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ABSTRACT

In this paper we consider the following important problem: when

we explore data visually and observe patterns, how can we deter-

mine their statistical significance? Patterns observed in exploratory

analysis are traditionally met with scepticism, since the hypotheses

are formulated while viewing the data, rather than before doing

so. In contrast to this belief, we show that it is, in fact, possible

to evaluate the significance of patterns also during exploratory

analysis, and that the knowledge of the analyst can be leveraged to

improve statistical power by reducing the amount of simultaneous

comparisons. We develop a principled framework for determining

the statistical significance of visually observed patterns. Further-

more, we show how the significance of visual patterns observed

during iterative data exploration can be determined. We perform an

empirical investigation on real and synthetic tabular data and time

series, using different test statistics and methods for generating

surrogate data. We conclude that the proposed framework allows

determining the significance of visual patterns during exploratory

analysis.

CCS CONCEPTS

· Mathematics of computing → Exploratory data analysis;

Nonparametric statistics;Multivariate statistics; Time series analysis;

· Human-centered computing → Visual analytics.
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1 INTRODUCTION

A fundamental question in exploratory data analysis (EDA), es-

pecially when the amount of data is limited, concerns whether

patterns visually observed by a human analyst are real or just ran-

dom artefacts.

In the typical frequentist approach this problem is given, e.g.,

by the statistical significance testing method, where the expert

is supposed to formulate the hypotheses prior to looking at the

data. This, however, does not correspond to practice: typically, the

analyst explores the data and formulates hypotheses during data

exploration. The naïve approach to this problem is to formulate

all possible hypotheses prior to investigating the data. To do this

properly, one would hence have to control for the effect of mul-

tiple hypotheses being tested. Because the number of potential

hypotheses is typically very large, it means that all statistical power

is easily lost. Therefore, one would (naïvely) assume that statistical

significance and visual data exploration mix badly with each other.

In this paper we argue that it is, in fact, possible to do exploration

and at the same time find statistically meaningful visual patterns.

Although the results of EDA are not used for inference, it is

inevitable that any exploration influences the analyst’s perception

of the data and instils some bias in later analyses. However, EDA

can be combined with expert knowledge to discover interesting

patterns. When searching for relationships between variables, non-

experts might redundantly search for irrelevant relationships, i.e.

test a large number of irrelevant hypotheses. In contrast, domain

experts ask focused and specific questions, making themmore likely

to search for relevant relationships, thereby reducing the number

of required hypotheses and increasing statistical power.

The problem of over-interpreting data is especially important

in iterative exploration scenarios, such as projection pursuit, since

visualising multiple views of the same data inevitably results in

some discovered patterns, i.e., the multiple comparisons problem in

visualisation [33]. We now present two simple examples motivating

our approach.

Motivating Example 1. As our first example, we use the time se-

ries data shown in Fig. 1, representing the hourly carbon monoxide

(CO) concentration for a single day (March 25th, 2004) from the

UCI [7] Air quality dataset [6]. A typical question an analyst

might ask is whether the values of the time series at some given time
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Figure 1: The hourly carbon monoxide (CO) concentration

for one day (the black line). The gray lines are Gaussian pro-

cess priors in (a) and posteriors in (b). (a) There are spikes

in the morning and the evening due to people commuting

to and from work. Using the framework, we find that the

afternoon spike is significant. As a test statistic we use the

value of the time series at each point and as a null model

we use Gaussian processes with squared exponential kernel.

TheminP adjusted p-value for the afternoon spike at 19:00 is

0.1. (b) When we constrain the null model at the maximum

point, there are no longer values that are significantly larger

than the values in the null model.

instances are extreme compared to his or her expectations. The prob-

lem can be formulated as a statistical hypothesis testing problem

as follows. We define a separate test statistic for each time point

in the time series, the value of the test statistic being the value

of the time series at that time point. Additionally, we need a null

distribution of time series that reflects the analyst’s assumptions of

the behaviour of the time series before observing anything. Here,

we take this distribution to be the prior of a Gaussian process with

a squared exponential kernel. Because there are many hypotheses

(each test statistic corresponds to a particular hypothesis) we must

use multiple comparisons correction, such as the minP test [28].

After this correction, we notice that only one of the peak values (at

19:00) is extreme using a threshold of α = 0.1, as shown in Fig. 1a.

Even though this example is a straightforward implementation of

statistical hypothesis testing when samples of the null distribution

are available, it shows that these techniques are feasible also for

visual patterns during visual exploration. In Sec. 2.2 we show further

examples of visual patterns for both time series and tabular data.

Furthermore, we can use the observed statistically significant

visual patterns to constrain the null distribution. Fig. 1b shows

the updated null distribution, into which we have incorporated

the constraint concerning the previously found significantly large

value. Under this new null distribution there are no longer time

instances where the value of the time series is significantly larger

that the values in the null distribution.

Motivating Example 2. Our second example demonstrates ex-

ploration of tabular data. We use an extract of the UCI Adult data

set [14]. We sample 90 transactions at random from the dataset to

simulate a scenario with a limited amount of data. Assume that

the analyst is interested in factors correlated with the income level

(low income vs. high income). The analyst uses his or her prior

knowledge to hypothesise that sex, education level (high vs. low),

and marital status (married or not) likely affect the correlation.1

The data is shown in Tab. 1. By using a simple test statistic (count

of items) we compute the adjusted p-values and notice that being

married indeed is a significant factor contributing to high income.

We can then modify the null distribution (as in the time series

example above) so that the relation between marriage and income

is incorporated in the null distribution, after which the null distri-

bution and the data no longer differ in this relation. Using this null

distribution we obtain the p-values denoted by pmar. fix. in Tab. 1

After this we no longer find any significant values and we can con-

clude that being married explains the high income sufficiently well

in this small dataset. Note that if we had had a larger sample from

the dataset we would have found also other significant correlations.

Related work. This work is related to visual analytics [13], visual

data exploration [19], and graphical (or visual) inference [3, 16, 30,

31]. The framework proposed in this paper can be used to assess

the significance of visual patterns. It empowers data analysts by

allowing direct investigation of various hypotheses during visual

data exploration and is hence relevant to practically any domain in-

volving data analysis and visualisation. There are numerous studies

on statistical testing of patterns in data; to the best of our knowl-

edge there are none that have formalised a general procedure for

testing the significance of visual patterns.

Graphical inference [3] formalises visual patterns as test statistics

and the discovery of a pattern as a rejection of a null hypothesis.

The statistical test is the user’s cognition: the user is presented with

p − 1 plots of simulated data and one plot of the real data. If the

1Here we consider a subject to be of high education if his or her education attribute is
Bachelors, Doctorate, Masters, or Prof-school, and married if the relationship attribute is
Husband or Wife.

Table 1: Example with an extract of the UCI adult data. The

columns show the level of income cross-tabulated against

sex, level of education, and marital status for subjects in the

dataset. padj are p-values after adjustment for multiple com-

parisons and pmar. fix. are p-values using a null distribution

in which the relation betweenmarriage and income is fixed.

Sex Education Married

Income female male low high no yes

low 32 41 62 11 53 20

high 3 14 11 6 1 16

padj 1.00 0.12 1.00 0.15 1.00 0.001

pmar. fix. 1.00 0.13 1.00 0.13 1.00 1.00
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user correctly identifies the plot of the real data from the other

plots and explains which feature distinguishes it, then that feature

is statistically significant at level 1/p.

Our approach is similar but the user is only presented with a plot

of the real data and the statistical test is quantitative. The visual

pattern to be tested is specified beforehand according to the user’s

knowledge and is explicitly quantified as a function of the plot

which measures the strength of the pattern. Visual features have

been previously described through score functions; for instance

scagnostics [32] describe the global features of a scatterplot and

have been applied in the automatic sorting of scatterplots and mul-

tivariate time series [1, 4] as well as serving as a projection pursuit

index [29]. Local visual features have also been described through

motif-based measures [23]. The visualisation community has dealt

with uncertainty in visualisations [17] and errors stemming from

projecting multivariate data to two-dimensional plots [5, 21, 24]. It

has been noted that there is a need for assessing visual discoveries

during exploration. For example, a user study [33] found that over

half of the user insights obtained by their visualisations were false

due to the effect of multiple comparisons.

Statistical significance testing has been used to find most infor-

mative set of patterns in non-interactive settings [15], where the

authors looked for the most significant set of patterns given one

global test statistic.

Summary of contributions. (i) We present a novel framework that

allows the statistical significance of visually observed patterns to

be evaluated in a principled manner, (ii) we show how visual data

exploration augmented by the analyst’s knowledge can improve

the statistical power by lowering the number of hypotheses that

must be simultaneously tested, (iii) we empirically demonstrate

the framework by applying it in the analysis of real-world datasets

using both tabular data and time series.

Organisation of this paper. In Sec. 2 we first define visual patterns

and significance, after which we present the framework for evalu-

ating the significance of visual patterns. In Sec. 3 we empirically

demonstrate how the framework works, after which we conclude

with a discussion in Sec. 4.

2 METHODS

Our objective is to define a statistical significance testing procedure

using which we can give an upper bound for the probability of

even one false discovery by a given α , i.e., we want to control the

family-wise error rate. In this paper, we always use α = 0.1.

The procedure is as follows. We assume that the user iteratively

views different visualisations of the data, where we denote the views

by t = 1, 2, . . .. We assume that each view contains a distinct set

of visual patterns, each of which is associated with a test statistic

for which we can compute the p-value. Our control procedure

guarantees that if the visual pattern is a random artefact its adjusted

p-value is at most α with a probability that is bounded from above

by α .

2.1 Patterns and Significance

We adapt the notation from [15]. Let Ω denote the sample space,

which includes all possible data samples, and let ω0 ∈ Ω denote the

observed data set. The user’s initial background distribution, i.e.,

the user’s prior knowledge of the data, is defined by a probability

function Pr over the sample space Ω. We use Pr(ω), with ω ∈ Ω,

to denote the probability of a single data sample ω, and Pr(Q),

where Q ⊆ Ω, to denote the probability mass in Q . Pr(Q) satisfies

Pr(Q) =
∑
ω ∈Q Pr(ω).

Let nT denote the number of pre-defined test statistics which

correspond to hypotheses to be tested. Each test statistic is indexed

in [nT ] = {1, . . . ,nT } and is defined by a function Ti : Ω 7→ R,

where i ∈ [nT ]. Later, we associate each test statistic with a distinct

visual pattern.

Significance. We assume that the task of the user is to find all

test statistics that do not obey the distribution given byTi (ω) when

ω ∼ Pr(ω), and for this purpose we use p-values. The unadjusted

p-value related to the test statistic i ∈ [nT ] in an iteration t for a

set of constraints is conventionally defined by pti = Pr(Ω+i ), where

Ω
+

i = {ω ∈ Ω | Ti (ω0) ≤ Ti (ω)}, is the probability of observing

values of the test statistic at least as high as in the observed data.

Iterative Exploration by Adding Constraints. We assume that for

each test statistic there is a constraint, a subset of samples Ci ⊆ Ω

which satisfies ω0 ∈ Ci ⊆ {ω ∈ Ω | Ti (ω0) = Ti (ω)}. If the analyst

observes the value of a test statistic and it is found significant it

makes sense to incorporate this information into the background

distribution. Denote by I ⊆ [nT ] a subset of test statistics that the

analyst has found significant and by ΩI = ∩i ∈ICi with Ω∅ = Ω.

We can update the distribution Pr(ω | ΩI ) → Pr(ω) and repeat the

process. Notice that it follows from the definition of the p-value that

after updating the distribution the p-values for the test statistics in

I satisfy pti = 1 for all i ∈ I . Therefore, test statistics that have once

been used as constraints can no longer be significant

Multiple Comparisons Correction Within Iterations. If we test

more than one hypothesis then some of the unadjusted p-values

may become small because of random effects only, which is why

we must use multiple comparisons correction (MCC) [8]. Typically,

the more hypotheses we test, the less powerful the test will be and

more likely we are to miss test statistics not obeying the background

distribution. Therefore, if the analyst can pick the hypotheses to

test in a smart way we can substantially increase our hit rate, or

fraction of positives found. We denote the adjusted p-values by p̃ti .

We use here the minP procedure [28] for multiple comparisons

correction. The advantage of theminP test is that it can be computed

by using samples from Pr(ω) and that it automatically takes into

account the correlation structures present in the data, unlike, e.g.,

Holm-Bonferroni correction. The latter is crucial, as even though

there may be a huge number of visual features, the features are

often correlated, which makes the effective number of hypotheses

smaller and the approach feasible.

MCC Between Iterations. The data mining session consists of

łviewsž, each of which gives information of possibly varying sets of

test statistics. In principle, if we observe a large enough number of

these views we eventually obtain false positives by chance alone.

To correct for this we additionally apply a correction procedure

to the sequence of views. More specifically, we use the weighted

Bonferroni procedure [9] in which we multiply the p-values in each

of the views by a factor of 1/wt where t denotes the order of the
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view. This is the weighted Bonferroni procedure as long as the

weights sum to unity, i.e.,
∑∞
t=1wt = 1. In this paper we choose

wt = 2−t , which means that we can have an unlimited number

of iterations with more statistical power in the first view and the

power decreases exponentially as we explore further. In this way

we can control the FWER for the whole sequence of iterations at

the chosen level. The final adjusted p-value at iteration t is then

˜̃pti = min (1,w−1
t p̃ti ). (1)

Splittable Data. The following observations are important re-

garding the use of data in our significance testing framework. If

the data set is splittable into two conditionally independent parts,

given the generating model (e.g., i.i.d. data), then the first part can

be used to formulate the hypothesis we wish to investigate, while

the second part of the data is used for the actual hypothesis testing.

However, if the data set is unsplittable (as may be the case, e.g., with

time series data or network data) we must choose the test statistics

to test prior to viewing the data.

2.2 Visual Significance Testing Framework

The significance testing framework follows the typical format of

a permutation test, which includes (i) a test statistic and (ii) the

distribution of the test statistic under the null hypothesis, to which

the observed test statistic is compared. The analysis procedure

depends on whether the data is splittable or not. Furthermore, the

process can be repeated, if needed.

We next provide an overview of the framework, after which we

give examples of test statistics and describe ways of sampling the

test statistic under the null hypothesis (i.e., the null distribution).

Overview of the Framework. The analysis proceeds as follows.

(1) At iteration t , show the user a visualisation of the dataset

ω0 containing kt patterns.

(2) For each pattern, determine the value of the respective test

statistic Ti (ω0), where i ∈ [kt ].

(3) Sample R surrogate datasets ωr , where r ∈ [R], from the null

distribution and calculate the test statistics Ti (ωr ) for each

dataset ωr and i ∈ [kt ].

(4) Compute minP MC corrected p-values p̃ti using Ti (ω0) and

the values Ti (ωr ).

(5) Adjust the p-values for the current iteration by multiplying

the p-values by w−1
t = 2t , giving the final p-values ˜̃pti =

min (1, w−1
t p̃ti ), which are deemed significant if ˜̃pti ≤ α .

(6) Increment t by one and repeat the process from step 1 until

the exploration is over.

Examples of Test Statistics. The test statistic clearly depends on

the type of data. As examples we here consider test statistics for

tabular data and time series. Note that our goal here is to provide

an intuition of test statistics rather than a comprehensive list.

Numerical attributes in tabular data can be efficiently visualised

using scatterplots, allowing an analyst to observe different features

concerning the data. Assume that our hypothesis is that a particu-

lar polygonal region R represents a dense region of points, i.e., a

cluster. This hypothesis concerning region R now corresponds to

a particular test statistic which can be, e.g., the number of points

within R. Note that each hypothesis corresponds to a particular

test statistic encapsulating both the hypothesis and the region of

interest. More specific descriptors for scatterplots have also been

proposed. Based on the work of John and Paul Tukey on scagnostics

(an abbreviation of scatterplot diagnostics), Wilkinson et al. [32]

proposed a set of nine numeric scagnostic measures characterising

the visual appearance of scatterplots. These measures are used to

describe, e.g., how stringy, clumpy, or outlying a scatterplot is.

For time series it is natural to consider hypotheses concerning

different time intervals. E.g., let [t0, t1] be an interval in the time

series from t0 to t1 and let the hypothesis be that the time series in-

creases in this interval. A suitable test statistic is then the difference

of the value of the time series at t1 and t0. As a second example, the

test statistic could also be the maximum value in an interval, or the

maximum value at a particular time instant (as in Fig. 1).

Null Distribution. The choice of the correct null distribution

depends on the data. In general, the distribution of the test statistic

under a specific null hypothesis is unknown. In our framework we

use the method of surrogate data [25] to empirically estimate the

sampling distribution of the test statistic under the null hypothesis,

i.e., the null distribution. In this method, an ensemble of surrogate

datasets consistent with the null hypothesis are generated. The

value of the test statistic in the original data is then compared to

the values for the ensemble of surrogates, resulting in a p-value.

The methods for generating surrogate data can be divided into

two main approaches [22, 26]: (i) typical realisations, and (ii) con-

strained realisations. Typical realisations surrogates are obtained

by generating a model of the data, e.g., from the original data by

autoregressive methods or using Gaussian processes. After the

model has been constructed, surrogate samples can be directly ob-

tained from the model. An example of typical realisations is to

generate surrogates using a Gaussian distribution with a particular

mean and standard deviation, when we want to examine if this

is a valid generating model for the observed data. In contrast, the

constrained realisation surrogates are constructed so that the de-

sired properties are exactly present in the surrogates. One approach

to generating constrained surrogates is based on permuting the

original data, although in some cases it may be difficult to devise

a suitable permutation scheme [27]. An example of constrained

realisation surrogates is the use of a Brownian bridge to model

stock price time series. Such surrogates represent a random walk

on an interval [a,b] constrained such that the value at times a and

b is the same for all surrogates.

In addition to generating surrogate data we also consider the

case in which we can directly sample datasets from the same distri-

bution as the observed dataset being investigated. We refer to this

case as historic surrogates. As an example, consider that we investi-

gate the fluctuation in the price change of a particular stock on a

particular day. Now, instead of generating surrogates to investigate

a hypothesis we can use actual historic data as surrogates from time

series representing the price change of the stock during different

days. Historic surrogates are an example of splittable surrogates.

3 EXPERIMENTS

In this section we empirically investigate our framework. We first

perform a simulation of how the knowledge of the analyst affects
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Figure 2: Experiment with synthetic data using µ = 3 and β = 0.5. The parameter k (on the x-axis) models the experience

(łknowledgež) of the analyst and n (on the y-axis) the number of test statistics. The colour shows the the mean adjusted p-

value of the test statistic for x1 over 1000 replications.

the the significance of visual patterns. After this we apply the frame-

work in visual testing of hypotheses concerning patterns in tabular

data and time series. In each example, a baseline solution would be to

either apply no MCC adjustment or an overly conservative one (e.g.

Bonferroni). The experiments weremade using R (version 3.5.2) [20].

For the sake of reproducibility, all code used for the experiments is

publicly available from https://github.com/edahelsinki/vispa.

Datasets. We use two real-world datasets in the experiments.

(1) The German socioeconomic dataset [2, 12] is a tabular dataset

containing data from 412 German administrative districts. Each

district is represented by 46 socioeconomic, political and geographic

attributes.2 We use the same preprocessing as in [18], resulting in 32

real-valued attributes and two class attributes Type (Urban, Rural)

and Region (West, South, East, North). (2) The UCI [7] Air Quality

dataset [6] contains time series originating from sensors measuring

air quality (e.g., carbon monoxide, nitrogen oxides and Benzene).

We here consider a time series showing the hourly concentration

of carbon monoxide (CO). We remove entries with missing time

stamps. In both datasets, we scale the real-valued variables to zero

mean and unit variance. In addition, we use synthetic datasets

(described in Sec. 3.1) to simulate the analyst’s knowledge.

3.1 Leveraging the Analyst’s Knowledge

A user with prior knowledge about the data has a high chance of

asking the right questions. In this experiment we present a sim-

ulated user study in which we apply the framework in a simple

scenario. We use synthetic data: n numbers, one of which is dif-

ferent (e.g. x1). The user has access to a test which can be used to

determine if a particular number is different. Using this test, the

task of the user is to discover true patterns in the data, i.e. that x1 is

different. An expert user is more likely to correctly select x1, while

a non-expert might need to try (or guess) multiple times before

selecting x1. Since each attempt is a hypothesis test, the resulting

p-values need to be adjusted for multiple comparisons. If the user

tries too many times, the adjustment causes the test to not be able to

determine that x1 is different, meaning that the user fails to make a

2Available from http://users.ugent.be/~bkang/software/sica/sica.zip

true discovery. This experiment demonstrates that (1) experts using

the framework are more likely to discover that x1 is different even

when there are many numbers, and (2) non-expert using the frame-

work are also likely to discover x1 when there are few numbers but

fail to do so for increasing n due to the multiple comparisons cor-

rection. In a visual exploration scenario, the numbers are replaced

by visual patterns. The expert knows which patterns are likely to

be significant and can specify which ones to test before looking

at the visualisation. This improves statistical power, i.e. the ability

to detect true patterns and reduce false negatives. We next look at

this experiment in more formal terms.

To demonstrate the effect of the analyst’s knowledge on the

outcome of the analysis, we devise a simple single-parameter model

defining the analyst’s level of expertise. The idea is that an expert

analyst has prior knowledge about the data, and is able to select the

relevant test statistics with a high probability. On the other hand,

if the analyst has no prior knowledge of the data (non-expert), we

assume that the analyst makes a random selection among the test

statistics. In our model, the parameter k describes the probability

of choosing the correct test statistic (representing the knowledge of

the analyst), and with probability 1 − k the test statistic is chosen

uniformly at random among all test statistics.

Furthermore, we assume that the analyst is rational in the sense

that a non-expert analyst queries several test statistics in order

to increase the probability of finding a significant one, while an

expert analyst may only consider a single test statistic. Let β be the

confidence level that the analyst wants to acquire. The analyst wants

to repeat the choice for the test statistic R times while guaranteeing

that the probability of choosing a significant test statistic is at least

β (we use β = 0.5 here). Then R depends on k and on the number

of test statistics n as follows:

R = ⌈(log(1 − β)/(log(1 − 1/n) + log(1 − k))⌉ .

In this experiment we use synthetically generated data. The data

consists of n real-valued numbers Xn = {x1, · · · ,xn }, where x1
is sampled from a Gaussian distribution with mean µ = 3 and

standard deviation 1, i.e., from N(µ, 1). The other xi ’s are sampled

from N(0, 1). As the test statistics, we use the value of each data
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Figure 3: Scatterplot showing attributes Finance Workforce

and Population Density in the German data.

item and the null hypothesis is that each value is sampled from

N(0, 1). Thus, by the data generation, the assumption is that only

the test statistic for x1 should be significant.

We now determine for different numbers of test statistics n and

for different levels of the analyst’s knowledge (represented by k)

whether the analyst finds the test statistics concerning x1 to be sig-

nificant. Depending on the number of times the process of choosing

test statistics is repeated (R), the analyst may evaluate several test

statistics and minP correction is needed to obtain adjusted p-values

(all the test statistics chosen are evaluated in the same step, i.e.,

there is no iteration step here).

We report the mean adjusted p-value of the test statistic for

x1 over 1000 replications in Fig. 2. If the test statistic for x1 is

not among the test statistics evaluated, the p-value is taken to be

1.00. We observe that when the analyst has a high level of expertise

(k ≥ 0.9), this helps in finding the significant test statistic, regardless

of the number of test statistics n. On the other hand, when the

analyst has a low level of expertise (k < 0.2), then łguessingž the

test statistic is likely to fail, even if n is relatively low.

3.2 Testing Hypotheses in Tabular Data

Numerical attributes in tabular data can be efficiently visualised

using scatterplots, allowing an analyst to observe different features

in the data. In this section we consider the German dataset and use

(i) scagnostics and (ii) the number of data points inside a polygonal

region as test statistics. In the latter case, we also show how adding

constraints affects the significance of patterns.

3.2.1 Scagnostics as Test Statistics. Scagnostics [32] characterise

the visual appearance of an entire scatterplot and model, in a sense,

the relationships between the points in the scatterplot. We now

consider the scatterplot in Fig. 3, showing the attributes Finance

Workforce and Population Density in the German dataset.

Suppose that we believe these attributes to be independent (our

null hypothesis) and wish to investigate how this assumption is

reflected in the scagnostics. After deciding to test for scagnostics,

we plot the data (Fig. 3). We observe that the plot appears skewed

and monotonic and compute these scagnostics (column T in Tab. 2).

Are these values significant when compared to our assumption

that the attributes are independent? Can we determine if these are

random artefacts?

To determine the significance of the scagnostics we follow the

steps in Sec. 2.2 for one iteration (t = 1) using the 9 scagnostics

measures as test statistics. Our null distribution corresponds to

uniformly sampling R datasets from a distribution over all datasets

having the same marginal distributions as the original dataset, with

the requirement that all attributes are independent. This partic-

ular distribution can be easily realised using the following con-

strained randomisation approach: starting with the original dataset

we permute each attribute independently; we use the randomisation

scheme described in [11, 18].

Tab. 2 shows the minP-adjusted p-values for each scagnostic

(pu). Based on the observed p-values we reject the null hypothesis

that the attributes in the data are independent for the scagnostic

monotonic, since its p-value is ≤ α = 0.10. In other words, if the

attributes Finance Workforce and Population Density are in-

dependent, it is unlikely that we would observe this value or higher

for the monotonic measure. In contrast, for the skewed measure

we fail to reject the null hypothesis of independence of Finance

Workforce and Population Density.

3.2.2 Effect of Constraints. To demonstrate the effect that con-

straints have on the p-values, we also compute minP-adjusted p-

values for the scagnostics for the scatterplot in Fig. 3 using a null

distribution in which the relation between the attributes Finance

Workforce and Population Density is preserved in the R surro-

gates. These p-values are shown as pc in Tab. 2. In this case it holds

that Ti (ω0) = Ti (ωr ) (r ∈ [R]) for all i ∈ [9] scagnostics, i.e., the

test statistics in the surrogates agree with the original data in this

scatterplot, and the p-values cannot be significant.

Next, we consider the scatterplot shown in Fig. 4a, showing a

projection of a subset of the German data onto the first two principal

components. Again we want to examine the null hypothesis that

the attributes in the data are independent in terms of the scagnostic

Table 2: Significance of scagnostics computed for the scat-

terplots in Fig. 3 and Fig. 4a. The columns show the value of

the test statistic (T ) and the corresponding minP-adjusted p-

values for unconstrained (pu) and constrained null models

(pc). Significant p-values marked with blue.

Fig. 3 Fig. 4a

Scagnostic T pu pc T pu

Outlying 0.37 0.90 1.00 0.25 0.63

Skewed 0.81 0.95 1.00 0.75 0.52

Clumpy 0.03 0.74 1.00 0.04 0.67

Sparse 0.05 0.80 1.00 0.08 0.03

Striated 0.05 0.95 1.00 0.06 0.94

Convex 0.46 0.91 1.00 0.35 1.00

Skinny 0.46 0.95 1.00 0.55 0.08

Stringy 0.35 0.95 1.00 0.40 0.79

Monotonic 0.63 0.01 1.00 0.01 0.79
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Figure 4: Projected views of German data. The tables below the scatterplots provide the attributes with the five largest (in

absolute value)weights on the projection axes. (a) In this projection onto thefirst twoprincipal componentswe see a significant

pattern (marked by a polygonal region shown using solid red lines). (b) Projection of the data onto themost informative view

as defined in [18] wrt. the pattern in (a) as a constraint on the background distribution. The items in the polygon in (a) are

here marked with red crosses. Another significant pattern is marked by a polygonal region with solid red lines.

measures. The values of the test statistics (T ) and the corresponding

minP-adjusted p-values (pu) are shown in Tab. 2. The p-values

indicate that the null hypothesis concerning the independence of

the attributes can be rejected in the case of the sparse and skinny

scagnostics. In other words, if the axes of Fig. 4a are independent,

then it is unlikely that we would observe these values or higher for

the sparse and skinny scagnostics.

3.2.3 Iterative Exploration. Instead of scagnostics, which consider

the global structure of the entire scatterplot, we now turn to a dif-

ferent test statistic which can be used to investigate local structures.

We also consider iterative exploration, which requires MCC be-

tween iterations, i.e., the p-values are adjusted according to Eq. (1).

The data used here is splittable, i.e., the first part is used for explo-

ration and formulating hypotheses and the second part for testing

the hypotheses. Now, the projection of the German data onto the

first two principal components shown in Fig. 4a seems to contain in-

teresting local cluster patterns. One pattern, for instance, is shown

with a solid red polygonal line in Fig. 4a and represents a selec-

tion of rural districts located in the East, which have, e.g., high

values for attributes related to unemployment and low values for

the attribute describing the voting for the Green party in the 2009

elections (more details provided in the table below Fig. 4a).

We now want to determine if the cluster visible in this polygon

marked by the analyst is a true representation of the relations

between the attributes in the data or whether it is just a spurious

artefact. As our null distribution we again use samples where the

attributes of the original dataset have been permuted independently.

In this first exploratory step we find that the pattern inside the

polygon is indeed significant since the p-value corrected for the

iteration (t = 1) is 0.002. This practically means that the observed

cluster is not present in datasets which have been sampled from the

null distribution (which encodes our assumptions about the data)

and hence is unlikely to be a random artefact.

We continue the experiment by making a further exploration

step. Having observed the significant pattern in the polygon in

Fig. 4a, we now wish to continue the exploration of the data and we

hence add the observed pattern as a constraint to our background

distribution. We follow the methodology for constrained randomi-

sation of tabular data presented in [11, 18], where tabular data is

permuted using tile constraints. Tile constraints allow us to generate

surrogates for tabular data such that for a subset of items (here:

the points inside the polygon) the interaction between certain at-

tributes (here: all attributes in the dataset) is retained. Using this

method, the observed pattern in the polygon is constrained (fixed)

in the surrogates, whereas all points outside the polygon can be

permuted independently. Using this null distribution the p-value of

the observed pattern in Fig. 4a equals unity (i.e., non-significant),

as expected, since our constraint explains the observed pattern.
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Having incorporated the observed pattern into our background

distribution we determine a new projection using the method pre-

sented in [18], allowing us to compute the so-calledmost informative

view of the German data with respect to the background distribution,

shown in Fig. 4b. The items originally inside the polygon in Fig. 4a

are marked with red crosses for illustration purposes, and it is clear

that these points no longer present an interesting pattern in the new

view. We observe a pattern consisting of the points in the right side

of the projection (selection inside the red polygon). These points are

urban districts, which have, e.g., lower values in attributes related

to the amount of children and the number of cars, and higher values

in the attributes describing the percentage of service workforce

and voting for the Left party in the 2009 elections. We compute the

iteration-adjusted p-value using Eq. (1) with t = 2 for this pattern

and obtain 0.004, i.e., also this pattern is significant. We add a tile

constraint for this pattern, and update the null distribution, after

which the pattern is non-significant (p-value 1.00).

3.3 Testing Hypotheses in Time Series

We already demonstrated how to determine the significance of

patterns for time series inMotivating Example 1 in the introduction,

using typical and constrained surrogates obtained using a Gaussian

process. We here provide a second example using the Air Quality

dataset with a different test statistic and historical surrogates.

Fig. 5 shows the level of carbon monoxide (CO) on Tuesday,

March 17th, 2004. We observe an unusually large increase in the

level of CO during 07:00ś09:00 in the morning which could be

due to, e.g., increased traffic during the morning rush. We want

to investigate if the observed increase is a true phenomenon in

the Air Quality data, or is it just a random observation found

only in the particular time series for March 17th, 2004 that we

explore? Our null hypothesis is hence that this increase in the level

of CO between 07:00 and 09:00 is typical in the data. To test this

hypothesis, we use the other business days (i.e., exclude Saturdays

and Sundays) as surrogates and the difference between the level

of CO at 09:00 and 07:00 as a test statistic. We then compute the

values of the test statistic for all two-hour intervals to obtain the

minP-adjusted p-values. We find that the unadjusted p-value of

the pattern we visually observed in the time series is 0.03 while

the adjusted value is 0.67. We hence conclude that we do not have

enough evidence to reject our null hypothesis, i.e., the increase in

the level of CO between 07:00 and 09:00 is not unusually high in the

morning of March 17th, 2004. Observe that the unadjusted p-value

of the pattern (i.e. the łbaselinež) lead to the opposite conclusion.

3.4 Scalability

One possible use case for the significance testing framework pre-

sented in this paper is interactive visual exploratory data analysis.

This means, that the analyst exploring data should be able to test

hypotheses during the data exploration. For this to be possible, it

is essential that the significance testing procedure is fast enough.

The most time consuming operation in the above framework is the

generation of surrogate data. All experiments in this paper can be

run in less than 10 minutes using a standard Apple MacBook Pro

with a 3.1 GHz Intel Core i5. The analysis of, e.g., the time series

example in Fig. 1 takes on the order of a few seconds, which clearly

00:00 04:00 08:00 12:00 16:00 20:00

Figure 5: Time series showing the hourly level of CO in the

Air Quality dataset on March 17th, 2004. The x-axis shows

the time of the day. The gray lines are a random sample of

other days (historical surrogates). An interesting interval is

observed between times 7:00 and 9:00 in themorning, where

there appears to be an unusually high increase in the level of

CO. The hourly average value data point for 4:00 is missing.

is fast enough for interactive use. As a rough estimate, the time to

test a single pattern is R × (TT +TS ) +TC where R is the number

of surrogates, TT and TS are respectively the computation time for

the test statisticT and sampling a surrogate dataset S , andTC is the

time for applying MCCs (minP and iteration adjustment).

It should be noted that the generation of surrogates totally de-

pends on the null hypothesis, and for certain complex hypotheses

it is possible that, e.g., Markov Chain Monte Carlo (MCMC) meth-

ods must be used to generate surrogates (e.g., [10]), which can be

computationally demanding.

4 DISCUSSION

In this paper we have presented a principled framework for eval-

uating the significance of visual patterns during exploration. The

significance of a visual pattern can be thought of as how likely it

is to have occurred by chance if we assume a certain distribution

for the data (null distribution). The pattern is quantified through

a test statistic (e.g., the number of points inside a region) and the

null distribution models the user’s assumptions about the data (e.g.,

the independence of some attributes).

We empirically demonstrated how the statistical significance

of patterns is influenced by the knowledge of the user (Sec. 3.1).

Furthermore, we showed that the framework can be used in the

analysis of different types of data using both tabular and time series

data. We used different types of null distributions (typical and con-

strained realisations as well as historical surrogates) and different

test statistics. Depending on the hypothesis being tested and on the

type of surrogate data being used, we demonstrated how multiple

comparisons corrections must be used. Our framework is hence

applicable in many different data analysis scenarios and represents

an important contribution in exploratory data analysis by mak-

ing it possible to directly determine the significance of visually

observed patterns. Furthermore, we have shown that the statistical

significance can be evaluated during iterative data exploration. Ex-

ploratory data analysis is a highly important process, the success of

which has an important impact on further analyses and modelling

of the data, e.g., using machine learning algorithms. Our framework

bridges the gap between exploratory and confirmatory analysis by
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making it possible to evaluate the significance of patterns found

visually during exploration.

When considering patterns in a dataset an analyst considers

the absolute values of the observed patterns. However, it is also

important to consider both the practical and statistical significance

of the patterns, as exemplified in the experiments above. The pro-

posed framework makes this possible. The framework is clearly

fast enough for interactive use. In the future we hope to perform

comprehensive user studies, in which we study how users investi-

gate visual patterns in the data and how the proposed framework

could be best integrated into data analysis workflows. In this paper,

we have discussed rather generic problems, and an interesting av-

enue for future research is to investigate how the ideas presented

here could be implemented concretely in some specific domain, e.g.,

in the analysis of networks or time series. Each domain involves

different choices of test statistics and visual representations.

Summarising, the framework proposed in this paper represents a

novel and principled method for determining the significance of vi-

sual patterns, which can be applied in a vast number of exploratory

data analysis scenarios.
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