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Abstract Many pathogens possess the capacity for sex through outcrossing, despite being able

to reproduce also asexually and/or via selfing. Given that sex is assumed to come at a cost, these

mixed reproductive strategies typical of pathogens have remained puzzling. While the ecological

and evolutionary benefits of outcrossing are theoretically well-supported, support for such benefits

in pathogen populations are still scarce. Here, we analyze the epidemiology and genetic structure

of natural populations of an obligate fungal pathogen, Podosphaera plantaginis. We find that the

opportunities for outcrossing vary spatially. Populations supporting high levels of coinfection –a

prerequisite of sex – result in hotspots of novel genetic diversity. Pathogen populations supporting

coinfection also have a higher probability of surviving winter. Jointly our results show that

outcrossing has direct epidemiological consequences as well as a major impact on pathogen

population genetic diversity, thereby providing evidence of ecological and evolutionary benefits of

outcrossing in pathogens.

DOI: https://doi.org/10.7554/eLife.47091.001

Introduction
Many pathogens possess the capacity for sex – here defined in its broadest sense as the coming

together of genes from different individuals (Lehtonen and Kokko, 2014) – despite being able to

reproduce also asexually and/or via selfing. Individuals that undergo sexual reproduction transmit

only half their genome per offspring produced in contrast to asexual and selfing individuals

(Lehtonen et al., 2012) and hence, understanding the maintenance of sex is one of the fundamental

challenges in evolutionary biology. To counteract this two-fold cost of sex, sexual outcrossing is

assumed to provide both ecological and evolutionary advantages (Otto, 2009). The Red Queen

Hypothesis predicts sexual reproduction to be advantageous in the presence of coevolving para-

sites, as offspring that are genetically different from their parents should have higher fitness than

non-sexual offspring (Bell, 1982; Hamilton, 1980; Lively, 2010). In support of this prediction, empir-

ical studies have demonstrated parasite mediated selection to explain the observed distribution of

outcrossing in hosts (King et al., 2011; Wilson and Sherman, 2013; Lively, 1987). Just as sexual

reproduction is expected to be selected for in hosts to evade parasitism, parasites should equally be

under selection to generate novel genetic variation to infect their ever-changing host populations.

Indeed, theoretically it has been possible to identify a parameter space where coevolution with the

host favors sexual reproduction in the parasite (Howard and Lively, 2002; Galvani et al., 2003;

Salathé et al., 2008). However, the empirical evidence for such advantages of sex in parasite popu-

lations are still few and conflicting (Gouyon and de Vienne, 2015).
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Sexual reproduction may also confer ecological advantages by bridging unfavorable seasons or

habitats. In free-living facultatively sexual organisms that alternate between asexual and sexual

reproduction, the sexual offspring are often the dormant or dispersing life stages (Stelzer and Leh-

tonen, 2016; Simon et al., 2002). Similarly, in some of the most devastating fungal pathogens of

crops, the spores that are produced via outcrossing are also those that are suitable for long-distance

dispersal (Rieux et al., 2014), or provide means of surviving unfavorable environmental conditions

(Billiard et al., 2012; Burt, 2000; Saleh et al., 2012). While sexual offspring do not contribute to

current local population growth, the ability to outcross may be a key determinant of both the

numeric and genetic composition of the next season’s epidemic (Penczykowski et al., 2015;

Tack and Laine, 2014). For such strategies where outscrossing is timed with low potential asexual

growth, for example due to seasonality, the cost of sex is expected to be reduced (Gerber et al.,

2018). Homothallic species, where a haploid individual may mate with other haploid individuals of

its species, as well as with itself, may be considered a special case of facultative outcrossing. Here,

the maintenance of outcrossing is particularly puzzling given that the offspring produced via haploid

selfing are expected to yield the same ecological functions as those produced by outcrossing. None-

theless, there is evidence of high rates of outcrossing in homothallic species (Billiard et al., 2012).

To date the relevance of these short-term ecological processes in favoring selfing vs. outcrossing in

pathogens populations has remained largely unknown.

Even when outcrossing is expected to provide short- or long-term advantages, maintenance of

selfing may be favored when mate availability is spatially and/or temporally variable (Jarne and

Charlesworth, 1993). For many pathogens, coinfection is the ecological prerequisite of sexual

recombination, as outcrossing and hybridization take place during active infection of the same host

individual by different strains (Froissart et al., 2005). With molecular tools becoming increasingly

available for pathogens, we are beginning to unravel the spatio-temporal distribution of coinfection

as well as the ecological outcomes, which may range from facilitation to competition

(Tollenaere et al., 2016). Although coinfections have been widely reported for different pathogens,

remarkably little is understood of the determinants of coinfection (Tollenaere et al., 2016). Identify-

ing factors that increase the probability of coinfection also shed light on where we expect to see out-

crossing in pathogens with mixed mating strategies.

eLife digest The existence of sex – broadly defined as the coming together of genes from

different individuals – is one of the big evolutionary puzzles. Reproduction allows an organism to

pass on its genes to future generations. However, while asexual and self-fertilizing individuals

transmit all of their genes to their offspring, individuals that reproduce through sex transmit only half

of their genome. This is considered the cost of sex.

Many pathogens reproduce through sex, despite often also being able to reproduce asexually or

by self-fertilization. Typically a pre-requisite of sex in pathogens is for at least two different strains to

infect the same host. Aside from this limitation, little is known about when, where and why

pathogens have sex. It has been tricky to study due to the microscopic size of pathogens and the

difficulties of identifying different sexes. Moreover, sexual reproduction may be triggered by

environmental cues that are difficult to mimic under controlled experimental conditions.

Are there any benefits associated with pathogen sex? To find out, Laine et al. analyzed data

collected over the course of four years from thousands of populations of a powdery mildew fungus

that infected plants across the Åland islands. This revealed that the opportunities for pathogen sex

vary in different locations. Areas where multiple strains of the fungus commonly infect the same

plants result in hotspots of new genetic diversity. These mixed populations are also more likely to

survive winter. This demonstrates the potential for pathogen sexual reproduction to provide an

ecological benefit.

Identifying areas and populations where pathogens have sex can help to identify when and where

new strains are most likely to emerge. In the future, studies that use similar methods to Laine et al.

could help to predict where infections and diseases are highly likely to arise.

DOI: https://doi.org/10.7554/eLife.47091.002
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Mixed reproductive strategies have been described for a wide range of pathogen species

(Billiard et al., 2012; Billiard et al., 2011). However, the sexual stage is methodologically notori-

ously difficult to study in many pathogens given their microscopic size and the fact that mating types

cannot be identified morphologically. Moreover, sexual reproduction may take place inside the host,

and may be triggered by specific environmental cues that are difficult to mimic under controlled

experimental conditions (Billiard et al., 2012; Tack and Laine, 2014). Hence, remarkably little is

understood of this critical life-history stage. To understand why outcrossing is broadly maintained in

pathogens despite the costs, here we investigate the ecological and genetic consequences of puta-

tive outcrossing in a large natural pathogen metapopulation. Our analysis is based on data collected

from Podosphaera plantaginis, a specialist powdery mildew fungus naturally infecting Plantago lan-

ceolata. The visually conspicuous symptoms caused by P. plantaginis enable accurate tracking of

infection in the wild. Long-term epidemiological data across approximately 4000 local plant popula-

tions in the Åland Islands, southwest of Finland, have demonstrated this pathogen to persist as a

highly dynamic metapopulation with frequent extinctions and (re)colonizations of local populations

(Jousimo et al., 2014). Overwinter survival of local pathogen populations has proven to be the vul-

nerable life-history stage of P. plantaginis in Åland with a high fraction of the local pathogen popula-

tions going extinct (Jousimo et al., 2014). The pathogen survives the winter in resting structures,

chasmothecia (Tack and Laine, 2014). These resting structures are produced through sexual repro-

duction as the hyphal cells of one (selfing) or two strains (outcrossing) fuse when infecting the same

host plant. The resulting diploid zygote undergoes meiotic division to yield haploid ascospores that

develop inside the chasmothecium. At the onset of the growing season these chasmothecia rupture,

releasing the ascopores that initiate new infections (Tollenaere and Laine, 2013). Here, we (i) deter-

mine how coinfection - the pre-requisite for sexual outcrossing - varies in natural pathogen popula-

tions. We then measure whether (ii) putative outcrossing (i.e. coinfection) is associated with the

generation of novel pathogen multilocus genotypes, and (iii) increased pathogen population over-

wintering success (Jousimo et al., 2014). We’ve surveyed and sampled all found pathogen popula-

tions in the Åland Islands for four consecutive years, and we use Spatial Bayesian models (Integrated

Nested Laplace Approximation; INLA; Lindgren and Rue, 2015) to analyse data on disease dynam-

ics and genotypic diversity from the natural metapopulation.

Results
We first quantify how the opportunities for sexual outcrossing – thta is coinfection - vary across hun-

dreds of wild pathogen populations in four consecutive seasons. We sampled 619, 703, 693 and 833

populations in 2012–15 for subsequent genotyping (Table S1). We used a SNP genotyping protocol

to estimate the number of multilocus genotypes (MLGs) and prevalence of coinfection within patho-

gen populations (Tollenaere et al., 2012). Coinfection proved to be common yet spatially variable

across the P. plantaginis metapopulation (Figure 1A) (Susi et al., 2015). In all years approximately

half of the pathogen populations supported at least one coinfected sample, (45–58%;

Supplementary file 1). We found that coinfection was more likely to be found in larger and more

diverse pathogen populations (Significant positive effect of number of MLGs and infection abun-

dance; Table 1). Connectivity of pathogen populations, which is considered a proxy for gene flow

among populations as it is estimated from distances separating local pathogen populations

(Jousimo et al., 2014), had a positive, albeit not significant, effect on the probability of coinfection

(Table 1). The INLA model we use here, controls for spatio-temporal autocorrelation characteristic

of spatial ecological data due to unmeasured variables, thereby providing a conservative estimate of

the model parameters as evidenced by model validation checks (Figure 1—figure supplements 1–

5) (Lindgren and Rue, 2015).

We then used an Approximate Bayesian Computation (ABC) approach to determine whether we

detect more coinfection within populations than would be expected based on the number of para-

site genotypes and host availability. Our results show that an already infected plant is more likely to

be infected by another strain (Figure 1—figure supplement 6). In other words, coinfections were

more common than expected by chance under the assumption that infections by different MLGs are

statistically independent. The result was consistent in both years 2012 and 2013 (posterior probabil-

ity 0.98 and 0.988, respectively; Figure 1—figure supplement 6), with the parameter controlling the
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prevalence of coinfections, g; being reliably estimated under different modeling assumptions (Fig-

ure 1—figure supplement 7–8).

The detection of novel MLGs in the pathogen metapopulation from one year to another suggests

that sexual outcrossing is common for this pathogen. When all located pathogen populations were

Figure 1. Hotspots for pathogen outcrossing - Novel pathogen genotypes emerge in populations with high prevalence of coinfection the previous

year. The heatplots for the spatial occurrence probability of coinfection in 2012–14 (A-C, respectively), and probability of a novel MLG emerging in

pathogen populations in 2013–15 (D-F, respectively), were obtained by fitting spatial intercept-only models as presented in Table 1. The probabilities

of events for each location were obtained from the linear predictor based on the estimated intercept and the spatial random field. Warmer tones

correspond to areas of higher event occurrence probabilities. The number of genotyped samples supporting coinfection in a pathogen population

correlated positively with the probability of detecting a MLG that had not been previously detected in that population using all data collected in 2012–

15 (G). The fitted line corresponds to the 95% confidence level interval generated by the linear model in Table 1. Darker shades indicate higher data

density.

DOI: https://doi.org/10.7554/eLife.47091.003

The following figure supplements are available for figure 1:

Figure supplement 1. The estimated posterior distributions of the spatial ranges for the fitted spatio-temporal models described in Table 1.

DOI: https://doi.org/10.7554/eLife.47091.004

Figure supplement 2. Mesh used for the spatio-temporal model.

DOI: https://doi.org/10.7554/eLife.47091.005

Figure supplement 3. PIT-value distributions.

DOI: https://doi.org/10.7554/eLife.47091.006

Figure supplement 4. CPO-values distributed in space.

DOI: https://doi.org/10.7554/eLife.47091.007

Figure supplement 5. Distributions of the CPO-values for the four models for the different years.

DOI: https://doi.org/10.7554/eLife.47091.008

Figure supplement 6. Posterior distributions of the parameter values from the ABC inference on the infections and co-infections.

DOI: https://doi.org/10.7554/eLife.47091.009

Figure supplement 7. Accuracy of the parameter estimates from the ABC analysis of infections and co-infections.

DOI: https://doi.org/10.7554/eLife.47091.010

Figure supplement 8. Posterior distributions of the parameter values from the ABC inference on the infections and co-infections under different

modeling assumptions using data for 2012.

DOI: https://doi.org/10.7554/eLife.47091.011

Figure supplement 9. The number of samples collected from Podosphaera plantaginis populations in 2013–15 depicted according to population size

categories.

DOI: https://doi.org/10.7554/eLife.47091.012

Figure supplement 10. The global allele frequencies of the 19 SNP loci used for genotyping.

DOI: https://doi.org/10.7554/eLife.47091.013

Figure supplement 11. A schematic representation of the algorithm that identifies the unique multilocus genotypes that form the observed

coinfections.

DOI: https://doi.org/10.7554/eLife.47091.014
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genotyped, we identified 182, 189, and 235 novel MLGs in 2013–2015, respectively, when compared

to MLGs detected the previous year (Supplementary file 1; Figure 1B). The number of new MLGs

at the population level increased with the prevalence of coinfection at the end of the previous epi-

demic season which is the time when outcrossing takes place (Figure 1C; Table 1). The prevalence

of coinfection was a strong predictor of novel MLGs the following year even after controlling for the

effects of local pathogen population size, diversity (number of MLGs), pathogen population connec-

tivity (proxy for gene flow) as well as spatial and temporal autocorrelation (Table 1).

Using data from the natural pathogen metapopulation, we also found that in those pathogen

populations where the prevalence of coinfection is high – and hence where sexual reproduction can

take place – the pathogen has a higher survival probability (Table 1; Figure 2A and B). The effect of

coinfection on successful overwintering is positive even after controlling for the effects of pathogen

population size and diversity, which both increase survival probability. The INLA model also controls

for spatial and temporal autocorrelation in these data that may be generated by abiotic variation

known to be important for overwintering ecology of this pathogen (Penczykowski et al., 2015).

Hence, we view this as a conservative estimate of the effect of coinfection on overwintering. Resting

spores, which were visually scored in the field (Tack and Laine, 2014), were produced in nearly all

pathogen populations regardless of whether they supported coinfection or not (96% vs. 93%,

respectively).

Table 1. The estimated posterior means and 95% credibility intervals for the parameters of the fitted spatio-temporal models.

In each model, the abundance of infection category one is considered as the baseline factor level for every model. Whenever the cred-

ibility interval does not include zero (denoted with bold), the effect is considered significant. For temporal and spatial range, and the

nominal variance, significance cannot be estimated as they can only get positive values. For more information about the predictors,

please see the Model Variables-section in the Methods.

Model

Parameter Coinfection presence in a pathogen
population
(0/1)

Number of new strains within a
population

Successful pathogen population
overwintering
(0/1)

Intercept �1.04,
(�1.16,–0.92)

�0.38,
(�0.49,–0.27)

1.17,
(0.93, 1.41)

Number of coinfections not fitted 0.06,
(0.02, 0.11)

0.28,
(0.11, 0.46)

Number of strains 1.07,
(0.93, 1.21)

0.08,
(0.04, 0.13)

0.34,
(0.18, 0.5)

Abundance of infection
(category 2)

0.37,
(0.22, 0.53)

�0.03,
(�0.08, 0.02)

0.39,
(0.27, 0.51)

Abundance of infection
(category 3)

0.61,
(0.46, 0.75)

�0.04,
(�0.1, 0.01)

0.55,
(0.39, 0.72)

Year 2013 not fitted 0.17,
(0.03, 0.32)

0.05,
(�0.27, 0.37)

Year 2014 not fitted 1.45,
(1.33, 1.58)

0.52,
(0.19, 0.85)

Pathogen connectivity (Spi ) 0.05,
(�0.08, 0.19)

0.02,
(�0.02, 0.07)

�0.04,
(�0.19, 0.1)

Host population size (logm2) 0.01,
(�0.12, 0.14)

0.09,
(0.04, 0.14)

0.03,
(�0.1, 0.16)

Temporal autocorrelation (’) 0.03,
(�0.41, 0.43)

0,
(�0.41, 0.41)

�0.08,
(�0.43, 0.28)

Spatial range (meters) 11410,
(460, 50811)

14229,
(3266, 38058)

8512,
(1775, 25860)

s2 ðNominal variance) 0.2,
(0, 1.33)

0.07,
(0.01, 0.22)

0.45,
(0.1, 1.28)

DOI: https://doi.org/10.7554/eLife.47091.015
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Discussion
Here, we report compelling evidence of outcrossing that generates novel genetic diversity in the

pathogen metapopulation. Our results demonstrate variation in how opportunities for outcrossing

are distributed across space. Finding more coinfection than would be expected by chance is in line

with previous fine-scale field sampling of infections and experimental work, which show that hosts

already infected with one strain of the pathogen are more likely to become infected by another

strain of the same pathogen than uninfected hosts (Laine, 2011; Susi and Laine, 2017). This may be

due to already infected individuals becoming more susceptible to subsequent infection, or due to

strains aggregating on those hosts that are the most susceptible genotypes (Susi and Laine, 2017).

Moreover, variation in host density and (micro)climatic conditions may be an important driver of

infection patters in the wild (Penczykowski et al., 2018). Our results do not support the priming

Figure 2. Pathogen overwinter survival was highest in populations that supported higher levels of coinfection. The heatplot for the spatial occurrence

probabilities of overwinter survival were obtained by merging the corresponding event data from corresponding years and fitting spatial intercept-only

models as presented in Table 1. The probabilities of events for each location were obtained from the linear predictor based on the estimated intercept

and the spatial random field. The maps shows spatial variation in overwinter survival for 2012–13 (A), 2013–14 (B) and 2014–15 (C) with warmer tones

corresponding to areas of higher event occurrence probabilities. (B) The average probability of successful pathogen population overwintering was

higher in populations with coinfection than in populations without coinfection in all three years in 2012–15.

DOI: https://doi.org/10.7554/eLife.47091.016
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hypothesis (Hilker et al., 2016), whereby prior attack provides increased protection against later

attack.

We find that spatial variation in coinfection results in spatially delineated hotspots of novel

genetic diversity. The high number of new MLGs detected every year is indicative of outcrossing tak-

ing place in this pathogen metapopulation. Although our sampling is likely to miss some rare strains,

and novel MLGs may be generated through mutations, these are unlikely to explain the high turn-

over of MLGs between years we report here. Mainland populations, which are separated by at least

38 km of open water, are also expected to play a negligible role as sources of gene flow given that

experimental and field data have confirmed this pathogen to typically disperse short distances

(Jousimo et al., 2014; Tack et al., 2014). Our results suggest that sexual outcrossing takes place

where there is the opportunity for it, that is in populations where levels of coinfection are high. To

date, this phenomenon has only received limited experimentally derived support in pathogens

(Schelkle et al., 2012). Spatio-temporal variation in outcrossing is expected to have both evolution-

ary and epidemiological consequences for the pathogen. In the short term, generation of novel

genetic diversity may increase transmission across host populations that support considerable resis-

tance diversity both within and among populations (Jousimo et al., 2014; Laine et al., 2011). Novel

genetic diversity may also increase the evolutionary potential of pathogens that need to adapt to

both biotic and abiotic variation in their environment (Greischar and Koskella, 2007; Wolinska and

King, 2009).

Our multi-year census data further revealed the putative outcrossing to yield a benefit that is real-

ized in an ecologically important function – higher overwintering success. Overwintering determines

both the genetic and numeric structure of the next epidemic (Tack and Laine, 2014;

Penczykowski et al., 2015), and hence may be a sufficiently important trait to promote the mainte-

nance of outcrossing in a pathogen that is able to complete its life-cycle also through haploid selfing.

Our results suggest that successful overwintering is not due to higher production of resting spores.

Hence, there may be a difference in the quality of progeny produced via selfing vs. outcrossing. Prior

experimental work has demonstrated significant variation in spore viability in the resting structures

of P. plantaginis. There is evidence of higher viability of progeny from coinfections than from single

infections, but the strength and direction of this trend is affected by the genotypes of the interacting

strains, as well as by temperature (Vaumourin and Laine, 2018). Despite the higher overwintering

success of outcrossed progeny, haploid selfing may be preserved due to the low probability of

encountering a suitable mating partner infecting the same host. Moreover, there may be a cost to

outcrossing as it breaks up locally adapted pathogen populations by producing novel – and poten-

tially maladapted – genetic variation.

Overall, the selection pressures and opportunities to mate vary considerably across space and

time, and hence, it is not surprising that many pathogens have evolved highly complex mating strat-

egies (Billiard et al., 2011). A loss of sexual reproduction in pathogens has been linked to homoge-

nous habitat (Saleh et al., 2012) or stable environmental conditions (Barrett et al., 2008).

Maintaining a mixed mating system may provide a bet-hedging strategy for this pathogen to survive

in a fragmented landscape, with a high probability of population extinction during the off-season. It

is noteworthy that here we succeeded in identifying predictors of how coinfection is spatially distrib-

uted - and hence where hotspots of outcrossing are formed - despite the considerable environmen-

tal ‘noise’ this natural system supports. The correlations in field collected data we have observed

here are a promising start to uncovering the variable selective pressures and advantages of outcross-

ing in pathogens. Establishing direct links between variation in reproductive strategies and epidemi-

ological dynamics offers an exciting venue of research, and is needed to truly predict where risks of

infection and disease emergence are the highest.

Materials and methods

Survey of natural pathogen metapopulation
Plantago lanceolata is a perennial rosette-forming herb that is naturally infected by Podosphaera

plantaginis (Castagne; U. Braun and S. Takamatsu), a powdery mildew fungus in the order Erysi-

phales within the Ascomycota. This pathogen is a host-specific obligate biotroph that completes its

entire life cycle on the surface of the host plant where it is visible as localized (nonsystemic) white
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powdery lesions. The interaction between P. lanceolata and P. plantaginis functions in a two-step

manner typical of many plant–pathogen associations. First, as the pathogen attempts to infect a new

host, the interaction is strain specific as a given host genotype expresses resistance against some

strains (recognition) of the pathogen while being susceptible to others (nonrecognition) (Jones and

Dangl, 2006). Once a P. plantaginis strain has successfully established there is still considerable vari-

ation in its development that is affected by both pathogen and host genotype (Laine, 2007). The

pathogen is a significant stress factor for its host and may cause host mortality (Penczykowski et al.,

2015).

The locations of P. lanceolata populations have been systematically mapped in the Åland Islands,

southwest of Finland, since the 1990s. There are currently c. 4000 known host populations that range

in size from a few square meters to several hectares, with a median size of 300 m2 (Jousimo et al.,

2014). Within host populations, initial pathogen foci are established from resting spores (chasmothe-

cia), or from a spore immigrating into the local population from another population. The first visible

signs of infection appear in late June as white-greyish lesions consisting of mycelium supporting

spores (conidia) are formed. The spores are dispersed by wind to the same or new host individuals.

Some six to eight clonally produced generations (estimated from spore germination-production

times observed in the laboratory) follow one another in quick succession, often leading to a substan-

tial proportion of the host individuals within a population being infected by late summer

(Ovaskainen and Laine, 2006). Resting spores (chasmothecia) appear towards the end of the grow-

ing season in August–September. Each chasmothecia contains eight ascospores that can each cause

a new infection in the spring upon their release. Infected leaves may support hundreds of chasmo-

thecia. In P. plantaginis, chasmothecia production is achieved via both haploid selfing as well as out-

crossing between two strains simultaneously infecting the same host plant. Pure strains of P.

plantaginis have been shown to carry both MAT1-1-1 and MAT1-2-1 that determine compatibility in

several other powdery mildew species (Tollenaere and Laine, 2013).

In early September every year since 2001, all known P. lanceolata populations have been sur-

veyed for the presence/absence of the powdery mildew (for details on the survey, please see

Jousimo et al., 2014). These data can be used to identify pathogen populations, which have per-

sisted from one year to the next, newly colonized populations, and populations that have gone

extinct. These data have demonstrated that P. plantaginis persists as a highly dynamic metapopula-

tion through extinction and (re)colonization of local host populations (Jousimo et al., 2014).

Genotyping of field collected pathogen samples
In 2012–15 nearly all located pathogen populations were sampled for genotyping (N = 619, 703,

693, and 833 populations, respectively, which represented 96–97% of all located pathogen popula-

tions each year; Supplementary file 1). A sample consists of one infected leaf collected from an

infected plant, and infected plants were sampled at a minimum distance of five meters between

infected plants. The aim was to collect ten samples from each population but in smaller pathogen

populations sampling effort needed to be scaled to how much infection was available for sampling

(Please see ‘Pathogen population size’ below in Model variables -section below for a description,

and for numbers of samples in each pathogen population size category, please see Figure 1—figure

supplement 9). The infected leaves were placed in separate falcon tubes and brought back to the

laboratory where fungal material for each sample was collected by scraping off the surface of the

infected leaf. This material and a 1 cm2 piece of the same infected leaf were placed in an individual

well of a 96-well plate. Samples were stored at �20˚C until DNA extraction.

DNA extraction was performed using E.Z.N.A. Plant DNA kit (Omega Bio Tek Inc, Norcross, GA,

USA) at The Institute of Biotechnology (BI, Helsinki, Finland). Samples were genotyped with 27 SNP

markers using Sequenom MassARRAY iPLEX platform as described in Tollenaere et al. (2012) at the

Finnish Institute for Molecular Medicine (FIMM, Helsinki, Finland). Automatic calling of the geno-

types was performed using MassARRAY Typer four software (Sequenom, San Diego, CA). Because

of the presence of null alleles in the studied populations, eight SNP were discarded from the analy-

sis. Allele frequencies are shown in Figure 1—figure supplement 10. The genotyping results were

used to identify the multilocus genotypes (MLGs) of each sample and to detect coinfection in the

collected samples. Podosphaera plantaginis is haploid, and therefore the detection of a heterozy-

gote genotype for one or more SNP markers is a clear highly repeatable method for calling coinfec-

tions (Tollenaere et al., 2012; Susi et al., 2015).
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Model variables
The survey data from the natural populations and the genotyping data from years 2012–15 were

used to generate the following variables used in the analyses (See Statistical modeling below):

Pathogen population size
The abundance of pathogen was scored on a categorical scale with five levels, defined as: 0 = no

infection, 1 = 1–9 infected plants, 2 = 10–99 infected plants, 3 = 100–999 and 4 = 1000 or more.

Due to the small number of category four infections, the categories 3 and 4 were merged for the

analyses.

Number of MultiLocus genotypes (MLG) in local pathogen populations and
identification of MLGs from coinfected samples
For each population and year we estimated the number of unique multilocus genotypes (MLG)

observed using the SNP genotyping protocol described above. This number was obscured by sam-

ples supporting coinfection, for which the MLGs could not be directly identified. To solve this, we

developed an algorithm that gives as an output a lower limit for the number of strains in the popula-

tion, that would correspond to all the observed MLG profiles, both those observed for single and

coinfected samples (Figure 1—figure supplement 11). The algorithm was designed to be conserva-

tive to avoid overestimating the number of MLGs. To this end, we assumed that in a coinfected sam-

ple, the detection of multiple alleles in a locus could have failed, and only one allele observed. The

five stages of the algorithm are as follows: First, we identified the unique MLGs from the single infec-

tions. Second, we identified coinfections, whose alleles could not be obtained as a combination of

two unique MLGs from the first stage. Third, we removed duplicate coinfections, whose alleles were

subsets of another coinfection in the loci that the samples shared. We considered subsets to accom-

modate possible genotyping errors for the coinfections, where only one allele is detected for a loci.

Fourth, for each remaining coinfection, we constructed a new minimal candidate MLG, which was

needed in addition to a unique MLG identified from single infections to generate the alleles in the

coinfection. Only those loci where an allele not present in the single infection was observed in the

coinfection were defined for the candidate MLG, and the remaining alleles were defined as

unknown, because they could have been unobserved due to genotyping error. Fifth, we merged

candidate MLGs that had same alleles in all the loci that were defined. The unique MLGs from single

infections and the constructed candidate MLGs were now considered the unique strains for the pop-

ulation. The number of new MLGs in a population for a given year was estimated using the same

algorithm. First, we applied the algorithm to samples from current and previous year, and then to

samples from current year only. The number of new MLGs was then estimated as the difference

between the number of MLGs from the two runs.

Prevalence of coinfection in a population
Number of samples supporting coinfection in local pathogen populations identified using the SNP

genotyping protocol described above.

Abundance of pathogen resting structures
The powdery mildew survives the winter in resting structures (chasmothecia). These are visually con-

spicuous and their abundance has been systematically surveyed on the infected plants located dur-

ing the field survey (Tack and Laine, 2014). The abundance of chasmothecia in local populations has

been recorded on a categorical scale: 0 = no infected plants with chasmothecia; 1 =<10% of

infected plants with chasmothecia; 2 = 10–25% of infected plants with chasmothecia; 3 = 25–50% of

infected plants with chasmothecia, and 4 = 50–100% of infected plants with chasmothecia.

Successful overwintering of pathogen populations
Pathogen populations that were located in two successive autumn surveys were considered to have

successfully overwintered.
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Pathogen connectivity
Connectivity, denoted with S

p
i 37

37 of each pathogen population, i, was computed as:

S
p
i tð Þ ¼

i 6¼j

X

e�
di;j
a Oj

where Oj ¼ 1, if population j was infected and Oj ¼ 0; if population j was not infected in the current

year t, and di;j corresponds to the distance between populations i and j. The parameter a, describing

the mean dispersal distance at the metapopulation level, was set a¼ 1000 (meters) following results

of Jousimo et al. (2014). Si is thus assumed to be a rough proxy for the expected number of patho-

gen transmission coming to population i from all the infected populations, under the assumption of

exponentially distributed dispersal distance.

Host population size
The total coverage (in m2) of the host in the local population has been visually assessed each year

simultaneously when the pathogen infection data were collected. The criteria for describing host

populations is provided in detail in Ojanen et al. (2013). In brief, suitable host populations have

been identified by the presence of dense clusters of P. lanceolata, which in Åland occur on dry

meadows and pastures. These occur as well-defined, discrete patches across the landscape.

Spatial bayesian modelling of the effect of coinfection on pathogen
overwintering and strain diversity
We modeled the following events of interest: the effect of the number of coinfections on persistence

of infection from one year to the next, and the number of new, previously unidentified, MLGs in a

pathogen population that survived from one year to the next. In addition, we assessed the drivers of

the presence/absence of resting spores and coinfections among the infected populations. Our mod-

els were fitted to data from years 2012-2015. To control for the possible effect that population size,

connectivity and diversity could have on the results, our models included the following predictors

(described above in detail): Pathogen population size, host population size, number of distinct path-

ogen strains, and pathogen connectivity S
p
i . Predictors with continuous support and the number of

observed coinfections, were scaled and centered around zero, and factors transformed into binary

0/1-variables.

Spatio-temporal logistic regression model
The statistical modeling of the phenomena of interest (coinfection presence, the emergence of new

strains in a population and survival of pathogen population) was done by considering a logistic

regression modeling framework, where the observation at location s at time t was assumed to be

Bernoulli distributed with the event probability �st. The spatial- and temporal autocorrelation was

taken into account by assuming that �st has an explicit spatio-temporal correlation structure, defined

as follows:

logit �stð Þ ¼ z s; tð Þbþ d s; tð Þþ " s; tð Þ

d s; tð Þ ¼ ’ � d s; t� 1ð Þþw s; tð Þ

Here z(s,t) corresponds to the covariate information and " s; tð Þ is the measurement error. Further,

d s; tð Þ is a spatio-temporal latent process with first-order temporal autocorrelation, described by

parameter ’( ’j j<;1Þ, and spatially correlated outcomes described by zero-mean Gaussian

distribution w s; tð Þ. The spatial correlation is included by assuming that w s; tð Þ has the following

covariance structure:

Cov w s; tð Þ; Cov s
0

; t
0

� �� �

¼
s2C hð Þ
0; if t 6¼ t0

�

Here s2 is the overall variance of the random field, and C hð Þ is the Matern covariance function,

that only depends on the Euclidean distance h between the latent locations s and s’, and hyperpara-

meters k and #. Details on the covariance function, and an in-depth description of the modeling
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framework is given in Cameletti et al. (2013). The aim of our analysis was to infer the joint posterior

distribution of �:

�¼ b; ’; s2; k; #;f

the main interest being in b, which describes the effects of the covariates listed and described in the

Model variables section.

Efficient implementation of such inference is provided by the R-INLA package, which provides

posterior distribution of � by marginalizing �st with Laplace approximation. When setting the prior

distributions for hyperparametersand #, we followed the heuristics proposed by the INLA develop-

ers (Lindgren and Rue, 2015), ensuring that a 95% prior probability is set to the range being smaller

than the size of the spatial domain considered. Here the range is defined as the distance at which

the spatial autocorrelation becomes negligible (smaller than 0.1 under the Matern covariance). The

other prior distributions were set to default uninformative prior distributions (Lindgren, 2012),

Finally, another computational gain is obtained by approximating the spatial random field

w s; tð Þ with the help of a mesh, visualized in Figure 1—figure supplement 1.

Model validation
As a model validation argument, we inspected the distribution of the CPO-values, Conditional Pre-

dictive Ordinates, defined as:

CPOi ¼ P dnewi ¼ di
�

�

� D�iÞ:

CPOi ‘corresponds to the probability of predicting the observation di, when di is excluded from

the model fitting. Briefly, high CPO-values indicate high predictive power of the fitted model, while

very low CPO values would indicate outlier observations, or a poor fit of the model, and patterns in

CPO values (such as spatial or temporal) suggest inappropriate model structure.

To ensure the adequacy of the fitted models, we considered leave-one-out predictive measures

of fit, assessing how well the model is able to predict the observed dynamics. In particular, we con-

sidered the so-called probability integral transform (Dawid, 1984), defined as:

PITi ¼ P dnewi � dnewi

�
�

� D�iÞ;

Here di denotes for the i’th observed outcome in the data, and D�i for the data with this observa-

tion excluded, and PITi corresponds to the cumulative predictive distribution for the outcome i,

given all the other observations. We adjust this to take into account the discrete nature of the mod-

eled outcomes, as follows (Czado et al., 2009):

PITi ¼ P dnewi <;di
� �

� D�iÞþ
1

2
�P dnewi ¼ di

� �

� D�iÞ:

In brief, skewedness of the distribution of PIT-values indicates biases, U- and inverse-U-shaped

distributions indicate under- and over-dispersion, respectively, while a uniform distribution indicates

good model fit.

Parameter estimates
We considered a covariate to have a significant effect on the outcome, whenever its 95% credibility

interval did not contain zero.

Analysis of occurrence of co-infections with approximate bayesian
computation
We take an Approximate Bayesian Computation approach to determine whether there is more co-

infection in the pathogen metapopulation than expected by chance. The model does not take into

account the spatial structure of the patches, but considers them independent conditional on the

model parameters.
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Process model
First, consider a single patch i. Let xi denote a vector of environmental covariates of the patch i and

including a constant. The number of plant individuals in patch i, Ni, is modeled as

Ni ~Poisson xiaNð Þ;

where aN are the parameters relating covariates xi to the expectation of Ni. The number of MLGs in

patch i, Mi, is modeled similarly

Mi ~Poisson xiaMð Þ;

where aM are the parameters. The number Mi might be restricted with an upper limit Mmax, so

that Mi � ~Mmax.

Let �i ¼ �i;1; . . . ; �i;Mi

� �

be a vector of transformed prevalences of the different MLGs in patch i.

We assume a normal distribution for �i;k, k=1,. . .,Mi,

�i;k ~Normal xib;1ð Þ;

where b is a vector of linear predictors.

For the jth plant in patch i the infection status is represented by a vector Zi;j ¼ Zi;j;1; . . . ; Zi;j;Mi

� �

.

If Zi;j;k>; 0, then the plant if infected by MLG k, and otherwise it is not infected by the strain k. We

assume that the plant is exposed to the MLGs 1,. . .,Mi in order si;j, which is a permutation of the

MLG indices. The distribution for Zi;j;k is

Zi;j;k ~ Normalðhi; j;k;t2Þ;

where t
2 is the variance parameter and the mean hi;j;k depends on the values of Zi;j;k for MLGs l that

are before MLG k in the order si;j . Specifically,

hi;j;k ¼
�i;k þg if Zi,j,si,j(l)>;0 for any si,j(l) lt;k
�i;k otherwise

�

In other words, if MLG k infects the plant (i.e. Zi;j;k>;0), then the mean hi;j;k is increased by g for

the MLG that the plant is exposed afterwards according to the order si;j. If g>;0, then it is easier for

the subsequent strains to infect the plant, while if g>;0, then it is more difficult for the subsequent

strains to infect the plant.

The order si;j may be same for all plants in the patch, so that si;j ¼ si for all plants j in patch i.

The order si;j may be given a uniform distribution in the set of all permutations, or it may depend on

the strain prevalences �i.

Sampling model
The data considered here are the genotypes of sampled individuals. For a single patch i, if the mil-

dew is present in the patch, up to 10 infected plants are sampled and the MLGs infecting them

determined. The exact number of sampled plants depends on the number available in the patch; as

many infected plants are sampled as possible until 10 is reached. The observed genotype for the j th

sampled plant (note that here j goes from 1 to 10, not from 1 to Ni) in patch i is

Gi;j ¼
k if Zi;j;k>0 and Zi;j;l<0 for all l 6¼ k

0 Zi;j;l>0 for multiple l

�

In words, genotype Gi;j is the MLG index, if only one MLG is infecting the plant, and 0 if there is

co-infection by multiple MLGs. Note that the genotypes of the MLGs in a co-infection are not

observed.

We also use data on pathogen population size for patch i, AAi, measured as a categorical variable

(1 = less than 10 plants infected, 2 = 10-99 plants infected, 3 = 100-999 or 4 = 1000 or more) and

infection prevalence for patch i, RAi, (categories of the proportion of plants infected: 1 = 0-0.25, 2 =

0.25-0.5, 3 = 0.5-0.75 and 4 = 0.75-1).

Laine et al. eLife 2019;8:e47091. DOI: https://doi.org/10.7554/eLife.47091 12 of 17

Research article Ecology Evolutionary Biology

https://doi.org/10.7554/eLife.47091


Prior distributions
The model includes 2þ 3nx parameters, where nx is the number of covariates xi for patch i, including

constant. All of the parameters, or alternatively their logarithms, are given uniform prior distributions

on bounded intervals. For example, the variance parameter t2 has to be positive, so the uniform dis-

tribution is put on its logarithm. Additionally, some covariates might be restricted to have a positive

(negative) effect on some feature, in which case the uniform distribution is put on the logarithm of

the parameter (negative of the parameter).

Posterior distribution
The goal of the inference is to compute and sample from the posterior distribution of the parame-

ters given the observed data,

p g;t2;aN ;aM ;bjG;AA;RA
� �

As data is available for multiple years, we considered each of them separately. As covariates in xi

for patch i we included the area of the patch and P. lanceolata coverage. We included in the data

only patches, where these covariates are available, resulting in 3817 and 3615 patches for years

2012 and 2013, respectively. The covariates (constant excluded) were standardized to have zero

mean and unit variance across the patches. The total number of parameters in the model is 11.

Unless otherwise stated, the maximum number of MLGs in each patch was set to Mmax ¼ 30. Simi-

larly, the order si;j was given a uniform distribution in the set of all permutations independently for

each i and j.

Approximate bayesian computation
We use an Approximate Bayesian computation (ABC) approach (Beaumont, 2010) to make infer-

ence on the posterior distribution of the parameters. ABC refers to a class of computational meth-

ods for Bayesian statistics, where the computation of likelihood is replaced by simulations from the

model, and it is ideal for our purpose given that the dimension of the model is not fixed, because

the number of plants Ni and the number of MLGs Mi in patch i is allowed to vary. Moreover, as our

aim is to infer general patterns from the data in using information on for example the number of

MLGs in a particular patch, an ABC approach is an efficient strategy.

Parameter estimation is carried out using standard ABC techniques (Beaumont, 2010). Candidate

parameters are simulated from the prior, pseudo-datasets simulated for each parameter value and

summary statistics are computed from the datasets. The number of simulations in each analysis is

100,000. The threshold of accepting simulations is based on obtaining a fixed size set of accepted

values, that is the acceptance threshold is a quantile of the distances. We use 500 closest values in

the analysis.

Raw summary statistics are transformed using two transformations. First, the raw summary statis-

tics are brought closer to normality with one parameter (without shift) Box-Cox transformation

applied independently to each statistic. Many of the proposed summary statistics are zero-inflated,

which would make estimation of the parameter l of the Box-Cox transformation unreliable. Because

of this, fixed value l ¼ 0:5 is used. After the Box-Cox transformation, the summary statistics are cen-

tered and standardized to have unit variance. Second, the summary statistics are transformed with

partial least squares (PLS) to produce orthogonal summary statistics while maximizing covariance

with the parameters (Wegmann et al., 2009). The PLS is applied to all of the simulated parameter

values and datasets. If applied to a set of summary statistics of dimension k, the maximum number

of transformed statistics is k-1. In the analyses we use dimensionality of 20, which is larger than the

number of parameters, but still substantially lower than the number of original summary statistics.

Finally, local linear regression adjustment is utilized for the parameters in the set of accepted values

(Beaumont et al., 2002). The parameter values are transformed based on the distances of the sum-

mary statistics to the summaries of the observed data.

Summary statistics
We use the following raw summary statistics (36 in total):

. Number of patches with infected plants.
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. Number of patches with coinfected plants.

. Mean and standard deviation of pathogen population size categories.

. Parameter estimates and standard deviation of residuals from linear regression of covariates
against the pathogen population size category.

. Mean and standard deviation of the disease prevalence categories.

. Parameter estimates and standard deviation of residuals from linear regression of covariates
against the disease prevalence category.

. Parameter estimates and standard deviation of residuals from binomial regression of covari-
ates against the number of infected plants in a patch.

. Parameter estimates and standard deviation of residuals from binomial regression of covari-
ates against the number of coinfected plants in a patch.

. Parameter estimates and standard deviation of residuals from Poisson regression of covariates
against the number of observed MLGs in a patch.

Effect of the modeling assumptions
To assess the robustness of the results, we tested the effect that the modeling assumptions have on

the posterior distributions of the parameters. Studying all aspects of the model is obviously not pos-

sible, but we chose two assumptions, namely the order si;j in which the mildew strains try to infect

the plant, and the maximum number of strains in a patch Mmax.

We used three different distributions for the order si;j:

1. Uniform distribution among all permutations of Mi items.
2. Fixed order based on decreasing �i;ks, i.e. MLGs with highest prevalences being first to infect.

3. Simulate first di;j ¼ di;j;1; . . . ; di;j;Mi

� �

from Dirichlet distribution with parameters

klogit�1 �i;k

� �

and choose the order based on decreasing values of di;j;k.

The last distribution is intermediate between the first two, and the value of k dictates how much

the prevalences of individual MLGs affect the order. If k is close to 0 then the distribution is close to

uniform, and if k goes to infinity the order is the same as second choice above. We use a value

k ¼ 5 in the analyses.

We analyzed the year 2012 data four times with different assumptions. For the first three we used

Mmax ¼ 30 and each of the distributions shown above for si;j. For the last one we set Mmax ¼ 100 and

the uniform distribution for si;j. In each analysis we performed 50,000 simulations and used 500 clos-

est for the posterior.

Accuracy of inference
As a measure of goodness of fit the root mean squared error (RMSE) was computed independently

for each parameter. RMSE for a parameter � is computed as

RMSE �jAð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N j2A

X

�j� �t
� �2

s

;

Data availability and repeatability of analysis
All data and scripts used to perform the analyses presented in this paper are available in the git

repository at https://github.com/ComputerBlue/FungalSex (Laine, 2019; copy archived at https://

github.com/elifesciences-publications/FungalSex).

Acknowledgements
We would like to acknowledge the numerous students who have been involved in the survey and
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Salathé M, Kouyos RD, Regoes RR, Bonhoeffer S. 2008. Rapid parasite adaptation drives selection for high
recombination rates. Evolution 62:295–300. DOI: https://doi.org/10.1111/j.1558-5646.2007.00265.x

Saleh D, Xu P, Shen Y, Li C, Adreit H, Milazzo J, Ravigné V, Bazin E, Nottéghem JL, Fournier E, Tharreau D. 2012.
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