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1 INTRODUCTION 
 

1.1 Importance of Tree Shoot Architecture Research  

 

Interest in tree shoot architecture research has been increasing in the past decades because it has 

a major socioeconomic impact in various fields such as forestry, landscape management, aesthetics 

and industrial fruit production (Dardick et al., 2013). Tree related industry including fruit trees, nut 

trees and forest products are a major economic factor worth 225 billion dollars in the United States 

alone (Hill and Hollender, 2019). In ecological terms, columnar phenotype apple trees consume only 

50% of the water compared to ordinary cultivars during growing season (Jacob, 2010). Tree shoot 

architecture research is of special interest in the tree orchard business where chemical growth 

regulation, pruning, manual branch angle control and grafting are major expenses (Hill and 

Hollender, 2019). Also, tree shoot architecture research is important in timber industry because 

branch angle, number and diameter has a considerable impact on timber quality (Niemistö et al., 

2008: 184). 

 

Unless there will be a major change in current dietary trends, world food production should roughly 

double by 2050 due to the growing world population, change in dietary habits and use of farmland 

for bioenergy crop production (Foley et al., 2011). Therefore, it is imperative to develop means to 

produce more food on less farmland. Tree shoot architecture research is essential in this 

development. For instance, it is predicted that the use of columnar apple varieties could raise yield 

over 3-fold compared to ordinary varieties (Jacob, 2010, Dardick et al., 2013).  

 

Global warming is probably the most alarming environmental issue of the current era. According to 

the recent IPCC report, limiting global warming to 1.5°C would require immense land use change, 

among other major transitions in energy use and infrastructure (IPCC, 2018). This should motivate 

tree shoot architecture research since trees pose an inexpensive method of capturing CO2 from the 

atmosphere. According to Cernansky (2018), there are 2 billion hectares of deforested or degraded 

land available for tree planting worldwide. This translates to roughly twice the size of Sahara. A 

feasible method to enhance carbon capture and produce valuable timber by a given area could be 

either conventionally or molecularly bred trees with altered shoot architecture. 
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 High density tree planting might provide a method for boosting timber production and carbon 

capture. Currently this is not practical because trees respond to shading by growing taller but 

thinner (Mann & Plummer, 2002). A solution to this is redesigned biological pathways that lead to 

short and nearly branchless stems that display little response to shading (Mann & Plummer, 2002).  

Another question is whether high density forests would make sense in ecological terms. Rebuilding 

forests require broad approaches in questions such as water availability, soil condition, biodiversity, 

food chains etc. (Cernansky, 2018). Thus, high density forests should be trialed carefully before 

extensive planting. 

 

Growth and development of shoots into tree crown is a complex and flexible process. The 

mechanisms involved are currently poorly known (Dardick et al., 2013). These mechanisms include 

genetic interactions with environmental factors such as light, wind and gravity. Also, pressure 

exerted on cells, nutrition, phytohormones, cell size, cell proliferation and cell wall chemistry 

contribute to tree shoot architecture (Hill and Hollender, 2019). To be able to implement judiciously 

tree related genetic information we must know the underlying mechanisms more thoroughly.  

 

1.2 Silver Birch as a Model Organism 

 

The genus of birch (Betula) belongs to the family of Betulaceae. Betula species are deciduous  

hardwood trees, located in the northern hemisphere and characterized by vast morphological 

variation (Niemistö et al., 2008). Typical for Betula genus are wind pollinated and monoecious  

flowers (Niemistö et al., 2008). 

 

Employing a tree species as a model organism in genetic studies poses a challenge in contrast to 

annual plants such as Arabidopsis thaliana. This is due to several years long juvenile stage which 

trees usually require before they start to flower and subsequently enable crossings (Longman & 

Wareing, 1959). Conveniently, silver birch can be induced to flower within a year when introduced 

into special accelerated flowering conditions: long-day illumination with elevated CO2 and 

temperature levels (Longman & Wareing, 1959). 

 

Silver birch (Betula pendula) has a diploid (2n = 28) 440 Mbp genome (Salojärvi et al., 2017). 

Chromosome number (ploidy) in Betula species is highly variable; it spans from 2 in B. Pendula and 
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a few others to 12 in B. gynoterminalis (Ashburner et al., 2013). Assembling polyploid plant genomes  

has been difficult due to at least two reasons: First, it is difficult to separate relatively similar 

subgenomes from one to another. Second, plant genomes commonly harbor active 

retrotransposons which cause a copy-and-paste effect within homologous chromosomes causing 

erratic extensions (Ming & Man Wai, 2015). For these reasons diploid silver birch is an ideal woody 

plant for molecular genetic studies. 

 

1.3 Premature Stop Codon in Betula pendula ´Youngii´ LAZY1 

 

Betula pendula `Youngii´ cultivar originates from 

Central Europe and is a common ornamental birch 

with a dome-shaped crown (Fig 1A). During the 

recent birch genome sequencing project it was 

learnt that a ´Youngii´ birch, growing in Helsinki 

University Viikki campus site has a premature stop 

codon in BpLAZY1 gene (Fig 1B) (Salojärvi et al., 

2017). LAZY1 protein is known to affect tiller angle in 

rice (Li et al., 2008). Also, in plum tree (Prunus 

domestica) lazy1 mutation induces a pendulous  

growth habit (Hill & Hollender, 2019). For these 

reasons, it was hypothesized that lazy1 induces the 

weeping phenotype in ´Youngii´ birch. Mutated 

LAZY1 is referred hereafter as lazy1a because there 

are at least two LAZY1-like genes in silver birch 

genome.  

 

Still, further evidence is required to unambiguously 

display that lazy1a induces the weeping phenotype in 

silver birch. Due to the time constraints of this project, a transgenic line complementing or knocking 

down LAZY1a could not be established. Also, all commercially propagated B. pendula ´Youngii´ trees 

probably originate from the same mutant individual, thus they are not expected to harbor 

alternative lazy1a knock-out/knock-down alleles. Therefore, we are aiming at sequencing the 

 

Figure 1. (A) Betula pendula ´Youngii´ (left) and 
Betula pendula (right) at Helsinki University Viikki 

campus site. (B) LAZY1a contains a point mutation 
(131C>A) transforming the TCG (Serine) codon into 
a premature TAG stop codon (Salojärvi et al., 2017). 
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closest orthologue of LAZY1a from a weeping grey alder (Alnus incana ´Pendula´) belonging to the 

Betulaceae family. If LAZY1a is also mutated in the weeping gray alder, this would provide further 

evidence that lazy1a induces the weeping phenotype in silver birch.  

 

1.3.1 LAZY1 and Gravitropism 

 

LAZY1 has been under scrutiny in agronomic research due to its significance in rice tiller angle 

control. Li et al. (2008) have argued that LAZY1 negatively controls basipetal (shoot to root) auxin 

transport and thereby regulates gravitropism in rice. Gravitropism is explained by a century old 

starch-statolith hypothesis. In this theory gravity is sensed by sinking of high-density amyloplasts in 

statocytes, the gravity perceiving cells (Haberlandt, 1900; Taniguchi et al., 2017). These cells are 

located in the endodermis of Arabidopsis shoots (Fukaki, et al., 1998; Taniguchi et al., 2017). In 

poplar stem, statocytes are first located in the endoderm (most inner layer of cortex) and after the 

loss of endodermis, statocytes are positioned in secondary phloem (Gerttula et al., 2015). 

 

Subsequently to statolith sinking, a signal is converted by an unknown mechanism into auxin flow 

towards gravity by PIN3 auxin efflux carrier proteins (Taniguchi et al., 2017). According to a current 

theory, auxin flow leads to a decrease in apoplastic pH, hence the name acid growth hypothesis. 

Acidification is due to auxin induced activation of plasma membrane bound proton pumps, 

tonoplast bound Ca2+/H+ antiporters and transcriptional induction and/or activation of cell wall 

modifying genes/enzymes such as expansins, xyloglugan endotransglucosylases/hydrolases and 

polygalacturonases. Further on, lower apoplastic pH allows diffusion of auxin into the symplast 

because in lower pH, negatively charged auxin gains a proton and is able to diffuse through the 

nonpolar plasma membrane. Also, lower pH causes pectin de-methylation which itself decreases 

pH. Loosening of the cell wall matrix structures and turgor pressure then increases cell volume in a 

coordinated manner (Reviewed by Arsuffi & Braybrook, 2018).   

 

According to Taniguchi et al. (2017) Arabidopsis LAZY1, LAZY2 and LAZY3 proteins are redundantly 

responsible for gravitropic response downstream of amyloplast sedimentation in statocytes. The 

authors have displayed that LAZY2 and LAZY3 genes are expressed in root columella cells (root 

gravitropism) but LAZY1 is not. The authors have also discovered that LAZY1 has the strongest 

impact on shoot architecture from the LAZY-clade, yet, its molecular function remains elusive.  
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During the ´Youngii´ project it was discovered that the lazy1a birches had very poor root growth in 

in vitro propagation making cloning virtually impossible. This provided major challenges due to 

shortage and heterogeneous plant material. However, poor root growth in lazy1a birches is possibly 

connected to reduced LAZY1a expression and may therefore be an interesting phenomenon for 

future studies of its molecular function in tree species.  

 

1.4 Reaction Wood 

 

Trees have a spectacular capacity to maintain 

vertical growth in the main stem under harsh 

environmental conditions such as weight, wind, 

gravity and bending due to uneven ground 

(Barnett et al., 2014: 2). According to the 

current dogma, maintaining upward growth in 

stems is possible due to a specialized cell type - 

reaction wood - which is further classified into 

compression wood and tension wood (Barnett 

& Jeronimidis 2003: 118). Angiosperm trees 

form tension wood (Fig 2A) which creates 

tensile force that pull stems and branches away 

from the gravity vector. Vice versa, 

gymnosperm trees form compression wood 

(Fig 2B) which produces a pushing force 

bending branches and stems against gravity 

(Reviewed by Du & Yamamoto, 2007).  

 

1.4.1 Reaction Wood and Cell Wall Composition 

 

Reaction wood formation changes plant cell wall chemical composition. For instance, the amount 

of lignin is increased in compression wood while polysaccharides abate (Fagerstedt et al., 2014: 38). 

In contrast, tension wood contains less lignin and its deposition is different compared to 

Figure 2. Reaction wood formation in angiosperm and gymnosperm trees . 

Reaction wood forms when plants are under growth s tress such as 

uneven ground and consequent s train in stem. (A) In angiosperm trees, 

tens ion wood (TW) forms  to the s ide with tensional s tress. (B) 

Compression wood (CW) forms  in gymnosperms to the s ide with 

compress ional  s tress . Adapted from Gri l  et al. (2017). 



13 
 

compression wood: lignin is polymerized mainly in middle lamellae and in primary cell walls. In 

compression wood lignin is mainly deposited in the secondary cell wall. Further on, tension wood 

often contains a gelatinous layer (G-layer) (Fagerstedt et al., 2014: 37). G-layer is also called the 

tertiary cell wall layer that contains mostly cellulose and little lignin (Gerttula et al., 2015). However, 

depending on species, tension wood cell wall anatomy is highly variable. It may contain a G-layer, 

multilayered secondary cell wall or a cell wall that is similar to normal fibers (Fig 3). 

 

 

Figure 3. Tension wood s tructure in three tropical angiosperm species. G-layers are indicated with blue, secondary cell walls are 
indicated with red. (A) Eperua falcate displays thick walled G-layer. (B) Multi-laminate structure of G-layers in Laetia procera. (C) 

Simarouba amara tens ion wood does  not vary from normal  secondary cel l  wal l  s tructure. Modified from Ruel le (2014: 25). 

 

1.4.2 Force Generation in Tension Wood  

 

The mechanism how G-layers are able to produce pulling force is being debated. G-layers are not 

attached to the surrounding cell walls (Barnett et al., 2014: 8), thus making tensile force 

transmission to the surrounding tissue somewhat unexplained. However, an enzymatic removal of 

the G-layer has been demonstrated to elongate the surrounding S-layer by 1,6% indicating its 

importance in creating tensile force (reviewed by Mellerowicz & Gorshkova, 2011). A model has 

been proposed for G-layer tensile force generation which involves a network of crystalline cellulose 

(Fig 4). G-layers have high cellulose content and because cellulose is hydrophilic, G-layers are 

absorbing water.  This causes lateral swelling and, hence, inward force and axial shrinkage of the G-

layer network (Mellerowicz & Gorshkova (2011). 
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Figure 4. Force generation in tension wood. According to the shrinking network model force generation in tension wood tissue is 
induced by intake of H2O by tissue containing mostly of hydrophilic cellulose. Consequently the network shrinks and produces 

tens ional force that pulls the opposite ends of the cellulose network towards each other. Adapted from Mellerowicz & Gorshkova 
(2011). 

 

1.4.3 Tension Wood Formation in lazy1a Branches 

 

Involvement of auxin in reaction wood formation is debated in the literature (reviewed by Tocquard 

et al., 2014: 118-119). However, gene expression in auxin signaling pathway has been displayed to 

alter after stem bending experiments. Transcription of two AUX/IAA genes (repressional 

transcription factors) was altered in tension wood tissue compared to opposite wood in poplar 

(Moyle et al., 2002, Tocquard et al., 2014: 118-119). As explained previously, LAZY1 functions 

upstream of PIN3 which directs auxin efflux towards gravity. Due to the placement within 

endodermis (later in phloem) and gravistimulation, PIN3 is aligned in a manner that directs auxin 

efflux towards the cambial zone in the upper part of the stem and towards the cortex on the lower 

side (Gerttula et al., 2015). Therefore, it has been hypothesized here that tension wood 

development might be affected in lazy1a branches.  

 

1.5 Adaxial and Abaxial Fiber Length in lazy1a Branches 

 

According to Gerttula et al. (2015), our current knowledge on gravitropism stems from studies 

conducted on herbaceous species. Herbaceous species supposedly react to gravitational pull by 

asymmetric cell elongation (acid growth hypothesis) while lignified woody cells cannot expand. 

Therefore, woody species react to gravitational cue by another mechanism, which is asymmetric 
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secondary growth (Gerttula et al., 2015). In asymmetric secondary growth cell division rate is 

increased in parts of the vascular cambium leading to elliptical shape in cross sections of stems and 

branches (Gerttula et al., 2015). 

 

As explained previously, auxin has long been thought to induce cell expansion through the 

mechanism explained by acid growth hypothesis. Björklund et al. (2007) demonstrated that auxin is 

together with gibberellins enhancing stem growth in hybrid aspen (Populus tremula x tremuloides). 

According to Nilsson et al. (2008), fiber and vessel dimensions are controlled by auxin. Their research 

indicated that in transgenic lines with reduced auxin responsiveness, xylem cells were smaller in 

diameter and shorter compared to wild-type cells in stems. Here, it is assumed that the mechanism 

controlling auxin flow towards cambium on top and towards cortex on bottom side of branch might 

be compromised in ´Youngii´ birch due to the lazy1a mutation. This might have an effect on average 

fiber length. Therefore, adaxial and abaxial xylem from wild type and mutant branches were 

macerated and fiber lengths were measured. 

 

1.6 RT-qPCR Gene Expression Analysis in Adaxial and Abaxial Flanks of Branches 

 

To verify that LAZY1a transcript levels are lower in mutant than in wild type trees, LAZY1a transcript 

levels were analyzed by RT-qPCR. Also, expression levels of few tree architecture candidate genes 

(Table 1) were compared between wild type and mutant.  

 

Table 1. Genes of Interest in RT-qPCR Analysis 

   

GOI Function Reference 

LAZY1a branch growth upwards Taniguchi et al., 2017 

ARK2 fiber maturation  Gerttula et al., 2015 

ARF19 auxin signaling Immanen et al., 2016 

WOX4 phloem activity Suer et al., 2011 

PIN3 auxin efflux Friml et al., 2002 

PHOT1 phototropism Christie et al., 1999 
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2 AIMS OF THE STUDY 
 

Identifying the biological function of LAZY1a in silver birch (Betula pendula) was the main objective 

in this project. This aim was pursued by comparing samples of wild type silver birch (Betula pendula) 

and lazy1a mutant (Betula pendula ´Youngii´) branches. Primary hypothesis was that the weeping 

birch lacks or deposits tension wood in its branches erratically. Another area of interest was whether 

LAZY1a impacts fiber growth. Identifying genetic factors that affect fiber physical dimensions is 

important in tree breeding because fiber length has major impact on different wood products  

quality such as paper strength. Third objective was to study branch angle because steep branch 

angle causes issues in timber quality. Research on LAZY gene family might provide useful insights in 

breeding trees with optimal branch angle. Last objective has been to study interactions of LAZY1a 

and few other candidate genes that might influence tree shoot architecture. 
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3 MATERIALS AND METHODS  
 

3.1 Plant Material, Growth Medium and Growth Conditions 

 

Used plant material was a segregating population of backcross 1 (BC1). Wild type phenotype of F1 

generation was backcrossed using pollen from Betula pendula ́ Youngii´. 100 individuals were grown 

of which 55% were wild type and 45% were mutant phenotype.  

 

Plants were grown in peat:sand:vermiculite (6:2:1) and fertilized with granular Osmocote Exact 

(Everris) 2 g/liter of growth medium. Trees were grown in 3-liter pots on a growth table in Viikki 

campus greenhouse under ambient light and temperature conditions for over two growing seasons.  

 

3.2 LAZY1 and LAZY2 Phylogenetic Tree and Amino Acid Alignment 

 

Amino acid sequences of LAZY1, LAZY2 and LAZY3 genes were retrieved from the Arabidopsis 

Information resource (www.tair.org) database. These sequences were used to identify the closest 

paralogs in the Betula pendula genome. Best matching hits were LAZY1a and LAZY1b for LAZY1 and 

LAZY2 for LAZY2. Arabidopsis LAZY3 provided only duplication hits in the studied species, therefore 

it has been left out from the phylogenetic tree 

 

Amino acid sequences of Betula pendula LAZY1a and LAZY1b and Arabidopsis thaliana LAZY1, LAZY2 

were uploaded to Phytozome v12.1 and the most significantly similar sequences were collected 

from the species studied (Table 2). Duplicates were removed and sequences were copy-pasted to 

MEGA7 program (Kumar, Stecher & Tamura, 2015). An alignment was constructed using default 

settings in CLUSTAL algorithm. Manual curation was conducted and the phylogenetic tree was 

constructed using maximum likelihood method with JTT+G+I settings and bootstrapping (1000 

replications).  
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Table 2. Genes Used in Phylogenetic Analysis   

 

GOI Species Ascension number 

AgLAZY1 Alnus glutinosa NA 

AtLAZY1  Arabidopsis thaliana At5G14090 

AtLAZY2  Arabidopsis thaliana At1G17400 

BpLAZY1a Betula pendula Bpev01.c0052.g0076.m0001 

BpLAZY1b  Betula pendula Bpev01.c0566.g0022.m0001 

BpLAZY2 Betula pendula Bpev01.c0045.g0042.m0001 

OsLAZY1 Oryza sativa Os11g29840.1 

OsLAZY2-1 Oryza sativa Os07g42290.1 

OsLAZY2-2 Oryza sativa Os09g26840.1 

OsLAZY2-3 Oryza sativa Os03g29270.1 

PtLAZY1-1 Populus trichocarpa Potri.003G168700.1 

PtLAZY1-2  Populus trichocarpa Potri.001G327500.2 

PtLAZY1-3 Populus trichocarpa Potri.001G059100.1 

PtLAZY2-1  Populus trichocarpa Potri.003G068300.1 

PtLAZY2-2 Populus trichocarpa Potri.001G166700.1 

PtLAZY2-3 Populus trichocarpa Potri.006G140100.1 

PpLAZY1-1 Prunus persica Prupe.3G308500.1 

PpLAZY1-2 Prunus persica Prupe.1G222800.2 

PpLAZY2-1  Prunus persica Prupe.7G195900.1 

PpLAZY2-2 Prunus persica Prupe.3G038300.1 

ZmLAZY1  Zostera marina Zosma225g00060.1 

ZmLAZY2-1 Zostera marina Zosma176g00170.1 

ZmLAZY2-2 Zostera marina Zosma59g00310.1 

 

 

3.2 Reaction Wood Deposition 

 

Before samples were cut, topside of the branch was marked with a permanent marker.  

Subsequently, 1 cm long pieces were cut and samples were placed in an ice bath and then stored at 

-20°C. Cryotome sections were cut with LEICA CM3050S, each sample being 25 microns thick. After 

a successful sample was obtained, the topside of the sample which was standing on the holder, was 

marked by cutting. This provided a reference point and, therefore, aided later in microscopy to 
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identify the topside of the branch. Samples were then hydrated with a drop of dH2O and stained 

with 0,05% Safranin in 50% EtOH. Excess Safranin was washed away with dH2O. Samples were then 

stained with 1% Alcian Blue. Excess stain was washed away with dH2O. Samples were imaged within 

an hour with Leica2500 DM light microscope. Due to the large size of branch sections, whole 

sections were constructed from multiple images using Photoshop v.20.0.1 photo merge tool with 

default settings.  

 

3.3 Xylem Fiber Length Measurements 

 

Length of xylem fibers were measured from 5 wild type and 5 mutant branches (Table 3). Cut 

samples were cooled in an ice bath and subsequently stored in -20°C. After thawing, samples were 

debarked and placed in 30% hydrogen peroxide and glacial acetic acid (1:1) solution and kept at 

+56°C for 50 h. Samples were then washed 3 times and vortexed extensively to separate fibers from 

each other. 100 µl from each sample tube was then pipetted on a glass slide and imaged with 

Leica2500 DM light microscope at 10x magnification. Fiber lengths were measured using ImageJ 

1.47v program. 

 

Table 3. Branch Samples in Fiber Length Experiment  

 

Tree ID Sample length 

(cm) 

Distance from 

stem (cm) 

Sample diameter  

(mm) 

Branch length  

(cm) 

WT 9_4 1 4 2,6 40,5 

WT 9_6 1 5,5 2,7 44 

WT 9_10 1 4 2,8 40 

WT 9_19 1 5,5 2,8 50 

WT 9_83 1 4,5 2,7 42 

M 9_1 1 3,5 2,7 33 

M 9_2 1 5 2,9 28 

M 9_3 1 3,5 2,8 26 

M 9_70 1 3,5 2,3 33 

M 9_79 1 2,6 2,7 50 
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3.4 Branch Angle Measurements 

 

Branch angles were measured manually from 3 normal, 3 intermediate and 3 mutant phenotypes  

using a protractor tool. Angle was measured clockwise between stem and middle of a branch. 

Measurements were performed in February 2018 while the trees were dormant after 1 growing 

season.  

 

3.5 Candidate Gene Expression Analysis by RT-qPCR 

 

RNA extraction, DNase and cDNA synthesis 

Branch samples were collected from 3 wild 

type and 3 mutant trees. Samples were cut 

through the pith resulting in adaxial and 

abaxial flanks which were snap frozen in 

liquid nitrogen. Due to a malfunction in the 

-80°C freezer, samples were stored at -20°C 

for 10 days until RNA was extracted. A 

modified version of a pine tree RNA extraction method (Chang et al., 1993) was employed. First, 

samples were pulverized in liquid N2 and then ~100 mg was spooned into a 2 ml Eppendorf tube 

containing 750 µl of pre-warmed (65°C) extraction buffer (Table 4) and 15 µl of β-mercaptoethanol.  

 

Suspension was vortexed and left to incubate for 3 minutes at 65°C in a heat block. After incubation, 

750 µl of chlorophorm:isoamylalcohol (24:1) was added and tube was mixed manually for 30 

seconds. Phases were then separated by centrifuging (13000 rpm) at room temperature for 10 

minutes. Subsequently, upper layer was pipetted into a new tube containing 750 µl of 

chlorophorm:isoamylalcohol (24:1) and mixed manually for 30 seconds. Phases were separated by 

centrifuging (13000 rpm) at room temperature for 10 minutes.  600 µl of upper layer was pipetted 

into a new 1,5 ml Eppendorf tube containing 150 µl of 10 M LiCl. RNA was then precipitated by 

storing the samples at +4°C overnight. Samples were centrifuged (13000 rpm) for 15 minutes at 

+4°C. Supernatant was poured away and the RNA was washed with 70% EtOH. EtOH was evaporated 

completely at room temperature in a fume hood. Subsequently RNA pellet was dissolved in 200 µl 

of dH2O. Samples were stored at -20°C for a month.  
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Due to issues with genomic DNA contamination on test gel runs, nucleotide concentration was 

diluted to ~200 ng / µl. Nucleotide concentration was measured with Nanodrop. DNase treatment 

was conducted according to Promega RQ1 RNase-Free DNase (#M6101) protocol. First strand cDNA 

synthesis was conducted according to Thermo Scientific protocol (#K1612) with 100 ng of RNA 

loaded into each reaction tube. cDNA synthesis was conducted by the following program: 5 min at 

+25°C, 60 min at +37°C and 5 min at +70°C. Samples were then stored at -20°C for 3 months.  

 

Primer Design and Primer Efficiency Experiment 

First, amino acid sequences of the GOIs were looked up from The Arabidopsis Information Resource 

(TAIR) database. These amino acid sequences were then uploaded to the birch genome database 

and the most significantly similar matches were chosen for further analysis. Primers were designed 

to span over introns to avoid genomic DNA contamination in the qPCR run. Exon sequences were 

uploaded on www.Primer3Plus.org (Untergasser et al., 2007) and primers were picked with default 

settings. The first few resulting primers were compared to the exon data. 2-3 primers were selected 

and primer efficiency was calculated for one primer per GOI (Table 5).   

 

Table 5. Primer Pairs Designed for GOIs 

  

GOIs  

F/R primer 

5´             PRIMERS                3´ Tm (°C) GC% P. Len  

(bp) 

Primer 

efficiency 

Reference 

1.1 ACTIN7_F CACCACTGCTGAGCGGGAAA 62,4 60 100 2,009785579  

1.2 ACTIN7_R GGGCAACGGAACCTCTCAGC 63,8 65    

4.1 UBG_F CAGCGTCTCCGCAAGGAGTG 63,1 65 128 1,975646587  

4.2 UBG_R TAATCACCGCCGGCCTTCTG 62,2 60    

5.1 PP2A_F GGAGGATAGGCATTGGAGAG 56,5 55 213 1,951158791 Sutela et al., (2011) 

5.2 PP2A_R CTGCATCACGGATCGAGTAA 63,8 50    

6.1 LAZY1a_F GGTTGGATGCATCGTAAGTTCC 58 50  88 1,929031273  

6.2 LAZY1a_R ACTGTTGATCGTCAACCGATG 56,3 47,6    

11.1 ARK2_F GCCCAAAGATGCCAGACAA 57,6 50 93 1,897659505  

11.2 ARK2_R TCAGCCAATGCCACCTTT 56,1 50    

13.1 TAC1_F CCGTTCTTCGAACCAAACAT 54,5 45 180 NA  

13.2 TAC1_R CGCCATTGGTGATAAATCCT 53,9 45    

15.1 PIN3_F GCCTCACTTGGTCTCTAGTCTCTT 59,5 50 87 1,840737745  

15.2 PIN3_R CTGCATCCGACAGTATGGAA 55,9 50    

19.1 ARF19_F GCATGCAGATCAACTTTGGA 54,7 45 177 2,011190915  

19.2 ARF19_R TTTCAGTACCTCGTCGAGCA 57,3 50    
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22.1 WOX4_F CTTCATCCGACCCGAAAGT 56,2 52,6 157 1,839756694  

22.2 WOX4_R GCGCATTCCTCCCTTATACA 56,4 50    

24.1 PHOT1_F GGTTACACATCCAAAGAGGTCA 55,9 45,5 153 2,005592239  

24.2 PHOT1_R GGGAGTCCCATCCTTCTTGT 58,3 55    

 

 

Apart from TAC1, primer efficiencies were between the required (1,8 and 2,1) which was calculated 

by measuring the slope of the standard curve. The curve was drawn from cycle threshold (Ct) values 

of 4 technical replicates using 4 different cDNA dilutions. The slope was then uploaded on online 

qPCR efficiency calculator (Thermo Fisher: qPCR Efficiency). The efficiency calculation experiment 

was carried out according to the Roche LightCycler 480 SYBR Green I Master, version 13 protocol  

with following sample mix and settings: 88 µl of PCR grade water, 110 µl of 2x master mix, 11 µl of 

forward primer and 11 µl of reverse primer was mixed and kept on ice. The master mix was pipetted 

onto a well plate (9 µl per well) with 4 technical replicates per primer pair and dilution. 

Subsequently, 1 µl of 1/16, 1/32, 1/64 and 1/128 diluted cDNA was pipetted onto different sectors 

(A = 1/16, B = 1/32, C=1/64, D=1/128). qPCR –program was following: pre-incubation at 95°C for 10 

min. Amplification 45 times at 95°C for 10 sec, at 58°C for 10 sec, at 72°C for 20 sec.  

 

RT-qPCR experiment 

RT-qPCR experiment was carried out by pipetting the master mix for each primer pair and then 

pipetting 1 µl of 1:7 (cDNA:H2O) into the sample blocks. Two technical repeats were used per primer 

pair in each block. qPCR program was the same as in the efficiency calculation. Melt curve analysis 

was conducted with Bio-Rad CFX Maestro 1.1 v.4.1.2433. 1219. ACTIN7, one of the reference genes, 

had issues with product forming in the H2O control (no cDNA template). Signal in the H2O control 

was evident at Ct-value ~35 whereas the “main” signal was at Ct 25-27. Further melt curve and melt 

peak analysis (Fig 6) displayed that the products in the H2O controls had lower melting 

temperatures. However, due to the much higher Ct value (~9) in the H2O controls and its different 

melt peak value, ACTIN7 was accepted as a reference gene. The additional signal it produces in the 

background should have very little effect on the fluorescence of the main signal.  Ct-values were 

exported and results were normalized as described previously (Vandesompele et al., 2002; Livak & 

Schmittgen, 2001; Smetana et al., 2019). 
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Figure 6. Melt curve and melt peak analysis of ACTIN7 reference gene. Melt curve analysis indicates that there are two 
products. One of the products is losing fluorescence earlier than the main product indicating that there is an issue with 
purity or specificity of the primers.  

 

3.6 Statistical Methods 

 

All statistical analyses were conducted with SPSS v.24 except for the RT-qPCR experiment which 

was analyzed in Excel 2013. Statistical analysis used in each experiment is stated where 

appropriate. 
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4 RESULTS 
 

4.1 Two distinct LAZY1 genes in studied tree species 
 

According to the LAZY phylogeny tree (Fig 7) and simplified (fewer genes) amino acid alignment (Fig 

8), it is very likely that the tree species (Betula pendula, Prunus persica, Populus trichocarpa) 
compared in this alignment have a duplicated LAZY1 gene. Finding the duplication in Alnus glutinosa 

genome is still underway. These duplicates fall into two distinct clades: LAZY1a and LAZY1b. When 

a BLAST search (www.phytozome.org) was conducted using either Betula pendula LAZY1a or LAZY1b 

gene, the best match was LAZY1 in Arabidopsis thaliana. When the same search was conducted 

against the studied tree species, best hits were two different genes LAZY1a and LAZY1b, 

respectively. In Arabidopsis thaliana, Oryza sativa and Zostera marina, the second copy of LAZY1 is 

absent.  

 

 

Figure 7. Molecular Phylogenetic Analysis by Maximum Likelihood Method. Closest matches of Betula pendula LAZY1a  
paralogs in different tree species forms a distinct LAZY1a clade. The studied tree species also contain LAZY1b clade. In 
contrast, Arabidopsis thaliana, Oryza sativa and Zostera marina contain only a single LAZY1 gene. Zostera marina LAZY1 
was employed as the root of the phylogenetic tree. 
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4.2 Simplified LAZY1, LAZY1a, LAZY1b and LAZY2 Protein Sequence Alignment 

 

Simplified multiple protein sequence alignment (Fig 8) provided evidence of 3 conserved domains  

among all studied species in LAZY1, LAZY1a, LAZY1b and LAZY2 genes. The LAZY-clade has been 

previously linked to the IGT gene family due to the highly conserved IGT motif (Dardick et al., 2013). 

In this alignment the IGT motif is in domain 1. Although LAZY1 gene has been studied extensively in 

recent times, its molecular function remains unknown. The Pfam protein function database 

(https://pfam.xfam.org) did not provide any predicted function when LAZY1a sequence was used to 

find matching Pfam entries. 

 

4.3 LAZY1a and LAZY1b Expression Pattern in B. pendula  

 

Data extracted from B. pendula fractional RNA-sequence analysis (Alonso-Serra et al., 2019) 

provided evidence that the expression pattern of LAZY1a and LAZY1b is highly similar peaking in old 

phloem (Fig 9). To study whether their function is also redundant, one should generate single and 

double knock-out lines and compare whether double knock-out line has cumulative effect on the 

phenotype.  

 

One could speculate that since LAZY1a and LAZY1b genes are tree specific, they might have distinct 

function in primary and secondary growth.  According to Gerttula et al. (2015), in Poplar stem the 

gravity perceiving cells, statocytes, are first observed in the innermost layer of cortex. After the loss 

of this layer, statocytes are observed in the secondary phloem. Perhaps, LAZY1a and LAZY1b have 

role in this spatial difference since LAZY1 is known to be expressed in Arabidopsis statocytes 

(Taniguchi et al., 2017). One could study this by generating LAZY1a and LAZY1b promoter-GFP-tag 

analysis, in a tree species.  
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Figure 8. Simplified alignment map of the sequences employed to construct the phylogenetic tree (Fig 7). Zm = Zostera 

marina, At = Arabidopsis thaliana, Bp = Betula pendula, Pt = Populus trichocarpa, Pp = Prunus persica. All studied 
sequences share three highly conserved domains. To date, the molecular function of LAZY genes remains unknown.  
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Figure 9. LAZY1a and LAZY1b gene expression pattern in Betula pendula. Data extracted from silver birch RNA-seq 
analysis (Alonso-Serra et al., 2019) provided evidence that LAZY1a and LAZY1b are redundantly expressed mainly in old 

phloem. Error bars ±1 STD. 

 

4.4 Two Branch Angle Phenotypes in the Segregating Population 

 

LAZY1 has been previously reported to regulate shoot orientation in poplar (Populus × 

zhaiguanheibaiyang).  35S:Pzlazy1 over expression construct resulted in trees with narrower branch 

angle compared to wild type trees (Xu et al. 2017; Hollender and Hill 2019). Further, LAZY1 RNAi 

knockdown plum trees had wider branch angles compared to wild type trees, and they also 

displayed pendulous growth (Hollender and Hill, 2019). These data are in line with results presented 

here. Visual branch angle analysis indicated that there might be 3 different branch angle phenotypes  

in the segregating population (Fig 10). Mixed linear model was employed to analyze data from 3 

wild type (66 branches), 3 intermediate (68 branches) and 3 mutant (68 branches) phenotype trees. 

The analysis provided evidence that lazy1a phenotype has wider branch angle compared to the wild 

type (Fig 11). The difference was not large but still it was significant (P-value 0,044). Wild type was 

not significantly different from the intermediate phenotype. 
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Figure 10. Presumed branch angle phenotypes in the 
segregating population. (A) wild type (B) intermediate (C) 
mutant. 

 

 

4.5 Adaxial and Abaxial Fiber Lengths Similar in Both Phenotypes  

 

Samples for fiber length analysis were sectioned from the indicated positions from 5 wild type and 

5 mutant trees (Fig 12). Fiber length measurements indicated that adaxial and abaxial xylem fiber 

lengths are not significantly different in wild type vs. mutant (Figure 13). Thus, the weeping 

phenotype is probably not due to differential fiber elongation on upper vs. lower side of the 

branches.  

 

Figure 12. 5 wi ld type and 5 mutant trees used in fiber length analysis. Blue arrows indicate regions which were sectioned for 
maceration.  

Figure 11. Two branch angle phenotypes in the 
segregating population. Mixed linear models analysis 
provided evidence that there are only two different 

branch angle phenotypes in the segregating population. 
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Figure 13. Average fiber lengths measured from macerated adaxial and abaxial branch sections. Pairwise t-test analysis 

indicated that adaxial and abaxial fiber lengths are not significantly different when comparing upper fibers to lower 

fibers within the biological sample. Error bars ±1 STD. 

 

4.6 Abnormal Reaction Wood Formation in Wild Type and Mutant Branches 

 

Tension wood is ought to form on the upper side of stems and branches in angiosperm trees creating 

a tensile force that pulls stem away from gravity vector. A main hypothesis in this project was that 

the weeping phenotype of ́ Youngii´ birch is due to lack of or erratic tension wood deposition. In the 

studied samples tension wood was always observed among thick walled and heavily lignified cells. 

This made image quantification very problematic because some of the Alcian Blue (carbohydrate 

binding) signal might be lost due to heavy Safranin (lignin binding) staining. Also, because G-layers 

are not covalently bonded to the surrounding cell walls (Barnett et al., 2014: 8), it is problematic to 

employ cryo-sectioned and stained images as evidence of tension wood deposition. G-layers might 

detach from surrounding cell walls while preparing sections for imaging. Therefore, one cannot 

objectively analyze from bright field microscopic images what kind of cell wall structure there is in 

the densely stained regions (Figures 14-17). For this reason, the images are analyzed qualitatively 

and tension wood is called here as reaction wood (RW).  

 

A section from a wild type tree (Fig 14) displays an expected RW deposition pattern where RW is 

formed on top of the branch. However, a section taken from the same branch 10 cm before (Fig 15) 

displays a ring-like RW pattern: RW is deposited around the xylem and not on the top, as expected. 

Similar RW deposition was also observed in lazy1a mutants. RW was observed but G-layers were 
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not evident in a sample which was sectioned 21 cm from the base of the branch (Fig 16A). But when 

the same branch was observed closer to the stem (11 cm), some G-layers were observed and a fan-

like formation of thick-walled RW was evident (Fig 17). 

 

Due to the subjective nature of identifying tension wood within the samples, a qualitative analysis 

of reaction wood deposition was conducted. A density map of reaction wood occurrence was 

created by fitting all imaged samples (18 wild type and 18 mutant) within a circle. Normal wood was 

then removed from the images in Photoshop, then colored blue and transparency set to 5%. The 

resulting density map (Fig 18) provides qualitative evidence that reaction wood is deposited rather 

evenly around the branch xylem. It seems that wild type displays more reaction wood on top of the 

branch but one would need more objective method to confirm this.  

 

 

 
Figure 14. Wild type #9-10. 21 cm from the stem. (A) Tension wood deposition as expected in wild type branch. G-layers 
are deposited on top of the branch possibly affecting the direction of branch growth. Scale bars: A 1 mm, B 5 um, C 10 
um. 
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Figure 15. Wild type #9-10. 11 cm from the stem. (A) Section sampled from the same branch as  in Figure 14 but 10 cm 

closer to the stem. Reaction wood and G-layers are deposited around the section. Arrows indicate G-layers. Scale bars: 
(A) 1 mm, (B) 10 um, (C) 5 um. 

 

 

Figure 16. Mutant #9-70. 21 cm from the stem. Section sampled from a mutant branch displays a ring l ike formation of 

reaction wood at the xylem periphery. No G-layers were evident. Scale bars: A 1 mm, B 10 um, C 10 um. 
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Figure 17. Mutant #9-70. 11 cm from the stem. (A) Section sampled from a mutant branch displays  a fan like reaction 
wood deposition. (B) Normal wood on the upper flank of the branch. (C) Some G-layer clusters observed (indicated with 
arrows). Scale bars: A 1 mm, B 10 um, C 10 um. 

 

 
Figure 18. Reaction wood density maps constructed from 18 wild type and 18 mutant branch sections. Cryo-sectioned 
samples were stained with Alcian Blue and Safranin. Samples were imaged and Photoshop was used to erase normal 

wood. The darker the blue, the more frequently reaction wood was observed. Results are not quantitative because of 
uncertainty in image based analysis – G-layered tension wood could not always be distinguished from thick walled 
reaction wood. 
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4.7 LAZY1a Transcript Levels Higher in Wild Type Compared to Mutant  

 

Gene expression analysis by RT-qPCR indicated that LAZY1a transcript levels are significantly higher 

(p-value 0,03) in wild type top flank vs. mutant top flank (Fig 19). Same comparison of LAZY1a in 

bottom flanks was close to being significant (p-value 0,05). ARK2, ARF_19, WOX4, PIN3 or PHOT1 

did not display varying expression in wild type vs. mutant. LAZY1b primers did not amplify the 

appropriate sequence and it was therefore excluded from the experiment.  

 

 

Figure 19. Transcript levels of candidate genes analyzed by RT-qPCR from three biological replicates . Pairwise t-test 
analysis indicated that only LAZY1a transcript levels  were significantly higher in WT top vs. M top (p-value 0,03). WT 
bottom vs. M bottom was close to being significant (p-value 0,05). Other measured transcript levels were not 

significantly different in WT vs. M. Error bars ±1 STD. 
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5 DISCUSSION  

 

Function of LAZY1 has been studied extensively due to its importance in agriculture and fruit 

production. Despite the research efforts, molecular function of LAZY1 remains elusive. Thus, there 

is still a crucial knowledge gap between amyloplast sedimentation and subsequent reorientation of 

growth direction (Hollender et al., 2019). 

 

The phylogenetic tree of LAZY1, LAZY1a, LAZY1b and LAZY2 provided evidence that the studied tree 

species (Betula pendula, Prunus persica, Populus trichocarpa) have at least one duplicated LAZY1 

gene and they fall into two clades: LAZY1a and LAZY1b. Alnus glutinosa and A. incana genomes are 

currently being investigated for the duplication. However, it is likely that they also have the second 

copy of LAZY1 due to their proximity to Betula species. In Arabidopsis thaliana, Oryza sativa and 

Zostera marina, the second copy of LAZY1 was absent. It could be potentially rewarding to study 

whether LAZY1a and LAZY1b have redundant or distinct function in tree species. This could be 

executed by generating single and double knock-out lines. By phenotyping these lines one could 

possibly detect whether the double knock-out line has cumulative effect on the weeping phenotype.  

Also, RNA-sequence data from B. pendula displayed that the expression pattern of LAZY1a and 

LAZY1b is similar. One could devise a promoter-reporter experiment to study with better resolution 

if LAZY1a and LAZY1b expression is spatially distinct. If LAZY1b has more minor impact on branch 

angle than LAZY1a, it might provide a good knock-out target for tree breeding, since the optimal 

(horizontal) branch angle for timber production is somewhere between the wild type and lazy1a 

mutant.  

 

According to Barnett et al.  (2014: 2-3), reaction wood is not bending branches into a stem-like 

upward growth unless apical dominance is gone. This suggests some overriding mechanism that 

takes place in tension wood deposition (or quality) in branches when the shoot apical meristem is 

lost. Also, it has been reported that in stems of intensively growing hybrid aspens tension wood is 

scattered randomly around stem sections, indicating a role of stress in tension wood induction 

(Barnett et al., 2014: 3). As branches are growing more or less horizontally compared to the stem, 

there are different stress factors affecting the maturing fibers  in branches. This might explain the 

observed rather evenly distributed reaction wood in both wild type and mutant branches. Another 

possible explanation for highly lignified cell walls in the observed samples is that some of the G-
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layers are lignified during maturation. Similar phenomena have been described in tropical 

angiosperm species Simarouba amara by Roussel & Clair (2015). According to their observation, in 

some instances the G-layer is only a temporary phase and is later lignified. This issue could be 

possibly averted if there was fresh plant material to study. Sections should be made during very 

early phase when the weeping phenotype becomes evident. In this project however, this would 

have been impossible due to the problems in in vitro propagation.  

 

It is problematic to study tension wood deposition by studying stained histological samples due to 

difficulties in separating thick walled reaction wood from G-layers. However, this study has provided 

important knowledge on how one could proceed with tension wood analysis. Chemical analysis of 

total cellulose content in upper vs. lower flanks of branches combined with stained sections could 

provide a more objective method to evaluate tension wood quantity.    

 

LAZY1a transcript levels were significantly higher in wild type compared to mutant. This is probably 

due to the pre-mature stop codon in the lazy1a transcript. Pre-mature stop codons are recognized 

in eukaryotes by nonsense-mediated mRNA decay (NMD) and subsequently these transcripts are 

degraded (Shi et al., 2015). Other transcripts that were successfully analyzed did not have significant 

difference in their expression levels. For future analysis, one should conduct RNA-sequencing to 

analyze the effect of lazy1a mutation in the silver birch transcriptome. Also, it would be important 

to analyze transcript levels of both LAZY1a and LAZY1b in wild type vs. lazy1a mutant. 

 

During the ´Youngii´ project it was discovered that the lazy1a birches display very poor root growth 

in in vitro propagation making cloning virtually impossible. It could be potentially very interesting to 

study by RT-qPCR, whether silver birch has LAZY1a and/or LAZY1b expression in root tips and 

whether this might affect root growth. As indicated by Taniguchi et al. (2017), LAZY1 is not 

expressed in the root tips in Arabidopsis. Perhaps in woody plants LAZY1a and/or LAZY1b has 

significant role also in the root system.  

 

It has been demonstrated that effective tensional force generation in wood fibers requires 

microfibril angle less than 10° (Wahyudi et al., 2000; Fagerstedt et al., 2014). The reason why no 

clear phenotype was seen in this project might be due to the smaller scale changes that occur in 

plant cell walls. Cortical microtubules and, hence, cellulose microfibril biosynthesis have been 
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demonstrated to reorient from transversal to longitudinal in epidermis of Arabidopsis root and 

hypocotyl by auxin treatment (reviewed by Eoda, 2015). Perhaps, there is ill orientation of cellulose 

microfibrils in lazy1a which affects the tensional stress that cells are able to project to adjacent cells. 

In future studies, orientation of cellulose microfibrils should be studied by X-ray diffraction. 

 
 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 

 
 



37 
 

AKNOWLEDGEMENTS 
 

I want to thank especially the closest supervisors of this project: Professor Ykä Helariutta, Dr. Kaisa 

Nieminen and Juan Alonso Serra. Juan´s persistent support and guidance in various methods and 

data handling aided immensely in taking this project through its stages from ideas to execution of 

experiments. Special gratitude goes also to the whole tree team that has given invaluable feedback 

throughout the project: Su Chang, Dr. Juha Immanen and Dr. Melis Kucukoglu.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 

 
 

 
 
 

 
 

 
 



38 
 

REFERENCES 
 
Alonso‐Serra, J., Safronov, O. & Lim, K-J. et al. (2019). Tissue‐specific study across the stem reveals 

the chemistry and transcriptome dynamics of birch bark. New Phytologist. 222(4), pp. 1816-
1831. 

 
Arsuffi, G & Braybrook, S. (2018). Acid growth: An ongoing trip. Journal of Experimental Botany. 

69(2), pp. 137-146. 
 

Ashburner, K., McAllister, H.A. & Rix, M. (2013). The Genus Betula: A Taxonomic Revision of 
Birches. Royal Botanic Gardens.  

 
Barnett, J. R. & Jeronimidis, G. (eds.). (2003). Wood Quality and its Biological Basis. Oxford: 

Blackwell Publishing.  
 

Barnett, J., Saranpää, P., Gril, J. & Gardiner, B. (eds.). (2014). The Biology of Reaction Wood. 
Heidelberg: Springer. 

 

Björklund, S., Antti, H., Uddestrand, I., Moritz, T., Sundberg, B. ( 2007). Cross‐talk between 
gibberellin and auxin in development of Populus wood: Gibberellin stimulates polar auxin 

transport and has a common transcriptome with auxin. Plant Journal, 52(3), pp. 499-511. 
 

Cernansky, R. (2018). How to plant a trillion trees. Nature, 560(7720), pp. 542-544.  
 

Chris tie, J., Salomon, M., Nozue, K., Wada, M., Briggs, W. (1999). LOV (light, oxygen, or 
voltage) domains of the blue-light photoreceptor phototropin (nph1): Binding sites for the 

chromophore flavin mononucleotide. Proceedings of the National Academy of Sciences of the 
United States of America, 96(15), pp. 8779-8783. 

 
Dardick, C., Callahan, A., Horn, R., Ruiz, K., Zhebentyayeva, T., Hollender, C., Whitaker, M., 

Abbott, A., Scorza, R.  (2013). PpeTAC1 promotes the horizontal growth of branches in peach 
trees and is a member of a functionally conserved gene family found in diverse plants 

species. Plant Journal, 75(4), pp. 618-630. 
 
Du, S. & Yamamoto, F. (2007). An Overview of the Biology of Reaction Wood Formation. Journal of 
Integrative Plant Biology, 49(2), pp. 131-143. 
 

Eoda, Y. (2015). Cortical microtubule rearrangements and cell wall patterning. Frontiers in Plant 
Science, 6. doi:10.3389/fpls.2015.00236 

 
Fagerstedt K., V., Mellerowicz, E., Gorshkova, T., Ruel, K., Joseleau, J-P. (2014). in The biology of 

reaction wood. Heidelberg: Springer. 
 

Foley, J. A., Ramankutty, N., Brauman, K., Gerber, J., Johnston, M., Mueller N., O’connell, C., 
Deepak K., ; West, P., Balzer, C., Bennett, E., Carpenter, S., Hill, J., Monfreda, C., Polasky, s., 

Rockström, J., Sheehan, J., Siebert, S., Tilman, D., Zaks D. (2011). Solutions for a cultivated 
planet. Nature, 478(7369), p. 337. 



39 
 

 
Friml, J., Wiśniewska, J., Benková, E., Mendgen, K., and Palme, K. (2002). Lateral relocation of 

auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature, 415(6873), pp. 806–809. 
 
Fukaki, H., Wysocka‐Diller, J., Kato, T., Fujisawa, H.,  Benfey, P., Tasaka, M. (1998). Genetic 
evidence that the endodermis is essential for shoot gravitropism in Arabidopsis thaliana. Plant 
Journal, 14(4), pp. 425-430. 
 
Gerttula, S., Z inkgraf, M, Muday, G. K., Lewis, D. R.,Ibatullin, F., Brumer, H., Hart, F., 
Mansfield, S. D., Fi lkov, V., Groover, A. (2015). Transcriptional and hormonal regulation of 
gravitropism of woody stems in populus. Plant Cell, 27(10), pp. 2800-2813.  
 
Gril, J. Jull ien, D., Bardet, S., Yamamoto, H. (2017). Tree growth stress and related 
problems. Journal of Wood Science, 63(5), pp. 411-432.  
 
Haberlandt, G. (1900). Uber die Perzeption des geotropischen Reizes. Ber. Dtsch. Bot. Ges. 18: 
261–272. 
 
Hill, J. & Hollender, C. (2019). Branching out: New insights into the genetic regulation of shoot 

architecture in trees. Current Opinion in Plant Biology, 47, pp. 73-80. 
 

Hollender, C. A., Pascal, T., Tabb, A., Hadiarto, T., Srinivasan, C., Wang, W., Liu, Z ., Scorza,  R., 
Dardick, C. (2018). Loss of a highly conserved sterile alpha motif domain gene (WEEP) results in 

pendulous branch growth in peach trees. (PLANT BIOLOGY). Proceedings of the National Academy 
of Sciences of the United States, 115(20), p. E4690. 
 
Immanen, J., Nieminen, K., Smolander, O-P., Kojima, M., Alonso serra, J., Koskinen, P., Zhang, 
J., Elo, A., Mähönen, AP., Street, N., Bhalerao, R., Paulin, L., Auvinen, P., Sakakibara, H, Helariutta, 
Y. 2016. Cytokinin and Auxin Display Distinct but Interconnected Distribution and Signaling Profiles 
to Stimulate Cambial Activity. Current Biology, 26(15), pp. 1990-1997. 
 

IPCC (2018) Global Warming of 1.5°C. Headline Statements from the Summary for Policymakers. 
https://www.ipcc.ch/site/assets/uploads/sites/2/2018/07/sr15_headline_statements.pdf. 
Accessed 5.12.2018. 

 
Jacob, H. (2010). Breeding Experiments of Apple Varieties with Columnar Growth and Low Chilling 

Requirements. Acta horticulturae, 872, pp. 159-164. 
 

Kumar, S., Stecher, G., Tamura, K. (2015) MEGA7: Molecular Evolutionary Genetics 
Analysis version 7.0. Molecular Biology and Evolution 

 
Li , P., Wang, Y., Qian, Q., Zhiming, F., Mei, W.,  Dali , Z ., Baohua, L., Xiujie, W., Jiayang, L.  

(2007). LAZY1 controls rice shoot gravitropism through regulating polar auxin transport.  Cell 
Research, 17(5), p. 402. 

 
Longman, K. A. & Wareing, P.F. (1959). Early Induction of Flowering in Birch Seedlings. Nature, 

184(4704), p. 2037. 

https://www.ipcc.ch/site/assets/uploads/sites/2/2018/07/sr15_headline_statements.pdf


40 
 

 
Mann, C., & Plummer, M. (2002). Forest biotech edges out of the lab. Science, 295(5560), p. 1626. 

 
Mellerowicz, E. & Gorshkova, T. (2011). Tension stress generation in gelatinous fibres: A review 
and possible mechanism based on cell-wall structure and composition. Journal Of Experimental 
Botany, 38(4), pp. 111-122. 
 
Ming, R. & Man Wai, C. (2015). Assembling allopolyploid genomes: No longer formidable. Genome 
Biology, 16(1). 
 
Moyle, R., Schrader, J Stenberg, A., Olsson, O., Saxena, S., Sandberg, G., Bhalerao, R.P. (2002). 
Environmental and auxin regulation of wood formation involves members of the Aux/IAA gene 
family in hybrid aspen. Plant Journal, 31(6), pp. 675-685. 
 
Nilsson, J., Karlberg, A., Antti, H., Lopez-Vernaza, M., Mellerowicz, E., Perrot-Rechenmann, 
C., Sandberg, G., Bhalerao, R. (2008). Dissecting the molecular basis of the regulation of wood 
formation by auxin in hybrid aspen. Plant Cell, 20(4), pp. 843-855. 
 
Niemistö, P. (2008). Koivun kasvatus ja käyttö. Helsinki: Metsäkustannus, Metla. 

 
Roussel, J-R. & Clair, B. (2015). Evidence of the late lignification of the G-layer in Simarouba 

tension wood, to assist understanding how non-G-layer species produce tensile stress. Tree 
Physiology, 35(12), pp. 1366-1377. doi:10.1093/treephys/tpv082 

 
Ruelle, J. (2014) in The biology of reaction wood. Heidelberg: Springer. 
 
Salojärvi, J. et al. (2017). Genome sequencing and population genomic analyses provide insights 
into the adaptive landscape of silver birch. Nature Genetics, 49(6). 
 
Sutela, S., Niemi, K., Edesi, J., Laakso, T. ,Saranpää, P.,  Vuosku, J., Mäkelä, R., Ti imonen, 
H., Chiang, V.L., Koskimäki, J. , Suorsa, M., Julkunen-Tiitto, R., Häggman, H. (2011). Phenolic 

compounds in ectomycorrhizal interaction of lignin modified silver birch. Acta Veterinaria 
Scandinavica, 53(1) 
 

Livak & Schmittgen. (2001). Analysis of relative gene expression data using real-time quantitative 
PCR and the 2−ΔΔCT method. Methods, 25, pp. 402–408  

 
Shi, M. (2015). Premature termination codons are recognized in the nucleus in a reading-frame-

dependent manner. Cell Discovery, 1(1).  
 

Suer, S. Agusti, J., Sanchez, P., Schwa rz, M., Greb, T. (2011). WOX4 Imparts Auxin 
Responsiveness to Cambium Cells in Arabidopsis. The Plant Cell, 23(9), pp. 3247-3259. 

 
Taniguchi, M.,Furutani, M., Nishimura, T., Nakamura, M., Fushita, T., Ii jima, K., Baba, K., 

Tanaka, H., Toyota, M., Tasaka, M., Morita, M.T. (2017). The Arabidopsis LAZY1 Family Plays a 
Key Role in Gravity Signaling within Statocytes and in Branch Angle Control of Roots and 

Shoots. The Plant cell, 29, p. 1984. 



41 
 

 
Tocquard, K., Lopez, D., Decourteix, M., Thibaut, B., Julien, J-L., Label, P., Leblanc-Fournier, N., 

Roeckel-Drevet, P. (2014). The biology of reaction wood. Heidelberg: Springer. 
 
Untergasser, A., Nijveen, N.,  Rao, X., Bisseling, T., Geurts, R. & Leunissen J. (2007).  Primer3Plus, 
an enhanced web interface to Primer3 Nucleic Acids Research, 35: 71-74.  
 
Vandesompele, J. et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by 
geometric averaging of multiple internal control genes. Genome Biol. 3. 
 
Wahyudi I, Okuyama T, Hadi YS, Yamamoto H, Yoshida M, Watanabe H. (2000). Relationship 
between growth rate and growth stresses in Paraserianthes falcataria grown in Indonesia. 
Journal of Tropical Forest Products, 6:95–105. 
 
Xu, D.,  Xiao, Q., Jihong, K., Xiaojiao, H., Jinnan,  W., Yuezhong, J., Yanting, T.,  Yiwei, W. 
(2017). PzTAC and PzLAZY from a narrow-crown poplar contribute to regulation of branch 
angles. Plant Physiology and Biochemistry, 118, pp. 571-578. 


