
Accepted Manuscript

Drug-eluting stent shows similar patency results as prosthetic bypass in patients with femoropopliteal occlusion in a randomized trial

Patrick Björkman, M.D., Tommi Auvinen, M.D., Harri Hakovirta, M.D., Ph.D, Pekka Romsi, M.D., Ph.D, Johanna Turtiainen, M.D., Ph.D, Hannu Manninen, M.D., Ph.D, Maarit Venermo, M.D., Ph.D., Kimmo Lappalainen, M.D., Anders Albäck, M.D., Ph.D, Antti Korpela, M.D., Kimmo Mäkinen, M.D., Ph.D., Petri Saari, M.D., Ph.D., Jukka Perälä, M.D., Ph.D.

PII: S0890-5096(18)30430-8

DOI: 10.1016/j.avsg.2018.04.014

Reference: AVSG 3893

To appear in: Annals of Vascular Surgery

Received Date: 28 February 2018

Revised Date: 2 April 2018
Accepted Date: 10 April 2018

Please cite this article as: Björkman P, Auvinen T, Hakovirta H, Romsi P, Turtiainen J, Manninen H, Venermo M, The FinnPTX-study group, Lappalainen K, Albäck A, Korpela A, Mäkinen K, Saari P, Perälä J, Drug-eluting stent shows similar patency results as prosthetic bypass in patients with femoropopliteal occlusion in a randomized trial, *Annals of Vascular Surgery* (2018), doi: 10.1016/j.avsg.2018.04.014.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Title page
2	Drug-eluting stent shows similar patency results as prosthetic bypass in patients
3	with femoropopliteal occlusion in a randomized trial
4	Patrick Björkman, M.D., Helsinki University Hospital, Dept. of Vascular Surgery and
5	University of Helsinki
6	Tommi Auvinen, M.D., Kuopio University Hospital, Dept. of Vascular Surgery
7	Harri Hakovirta, M.D., Ph.D., Turku University Hospital, Dept. of Vascular Surgery
8	Pekka Romsi, M.D., Ph.D., Oulu University Hospital, Dept. of Vascular Surgery
9	Johanna Turtiainen, M.D., Ph.D., Joensuu Central Hospital, Dept. of Surgery
10	Hannu Manninen, M.D., Ph.D., Kuopio University Hospital, Dept. of Radiology*
11	Maarit Venermo, M.D., Ph.D., Helsinki University Hospital, Dept. of Vascular
12	surgery and University of Helsinki*
13	
14	*shared last authorship
15	
16	The FinnPTX-study group
17	Kimmo Lappalainen, M.D., Helsinki University Hospital, Dept. of Radiology
18	Anders Albäck, M.D., Ph.D., Helsinki University Hospital, Dept. of Vascular Surgery
19	Antti Korpela, M.D., Lahti Central Hospital, Dept. of Surgery
20	Kimmo Mäkinen, M.D., Ph.D., Kuopio University Hospital, Dept. of Vascular
21	Surgery
22	Petri Saari, M.D., Ph.D., Kuopio University Hospital, Dept. of Radiology
23	Jukka Perälä, M.D., Ph.D., Oulu University Hospital, Dept. of Radiology
24	

25	Corresponding Author: Patrick Björkman, patrick.bjorkman@hus.fi, tel.
26	+358504288019
27	Word count: 2064 (excl. abstract)
28	
29	The trial received a grant from the Finnish Society of Interventional Radiology
30	
31	Keywords: peripheral arterial disease; drug-eluting stent; bypass; patency;
32	femoropopliteal disease
33 34	

35	Drug-eluting stent shows similar patency results as prosthetic bypass in patients
36	with femoropopliteal occlusion in a randomized trial
37	
38	Abstract
39	Introduction: Claudication and critical limb threatening ischemia (CLTI) are
40	significant causes of mortality in the elderly. The gold standard of superficial femoral
41	artery (SFA) revascularization is thus far considered to be the femoropopliteal bypass.
42	The aim of this study was to compare mid-term patency between drug-eluting stents
43	(DES) and prosthetic bypass grafts (BSX). Studies have reported comparable results
44	for both methods. Materials and Methods: 46 patients with claudication or rest pain
45	due to a 5-25 cm SFA-occlusion were randomized between DES and BSX. Follow-up
46	was 24 months, and the primary outcome measure was overall patency. Secondary
47	outcome measures were primary and primary assisted patency, change in ankle-
48	brachial index (ABI), as well as amputation-free survival. Results: 41 patients were
49	eventually analyzed. 6 month secondary patency was 91 % (DES) vs. 83 % (BSX)
50	(P=.450). The corresponding numbers at 12-months in the DES and BSX groups were
51	74 % and 80 % (P= .750). At 24 months the respective numbers were 56 % and 71 %
52	(P=.830). There were no statistically significant differences in primary or assisted
53	primary patency at 1, 6, or 12 months. Conclusions: There were no demonstrable
54	differences in patency rates or clinical outcomes such as ABI or major amputations
55	between DES and BSX. Although underpowered, the results suggest non-inferiority
56	of the DES compared to prosthetic bypass surgery. Trial registration: The trial was
57	pre-registered at ClinicalTrials.org (NCT01450722)
58	
59	Introduction

Critical limb threatening ischemia (CLTI) due to atherosclerosis causes significant
morbidity especially in the elderly, and, if untreated, leads to limb loss. 1 The
incidence of CLTI is estimated at 500-1000/million annually. ² The prevalence of its
milder symptomatic manifestation, intermittent claudication among 40-44 year-old
men is about .4 % and 3 % among 65-69 year-olds. ³ In asymptomatic peripheral
artery disease or claudication, the ischemia relatively rarely deepens over time to
threaten the vitality of the limb. ⁴ Although intermittent claudication has a benign
prognosis and can often be treated conservatively, more severe forms with extensive
arterial obstructions and symptoms that impair the quality of life significantly require
revascularization. Open bypass surgery (BSX) is currently considered the gold
standard for treating long obstructions in the superficial femoral artery (SFA). Up to
81% two-year patency can be appreciated after bypass with a good quality saphenous
vein. If synthetic graft is used, the long-term patency is somewhat lower, up to 67%
according to a systematic review. 5
Treatment of femoropopliteal occlusive disease has shifted dramatically towards
endovascular methods during the last 10 years. ⁶ Despite this, superiority of
endovascular treatment has not been definitively demonstrated. In 2010, the BASIL
trial concluded that in patients with severe ischemia, femoropopliteal BSX with a vein
graft was superior to primary angioplasty (BA), but that primary BA was superior to
prosthetic BSX. ⁷ Furthermore, it was concluded that failed BA yielded worse
outcomes for future ipsilateral BSX. This has been supported by subsequent studies. ⁸
Comparison of stenting and prosthetic bypass grafting has yielded similar results at 4-
year follow-up in a RCT with 100 revascularizations and in a smaller, retrospective
study. ^{9,10}

O	_
Ö	S

Drug-eluting stents (DES) have proven their worth in coronary artery lesions and to some degree in femoral occlusions. ¹¹ While early trials failed to show benefit from DES vs. bare metal stents ^{12,13}, subsequent studies have shown improved event-free survival up to five years. ¹⁴ Paclitaxel is a mitotic inhibitor and antiproliferative agent. ¹⁵ It is a widely used, effective agent in drug eluting stents to reduce restenosis in coronary circulation. ¹⁶ Paclitaxel binds specifically to the beta-tubulin subunit of microtubules and appears to antagonize the disassembly of this key cytoskeletal protein; this action results in accumulation of microtubule bundles and aberrant microtubule derived structures in the mitotic phase of the cell cycle. ^{17,18} The Zilver PTX (Cook Medical) paclitaxel-eluting stent is designed specifically for use in the SFA. It is a nitinol stent coated with paclitaxel only, without polymer or binder.

This trial is a prospective, randomized, multicenter trial comparing outcomes for prosthetic above-knee (AK) bypass vs. the ZilverPTX drug eluting stent. Bypass with a synthetic graft, instead of autogenous vein, is used as a reference standard because

Materials and Methods

Patients were randomized at 6 hospitals in Finland (Helsinki, Oulu, Turku and Kuopio university hospitals and the central hospitals in Lahti and Joensuu). Patients were included between 2011 and 2014, follow-up ended in 2016. Patients presented with rest pain or severe claudication (Rutherford class II-IV), patients with wounds or

of the difficulty to standardize the quality of available vein and because bypasses to

the proximal popliteal artery with the different graft types give comparable results.

The trial was investigator initiated, and did not receive funding from the industry.

110	tissue loss were excluded. 5-25 cm SFA-lesions were eligible for inclusion. The
111	lesions were diagnosed and measured using magnetic resonance angiography (MRA)
112	or computed tomography angiography (CTA). Concomitant inflow or outflow
113	procedures were not allowed. All patients provided written informed consent.
114	Inclusion and exclusion criteria are listed in table 1. Patients were randomized to
115	BA+DES or prosthetic AK femoropopliteal bypass. 2:1 (DES:BSX) block
116	randomization was performed at the ward or outpatient clinic following eligibility and
117	signed informed consent.
118	
119	Bypass Surgery
120	Bypass surgery was performed under general anesthesia or spinal blockade from
121	incisions to the groin and proximal popliteal artery. A 6 mm heparin-bonded
122	polytetrafluoroethylene (PTFE) graft was used. The graft was tunneled anatomically
123	or subcutaneously depending on surgeon's preference. Procedures were performed
124	under systemic heparinization with an activated clotting time (ACT) between 200 and
125	300 seconds.
126	
127	Balloon Angioplasty and Drug-Eluting Stent
128	Access was obtained from the ipsilateral or contralateral common femoral artery. The
129	occlusion was recanalized and crossed intraluminally or subintimally prior to
130	predilatation and stent deployment. The stent was post-dilated according to
131	instructions-for-use. Patients received 5000 IU systemic heparin during the procedure.
132	
133	Follow-up and outcome measures

134	Follow-up was 24 months and the primary outcome measure was overall stent or graft
135	patency. Secondary outcome measures were primary and assisted patency, change in
136	ankle-brachial index (ABI), as well as amputation-free survival. Follow-up was
137	performed by clinical evaluation for symptoms and by duplex ultrasound to assess
138	patency at 1, 6, 12, and 24 months postoperatively.
139	
140	Antithrombotic regime
141	Postoperatively, all patients except those on warfarin were started on life-long ASA
142	treatment in both treatment groups. Patients in the DES group were on dual
143	antiplatelet therapy (ASA 100 mg + clopidogrel 75 mg daily) for at least three months
144	postoperatively. DES-patients on warfarin were started on low-dose (50 mg) ASA for
145	the same period. Dual antiplatelet therapy was not prescribed after bypass surgery.
146	
147	Randomization
148	Block randomization (2:1) was performed by concealed envelope by the research
149	nurse at the University of Kuopio. Due to the nature of the study, neither subjects,
	nurse at the University of Kuopio. Due to the nature of the study, neither subjects, providers nor outcomes assessors were blinded.
150	
150 151	
149 150 151 152 153	providers nor outcomes assessors were blinded.
150 151 152	providers nor outcomes assessors were blinded. Statistical Analysis
150 151 152 153	providers nor outcomes assessors were blinded. Statistical Analysis Statistical analysis was performed using SPSS v. 22 (IBM, Armonk, VA, USA)
150 151 152 153 154	providers nor outcomes assessors were blinded. Statistical Analysis Statistical analysis was performed using SPSS v. 22 (IBM, Armonk, VA, USA) Continuous variables are expressed as means and range or medians and interquartile
150 151 152 153 154	providers nor outcomes assessors were blinded. Statistical Analysis Statistical analysis was performed using SPSS v. 22 (IBM, Armonk, VA, USA) Continuous variables are expressed as means and range or medians and interquartile range (IQR) and dichotomous variables as percentages. Continuous variables were

159	The study was approved by the ethical boards of Kuopio University Hospital and
160	Helsinki University Hospital and the study design was declared and preregistered at
161	ClinicalTrials.org (NCT01450722).
162	
163	Results
164	46 patients were randomized. Baseline characteristics are described in table 2. 5
165	patients were excluded due to immediate technical failure, i.e. unsuccessful
166	recanalization. These were salvaged by distal and/or venous bypass, and thus not
167	eligible for intention-to-treat analysis. There were no deaths or major amputations in
168	either group during 12-month follow-up, 1 patient in the stent group died at 24
169	months from procedure due to unrelated disease. The number of patients lost to
170	follow-up at 6, 12, and 24 months was 0 (0.0 %), 6 (14.2 %) and 11 (26.2 %),
171	respectively. In the DES-group, the median number of stents was 2 (range 1-4) with a
172	median diameter of 6 mm.
173	41 patients were eventually analyzed. 6 month primary patency was 82.6 % DES) vs.
174	72.2 % (BSX) (P=.447) and secondary 91 % vs. 83 % (P=.450). The 12-month
175	secondary patency in the DES and BSX groups was 74 % compared to 80 % (P=
176	.750). There were no statistically significant differences in primary, assisted primary,
177	or secondary patency at 1, 6, 12, or 24 months (table 3, fig 1-2). The median ABI
178	rose from .54 to .93 in the DES-group and from .65 to 1.02 in the BSX-group after the
179	procedures and there were no significant differences between the groups at the
180	baseline nor during the follow-up (Table 4). Relative risk for stenting at 1 year was
181	.96 (P= .893, any endpoint).
182	
183	Discussion

184	In the current trial, no significant differences between femoropopliteal AK bypass
185	with PTFE-prosthesis and endovascular recanalization and stenting with Zilver-PTX
186	stenting could be demonstrated. At 6 months, the primary and secondary patencies
187	were slightly, but not significantly, higher in the stent group compared to bypass, but
188	this difference disappeared during the next six months. At 12 months the respective
189	rates were surprisingly similar: 63.2 % vs. 66.7 % and 74 % vs. 80 %. Indeed, at two
190	years, the patency rate was better in the BSX group (56 % vs. 71 %, P=.397) but at
191	this stage the number-at-risk is substantially lower than at the earlier follow-ups.
192	
193	For the time being, open femoropopliteal BSX is a first-hand option in many centers
194	worldwide. Use of prosthetic grafts for AK bypasses remains popular due to many
195	surgeons' preference to save the saphenous veins for possible future below-knee or
196	distal bypasses and speed of the procedure. The Zilver PTX DES is designed
197	specifically for femoropopliteal locations. A prospective, randomized trial reported
198	significantly better 24-month event-free survival among patient receiving a DES than
199	among those treated with PTA alone (86.6% vs. 77.6%, P<.01). 19 Primary patency at
200	24 months of the DES group was 74.8% vs. 32.4% for the PTA group. Patency rates
201	at 5 years further favored the Zilver PTX. 14 The Zilver PTX trials have shown
202	patency rates in the 80 %-range at 12 months, which are comparable to our results.
203	The Scandinavian Thrupass study demonstrated a clear benefit in favor of bypass
204	surgery vs. the Gore Thrupass endoluminal PTFE. ²⁰ This trial showed a remarkable
205	95 % 1-year patency in the bypass treatment group, whereas the corresponding
206	number was only 48 % for the thrupass group. In 2007, Kedora et al demonstrated
207	comparable 1-year outcomes between the Viabahn covered stent (CS) and prosthetic
208	AK femoropopliteal bypass. ²¹ This study included 100 limbs in a prospective setting.

209	In this study, 6 and 12-month patency rates were 82 % (BSX) vs. 81.8 % (CS) and
210	73.5 % vs. 74.2 %, respectively. In our study the patency rates were somewhat higher
211	at 6 months and lower at 12 months, but still in comparable figures. The study by
212	Kedora et al has been criticized for including TASC A lesions.
213	
214	It should be noted that 5 cases (5/27, 18.5 %) were excluded from the DES group due
215	to failed recanalization, whereas the primary technical success rate in the BSX group
216	was 100 %. In one case the attempted recanalization resulted in severe distal
217	dissection and acute ischemia, which eventually could be salvaged with a distal
218	bypass. We did not report the results for patients with technical failures, but no
219	statistically significant difference was seen in a sensitivity analysis including these
220	patients. Furthermore, 1 case in the DES group received a bailout covered stent after
221	perforation and hemorrhage. This did not compromise patency, as the DES in
222	question was patent at 2 years.
223	
224	In this trial, there was a significant difference between the groups in time from
225	diagnosis to treatment. The time from CT or MR angiography to treatment was 60
226	days in the DES group and 125 days in the BSX group (P<.01). This is likely due to
227	hospital logistics and the more rigorous medical work-up prior to bypass surgery.
228	There was no evidence that this delay would have resulted in clinical deterioration in
229	the BSX patients prior to surgery.
230	
231	This trial is limited by the small sample size, and consequently there is a marked risk
232	for type II error in the patency rates. The primary reason for the slow inclusion and
233	randomization rate was the quickly somewhat ageing hypothesis and clinically

problematic setting for prosthetic bypass surgery; few surgeons would end up
including the shorter SFA-lesions into this trial design, as these are routinely treated
with less invasive endovascular procedures, or, indeed, venous bypass grafting. This
is overall seen in decreasing rates of open AK bypass surgery and quite the opposite
in successful endovascular femoropopliteal revascularizations.
Despite its limitations, we think our paper gives valuable information on the outcome
after these two procedures and it seems that the DES is not inferior to prosthetic AK
bypass in patients with SFA occlusion 25 cm or less. This is the only prospective trial
to date comparing DES with bypass surgery, and the results do indicate that drug-
eluting stents are comparable to prosthetic grafts with regard to patency. Another
strength of the trial is comprehensive follow-up at 6 months, and acceptable follow-up
rates up to 24 months. In anticipation of larger trials, the results from this trial loosely
favor endovascular revascularization and use of DES for SFA lesions if no vein is
available for grafting.
Conclusions
This is the first randomized trial comparing the DES to prosthetic bypass in above
knee femoropopliteal occlusion. At 12 and 24 months after the procedure there was no
statistically significant difference in primary patency, assisted primary patency or
secondary patency between the groups. Although underpowered, our study suggests
non-inferiority of the DES compared to PTFE-bypass in this patient group. Larger
studies are needed for more definitive conclusions.

Acknowledgements

259	The trial was supported by a grant from the Finnish Society of Interventional
260	Radiology
261	
262	References
263	1. Wolfe J, Wyatt M. Critical and subcritical ischaemia. Eur J Vasc Endovasc Surg
264	1997;13:578-82.
265	2. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FGR. Inter-
266	Society Consensus for the Management of Peripheral Arterial Disease (TASC II). Eur
267	J Vasc Endovasc Surg 2007;33:S1-S75.
268	3. Jensen SA, Vatten LJ, Romundstad PR, Myhre HO. The prevalence of intermittent
269	claudication. Sex-related differences have been eliminated. Eur J Vasc Endovasc Surg
270	2003;25:209-12.
271	4. Dormandy JA, Murray GD. Reprinted Article "The Fate of the Claudicant—A
272	Prospective Study of 1969 Claudicants". Eur J Vasc Endovasc Surg 2011;42:S4-6.
273	5. Klinkert P, Post PN, Breslau PJ, van Bockel JH. Saphenous vein versus PTFE for
274	above-knee femoropopliteal bypass. A review of the literature. Eur J Vasc Endovasc
275	Surg 2004;27:357-62.
276	6. Garg K, Kaszubski PA, Moridzadeh R, Rockman CB, Adelman MA, Maldonado
277	TS, Veith FJ, Mussa FF. Endovascular-first approach is not associated with worse
278	amputation-free survival in appropriately selected patients with critical limb ischemia.
279	J Vasc Surg 2014;59:392-9.

- 7. Bradbury AW, Adam DJ, Bell J, Forbes JF, Fowkes FG, Gillespie I, Ruckley CV,
- Raab GM. Bypass versus Angioplasty in Severe Ischaemia of the Leg (BASIL) trial:
- Analysis of amputation free and overall survival by treatment received. J Vasc Surg
- 283 2010;51:18S-31S.
- 8. Nolan BW, De Martino RR, Stone DH, Schanzer A, Goodney PP, Walsh DW,
- 285 Cronenwett JL. Prior failed ipsilateral percutaneous endovascular intervention in
- patients with critical limb ischemia predicts poor outcome after lower extremity
- 287 bypass. *J Vasc Surg* 2011;54:730-5
- 9. McQuade K, Gable D, Pearl G, Theune B, Black S. Four-year randomized
- prospective comparison of percutaneous ePTFE/nitinol self-expanding stent graft
- versus prosthetic femoral-popliteal bypass in the treatment of superficial femoral
- artery occlusive disease. J Vasc Surg 2010;52:584-90
- 292 10. Linnakoski H, Uurto I, Suominen V, Vakhitov D, Salenius J. Comparison of
- 293 above-the-knee prosthetic femoro-popliteal bypass versus percutaneous transluminal
- angioplasty and stenting for treatment of occlusive superficial femoral artery disease.
- 295 Scand J Surg 2013;102:227-33.
- 296 11. Windecker S, Remondino A, Eberli FR, Juni P, Raber L, Wenaweser P, Togni M,
- 297 Billinger M, Tüller D, Seiler C, Roffi M, Corti R, Sütsch G, Maier W, Lüscher T,
- Hess OM, Egger M, Meier B. Sirolimus-eluting and paclitaxel-eluting stents for
- 299 coronary revascularization. *N Engl J Med* 2005; 353:653-62.
- 300 12. Duda SH, Bosiers M, Lammer J, Scheinert D, Zeller T, Tielbeek A, Anderson J,
- Wiesinger B, Tepe G, Lansky A, Mudde C, Tielemans H, Bérégi JP. Sirolimus-

- 302 eluting versus bare nitinol stent for obstructive superficial femoral artery disease: the
- 303 SIROCCO II trial. J Vasc Interv Radiol 2005;16:331-8.
- 304 13. Lammer J, Bosiers M, Zeller T, Schillinger M, Boone E, Zaugg MJ, Verta P, Peng
- 305 L, Gao X, Schwartz LB. First clinical trial of nitinol self-expanding everolimus-
- 306 eluting stent implantation for peripheral arterial occlusive disease. J Vasc Surg
- 307 2011;54:394-401.
- 308 14. Dake MD, Ansel GM, Jaff MR, Ohki T, Saxon RR, Smouse HB, Machan LS2,
- 309 Snyder SA2, O'Leary EE2, Ragheb AO2, Zeller T2; Zilver PTX Investigators.
- 310 Durable Clinical Effectiveness With Paclitaxel-Eluting Stents in the Femoropopliteal
- 311 Artery: 5-Year Results of the Zilver PTX Randomized Trial. Circulation
- 312 2016;133:1472-83
- 313 15. Axel DI, Kunert W, Göggelmann C, Oberhoff M, Herdeg C, Küttner A, Wild DH,
- 314 Brehm BR, Riessen R, Köveker G, Karsch KR. Paclitaxel inhibits arterial smooth
- 315 muscle cell proliferation and migration in vitro and in vivo using local drug delivery.
- 316 *Circulation* 1997;96:636-45
- 317 16. Stettler C, Wandel S, Allemann S, Kastrati A, Morice MC, Schömig A, Pfisterer
- 318 ME, Stone GW, Leon MB, de Lezo JS, Goy JJ, Park SJ, Sabaté M, Suttorp MJ,
- Kelbaek H, Spaulding C, Menichelli M, Vermeersch P, Dirksen MT, Cervinka P,
- 320 Petronio AS, Nordmann AJ, Diem P, Meier B, Zwahlen M, Reichenbach S, Trelle S,
- Windecker S, Jüni P. Outcomes associated with drug-eluting and bare-metal stents: a
- 322 collaborative network meta-analysis. *Lancet* 2007;370:937-48
- 323 17. Abal M, Barasoain JM. Taxanes: Microtubule and Centrosome Targets, and Cell
- 324 Cycle Dependent Mechanisms of Action. Curr Cancer Drug Targets 2003;3:193-203

325	18. Horwitz S, Cohen D, Rao S, Ringel I, Shen H, Yang C. Taxol: mechanisms of
326	action and resistance. J Natl Cancer Inst Monogr 1993;15:55-61.
327	19. Dake MD, Ansel GM, Jaff MR, Ohki T, Saxon RR, Smouse HB, Snyder SA,
328	O'Leary EE, Tepe G, Scheinert D, Zeller T; Zilver PTX Investigators. Sustained
329	safety and effectiveness of paclitaxel-eluting stents for femoropopliteal lesions: 2-year
330	follow-up from the Zilver PTX randomized and single-arm clinical studies. J Am Coll
331	Cardiol 2013;61:2417-27.
332	20. Lepantalo M, Laurila K, Roth WD, Rossi P, Lavonen J, Mäkinen K, Manninen H,
333	Romsi P, Perälä J, Bergqvist D; Scandinavian Thrupass Study Group. PTFE bypass or
334	thrupass for superficial femoral artery occlusion? A randomised controlled trial. Eur J
335	Vasc Endovasc Surg 2009;37:578-84.
336	21. Kedora J, Hohmann S, Garrett W, Munschaur C, Theune B, Gable D. Randomized
337	comparison of percutaneous Viabahn stent grafts vs prosthetic femoral-popliteal
338	bypass in the treatment of superficial femoral arterial occlusive disease. J Vasc Surg
339	2007;45:10-6
340	

Inclusion Criteria: Exclusion Criteria

Rutherford class II-IV Previous treatment for same lesion

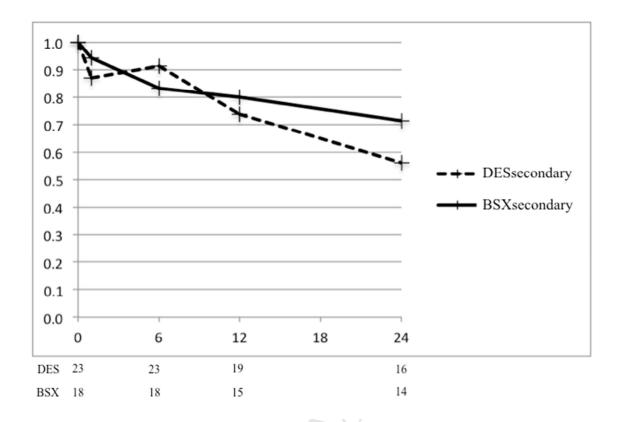
5-25 cm SFA occlusion Indication for infrapopliteal treatment

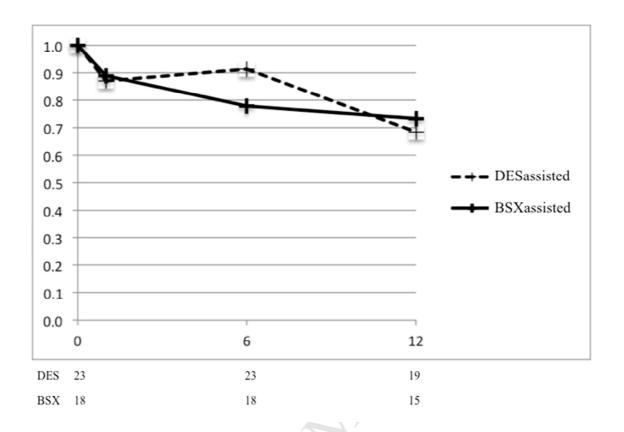
Eligible for operative treatment Iodine allergy

At least 1 vessel crural runoff Patients undergoing hemodialysis

Written informed consent Pregnancy

DES BSX


	(n=23) A	CCEPTED MANUSC	R(n=18)		P-value
Male sex	17		12		.613
Age	68	48-88	67	50-84	.398
T1 Diabetes	6	26.1	4	22.2	.775
T2 Diabetes	3	13.0	2	11.1	.650
Smoking	9	39.1	6	33.3	.702
Ex-smoker	9	39.1	5	27.8	.230
TIA	2	8.7	2	11.1	.796
Stroke	3	13.0	2	11.1	.851
Coronary disease	6	26.1	5	27.8	.903
Prior AMI	1	4.3	3	16.7	.187
Dyslipidemia	13	56.5	15	83.3	.067
Chronic heart disease	2	8.7	2	11.1	.796
Hypertension	15	65.2	15	83.3	.194
Pulmonary	1	4.5	1	5.6	.884
ASA	21	91.3	14	77.8	.224
Clopidogrel		4.3	4	22.2	.083
Warfarin	3	13.0	2	11.1	.851
Other	2	8.6	1	5.6	.653
Statin therapy	12	52.2	14	77.8	.051
ACE/AT2-blockade	9	39.1	9	50.0	.656
Ankle Brachial Index	0.54	0-0.82	0.65	0.47-0.99	.120
SFA occlusion length	13.2	5.0-25.0 (IQR 12.3)	11.3	5.0-19.6 (IQR 7.9)	.424


Rutherford classification

		1	4	17.4	3	16.7	.359
		2	7	ACCEPTE30.4MANU	SCRIP8	44.4	
		3	6	26.1	6	33.3	
		4	6	26.1	1	5.6	
Cru	ral runoff*						
		3	8	34.8	5	27.8	.782
		2	8	34.8	4	22.2	
		1	7	30.4	2	11.1	
		0	0	0	1	5.6	
) 7	
					5		
			4				
		V					

	DES	BSX	P-value (log-rank)
1 m			
Primary patency (%)	87.0	88.9	.872
Assisted primary patency (%)	87.0	88.9	.872
Secondary patency (%)	87.0	94.4	.454
6 m			
Primary patency (%)	87.0	72.2	.447
Assisted primary patency (%)	91.3	77.8	.247
Secondary patency (%)	91.3	83.3	.450
12 m			
Primary patency (%)	63.2	66.7	.931
Assisted primary patency (%)	68.4	73.3	.840
Secondary patency (%)	73.7	80.0	.750
24 m			
Secondary patency (%)	56.3	71.4	.830

ABI	DES		BSX		P-value
	mean	range	mean	range	
post.op.	.93	.63-1.38	1.02	.76-1.42	.220
1 m	.99	.39-1.85	.94	.78-1.09	.620
6 m	.93	.59-2.00	.80	.31-1.12	.650
12 m	.86	.7398	.85	.54-1.05	.791
				5	
				>	
				7	
			7		
) Y			

