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ABSTRACT

Modern technologies for the automated acoustic monitoring of animal communities enable 

species surveys that yield data in unprecedented volumes. Interpretation of these data bring 

new challenges related to the need of automated species identification.

Coupling automated audio recording with automated species identification has enormous 

potential for biodiversity assessment studies, but it has posed many challenges to the effective 

use of techniques in real-world situations.

This thesis develops new methods in the field of bioacoustics applied to automated monitoring 

of vocal species in terrestrial environments. Specifically, I developed automated methods to 

classify acoustic ecological data generated under the two most common contexts used in 

ecology: identification of vocalization data stored in acoustic libraries of sounds and

identification of vocalizations in audio data collected from the field, through e.g., acoustic 

monitoring programs. 

The methods bring key developments across the entire pipeline for automated acoustical 

identification, connecting techniques from the data acquisition in the field to the ecological

modelling of data identified utilizing automated classification methods.

I show the performance of methods over huge datasets, compare them with alternative cutting-

edge techniques and provide an ample study case of Amazonian bird communities to show the 

tools in practice. The methods in this thesis are available as open source and ready-to-use 

software capable to work directly on field data collected from acoustic monitoring efforts.
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TIIVISTELMÄ

Nykyaikaiset/modernit teknologiat/tekniikat eläinyhteiskuntien automattiseen akustiseen 

monitorointiin mahdollistavat lajitutkimuksen, joka tuottaa ennennäkemättömän määrän 

tutkimusaineistoa. Tällaisen tutkimusaineiston tulkinta aiheuttaa uusia haasteita (kuten) 

tarpeen automatisoituun lajitunnistukseen.

Automatisoitu audiotallennus yhdistettynä automaattiseen lajitunnistukseen luo uusia 

mahdollisuuksia biodiversiteetin inventointiin/ luontotyyppien seurantatutkimukseen, mutta ne 

ovat myös aiheuttaneet monia haasteita menetelmän käyttämiseen todellisissa tilanteissa.

Tämä tutkimus kehittää uusia menetelmiä maalla elävien ääntelevien lajien automaattiseen 

seurantaan bioakustiikan tutkimuksen kentälle. Kehitin ennenkaikkea automatisoituja 

menetelmiä kahden tyypillisimmän akustisessa ekologiassa käytetyn aineiston; lajiäänitteiden 

tietokantojen sekä lajiäänitteiden maastoaineiston tallenteiden,  luokitteluun.

Nämä menetelmät kehittävät olennaisesti koko automatisoidun akustisen tunnistuksen kenttää 

yhdistäen maastoaineiston automatisoidun keruun automaattisten luokitusmenetelmien avulla 

tunnistettujen tietojen ekologiseen mallintamiseen.

Osoitan menetelmien toimivuuden (käytännössä) erittäin suurten aineistojen avulla vertaillen 

niitä tämänhetkisiin huipputekniikoihin sekä tarjoan laajan Amazonin lintuyhdyskuntia 

koskevan tapaustutkimuksen/tutkimusesimerkin osoittaen näin välineiden/menetelmien 

toimivuuden käytännössä. Tutkimuksessa tuotetut menetelmät ovat saatavilla avoimen 

lähdekoodin sekä käyttöönotettavan/toimivan ohjelmiston muodossa maastoaineiston 

käsittelyä varten.
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SUMMARY

Ulisses Moliterno de Camargo

Helsinki Lab of Ornithology, Finnish Museum of Natural History, University of Helsinki

1 INTRODUCTION

A key challenge for ecological research is to 
understand the interactions between biotic 
and abiotic factors affecting the spatio-
temporal dynamics of individuals, 
populations, species and communities
(Ovaskainen et al. 2017). Understanding of 
fundamental ecology, together with robust 
and cost-effective methods of large-scale and 
long-term biodiversity monitoring forms the 
basis for more applied research, such as the 
evaluation of the consequences of 
environmental change (Laurance et al. 2011).
However, acquiring adequately replicated 
large-scale and long-term data remains a 
major challenge both in ecological research 
and biodiversity monitoring (Ferraz et al. 
2008), especially for remote areas and 
species-rich communities, and for taxa that 
require experts for species identification 
(Cohn-Haft et al. 1997).

For vocal taxa such as birds (Potamitis 2015, 
Campos-Cerqueira and Aide 2016, Frommolt 
2017), bats (MacSwiney G et al. 2008, 
Armitage and Ober 2010, Newson et al. 2017)
and frogs (Measey et al. 2017, Dutilleux and 
Curé 2018), automated audio recording offers 
a powerful tool for acoustic monitoring 
schemes, capable of capturing information at 
adequate ecological scales (Aide et al. 2013).
In recent years, the ability to track and 
monitor wildlife populations has greatly 
increased and numerous types of sensors are 
currently available for ecological studies
(Porter et al. 2009, Rundel et al. 2009). These 

technical developments have enabled a 
significant increase in the amount (Campos-
Cerqueira and Aide 2016) and accuracy of 
data (Trifa et al. 2008, Collier et al. 2010), but 
simultaneously they pose new challenges in 
the storage, processing, analysis, archiving
and interpretation of big data (Ovaskainen et 
al. 2018, Stowell et al. 2018).

With the advent of appropriate recording units 
(waterproof, wireless, easily transportable 
and with large memory capacities; Mennill et 
al. 2012, Merchant et al. 2015, Whytock and 
Christie 2017, Hill et al. 2018), the major 
challenges for large-scale biological 
monitoring are no longer related to data 
collection in the field but to the technical 
aspects of automatic data processing and, 
most importantly, the interpretation of the 
data we generate. From the technical side, 
there is need to create analytical tools capable 
to automatically manage, process and analyze 
big data. In relation to data interpretation 
challenges, there is still need to understand 
the observational process for passive acoustic 
recorders. Very little is known about how the 
acoustically detected and identified species 
relate to the total species community.

While several methods have been proposed to 
automatically identify species from audio 
recordings (e.g. work reported in LifeCLEF 
classification challenges; Goëau et al. 2015, 
Goëau et al. 2016, Goëau et al. 2017), reliable 
automated identification algorithms capable 
to operate in large scale and that would reach 
even close to the same level of species 
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identification as obtained by manual 
identification by experts are still lacking
(Stowell et al. 2016). Additionally, most of 
the available methods lack the architecture 
capable to integrate the many steps of an 
automated pipeline into a ready-to-use 
software useful for biological monitoring
purposes.

Coupling automated audio recording and 
automated species identification has 
enormous potential for biodiversity 
assessment studies but has posed many 
challenges related to effectively use and 
interpretation of the techniques in real-world 
situations and by non-experts. This thesis 
brings analytical tools to address such 
challenges. In the following sections, the 
main technical and ecological concepts and 
challenges involved in such methods are
introduced. The remaining text is organized to 
provide a summary of the research objectives, 
material and methods, results, discussion and 
conclusions of the Chapters I–III of this 
thesis.

1.1 Automated acoustic monitoring

A pipeline for automated acoustic monitoring 
usually contains the following basic elements 
(Figure 1): I) a field protocol for automated 
sound recording; II) a framework to process 
audio files and identify species automatically; 
and III) statistical tools capable to extract 
relevant biological information from the 
audio recordings. 

1.2 Automated sound recording

Any bird sampling method have its 
advantages and disadvantages. Depending on 
the objectives of a particular study, some are 
more suitable than others, and there is not a 
single method that will always be the optimal 

approach to every biological question.
Historically, studies on natural bird 
populations have been based on methods that 
capture individuals, such as mark-recapture 
techniques, or more recently, tagging birds 
with geolocators or GPS devices (Bibby et al. 
2000). Although marking techniques can 
allow the unequivocal identification of 
individuals, they are often costly and time-
consuming, especially in areas which are 
difficult to access. Further, the use of invasive 
methods can have both short-term (due to the 
capture and handling process; Caro 1998) and 
long-term effects on individuals, including 
avoidance of the capture area (Marques et al. 
2013), stress-related susceptibility to disease 
(Menu et al. 2000, Schmutz and Morse 2000),
increased susceptibility to predation and 
poorer reproductive success (Moorhouse and 
Macdonald 2005). Non-invasive methods 
such as visual and aural counts (e.g., distance 
sampling methods), or the use of aerial 
photos, videos and audio recording 
techniques, on the other hand, can offer an 
alternative with fewer adverse welfare 
implications and avoid the problems 
associated with biases from animal handling 
(Terry et al. 2005).

Regarding acoustical methods, virtually all 
vocal species have unique acoustic patterns 
that differ significantly among species and in 
many cases also among individuals 
(Kroodsma and Miller 1996), potentially 
yielding a natural tag that allow for population 
monitoring without a need for direct contact 
with the study objects (Petrusková et al. 
2016). At least in theory, vocalization signals 
can be used to obtain both life-history 
information (species, sex, identity or 
behavior) and ecological information (habitat 
use, survival, recruitment, immigration and 
emigration), and useful for many animal 
studies (Payne et al. 2003, MacSwiney G et 
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al. 2008, Scott Brandes 2008, Enari et al. 
2017, Suter et al. 2017, Wrege et al. 2017).

Equipment is constantly evolving to lower 
costs and better quality. In the last ten years, 
several alternatives for acoustic recorders 
became available for the scientific community 
(e.g., Audio Moth, Sole, Wildlife acoustics 
SM4; Mennill et al. 2012, Whytock and 
Christie 2017, Hill et al. 2018). Researchers 
are exploring now alternatives to expensive 
commercially available options and adopting 
field devices designed and built in partnership 
with engineers (see Hill et al. 2018 for a 
review on recent equipment).

Although very promising, one must 
emphasize that acoustical methods are still in 
its infancy as a bird sampling method and the 
majority of published literature is still
experimental and of small-scale nature. There 
are advantages of applying automated 
acoustic recording to the monitoring of vocal 
species (Box 1). These advantages, however, 
are matched by the high complexity of 
acoustic landscapes (Box 2) and the many 
limitations of techniques available to analyze 
and interpret such data. There is no single 
method suitable to answer all ecological 
questions, and any researcher willing to apply 
acoustical methods needs to account for the 
pros and cons of using such techniques to 
answer the biological questions of interest. 

1.3 Automated species identification

The set of techniques used in automated 

species identification largely vary depending 

on the goals of the study and the type of output 

data to be generated. The sections below aim 

to provide an overview of the techniques 

commonly utilized in automated species 

identification. Automated frameworks

usually have the following general steps: I) 

the pre-processing of the audio files, generally 

aimed to prepare the data to be classified by 

filtering out unwanted noise and segmenting 

the candidate sounds to be classified; II) the 

extraction of relevant audio features and 

statistical summaries useful for audio 

classification; and III) the training of the 

statistical models, audio classification and the

extraction of relevant biological information 

that will be used in downstream statistical 

analysis.

Pre-processing audio: signal enhancement 

and segmentation. The pre-processing of 

audio recordings aims to increase overall 

signal-to-noise ratio and segment the audio 

into regions which are informative for the 

classification algorithms. The processing 

usually starts with the cleaning of audio for 

background noise, followed by the 

segmentation of audio into regions of interest 

that contains the target signals to be classified. 

The removal of background noise is a very 

important step as low recognition accuracy is 

often attributed to the common case of noises 

overlapping with signals (Baker and Logue 

2007). However, it is difficult to clearly 

define what is noise and often impossible to

eliminate  noise without degrading the signal 

of interest itself (Priyadarshani et al. 2018).

The Wiener filter technique is often used to 
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eliminate noise in speech recognition and 

animal sound identification (Jingdong et al. 

2006). Alternatively, one can treat the 

spectrograms as images and apply image 

processing methods to reduce noise 

(Potamitis 2014, de Camargo et al. 2017).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Acoustic monitoring pipeline. Example of automated pipeline consisting of three 
phases: a) A sampling protocol employing autonomous recorders to collect and store data from 
multiple sites in the field; b) The use of software for automated species identification (e.g., 
Animal Sound Identifier, Chapter II); and c) Ecological inference with statistical analysis using 
the biological data automatically extracted from the field audio recordings (e.g., Chapter III). 
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Box 1. Advantages of automated acoustic recording in biological monitoring 

1) Unavailability of better alternative methods: Acoustic methods can provide ways to 

detect individuals where other approaches for data collection would not be applicable or where 

human observers would not be able to operate efficiently. Nocturnal species, for instance, may 

be readily detected acoustically (Bardeli et al. 2010, Goyette et al. 2011, Digby et al. 2013, 

Oppel et al. 2014). Species that are difficult to detect visually because of their small size or 

cryptic behaviour may still be detectable acoustically  (Hüppop et al. 2006, Hilje and Aide 

2012, Digby et al. 2013). Similarly, many species can be difficult to identify by sight but are 

easily distinguishable by vocalizations (Kerosky et al. 2012). 

 

2) Increase in the amount and scale of data: Many ecological phenomena take place over 

large spatial or temporal scales and their study requires equally extensive datasets. Automated 

acoustic recording allows the collection of large amounts of data unobtainable using other, 

more labour-intensive method (Ribeiro et al. 2017). Species that are rare or vocalize 

infrequently might not be detected in short-term studies and obtaining enough temporal 

replication may need extensive data collection periods which is not feasible when using human 

observers (Bardeli et al. 2010, Goyette et al. 2011). 

 

3) Less requirements for human participation: Automated acoustic methods cut down on 

the need for experts in the field and make it easier to employ staff without previous experience 

or training on species identification. The analysis of field recordings in a computer, with the 

ability to consult reference material and revisit unclear sound segments can be a less daunting 

task to non-experts than e.g. performing point counts in the field (Goyette et al. 2011). 

 

4) Better accuracy and quality of data and analysis: With human observers, differences in 

observer expertise (observer bias) and fluctuating attention levels (observer fatigue) can cause 

variation in the sensitivity and accuracy of observations. Passive acoustics offer a way to 

standardize data collection over different times of day or seasons of the year, simultaneously 

at various locations (e.g., Larkin et al. 2002, Carstensen et al. 2006, Wrege et al. 2010). Passive 

acoustic methods create a permanent record of the monitoring period, and thus allows error 

checking at any time, and future use of more powerful identification methods, as well as the 

availability of raw data to be used to explore new research questions. 
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BOX2. Soundscape diversity and its measurement: signal and noise.  

Within the living sources of sounds, insects are the most frequent ones. Crickets and cicadas 

produce sounds from 3-4 kHz and 6-8 kHz (Aide et al. 2017). Amphibians are also very 

common and use their vocalizations to attract pairs (Gerhardt 1994). Frequencies of frog 

choruses range from 2-5 kHz. Almost all birds use sound to communicate, sometimes 

exhibiting very complex patterns. Sounds are used to attract mates, defend territories and send 

danger alarms (Kroodsma 2015). Most bird songs occur in the 2-6 kHz range. Many terrestrial 

mammals produce sounds and bats produce ultrasounds to locate prey (Kloepper et al. 2017). 

Communication patterns can be complex. Birds are well-known for their circadian singing 

patterns, with vocal activity peaking early in the morning and in the early evening (Henwood 

and Fabrick 1979). When multiple animals sing at the same time, the spatio-temporal dynamics 

of the soundscape rapidly becomes very complex. In order not to overlap, animals vocalize in 

different frequencies, varying the duration and moments singing events happen (Young 1981).  

Background noise can be as diverse as signals, both the stationary noise (e.g. constant noise of 

rain, wind, rivers, etc.) and non-stationary noise (i.e. varying in frequency and time), such as 

sounds from other animals, human-generated (airplanes, cars, gunshots, etc.) or environmental 

sounds like tree-falls, branches cracking, etc. In many situations, sound sources happen 

independently from each other and often unpredictably. Other sounds, however, are correlated 

either in positive (e.g. close to rivers frogs sing more actively) or negative way (e.g. when a 

predator vocalize the prey stay quiet). All this diversity sums up to constitute complex 

soundscapes that sound monitoring schemes and equipment need to account for (Fig. 2). 

 

 

 

 

 

 

Fig 2. Soundscape complexity and acoustic recording. Spectrogram image of 1-minute audio 

segment from Amazon rainforest containing insects and multiple bird species vocalizing. 

Background noise consists of wind and a nearby stream.   
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No matter the technique, however, structured 

noises that truly resemble animal sounds 

cannot be fully eliminated and are further 

processed to be eliminated only at the 

classification stage (i.e., by the classifier

assorting a very small probability of it 

belonging to target species). 

The way audio is segmented is determinant 

for the quality of final species classification. 

A good segmentation algorithm can provide 

useful data regardless of the choice for the 

subsequent algorithm used for classification. 

By just segmenting audio to regions of 

interest, i.e. containing the query 

vocalizations to be classified, and even 

without a classifier, human analysts can 

benefit from semi-automated approaches and 

concentrate identification effort only to 

regions containing sounds of interest 

(Andreassen et al. 2014).

It is desirable to divide a song or a series of 

calls into smaller units such as syllables but 

the definition of where to segment is not a 

simple task. Merging syllables that are very 

close to each other is a common practice 

(Fagerlund 2007) or segment it more carefully 

by hand (Anderson et al. 1996, Chen and 

Maher 2006, Somervuo et al. 2006, Fox et al. 

2008).

Many segmentation methods work on the 

assumption that the sections where the birds 

sing carry more energy than the other parts of 

the recording (Harma and Somervuo 2004, 

Somervuo et al. 2006, Juang and Chen 2007, 

Towsey et al. 2012, Jinnai et al. 2018).

However, this assumption is valid for 

recordings with low background noise levels, 

being hardly the case for most data recorded 

in field conditions of complex environments 

(Box 2).

Another approach is to segment the 

spectrogram image of audio by applying 

image processing techniques (e.g. median 

clipping techniques; Potamitis 2014, Lasseck 

2015a, Lasseck 2015b). Other techniques 

such as shape morphology (Potamitis 2015)

and morphological opening (erosion and 

dilation; de Oliveira et al. 2015) are 

commonly used to further improve image-

based segmentation methods.

Feature extraction. In the context of acoustic 

species recognition, a feature is an individual 

measurable property of an audio recording 

which provides useful information for an 

algorithm to perform species classification 

(Sandsten et al. 2016). Feature vectors can be 

viewed as equivalent to the vectors of 

explanatory variables used in statistical 

models such as linear regression. As when 

choosing explanatory variables, choosing 

informative, discriminative and independent 

features is crucial for building effective 

classification algorithms (Aggarwal 2014).
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A set of numerical features is usually 

described by a vector which can be used 

directly to feed classification algorithms or 

further processed (e.g. multiplied by weighted 

vectors, logarithmic transformed, etc.) to 

construct new features which may have better 

resolution for classification. However, the 

many techniques used to transform and 

explore features can generate new features 

that are redundant or too large to be managed 

in practice. Therefore, a preliminary step in 

many applications consists of selecting a 

subset of features to facilitate model learning, 

to improve model generalization and its 

interpretability (Tang et al. 2014).

In order to reduce the dimensionality of the 

feature space, several dimensionality 

reduction techniques can be used (e.g., PCA-

related techniques; Sorzano et al. 2014).

Choosing and selecting the best set of features 

is a field of science of its own, related to 

feature engineering and much explored in 

models with supervised learning (Tang et al.

2014). It requires the experimentation of 

multiple possibilities and some level of 

domain-specific knowledge. The process of 

automating feature engineering is called 

feature learning, where an algorithm not only 

uses features for learning patterns but learns 

the best features itself (Stowell and Plumbley 

2014).

There are many toolboxes readily available to 

easily extract acoustical features (see Moffat 

et al. 2015 for a detailed evaluation of the 

major feature extraction tools).  Common 

approaches are to use the short-time Fourier 

transformed data in a scale that matches how 

humans hear sounds (i.e., the perceptual 

features, such as the Bark and the Mel scale), 

to use Linear Predictive Coding (LPC) and its 

extension, the Linear Prediction Cepstrum 

Coefficients (Zbancioc and Costin 2003); and 

Mel Frequency Cepstral Coefficients 

(MFCC). MFCCs has been widely used in 

human speech recognition (Makhoul and 

Schwartz 1995) and extended to animal 

vocalizations (Kogan and Margoliash 1998, 

Clemins et al. 2005, Briggs et al. 2009, Chen 

and Li 2013). An alternative path of research 

is to use Discrete Wavelet Transformation 

features (Bastas et al. 2012) with some 

successful applications to birdsongs (Selin et 

al. 2006).

Model training and audio classification.

Machine learning methods generally take 

feature vectors as inputs and compute their 

representations in order to cluster similar 

inputs together in the feature space. The goal 

is to find features that makes the examples of 

one vocalization from one species similar to 

each other, but dissimilar to other 

vocalizations from any other species, i.e., 

easily separable by an algorithm. 

Once a feature representation has been 

chosen, feature vectors extracted from each 
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segment of the sound file can be fed into a 

standard statistical model (e.g., machine 

learning algorithms), which will group those 

representations that are similar either in an 

unsupervised (i.e., without human labelling of 

the vocalizations used for training) or 

supervised fashion (i.e., species labels are 

provided by human experts and used in model 

training). Alternatively, selected examples of 

a vocalization can be treated as templates of a 

particular type of vocalization, and the 

distances between vectors representing each 

reference vocalization and a query 

vocalization can be computed, with the 

closest pair being directly declared a match to 

the query vocalization. There are optimized 

distance measures derived exclusively for 

particular applications, such as the geometric 

distance (Jinnai et al. 2018) used by SoundID 

software. 

There are multiple machine learning 

algorithms, and the focus of this thesis is on 

techniques utilized in the classification of 

animal sounds. A variety of different types of 

neural networks have been used for birdsong 

recognition (e.g., Cai et al. 2007, Sprengel et 

al. 2016). Support Vector Machines are 

another approach frequently used (e.g., 

Fagerlund 2007). There has also been research 

applying decision trees (Lasseck 2015a) and 

random forest and bagging techniques

(Campos-Cerqueira et al. 2017, de Camargo et 

al. 2017). These techniques are relatively 

simple to implement and have shown good 

results for birdsong recognition (Digby et al. 

2013, Potamitis 2014, Stowell and Plumbley 

2014, Lasseck 2015b), however, they perform 

classification by dividing the audio files into 

frames and do not necessarily consider how 

the dynamics of sounds evolve in time. 

Hidden Markov Models are capable to 

incorporate these dynamics by creating a 

time-dependent probability distribution 

showing how likely certain syllables are to 

follow from others in a sequence (Kogan and 

Margoliash 1998, Kwan et al. 2004, Katahira 

et al. 2011, Kirschel et al. 2011).

Finally, spectrograms cross-correlation can be 

used to feed a simple classifier by taking a 

segment of the spectrogram and computing 

the cross-correlation with a set of reference 

template calls (e.g., Lasseck 2015a) . This 

method is simple yet proven to be successful 

when scanning for a specific species with 

limited call variations (Goyette et al. 2011, 

Frommolt and Tauchert 2014, Ulloa et al. 

2016).

1.4 Ecological inference

The use of automated species identification 

methods in ecological and biodiversity 

research is limited both by the technical 

challenges pertaining to the methodologies 

themselves and the ability to meaningfully 

interpret results from acoustic data. Using 
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acoustic data to characterize communities is 

naturally nothing new in itself (Cohn-Haft et 

al. 1997) and modeling frameworks based on 

detection/non-detection data generated by 

aural detections (e.g., site-occupancy models)

are generally suitable to analyze data 

generated by automated methods.

One of the main uses of acoustic data is to 

characterize species’ use of habitats across 

space and time utilizing e.g. occurrence 

probabilities. The simplicity of input data 

used in such models (detection/non-detection

data) makes occurrence approaches ideal to 

model the data obtained using automated 

classification methods. Occurrence is widely 

used to understand habitat relationships and 

patterns of species co-occurrence, population 

dynamics and species phenology (MacKenzie 

et al. 2003, Chambert et al. 2015). Another 

benefit is that scientific literature is rich in 

modelling frameworks that account for 

observational errors in detection/non-

detection data used in occupancy models 

(McClintock et al. 2010, Miller et al. 2012).

Chambert et al. (2018) developed methods 

specifically to account for both false 

negatives and false positives in data generated 

by autonomous identification methods.

The challenges related to modeling and 

interpretation of data in resolution finer than 

detection/non-detection data are much greater 

(e.g., trying to extract abundance information 

from acoustic data). These include the 

difficulty to separate between the number of 

vocalizing individuals and variation in vocal 

activity, i.e. is the observed variation due to 

changes in the number of individuals or to 

changes in individual vocalization activity? 

Vocal activity levels have potential to provide 

more detailed information on the species’ 

activity and behavior but requires clear 

choices on metrics used to quantify and 

interpret the variation in activity and behavior 

(Figueira et al. 2015, Pérez‐Granados et al. 

2019). Sound production in birds can vary 

both seasonally (depending e.g. on hormonal 

cycles) and in space (due to habitat, species 

composition, e.g., presence of predators 

potentially change vocal behavior). This 

natural variation, together with the lack of 

robust methods to separate and interpret the 

effects of the observational process make it

much more complex to use vocal activity as a 

reliable proxy for animal abundance. 

Another way to interpret numbers of 

individuals is through territory mapping, as 

demonstrated by (Bardeli et al. 2010) with 

Savi’s warbler (Locustella luscinoides). 

However, territory mapping is a very 

intensive method to estimate abundance and 

is not used often for this reason. Distance 

sampling is now a much more common and 

efficient technique used to study birds and 

their abundance patterns (Buckland et al. 

2001). Localization of calls can also be 

possible using arrays of microphones 



  ULISSES MOLITERNO DE CAMARGO 
    

19 
 

(Blumstein et al. 2011, Frommolt and 

Tauchert 2014). Lastly, the number of 

individuals can be approached directly by 

attempting to identify separate individuals 

instead of species (e.g., Kirschel et al. 2011).

Automated acoustic species identification is 

still in its infancy as a methodology to study 

real-life biological questions in terrestrial 

environments. New modelling methods and 

insights on how to interpret such data still of 

experimental nature and are blooming 

together with the new field (Barré et al. 2019).

We will see many more developments of the 

field in the upcoming years (Servick 2014, 

Burivalova et al. 2019).

1.5 Challenges for the automated acoustic 

monitoring of birds

The field of automated acoustic monitoring

has seen much research in optimizing 

recording equipment and identification 

algorithms but relatively less emphasis was 

given to the development of complete 

architectures (i.e., capable to support from the 

data acquisition in the field, storage and 

backup, data management, pre-processing, 

analysis, post-processing and output results). 

With acoustic data collections growing in 

quantity, cloud-based systems need to be 

connected to library of sounds and provide 

users with services for e.g. the search and 

identification of query audio. Systems need to 

be broad enough in scope and access so both 

scientific users and enthusiasts can benefit of 

such data. This is no simple task.

The LifeCLEF classification challenges 

(Goëau et al. 2015, Goëau et al. 2016, Goëau 

et al. 2017) have yield a huge progress in 

proof-of-concept research related to 

automated bird species recognition. On each 

edition algorithms perform better when 

compared to previous years. However, only 

recently they started exploring real-world data 

continuously collected from the field. More 

importantly, however, the results would bring 

a more practical benefit if the focus of the 

challenges would move from a competition 

between techniques to a scheme aimed to 

combine successful models. It is common 

case that one algorithm is good at detecting 

e.g. high-pitched birds, while others are good 

at detecting e.g. low-pitched birds. One can 

combine their outputs by using different 

techniques (e.g. weighted average, majority 

vote, etc.) in order to improve classification. 

That is the idea behind bagging of models, for 

example (Prasad et al. 2006). When 

combining techniques, independent models 

could be explicitly designed to excel in 

different tasks, or alternatively, they could 

simply be multiple attempts to solve the same 

problem (e.g., by using different 

combinations of feature sets and classifiers). 

At the end of the pipeline results should be 

combined to produce a final probabilistic 
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output that is reliable and meaningful for the 

users (de Camargo et al. 2017).

Lastly, most approaches are not implemented 

as ready-to-use software, limiting its usage by 

users lacking the programming or statistical 

skills needed to implement and optimize the 

algorithms by themselves. Additionally, these 

cutting-edge techniques have proven 

successful but at the cost of significant 

computational resources (i.e., need to run in 

super clusters capable to process terabytes of 

data) making it impossible for home users to 

process audio files in their home computers in

feasible time.  

2 THESIS OUTLINE

In this thesis, I present three articles that 

address different angles of applying 

automated acoustic methods to the biological 

monitoring of species. Emphasis is given to 

the quantification of uncertainty and the 

reliability of automated identifications, as 

well as the direct application of the methods 

to continuous data collected from the field. By 

using tropical bird communities as a case 

study, I develop methods that increase the 

practical toolbox of techniques used in

Bioacoustics. Specifically, I aim at answering 

the following questions: 

How to reliably identify, search and 

retrieve query sounds against libraries of 

references?

The goal of Chapter I is to adapt approaches 

for assessing identification uncertainty of 

DNA barcoding data to the context of acoustic 

species identification, thus enabling a robust 

quantification of acoustic identification 

uncertainty. The method is aimed to operate

e.g. as part of a framework to classify and 

organize data uploaded by users of online 

audio libraries. Online acoustic libraries such 

as the Macaulay Library of the Cornell Lab of 

Ornithology, Xeno-canto Library and the 

Internet Bird Collection usually bring audio 

segments with vocalizations representing a 

single species aimed to be used as references 

for its vocal repertoire. It is common that for 

many species there are only one or a few 

recordings representing the vocalizations and 

often the vocal repertoire is not complete in 

the database. Users should be capable to 

automatically compare their own audio data 

against these references and get the species 

identifications together with an assessment of 

the classification uncertainty, so they can be

confident of their identifications.

How to reliably identify species vocalizing 

in continuous data from the field?

The goal of Chapter II is to provide a reliable 

and ready-to-use software to the automated 

identification of vocal species from 

continuous field recordings. Acoustic 

monitoring studies usually have focus on the 

acoustic community and recordings cover 
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entire soundscapes, frequently and over the 

long-term (by collecting many samples across 

weeks, months and years). This approach 

usually generates data containing multiple 

target species (e.g., insects, frogs, birds and 

mammals) in the same audio recording.What

makes real-world data extremely challenging 

is that audio from field conditions are 

complex, with vocalizations of the target 

species overlapping with each other and with 

many types of background noise. Chapter II 

aims to develop software to deal with the 

complexity of soundscape data, ideal to be 

used in monitoring schemes of target species 

across huge quantity of audio segments 

recorded in real field conditions.

How to extract ecological information from

extensive acoustic datasets?

The goal of Chapter III is to illustrate the 

potential of the methods in this thesis to 

process big ecological data. The overall aim 

of this case study is to examine whether the 

impacts of habitat fragmentation that 

happened 30 years ago in Amazon can still be 

heard in the soundscape of the modern-day 

landscapes. In particular, I ask what is the 

relative contribution of the spatial, temporal 

and habitat dimensions to variation in bird 

acoustic communities in a previously 

fragmented tropical rainforest? And does the 

functional diversity of birds scale similarly 

with space and time as does species diversity, 

when both are recorded by bioacoustics 

means?

While all chapters in this thesis bring specific 

study cases, the methods and results are 

general and ready to be implemented with

different data, focusing either on specific taxa 

or on entire acoustic communities. 

Altogether, Chapters I-III develop and apply 

automated methods capable to perform the 

acoustical biological monitoring of vocal 

species.

3 MATERIAL AND METHODS

3.1 Study area and sampling design

The empirical bird data utilized in this thesis 

(in Chapters II and III) comes from sites from 

the Biological Dynamics of Forest Fragments 

Project (BDFFP), 60 km north of Manaus, 

Amazonas, Brazil. The area was completely 

covered by old growth forests until 1980, 

when newly established cattle ranches located

East-West across the BR-174 highway started 

clear-cutting forest. Approximately 15% of 

the area was deforested in the early 1980’s but 

gradual abandonment of pasturelands starting 

in the middle of that decade resulted in the 

current mosaic of forest fragments, secondary 

forest, old-growth and pastures (Fig. 2; 

Laurance et al. 2011). Presently, most of the 

once deforested area is covered by secondary 

forest. Forty-four of our sampling sites were 

in secondary forest and 107 in old growth, 
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distributed along more than 40km across the 

study area. Secondary forest sites range in age 

of regrowth from 18 to 29 years (Mesquita et 

al. 2001). To attain independence between 

points, I kept them as isolated as possible 

from each other, the minimum distance 

between a point and its closest neighbour was 

an average 462 m, ranging from 306 to 906 m; 

I sampled sites for five consecutive years 

(2010-2014) during the dry season, between 

June and October, using 15 to 25 autonomous 

Song Meter SM2 Digital Field Recorders 

(Wildlife Acoustics). Each site was sampled 

with one recorder tied to a tree at 

approximately 1.5 m above ground, operating 

from four to six consecutive days. I had to 

sample sites in blocks of 15-25, but I

alternated longitudinal positions and forest 

types of the blocks to avoid any correlation 

between sampling time and longitude or 

forest type. One recording day consists of 

three hours of continuous recording starting 

40 minutes before sunrise. In total, the five-

year audio dataset consists of more than 

11,000 hours of field recordings. 

3.2 Audio databases and study species

Chapter I utilizes tropical bird vocalizations

extracted from the Xeno-Canto collaborative 

sound library (https://www.xeno-canto.org). 

This is part of the same dataset used in the 

Bird task of LifeCLEF classification 

challenges (Goëau et al. 2015, Goëau et al. 

2016, Goëau et al. 2017), enabling to compare 

results from this thesis to classification made 

by other methods. The dataset comprises the 

200 tropical bird species most numerously 

represented in Xeno-Canto, gathered from 

field sites in Brazil, Colombia, Venezuela, 

Guyana, Suriname and French Guiana. Audio 

files are stereo and recorded at sampling rate 

of 44,100Hz, with generally good quality but 

with variation in the level of noise due to e.g. 

weather conditions and the amount of 

background species, as common when 

building reference databases from 

heterogeneous sound sources. 

Chapters II and III utilized the acoustic data 

collected from field stations at BDFFP sites as 

described in previous section. The five-year 

audio dataset consists of more than 11,000 

hours of field recordings divided in 661110 1-

minute segments for analysis. Chapter II 

focuses on the nocturnal subset of Amazon 

species and Chapter III focuses on the diurnal 

component of Amazonian bird assemblages.

The total number of bird species in the study 

area is almost 400 (Cohn-Haft et al. 1997), as 

registered by multiple methods (e.g., point

counts, mist netting, etc.). The manual aural 

processing of 300 hours of audio has 

documented a richness of about 250 species. 

The species detected by the automated 

methods (ca. 77) exhibits a wide variety of 

phylogenetic traits, habitat preferences and

foraging strategies, offering a good 
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representation of the local community (Cohn-

Haft et al. 1997). Species inhabit primary and 

secondary forests, pastures, open water and 

campinaranas. They also differ in their 

microhabitat use, foraging at the understory, 

midstory, or at the canopy level, as well as at 

forest edges, tree-fall gaps and small streams. 

Finally, there are several differences in the 

degree of sociality and foraging strategies 

including mono- and mixed-species flocks, 

solitary species, species that join mixed-

species assemblages at fruiting or flowering 

trees, army-ants followers and lekking species

(Stouffer and Bierregaard 1995, Cohn-Haft et 

al. 1997).

3.3 Data pre-processing for automated 

acoustic identification

Methods used in chapters I-III use the same 

pre-processing techniques for the data.

Because of dealing with short and long audio 

segments, in Chapter I the entire audio clip 

was used as a single audio segment to be 

classified, while in Chapter II-III the 

continuous audio clips were cropped to 

thousands of 1-minute segments. In all cases 

stereo channels were mixed together into a 

mono audio file. A fast Fourier transformation 

algorithm was used to get data in the 

frequency domain and the Weiner filter was 

applied to remove background noise 

(Jingdong et al. 2006, Ovaskainen et al. 

2018).

The de-noised audio files were then used to 

extract acoustic features useful for subsequent 

sound classification. Regardless of how the 

different pipelines handle data, methods in 

Chapters I-III use the normalized cross-

correlation calculated over spectrograms 

images of the sound segments as the basic 

acoustic feature. The normalized cross-

correlation ranges between 0-1 and it can be 

used as a similarity measure between two 

images, with two identical images having a 

cross-correlation value of 1 (Lewis 1995). 

Sliding one spectrogram image over the other 

will generate a vector of similarities over each 

pixel of the images and the maximum peak is 

the point that scores the maximum similarity 

between the two images. This maximum is 

stored and used to calculate the different 

predictors used by models from Chapter I and 

Chapter II-III as detailed in the methods 

sections of each chapter.

3.4 Audio classification

Models in Chapters I-III utilize supervised 

learning to perform sound classification. This

means that labelled data (i.e., either from a 

reference database or labelled by an expert as 

on Chapters I and Chapters II-III, 

respectively) is used to estimate the

parameters of the models and these 

parameters are then used to apply the models 

to the query data to be classified. In Chapter I 

this happens with a clearly defined training 



SUMMARY 
 

24 
 

phase for the parameter estimation followed 

by a classification phase to estimate the 

probabilities of belonging to the study species 

for each query segment. Chapter II-III utilizes 

the same idea but the training and 

classification phases happen at the same time: 

After each audio segment used for training is 

classified by the expert, models are re-fit and 

all audio segments are classified for the 

probability of species being detected. 

In Chapter I a multinomial logistic regression 

model is used to convert the predictors 

calculated from cross-correlation features (or 

outputs by other classifiers) into a prediction 

of which species the sample represents. The 

method performs multispecies classification,

thus the outcome of the classifier is a vector 

containing the classification probabilities for 

all possible species in the reference database, 

plus the possibility of query audio belonging 

to an “unknown” class. Each audio segment 

that is classified has one vector of 

probabilities of length number of species plus 

the unknown species class and these 

probabilities sum up to 1.

Chapters II-III utilize simple logistic 

regression to map different predictors into 

probabilities at two levels: in the letter level 

the model estimates the probability of the

target letter (a letter is defined as a sound unit 

that is selected by an expert and relevant for

classification) being present within the 

highlighted region of the audio track, whereas 

the species level estimates the probability of 

the target species vocalizes throughout the 1-

minute audio segment. Chapter II-III utilize

species-specific models for classification and 

outputs a matrix of probabilities with each 1-

minute audio segment represented by a row 

and each species represented by a column in 

the matrix. In this case the probabilities of a 

given row does not sum up to 1 as an audio 

segment can have identifications of multiple 

species singing within the same minute.

3.5 Data post-processing and ecological 

modelling

Data outputted by PROTAX-Sound and ASI 

methods both can be used to generate 

detection data for downstream statistical 

analysis. In Chapter I, data can be used to 

generate identifications of query sound 

segments by taking the species with the 

maximum probability value. In Chapters II-III 

the probability matrix can be transformed into 

detection/non-detection data simply by 

thresholding the matrix by some chosen value

(e.g. 90% probability). Values above the 

threshold level will get value 1 and 0 

otherwise.

Of course, the best way of propagating 

uncertainty from the classification methods 

presented in this thesis to the downstream 

analysis is to take advantage of the full 

probability matrices, instead of taking the 
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maximum value or using an arbitrary 

threshold. When building e.g. Bayesian 

models of bird community dynamics, or joint-

species distribution models, the collection of 

such detection matrices can be considered as 

a prior for the true occurrence matrix. Then 

one can sample the posterior distribution of 

the true occurrence matrix, thus enabling to 

propagate species identification uncertainty 

through the community modelling analyses.

Other option is to use the data outputted by 

our methods as input of further modelling 

frameworks and add other levels of error 

quantification and corrections against bias 

(Chambert et al. 2018, Barré et al. 2019).

4 RESULTS AND DISCUSSION

Here I present the most relevant findings of 

this thesis and discuss how these findings 

relate to thesis objectives and to broader 

applications of automated acoustic 

techniques. In Chapter I, I developed methods 

capable to reliably search and retrieve query 

searches against libraries of sounds. In 

Chapter II, I developed methods to perform 

the reliable identification of vocalizations in 

data obtained directly from the field, without 

the need of using references from databases. 

In Chapter III, I presented the spatio-temporal 

scaling of biodiversity in acoustic tropical 

bird communities, a study case illustrating 

how essential ecological patterns can be 

successfully extracted from a massive amount 

of audio data by using the methods developed 

in this thesis.

4.1 A reliable method to search and 

retrieve query sounds against libraries of 

references. In Chapter I, I have utilized recent 

developments in probabilistic taxonomic 

classification methods for DNA sequences to 

develop PROTAX-Sound, a statistical 

framework for probabilistic species 

identification of audio samples. I have 

demonstrated that PROTAX-Sound is able to 

convert similarities of audio features 

extracted from candidate sounds into 

classification probabilities for each of the 

target species, making the assessment of 

species identification uncertainty reliable and 

ready to be propagated to downstream 

analyses. The performance of PROTAX-

Sound method is shown, as well as its ability 

to combine different acoustic features and 

classifiers into an optimized framework for 

audio classification. The framework is very 

flexible, allowing any combination of audio 

similarity measures and classifiers to be used 

as predictors of PROTAX-Sound model. The 

main feature of the approach is to provide a 

probability of placement to each taxon 

existent in the reference database, as well as a 

probability of the sound not belonging to any 

of the species in the reference set. This is a 

much-needed feature for search engines that 

provide taxonomical search based on 
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comparison of query audio against a library of 

sounds.

The distribution of the probabilities outputted 

by PROTAX-Sound reflected the range of 

difficulties in acoustic species identification 

that is faced also by an ornithologist 

conducting similar identifications manually, 

making the interpretation of uncertainty very 

intuitive for the users. For example, in cases 

with much uncertainty, PROTAX-Sound has 

the ability to assign the highest probability to 

‘unknown species’, indicating that the 

similarity between the query sample and the 

best matching reference sample is no better 

than the matches between reference samples 

belonging to different species. Another 

feature of the method is the ability to provide 

reliable identification at higher taxonomical 

levels (e.g., family level), even if the 

uncertainty at lower levels is very high (e.g., 

species level). Therefore, sometimes 

PROTAX-Sound, equally as a human expert, 

cannot make a confident identification, or is 

capable to reliably identify a segment only at 

the level of a group of species, not at the level 

of an individual species.

Statistical methods with great potential for 

automated identification are continuously 

appearing in the scientific literature, and 

PROTAX-Sound provides a statistically 

rigorous method to combine the strengths of 

different techniques. While I have illustrated 

the use of PROTAX-Sound specifically for 

identifying bird sounds, it provides a general 

framework to classify the sounds of any vocal 

animals. The framework provides a robust 

starting point for probabilistic identification 

of animal sounds, making it possible to 

propagate the unavoidable uncertainty in 

species identifications to biological inference 

derived from audio data, or to identification 

and search engines used in audio libraries.

4.2 The reliable identification of 

vocalizations in continuous data from the 

field. In chapter II, I developed Animal Sound 

Identifier (ASI) with a focus on improving 

classification of continuous data collected

from the field. The methods and pipeline are 

illustrated by classifying thousands of

sampling units (1-min segments of the data) 

for the occurrences of the vocalisations of 14 

Amazonian crepuscular and nocturnal bird 

species. The key novelty of the method

compared to other approaches are that ASI 

does not require any a priori references of the 

target vocalisations, but it finds them directly 

from field recordings. The direct use of field 

recordings differs from using reference audio 

files from online libraries in many ways, 

including less variation on technical recording 

quality, the type of background noise, and the 

geographic region from which the 

vocalisations originate, all factors that reduce 

classification accuracy. Importantly, ASI 

generates training data adaptively, thus asking 
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the user to classify only such training data for 

which classification by the present model 

would be uncertain, which data are thus 

especially valuable for improving 

classification accuracy. ASI was designed not

only to provide accurate classifications, but 

also to make efficient use of human time. 

While ASI provides a major step forward on

automated classification of animal 

vocalisations, it clearly involves several 

limitations that I hope future research efforts 

will improve on. First, as the classification 

models are based on training data provided by 

the user, an upper limit for the performance of 

ASI is clearly set by the level of expertise of 

the user. Most obviously, if the user is not able 

to identify the species behind a certain 

vocalisation type, ASI will not be able to 

classify those vocalisation types either. 

Additionally, the predicted classifications 

will always involve some uncertainty. 

Whether or not removing such uncertainty by 

post-classification validation is possible or 

necessary depends on the type of the data and 

the purpose of the study. As the key benefit of 

ASI is that it is able to classify massive 

amounts of data rather than a small sample of 

it, the disadvantage of having some level of 

classification error is likely to be more than 

compensated by the ample supply of data, as 

long as the recall and precision rates are 

sufficiently high for the signal to dominate the 

noise.

4.3 Ecological inference from extensive 

acoustic datasets: The spatio-temporal 

scaling of biodiversity in acoustic 

communities. In chapter III, I combined the 

classic fields of Species–Area and Species–

Time Relations with the novel and rapidly 

emerging field of bioacoustics to derive new 

insights in community ecology. Using 

automated analysis of 11,000 hours of audio 

recordings, I developed Species–Area and 

Species–Time Relations using acoustic data 

to examine whether the impact of habitat 

fragmentation 30 years ago can still be heard 

in the soundscape of the modern-day 

landscapes. I found that both species-level 

and functional diversity accumulate faster in 

primary forest than in secondary forest, and 

that soundscape turnover in relatively small 

space (some hundreds of meters) was much

higher than turnover over relatively long time 

(years). Overall, these findings suggest that 

habitat modification can be heard as a long-

lasting imprint on the soundscape of 

regenerating habitats even after 30 years of 

abandon and identify Soundscape–Area and 

Soundscape –Time Relations based on the 

automated analysis of acoustic communities 

as promising tools for biodiversity research, 

applied biomonitoring and restoration

ecology. 

Traditionally, biodiversity is assessed using a 

variety of methods that are generally costly, 

limited in space and time, and most 
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importantly, they rarely include a permanent 

database record. Furthermore, most fauna 

monitoring protocols require the presence of 

experts in the field in order to document 

species presence. This study shows how

automated techniques can be successfully 

applied to classify massive amounts of 

acoustic data, thereby quantifying ecological 

relations between time, space, and habitats. 

On the technical side, the automated 

identification results showed very good 

performance over real-world datasets. Out of 

the 63 species in the study, for 3 species the 

classification precision of ASI was poor (i.e. 

lower than 0.5). Out of the remaining species, 

for 3 species precision was moderate (i.e. 

between 0.5 and 0.7), for 19 species it was 

good (between 0.7 and 0.9), and for the 

remaining 38 species it was very good (i.e., 

higher that 0.9). The main reason for such a 

good performance is that ASI method directly 

utilizes field recordings to build training data. 

Consequently, variation in training data 

reflects the variation in the data to be 

classified, e.g. the type of background noise, 

the geographic region from which the 

vocalisations originate, etc. 

The ecological results show that past habitat 

modification can still be heard as a long-

lasting imprint on the acoustic communities 

of regenerating habitats at BDFFP. This 

finding was evidenced by higher species 

diversity and much higher functional diversity 

in primary forest than in the rapidly-

regenerating secondary forest, and in larger

differences between communities located in 

these different habitats than between same-

habitat communities. We currently lack a 

good understanding of the rate with which 

biodiversity can be expected to revert to their 

original state after disturbance (Gardner et al. 

2007, Laurance 2007) and of the right 

indicator to measure this. At the BDFFP sites,

secondary vegetation is often high, and some 

species groups appear to have reverted to the 

pre-fragmentation state (Dunn 2004, Quintero 

and Roslin 2005, Stouffer et al. 2006). Our 

findings suggest that the soundscape provides 

a sensitive indicator of enduring effects of 

disturbance, and that automated bioacoustics 

provide accurate tools for recording them 

(Deichmann et al. 2018, Burivalova et al. 

2019).

5 CONCLUSIONS

While rapidly developing and receiving 

increasing interest among biologists and 

conservationists, automated acoustic 

monitoring is still as an early stage 

methodology to be adopted by non-experts 

and widely used in large-scale studies to 

address complex biological monitoring 

questions. The majority of published 

literature is still methodology-oriented or, if 

applied to real-life biological situations, of an 

experimental and small-scale nature. My goal 
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in this thesis was to explore both of this 

challenges and purpose new methods in the 

form of accessible tools for non-experts.

Automated acoustic monitoring methods 

improved by human input may be the key to 

optimize and enable classification results in 

practice (Chapter II). Human input may be 

needed to e.g., control for errors made by the 

detectors, to optimize methods to work with 

real data, to validate models, etc. Even simple 

methods that performs only automated event 

detection instead of species classification, i.e. 

all detected events still must be classified 

manually (e.g., Farnsworth & Russell 2007), 

is already a significant reduction in the 

amount of data that needs to be handled 

manually. In chapter II, I developed ASI 

method based on this idea: human input is still 

necessary but should be optimized in order to 

maximize the gain in information and 

minimize the effort in manual work. In this 

thesis, human input is used to provide better 

training data and improve the classification 

power of the models. In fact, the combination 

of information from experts and enthusiasts, 

together with cutting-edge technical 

developments is a fruitful path not only in 

automated species recognition, but in many 

other applications in Machine Learning. The 

power or collaborative networks and 

crowdsourced training data is becoming 

apparent and more problems are being solved 

by such approaches (Abhigna et al. 2018).

Finally, methods need to be made even less 

computer intensive and designed as user-

friendly software. 

In this thesis, I successfully classified data 

from thousands of hours across hundreds of 

sites. The new feasibility of taking on such 

tasks opens new avenues for community 

ecology, and for biodiversity research (Rajan 

et al. 2018, Burivalova et al. 2019). The use 

of automated recorders at a higher number of 

sites at the same time and with the same 

technical conditions relieves the concerns 

related to sampling different sites by different 

people at different times (Ribeiro et al. 2017).

In dealing with the resulting data, we are no 

longer limited by availability to expert 

listeners who can identify the species from 

their sounds in the field, or by the impossible 

task of manually listening to all audio 

recordings in a given study (Ferraz et al. 2008, 

Ribeiro et al. 2017). Instead, experts can make 

optimal use of their knowledge by annotating 

candidate sounds, validating and verifying 

automated classification results (Chapter II). 

This allows them to free up their expertise 

from endless hours of routine tasks and 

instead offer targeted insights were truly 

needed. The routine tasks can then be 

performed automatically.

Understanding the dynamics and trends in 

animal wildlife is an important component in 

the assessment of environmental change. 

Studies on complex and megadiverse 
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ecosystems such as the Amazon are highly 

relevant because they offer an unique

opportunity to understand how the spatio-

temporal dynamics of species are modulated 

by the joint effects of intrinsic factors (e.g. 

influence of hydrographic networks, 

biogeochemical processes, vegetation 

dynamics and species interactions), land use 

change (e.g. decrease in forest area, 

fragmentation and edge effects) and climate 

change (e.g. changes in mean and variability 

of temperature and precipitation). However, 

such complex interactions among multiple 

factors pose major challenges for research. A 

successful study requires a multidisciplinary 

approach with a strong knowledge of natural 

history, a well-designed sampling scheme, 

and efficient analytical skills to extract the 

biologically relevant information from the 

data, including the quantification of various 

types of uncertainties associated with the 

observed responses. This thesis brings a new 

set of tools to face such challenges, taking 

advantage of recent technological and 

computational advances from 

multidisciplinary fields to provide an 

automated framework for ecologists. 

Continuous research in automation will not 

allow the classification performance of 

methods to improve until perfection but will 

finally make the bridge between successful 

proof-of-concept methods and the large-scale 

real applications that are truly useful for 

biologists and conservationists.  

6 ACKNOWLEDGMENTS

Wabi-Sabi is a Japanese philosophy based on 

accepting the imperfect and transient nature 

of life. It is originated from ancient tea 

ceremonies in which the prized utensils were 

handmade, irregular and imperfect. There is 

no direct western translation for Wabi-Sabi,

but essentially it is the art of accepting and 

finding beauty in the imperfect, impermanent

and incomplete nature of things.

Learning to appreciate the outcomes of this

doctoral study was my own “tea ceremony”.

The following paragraphs are meant to 

acknowledge the many people that influenced 

me on this work. I would like to express my 

deepest gratitude for their personal and 

professional support. As the Japanese 

utensils, this section is imperfect,

impermanent and incomplete.

Otso, I sincerely thank you for all the 

opportunities, knowledge, experiences, and 

enthusiasm to the development of this project 

during almost seven years. I have learned a 

great deal from you, from optimizing work 

time during eating-meeting lunches to the 

great skiing skills into Russian wilderness. I 

admire and try to mirror your approach to

work in my own professional life. I thank you 

for the guidance and patience, for the 

straightforward communication and practical 

advice on where to move. No matter how busy 

you were, I always felt your commitment 



  ULISSES MOLITERNO DE CAMARGO 
    

31 
 

towards the finishing of this work and to my 

supervision. Thank you for all that and 

especially for the final push towards the 

completion of this PhD. 

Panu, you have been an informal supervisor 

of this thesis, but most importantly, the person 

always available for the technical complains 

about signal processing, machine learning and

general coding of any sort. You are a natural 

problem-solver and I admire how rapid you 

can come up with solutions and get work 

done. Without your valuable input and 

positive attitude (plus your pessimist 

mindset), this thesis would not be feasible. 

Thank you! 

The third scientific advisor throughout my 

studies is Gonçalo Ferraz. Gonçalo, you have 

been a great friend and inspiration to me. 

More than the supervision during my Masters 

in Amazon, you always helped me in so many 

ways that I lack words to express my 

gratitude. I took your project of recording 

Amazon birds as my own flag, turned the task 

of automated processing acoustic data into my 

own PhD project and now we are getting the 

results of such a big effort. I am happy that 

this thesis provides us tools to finish the

project we started in 2010. More important 

than the achievement itself, I value your 

friendship and unconditional support for all 

these years. Our conversations and opinions 

about politics, arts and life aspects that are 

external to academy are the greatest memories 

from your supervision period in Manaus I will

carry for life. Your commitment to your 

beliefs and your contribution to the scientific 

training of students in Brazil motivated me to 

push my career as a scientist, and made me 

believe individuals can truly make a 

difference. 

Next I would like to thank Professor David 

Miller for examining my thesis and acting as 

my opponent in the defense. I would also like 

to thank Professor Karl-L. Schuchmann and 

Dr. Alison Johnston who took the time and 

effort to pre-examine an early version of the 

thesis. The comments I received from you all 

were very constructive and improved this 

thesis for sure. I would like also to express my 

gratitude for Tomas Roslin and Patrik 

Byholm. Tomas, thank you for your 

contribution to this thesis. Your addition to 

the team of collaborators and positive attitude 

towards the end of the thesis made all the 

difference. Your final push made it possible 

for me to accomplish the last PhD tasks and I 

am forever grateful for that. Patrik, thank you 

for the support and insights during all the 

advisory board meetings and for believing in 

such complex project since the start. Your 

excitement when seeing the achievements of 

this thesis was a big boost of motivation for 

me to make it to the end.

This PhD started way before moving to 

Finland. The five years of acoustic data 

collection that motivated all my work in 



SUMMARY 
 

32 
 

automated species identification started back 

in 2009 when I moved to Amazon for my 

Master’s under Gonçalo’s supervision. This 

was the happiest period of my professional 

life, much because of the natural innocence of 

an early-career student amazed by doing 

fieldwork in the Amazon forest, but mostly 

due to the very especial place we were based 

in Manaus, surrounded by very special 

people. For the friendship and all sorts of 

support, a huge thank you to the brave ones 

living everyday life closer to mine: Murilo 

Dias and Elisa Xavier, Diego Brandão, 

Camila dos Anjos, Marco Aurélio and 

Eduardo Braga. Gabriela Pinho, Laynara 

Lugli and Camila Duarte, big thanks to you as 

well. You are all very special friends that I 

have spent an amazing good time and shared 

so much in life. Gonçalo’s population ecology 

Lab is the other half of what made that period 

in Amazon so rich and happy, with a 

permanent warm place in my heart. For all the 

Lab time and amazing field seasons we did 

together, I thank Sandra Freitas, Marconi 

Cerqueira, Letícia Soares, Thiago Belisario, 

and especially Gabriel McCrate, Juliana 

Bonanomi, Francisco Diniz, Luiza Figueira 

and Humberto Mohr, who shared most of the 

forest stories and adventures I have to tell 

nowadays. Being at work was so pleasant 

because of you, and the field excursions we 

had are surely unforgettable. Thanks also to 

the people from BDFFP and INPA in general.

Since 2012 I have been living in Finland. One 

can only imagine the contrast between the 

+40º C Manaus in Amazon and the -30º C in 

Helsinki. I was lucky enough to arrive at the 

Metapopulation Research Group, and its rich 

diversity of nationalities provided the warmth 

I needed to survive the period of adaptation, 

as well as the support for the many years of 

hard work to come. As that is the moment I 

am sure to forget some people, I would like to 

just thank all the MRG members for the 

support and good times together. I have never 

been in such a great academic environment to 

discuss scientific ideas, full of brilliant,

humble and very helpful people. 

From the MRG gang, I would like to 

acknowledge in especial Henna Fabritius, 

Luisa Woestmann, Anna Norberg, Henjo de 

Knegt, and Silvija Budaviciute for sharing 

office and the countless hours of bad jokes, 

procrastination-deep-existential discussions 

and general peer support. Henna and Luisa in 

particular, thanks a lot for the extra support 

and trust to share many conversations and 

thoughts in important times. Tanjona 

Ramiadantsoa, Victoria Veach, Johana 

Eklund, Joona Lehtomäki, Jussi Juosimo, 

Toby Fountain, Anne Duplouy, Marjo 

Saastamoinen, Anna-Liisa Laine, Anniina 

Mattila and Elena Rosa, you were also great 

companies that kept the mood up for countless 

times. I would like to finish MRG section by 

thanking very special people, the main pieces 



  ULISSES MOLITERNO DE CAMARGO 
    

33 
 

of the engine that powered MRG for many 

years: Sami Ojanen and Viia Forsblom (and 

Jenni Villa and Kaisla Torppa). Your 

contribution to this work is beyond measure. 

Thank you for always being available to solve 

issues in a very smooth and well-humored 

way, no matter how silly (or repetitive) the

question I had. You made the handling of my 

everyday-life in Finland much simpler! 

Finally, another important component for the 

PhD machine to move smoothly: Anni 

Tonteri. Thank you for your dedication to 

LUOVA students. You all made all the 

difference and are part of this big achievement 

being possible.

Moving a bit to the personal side, big thanks 

to the many people that provided extensive 

support and the true friendship that allowed 

life in Finland to be good, as well as lots of 

fun to counter balance the most difficult 

times. I would like to thank Maria Delgado, 

Matti Pellinen and Nerea Abrego for forming 

the very special crew joining me together with 

Otso to the amazing and adventurous times of 

skiing in Russian wilderness. 

The other big source of friends I have made in 

Finland all happened because of Capoeira. 

Capoeira is such a beautiful art, the type 

makes one proud to be Brazilian. It is an 

activity difficult to explain for non-

practitioners, that some think as a dance, or as 

a fighting style. Capoeira is all of that and 

much more, a game played with mind and the 

entire body, and more importantly, formed by 

a community of friends. It symbolizes the 

good aspects of Brazilian culture and its 

African ancestry. All that passionate speech 

said, I would like to thank all my friends from 

Cordão de Ouro Capoeira group, especially 

Mestre Pium, a Master in the art and good 

friend; also thanks to Diana, Erika, Marjaana, 

Natalia and Nadja for the friendship. Not from 

my own group but that became part of my life 

because of capoeira, big thanks to Roosa, 

Laura, Ismo, Sabugosa, Wilhelmiina, Liisa, 

Pirata, Noora, Nora, Niina, Johanna, Eveliina, 

Nicholas and Viola. Some from capoeira 

became even closer, as the great friends Ilkka

and Sini. Thank you for all the good times

together, dinners and weekends in the mökki, 

full of good wine and food. Apart from 

capoeira, I would like to mention Léo 

Custódio and Dan Santos for the friendship,

advices and good times together. You all are 

very important for keeping me sane and to my 

decision to stay and live my life in this 

country. Thank you!

Even deeper into personal side, I would like 

to thank for all the support and love from my 

family. The type of difficulties related to 

studying in a foreign country, as different as 

Brazil and Finland, can only be understood by 

living it. I was lucky enough to have family’s 

full support to my life choices, and even the 

luxury of their visit for two consecutive 

summers now at the end of my studies. I was 



SUMMARY 
 

34 
 

double lucky to have a Finnish family that 

adopted me fully, which I feel truly welcomed 

and loved in every time we visit. I would like 

to thank my Finnish family members Kari and 

Riitta, Anni, Jari, Eetu, Sirkka and Emmi’s 

many cousins and their beautiful families. 

I want to thank in especial for the love and 

support from my Brazilian family: Mom, you 

are the best mom, so loving and supportive 

about my life choices, always putting my 

education first. Thank you very much for all 

the support and for being here visiting me and 

Emmi. It was very important to us! I would 

like to be more skilled to translate into words 

your immaterial contribution to my PhD,

career and life. I cannot say thank you enough 

for my big sister Eurídice. Tata, you are a 

model for me, of a strong woman, a great 

mother and an excellent person. Throughout 

my life you have always been a safe harbor 

whenever I needed advice and courage to 

pursue my dreams. Thank you for being my 

sister, my second mother and always present 

friend! I always enjoy our conversations 

about all aspects of life, and it is a pleasure to 

share my thoughts, values and world view 

with you. And to my dad Antonio Carlos. 

Dad, I wish so much I just have had more time 

to share my adult life with you, especially 

now after so many years of learning and 

adventures from Amazon and Finland. So 

many things happened! All the support you 

gave me since my early education has brought 

me here and I wanted to share this entire path 

with you. I love you all from the deepest of 

my heart. 

Finally, and most importantly, I would like to 

thank Emmi. Thank you for sharing your life 

with me and all the support you gave 

throughout the development of this thesis and 

on every aspect of our lives. Only the closest 

ones know how heavy the PhD studies can 

become, how big part of my life is this work, 

and the every-day effects it had on ourselves. 

You were here all the time giving me your full 

support. I admire and try to mirror your 

approach and kindness to the world, love for 

diversity and strength towards what you 

believe. You are my source of motivation to 

build something beautiful in life and the 

partner I choose to share it with. Thank you so 

much for all. I love you.

7 REFERENCES

Abhigna, B. S., et al. 2018. Crowdsourcing –

A step towards advanced machine 

learning. - Procedia Computer Science 

132: 632-642.

Aggarwal, C. C. 2014. Data classification: 

Algorithms and applications. - Taylor & 

Francis.

Aide, T., et al. 2017. Species richness (of 

insects) drives the use of acoustic space in 

the tropics. - Remote Sensing 9: 1096.



  ULISSES MOLITERNO DE CAMARGO 
    

35 
 

Aide, T. M., et al. 2013. Real-time 

bioacoustics monitoring and automated 

species identification. - PeerJ 1: e103.

Anderson, S. E., et al. 1996. Template‐based 

automatic recognition of birdsong 

syllables from continuous recordings. -

The Journal of the Acoustical Society of 

America 100: 1209-1219.

Andreassen, T., et al. 2014. Semi-automatic 

long-term acoustic surveying: A case study 

with bats. - Ecological Informatics 21: 13-

24.

Armitage, D. W. and Ober, H. K. 2010. A 

comparison of supervised learning 

techniques in the classification of bat 

echolocation calls. - Ecological 

Informatics 5: 465-473.

Baker, M. C. and Logue, D. M. 2007. A 

comparison of three noise reduction 

procedures applied to bird vocal signals. -

Journal of Field Ornithology 78: 240-253.

Bardeli, R., et al. 2010. Detecting bird sounds 

in a complex acoustic environment and 

application to bioacoustic monitoring. -

Pattern Recognition Letters 31: 1524-

1534.

Barré, K., et al. 2019. Accounting for 

automated identification errors in acoustic 

surveys. - Methods in Ecology and 

Evolution 00: 1– 18

Bastas, S., et al. 2012. A novel feature 

extraction algorithm for classification of 

bird flight calls. - In: 2012 IEEE 

International Symposium on Circuits and 

Systems. pp. 1676-1679.

Bibby, C. J., et al. 2000. Bird census 

techniques. - Academic Press.

Blumstein, D. T., et al. 2011. Acoustic 

monitoring in terrestrial environments 

using microphone arrays: Applications, 

technological considerations and 

prospectus. - Journal of Applied Ecology 

48: 758-767.

Briggs, F., et al. 2009. Audio classification of 

bird species: A statistical manifold 

approach. - In: 2009 Ninth IEEE 

International Conference on Data Mining. 

pp. 51-60.

Buckland, S.T., et al. 2001. Introduction to 

Distance Sampling: Estimating 

Abundance of Biological Populations.

Oxford University Press, Oxford, UK.

Burivalova, Z., et al. 2019. The sound of a 

tropical forest. - Science 363: 28-29.

Cai, J., et al. 2007. Sensor network for the 

monitoring of ecosystem: Bird species 

recognition. - In: 2007 3rd International 

Conference on Intelligent Sensors, Sensor 

Networks and Information. pp. 293-298.

Campos-Cerqueira, M. and Aide, T. M. 2016. 

Improving distribution data of threatened 

species by combining acoustic monitoring 

and occupancy modelling. - Methods in 

Ecology and Evolution 7: 1340-1348.

Campos-Cerqueira, M., et al. 2017. Have bird 

distributions shifted along an elevational 



SUMMARY 
 

36 
 

gradient on a tropical mountain? - Ecology 

and Evolution 7: 9914-9924.

Caro, T. 1998. Behavioral Ecology and 

Conservation Biology. - Oxford University 

Press.

Carstensen, J., et al. 2006. Impacts of offshore 

wind farm construction on harbour 

porpoises: acoustic monitoring of 

echolocation activity using porpoise 

detectors (T-PODs). - Marine Ecology 

Progress Series 321: 295-308.

Chambert, T., et al. 2015. Testing hypotheses 

on distribution shifts and changes in 

phenology of imperfectly detectable 

species. - Methods in Ecology and 

Evolution 6: 638-647.

Chambert, T., et al. 2018. A new framework 

for analysing automated acoustic species 

detection data: Occupancy estimation and 

optimization of recordings post-

processing. - Methods in Ecology and 

Evolution 9: 560-570.

Chen, S. and Li, Y. 2013. Automatic 

recognition of bird songs using time-

frequency texture. - In: 2013 5th

International Conference and 

Computational Intelligence and 

Communication Networks. pp. 262-266.

Chen, Z. and Maher, R. C. 2006. Semi-

automatic classification of bird 

vocalizations using spectral peak tracks. -

The Journal of the Acoustical Society of 

America 120: 2974-2984.

Clemins, P. J., et al. 2005. Automatic 

classification and speaker identification of 

African elephant (Loxodonta africana) 

vocalizations. - The Journal of the 

Acoustical Society of America 117: 956-

963.

Cohn-Haft, M., et al. 1997. A new look at the 

"species-poor" central Amazon: The 

avifauna north of Manaus, Brazil. -

Ornithological Monographs 205-235.

Collier, T. C., et al. 2010. Acoustic 

localization of antbirds in a Mexican 

rainforest using a wireless sensor network. 

- The Journal of the Acoustical Society of 

America 128: 182-189.

de Camargo, U. M., et al. 2017. PROTAX-

Sound: A probabilistic framework for 

automated animal sound identification. -

PLOS ONE 12: e0184048.

de Oliveira, A. G., et al. 2015. Bird acoustic 

activity detection based on morphological 

filtering of the spectrogram. - Applied 

Acoustics 98: 34-42.

Deichmann, J. L., et al. 2018. It's time to 

listen: there is much to be learned from the 

sounds of tropical ecosystems. - Biotropica 

50: 713-718.

Digby, A., et al. 2013. A practical comparison 

of manual and autonomous methods for 

acoustic monitoring. - Methods in Ecology 

and Evolution 4: 675-683.

Dunn, R. R. 2004. Recovery of faunal 

communities during tropical forest 



  ULISSES MOLITERNO DE CAMARGO 
    

37 
 

regeneration. - Conservation Biology 18: 

302-309.

Dutilleux, G. and Curé, C. 2018. Automated 

acoustic monitoring of endangered 

common spadefoot toad populations 

reveals patterns of vocal activity. -

Freshwater Biology 0:

Enari, H., et al. 2017. Feasibility assessment 

of active and passive acoustic monitoring 

of sika deer populations. - Ecological 

Indicators 79: 155-162.

Fagerlund, S. 2007. Bird species recognition 

using support vector machines. -

EURASIP Journal on Advances in Signal 

Processing 2007: 038637.

Ferraz, G., et al. 2008. Biological monitoring 

in the Amazon: Recent progress and future 

needs. - Biotropica 40: 7-10.

Figueira, L., et al. 2015. Autonomous sound 

monitoring shows higher use of Amazon 

old growth than secondary forest by 

parrots. - Biological Conservation 184: 27-

35.

Fox, E. J. S., et al. 2008. Call-independent 

individual identification in birds. -

Bioacoustics 18: 51-67.

Frommolt, K.-H. and Tauchert, K.-H. 2014. 

Applying bioacoustic methods for long-

term monitoring of a nocturnal wetland 

bird. - Ecological Informatics 21: 4-12.

Frommolt, K.-H. 2017. Information obtained 

from long-term acoustic recordings: 

applying bioacoustic techniques for 

monitoring wetland birds during breeding 

season. - Journal of Ornithology 158: 659-

668.

Gardner, T. A., et al. 2007. Predicting the 

uncertain future of tropical forest species 

in a data vacuum. - Biotropica 39: 25-30.

Gerhardt, H. C. 1994. The evolution of 

vocalization in frogs and toads. - Annual 

Review of Ecology and Systematics 25: 

293-324.

Goëau, H., et al. 2015. Lifeclef bird 

identification task 2015. - In: CLEF 

working notes 2015.

Goëau, H., et al. 2016. LifeCLEF Bird 

Identication Task 2016: The arrival of 

Deep learning. - In: CLEF working notes 

2016.

Goëau, H., et al. 2017. LifeCLEF Bird 

Identication Task 2017. - In: CLEF 

working notes 2017.

Goyette, J. L., et al. 2011. Detecting tropical 

nocturnal birds using automated audio 

recordings. - Journal of Field Ornithology 

82: 279-287.

Harma, A. and Somervuo, P. 2004. 

Classification of the harmonic structure in 

bird vocalization. - In: 2004 IEEE 

International Conference on Acoustics, 

Speech, and Signal Processing. pp. V-701-

4 vol.5.

Henwood, K. and Fabrick, A. 1979. A 

quantitative analysis of the dawn chorus: 

Temporal selection for communicatory 

optimization. - The American Naturalist 

114: 260-274.



SUMMARY 
 

38 
 

Hilje, B. and Aide, T. M. 2012. Calling 

activity of the common Tink frog 

(Diasporus Diastema) 

(Eleutherodactylidae) in secondary forests 

of the Caribbean of Costa Rica. - Tropical 

Conservation Science 5: 25-37.

Hill, A. P., et al. 2018. AudioMoth: 

Evaluation of a smart open acoustic device 

for monitoring biodiversity and the 

environment. - Methods in Ecology and 

Evolution 9: 1199-1211.

Hüppop, O., et al. 2006. Bird migration 

studies and potential collision risk with 

offshore wind turbines. - Ibis 148: 90-109.

Jingdong, C., et al. 2006. New insights into 

the noise reduction Wiener filter. - IEEE 

Transactions on Audio, Speech, and 

Language Processing 14: 1218-1234.

Jinnai, M., et al. 2018. Design considerations 

in an automatic classification system for 

bird vocalisations using the Two-

dimensional Geometric Distance and 

cluster analysis.

Juang, C.-F. and Chen, T.-M. 2007. Birdsong 

recognition using prediction-based 

recurrent neural fuzzy networks. -

Neurocomputing 71: 121-130.

Katahira, K., et al. 2011. Complex sequencing 

rules of birdsong can be explained by 

simple Hidden Markov Processes. - PLOS 

ONE 6: e24516.

Kerosky, S. M., et al. 2012. Bryde's whale 

seasonal range expansion and increasing 

presence in the Southern California Bight 

from 2000 to 2010. - Deep Sea Research 

Part I: Oceanographic Research Papers 65: 

125-132.

Kirschel, A. N. G., et al. 2011. Territorial 

dynamics of Mexican Ant-thrushes 

Formicarius moniliger revealed by 

individual recognition of their songs. - Ibis 

153: 255-268.

Kloepper, L., et al. 2017. The soundscape of 

bat swarms. - The Journal of the Acoustical 

Society of America 142: 2504-2504.

Kogan, J. A. and Margoliash, D. 1998. 

Automated recognition of bird song 

elements from continuous recordings using 

dynamic time warping and hidden Markov 

models: a comparative study. - J Acoust 

Soc Am 103: 2185-96.

Kroodsma, D. 2015. The singing life of birds: 

the art and science of listening to birdsong. 

- Houghton Mifflin Harcourt.

Kroodsma, D. E. and Miller, E. H. 1996. 

Ecology and evolution of acoustic 

communication in birds. - Comstock Pub.

Kwan, C., et al. 2004. Bird classification 

algorithms: theory and experimental 

results. - In: 2004 IEEE International 

Conference on Acoustics, Speech, and 

Signal Processing. pp. V-289.

Larkin, R. P., et al. 2002. Nocturnal Flight 

Calls of Dickcissels and Doppler Radar 

Echoes over South Texas in Spring 

(Llamadas durante vuelos nocturnos sobre 

Texas de Spiza americana durante la 



  ULISSES MOLITERNO DE CAMARGO 
    

39 
 

primavera y el eco en un radar Doppler). -

Journal of Field Ornithology 73: 2-8.

Lasseck, M. 2015a. Towards automatic large-

scale identification of birds in audio 

recordings. - In: J. Mothe, et al. (eds), 

Experimental IR Meets Multilinguality, 

Multimodality, and Interaction: 6th 

International Conference of the CLEF 

Association, CLEF'15, Toulouse, France, 

September 8-11, 2015, Proceedings. 

Springer International Publishing, pp. 364-

375.

Lasseck, M. 2015b. Improved automatic bird 

identification through decision tree based 

feature selection and bagging. - In: L.

Cappellato, et al. (eds), The Cross 

Language Image Retrieval Track (CLEF) 

Conference. CEUR.

Laurance, W. F. 2007. Have we overstated the 

tropical biodiversity crisis? - Trends in 

Ecology & Evolution 22: 65-70.

Laurance, W. F., et al. 2011. The fate of 

Amazonian forest fragments: A 32-year 

investigation. - Biological Conservation 

144: 56-67.

MacKenzie, D. I., et al. 2003. Estimating site 

occupancy, colonization, and local 

extinction when a species is detected 

imperfectly. - Ecology 84: 2200-2207.

MacSwiney G, M. C., et al. 2008. What you 

see is not what you get: the role of 

ultrasonic detectors in increasing inventory 

completeness in Neotropical bat 

assemblages. - Journal of Applied Ecology 

45: 1364-1371.

Makhoul, J. and Schwartz, R. 1995. State of 

the art in continuous speech recognition. -

Proceedings of the National Academy of 

Sciences of the United States of America 

92: 9956-9963.

Marques, J. T., et al. 2013. Optimizing 

sampling design to deal with mist-net 

avoidance in Amazonian birds and bats. -

PLOS ONE 8: e74505.

McClintock, B. T., et al. 2010. Unmodeled 

observation error induces bias when 

inferring patterns and dynamics of species 

occurrence via aural detections. - Ecology 

91: 2446-2454.

Measey, G. J., et al. 2017. Counting chirps: 

acoustic monitoring of cryptic frogs. -

Journal of Applied Ecology 54: 894-902.

Mennill, D. J., et al. 2012. Field test of an 

affordable, portable, wireless microphone 

array for spatial monitoring of animal 

ecology and behaviour. - Methods in 

Ecology and Evolution 3: 704-712.

Menu, S., et al. 2000. Effects of neck bands 

on survival of Greater Snow Geese. - The 

Journal of Wildlife Management 64: 544-

552.

Merchant, N. D., et al. 2015. Measuring 

acoustic habitats. - Methods in Ecology 

and Evolution 6: 257-265.

Mesquita, R. C. G., et al. 2001. Alternative 

successional pathways in the Amazon 

Basin. - Journal of Ecology 89: 528-537.



SUMMARY 
 

40 
 

Miller, D. A. W., et al. 2012. Experimental 

investigation of false positive errors in 

auditory species occurrence surveys. -

Ecological Applications 22: 1665-1674.

Moffat, D., et al. 2015. An evaluation of audio

feature extraction toolboxes.

Moorhouse, T. P. and Macdonald, D. W. 

2005. Indirect negative impacts of radio‐

collaring: sex ratio variation in water 

voles. - Journal of Applied Ecology 42: 91-

98.

Newson, S. E., et al. 2017. Potential for 

coupling the monitoring of bush-crickets 

with established large-scale acoustic 

monitoring of bats. - Methods in Ecology 

and Evolution 8: 1051-1062.

Oppel, S., et al. 2014. Estimating population 

size of a nocturnal burrow-nesting seabird 

using acoustic monitoring and habitat 

mapping. - Nature Conservation 7:

Ovaskainen, O., et al. 2017. How to make 

more out of community data? A conceptual 

framework and its implementation as 

models and software. - Ecology Letters 20: 

561-576.

Ovaskainen, O., et al. 2018. Animal Sound 

Identifier (ASI): software for automated 

identification of vocal animals. - Ecology 

Letters 21: 1244-1254.

Payne, K. B., et al. 2003. Elephant calling 

patterns as indicators of group size and 

composition: the basis for an acoustic 

monitoring system. - African Journal of 

Ecology 41: 99-107.

Pérez‐Granados, C., et al. 2019. Vocal 

activity rate index: a useful method to infer 

terrestrial bird abundance with acoustic 

monitoring. - Ibis 0:

Petrusková, T., et al. 2016. Repertoire‐based 

individual acoustic monitoring of a 

migratory passerine bird with complex 

song as an efficient tool for tracking 

territorial dynamics and annual return 

rates. - Methods in Ecology and Evolution 

7: 274-284.

Porter, J. H., et al. 2009. New eyes on the 

world: Advanced sensors for Ecology. -

BioScience 59: 385-397.

Potamitis, I. 2014. Automatic classification of 

a taxon-rich community recorded in the 

wild. - PLoS One 9: e96936.

Potamitis, I. 2015. Unsupervised dictionary 

extraction of bird vocalisations and new 

tools on assessing and visualising bird 

activity. - Ecological Informatics 26, Part 

3: 6-17.

Prasad, A. M., et al. 2006. Newer 

classification and regression tree 

techniques: Bagging and random forests 

for Ecological prediction. - Ecosystems 9: 

181-199.

Priyadarshani, N., et al. 2018. Automated 

birdsong recognition in complex acoustic 

environments: a review. - Journal of Avian 

Biology 49: jav-01447.

Quintero, I. and Roslin, T. 2005. Rapid 

recovery of dung beetle communities 



  ULISSES MOLITERNO DE CAMARGO 
    

41 
 

following habitat fragmentation in central 

Amazonia. - Ecology 86: 3303-3311.

Rajan, S. C., et al. 2018. Rapid assessment of 

biodiversity using acoustic indices. -

Biodiversity and Conservation

Ribeiro, J. W., et al. 2017. Passive acoustic 

monitoring as a complementary strategy to 

assess biodiversity in the Brazilian 

Amazonia. - Biodiversity and 

Conservation 26: 2999-3002.

Rundel, P. W., et al. 2009. Environmental 

sensor networks in ecological research. -

New Phytol 182: 589-607.

Sandsten, M., et al. 2016. Robust feature 

representation for classification of bird 

song syllables. - EURASIP Journal on 

Advances in Signal Processing 2016: 68.

Schmutz, J. A. and Morse, J. A. 2000. Effects 

of neck collars and radio transmitters on 

survival and reproduction of Emperor 

Geese. - The Journal of Wildlife 

Management 64: 231-237.

Scott Brandes, T. 2008. Automated sound 

recording and analysis techniques for bird 

surveys and conservation. - Bird 

Conservation International 18: S163-S173.

Selin, A., et al. 2006. Wavelets in recognition 

of bird sounds. - EURASIP Journal on 

Advances in Signal Processing 2007: 

051806.

Servick, K. 2014. Eavesdropping on 

ecosystems. - Science 343: 834-837.

Somervuo, P., et al. 2006. Parametric 

representations of bird sounds for 

automatic species recognition. - IEEE 

Transactions on Audio, Speech, and 

Language Processing 14: 2252-2263.

Sorzano, C., et al. 2014. A survey of 

dimensionality reduction techniques.

Sprengel, E., et al. 2016. Audio based bird 

species identification using deep learning 

techniques. - In: Conference and Labs of 

the Evaluation Forum (CLEF) pp. 547-

559-547-559.

Stouffer, P. C. and Bierregaard, R. O. 1995. 

Use of Amazonian forest fragments by 

understory insectivorous birds. - Ecology 

76: 2429-2445.

Stouffer, P. C., et al. 2006. Long-term 

landscape change and bird abundance in 

Amazonian rainforest fragments. -

Conserv Biol 20: 1212-23.

Stowell, D. and Plumbley, M. D. 2014. 

Automatic large-scale classification of bird 

sounds is strongly improved by

unsupervised feature learning. - PeerJ 2: 

e488.

Stowell, D., et al. 2016. Bird detection in 

audio: a survey and a challenge. - In: 2016 

IEEE International Workshop on Machine 

Learning for Signal Processing.

Stowell, D., et al. 2018. Automatic acoustic 

detection of birds through deep learning: 

The first Bird Audio Detection challenge. -

Methods in Ecology and Evolution 0:

Suter, S. M., et al. 2017. Non-invasive 

acoustic detection of wolves. -

Bioacoustics 26: 237-248.



SUMMARY 
 

42 
 

Tang, J., et al. 2014. Feature selection for 

classification: A review. - In: C. C. 

Aggarwal (ed) Data Classification: 

Algorithms and Applications. CRC Press, 

p. 37.

Terry, A. M. R., et al. 2005. The role of vocal 

individuality in conservation. - Frontiers in 

Zoology 2: 10.

Towsey, M., et al. 2012. A toolbox for animal 

call recognition. - Bioacoustics 21: 107-

125.

Trifa, V. M., et al. 2008. Automated species 

recognition of antbirds in a Mexican 

rainforest using hidden Markov models. -

The Journal of the Acoustical Society of 

America 123: 2424-2431.

Ulloa, J. S., et al. 2016. Screening large audio 

datasets to determine the time and space 

distribution of Screaming Piha birds in a 

tropical forest. - Ecological Informatics 31: 

91-99.

Whytock, R. C. and Christie, J. 2017. Solo: an 

open source, customizable and 

inexpensive audio recorder for bioacoustic 

research. - Methods in Ecology and 

Evolution 8: 308-312.

Wrege, P. H., et al. 2010. Use of acoustic tools

to reveal otherwise cryptic responses of 

forest elephants to oil exploration. -

Conservation Biology 24: 1578-1585.

Wrege, P. H., et al. 2017. Acoustic monitoring 

for conservation in tropical forests: 

examples from forest elephants. - Methods 

in Ecology and Evolution.

Young, A. M. 1981. Temporal selection for 

communicatory optimization: The dawn-

dusk chorus as an adaptation in tropical 

cicadas. - The American Naturalist 117: 

826-829.

Zbancioc, M. and Costin, M. 2003. Using 

neural networks and LPCC to improve 

speech recognition. - In: Signals, Circuits 

and Systems, 2003. SCS 2003. 

International Symposium on. pp. 445-448 

vol.2



  ULISSES MOLITERNO DE CAMARGO 
    

43 
 

 


	Contents
	CHAPTERS
	The thesis constitutes of the following articles, which are referred to in the text by their Roman numerals:
	Table of contributions
	ABSTRACT
	TIIVISTELMÄ
	SUMMARY
	1 INTRODUCTION
	2 THESIS OUTLINE
	3 MATERIAL AND METHODS
	4 RESULTS AND DISCUSSION
	5 CONCLUSIONS
	6 ACKNOWLEDGMENTS
	7 REFERENCES



