
Department of Computer Science

Series of Publications A

Report A-2019-5

Initiating the Transition towards Continuous
Experimentation: Empirical Studies with Software

Development Teams and Practitioners

Sezin Gizem Yaman

Doctoral dissertation, to be presented for public examination with
the permission of the Faculty of Science of the University of
Helsinki, in Room 302, Athena Building, University of Helsinki,
on the 25th of October, 2019 at 12 o’clock noon.

University of Helsinki

Finland

Supervisors
Tomi Männistö and Fabian Fagerholm, University of Helsinki, Finland

Pre-examiners
Hakan Erdogmus, Carnegie Mellon University Silicon Valley, United States
Eric Knauss, Chalmers University of Technology, University of Gothenburg,
Sweden

Opponent
Brian Fitzgerald, University of Limerick, Ireland

Custos
Tomi Männistö, University of Helsinki, Finland

Contact information

Department of Computer Science
P.O. Box 68 (Pietari Kalmin katu 5)
FI-00014 University of Helsinki
Finland

Email address: info@cs.helsinki.fi
URL: http://cs.helsinki.fi/
Telephone: +358 2941 911

Copyright c© 2019 Sezin Gizem Yaman
ISSN 1238-8645
ISBN 978-951-51-5542-9 (paperback)
ISBN 978-951-51-5543-6 (PDF)
Computing Reviews (1998) Classification: D.2.m, K.6.0, K.6.3 K.7.2, K.7.4
Helsinki 2019
Unigrafia

Initiating the Transition towards Continuous Experimentation:
Empirical Studies with Software Development Teams and
Practitioners

Sezin Gizem Yaman

Department of Computer Science
P.O. Box 68, FI-00014 University of Helsinki, Finland
Sezin.Yaman@helsinki.fi
http://www.linkedin.com/in/sezin-yaman/

PhD Dissertation, Series of Publications A, Report A-2019-5
Helsinki, September 2019, 81 + 90 pages
ISSN 1238-8645
ISBN 978-951-51-5542-9 (paperback)
ISBN 978-951-51-5543-6 (PDF)

Abstract

Software experiments are presently often used by big technology pioneers, such as
Microsoft, Facebook and Google, in order to learn about their users and to guide
their research and development activities. Continuous experimentation (CE) is
reported to be an integral part of software development in these organisations,
however, how they transitioned to the approach is not publicly shared. Therefore,
there is a lack of guidance for other organisations that are willing to adopt CE.
In the current competitive markets, investing time and money in a new approach
might be risky for these organisations, especially if they do not know how to
initiate this transition process.

This dissertation focuses on how organisations can initiate the transition towards
CE, i.e., an approach to enhance development decisions by running experiments
in an iterative and sustainable fashion. The dissertation was designed to acquire
descriptive and observational knowledge through empirical studies and was con-
ducted in three main phases. First, we designed and ran multiple-case studies to
investigate how CE can be introduced to existing software company development
teams, who want to run their first systematic experiments. We extracted descrip-
tive knowledge from the introduction process and composed lessons learned to
act as guidelines. In the second phase, we conducted a survey study with prac-

iii

iv

titioners from four Nordic software companies, in order to better understand
their attitudes and perception towards experiment-driven development, user in-
volvement and ethics. Examining the results at role-to-role levels gave us an
understanding of commonalities and distinctions stemming from different job
functions. Furthermore, we identified patterns from the data that describe what
trends exist across the dataset with respect to experiment-driven software de-
velopment. Finally, in the last phase of the study, we conducted a single-case
study with a mobile gaming company to investigate how CE functions as an
organisational mechanism throughout the development life-cycle.

The findings show that transitioning towards CE is a learning process that can
be facilitated well by guidance, utilising existing resources and starting with
small experiments with potentially enormous impact. Furthermore, by investi-
gating the point of view of practitioners, we observed that software experiments
represent different concepts, for instance, A/B tests and user interviews. We
also observed that the role of the practitioner has a big impact not only on
how experiments are understood, but also how individuals perceive the ethics in-
volved in the experiments. For example, while managers are more cautious about
company-customer relationships, UX designers were found to allow exceptions to
user notification during experiments. In addition, we discovered that companies
might understand and adopt experiment-driven development differently, for in-
stance, influenced by their business contexts. Lastly, by examining a company’s
CE practices, we found that experiments can take different forms given the de-
velopment stage, and the organisational mechanism can be established to fit both
the needs of the business domain and organisational goals. One of the biggest
challenges of adopting CE, inaccessible real users, can be overcome with alter-
native methods, such as proxy users, especially early in the development, when
experiments are important in determining product value.

Highly competitive markets can put pressure on organisations to avoid risks and
costs when adopting a new approach. In this dissertation, we learned that by and
large, software organisations and development teams can initiate their transition
towards CE in an efficient and economical way. Furthermore, we conclude that
the transition is a learning process that improves with practice and has to adapt
to the organisational goals and contexts. The influence of human factors, such
as the finding that individual perception of experiments and ethics is correlated
with job functions indicates that CE is a multi-disciplinary research field, where
individuals should be studied as well as experimentation processes. Software

v

engineering research needs further studies to validate the findings in different
contexts.

Computing Reviews (1998) Categories and Subject
Descriptors:
D.2.m [Software Engineering]: Miscellaneous
K.6.0 [Management of Computing and Information Systems]: General –

economics
K.6.3 [Management of Computing and Information Systems]: Software

Management – software process, software development
K.7.2 [The Computing Profession]: Organisations
K.7.4 [The Computing Profession]: Professional Ethics

General Terms:
experiment-driven software development, continuous experimentation, user
involvement, software experiments, human factors, ethics

Additional Key Words and Phrases:
empirical software engineering, data-driven decision-making, data-driven
software development, agile software development, controlled experiments

Acknowledgements

“. . . if I’d stay as I was before I was taken prisoner or go through it all again, I’d
say for god’s sake let me be a prisoner again. . . . There is a great deal, a great
deal still to come”. — Pierre Bezukhov, War and Peace

My adventures in Finland started in 2011 when I came to pursue a master’s de-
gree, which extended to doctoral studies. This journey was not an easy one, and I feel
tremendous gratitude for many people I have met along the way.

I want to thank my supervisor Prof. Tomi Männistö, for his honest guidance, for
believing in me and my research, and for motivating me to follow exciting ideas. Thank
you for the enormous assistance and encouragement you provided. I want to thank
my second supervisor, Dr. Fabian Fagerholm, who has been an inspiring mentor and
compassionate friend, and without whom this dissertation project would not have been
possible. I learned a ton from our conversations about the philosophy of science, about
human intelligence, and about what makes disciplined, capable research scientists.

I want to thank my examiners, Hakan Erdogmus and Eric Knauss, for the time they
spent reviewing my research and for the insights and perspectives they conferred upon
me, and which have in turn strengthened this dissertation. I want to thank Casper
Lassenius, for the valuable feedback he gave in the doctoral symposiums. I also want
to thank my opponent, Brian Fitzgerald, for giving me the opportunity to present my
research.

I have many colleagues and friends to thank in University of Helsinki. I must first
thank Prof. Tommi Mikkonen, also for believing in me, supporting and advising me
especially in the later stages of my PhD. By his encouragement, I pursued an internship
at Mozilla Corporation, which proved a fantastic experience. I thank Prof. Dr. Jürgen
Münch, for generously supporting my research. Thanks to him, I have better understood
the importance of research collaborations, and enjoyed writing articles that have high
scientific impact. I want to thank my former colleagues Leah Riungu-Kalliosaari and
Myriam Munezero for all their patience and support. Besides collaborating on interesting
research subjects, I have learned so much from them about life and strengths of women,
while sharing so many memories altogether. I thank my former colleagues and co-authors,
including Petri, Simo, Hanna, A-P, Niko, Juha, Francois and Hadi. We had many
scientific, intellectual and fun conversations over the last years, it made me gain new

vii

viii

perspectives while enjoying my time at the department. I am also grateful to Tiina
Väisänen and Pirjo Mulari, and the rest of the administrative team of Kumpula, for all
the understanding and help given, countless times.

I would also like to thank the industry professionals I met during our research col-
laborations, including Mika Aaltola and Christina Palmu from Ericsson; Riku Suomela
from Next Games; and David Bryant from Mozilla Corporation. I extend my thanks to
the numerous practitioners in these companies who have generously shared their time
and experiences. Also, I am so grateful to gain the life-long amazing friends, Nancy and
John, during my internship at Mozilla. Thanks guys for making me feel like home at
California. Furthermore, I also owe my thanks to Dr. Anton Antonov, whom I met at
University of Oxford during my summer school and whom I learned so much about Data
Science over the last two years, and hopefully will still learn a lot.

I am especially thankful to Sasu Tarkoma, Petri Myllymäki and Pirjo Moen for all
the opportunities and administrative support. This work has been supported by the
Department of Computer Science, University of Helsinki, DoCS (Doctoral Programme
in Computer Science), HIIT (Helsinki Institute for Information Technology) and Tekes –
the Finnish Funding Agency for Technology and Innovation, as part of the N4S Program
of DIMECC (Finnish co-creation platform for digital transformations). Furthermore,
this work was supported during 2016-2018 by HICT DoCS (Helsinki Doctoral Education
Network in Information and Communications Technology) grant and by the Academy of
Finland project, xCESE (project number 317657), during the last months. Finally, this
work was rewarded in 2017 by the Nokia Foundation scholarship.

There are also close people who were very supportive during my PhD journey. I
would like to share my warmest gratitude with Julia, Oulia and Selma, who have been
also living their PhD journeys. We shared a lot altogether and had so much fun. I
especially want to thank Ville for all the times and experiences we had together, in
which I was encouraged to rediscover my life more honestly, while getting closer to the
path I strive for. I eagerly look forward to new stories, to fill us with awe, love and joy.

Finally, I want to thank my parents, for the boundless love and patience they have
shown me during my PhD journey. I want to thank my little sister, who is a big help in
countless ways, wittingly and unwittingly, and from whom I draw strength.

To more adventures!

Helsinki, September 2019
Sezin Gizem Yaman

List of Original Articles

This dissertation is based on the following peer-reviewed original publications.
The publications are also referred as Articles I–V in the text. Below the publica-
tion list, the contributions of the present author are described. The publications
are reproduced with permission from the copyright holders at the end of the dis-
sertation.

Article I Yaman, S. G., Munezero, M., Munch, J., Fagerholm, F.,
Syd, O., Aaltola, M., & Männistö, T. (2017). Introduc-
ing continuous experimentation in large software-intensive
product and service organisations. In Journal of Systems
and Software, JSS, 133, (pp. 195-211).

Article II Yaman, S. G., Fagerholm, F., Munezero, M., Münch, J.,
Aaltola, M., Palmu, C., & Männistö, T. (2016). Transition-
ing towards continuous experimentation in a large software
product and service development organisation – a case study.
In International Conference on Product-Focused Software
Process Improvement (pp. 344-359). Springer, Cham.

Article III Yaman, S., Fagerholm, F., Munezero, M., Mäenpää, H.,
& Männistö, T. (2017). Notifying and Involving Users in
Experimentation: Ethical Perceptions of Software Practi-
tioners. ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM 2017) (pp.
199-204). IEEE.

ix

x List of Original Articles

Article IV Yaman, S., Fagerholm, F., Munezero, M., Mikkonen, T.,
& Männistö,T. (2018). Patterns of User Involvement in
Experiment-driven Software Development. In Information
and Software Technology, IST, Journal. (In revision)

Article V Yaman, S., Mikkonen, T., & Suomela, R. (2018). Contin-
uous Experimentation in Mobile Game Development. In
44th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA 2018) (pp. 345-352). IEEE.

The author was the main contributor in all of the articles. For Articles I
and II, the author carried out the study inspection, design and execution in
collaboration with the rest of the authors, while contributing to major parts of
the study analysis and reporting. For Articles III and IV, the author developed
the initial idea and carried out the main parts of all study phases, from study
design to reporting. For Article V, after the second author initiated the study,
the author coordinated it and was the main contributor in study design, analysis
and reporting. None of the articles have been used in previous dissertations.

Contents

List of Original Articles ix

1 Introduction 1

1.1 Motivation . 2

1.2 Research Questions . 4

1.3 Overview of the Research Process 6

1.4 Contributions . 7

1.5 Dissertation Structure . 8

2 Previous Work 11

2.1 User Involvement in Software Development 12

2.2 Software Experimentation . 15

2.3 Existing Experimentation Models and Continuous Experimentation 19

2.4 Data Collection and Ethics in Software Experimentation 23

2.5 Terminology . 26

3 Research Design 29

3.1 Phase 1: Multiple-Case Study . 30

3.2 Phase 2: Survey Study . 33

3.3 Phase 3: Single-Case Study . 36

4 Transitioning towards Continuous Experimentation 39

4.1 Introducing Continuous Experimentation 40

4.2 Practitioners’ Perspectives and Attitudes 43

4.3 Continuous Experimentation as an Organisational Mechanism . . 48

4.4 Summary of the Findings across Study Phases 50

5 Discussion 53

5.1 Scientific Implications . 53

xi

xii Contents

5.1.1 Initiating the Transition Systematically 54
5.1.2 Human Factors . 57
5.1.3 Operating Experiments and User Involvement 60

5.2 Practical Implications . 62
5.3 Threats to Validity and Limitations 63
5.4 Future Work . 66

6 Conclusions 69

References 73

Chapter 1

Introduction

Understanding user needs and behaviour and learning from them are essential
parts of software development (Williams and Cockburn, 2003; Lagrosen, 2005;
Laage-Hellman et al., 2014). For almost two decades now, agile software method-
ology has already demonstrated the benefits and acquired success from faster user
feedback and user involvement in the development processes (Dingsøyr and Lasse-
nius, 2016). Software engineering research suggests that software experiments can
be used as a means for user involvement and to steer the direction of research and
development (R&D) (Bosch, 2012; Olsson et al., 2012; Yaman et al., 2016). Ex-
periments can therefore serve as an evidence-based decision-making mechanism
for software development organisations.

The benefits of software experiments have been reported and acknowledged
both by the academia (Olsson et al., 2012; Fagerholm et al., 2014; Fabijan et al.,
2015; Madeyski and Kawalerowicz, 2017) and companies, such as Google (Tang
et al., 2010), Facebook (Bakshy et al., 2014) and Microsoft (Kohavi et al., 2013;
Fabijan et al., 2017a). Despite the increasing attention to the subject, there is a
lack of knowledge on how software organisations transition towards experiment-
driven development in their development activities. One particular question is
how such a transition can be efficiently enabled for existing organisations that
are willing to adopt the approach, that are at the same time constrained by the
time and cost to be invested in in today’s competitive markets.

This dissertation investigates how existing software development organisa-
tions initiate continuous experimentation (CE), that is, a development approach,
where software experiments are used to inform R&D decisions in an iterative and
sustainable fashion. This requires an understanding of organisational goals and
existing resources as well as the practitioners’ ongoing commitments and their

1

2 1 Introduction

perceptions on software experiments in the first place. Hence, this dissertation
explores how development teams can conduct their first systematic experiments
in accordance with their organisational context and goals. In addition, software
experimentation requires various other considerations, such as user ethics and
privacy. This dissertation also seeks to acquire software practitioner viewpoints
on user data collection with respect to ethical issues. The findings of this disser-
tation contribute to the empirical knowledge on how development teams and soft-
ware development organisations can facilitate the transition towards experiment-
driven software. Eventually, CE can be achieved by establishing an organisational
mechanism that captures the learning from the first systematic experiments and
scales them up to build the necessarily skills and infrastructure.

1.1 Motivation

Lagrosen (2001) states that: “To give maximum value to the customers it is cru-
cial that the companies have an in-depth understanding of what customers need
and want”. Agile development has been emphasizing user involvement through-
out the software development life-cycle, facilitating feedback and reflection, which
would lead to a better understanding of their needs and behaviours (Boehm and
Turner, 2003; Dingsøyr et al., 2012). Recent research studies reveal that one of
the common ways of collecting larger amount of user feedback is through exper-
iments, where particular ideas, concepts and products can be tested with users
(Bosch-Sijtsema and Bosch, 2015).

Software experiments in the form of online controlled experiments, often re-
ferred to as A/B testing, have been repeatedly reported by technology forerunners
over the last two decades (Kohavi et al., 2013); for instance, Microsoft is reported
to run tens of thousands of online controlled experiments a year (Fabijan et al.,
2017a). However, online controlled experiments require web-facing product in-
terfaces, where the experiments are designed and ran, which often happens at
the post-deployment stage of a software product or service (Mattos et al., 2018).
Furthermore, these technology forerunners do not explicitly share how they tran-
sitioned to the capability of running software experiments continuously. In other
words, existing research indicates that a particular type of experimentation, on-
line controlled experimentation, has been overwhelmingly reported, yet there
exists relatively little information on how the transition to experiment-driven
development has been or can be achieved.

1.1 Motivation 3

Approaches where product decisions are guided based on experiments involv-
ing users, while varying in detail and implementation, can be termed experiment-
driven software development. Academia has been increasingly emphasizing the
need to transition toward experiment-driven development. Olsson et al. (2012)
describe that the next stage of companies transitioning further from agile devel-
opment towards continuous deployment involves using experimental systems in
their R&D. There are several experimentation models suggested, such as the in-
novation experiment systems model (Bosch, 2012) and the RIGHT model (Fager-
holm et al., 2017) for software development, however, these models and related
research also do not provide direct insights into how to initiate the transition
towards experiment-driven development and how to run the first systematic ex-
periments.

In order to address these research gaps, this research aims to study how ex-
isting organisations could initiate the transition towards CE in a systematic way.
Such a transition requires an examination of organisational goals on experiment-
driven development, as well as and practitioner standpoints, since organisational
changes often start at the individual level (Callan, 1993). In this dissertation,
along with addressing the practitioner point of view on software experiments, we
investigate how the approach can be introduced to development teams, and how
CE can work as an organisational mechanism, adapting to the organisational
goals and necessities of the software development life-cycle.

Furthermore, as experiments are used to gather data from software product
and service users, they are subject to several other considerations, such as ethics
and privacy. For instance, in 2014, Facebook ran an experiment with thousands
of their users to test how emotional contagion occurs when their News Feed con-
tent is manipulated, and they found out that users’ mood can be manipulated
(Kramer et al., 2014). The study raised serious questions about user privacy
and ethical implications, when such experiments are performed without users’
informed consent (Agarwal and Dhar, 2014). A similar situation in early 2018
concerned more than 50 million Facebook users, as their information was used to
build prediction software by a private company targeting voters in the US presi-
dential election1, indicating that such user information collected through exper-
iments can lead to very grave implications. Motivated by these considerations,
in this dissertation, we also seek to examine software practitioner attitudes and
ethical views with respect to user data collection through experiments. Thereby,

1https://www.theguardian.com/news/2018/mar/17/cambridge-analytica-facebook-
influence-us-election/

4 1 Introduction

Figure 1.1: The scope of this research covers the areas depicted as NE (no systematic
experimentation) and FE (first experiments). In particular, the focus of this dissertation
is on how the transition from NE to FE can be initiated. Area CE represents having the
capability of CE.

we can better comprehend software experiments as targeted at human subjects,
given that there is not much existing research.

1.2 Research Questions

CE is a development approach that requires various skills and infrastructure to
run software experiments in an iterative and sustainable fashion. Therefore, time
and investment is expected from organisations to build such capability. Figure
1.1 above portrays the scope of this dissertation. Area NE represents the state
in which the software teams in the organisations do not have prior experience
with systematic experimentation. Area FE represents the state in which the
transition to continuous experimentation has begun, and the first systematic
experiments are conducted. In particular, the scope of this dissertation is to
study the transition from NE to FE. Once the learning from the first systematic
experiments is captured, and the CE approach becomes an integral part of the
development activities, CE, continuous experimentation, can be achieved. We
consider the aforementioned technology forerunners (e.g., Microsoft, Facebook
and Google) to reside in the CE area.

In order to study how software development organisations can transition to-
wards CE, first, we seek to observe how software development teams can run
their first systematic experiments, given that the teams do not have prior expe-
rience with CE. In particular, we are interested in understanding how CE can
be introduced to the software development teams systematically to start with.
Furthermore, we aim to study the common steps that could be taken to run

1.2 Research Questions 5

the first systematic experiments with software development teams; conversely,
we also aim to identify the dissimilarities emerging from different contexts. To
examine this, we form the first research question as follows:

RQ1: How can continuous experimentation be introduced in software develop-
ment teams?

Second, we aim to gain a deeper understanding of experiment-driven develop-
ment and user involvement in experiments from the software practitioner point
of views. We intend to investigate existing practitioner development activities
with respect to experiment-driven software development. The current state of
development and user involvement of software companies can guide how the tran-
sition towards CE could be enabled. In particular, existing resources, the tools
and methods that practitioners prefer to use in their development activities and
how user involvement and ethics in experimentation perceived by the practition-
ers can provide further insights into understanding the transition. Motivated by
these, we ask the second research question:

RQ2: What perspectives and attitudes do practitioners at organisations exhibit
with respect to experiment-driven development?

Third, we propose to enquire into how the practice of CE can extend over
an organisation and adapt to its context and goals. The necessities of a business
domain, organisational needs and goals to adopt the experiment-driven devel-
opment and typical life-cycle of product development might affect how CE is
practised. This lead us to form the following question:

RQ3: How can a continuous experimentation mechanism be established in an or-
ganisation, adapting to the business domain and organisational goals?

With these three research questions, we study how existing organisations can
initiate the transition towards CE. In particular, RQ1 looks at the first steps
that can be taken to conduct systematic experiments with development teams,
while RQ2 to aims at getting a deeper understanding of the practitioner points
of view in the approach in general. Furthermore, RQ3 intends to comprehend
how CE can function as an organisational mechanism, that is, in line with the
organisational goals and the needs of the business domain.

6 1 Introduction

1.3 Overview of the Research Process

In order to seek answers to our research questions, we designed the study in
three research phases as depicted in Figure 1.2. In the first phase of the study,
we sought answers for RQ1, which concerned the introduction of CE to software
development teams. In this phase, we designed and conducted multiple-case
studies in two software-intensive development organisations. We initiated the
CE introduction process by running the first systematic experiments with the
development teams. We analysed the results and obtained descriptive knowledge
on the introduction of CE, including the challenges faced and the mitigation
strategies. The findings were reported in Articles I and II.

Figure 1.2: The relationship between the research questions and the publications as
well as the study focus of each phase.

Furthermore, Phase 2 was designed to address RQ2. In this phase, we de-
signed and ran a questionnaire to examine how practitioners at software devel-
opment organisations understand and perceive experiment-driven development
and user involvement. Both quantitative and qualitative data analysis results re-
vealed research findings obtained from different practitioner roles. Practitioners’
perception of ethics was separately reported in Article III, and full survey results

1.4 Contributions 7

Table 1.1: The relationship between the original articles and the research questions.
(X indicates that the article addresses the research question.)

RQ1 RQ2 RQ3

Article I X
Article II X
Article III X
Article IV X
Article V X

were reported in Article IV. Lastly, in order to address RQ3, we designed Phase
3 of the study, in which we conducted a single-case study with a mobile gaming
company, where the CE was an already established part of the software devel-
opment process. We observed their typical development activities with respect
to software experiments and deducted knowledge on how the contextual factors,
such as the business domain and organisational goals, affect CE. The findings
were reported in Article V.

Table 1.1 further summarises the relationship between the research questions
and the publications in which they were addressed, in a tabular form. RQ1 was
addressed in Articles I and II, RQ2 was addressed in Articles III and IV, and
RQ3 was addressed in Article V.

1.4 Contributions

Each article provided several novel contributions to software engineering research,
which can be summarised as follows:

• Initiating the transition systematically. Developing the continuous exper-
imentation capability in software development organisations is a learning
process, which can be supported by a systematic introduction approach,
utilising existing resources. We studied the CE introduction process with
development teams from two organisations and captured the common and
distinctive steps taken as well as challenges faced. Our findings offer insights
for development teams that want to conduct experiments systematically.

• Understanding existing resources and capabilities. While studying the adop-
tion of the CE approach, it is important to understand the current resources

8 1 Introduction

and capabilities available to experiment with users in the organisations as
well as the attitudes with respect to experiments in general. For this goal,
we designed and ran a survey, inviting practitioners in three major func-
tional roles: developers, managers and UX designers. We found prominent
differences in how software experiments are understood and practised by
these roles. Furthermore, we inferred six different patterns in the total-
ity of the responses that describe experimentation and user involvement.
Our patterns can be used by practitioners to reveal existing trends in their
organisation.

• Understanding the ethics of experimentation. We put special emphasis on
understanding practitioner perceptions and the attitudes towards ethical
issues that must be taken into account when practising experimentation
with users as a development strategy. With the survey study, we investi-
gated how practitioners experience the need to notify users when involving
them in experimentation as well as the trustworthiness and resources re-
quired for experiments. We found out that experiences and daily activities
associated with different roles have direct influence on how ethical issues
are perceived. Organisations need to address such differences in ethical is-
sues, especially if there is no common understanding on user consent, data
collection and processing.

• CE as an organisational mechanism. In order to adopt CE, the business
context has to be considered, along with the organisational goals. We
learned from our case study with a mobile game development company that
CE works as an organisational mechanism, adapting to the needs of each
development stage and the objectives of the game and closely following the
competitive game market. In the case study with the telecommunication
network company, assessing the multi-layered structure of users and cus-
tomers led us carefully target the experimentation on a specific user group.
The business context influences both the technicality and the cost of the
first experiments. Setting organisational goals to adopt the CE approach
that fits the business context is one of the keys to success.

1.5 Dissertation Structure

The rest of the dissertation is structured as follows: In Chapter 2, we look at the
previous work from different perspectives, including user involvement in software

1.5 Dissertation Structure 9

engineering research and practice, the history of software experiments and how
the body of knowledge accumulated over time, existing experimentation systems,
models and human factors involved in experiments, such as ethics. In this chap-
ter, we also set the terminology involved in this research. Following that, we
elaborate on the research design and outline the rationale behind the different
research methods involved in this dissertation, including case studies and the
survey study in Chapter 3. Next, in Chapter 4, we move to overview the articles
involved in this dissertation and draw a picture of how they are connected in
addressing the research questions posited earlier in the dissertation. The disser-
tation comes to an end with an extensive discussion on the research findings and
both scientific and practical contributions in Chapter 5. Furthermore, we also
propose open questions, which will hopefully lead to future work, followed by the
Conclusion chapter of the dissertation (Chapter 6).

Chapter 2

Previous Work

Software companies seek efficient methods to assess and evaluate user value and
the success of their products (Tichy et al., 2015). Collecting product usage data
and user feedback to continuously guide decision-making processes is a practice
that has gained increasing attention especially in the last decade (Fabijan et al.,
2017a). Big technology forerunners like Microsoft (Fabijan et al., 2017a), Google
(Tang et al., 2010) and many others are reported to collect data from their
users en-masse and are known to run hundreds of experiments to guide R&D
decision-making (Kohavi and Longbotham, 2017). With continuous experimen-
tation (CE), companies can evaluate and prioritise their development decisions,
even before fully implementing features in their software product or services.
Therefore, the cost of implementation would be avoided in case of features or
products having no confirmed value (Mattos et al., 2018).

The benefits of experimentation are recognised both by academia and software
industry research, however, there is a lack of knowledge on how software organ-
isations can adopt the approach. In fact, Madeyski and Kawalerowicz (2017)
argue that few companies are ready to adopt software experimentation, since
experimentation is often perceived as difficult to conduct and expensive in terms
of both money and time. In addition, we argue that software organisations might
not know how to effectively transition towards experiment-driven development
in such competitive markets, given the budget and time constraints.

With software experiments, users can be involved in shaping the software
product and services by being experiment subjects. Involving users in software
development has a long history and has emerged in various sub-disciplines of soft-
ware engineering. For instance, participatory design has been an important field
of research, where software users make effective contributions to reflect their

11

12 2 Previous Work

needs and perspectives (Muller et al., 1997). In recent years, software exper-
imentation has been studied as a means for user involvement (Bosch-Sijtsema
and Bosch, 2015) and R&D – as an experimentation system have been foreseen
as a new stage of agile development (Olsson et al., 2012). Besides, several exper-
imentation models were proposed, and the elements of experiments were studied.
Related work on these research sub-disciplines and existing body of knowledge
help us better understand the CE approach and its adoption.

In this chapter, we will first look at the general user involvement research in
software development and how software experiments facilitate user involvement
(Section 2.1). Next, in Section 2.2, we look at the history of software experi-
mentation and how it has evolved along with the technological advancements. In
Section 2.3, we focus on existing experimentation models and systems that are
suggested by previous academic and industry research and investigate how the
CE approach has been defined and what it represents. Following that, in Section
2.4, we look at the body of knowledge on user data collection and ethics. We
pay especially attention to the ethical issues involved in user data collection via
experiments, as it is a prevalent topic for both technology providers and its users.
Lastly, in Section 2.5, we set the terminology that is used in this dissertation.

2.1 User Involvement in Software Development

Organisations have to develop ways to understand users and learn about them
to survive and compete in today’s fast-changing software development environ-
ments (Tichy et al., 2015). It is important to reach out to users and learn from
them, while utilising rapid and iterative development cycles rather than waterfall-
style interactions between stages such as product development followed by cus-
tomer feedback processes (Olsson et al., 2012; Fabijan, 2016; Ebert et al., 2016).
Many companies transitioned towards agile development, which champions speed
and flexibility in development and highlights the importance of customer feed-
back (Highsmith and Cockburn, 2001). Furthermore, other approaches, such as
Lean Startup (Ries, 2011), Customer Development (Blank, 2013), Lean Analyt-
ics (Croll and Yoskovitz, 2013) and DevOps (Bass et al., 2015), put emphasis
on collecting data from users and continuously learning from them in rapid cy-
cles. Reviewing software engineering research, where users are involved in the
development, can help understand how CE facilitates user involvement. User
involvement has been widely studied in software engineering research in various
approaches and research sub-disciplines such as participatory design, user-centric

2.1 User Involvement in Software Development 13

design, usability engineering, human computer interaction, requirements engi-
neering and information systems (Abelein and Paech, 2015; Fabijan et al., 2015).
For instance, in participatory design, direct and active involvement of people
in co-design is emphasized, having people actually using the software product
most of the time (Hess et al., 2008). While the emphasis in participatory de-
sign is on democratic participation and skill enhancement, usability engineering
is the process of defining, measuring and improving the usability of products,
and it overlaps with user-centric design principles (Kujala, 2003). Gould and
Lewis (1985) proposed three main principles of user-centric design in the 80’s as:
1) early focus on users and tasks, 2) empirical measurement, and 3) iterative
design. Similarly, human computer interaction seeks to improve the usability of
human-computer interfaces (Grudin, 1992). These principles are widely followed
and have also inspired other development approaches. They could be used as
instantiations of or parts of an experiment-driven software engineering approach.

Furthermore, requirements engineering research aims at maximizing the value
of the release of software, while accommodating a collaborative approach with
users in order to involve their perspectives throughout the development (Barney
et al., 2008); therefore, user requirements could be understood better. Informa-
tion systems research also has a long history with the focus of user involvement
and its effects on system success with insights from organisational and social
contexts that influence user behaviour (Franz and Robey, 1986; Henfridsson and
Lindgren, 2010). Iivari (2004) likewise emphasizes that all user involvement ap-
proaches in software engineering research aims at a better understanding of the
user by involving them in software development; however, the approaches might
differ in why users should be involved, how to involve them and how to facilitate
the involvement.

User involvement can denote a broad understanding from active user partic-
ipation, as being common in participatory design and requirement engineering,
to the involvement of the users as information providers through observation, as
being more common in fields such as user-centric design and usability engineer-
ing (Iivari, 2004). Bosch-Sijtsema and Bosch (2015) define two main categories
of user involvement based on user data collection methods used in their studies:
1) conscious input, and 2) uninformed user input. In the former category, users
are actively and consciously involved in providing input. Interviews, surveys,
ethnographic studies are some examples of this category. In the latter category,
users can be unaware of an ongoing study to test a feature or a product. Tests
and experiments, where user behaviour is observed and data is collected, are
some examples of this category. However, some data collection methods, such as

14 2 Previous Work

simulations and ethnographic studies, can be used to gather both conscious user
input and uninformed input based on observation. Bosch-Sijtsema and Bosch
(2015) made their user input classification based on their study on data-driven
innovation processes in software and software-intensive companies, and the find-
ings provide insights into user involvement in experimentation, which we will
further discuss in Section 2.4.

Especially with the transition towards agile software development, intensive
and direct user communication has been encouraged, and new concepts, such
as prototyping, have gained increased attention for involving users in software
development (Kautz, 2010). Agile development can be seen as a reformulation of
iterative and incremental software development (Larman and Basili, 2003) with
an added emphasis on user involvement. User involvement and value creation
were also emphasized with the introduction of Lean software development (Pop-
pendieck and Poppendieck, 2003) that also highlights the importance of elim-
inating waste. Furthermore, Ries (2011) introduces the ‘Build-Measure-Learn’
(BML) methodology in his Lean Startup approach where user behaviour is mea-
sured using an experimental instrument, and decisions are made based on the
learning. The BML loop lies at the core of various experimentation models (see
Section 2.3).

Finally, the means of involving users in software development processes has
been transforming in attempts to adapt to new development approaches. In
recent years, experimentation has been reported to be commonly used to collect
user data and feedback. For instance, in their systematic literature review on
customer feedback and data collection techniques, Fabijan et al. (2015) report
that experiments, such as A/B tests, are a common data collection technique,
especially in the Web 2.0 domain and software-as-a-service (SaaS). Yaman et al.
(2016) also report in their literature review that experiments and tests are one of
the most frequently used ways of user data collection methods, especially since
2009. They also remark that the collected data is most often utilised for decision-
making. It is important to remember that software experiments have a long
history, which we will look into in the next section; however, experiments being
used as a novel means for user involvement in the recent development approaches
is becoming increasingly popular, and consequently, the research available is only
increasing.

2.2 Software Experimentation 15

2.2 Software Experimentation

Shadish et al. (2002) say that experiments have strength in providing causal de-
scription, that is “describing the consequences attributable to deliberately vary-
ing a treatment”. The desire for causal explanation motivates researchers to
investigate cause-effect relationships in software engineering research. Hannay
et al. (2007) emphasize that in software engineering, exploring these relation-
ships with experiments leads to the development of scientific theories, which is
the foundation to science. However, there is a difference between experimentation
in software engineering research and experimentation in software engineering in
practice.

The software engineering community has emphasized the need for empirical
studies to develop or improve processes, methods and tools for software develop-
ment and maintenance since the 70’s (Basili, 1996; Tichy, 1998; Basili et al., 2002;
Kitchenham et al., 2002). Kitchenham et al. (2004) coined the term evidence-
based software engineering and offered the following definition: “to provide the
means by which current best evidence from research can be integrated with prac-
tical experience and human values in the decision-making process regarding the
development and maintenance of software”. They use an analogy from the field
of medicine and how an evidence-based approach could be adapted by software
engineering research, however, they also note that software engineering can ben-
efit from this approach with the condition that problems should arise from the
nature of software engineering.

Furthermore, Sjøberg et al. (2005), in their survey study on experimentation
in software engineering, reveal that the term experiment has been inconsistently
used by the software engineering community, and it was often used to refer to
empirical studies in general. They add that they prefer to use the term controlled
experiments and offer a definition for it in software engineering: “A randomized
experiment or a quasi-experiment in which individuals or teams (the experimental
units) conduct one or more software engineering tasks for the sake of comparing
different populations, processes, methods, techniques, languages, or tools (the
treatment)”. In addition, they note that random experiments, that is, where
units are assigned to receive a treatment based on a random process, are not
always feasible in the software engineering field; instead, quasi-experiments could
be more feasible, where units are not assigned randomly. It is also remarked
that only 1.9% of software engineering research has reported uses of controlled
experiments from 1993 and 2002, and this could be due to the large effort and
resources needed to run big-scale and well-designed experiments.

16 2 Previous Work

Evidence-based software engineering and empirical software engineering re-
search aim to answer questions such as what development technology and skill
(e.g., process, technique, language or tool) are to be used or implemented, which
tasks are to be carried out in which environments by comparing and understand-
ing their effects in software development (Sjøberg et al., 2005; Hannay et al.,
2007). For this, experimentation can be used as a research method to measure
such effects, and scientific theories can further be developed (Hannay et al., 2007).

While the evidence-based software engineering and empirical software engi-
neering fields have been contributing to the body of science, with the technolog-
ical developments during the last decades, such as web sites, applications and
continuous deployment, software experimentation has gained new forms. For
instance, with the development of Web 2.0, social network systems and SaaS,
companies have begun to collect more and frequent data from their users (Bosch-
Sijtsema and Bosch, 2015). Large volumes of data have become available to be
applied in personalisation, system improvement, site modification and business
intelligence (Srivastava et al., 2000). The adoption of continuous practices, such
as continuous integration and continuous deployment, and DevOps, helped com-
panies deliver high-quality of software at an accelerated pace, while getting more
and quick feedback from the software development process and users (Bass et al.,
2015; Shahin et al., 2017). These changes facilitated the implementation of exper-
imentation platforms for companies to frequently test their development efforts
even before fully implementing their products, in order to decrease their R&D
costs. This novel form of software experimentation started to be used in the form
of controlled experiments, primarily in the Web 2.0 and SaaS fields and often for
feature optimization (Bosch-Sijtsema and Bosch, 2015).

In particular, controlled experiments, mostly in the form of A/B tests, are
used by web-facing companies often in the post-deployment stage of the develop-
ment to improve their systems continuously (Mattos et al., 2018). These types of
experiments help companies establish a causal relationship between a variation,
such as a new feature or a change, in their system and the observed user be-
haviour (Kohavi et al., 2009). They can be used to perform simple online tests,
where different versions of the software are created, for instance, an old version
(A – baseline/control group) and a new version with a slightly different layout or
colours of a button (B – with intervention/treatment), and deployed to a different
set of users (Madeyski and Kawalerowicz, 2017). Following that, user behaviour
is recorded, such as counting user clicks, in each group. The aim of this random-
ized controlled experiment is to detect statistically significant differences between
control and treatment groups, which indicates which version of the software is

2.2 Software Experimentation 17

favourable to users (Madeyski and Kawalerowicz, 2017). Consequently, a devel-
opment decision can be made following the experiment results, for instance, fully
implementing and deploying the more favourable software to whole set of users.
This approach has already been practiced by numerous companies. Some of
them, like Ebay (Davenport, 2009), Google (Eisenberg and Quarto-vonTivadar,
2009; Tang et al., 2010) and Microsoft (Kohavi et al., 2009; Kohavi and Long-
botham, 2017), are even known to establish their own experimentation platforms
and teams, and they continuously report on their experimentation efforts.

On the other hand, Lindgren and Münch (2015) report that despite the in-
creasing interest in experimentation as a part of software development activities,
most of the research in the field mainly focuses on one specific type of experi-
mentation by eminent web-facing companies – online controlled experimentation.
Despite its popularity among web-facing companies (Fabijan et al., 2017a; Mat-
tos et al., 2018), online controlled experiments are often limited to optimizing
narrow aspects of web interfaces (Bosch-Sijtsema and Bosch, 2015), that often
takes place in the post-deployment stage of the product life-cycle. We can argue
that in the earlier stages of software development, for instance, when develop-
ing a new product or feature, there might not be a web-facing environment to
run experiments. For this reason, in this research, we are exploring software
experiments taking place not only in the post-deployment stage of development
life-cycle but overall.

There have also been attempts to enable experimentation in the early stages of
software development, especially to test business ideas, models and concepts early
on. Companies seek new behaviours to involve users in the development process
at the business level even before a product concept is determined (Bosch-Sijtsema
and Bosch, 2015). Thomke (2001) emphasizes that gaining early information on
products can significantly influence decisions in the early stages of product de-
velopment. He further lists several rules of experimentation for companies to
innovate, the first three of which are: “organize rapid experiments”, “fail early
and often, but avoid mistakes” and “anticipate and exploit early information”.
Building the capacity for rapid experimentation in early development means early
feedback on the product and user; and utilising learning from rapid experiments
can guide early decision-making. Manzi (2012) states that “at Google, only about
10 percent of these [controlled experiments] led to business changes” and Kohavi
and Longbotham (2017) state that “at Microsoft, only one third of the experi-
mented ideas were observed to be successful”. This might indicate that software
experiments do not always make a visible change in business; however, learning
will be captured from eliminating bad ideas, and therefore, better experiments

18 2 Previous Work

can be designed in the future. Nevertheless, this might pose another challenge for
the companies that want to design and run their first experiments, as they might
not observe the impact of the experiments in their business right away, despite
the time and effort put into adopting the approach. Therefore, it is crucial to
know how to initiate the transition in an efficient and economical way.

In fact, Madeyski and Kawalerowicz (2017) in their research also address
that the professionals at software organisations were observed to be hesitant
about taking part in experiments due to an ambivalence. On one hand, they
believe that the experimentation is beneficial; however, they fear that the costs
of running big-scale and well-designed experiments in terms of time and money
could be high. Furthermore, we can argue that existing companies that desire to
transition towards experiment-driven development might share similar concerns,
especially considering that the tools and skills required for experimentation, such
as infrastructure and experience, might not exist yet. Besides, the costs in such
investments in highly competitive markets can be very high, if the transition
cannot be achieved effectively.

To summarise, experimentation in the field of software engineering is not new
and has been investigated for decades as a research method that contributes to
the body of science. Software experiments in practice, however, have changed its
form, adapting to the newest technological advances, methods and tools. Con-
sequently, rather than being driven by theoretical concerns, they are driven by
business goals and aim at answering business questions pragmatically. While
reviewing how software experiments in practice have gained new forms, we also
identified research gaps and raised arguments concerning the focus of this dis-
sertation. Firstly, we observed that existing software experimentation research
heavily reports on a specific type of experiment – online controlled experimen-
tation. In this dissertation, we investigate how organisations can transition to
the capability of conducting software experiments when or wherever needed. Sec-
ondly, existing research revealed that practitioners might face ambivalence, where
on one side, there are benefits of a new approach, but on the other – constraints
of time and budget needed to adopt the approach as well as inexperience. This
ambivalence is also relevant to this research, as we aim at studying how devel-
opment teams can conduct their first systematic experiments in an efficient way.
Next, we will look at the existing experimentation models and the CE method
in more in detail.

2.3 Existing Experimentation Models and Continuous Experimentation 19

2.3 Existing Experimentation Models and Continu-
ous Experimentation

Experimentation models, by and large, have been developed with the aim of cap-
turing and aiding the software experimentation process. Several experimentation
models were proposed in the last decade, both by researchers and practitioners.
Despite the differences, we observed that most of the experimentation models and
systems utilise the ‘Build-Measure-Learn’ (BML) loops as a means of continuous
learning from users through experiments.

To start with, Ries (2011) introduces the BML methodology in his Lean
Startup approach, in which BML loops are used to test product assumptions
and hypotheses iteratively and to gather user feedback. A BML loop starts by
forming one or more falsifiable hypotheses that need to be tested. While the
build step focuses on creating a minimum viable product (MVP) to be used for
data collection, the measure step focuses on using MVP to collect data. Once
the collected data is analysed, a decision can be made to move to a new stage,
such as pivot or persevere. Even though the Lean Startup approach does not
exclusively address software experiments, it discusses the benefits and influences
of experimentation with respect to business considerations, especially geared to-
wards startup companies where the loop can be quite fast. Nevertheless, the Lean
Startup approach inspired many researchers and practitioners, and the BML loop
and its iterative fashion underlies several experimentation models.

With many organisations moving toward agile development and adopting ca-
pabilities for rapid and continuous value delivery to users, Olsson et al. (2012)
emphasize that software R&D activities should be experimenting and testing
what the customer needs. They suggest that the application of agile methods
within an R&D organisation is only one stage on the maturation path, called the
Stairway to Heaven model, in which the final stage is R&D as an experimenta-
tion system. In that final stage, software development is guided by iteratively
conducted experiments and instant user feedback. Bosch (2012) also investigates
the experimentation systems and emphasizes the importance of testing product
ideas via experiments and learning from users. The Innovation Experiment Sys-
tems (IES) model, suggested by Bosch (2012), describes the process in which a
hypothesis is formed based on the business need that should be tested against
pre-defined metrics.

The Early-Stage Software Startup Development (ESSSD) model further ex-
tends the aforementioned models and offers operational and decision-making sup-

20 2 Previous Work

port on how to move to the next idea to experiment with (Bosch et al., 2013). The
Hypothesis Experiment Data-Driven Development (HYPEX) model is proposed
by the same authors, Olsson and Bosch (2014), as an alternative development
process model to aid companies in shortening their user feedback loops through
experimentation with minimum viable features (MVFs).

Similarly, Fagerholm et al. (2014, 2017) propose the RIGHT model for CE,
which utilises the BML loop. In the RIGHT model, the BLM blocks are repeated
over time and are supported by a technical infrastructure. Within each block,
testable assumptions are derived from business strategy, experiments are run
with MVFs or MVPs, and the experiment outcomes are used to guide business
and product strategy. Differently from other experimentation models, Fagerholm
et al. (2017) also propose descriptions for roles, tasks and artefacts involved in
CE. Fagerholm et al. (2014) offer a definition for the term of CE: “a software
development approach that is based on field experiments with relevant stake-
holders, typically customers or users, but potentially also with other stakehold-
ers such as investors, third-party developers, or software ecosystem partners”.
The same authors later extend this definition of CE as “a systematic approach
to experiment-driven, continuous software engineering” (Fagerholm et al., 2017).
Complementing the Stairway to Heaven model (Olsson et al., 2012), which sug-
gests that software development should ultimately be driven by continuous and
real-time customer feedback as an R&D system, Fagerholm et al. (2014) empha-
size the need for continuous observation of user behaviour through field experi-
ments that are derived from business strategies and finding out what users want.
Several other research works build on the initial definition of CE such as Rissanen
and Münch (2015) who focus on CE in the business-to-business (B2B) domain,
and Lindgren and Münch (2015), who presents the results of a survey study on
state-of-the-practice. A remarkable result from the Lindgren and Münch (2015)
study indicates that despite the wealth of techniques, software organisations use
to collect customer feedback, systematic CE with users was found to be rare.

A recent mapping study by Ros and Runeson (2018) also provides a defi-
nition for CE – “conducting experiments in iterations” and add that it is “a
general term for a wide variety of experiments and the implications of experi-
ments on the whole software engineering process”. This mapping study shares
several significant findings that are in line with the problem statement of this
dissertation. Firstly, they find that CE research is dominated by big companies,
such as Microsoft, Google and Facebook, and approximately 70% of the reported
work belongs to the large companies. Furthermore, they share the finding that
while 70% of the reported experiments are about visual changes on online UI

2.3 Existing Experimentation Models and Continuous Experimentation 21

components, only 25% of the experiments are about algorithmic changes, such as
search engine ranking, 5% of the experiments report on features or new function-
ality. Even though Ros and Runeson (2018) do not examine the mapping study
results with respect to the type of experiments, we might deduce that a majority
of reported experiments are in the form of online controlled experiments, since
they are conducted on online UI components. This is also in line with our argu-
ments posed in Section 2.2.

In order to better capture how the key related work provides guidance on the
research focus of this dissertation, Table 2.1 summarises the themes that were
addressed by the related work that reports on software experiments that have
taken place in an iterative fashion. The themes are formed based on aspects of
this research, i.e., transition to continuous experimentation in an organisation,
the software practitioners’ standpoint and ethical aspects of experimentation. In
addition, other prominent themes are identified in the key related work, i.e.,
experimentation with respect to business aspects, (online) controlled experiments
and experimentation infrastructure and added to the table.

Transitioning to experiment-driven development or to the CE approach is not
investigated by the related work directly, yet a few publications, such as that by
Olsson et al. (2012), emphasize the need for transitioning towards experimenta-
tion systems, and Madeyski and Kawalerowicz (2017) build a manifesto on agile
experimentation that mostly takes the form of A/B tests. Likewise, Fabijan et al.
(2017b) report on how a company can evolve towards a data-driven company
and describe different phases of the evolution, including technical, organisational
and business evolutions. The business aspects of experimentation, on the other
hand, such as experimentation being used to prioritise business decisions, were
addressed by almost all the publications, except that of Tang et al. (2010), which
only concentrates on controlled experiments and technical infrastructure.

Online controlled experiments, as described in Section 2.2 in detail, have in-
creasingly been reported recently, often along with either the business aspects
involved, underlying infrastructure, or both. While some of the related work
specifically uses the term online controlled experiments, the others only use con-
trolled experiments. This kind of experiments was referred to have mostly taken
place at the post-deployment stage of web-facing products, while in the studies
by Lindgren and Münch (2015), Rissanen and Münch (2015) and Gutbrod et al.
(2017), the experiments were described to have a bigger scope and take different
forms, such as interviews, MVPs and A/B tests, at various stages of software
development life-cycle.

22 2 Previous Work

T
a
b
le

2
.1
:
T
h
e
th
em

es
th
a
t
ar
e
ke
y
as
p
ec
ts

of
th
is
d
is
se
rt
a
ti
o
n
a
n
d
th
a
t
w
er
e
co
m
m
o
n
ly

ad
d
re
ss
ed

b
y
th
e
ke
y
p
re
v
io
u
s

w
or
k
re
le
va
n
t
to

th
is

re
se
a
rc
h
,
in

th
e
fi
el
d
o
f
so
ft
w
a
re

en
g
in
ee
ri
n
g
(i
.e
.,
so
ft
w
ar
e
ex
p
er
im

en
ts

th
a
t
h
av
e
ta
ke
n
p
la
ce

in
a
n
it
er
a
ti
ve

a
n
d
co
n
ti
n
u
o
u
s
fa
sh
io
n
).

(N
o
te
:
W

e
g
ro
u
p
ed

th
e
sa
m
e
a
u
th

o
rs
’
fo
ll
o
w
in
g
w
o
rk
s
to
g
et
h
er
.
X

in
d
ic
a
te
s
th

a
t
th

e
th

em
e

w
a
s
a
d
d
re
ss
ed

b
y
th

e
p
u
b
li
ca

ti
o
n
,
O

in
d
ic
a
te
s
so
m
ew

h
a
t
a
d
d
re
ss
ed

,
–
in
d
ic
a
te
s
it

w
a
s
n
o
t
a
d
d
re
ss
ed

,
*
is

a
m
a
p
p
in
g
st
u
d
y.
)

P
u
b
li
c
a
ti
o
n

T
r
a
n
si
ti
o
n

to
C
E

B
u
si
n
e
ss

a
sp

e
c
ts

(O
n
li
n
e
)

c
o
n
tr
o
ll
e
d

e
x
p
e
r
im

e
n
ts

In
fr
a
s-

tr
u
c
tu

r
e

P
r
a
c
ti
ti
o
n
e
r

st
a
n
d
p
o
in
t

E
th

ic
a
l

a
sp

e
c
ts

(T
a
n
g
et

a
l.
,
2
0
1
0
)

–
–

X
X

–
–

(R
ie
s,

2
0
1
1
)

O
X

–
–

–
–

(K
o
h
a
v
i
et

a
l.
,
2
0
1
3
)

–
X

X
X

–
–

(O
ls
so
n
et

a
l.
,
2
0
1
2
),

(B
o
sc
h
et

a
l.
,
2
0
1
3
),

(O
ls
so
n
a
n
d
B
o
sc
h
,
2
0
1
4
)

O
X

–
X

–
–

(F
a
g
er
h
o
lm

et
a
l.
,
2
0
1
4
),

(F
a
g
er
h
o
lm

et
a
l.
,
2
0
1
7
)

–
X

–
X

O
–

(B
o
sc
h
-S
ij
ts
em

a
a
n
d

B
o
sc
h
,
2
0
1
5
)

–
X

X
–

–
–

(L
in
d
g
re
n

a
n
d

M
ü
n
ch

,
2
0
1
5
)

O
X

O
–

–
–

(R
is
sa
n
en

a
n
d

M
ü
n
ch

,
2
0
1
5
)

–
X

O
–

–
–

(F
a
b
ij
a
n
et

a
l.
,
2
0
1
7
a
),

(F
a
b
ij
a
n
et

a
l.
,
2
0
1
7
b
)

O
X

X
X

O
–

(K
o
h
a
v
i

a
n
d

L
o
n
g
-

b
o
th

a
m
,
2
0
1
7
)

O
X

X
X

–
–

(G
u
tb

ro
d
et

a
l.
,
2
0
1
7
)

–
X

O
O

–
–

(M
a
d
ey

sk
i

a
n
d

K
a
w
a
le
ro
w
ic
z,

2
0
1
7
)

O
X

X
X

–
–

(M
a
tt
o
s
et

a
l.
,
2
0
1
8
)

–
X

X
X

O
X

(R
o
s

a
n
d

R
u
n
es
o
n
,

2
0
1
8
)*

O
X

X
X

–
X

2.4 Data Collection and Ethics in Software Experimentation 23

While business considerations were referred to by almost all the publications,
the role of practitioners in software experimentation was partially addressed by
three publications in terms of roles required in experiments such as data ana-
lysts and data scientists. However, these publications do not offer a detailed
examination of the roles, the required skills and perspectives with respect to CE.
Likewise, ethical issues were only addressed by two works. While Mattos et al.
(2018) addressed these issues such as how users involved in experiments are guar-
anteed that their data would not be used for other purposes, in their mapping
study, Ros and Runeson (2018) draw attention to the ethics of experimentation
and the need to investigate the topic further. Moreover, Mattos et al. (2018)
reported on organisational challenges involved in experimentation in embedded
systems and also mentioned the skills required.

2.4 Data Collection and Ethics in Software Experi-
mentation

CE is an empirical software development approach that involves experiments
targeted at users of software products, who are human subjects, and collecting
data from them. Therefore, ethical issues and principles have to be taken into
account in the design, execution and analysis of experiments as well as involving
users in the experiments. Data collection is subject to several considerations
such as data storage, data sharing, informed consent and protection of privacy.
For instance, whether the user is notified of an experiment upfront or whether
personal information is collected through experiments are important issues to
clarify. Understanding different data types, such as personal or identifiable data,
and data collection methods, such as conscious or uninformed user input, and
reviewing existing regulations and guidelines can help gain insight into the ethics
of software experiments.

As we reviewed in the previous sections, in online controlled experiments,
the user is typically unaware of their involvement (Bosch-Sijtsema and Bosch,
2015), which is open to debate in terms of privacy and ethical issues. Zhang
et al. (2014) state that concerning the personalized recommender systems, there
are two main types of user input: explicit, which is the direct user input, and
implicit behavioural, which is the information the user unconsciously left while
using the product. Similar classification was done by Bosch-Sijtsema and Bosch
(2015) to be conscious vs. uninformed and also by other related works such as
that by Unni and Harmon (2007) to be push vs. pull. In the case of explicit

24 2 Previous Work

or conscious input, users are aware and willing to provide their input, such as
participating in a user study. On the other hand, implicit or uninformed user
input indicates that the behaviour of a user using a product or feature, such as
user clicks, is traced and stored for further analysis without active user awareness
at the moment of data collection. The latter is a well-known case with online
controlled experiments. As more and more organisations are collecting this kind
of behavioural data, discussions are arising on privacy and ethics (Bosch-Sijtsema
and Bosch, 2015), since it might seem intrusive to the users that their data is
tracked without their consent (Zhang et al., 2014).

Zhang et al. (2014) further explain that the idea of privacy is often associated
with a sense of control over one’s personal information with the instinct of pro-
tection. Conscious user input facilitates user control, and uninformed user input
may lead to a sense of intrusiveness about their privacy. Furthermore, their study
finds that user privacy concerns over their data is a multi-dimensional concept.
In addition to the two main types of user input we mentioned above (conscious
vs. uninformed), the degree to which the data is identifiable also affects pri-
vacy concerns (Zhang et al., 2014). For instance, the social security number of a
user is identifiable data, whether it is given consciously or not, whereas age can
be unidentifiable data. Therefore, Zhang et al. (2014) suggest system designers
should consider these different levels of sensitivity levels such as identifiable vs.
unidentifiable.

Mattos et al. (2018) also mention privacy concerns regarding user data col-
lection through experiments and consequent data analysis. They remark that
even though data sensitivity and utilisation of data might be different in differ-
ent organisations and countries, data collection should be aligned with the legal
requirements and user consent. Regulations, such as the European General Data
Protection Regulation (GDPR),1 clearly states that protection of personal data
is a fundamental right of individuals, therefore, processing personal data is re-
stricted. There are rules about how to process such data, and if they are not
followed, fines apply. Article 6 in GDPR talks about the concept of lawfulness,
that there should be acceptable grounds for processing user data, and it lists the
possible grounds, such as if data processing is necessary for compliance with a
legal obligation, or if data processing serves the public interest. However, for
sensitive data, such as racial, political or health-related data, only one ground
is acceptable: the user has to give explicit consent (Article 9). Furthermore,
Article 17 details the rights to erasure, in other words, the right to be forgotten,

1https://www.eugdpr.org/

2.4 Data Collection and Ethics in Software Experimentation 25

and Article 21 details the right to object, that is, even if consent is given by a
subject, it can be taken back.

The mapping study by Ros and Runeson (2018) about CE and A/B tests
also addresses the ethics involved in software experiments and poses that ethical
experimentation should not be a fringe topic after GDPR regulations. Moreover,
they report that only one paper, that is, Article III of this dissertation, was
found to be studying the ethics of experiments during the last decade and draw
attention to how the software engineering community should prioritise ethics in
experimentation. For instance, there are various considerations in the context of
experimentation with respect to user data collection, such as different levels of
personal data, data storage, data reuse and the capabilities of erasing the data
upon request. Thus, clear guidelines should be defined in compliance with the
existing legislation.

Practitioners could potentially turn to the scientific literature or tradition for
guidance on ethical concerns about software experimentation. There have been
several proposed guidelines for involving human subjects in empirical studies in
general, those that are not specific to the software engineering domain. For in-
stance, Vinson and Singer (2008) identified four key principles for conducting
empirical studies involving human subjects that could act as fundamental guide-
lines in software experiments: 1) Subjects must give informed consent to their
participation; this implicitly includes the requirement of notifying users to allow
them to give consent. 2) Before conducting experiments, it is important to assess
whether the benefits outweigh the harm, risks and efforts, and whether the user
data obtained will really be trustworthy, whether the experiment results can be
used for decision-making, and whether the time spent on experiments is worth
spending. 3) Experimenters must take all possible measures to maintain confi-
dentiality. 4) The experiment should have value in order to motivate subjects
to expose themselves to the risks. These guidelines might be useful on a general
level, yet they have to be made more specific for user data collection in software
experimentation in order to avoid events of failure, where the concerns about
user privacy and their trust are on the line as demonstrated by discussions about
Facebook and Google’s user data collection2. These companies have recently been
in the public eye for keeping track of their users’ data and using it for revenue
purposes, not necessarily with their users’ informed consent. Given the impor-
tance of the topic and in order to address this research gap, Article III of this

2https://www.theguardian.com/commentisfree/2018/mar/28/all-the-data-facebook-google-
has-on-you-privacy

26 2 Previous Work

dissertation specifically focused on the ethical issues involved in experimentation
(see Section 4.2).

2.5 Terminology

In Section 2.2, we addressed the inconsistent use of the term experiment in soft-
ware engineering research and practice. While some research uses the term to
refer to empirical studies in general, others use it to refer to the research method
or as a specific type of experiment. Likewise, several other central terms in the
present topic area have been used differently by previous work. In order to clarify
how the terms are used in this dissertation, Table 2.2 elements of CE and other
related terms including: continuous experimentation (CE), user, customer and
user involvement.

2.5 Terminology 27

Table 2.2: The terms and elements of CE and their descriptions as used in this disser-
tation. (Adapted from Article I.)

The term Description

Continuous experimen-
tation (CE)

A software development approach that aims at supporting R&D
decisions through iteratively conducting systematic experiments.
The term continuous represents the iterative nature and sustain-
ability of the approach and systematic indicates that business as-
sumptions and hypotheses are methodically tested.

Experiment Adapted from Munezero et al. (2017), experiment refers to the ac-
tual process of testing assumptions and uncertainties in the prod-
uct or service ideas based on a hypothesis.

Target of experiment Refers to what drives the experimentation. For instance, this can
be new ideas, problems or assumptions with respect to a business
strategy that need addressing.

Experiment object An MVF, MVP or other piece of material that represents critical
aspects of the product, the feature or parts of software that will
be experimented on. Hypotheses are tested with the experiment
objects.

Assumption A thing, aspect of an idea that is accepted as true or as certain
to happen, without proof.

Hypothesis A proposed, testable explanation for a phenomenon.
Metrics Metrics or success criteria are defined to capture the values per-

taining to the product or feature at a specific time during experi-
ment data collection.

MVF MVF stands for minimum viable feature and refers to the smallest
implementation of a feature that provides essential functionality
to the user. This artefact can be used as an experiment object.

MVP MVP stands for minimum viable product and refers to the mini-
mal set of features that provides the essential value for both the
users and owners of the product. This artefact can be used as an
experiment object.

User Adapted from ISO (2017) definition of users, we reserve the term
user(s) as a more general term to refer to individual(s) interacting
with a software product or service.

Customer Adapted from ISO (2017), we reserve the term customer for spe-
cific kind of user(s) or group(s) who buys the software artefact,
obtains a license to use or to rent to other users.

User involvement Adapted from Yaman et al. (2016), the process by which users
consciously or unintentionally provide input into software devel-
opment.

Chapter 3

Research Design

This research was designed to gather empirical knowledge through studies con-
ducted with industry partners. The empirical studies comprised a multiple-case
study, a survey and a single-case study. We aimed at collecting both qualitative
and quantitative data and analysed them using multiple techniques, including
data triangulation and member checking. This chapter describes the research
methodology, including the research phases and research design details within
each phase.

This research utilised two main research methods: case studies and survey
methodology. The methods were chosen according to the research questions that
were sought to be answered as well as the industry partners’ interests and avail-
ability. The research design included three main phases as depicted in Figure
3.1: In Phase 1, we ran two case studies simultaneously in two case companies
to study how CE can be introduced to their development teams. In Phase 1,
researchers were on-site and provided feedback into the experimentation process.
Following that, Phase 2 included a survey study with four companies to obtain
more data towards understanding CE from a practitioner point of view. The sur-
vey was designed to inquire into practitioners’ experience and attitudes towards
experimentation and user involvement, and it was tailored to fit each company’s
context and structure. The last phase, Phase 3, included a single-case study
about how CE can be integrated into a company’s goals and context. With this
study, we were able to investigate CE as an organisational mechanism.

29

30 3 Research Design

Figure 3.1: Phases of the research together with the timeline.

3.1 Phase 1: Multiple-Case Study

Research for this dissertation began during the time of a research programme
called Need For Speed (N4S)1 in Finland, which involved partnerships between
software-intensive companies and research institutions. Several companies in-
volved in the programme were interested in adopting the CE approach. Hence,
we planned to collaborate on the introduction of CE, running the first system-
atic experiments and understanding experimentation involving users within these
organisations. Phase 1 (Section 3.1) of this research relies on the industry part-
nerships with two companies (Company 1 and 2 in Table 3.1) facilitated by the
N4S research programme.

This first phase of the dissertation followed a multiple-case study approach,
with the process of the introduction of CE as the unit of analysis. Company
1 and 2 were studied as cases at this phase and were both software product
and service companies. Both Company 1 and 2 were interested in adopting the
approach and were motivated to take part in this study. Companies had prior
familiarity with the concept of experiment-driven development; however, they

1http://www.n4s.fi/en/

3.1 Phase 1: Multiple-Case Study 31

did not conduct experimentation in a systematic way. In particular, the study
in this phase focused on specific development teams within each company that
wanted to conduct software experiments in a systematic way for the first time.

Using multiple-case studies at this phase allowed us to study the process of
the introduction of CE in real business contexts (Yin, 2009) and helped us gain
a deeper understanding of how different contextual and human factors and per-
spectives influence the adoption of the approach. In this phase, researchers par-
ticipated in the experimentation planning process, providing insights into better
experiment design as well as feedback when needed.

Table 3.1: The companies involved in Phase 1.

Company Company size and
domain

Participants Study focus

1 A large digital ser-
vices and new busi-
ness company.

- Development team of 4.
- 5 external researchers.

The company’s need to improve
an existing B2B service led us to
build an MVF as an experiment
object and test it with beta users.

2 Division of a very
large telecommu-
nications network
company.

- Development and UX
team of 8.
- 5 external researchers.

The teams’ urgent need to resolve
the uncertainties about an ongo-
ing development task led us to
design and run series of UI ex-
periments with proxy users.

Table 3.1 demonstrates the profiles of the companies involved in Phase 1.
Company 1 is a digital business consulting and services company that specializes
in developing new business and digital services. Its business offering includes
software development, consulting and service design among others. The focus of
the case study with Company 1 was on a service that the company developed
for its client. The client further provides this service to its own customers, in a
multi-layered B2B customer structure. The demand from the client to improve
the service within a tight schedule and budget constraints posed some challenge
to Company 1. Fortunately, there was willingness from Company 1 to understand
the client and its customers better and to prioritise the development decisions,
which facilitated the collaboration on adopting CE.

Company 2 is an international corporation, specializing in providing commu-
nication technology and services. One of the products the company was develop-
ing was a cloud service platform that was being re-implemented. In particular,
there was one feature that was the focus of our case study, as several development

32 3 Research Design

decisions had to be made within a schedule, and there were some uncertainties
about these decisions. Therefore, adopting CE to support development decisions
was of the company’s interest.

In terms of data collection, the primary data sources for the multiple-case
study included transcripts of audio recordings, minutes and notes of workshops
(both on-site and remote), email communication, open-ended, semi-structured
and unstructured interviews. In addition, researchers participated in experiment
designs that were subject to this research in this phase by giving feedback on
experimentation materials such as design and analysis documents prepared by
the practitioners. Altogether, four workshops were held with Company 1, and
eleven on-site and remote workshops with Company 2 to exchange information
about the companies, their products and services and the introduction processes.
The content of the workshops are detailed in Article I and II. In these articles,
the workshops were mainly referred as meetings, however, due to the interactive
and hands-on nature of these events, we refer them as workshops here.

All case data, including the recordings, transcriptions, notes of the workshops,
background material, interview design, responses and data analysis were stored
in a database. We followed an iterative thematic analysis approach (Braun and
Clarke, 2006; Robson, 2011). The method allowed us to identify, analyse and
encapsulate themes within the data, as the aim was to comprehend occurring
themes when introducing CE to the development teams. As the multiple-case
study included two companies in this phase, we also made a comparative study to
further understand the similarities and differences in the introduction processes
that have emerged from company contexts. In addition, we incorporated partic-
ipant observation and member checking techniques to enhance the validity and
reliability of the results (Creswell, 2014).

The results from the case studies were disseminated to the company rep-
resentatives over multiple sessions. In these sessions, how the results guide the
companies’ journey towards adopting CE was discussed. Phase 1 was reported in
Articles I and II of this dissertation. Company representatives also participated
in these publications, ensuring the introduction processes were well-described.
The summary of the Phase 1, including the data collection and data analysis
methods used, as well as the main outcomes, can be seen in Table 3.2.

3.2 Phase 2: Survey Study 33

3.2 Phase 2: Survey Study

In order to gain a deeper understanding of ongoing development activities and
to identify the perspectives of software practitioners towards involving users in
the development of products and services, as well as software experiments, we
designed and conducted a survey as the second phase of the research.

The survey was iteratively designed by three researchers, taking existing sur-
vey and questionnaire research, such as Bradburn et al. (2004); Yu and Cooper
(1983) into consideration. A conceptual framework based on prior research and
the observations from prior studies with companies was developed. The frame-
work consisted of three main areas: a) the current state of involving users in
software development, b) views on experimentation with users and c) views of
notifying and involving users in experiments. These areas are reflected in the
survey structure, with three sections following a background section. The back-
ground section was designed to collect demographic data of the participants,
ranging from their job functions to years of experience and age-groups. To ac-
commodate for differences in the companies, the survey was constructed as a
template based on the conceptual framework, so that certain items were tailored
to each company (e.g., using company-specific job position titles).

In particular, before disseminating the survey, practitioner roles were tailored
to match the actual titles or job definitions in each company. Other sections of
the survey were customised as well when needed. We selected the applicable
term of customer and user involvement in order to refer to the primary user –
someone who uses the relevant software in each context/company. For instance,
for the employees of Company 4, (see Table 3.3), user is the relevant term, as
the company has direct access to users, whereas for Company 5, which is a con-
sultancy company, customer is the party for whom the products are developed.
Two meetings were held with the representatives from each company in order to
ensure accuracy of the mappings between company terminology and the concepts
in our framework.

The survey was administered to four different software companies operating in
Nordic countries, though respondents were distributed over the companies’ offices
in Europe and the United States. A total of 130 people from different roles, such
as developers, managers and UX designers, participated in the survey. Table
3.3 gives a brief description of the companies, size of the target group and the
number of responses from each company. The survey included questions formed
with various design techniques and elements, such as Likert-type scales (Gliem
and Gliem, 2003), and also open text field questions, therefore, collected data

34 3 Research Design

T
a
b
le

3
.2
:
S
u
m
m
a
ry

o
f
th
e
m
a
in

d
a
ta

co
ll
ec
ti
o
n
a
n
d
a
n
a
ly
si
s
m
et
h
o
d
s
u
se
d
a
t
ea
ch

p
h
a
se

o
f
th
e
re
se
a
rc
h
,
a
s
w
el
l
a
s

th
e
m
a
in

ou
tc
o
m
es
.

P
h
a
se

R
e
se

a
r
c
h

m
e
th

o
d

D
a
ta

c
o
ll
e
c
ti
o
n

D
a
ta

a
n
a
ly
si
s

O
u
tc

o
m

e

1
C
a
se

st
u
d
y

O
n
-s
it
e

a
n
d

re
m
o
te

w
o
rk
sh

o
p
s

(4
w
o
rk
sh

o
p
s
w
it
h
C
o
m
p
a
n
y
1
,
1
1
w
o
rk
-

sh
o
p
s
w
it
h
C
o
m
p
a
n
y
2
),

tr
a
n
sc
ri
p
ts

o
f

a
u
d
io

re
co

rd
in
g
s,

n
o
te
s
o
f
th

e
w
o
rk
-

sh
o
p
s,

tr
a
n
sc
ri
p
ts

o
f
th

e
se
ri
es

o
f
in
-

te
rv
ie
w
s,

o
th

er
m
a
te
ri
a
ls

p
ro
v
id
ed

b
y

th
e
co

m
p
a
n
ie
s.

It
er
a
ti
v
e

th
em

a
ti
c

a
n
a
ly
si
s,

p
a
rt
ic
ip
a
n
t

o
b
se
rv
a
ti
o
n
,
m
em

b
er

ch
ec
k
in
g

D
es
cr
ip
ti
v
e
k
n
o
w
le
d
g
e
g
a
in
ed

fr
o
m

in
tr
o
d
u
ci
n
g

C
E
,
in
cl
u
d
in
g

a
)
co

m
m
o
n

a
n
d

d
is
ti
n
ct

a
ct
iv
-

it
ie
s
fo
ll
o
w
ed

b
y

th
e
ca

se
co

m
p
a
n
ie
s,

b)
d
ec
i-

si
o
n

p
o
in
ts

to
g
et
h
er

w
it
h

ti
m
el
in
es
,
c)

b
en

e-
fi
ts

g
a
in
ed

d
u
ri
n
g
th

e
in
tr
o
d
u
ct
io
n
p
ro
ce
ss

a
n
d

d
)
g
u
id
el
in
es

b
a
se
d

o
n

th
e
le
a
rn

in
g
a
n
d

ch
a
l-

le
n
g
es

fa
ce
d
,
to
g
et
h
er

w
it
h

m
it
ig
a
ti
o
n

st
ra
te
-

g
ie
s.

O
u
tc
o
m
es

re
p
o
rt
ed

in
A
rt
ic
le
s
I
a
n
d
II
.

2
S
u
rv
ey

m
et
h
o
d
o
l-

o
g
y

2
u
p
-f
ro
n
t
m
ee
ti
n
g
s
fo
r
th

e
su

rv
ey

d
e-

si
g
n
a
n
d
2
m
ee
ti
n
g
s
fo
r
th

e
d
is
se
m
in
a
-

ti
o
n

o
f
th

e
re
su

lt
s
a
n
d

d
is
cu

ss
io
n

fo
r

C
o
m
p
a
n
ie
s
1
,
3
a
n
d
4
;
1
8
o
n
li
n
e
st
a
tu

s
m
ee
ti
n
g
s
a
n
d
4
o
n
-s
it
e
w
o
rk
sh

o
p
s
w
it
h

C
o
m
p
a
n
y
2
.
T
h
e
m
in
u
te
s
a
n
d
n
o
te
s
o
f

th
e
w
o
rk
sh

o
p
s
a
n
d
o
n
li
n
e
st
a
tu

s
m
ee
t-

in
g
s.

D
es
cr
ip
ti
v
e
st
a
ti
st
ic
s,

in
fe
re
n
ti
a
l

st
a
ti
s-

ti
cs
,
a
ss
o
ci
a
ti
o
n

ru
le

le
a
rn

in
g
,

th
em

a
ti
c

a
n
a
ly
si
s,

m
em

b
er

ch
ec
k
in
g

F
in
d
in
g
s
fr
o
m

a
)
th

e
cu

rr
en

t
st
a
te

o
f
in
v
o
lv
in
g

u
se
rs

in
so
ft
w
a
re

d
ev

el
o
p
m
en

t,
b)

v
ie
w
s
o
n
ex

-
p
er
im

en
ta
ti
o
n
w
it
h
u
se
rs
,
c)

v
ie
w
s
o
n
n
o
ti
fy
in
g

a
n
d
in
v
o
lv
in
g
u
se
rs

in
ex

p
er
im

en
ts
,
a
n
d
d
)
u
n
-

d
er
ly
in
g
p
a
tt
er
n
s
w
it
h
re
sp

ec
t
to

u
se
r
in
v
o
lv
e-

m
en

t
in

ex
p
er
im

en
ta
ti
o
n
fr
o
m

th
e
p
ra
ct
it
io
n
er

p
o
in
t
o
f
v
ie
w
.

O
u
tc
o
m
es

re
p
o
rt
ed

in
A
rt
ic
le
s

II
I
a
n
d
IV

.
3

C
a
se

st
u
d
y

T
h
e

m
in
u
te
s

a
n
d

n
o
te
s

in
te
rv
ie
w
s

w
it
h
co

m
p
a
n
y
re
p
re
se
n
ta
ti
v
es
,
n
o
te
s
o
f

p
h
o
n
e
a
n
d

em
a
il

co
m
m
u
n
ic
a
ti
o
n

d
u
r-

in
g

th
e
6
-m

o
n
th

p
er
io
d

o
f
th

e
st
u
d
y,

m
a
te
ri
a
ls
p
ro
v
id
ed

b
y
th

e
co

m
p
a
n
y
ex

-
ec
u
ti
v
es
,
n
o
te
s
o
f
1
w
o
rk
sh

o
p

It
er
a
ti
v
e

th
em

a
ti
c

a
n
a
ly
si
s,

m
em

b
er

ch
ec
k
in
g

L
es
so
n
s
le
a
rn

ed
fr
o
m

a
co

m
p
a
n
y
w
h
er
e
C
E
is
a
n

in
te
g
ra
l
p
a
rt

o
f
so
ft
w
a
re

d
ev

el
o
p
m
en

t,
in
v
es
ti
-

g
a
ti
n
g
co

n
te
x
tu

a
l
a
n
d
o
rg
a
n
is
a
ti
o
n
a
l
ch

a
ra
ct
er
-

is
ti
cs

a
ss
o
ci
a
te
d

w
it
h

C
E
.
O
u
tc
o
m
es

re
p
o
rt
ed

in
A
rt
ic
le

V
.

3.2 Phase 2: Survey Study 35

Table 3.3: Companies participated in Phase 2.

Company Company size and domain Target
group2

Responses

21 A division of a very large telecommunica-
tions network company.

231 35

3 A large information security company. 25 8
4 A medium-sized company providing a user

interface development toolkit.
135 21

5 A large digital consultancy providing soft-
ware development services.

397 66

Total 788 130

Note 1: Company 2 also participated in Phase 1.
Note 2: Target group represents the population size the survey was sent to in each company.

was in both quantitative and qualitative forms. Data was collected for two weeks
in each company during the period from November 2016 to April 2017.

In Phase 2, we followed both qualitative and quantitative data analysis meth-
ods. First, we pre-processed the collected data from four companies, so that it
could be merged into one whole dataset. As the survey was tailored for each
of the four companies, the collected data had to be transformed in a consistent
form before merging them together. The transformation was done in accordance
with the mapping we had created in collaboration with each company representa-
tive. For the data analysis, descriptive statistics, association rule learning (ARL)
(Hastie et al., 2009) and thematic analysis were employed depending on the need
and purpose of the analysis. Descriptive statistics was used to understand the
demographics of the respondents, and to summarise the responses to each sur-
vey question that was in quantitative form. In addition, we applied ARL on
the full dataset to identify underlying patterns. Furthermore, iterative thematic
analysis was employed on the qualitative data collected from the open text field
questions, for instance, where we asked participants to describe what a typical
software experiment was.

Finally, in order to confirm the findings and to allow our participants to
comment on the results and conclusions and possibly use them in their own con-
text, we employed member checking in company-specific feedback sessions with
the company representatives and selected participants. In addition, with Com-
pany 2, we held online status meetings and a number of workshops where we
interactively discussed the findings. In these company-specific sessions, action-

36 3 Research Design

able insights were also discussed with company representatives. This phase was
reported in Articles III and IV, as also summarised in Table 3.2.

3.3 Phase 3: Single-Case Study

In order to seek answers for our last research question on understanding CE
as an organisational mechanism, we designed and conducted a case study with
Company 6. The company develops mobile games for their users and has a
business-to-consumer (B2C) structure. Table 3.4 demonstrates the profile of the
company and the study focus, where the unit of analysis was the experimentation
process.

Table 3.4: Company involved in Phase 3.

Company Company size and
domain

Participants Study focus

6 A medium-sized
company developing
mobile games.

- 2 company representa-
tives.
- 2 external researchers.

Company’s established prac-
tices on CE and user involve-
ment.

Following the statement by Yin (2009) that “[. . .] you should choose the
case(s) that will most likely illuminate your research questions.”, we partnered
with Company 6 that is already practising CE as an integral part of their devel-
opment activities. The case study with Company 6 resembles a revelatory case,
which occurs when researchers have the opportunity to empirically observe and
analyse a case that was previously not accessible (Yin, 2009). Our aim was to
study the company’s experiment-driven development and user involvement prac-
tices without researcher intervention in order to understand how experiments are
conducted continuously, what forms they take and what makes CE company cul-
ture. Furthermore, as the context of mobile games is a very competitive domain,
we also looked into contextual drivers that could influence experiment-driven de-
velopment. For this purpose, we performed a series of interviews with company
representatives and inquired into their experience with CE and user involvement.

Interviews were used as the basis to understand the experimentation process
and as means to understand the retrospective aspects of the game development.
In this phase, we did not interfere with the company’s experimentation process;
we studied the material provided by the company as well as observing their devel-

3.3 Phase 3: Single-Case Study 37

opment activities. The dataset consisted of the transcripts of series of interviews
with company representatives, notes of phone and email communication during
the time of study, material provided by the company executives and notes of
one workshop. The interviews aimed to capture the company’s development and
experimentation processes, as well as the dynamics of mobile game development.
During the data analysis stage, additional data was collected through phone and
email communication when needed. At the end, a workshop was conducted with
the company representatives to capture final reflections and confirm the study
results.

The data collection phase of the study took place from November 2017 to
March 2018. During the data analysis, we performed iterative thematic analyses
on the collected data and member checking, which enabled checking by company
representatives that the researchers had understood their operations correctly.

In the end, the findings formed a summary of operations from a company,
where CE is an integral part of software development, investigating the contextual
and organisational characteristics associated with CE. One company representa-
tive actively participated in the reporting stage, therefore, the accuracy of the
findings and validity were ensured. The findings of this phase were as reported
in Article V.

Table 3.2 summarised the data collection and data analysis methods used in
each phase of the research as well as listing the main outcomes from each phase.
In summary, Phase 1 included a multiple-case study, Phase 2 was designed and
conducted to employ the survey methodology, and Phase 3 included a single-case
study. The research outcomes are summarised based on the main findings of each
phase, and they are presented in detail in the following chapter.

Chapter 4

Transitioning towards Continuous
Experimentation

Continuous experimentation (CE) is getting increasing attention both from the
practitioners and researchers as an approach to support development decisions
with the empirical results obtained through experiments. Existing research mostly
focuses on a specific type and aspects of experimentation, such as online con-
trolled experiments and business aspects; however, how to begin running sys-
tematic software experiments is not well-investigated. In this research, we focus
on how organisations can initiate the transition towards CE. In light of the re-
search questions and empirical studies designed accordingly, the results of this
research were reported in Articles I–V. In this chapter, we overview the findings
from the articles involved in this dissertation, following all three phases of the
research. First, we look at the findings upon introduction of CE to the devel-
opment teams at our research partners, which constituted the first phase of the
research. Second, we outline the findings from Phase 2 of the study, in which we
gathered more data from practitioners at software companies through the survey
study. Third, we summarise the findings and learning from Phase 3, in which we
investigated how CE can be integrated into an organisation’s development activ-
ities and work as an organisational mechanism. Lastly, we look at the summary
of the findings and investigate how the findings from the each phase of the study
relate to each other.

39

40 4 Transitioning towards Continuous Experimentation

4.1 Introducing Continuous Experimentation

Despite the increasing demand of the CE approach, the lack of guidance on how
to systematically and effectively introduce it into an organisation has been the
primary motivation of the study reported in Articles I and II. Article I presented
the multiple-case study described in Chapter 3. The study investigated how
the CE approach can be introduced to existing software-intensive organisations
that are willing to adopt the approach. During the case studies, several develop-
ment teams at the organisations pioneered their first systematic experiments with
the guidance of researchers. The introduction process was planned to capture
the companies’ journeys during the study, including activities involved, decision
points during the process, the benefits gained and challenges faced. Comparisons
of the companies’ introduction processes revealed both common and company-
specific results.

Common decisions made during the introduction process by the case com-
panies varied from selecting an experiment target as a UI element to iteratively
updating the experiment design multiple times. Despite the common decisions,
there were differences emerged from the teams’ ongoing development commit-
ments and other contextual factors. For instance, companies chose their exper-
imentation target based on their ongoing prioritization of R&D workloads. In
particular, they chose an urgent development question to be answered by the
experiments. Moreover, it was evident that starting adopting the approach at
the team level, designing the first experiments to be small-scale and having prac-
titioners who can influence development decisions involved in the introduction
process were important. Ongoing development activities, strict schedules and
budget restrictions also influenced the decision on conducting UI experiments as
a starting point – as it was less risky and did not require big changes in technical
infrastructure. Through the UI experiments, it was possible to plan and run the
first systematic experiments at a low cost.

During the introduction process, development teams were already able to
make development decisions based on the empirical data gathered by the first
experiments. In fact, one development team realized that they were going to make
a completely different decision on deploying a UI element, which was proven by
the subjects of the experiment to be the least user-friendly. Disproving a product
assumption that was otherwise going to be implemented to the end users was a
remarkable lesson for the development teams: product ideas should be tested in
a systematic way instead of relying on guess work that would bring little or no
value to the users. In this experimentation study, the development teams were

4.1 Introducing Continuous Experimentation 41

able to experience how a small-scope experiment at a low cost can be impactful
in eliminating a faulty product idea.

Furthermore, as the outcome of the experiments showed direction for the
development, the teams were able to back up the development decisions with
experimentation. In other words, they did not need to debate on the course
of action taken after the experiments, as the experimentation offered empirical
results. At the same time, experiment design was discussed and improved over
several sessions together with the researchers to ensure the highest possible va-
lidity. For instance, in one of the case companies, the experiment was rerun after
an alteration in the design. The need for alteration emerged during the piloting
of the experiment, which offered a concrete basis for the discussion sessions to
assess the experiment and its design.

Besides the benefits, challenges faced during the introduction process included
difficulties in accessing the end users of the software products to involve them in
the experiments. This difficulty was primarily caused by the companies’ multi-
layered B2B stakeholder structure. Company representatives were also hesitant
about contacting real users for various reasons, including the bureaucracy in-
volved in reaching out to the end users and uncertainty of the ethical and pri-
vacy issues involved in user data collection. However, alternative methods were
used to mitigate these challenges in the first experiments. For instance, proxy
users were used to overcome the challenge of inaccessible end users. Using proxy
users in the first systematic experimentation process helped development teams
gain experience, while the learning was used to plan future experiments with real
users. We also proved that experiments with proxy users can resolve develop-
ment uncertainties in a systematic approach, even though they might not offer
statistically significant experiment results due to limited population size. Over
the workshops and discussion sessions with the practitioners and researchers, it
was collectively decided to inquire further into data collection and ethics with
respect to software experiments as future work.

Article II elaborated on one specific case company involved in the multiple-
case study, in order to better capture the experimentation details and learnings.
Article II had a two-fold research focus: 1) details of the design and execution of
the experiment conducted at the case company and 2) identification of significant
themes emerged from the introduction process together with the challenges and
potential mitigation strategies to act as guidelines.

Two development teams at the case company and five researchers collaborated
on the planning, designing, execution and analysis of the UI experiment that was

42 4 Transitioning towards Continuous Experimentation

run twice. Based on the learning from these experiments, the initial steps to
transition towards CE were reduced into the following themes:

• Initial circumstances pose challenges for the development teams at exist-
ing organisations, such as ongoing development commitments and limited
resources. It is important to look at the ongoing development from a broad
perspective and prioritise the need for experimentation inline with the or-
ganisational goals. Essentially, while trying to answer an important devel-
opment question with the help of experiments, choosing a small scope for
the first experiments was found to be useful.

• Starting with small teams and small-scale experiments are observed to be
beneficial, however, they should be planned attentively. For instance, higher
level business goals might not be visible at a team level when planning the
first experiments. Involving several teams or individuals in planning the
experiment and having champions in the team who are able to influence
decision-making and can pioneer the transition were found to be useful
strategies. It is also important to understand that starting small does not
indicate that first experiments should be small in impact.

• Identifying an experiment target that will be a good fit for the first experi-
ments can be difficult. Utilising existing product materials and prioritizing
the user needs to be addressed by the experiment are necessary. Having
face-to-face workshops together with the development teams and decision-
makers (also with researchers in our studies) aid evaluating the user and
business needs, ongoing commitments and choosing the right experimenta-
tion target collectively.

• Designing and executing the experiment can be challenging, considering the
inexperience in experimentation and lack of skills required, for instance,
to avoid experiment biases and to define experiment metrics and success
criteria. This can lead to a significant amount of time to learn running valid
experiments, that development teams might be hesitant to allocate. As a
mitigation strategy, piloting and rerunning the experiments are advisable.
In addition, as there is no comparison point for the first experiments, being
flexible with metrics is advised.

• Collaborating with experts requires time and effort for the development
teams to introduce their product and context. On the other hand, experts

4.2 Practitioners’ Perspectives and Attitudes 43

help avoid big and risky mistakes and can facilitate an effective transition
and learning process.

• Persistence is required, as the first experiments are often arduous and might
be inefficient or unsuccessful due to inexperience. Experience and learning
from each trial, as well as building tools, methods and infrastructure for
reusability can increase efficiency. Furthermore, champions in the organi-
sations who promote the transition can help disseminate learning outcomes
and keep the motivation for the transition up.

In summary, Articles I and II offered in-depth analysis of two case compa-
nies’ journeys towards introducing CE. The results revealed that companies were
willing to adopt the approach and were open to learning from the introduction
process, however, planning their first experiments given the ongoing development
activities with short deadlines and lack of experimentation skills impede the pro-
cess and demotivate development teams. A systematic introduction process with
guidance helped companies experience an efficient start. Overall, starting at a
small-scale and at a low cost and running the experiment with existing resources
created a good response at the organisations, also with the help of champions
involved in the process. Choosing an experimentation target so that the experi-
ment can address an important aspect of the ongoing development was effective
for the development teams in observing that product assumptions can lead to
bad product features, if not tested.

4.2 Practitioners’ Perspectives and Attitudes

In order to facilitate an efficient transition to CE at an organisation, it is im-
portant to understand the perspectives and attitudes held by practitioners in
different roles. Hence, Articles III and IV reported on the user involvement sur-
vey, which aimed to 1) explore how software companies involve users in software
development and experimentation, 2) understand how developer, manager and
UX designer roles perceive and involve users in experimentation, 3) uncover sys-
tematic patterns in practitioners’ views on user involvement in experimentation.
We wanted to put special emphasis on the ethics involved in software experimen-
tation, as little has been published on ethics in software experiments. Therefore,
we reported the ethics part of the study separately in Article III, while reporting
the full study findings in Article IV.

44 4 Transitioning towards Continuous Experimentation

In particular, Article III described one section of the user involvement survey
that was aimed at addressing ethical issues organisations must consider when
planning and conducting experiments with users (see Section 3.2 for survey de-
sign). The ethics section of the survey asked 130 company employees in different
roles, such as developers, managers and UX designers, to reflect on their percep-
tions and preferences towards user notification and user involvement in software
experiments. Out of 130 responses, 71 were developers, 23 were managers and
22 were UX designers. The findings showed that the practitioner role had a big
influence on how individuals perceived the notification of users and their involve-
ment in software experiments. For instance, managers were observed to be more
cautious with user notification; they strongly indicated that users should always
be aware of software experiments they are subject to. On the other hand, UX
designers expressed on average that users do not always need to be notified of
an experiment they are subject in. Furthermore, UX designers tended to allow
exceptions in user notification and involvement; for example, it might be ac-
ceptable to inform the users after the experimentation was carried out and not
to disclose some of the details of the experiment to the users. Developers also
considered practical exceptions in notifying users after the experiments and they
believed that users would be willing to take part in experiments. The results also
revealed that some ethical aspects are shared and agreed by all the roles, such as
“if personal information is collected, users should always be notified”. In order
to better understand these findings, we performed a full analysis of the survey,
where we inquired into practitioners’ existing ways of working extensively.

Complementarily, Article IV reported on the full analysis of the survey with
130 practitioner responses of all survey sections. Before being asked about the
experimentation practices in detail, practitioners were asked to describe a situa-
tion, in which involving users in the development would be useful, but was not
possible to do so. Table 4.1 shows the major reasons for users being inaccessi-
ble for involvement in software development and experimentation. The reason
mentioned most often was the challenge of accessing the end users of the soft-
ware due to a multi-layered structure of users and customers. Practitioners often
work for their companies who deliver the software solution to their customer,
who might sell or deliver the product to their own users. Therefore, practitioners
might not be allowed to contact the end users and must rely on pre-determined
user requirements delivered to them. Other common reasons why users could
not be involved in the development included time and budget constraints and
lack of process. Especially when there is no clearly defined process to involve
users, practitioners might omit or give up on the task of user involvement, given

4.2 Practitioners’ Perspectives and Attitudes 45

Table 4.1: Major reasons why users could not be involved in the development activities,
according to practitioners.

Theme Description

Multi-layered
user/customer
structure

Companies might often have customers who sell or deliver the
software product to their own users; therefore, it might not be
possible to access their users. There might also be financial con-
flicts between different layers. In addition, the customers might
think that they are already knowledgeable about what the user
wants.

Time and budget
constraints

Even if users might be accessible, due to ongoing commitments
and tight deadlines, it might be difficult to reach them. The cus-
tomers might find it costly to allow practitioners to involve users
in the process.

Lack of process There might be no clear process of when and where to involve the
users. Heavy bureaucracy, such as getting the right permits to
contact users, might also slow down the development.

Consent and pri-
vacy

It might be difficult or impossible to get users’ consent due to
privacy reasons. Alternative solutions, such as test labs, might
not be the same as monitoring users on-board an actual flight.

Pre-determined
requirements

The user requirements might already be determined in advance,
and practitioners are told to follow them.

other pressures such as time. In addition, a group of practitioners also expressed
that vague or non-existing rules and procedures with respect to user privacy and
consent issues impede the user involvement process.

Furthermore, the results showed that practitioners had different views on
what experiments are to begin with. Table 4.2 summarises the two common
descriptions given by practitioners when requested to describe what a typical
experiment is according to their experience and beliefs. The majority described
experiments as UX/UI activities and user studies organised by practitioners from
UX/UI teams. The commonly used terms to describe these experiments included:
user studies, scenarios, surveys, interviews and walkthroughs. On the other hand,
22 respondents described the experiments using the following terms: hypothesis-
based, A/B tests, user analytics, building MVPs and releasing part of a feature
or software to (a subset of) users to collect data. This finding showed us that
practitioners understand experimentation differently to begin with.

Moreover, the role analysis revealed different attitudes towards collecting data
from users. For example, a significant group of developers opted for wide user
data collection, indicating that data should be collected from users, so that it
could be explored later when needed. In other words, user data collection does

46 4 Transitioning towards Continuous Experimentation

Table 4.2: Type of experiments, as described by respondents of the user involvement
survey.

Type Description # people

UX/UI activities
and user studies

Practitioners referred to activities and user studies organ-
ised and conducted by job functions, such as UX/UI de-
signers, to describe experiments. The referred activities
are: BDD stories, user stories, scenarios, usability tests,
surveys, interviews, shadowing sessions, workshops, walk-
throughs, talkalouds, mockups

28

Hypothesis-based
experiments and
analytics

Experiments that are driven by pre-defined hypotheses,
measuring user behaviour, collecting and using user data
and analytics for experiments. Practitioners referred to
the following terms when describing these experiments:
A/B tests, prototypes, MVPs or MVFs, partial or limited
release, piloting with proxy users

22

not necessarily need to be guided by an up-front plan or strategy but can be ex-
ploratory. At the same time, developers reported the least frequent contact with
users and ranked the lowest on having sufficient and up-to-date user information.
On the other hand, managers and UX designers favoured focused data collection,
that is collecting user data when there is a specific question that needs testing.
Specifically, UX designers have the most frequent and direct contact with users
and are confident about the quality of the information they have. They use
various tools and methods to involve users in their job, more often than other
roles. The results showed that by proportion, UX designers reported conducting
active experimentation the most. In fact, none of the UX designers reported not
conducting experiments at all.

The full analysis of the survey also supported our initial analysis that the prac-
titioner role has a direct influence on the understanding of ethics. In particular,
we observed that practitioners tend to interpret and rationalise the notification of
users in experiments based on their job functions. In other words, understanding
ethics in experimentation and user involvement are constructed by job functions
and personal experience. For instance, UX designers are the group that allows
for exceptions in user notification the most. To them, users do not always need
to be notified of experiments, and it might be okay not to disclose all the exper-
iment details. Moreover, they did not think that users have to be convinced of
the benefits in advance, nor that experiments would reveal product secrets.

4.2 Practitioners’ Perspectives and Attitudes 47

Table 4.3: Existing patterns identified from the user involvement survey and their
description.

Pattern Description

Focused data collection A pattern indicating that data does not always need be collected in
case it might be needed later. User behaviour should be measured to
know what the software should be like. People who follow this pattern
report that they conduct experiments actively, often use log data, have
relevant user information and opt for focused data collection.

Wide data collection A group of respondents are associated with the pattern that data
should not only be collected when there is a known need or assump-
tion, instead, rich and detailed data about what users do is always
useful. A large group of developers is associated with this pattern,
which also includes respondents, who agree that data should always
be collected because it might be needed later and who use log data
often as a data collection method.

Strict ethical attitude Regardless of any exception, users should always be notified of an
experiment. This pattern also includes respondents, who are likely to
think that users have to be convinced of the benefits before taking
part in an experiment, experiment results might not be trustworthy,
and involving users in experimentation is time-consuming.

Practical ethical consid-
eration

A group of respondents disagree that users should always be notified
or need to know that they are involved in an experiment. It is also
acceptable to not disclose some experiment details to users. Respon-
dents in this pattern are likely to think that users do not need to be
convinced to take part in experiments.

Unrestrained experimen-
tation

A pattern including a group of respondents who opted for wide data
collection, and who are associated with practical ethical considera-
tions such as not allowing the disclosure of all the experiment details
to the users and disagreeing that users have to be convinced to take
part. A subset of these respondents also report their active experi-
mentation practices.

Easy user access Easy access to user information is associated with not needing permis-
sion to contact users, direct user access, having relevant and sufficient
user information. People who opt for these statements are also likely
to think that users would want to be part of experiments.

Based on our analysis, six patterns emerged from the full dataset of responses
on the survey, as summarised in Table 4.3. These patterns were formed to de-
scribe the trends across the whole set of responses to the survey. Patterns in-
volved aspects concerning data collection methods and strategies, ethics of ex-
perimentation and access to users. These patterns are not mutually exclusive in
relation to each other, meaning they are constructed to explain existing trends
emerged from the dataset. Findings showed that practitioners can exhibit pat-
terns at two polar opposites – wide data collection vs. focused data collection,
and strict ethical attitude vs. practical ethical consideration. The unrestrained
experimentation pattern brings wide data collection and practical ethical consid-

48 4 Transitioning towards Continuous Experimentation

eration together and describes the group of practitioners who favour wide data
collection yet also allow exceptions in user notification; one of the companies
that participated in the survey (Company 5 in Table 3.3) fits the unrestrained
experimentation pattern well. This also means that companies might practise
and exhibit their experiment-driven development differently, combining different
data collection methods and having different attitudes towards software experi-
mentation. Lastly, we identified the easy user access pattern that described the
group of respondents who do not need permission for user contact, who have
direct access to the users, and who are confident about the quality of the user
information they have. These people are also likely to believe that users would
want to take part in experiments.

Patterns can be used to detect existing trends and to describe and understand
software organisation stances on experiment-driven development. Therefore, the
existing ways of working or processes that are undermining experiment-driven
development could be determined as well as finding out what skills and tools could
enhance experiment-driven development. Such examination can aid a better
evaluation of organisational needs and goals for adopting CE.

4.3 Continuous Experimentation as an Organisational
Mechanism

Phase 3 of the study analysed and reported on a case study conducted with
a mobile game development company, in which experimentation works as an
organisational mechanism. The findings were reported in Article V. The arti-
cle describes the company’s software development and experimentation practices
and investigates the factors that lead to an effective CE mechanism at the com-
pany. In this study, the characteristics of the mobile game development were also
investigated with respect to experimentation. The mobile gaming market is so
competitive that it is almost impossible to create new, truly innovative games
via mechanisms that would only rely on planning. This calls for an approach,
where the focus is on changing directions toward success, which can be realized
by making experimentation involving users have a central role in the development
process.

One of the main findings from the study indicated that experiments are im-
portant and valuable at all development stages in the case company, however,
they take different forms at different stages. For instance, in the early stages of
the development, experiments are designed to collect more qualitative data from

4.3 Continuous Experimentation as an Organisational Mechanism 49

the subjects, whereas once the product is in the market, the amount of quantita-
tive data is vast. Balancing between different experimentation methods, such as
complementing quantitative and qualitative data collection based on the stage of
development, appears to be the key to success. In addition, the results showed
that regardless of the stage at which experiments take place, they need a concrete
goal, i.e., up-front hypothesis and metrics, in order to be successful. Yet, most
of the experiments fail to prove the assumptions; in other words, the hypotheses
are rejected, and this is considered to be useful. In fact, by rejecting hypotheses
through experiments as often as possible, bad product ideas are eliminated at a
rapid pace. This is evidenced by the company representatives who report that
the most valuable learning come from failed experiments, as it is very critical to
eliminate wrong product ideas and assumptions as early as possible. The com-
pany has a learning mechanism to capture the findings from the experiments and
design new ones accordingly.

Furthermore, the interviews with company representatives revealed that in
the context of game development, conducting experiments was seen as a must
to support development decisions during the evolution of the product, and the
development teams are always motivated to design and run experiments. The
competitive market steers the direction of development decisions regarding new
game features and themes, and CE has been a highly prevalent approach in this
field. However, experimentation practices require strong leadership and expertise
to schedule the steps at a rapid pace and design systematic experiments in such
a competitive environment.

One of the main challenges was inaccessible real users to experiment with,
especially early in the development. As a coping strategy, the company reported
the use of alternative methods such as testing with proxy users. Internal users,
such as company employees, can be involved in experiments in the early stages
and as the product matures, external users, such as recruited users under non-
disclosure agreement or a subset of beta users, can be involved to test the prod-
uct. Once the game is fully on the market, quantitative data collected through
experiments becomes available en masse. At that point, focused experiments
with pre-defined metrics, e.g., key performance indicators (KPIs), become very
important in evaluating the success of the product, which leads to statistically
significant experiment results. Experiments designed to collect qualitative data
are required and useful, especially in the early stages of the development. Rich-
ness of the qualitative data is important to evaluate, for instance, the desirability
and aesthetics of a product feature early on.

50 4 Transitioning towards Continuous Experimentation

Lastly, we discovered that experiments take place throughout the develop-
ment life-cycle of a mobile game, yet the number of experiments are highest
during the early development life-cycle, e.g., during prototyping and preproduc-
tion. When the product gets more mature with time, experiments become more
specific. However, the experiments that take place early in the development can
be more influential in the overall development, as they are more conclusive on
how the product is going to be shaped. For instance, in the early stages, main
theme of a mobile game can be evaluated and decided via experiments. In ad-
dition, the cost of change in later stages is seen as high; therefore, it is very
important to effectively design and run experiments early on to eliminate such
big changes. On the other hand, experimentation in the earlier stages might offer
lower confidence, as they are not performed with real users. That is why speed
is very important in order to move to stages where experiments can be more
specific and they can be performed with real users. For example, a new game
feature can be tested via experiments and development decisions can be made.
Then, experiment results will offer more confident results, as they reflect what
real users want.

4.4 Summary of the Findings across Study Phases

Each of the three phases of the research were designed to pursue answers to the
research questions presented previously. In this chapter, we present the findings
from each phase of the research, reported in Articles I–V. The findings from each
phase revealed recurring themes in relation to each other. Figure 4.1 compiles
the main research findings from the phases and categorises them into three major
themes. Even though this dissertation was designed and reported in separate
phases (depicted horizontally), these recurring themes offer supportive insights
and answers to our research questions (depicted vertically).

The process of transition to CE addresses the research findings, including the
activities conducted when introducing CE to the development teams, the lessons
learned (Articles I and II), determining companies’ existing resources and capa-
bilities (Articles III and IV) and the investigation of how CE functions as an
integral part of an organisation’s development activities (Article V). Further-
more, we identified the research findings from each phase of the research that are
related to human factors, including having champions in the transition process
and practitioners’ perspectives of experiment-driven development and ethics. All
the articles included in this dissertation have contributed to this theme. Lastly,

4.4 Summary of the Findings across Study Phases 51

Figure 4.1: The phases and the articles of the dissertation in three themes across the
categorisation of the important findings.

the final theme, operational factors, refers to the research findings related to the
elements of experimentation, data collection and user involvement in terms of
actions to be taken. These actions included planning and designing the experi-
ment target and determining the metrics for the experiment (Articles I and II)
and different types of data collection and user involvement activities (Article V).
In Discussion (Chapter 5), while answering our research questions, we will also
discuss these findings across all study phases.

Chapter 5

Discussion

The CE approach is foreseen as a novel extension of continuous practices, such
as continuous integration and delivery (Olsson et al., 2012; Ros and Runeson,
2018). The approach can be used to aid the R&D decisions, while involving
users in the process through iterative and sustainable software experiments. In
this three-phase study, we learned that the CE approach can be introduced to the
development teams in an economical and efficient way, and human factors, such as
practitioner roles and motivation, play an important role in the transition towards
CE. In this chapter, we discuss the study findings in depth. First, we summarise
the contributions to our research questions and scientific implications. Next,
we indicate the practical implications that emerged from the findings. Lastly, we
examine the limitations of this research and consider and discuss potential future
work.

5.1 Scientific Implications

In the first phase of the study, we investigated how to introduce CE to the devel-
opment teams at existing software organisations. We described the introduction
process at two organisations and identified the operational actions to be taken to
run the first systematic experiments. From the findings, several human factors
also emerged, such as the role of champions, who drive the introduction process
in the development teams. The research aspects associated with human factors
were further investigated through the survey study such as how practitioners
define software experiments. In the last phase, while investigating how the CE
approach is effectively practised in a mobile game company, we obtained knowl-

53

54 5 Discussion

edge that contributes to the transition process to CE such as the importance
of experiments in the early stages of software development and learning from
failures. Furthermore, we learned about the operational factors involved in the
practice of CE, including how different types of experiments can be planned, and
how different types of user involvement can be facilitated. Eventually, we ob-
tained supporting findings to our research questions from all three phases of the
study and the findings formed a whole. In this section, we will summarise the
answers to our research questions, while also discussing the supporting findings
from all phases of the study, as well as the existing research (see Figure 4.1 for
the summary of all findings across study phases).

5.1.1 Initiating the Transition Systematically

Existing research to a large extent reports on (online) controlled experiments
(Lindgren and Münch, 2015), and further, the research field is mainly dominated
by big technology companies (Ros and Runeson, 2018). Not only they do not
publicly share their datasets, which makes it difficult to fully understand the
details of experiments (Ros and Runeson, 2018), but they also do not explicitly
disclose how they transitioned towards the CE approach. This is understand-
able in terms of confidentiality; in fact, in our study, we were also careful with
only sharing the transition process and snippets of experiments, not disclosing
any company-sensitive data, since the companies have to protect their business
secrets. However, since there is a lack of guidance on how to initiate such a
transition, our first research question addressed this research gap. Based on the
research findings, we summarise the contributions to the RQ1 as follows, followed
by a discussion on it:

RQ1: How can continuous experimentation be introduced in software develop-
ment teams?

CE can be systematically introduced to software development teams by utilis-
ing existing resources, limiting the complexity and starting with small teams and
scope, however, not small in impact for the first experiments. The introduction
process can be facilitated with guidance and by systematic experimentation, the
validity and sustainability of approach can be improved each time an experiment
is conducted while capturing learning. Experiments can be conducted at various
stages in the development life-cycle, such as even before the product is in the
market, and in various forms, such as using proxy users, when the real users do

5.1 Scientific Implications 55

not exist yet. With a systematic introduction process, the benefits of the ap-
proach can be observed early on, which is very crucial for the software industry,
where budget and time to adopt a new approach are limited.

Case study findings from Phase 1 offered us useful insights on introducing
CE to development teams, systematically (see Section 4.1). Starting with a
small team size and a small scope, as well as choosing the experiment target,
so that the development team can experience the benefits on the spot, were
found to be useful. Furthermore, having a champion in the development team,
who can carry out the experiment design and execution processes and especially
the dissemination of the results into development decision-making, was found to
particularly valuable.

Understanding the organisation context, existing resources and capabilities
available to experiment with users are important in designing the first experi-
ments as well as to determining the overall direction of the transition process
to CE. In our case studies in Phase 1, this required time and effort from com-
pany representatives when introducing the company to the researchers and for
researchers when introducing systematic CE. Having multiple workshops and
discussion sessions were very crucial to evaluate the overall development and
ongoing commitments and to determine the experiment target, where the first
systematic experiment would be the most beneficial to conduct. Choosing the
right target for the first experiment is also important in terms of impact of ex-
periment results. We consider the introduction of CE as a learning process,
yet we also learned from our studies that witnessing the immediate benefits of
the first experiments highly motivated the practitioners to carry on with the
transition. Furthermore, in Phase 2 of the study, we intensively investigated
existing organisational resources and capabilities and identified several patterns
on experiment-driven development and user involvement in the development in
general. These patterns can be utilised by the developments teams to identify
their current position with respect to experiment-driven development and how
to govern the transition toward CE.

The influence of organisational context on the practice of CE was also evident
in Phase 3, where the domain was mobile game development. The dynamics of
the game development market, such as high-competitiveness and rapid changes
in the demand of game features, steer the direction of the development for game
companies. We observed that as the market has a high utilisation of the CE
approach, it was a must for the case company to adopt the CE approach, as

56 5 Discussion

well. Company representatives from this study emphasized that having CE well-
established in their development culture is motivated by the needs of the market.

We emphasize that initiating the transition towards CE is a learning process,
in which the first experimentation attempts might fail. We have learned from the
company representatives in Company 6 that they learn the most from failed ex-
periments and utilise the learning to establish their own guidelines for systematic
experimentation. On the other hand, existing research also indicated that one of
the reasons why software practitioners cannot transition easily is the fact that
the first experiments are likely to fail and this demotivates the teams to make the
investment of adopting the approach (Madeyski and Kawalerowicz, 2017). How-
ever, we have showed by our research findings that this can be overcome with
several strategies, including using proxy users, piloting the experiments to gain
experience and being flexible with metrics for the first experiments, as there are
no comparison points. Consequently, the ambivalence towards inexperience in
experimentation holding development teams back from practising the approach
can be dealt with a systematic introduction to the approach. With systematic in-
troduction, existing resources can be utilised, and the process can be economical
while being impactful.

Another important finding was made during Phase 3 – experiments that take
place early in the development are as valuable as post-deployment experiments,
and in fact, they are more conclusive in shaping the software. In the domain of
mobile game development in particular, existing research indicates that once a
game is fully implemented, it is very expensive to make a change, such as fix-
ing a problem, and this will effect whole project schedule (Aleem et al., 2016).
We also know from traditional software engineering research that the cost of a
change or a fix significantly increases as the software product matures during
the development (Boehm et al., 1981). Therefore, it is important to create the
capability of CE in the earlier stages of software development. Even though there
is existing research emphasizing the importance of experiments early in the de-
velopment (e.g., Thomke (2001); Bosch-Sijtsema and Bosch (2015) and Lindgren
and Münch (2015)), they did not offer explicit guidelines on how to conduct such
experiments. In our introduction processes, we ran the first experiments at early
development stages with proxy users and observed the benefits. While in Phase
1, we conducted the first experiments on mature products, in Phase 3, we also
studied CE beginning from the product ideation stage.

5.1 Scientific Implications 57

5.1.2 Human Factors

Examining human factors was relevant to our research from multiple angles.
At first, an organisational transition requires a change in practitioner work be-
haviour, therefore, it is important to study the individuals’ perspectives during
the change. In Phase 2 of the research, the primary goal was to collect rich data
from the practitioners through a survey to better comprehend their attitudes
and perceptions. In addition, a number of other human factors also emerged
such as having champions in the introduction process and the motivation to keep
experiment-driven development up and running during Phases 1 and 3, as can
be seen from Figure 4.1. The RQ2 and a summarised answer to the question,
followed by an extensive discussion to it are as follows:

RQ2: What perspectives and attitudes do practitioners at organisations exhibit
with respect to experiment-driven development?

Practitioners at software organisations tend to describe software experiments
differently, and the practitioner role is influential in perceiving the ethics of exper-
imentation. For instance, UX designers tend to see experiments as user studies
and might allow exceptions in user notification such as letting the users know of
the experiments only afterwards. Software organisations need to evaluate such
differences and set their goals and guidelines for adopting experiment-driven de-
velopment. Having motivated people and decision-makers in the transition pro-
cess promotes the benefits of experimentation early on and helps plan and manage
the process.

We found from the multiple-case study that having champions in the devel-
opment teams, who are enthusiastic about furthering the approach, was crucial.
These champions did not only encourage the rest of the team, but also commu-
nicated the study and its results to the rest of the organisation. We saw that
having the champions affected the decision-making process in the organisations
and enabled a more efficient introduction process, as the experiment results were
disseminated and implemented quickly. In addition to this, researchers partic-
ipated in the introduction process as experts providing guidance when needed,
which was also found to be useful and helped eliminate big mistakes. However,
we believe that after gaining enough experience by learning from experiment tri-
als and even failures, development teams are expected to be more experienced
on their own.

58 5 Discussion

The last phase of our research on CE as an organisational mechanism revealed
that the role of leadership is also essential in planning, designing and running the
experiments continuously. With the guidance of leaders, teams eventually turn
into self-organising teams. We also acknowledged that different organisational
contexts, such as mobile game development, have different market dynamics and,
therefore, affect how practitioners in the organisations are motivated to adopt
the approach. Consequently, we can argue that motivation for transitioning to
CE might differ between organisations and development teams, however in any
case, persistence is required to make the approach become company culture.

In the second phase of the research, we asked practitioners to describe a typ-
ical experiment they have seen or have been involved in their company. The
results showed that the term experimentation was used inconsistently by practi-
tioners, a finding that was also pointed out by existing research such as Sjøberg
et al. (2005) and Ros and Runeson (2018). We found that there are two major
perspectives of what experiments are. Majority of the practitioners described
typical experiments as UX/UI designers’ activities conducted with users. On the
other hand, the descriptions provided by the rest of the practitioners showed more
awareness of hypothesis-based experimentation and other related methods and
techniques such as A/B tests, user analytics and limited time release. The latter
description is more inline with the core elements of experiment-driven develop-
ment, as we reviewed in the previous work. However, we also acknowledged that
experiment-driven development can use instantiations or parts of other practices
such as usability engineering and user-centric design, and it can cover a broader
scope. For instance, a broader description of experimentation was offered by
Gutbrod et al.Gutbrod et al. (2017), where they report on their multi-case study
with several startup companies, that were run in various forms, including inter-
views, trade show testing, landing page, A/B testing and MVP testing depending
on the specific need for the experiment. When there are differences in perceiving
experiments in an company, there might be risks stemming from mismatched
understandings. For instance, some practitioners might believe that experiments
are/should be conducted only by the UX designers. When they do not consider
themselves designing or running experiments, they might be resistant to adopt
CE. Therefore, it is advisable for the companies to address such differences and
fix the objectives for adopting the approach accordingly.

Furthermore, we observed that the role of practitioner makes a big difference
in having an attitude towards experiment-driven development and ethics. UX
designers were found to use several tools and methods to interact with the cus-
tomers and users the most, and they reported knowing their users well compared

5.1 Scientific Implications 59

to other roles. A prominent finding was the significant variation between practi-
tioner roles with respect to ethics. For example, while managers tended to think
that users have to be convinced of the benefits before taking part in experiments,
UX designers allowed exceptions in user notification more easily – users would
not always need to be notified of experiments they take part in, and it may be
acceptable to not disclose some experiment details to them.

In terms of participant awareness and notification, it is known from the exper-
iments of other disciplines, such as psychological experiments, that participants’
awareness of being experimented on can bias results. It may be defensible to
carry out such experiments, provided that the harm done is negligible. In sci-
entific experimentation in general, it is considered obligatory to disclose this to
participants afterwards and to allow them to withhold consent to use the data.
For this reason, the UX designers’ attitude toward user notification and their
welcoming attitude towards experimentation can be due to the nature of their
job function. They are generally familiar with user studies and different methods,
such as prototyping, user surveys and interviews, and how biases are involved in
the design of these studies. Organisations need to consider such differences in
understanding software experiments and ethics, when initiating the transition to
CE. Existing research does not offer extensive findings in terms of practitioner
role in experimentation, with the exception of a few studies such as Fagerholm
et al. (2017) and Fabijan et al. (2017b). These studies address the need for
different roles in experiments.

The ethical line of inquiry has also been important to study, as only little has
been published on software experiments and ethics (Ros and Runeson, 2018). The
findings indicate that practitioners see the ethical issues from their own perspec-
tive, influenced by their job functions. In fact, we claim that practitioners tend
to rationalise what is acceptable in accordance with their job function. Due to
unclear rules and policies about user consent, privacy and data collection, practi-
tioners tend to perceive software experiments according to their own experiences
and beliefs. We also learned from the case studies that uncertainty about ethical
issues slowed down the introduction process. Consequently, we argue that due
to lack of clear process of involving users in experimentation in organisations,
as well as lack of research and regulations about ethics of experimentation in
general, practitioner understanding of the ethics of experimentation might not
establish a common ground. Once the future research and the regulations, such
as European GDPR, offer more insights, the ethical issues concerning CE can be
better assessed.

60 5 Discussion

5.1.3 Operating Experiments and User Involvement

Experimentation can take place in different forms and at different stages of soft-
ware development. Besides it can be perceived differently by different practitioner
roles, it can be practised differently depending on the business domain and or-
ganisational needs. Based on our research findings, the RQ3 and summarised
answer to it is as follows:

RQ3: How can a continuous experimentation mechanism be established in an
organisation, adapting to the business domain and organisational goals?

When transitioning towards experiment-driven development, challenges of in-
accessible real users can be overcome by alternative methods such as proxy users.
While the experimentation validity will improve with practice and iteratively con-
ducting experiments, establishing an organisational mechanism that will capture
learning from the experiments and adapt to both organisational and contextual
needs is crucial. Balancing between different experimentation methods and user
involvement in accordance with business context and organisational goals is the
key to success.

In this research, we observed that company representatives were hesitant
about contacting real users for the first experimentation for various reasons – the
multi-layered customer structure creates accessibility problems, it might require
formal work to contact customers due to permissions, and inexperience with ex-
perimentation can damage real users’ trust in case of failure. Besides, ethical
issues involved in data collection can impede the process. Table 4.1 summarised
the main reasons why practitioners could not gain access to users. As a solution,
using proxy users in the first systematic experimentation process helped develop-
ment teams gain experience at a rapid pace, since accessing real users, especially
in a multi-layered B2B structure, would have taken longer.

Figure 5.1 represents the different types of user involvement in experiments
that were studied in this dissertation. We designed and ran the first systematic
experiments, which were conducted with proxy users in our case studies in Phase
1. These experiments were run in the early stages of software development with
internal company practitioners in the companies. In general, using proxy users
might be especially convenient for experiments, when the product or feature is
not in the market and no real users exist yet. We anticipate that while matur-
ing in experimentation, case companies that participated in Phase 1 could soon
begin experimenting with a subset of real or recruited users. Furthermore, these

5.1 Scientific Implications 61

Figure 5.1: Experimentation with respect to the types of users involved, as studied in
this research. The curved arrow represents how the transition to CE was initiated with
the proxy users in Phase 1. On the other hand, in Phase 3, an established CE mechanism
was studied, where all types of user involvement can occur, depending on the design.

companies can eventually reach the capability of CE, while also building the
infrastructure for it, in which they can conduct experiments iteratively. As we
learned from the case study with the mobile game development company, con-
tinuous experiments can be run with different types of users, depending on the
need for the experimentation and the stage of the development. In Company 6,
early stage experiments in particular are conducted with proxy users, and while
the product matures in production, experiments are started with a bigger scope
of users from outside the development teams and the company such as recruited
users. However, at the same time, experiments with a subset of users or proxy
users are run anytime when needed, for instance, when a new feature has to be
tested with a smaller set of users first. As for organisations that just started
to adopt experiment-driven development, it might also be possible to start by
experimenting with real users. Once the companies have the capability of CE,
they can experiment with different degrees of user involvement, depending on
the necessity.

In addition to the user involvement in experiments, in Phase 3, we found
that in the earlier stage experiments, the data collected through experiments
are often qualitative. For instance, qualitative data on user preferences of UI

62 5 Discussion

aesthetics can be collected through experiments. Such experiments that are
designed to collect qualitative data are important in order to understand the
desirability of the product, mobile games in this context, where the real users do
not exist yet. We learned from the case study that the case company conducts
experiments to collect qualitative data throughout the development life-cycle in
order to complement the experiments that collect quantitative data.

Furthermore, one of the challenges impeding the transition to CE was already
observed in Phase 1. It was difficult to ensure experiment results with a high
degree of validity, as the sample size was not big enough to offer statistically
significant results. This is natural when a large number of real users may not
be available. Especially when the sample number is limited, random assignment
to control and treatment groups might not be possible. Instead, as we discussed
earlier, the first experiments can be small in size and scope. Moreover, success
criteria and metrics for the first experiments might not be realistic, as there is
no comparison point. However, we observed that piloting the experiments and
being flexible with the metrics in the beginning helped address this challenge.
In general, as the CE mechanism becomes more established in an organisation
through capturing learning and adapting to the organisational needs, the validity
of experiments is expected to increase.

5.2 Practical Implications

Software practitioners are often concerned by limitations, such as budget and
time, in competitive markets. It is especially important to consider the benefits
of a new approach at a low cost when initiating a transition. This transition,
therefore, requires a careful introduction process. In this dissertation, we showed
that experiments can be introduced to software development teams at a low
cost, by planning and running small-scale experiment with development teams,
yet knowing that the results can be impactful. For instance, in the case study
conducted in Phase 1, an experiment that was run using PowerPoint slides with
the proxy users revealed that an assumption on a development feature, that
was otherwise going to be implemented, was wrong. In other words, thanks to
the experiment, a bad product idea was successfully eliminated before it was
implemented and deployed to the end users.

In order to initiate the transition towards CE, companies may either seek
guidance from experts, if they are not familiar with experiment-driven develop-
ment, or initiate the process themselves. Our research findings can be applicable

5.3 Threats to Validity and Limitations 63

to either case. For instance, internal training sessions on systematic experi-
mentation can be arranged, where our guidelines are followed. Furthermore, as
discussed previously, it is important to set organisational goals for adopting CE.
For instance, business domains, such as game development, require a very rapid
pace and experimentation in different forms throughout the development-life cy-
cle. Business structures, such as B2B, require a careful assessment of customer
structure and their needs to aim the experiments at the right subject groups. Fur-
thermore, such a structure might require companies to go through bureaucracy
to ensure the accessibility of the users and data collection.

Especially keeping in mind that due to the novelty of the research field of CE,
there has not been a common understanding on where the practitioners’ views
reside. The patterns identified from practitioner responses to the survey study
can be used by software practitioners to examine their position with respect
to experimentation and user involvement. We do not strictly claim which set
of patterns constitutes the right mindset for the experiment-driven development
approach; on the contrary, we found and discussed that companies can adopt and
practise the approach so that it fits their way of working as well as organisational
goals.

One of the key practical consideration for practitioners who want to adopt CE
in their organisations is to choose the right experiment target for the first system-
atic experiments. The right experiment can address an important development
question at a low cost, and the learning can be scaled up to the organisation.
Likewise, an organisational mechanism that will gather the learning from the first
experiments and disseminate the results to the relevant parties for development
decision-making is needed. In order to do this, new roles in the companies might
be necessary such as experimentation scientists.

5.3 Threats to Validity and Limitations

This research did not directly aim at investigating causality and we did not set
strong hypotheses when designing the studies. In addition, we did not directly
aim at offering normative solutions, but rather extracting and composing de-
scriptive and observational knowledge and lessons learned about adopting CE
in companies. Our study design and research findings were exposed to several
threats to validity and limitations. We took several precautions during the re-
search design process to mitigate them. Here, we discuss threats to validity, as
well as the limitations of the research findings.

64 5 Discussion

Construct validity for this research was taken into consideration from multiple
angles. Firstly, we studied the practice of software experiments and its evolution
(as reviewed in Section 2.2). Empirical software engineering has adopted exper-
imentation in the field of software development, with the purpose of being able
to produce better software products fostered by evidence-based decision-making.
Furthermore, experiments in CE practice have significant differences to a natural
science experiment. One of the primary differences is that software experiments
have pragmatic utility and are driven by business needs. Determining the re-
search terminology (see Section 2.5) and scoping the research accordingly helped
overcome such risks that would have emerged from inconsistent use of terms.

Secondly, in the phases of research where we conducted case studies, we were
careful to collect and extract data based only on the study design, and we in-
volved company representatives in the analysis stage to ensure that our results
and interpretations did not conflict with their understanding. In general, in all
of the three phases of research, we tried to ensure data triangulation and member
checking and considered researcher bias following the guidelines and recommen-
dations of Yin (2009) and Creswell (2014). We used multiple data resources to
determine the consistency of the findings and all researchers systematically par-
ticipated in the study design, the data analysis and the review of the findings to
confirm accuracy. Researchers who were not involved in the initial data analysis
of the different phases of research reviewed the results in an effort to eliminate
bias.

In particular, concerning Phase 2 of this research, the survey study, we worked
closely with company representatives to tailor the survey draft, so that it would
fit their company domains and contexts. However, we were careful with main-
taining the same goal and structure of the survey, so that the datasets from
each company could later be merged. For instance, options for the practitioner
roles were added, removed or modified, depending on the actual role descriptions
at each company. We believe that discussing the job functions with company
representatives helped us better understand descriptions of the roles in differ-
ent companies. Additionally, in the survey design in Phase 2, we purposefully
avoided including an explanation or example of what an experiment, the elements
of experiments or implications on ethical issues were. We wanted to observe what
the respondents consider to be an experiment, and how they perceive ethical is-
sues by themselves. For this purpose, we had multiple types of questions, for
instance, Likert-type scales (Gliem and Gliem, 2003) and open questions, and
we also asked respondents to describe what an experiment is in their opinion as
well as any challenges they had faced in user involvement. Different forms of

5.3 Threats to Validity and Limitations 65

collected data helped us cross-validate the findings and capture the similarities
and differences in the perceptions held about experiments and users.

In terms of external validity, the focus of this dissertation was the systematic
initiation of the transition towards CE. This research ultimately aims at a full
transition to CE as an organisational mechanism, in which development teams
have the skill-set and infrastructure to run experiments iteratively and contin-
uously, when needed. In order to research the transition to the CE process,
we studied the introduction of the approach first. In Phase 1 of this research,
the introduction of CE was guided by researchers, who had expertise on the
subject. Furthermore, in Phase 3, we also studied a CE mechanism without ex-
pert guidance and gained further insight into how CE can be adapted within an
organisation. We hope that our research findings are helpful and transferable
for development teams and organisations who want to initiate their transition
without expert involvement, as well.

In addition, in this dissertation, we started with the introduction process of
CE with development teams and disseminated the benefits and lessons learned
to the other teams. Our aim was to scale up the approach to the rest of the
organisation, while practising and gaining experience. We already observed the
benefits of starting with small teams and small scale-experiments in our studies,
however, in other contexts or organisations, other introduction approaches might
also be possible.

In general, the company domains, structures and cultures certainly influence
transitioning towards CE. In our case studies, we worked with the development
teams of large organisations in domains such as telecommunications and digital
consultancy during the introduction of the CE phase. Afterwards, we investigated
CE as an established company culture in the domain of mobile game development.
However, dynamics might be different in other domains or contexts. For instance,
for start-ups, budget and time constraints might be more restrictive to adopt a
new approach. Furthermore, we observed in our case studies that user/customer
structure influences the design and execution of the first systematic experiments.
In particular, a multi-layered user/customer structure in a B2B domain requires
an understanding of the needs of each user level as well as operational issues
such as accessibility to the end users. In terms of generalisability, we cannot
make strong claims based on three case studies and a survey study, however, the
confirmability of the findings between different phases of the study indicates that
it would not be surprising if the findings of this dissertation were valid for other
companies, as well. We are very much interested in seeing how our findings apply
in other contexts.

66 5 Discussion

5.4 Future Work

The research in this dissertation is a step forward towards providing empirical
guidance on how to transition to CE from the ground up. In this section, we
discuss potential future work complementary to our research findings.

In this research, we showed that the first experiments can take different forms
and take place at different stages of the development life-cycle, and any devel-
opment team might be able to do it. We also addressed the differences in the
type of data primarily collected in different experiments and the validity of ex-
periment results. In particular, we noted that experiments that are designed to
collect qualitative data are as valuable as those that collect quantitative data
from users. One particular question that future work could address is: “How to
combine different types of experiments, that are designed to collect qualitative and
quantitative data?”. More case studies are needed to study the different types
and forms of experiments at different stages of software development.

Furthermore, in this research, we investigated how CE can be introduced to
the development teams. Planning the first systematic experiments with the teams
various aspects to consider, such as the cost of the experimentation, even though
it was not an initial objective of the research. In this research, we found out
that starting the first experiments economically is important, yet future research
should evaluate our findings. In addition, future research could address different
transition approaches. For instance, in new settings, the decision for transitioning
towards CE might come from the management level, directly driven by business
considerations, and might propagate towards development teams.

One of the key findings showed how CE can function as an organisational
mechanism, and we found that CE has to adapt to the business domain and
organisational goals. Two of our case companies shared a B2B structure, while
one company had a B2C structure. However, each case company had different
business domains and needs. We emphasized that user needs are different in
such layered structures, and correspondingly, the need for experimentation dif-
fers. More case studies are needed to better understand the effect of user struc-
ture combined with the needs emerging from the domain in experiment-driven
development.

Likewise, we emphasized in the research scope of this dissertation that we
study the initiation of the transition to CE, yet we do not directly aim at conti-
nuity with the first experiments. However, one question is: “How to start building
the infrastructure for CE, while initiating the approach?”. In the first systematic
experiments, development teams do not have to build big technical infrastructure,

5.4 Future Work 67

but as the transition progresses, the number of experiments in parallel, as well
experiment data collection, are expected to increase. In order to deal with such
complexity, several technical changes might be needed to trace the experiments
and user data. In addition, as we already addressed in Chapter 2, in software
engineering there is an emergent phenomena emphasising the necessity of a focus
on continuous activities, including continuous delivery and DevOps (Fitzgerald
and Stol, 2017). How these related activities can work in synchronisation with
CE, both from a methodical and technical point of views are yet to be inves-
tigated. Future research can study the creation of such continuous systems to
involve and support CE.

Finally, we believe that the development and practice of new regulations on
user data collection will affect the research on ethical issues involved in soft-
ware experiments in the future. Furthermore, future research on understanding
the end users’ point of view on their involvement in experiments would also be
valuable. This can be done through studies such as surveys or polls. Thus,
the grounds for user data collection and privacy would be better understood by
involving them in the studies more directly.

Chapter 6

Conclusions

Software companies have always tried to find more efficient ways to deliver value
to their users. Learning from and about the users, such as the way they use
software, have become a must, and therefore, an integral part of the whole devel-
opment process. Agile methodologies and Lean Startup share similar principles
of involving users in the development, gathering justifiable data about users in
an iterative fashion in order to produce better software. Software experiments
are commonly used in software development, especially in the last decade, to
collect evidence on the value of the software product and services. The CE ap-
proach aims to utilise the strengths of experimentation in software development
in order to support design decisions continuously. As the approach is novel and
of increasing interest, one of the research areas is how to adopt the approach in
organisations. In this dissertation, we examined how this transition to CE can be
initiated in software organisations. We conducted empirical studies with develop-
ment teams and practitioners to obtain descriptive and observational knowledge.

We found that the transition towards CE is a learning process, in which the
benefits of the approach with a systematic introduction can be observed early
on. We learned from our studies with development teams, that the first experi-
ments can be designed in a small scope yet can be impactful for the organisation.
Existing resources can be utilised, and as well as being economical, the first ex-
periments can be efficient. We showed that alternative methods can be used to
overcome the challenge of a lack of real users by using proxy users and proved that
experiment results can change the direction of development decision-making. In
this dissertation, researchers helped introduce CE in the case companies. How-
ever, development teams and practitioners in other organisations can utilise the
findings to start their own transition process by following our guidelines.

69

70 6 Conclusions

Furthermore, we studied the influence of human factors on experiment-driven
development and the transition to it and found that personal beliefs and expe-
rience have a strong influence on how software experiments are perceived. For
instance, UX designers tend to recognise experiments as UX/UI-related stud-
ies and prefer methods for user data collection that are in line with their job
function. Such differences in understanding and conducting experiments might
need to be addressed in order to set organisational goals for adopting the ap-
proach. In addition, we observed that having a champion in the development
teams expedited the introduction process and the dissemination of the results
as well as feeding the results into decision-making. Witnessing the benefits of
a new approach early on also motivates practitioners to embrace the change,
and motivation is an important factor when establishing CE as an organisational
culture.

Software experiments often collect data from human subjects, therefore, the
ethical considerations should be taken seriously into account. We inquired into
what practitioners think about user involvement and notification of software ex-
periments. We found that the practitioner role does not only affect how individ-
uals perceive software experiments, but also the ethical issues. Practitioners tend
to rationalise what can be acceptable in ethical issues in accordance with their
job function. For instance, managers are cautious about the company-customer
relationship, and they think that users should always be notified of experiments
in advance, whereas UX designers allow for exceptions such as letting them know
afterwards. Such differences in ethics indicate that organisations have to work
on their regulations and policies concerning user data collection, especially in
accordance with data protection regulations their organisations are subject to.

Studying an organisation’s established CE practices showed that the CE func-
tions as an organisational mechanism that adapts to the business domain and
organisational goals. Business domain and the goals for adapting CE affect both
the technicality and the cost of first experiments. In the field of mobile game
development, for instance, where the competition is very high, experiments are
vital in order to move quickly, while constantly testing product assumptions. Ex-
periments can take many different forms, ranging from qualitative user studies
to A/B tests, depending on the development stage, yet experiments take place
throughout the development. Organisations can develop such a mechanism grad-
ually, assessing their business structure and using alternative methods for user
involvement, while improving the validity of the experiments each time. Further-
more, we learned that having a shared organisational goal for experimentation
reflects on the practitioners, and motivation becomes inherited.

71

This dissertation provides several novel contributions to software engineering
research and practice. We found that despite the existing research on a specific
type of software experiment and dominance of big companies, it is possible to run
different forms of experiments depending on the stage of software development
and the need for experimentation. Furthermore, we discovered that even when
real users are not available, software experiments involving users can be designed
and ran. We also investigated the ethics involved in software experiments and
found that when there are no established regulations, ethical issues are left to
practitioners’ own interpretation. Above all, we observed that CE should be
introduced systematically, and it should be treated as a learning process, in
which development teams can observe how empirical evidence might change the
direction of development decisions. An organisational mechanism should be built
to support such a transition.

References

Abelein, U. and Paech, B. (2015). Understanding the influence of user participa-
tion and involvement on system success–a systematic mapping study. Empirical
Software Engineering, 20(1):28–81.

Agarwal, R. and Dhar, V. (2014). Big data, data science, and analytics: The
opportunity and challenge for is research.

Aleem, S., Capretz, L. F., and Ahmed, F. (2016). Game development software
engineering process life cycle: a systematic review. Journal of Software Engi-
neering Research and Development, 4(1):6.

Bakshy, E., Eckles, D., and Bernstein, M. S. (2014). Designing and deploying
online field experiments. In Proceedings of the 23rd international conference
on World wide web, pages 283–292. ACM.

Barney, S., Aurum, A., and Wohlin, C. (2008). A product management challenge:
Creating software product value through requirements selection. Journal of
Systems Architecture, 54(6):576–593.

Basili, V. R. (1996). The role of experimentation in software engineering: past,
current, and future. In Software Engineering, 1996., Proceedings of the 18th
International Conference on, pages 442–449. IEEE.

Basili, V. R., McGarry, F. E., Pajerski, R., and Zelkowitz, M. V. (2002). Lessons
learned from 25 years of process improvement: The rise and fall of the nasa
software engineering laboratory. In Proceedings of the 24th International Con-
ference on Software Engineering, ICSE ’02, pages 69–79, New York, NY, USA.
ACM.

Bass, L., Weber, I., and Zhu, L. (2015). DevOps: A software architect’s perspec-
tive. Addison-Wesley Professional.

73

74 References

Blank, S. (2013). The four steps to the epiphany: successful strategies for products
that win. BookBaby.

Boehm, B. and Turner, R. (2003). Balancing agility and discipline: A guide for
the perplexed. Addison-Wesley Professional.

Boehm, B. W. et al. (1981). Software engineering economics, volume 197.
Prentice-hall Englewood Cliffs (NJ).

Bosch, J. (2012). Building products as innovation experiment systems. In
Cusumano, M. A., Iyer, B., and Venkatraman, N., editors, Software Business,
pages 27–39, Berlin, Heidelberg. Springer Berlin Heidelberg.

Bosch, J., Olsson, H. H., Björk, J., and Ljungblad, J. (2013). The early stage
software startup development model: a framework for operationalizing lean
principles in software startups. In Lean Enterprise Software and Systems,
pages 1–15. Springer.

Bosch-Sijtsema, P. and Bosch, J. (2015). User involvement throughout the in-
novation process in high-tech industries. Journal of Product Innovation Man-
agement, 32(5):793–807.

Bradburn, N. M., Sudman, S., and Wansink, B. (2004). Asking questions: the
definitive guide to questionnaire design–for market research, political polls, and
social and health questionnaires. John Wiley & Sons.

Braun, V. and Clarke, V. (2006). Using thematic analysis in psychology. Quali-
tative research in psychology, 3(2):77–101.

Callan, V. J. (1993). Individual and organizational strategies for coping with
organizational change. Work & Stress, 7(1):63–75.

Creswell, J. W. (2014). Research design: Qualitative, quantitative , & mixed
methods approaches. SAGE Publications, Inc, 4th edition.

Croll, A. and Yoskovitz, B. (2013). Lean analytics: Use data to build a better
startup faster. ” O’Reilly Media, Inc.”.

Davenport, T. H. (2009). How to design smart business experiments. Strategic
Direction, 25(8).

Diestel, R. (2005). Graph Theory. Springer, Berlin, 3rd edition.

References 75

Dingsøyr, T. and Lassenius, C. (2016). Emerging themes in agile software de-
velopment: Introduction to the special section on continuous value delivery.
Information and Software Technology, 77:56–60.

Dingsøyr, T., Nerur, S., Balijepally, V., and Moe, N. B. (2012). A decade of agile
methodologies: Towards explaining agile software development.

Ebert, C., Gallardo, G., Hernantes, J., and Serrano, N. (2016). Devops. Ieee
Software, 33(3):94–100.

Eisenberg, B. and Quarto-vonTivadar, J. (2009). Always be testing: the complete
guide to Google website optimizer. John Wiley & Sons.

Fabijan, A. (2016). Developing the right features: the role and impact of customer
and product data in software product development. Malmö university, Faculty
of Technology and Society.

Fabijan, A., Dmitriev, P., Olsson, H. H., and Bosch, J. (2017a). The benefits of
controlled experimentation at scale. In Software Engineering and Advanced Ap-
plications (SEAA), 2017 43rd Euromicro Conference on, pages 18–26. IEEE.

Fabijan, A., Dmitriev, P., Olsson, H. H., and Bosch, J. (2017b). The evolution
of continuous experimentation in software product development: from data to
a data-driven organization at scale. In Proceedings of the 39th International
Conference on Software Engineering, pages 770–780. IEEE Press.

Fabijan, A., Olsson, H. H., and Bosch, J. (2015). Customer feedback and data
collection techniques in software r&d: a literature review. In International
Conference of Software Business, pages 139–153. Springer.

Fagerholm, F., Guinea, A. S., Mäenpää, H., and Münch, J. (2014). Building
blocks for continuous experimentation. In Proceedings of the 1st international
workshop on rapid continuous software engineering, pages 26–35. ACM.

Fagerholm, F., Guinea, A. S., Mäenpää, H., and Münch, J. (2017). The right
model for continuous experimentation. Journal of Systems and Software,
123:292–305.

Fitzgerald, B. and Stol, K.-J. (2017). Continuous software engineering: A
roadmap and agenda. Journal of Systems and Software, 123:176–189.

76 References

Franz, C. R. and Robey, D. (1986). Organizational context, user involvement,
and the usefulness of information systems. Decision sciences, 17(3):329–356.

Gliem, J. A. and Gliem, R. R. (2003). Calculating, interpreting, and reporting
cronbach’s alpha reliability coefficient for likert-type scales. In Proceedings of
Midwest Research to Practice Conference in Adult, Continuing, and Commu-
nity Education.

Gould, J. D. and Lewis, C. (1985). Designing for usability: key principles and
what designers think. Communications of the ACM, 28(3):300–311.

Grudin, J. (1992). Utility and usability: research issues and development con-
texts. Interacting with computers, 4(2):209–217.

Gutbrod, M., Münch, J., and Tichy, M. (2017). How do software startups ap-
proach experimentation? empirical results from a qualitative interview study.
In International Conference on Product-Focused Software Process Improve-
ment, pages 297–304. Springer.

Hannay, J. E., Sjoberg, D. I., and Dyba, T. (2007). A systematic review of
theory use in software engineering experiments. IEEE transactions on Software
Engineering, 33(2):87–107.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The elements of statistical
learning: data mining, inference and prediction. Springer, 2 edition.

Henfridsson, O. and Lindgren, R. (2010). User involvement in developing mo-
bile and temporarily interconnected systems. Information Systems Journal,
20(2):119–135.

Hess, J., Offenberg, S., and Pipek, V. (2008). Community driven development
as participation?: involving user communities in a software design process.
In Proceedings of the Tenth Anniversary Conference on Participatory Design
2008, pages 31–40. Indiana University.

Highsmith, J. and Cockburn, A. (2001). Agile software development: The busi-
ness of innovation. Computer, 34(9):120–127.

Iivari, N. (2004). Exploring the rhetoric on representing the user: discourses on
user involvement in software development. ICIS 2004 Proceedings, page 52.

References 77

ISO (2017). Iso/iec 25010:2011, systems and software engineering – systems and
software quality requirements and evaluation (square) – system and software
quality models.

Järvinen, J. and Mikkonen, T. (2017). Need for speed–towards real-time busi-
ness. In International Conference on Product-Focused Software Process Im-
provement, pages 621–624. Springer.

Kautz, K. (2010). Participatory design activities and agile software develop-
ment. In IFIP Working Conference on Human Benefit through the Diffusion
of Information Systems Design Science Research, pages 303–316. Springer.

Kitchenham, B. A., Dyba, T., and Jorgensen, M. (2004). Evidence-based software
engineering. In Proceedings of the 26th international conference on software
engineering, pages 273–281. IEEE Computer Society.

Kitchenham, B. A., Pfleeger, S. L., Pickard, L. M., Jones, P. W., Hoaglin, D. C.,
El Emam, K., and Rosenberg, J. (2002). Preliminary guidelines for empirical
research in software engineering. IEEE Transactions on software engineering,
28(8):721–734.

Kohavi, R., Deng, A., Frasca, B., Walker, T., Xu, Y., and Pohlmann, N. (2013).
Online controlled experiments at large scale. In Proceedings of the 19th ACM
SIGKDD international conference on Knowledge discovery and data mining,
pages 1168–1176. ACM.

Kohavi, R. and Longbotham, R. (2017). Online Controlled Experiments and A/B
Testing, pages 922–929. Springer US, Boston, MA.

Kohavi, R., Longbotham, R., Sommerfield, D., and Henne, R. M. (2009). Con-
trolled experiments on the web: survey and practical guide. Data mining and
knowledge discovery, 18(1):140–181.

Kramer, A. D., Guillory, J. E., and Hancock, J. T. (2014). Experimental evidence
of massive-scale emotional contagion through social networks. Proceedings of
the National Academy of Sciences, 111(24):8788–8790.

Kujala, S. (2003). User involvement: a review of the benefits and challenges.
Behaviour & information technology, 22(1):1–16.

78 References

Laage-Hellman, J., Lind, F., and Perna, A. (2014). Customer involvement in
product development: An industrial network perspective. Journal of Business-
to-Business Marketing, 21(4):257–276.

Lagrosen, S. (2001). Strengthening the weakest link of tqm–from customer focus
to customer understanding. The TQM Magazine, 13(5):348–354.

Lagrosen, S. (2005). Customer involvement in new product development: A rela-
tionship marketing perspective. European Journal of Innovation Management,
8(4):424–436.

Larman, C. and Basili, V. R. (2003). Iterative and incremental developments. a
brief history. Computer, 36(6):47–56.

Lindgren, E. and Münch, J. (2015). Software development as an experiment
system: a qualitative survey on the state of the practice. In International
Conference on Agile Software Development, pages 117–128. Springer.

Madeyski, L. and Kawalerowicz, M. (2017). Software engineering needs agile ex-
perimentation: A new practice and supporting tool. In Madeyski, L., Śmia�lek,
M., Hnatkowska, B., and Huzar, Z., editors, Software Engineering: Challenges
and Solutions, pages 149–162, Cham. Springer International Publishing.

Manzi, J. (2012). Uncontrolled: The surprising payoff of trial-and-error for busi-
ness, politics, and society. Basic Books (AZ).

Mattos, D. I., Bosch, J., and Olsson, H. H. (2018). Challenges and strategies
for undertaking continuous experimentation to embedded systems: Industry
and research perspectives. In Garbajosa, J., Wang, X., and Aguiar, A., editors,
Agile Processes in Software Engineering and Extreme Programming, pages 277–
292, Cham. Springer International Publishing.

Mikkonen, T., Lassenius, C., Männistö, T., Oivo, M., and Järvinen, J. (2017).
Continuous and collaborative technology transfer: Software engineering re-
search with real-time industry impact. Information and Software Technology.

Muller, M. J., Haslwanter, J. H., and Dayton, T. (1997). Participatory practices
in the software lifecycle. In Handbook of Human-Computer Interaction (Second
Edition), pages 255–297. Elsevier.

Munezero, M., Yaman, S. G., Fagerholm, F., Kettunen, P., Mäenpää, H.,
Mäkinen, S., Tiihonen, J., Riungu-Kalliosaari, L., Tuovinen, A.-P., Oivo, M.,

References 79

et al. (2017). Continuous experimentation cookbook: an introduction to sys-
tematic experimentation for software-intensive businesses. DIMECC result
publications; 3-(DIMECC publications series no. 15).

Olsson, H. H., Alahyari, H., and Bosch, J. (2012). Climbing the “stairway to
heaven” – a mulitiple-case study exploring barriers in the transition from ag-
ile development towards continuous deployment of software. In 2012 38th
Euromicro Conference on Software Engineering and Advanced Applications,
pages 392–399.

Olsson, H. H. and Bosch, J. (2014). The hypex model: from opinions to data-
driven software development. In Continuous software engineering, pages 155–
164. Springer.

Poppendieck, M. and Poppendieck, T. (2003). Lean software development: an
agile toolkit. Addison-Wesley.

Ries, E. (2011). The lean startup: How today’s entrepreneurs use continuous
innovation to create radically successful businesses. Crown Books.

Rissanen, O. and Münch, J. (2015). Continuous experimentation in the b2b
domain: a case study. In Proceedings of the Second International Workshop
on Rapid Continuous Software Engineering, pages 12–18. IEEE Press.

Robson, C. (2011). Real world research: A resource for users of social research
methods in applied settings 3rd edition.

Ros, R. and Runeson, P. (2018). Continuous experimentation and A/B testing:
a mapping study. In Proceedings of the 4th International Workshop on Rapid
Continuous Software Engineering, RCoSE@ICSE 2018, Gothenburg, Sweden,
May 29, 2018, pages 35–41.

Shadish, W. R., Cook, T. D., and Campbell, D. (2002). Experimental and quasi-
experimental designs for generalized causal inference. Houghton Mifflin Boston.

Shahin, M., Babar, M. A., and Zhu, L. (2017). Continuous integration, delivery
and deployment: a systematic review on approaches, tools, challenges and
practices. IEEE Access, 5:3909–3943.

Sjøberg, D. I., Hannay, J. E., Hansen, O., Kampenes, V. B., Karahasanovic, A.,
Liborg, N.-K., and Rekdal, A. C. (2005). A survey of controlled experiments in

80 References

software engineering. IEEE transactions on software engineering, 31(9):733–
753.

Srivastava, J., Cooley, R., Deshpande, M., and Tan, P.-N. (2000). Web usage
mining: Discovery and applications of usage patterns from web data. Acm
Sigkdd Explorations Newsletter, 1(2):12–23.

Tan, P.-N., Steinbach, M., and Kumar, V. (2005). Association analysis: basic
concepts and algorithms. Introduction to Data mining, pages 327–414.

Tang, D., Agarwal, A., O’Brien, D., and Meyer, M. (2010). Overlapping exper-
iment infrastructure: More, better, faster experimentation. In Proceedings of
the 16th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 17–26. ACM.

Thomke, S. (2001). Enlightened experimentation: The new imperative for inno-
vation. Harvard Business Review, 79(2):66–75.

Tichy, M., Bosch, J., Goedicke, M., and Fitzgerald, B. (2015). 2nd international
workshop on rapid continuous software engineering (rcose 2015). In Proceedings
of the 37th International Conference on Software Engineering-Volume 2, pages
993–994. IEEE Press.

Tichy, W. F. (1998). Should computer scientists experiment more? Computer,
31(5):32–40.

Unni, R. and Harmon, R. (2007). Perceived effectiveness of push vs. pull mobile
location based advertising. Journal of Interactive advertising, 7(2):28–40.

Vinson, N. G. and Singer, J. (2008). A practical guide to ethical research involving
humans. In Guide to Advanced Empirical Software Engineering, pages 229–256.
Springer.

Williams, L. and Cockburn, A. (2003). Guest editors’ introduction: Agile soft-
ware development: It’s about feedback and change. Computer, 36(6):39–43.

Yaman, S. G., Sauvola, T., Riungu-Kalliosaari, L., Hokkanen, L., Kuvaja, P.,
Oivo, M., and Männistö, T. (2016). Customer involvement in continuous de-
ployment: A systematic literature review. In Daneva, M. and Pastor, O.,
editors, Requirements Engineering: Foundation for Software Quality, pages
249–265, Cham. Springer International Publishing.

References 81

Yin, R. (2009). Case study research: design and methods. SAGE Publications,
Inc., 4th edition.

Yu, J. and Cooper, H. (1983). A quantitative review of research design effects on
response rates to questionnaires. Journal of Marketing research, pages 36–44.

Zhang, B., Wang, N., and Jin, H. (2014). Privacy concerns in online recommender
systems: influences of control and user data input. In Symposium on Usable
Privacy and Security (SOUPS), pages 159–173.

TIETOJENKÄSITTELYTIETEEN OSASTO DEPARTMENT OF COMPUTER SCIENCE
PL 68 (Pietari Kalmin katu 5) P.O. Box 68 (Pietari Kalmin katu 5)
00014 Helsingin yliopisto FI-00014 University of Helsinki, Finland

JULKAISUSARJA A SERIES OF PUBLICATIONS A

Reports are available on the e-thesis site of the University of Helsinki.

A-2013-2 H. Wettig: Probabilistic, Information-Theoretic Models for Etymological Alignment.
130+62 pp. (Ph.D. Thesis)

A-2013-3 T. Ruokolainen: A Model-Driven Approach to Service Ecosystem Engineering. 232 pp.
(Ph.D. Thesis)

A-2013-4 A. Hyttinen: Discovering Causal Relations in the Presence of Latent Confounders.
107+138 pp. (Ph.D. Thesis)

A-2013-5 S. Eloranta: Dynamic Aspects of Knowledge Bases. 123 pp. (Ph.D. Thesis)

A-2013-6 M. Apiola: Creativity-Supporting Learning Environments: Two Case Studies on Teach-
ing Programming. 62+83 pp. (Ph.D. Thesis)

A-2013-7 T. Polishchuk: Enabling Multipath and Multicast Data Transmission in Legacy and
Future Interenet. 72+51 pp. (Ph.D. Thesis)

A-2013-8 P. Luosto: Normalized Maximum Likelihood Methods for Clustering and Density Es-
timation. 67+67 pp. (Ph.D. Thesis)

A-2013-9 L. Eronen: Computational Methods for Augmenting Association-based Gene Mapping.
84+93 pp. (Ph.D. Thesis)

A-2013-10 D. Entner: Causal Structure Learning and Effect Identification in Linear Non-Gaussian
Models and Beyond. 79+113 pp. (Ph.D. Thesis)

A-2013-11 E. Galbrun: Methods for Redescription Mining. 72+77 pp. (Ph.D. Thesis)

A-2013-12 M. Pervilä: Data Center Energy Retrofits. 52+46 pp. (Ph.D. Thesis)

A-2013-13 P. Pohjalainen: Self-Organizing Software Architectures. 114+71 pp. (Ph.D. Thesis)

A-2014-1 J. Korhonen: Graph and Hypergraph Decompositions for Exact Algorithms. 62+66 pp.
(Ph.D. Thesis)

A-2014-2 J. Paalasmaa: Monitoring Sleep with Force Sensor Measurement. 59+47 pp. (Ph.D.
Thesis)

A-2014-3 L. Langohr: Methods for Finding Interesting Nodes in Weighted Graphs. 70+54 pp.
(Ph.D. Thesis)

A-2014-4 S. Bhattacharya: Continuous Context Inference on Mobile Platforms. 94+67 pp.
(Ph.D. Thesis)

A-2014-5 E. Lagerspetz: Collaborative Mobile Energy Awareness. 60+46 pp. (Ph.D. Thesis)

A-2015-1 L. Wang: Content, Topology and Cooperation in In-network Caching. 190 pp. (Ph.D.
Thesis)

A-2015-2 T. Niinimäki: Approximation Strategies for Structure Learning in Bayesian Networks.
64+93 pp. (Ph.D. Thesis)

A-2015-3 D. Kempa: Efficient Construction of Fundamental Data Structures in Large-Scale Text
Indexing. 68+88 pp. (Ph.D. Thesis)

A-2015-4 K. Zhao: Understanding Urban Human Mobility for Network Applications. 62+46 pp.
(Ph.D. Thesis)

A-2015-5 A. Laaksonen: Algorithms for Melody Search and Transcription. 36+54 pp. (Ph.D.
Thesis)

A-2015-6 Y. Ding: Collaborative Traffic Offloading for Mobile Systems. 223 pp. (Ph.D. Thesis)

A-2015-7 F. Fagerholm: Software Developer Experience: Case Studies in Lean-Agile and Open
Source Environments. 118+68 pp. (Ph.D. Thesis)

A-2016-1 T. Ahonen: Cover Song Identification using Compression-based Distance Measures.
122+25 pp. (Ph.D. Thesis)

A-2016-2 O. Gross: World Associations as a Language Model for Generative and Creative Tasks.
60+10+54 pp. (Ph.D. Thesis)

A-2016-3 J. Määttä: Model Selection Methods for Linear Regression and Phylogenetic Recon-
struction. 44+73 pp. (Ph.D. Thesis)

A-2016-4 J. Toivanen: Methods and Models in Linguistic and Musical Computational Creativity.
56+8+79 pp. (Ph.D. Thesis)

A-2016-5 K. Athukorala: Information Search as Adaptive Interaction. 122 pp. (Ph.D. Thesis)

A-2016-6 J.-K. Kangas: Combinatorial Algorithms with Applications in Learning Graphical
Models. 66+90 pp. (Ph.D. Thesis)

A-2017-1 Y. Zou: On Model Selection for Bayesian Networks and Sparse Logistic Regression.
58+61 pp. (Ph.D. Thesis)

A-2017-2 Y.-T. Hsieh: Exploring Hand-Based Haptic Interfaces for Mobile Interaction Design.
79+120 pp. (Ph.D. Thesis)

A-2017-3 D. Valenzuela: Algorithms and Data Structures for Sequence Analysis in the Pan-
Genomic Era. 74+78 pp. (Ph.D. Thesis)

A-2017-4 A. Hellas: Retention in Introductory Programming. 68+88 pp. (Ph.D. Thesis)

A-2017-5 M. Du: Natural Language Processing System for Business Intelligence. 78+72 pp.
(Ph.D. Thesis)

A-2017-6 A. Kuosmanen: Third-Generation RNA-Sequencing Analysis: Graph Alignment and
Transcript Assembly with Long Reads. 64+69 pp. (Ph.D. Thesis)

A-2018-1 M. Nelimarkka: Performative Hybrid Interaction: Understanding Planned Events across
Collocated and Mediated Interaction Spheres. 64+82 pp. (Ph.D. Thesis)

A-2018-2 E. Peltonen: Crowdsensed Mobile Data Analytics. 100+91 pp. (Ph.D. Thesis)

A-2018-3 O. Barral: Implicit Interaction with Textual Information using Physiological Signals.
72+145 pp. (Ph.D. Thesis)

A-2018-4 I. Kosunen: Exploring the Dynamics of the Biocybernetic Loop in Physiological Com-
puting. 91+161 pp. (Ph.D. Thesis)

A-2018-5 J. Berg: Solving Optimization Problems via Maximum Satisfiability: Encodings and
Re-Encodings. 86+102 pp. (Ph.D. Thesis)

A-2018-6 J. Pyykkö: Online Personalization in Exploratory Search. 101+63 pp. (Ph.D. Thesis)

A-2018-7 L. Pivovarova: Classification and Clustering in Media Monitoring: from Knowledge
Engineering to Deep Learning. 78+56 pp. (Ph.D. Thesis)

A-2019-1 K. Salo: Modular Audio Platform for Youth Engagement in a Museum Context.
97+78 pp. (Ph.D. Thesis)

A-2019-2 A. Koski: On the Provisioning of Mission Critical Information Systems based on Public
Tenders. 96+79 pp. (Ph.D. Thesis)

A-2019-3 A. Kantosalo: Human-Computer Co-Creativity - Designing, Evaluating and Modelling
Computational Collaborators for Poetry Writing. 74+86 pp. (Ph.D. Thesis)

A-2019-4 O. Karkulahti: Understanding Social Media through Large Volume Measurements.
116 pp. (Ph.D. Thesis)

	Abstract
	Acknowledgements
	List of Original Articles
	Contents
	Chapter 1: Introduction
	Chapter 2: Previous Work
	Chapter 3: Research Design
	Chapter 4: Transitioning towards Continuous Experimentation
	Chapter 5: Discussion
	Chapter 6: Conclusions
	References

