aggregation
artifacts, cryo-TEM images (Figure S3) were used for image
analysis (Figure S4) which revealed rather narrow distributions
of width and length (Figure 4c,d). Although a small number of

Figure 1. Scheme of the CNC production process.

Figure 2. Pretreatment of bacterial cellulose. Bacterial cellulose (a)
was washed with pure water, extracted (b) with alkali (0.1 M NaOH,
85 °C, 3 h), washed again with pure water (c), and freeze-dried (d)
without prior freezing. Freeze-dried BC with prior freezing (e)
collapsed with loss in accessibility.

Figure 3. DP development upon exposure to 1 bar HCl (g). Symbols
denote freeze-dried BC with (▲) and without (⧫) prior freezing, BC
mixed in kitchen blender and dried in fumehood (▼).
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longer fibrils could be discerned from the images, the vast
majority of CNCs were within 100−300 nm length with the
mean at 170 nm, correlating fairly well with the DP value
(Figure 3). The measured length for CNCs is somewhat
shorter than in a number of previous accounts16,17 on BC-
based CNCs, but these works have generally not presented
statistical histograms on the CNC dimensions. Furthermore,
the high yield and high charge due to TEMPO-oxidation may
also affect the size distribution of the CNCs in this study.
It is curious that in HCl gas hydrolysis followed by TEMPO-

oxidation, the CNC yield here from BC (>80%) is markedly
higher than previously from plant-based (cotton) fibers
(∼50%).14 Because the DP reduction and carboxylic contents
are roughly similar in both cases, the reason for the higher
CNC yield must lie in the physical structure: the correctly
chosen drying method. When the hydrolyzed BC was leached
in water and the filtrate was analyzed with high performance
anion exchange chromatography (HPAEC), the data showed
that 13 wt % glucose could be released from the substrate after
hydrolysis (Table S3). This is 1 order of magnitude different
from cotton-based fibers where few wt % of glucose could be
leached from the fibers hydrolyzed under similar conditions.12

Overall, it appears that HCl gas hydrolysis on BC is faster and
more efficient than on plant-based fibers.
A highly porous structure of the freeze-dried BC (Figure 2d)

is also more accessible to cavitation during sonication. The
hierarchical structure of the plant fiber is largely resistant to
sonication, as shown earlier with TEMPO-oxidized micro-
crystalline cellulose (MCC) with maximal carboxylate contents
where the yields stalled at a maximum of 20%.18 By contrast, a
more recent work with TEMPO-oxidation amounted to 70%
yields from MCC, but only after intensive high-energy
sonication for >30 min, which may prove to be a bottleneck
in large scale implementation.19 In terms of other novel
techniques, the 80% yield here from BC is also fair, compared
to, e.g., electron beam irradiation (bleached softwood kraft
pulp, yield 35−67%),20 esterification (bleached eucalyptus
kraft pulp, yield 25%),21 TEMPO-mediated oxidation (micro-
granulars of cellulose from cotton, microcrystalline cellulose
from cotton, yield 4−20%),22 acetylation in ionic liquids

(wood, yield 44%),23 ball milling with centrifugation (MCC,
bleached kraft pulp, yield 20%),24 hydrolysis with subcritical
water (MCC, yield 22%),25 ball milling and phosphotungstic
acid hydrolysis (bamboo pulp, yield 88%),26 and microwave-
assisted hydrothermal treatment (orange peel waste, yield 30−
68%).27 It must be emphasized that, in contrast to CNCs,
cellulose nanofibril (CNF) yield from plant-based sources is in
general very high, regularly around 80−90% for TEMPO-
oxidized fibers.28

Wide angle X-ray scattering (WAXS) data in Figure 4e and
Table S1 indicate that the crystallinity index increased from
45% to 61%, i.e., close to 30% upon hydrolysis of BC, which
may play a role in the high yield of CNCs. This increase was
far larger than the 10−15% increment observed earlier with
plant-based fibers.11 This increase is likely due to (i)
crystallization of cellulose during HCl (g) hydrolysis, as
elaborated previously,11 and (ii) removal of disordered
cellulose during the washing step which removes the water-
soluble sugars (glucose) after the hydrolysis. As for the
allomorph ratio (Iα/Iβ), it appeared to remain constant (see
Supporting Information) despite the fact that a number of
accounts report alterations in the ratio upon hydrolysis.29,30

We emphasize the texture of the BC remains unchanged after
HCl (g) hydrolysis, thus omitting artifacts due to texture in
WAXS analysis. For the possible thermodynamic mechanism
behind the crystallization in HCl gas, see ref 11.
In summary, >80% CNC yield from BC with moderate

sonication represents progress in sustainable CNC production.
Here, utilizing a BC intended for foodstuffs is certainly not a
viable route beyond demonstration but recent research has
shown how BC can be produced from, e.g., agricultural waste
products in large quantities.31 In terms of sustainability, the
benefits can be outlined in three categories: (i) ca. 50% higher
yield of CNCs than with the usual liquid/solid procedure (ii)
utilizing waste instead of wood pulp, the most common
commercial source for CNCs, reduces the exploitation of forest
resources as well as minimizes chemical and water con-
sumption; (iii) dry gaseous acid can be easily recycled and it
further minimizes the water consumption when purification
procedures, such as dialysis in liquid/solid systems, can be

Figure 4. (a) AFM height image, (b) TEM image and dimensional (c) length and (d) diameter analysis from cryo-TEM images (Figures S3 and
S4) of hydrolyzed, TEMPO-oxidized, and sonicated BC. (e) WAXS intensities of the freeze-dried and hydrolyzed (18 h, 1 bar) BC with the
strongest diffraction peaks indexed according to cellulose Iα (see Figure S8 for peak fitting).
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replaced by controlled rinsing with moderate amounts of water
as nearly all acid is removed by desorption after the hydrolysis.
Indeed, the full recovery of aqueous acid has prevented
sustainable, large scale use of acid in hydrolysis of cellulose in
the past.32 Furthermore, the thermal stability of carboxylic
groups should be higher than those of sulfate groups which are
the norm for charged groups on CNCs.33
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