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ABSTRACT 

Fungus-growing termites are ecologically important animals in tropical Africa 
and Asia. Especially in dry savannas, they contribute to local carbon and 
mineral recycling and alter soil physical properties, thus facilitating the 
success of many plant species. This, in turn, has indirect impacts also on 
animals that may e.g. benefit from improved food supply and quality.  

The success and ecological significance of fungus-growing termites arise 
from their exosymbiotic relationship with the fungal genus Termitomyces. 
Termites cultivate fungal symbionts within specialized compost structures in 
their underground nests where the mycelium assists in degradation of plant 
matter collected by the termites, thus providing a constant food supply for the 
large termite colonies. Symbiotic food processing is especially advanced in the 
termite genus Macrotermes which construct large above-ground soil 
structures – termite mounds – to enhance ventilation of the below-ground 
nests and to provide a favorable microclimate for fungal growth even in arid 
savanna environments. 

The aim of this thesis was to study interactions between Macrotermes 
termites and their Termitomyces symbionts in the semiarid Tsavo Ecosystem 
in Southern Kenya. We assessed the local diversity of the host insects and their 
fungal symbionts and produced an up-to-date phylogeny of the fungal 
symbionts based both on our new results and previously published DNA data. 
We found that the Macrotermes–Termitomyces diversity in the Tsavo 
Ecosystem involves two host species and three symbiont species that occur in 
different combinations, and the frequencies of different associations vary over 
the landscape. Studies on mound architecture and symbiont diversity revealed 
correlations between the size and type of above-ground mounds and specific 
host-symbiont combinations. These were linked to architecturally induced 
differences in nest temperatures, suggesting that different Termitomyces 
species may differ in their ranges of tolerable growth temperatures. 

Stable isotope studies provided important new information on the 
nutritional role of Termitomyces for Macrotermes colonies. Termitomyces 
promotes the nutrition of the host insects directly, as highly nitrogenous food 
for queen and young larvae, and indirectly, by decomposing plant matter that 
is eaten by workers, soldiers, and developing alates. Thereby, the fungal 
symbiont does not have a single universal role in the nutrition of a termite 
colony, but instead, different termite castes depend on the symbiosis in 
different ways. The isotopic imbalance of nitrogen also implied that, although 
the nutrition of fungus-growing termites is facilitated by the fungal symbionts, 
also bacterial nitrogen fixing may provide an essential complementary 
nitrogen source for termite colonies. 
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1 INTRODUCTION 

1.1 TERMITE DIVERSITY 

Termites (order Blattodea, formerly Isoptera) are eusocial insects: they live in 
colonies that typically consist of sexual reproductives (queen, king, and at 
times winged alates) and sterile castes including workers and soldiers 
(Eggleton 2011). Termite colonies most often have one reproductive royal pair 
that produces all the sexual and sterile individuals of the colony, although in 
some species the presence of several queens (polygyny) or kings (polyandry) 
is also relatively common (Thorne 1984; Atkinson and Adams 1997; Brandl et 
al. 2001; Brandl et al. 2004; Hacker et al. 2005). The primary reproductives 
typically live as long as the colony (in some cases more than ten years) while 
the original royal couple can occasionally be replaced by new reproductives in 
some species (Sieber and Darlington 1982; Thorne 1984; Korb et al. 2015).  

The origin and phylogenetic position of termites have been under active 
research during the last decades and it now seems clear that termites form a 
monophyletic group within the order Blattodea (includes termites and 
cockroaches) under which they are currently treated as an epifamily 
Termitoidae (e.g. Lo et al. 2000; Inward et al. 2007; Eggleton et al. 2007; Xiao 
et al. 2012; Djernæs et al. 2015; Legendre et al. 2015; Evangelista et al. 2019). 
Termites include more than 2600 species that are presently classified in nine 
families and 281 genera (Kambhampati and Eggleton 2000; Engel et al. 2009). 
Termites are common everywhere in the tropics with the highest diversity in 
lowland rain forests of Africa (Jones and Eggleton 2011). There is also 
considerable diversity in African savannas where termites are among the most 
abundant animal groups (Jones and Eggleton 2011; Jouquet et al. 2011). Only 
a few termite species live at temperate regions including USA and southern 
parts of Europe (Jones and Eggleton 2011). 

Termites are either herbivores that consume plant material (either wooden 
or herbaceous tissues, feeding groups I and II by Donovan et al. 2001) or 
detritivores that consume decomposed soil organic matter (humus and soil 
feeders, corresponding to feeding groups III and IV). Termite life styles range 
from ‘one-piece’ termites (colonies live in their food source) to species that 
construct complex nest systems with extensive underground tunnel networks 
that allow termites to collect food from a large area (Abe 1987; Noirot and 
Darlington 2000; Eggleton and Tayasu 2001).  

Phylogenetically basal termite taxa are referred to as ‘lower termites’ 
(Legendre et al. 2008; Engel et al. 2009). An important feature that 
characterizes this group are the presence of endosymbiotic gut flagellates that 
degrade lignocellulose of the ingested plant material, thus assisting termites 
to feed on plant matter (Cleveland 1923; Yamin and Trager 1979; Brune and 
Ohkuma 2011; Brune 2014; Bignell 2016). All the lower termites belong to 
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feeding group I and mostly consume dead wood or in some cases dry grass 
(Donovan et al. 2001). Living plant matter is only consumed by relatively few 
species of termites (Collins 1983; Waller and La Fage 1987).  

The second group, the so called ‘higher termites’, lack eukaryotic gut 
symbionts but instead have a rich bacterial flora in the hindgut (Brune and 
Ohkuma 2011; Bignell 2016). Higher termites are evolutionarily advanced and 
comprise a monophyletic family Termitidae (Inward et al. 2007; Legendre et 
al. 2008; Engel et al. 2009). This lineage contains a majority of extant termite 
diversity and includes numerous ecological keystone species (Engel et al. 
2009). Higher termites belong to feeding groups II, III and IV (Donovan et al., 
2001), and may thus consume either dead wood, herbaceous plant matter or 
grass (II), or soil organic matter at different stages of decay (III and IV, 
Donovan et al. 2001). One special lineage within the higher termites are the 
fungus-growing termites that have evolved to cultivate basidiomycetous fungi 
and to utilize these fungal symbionts in the degradation of plant cell wall 
compounds. 

1.2 FUNGUS-GROWING TERMITES 

Fungus-growing termites (subfamily Macrotermitinae) are an ecologically 
specialized group within the Termitidae (Aanen et al. 2002). Their distribution 
is restricted to the Old World tropics with the highest diversity in rain forests 
and savannas of equatorial Africa (Jones and Eggleton 2011). Fungus-growing 
termites establish highly obligatory symbioses with species of the fungal genus 
Termitomyces Heim (Agaricales, Lyophyllaceae). The fungal symbionts are 
cultivated in specialized fungal chambers (Figure 1A) within termite nests 
(Wood and Thomas 1989; Rouland-Lefèvre and Bignell 2001).  

The principal benefits of fungus-cultivation for termites are in colony 
nutrition (Rouland et al. 1991; Hyodo et al. 2000, 2003; Rouland-Lefèvre and 
Bignell 2001; Nobre and Aanen 2012). Termites provide a constant food 
supply for the fungus which, as a reciprocal service, assists in the degradation 
of recalcitrant plant cell wall components by producing enzymes that act in 
lignocellulose degradation (Martin and Martin 1978; Martin and Martin 1979; 
Rouland et al. 1988a, 1991; Nobre and Aanen 2012; Poulsen et al. 2014; da 
Costa et al. 2018). This, in turn, allows termites to effectively exploit partly 
decayed plant matter (Rouland et al. 1991, Hyodo et al. 2000). As 
Termitomyces mycelium per se is highly nitrogenous, it most likely also serves 
as an additional food source for the termites (Matsumoto 1976; Collins 1983). 
However, the overall significance of the fungus as a direct food source for the 
colonies is still largely unconfirmed, as the nutritional utilization of fungal 
hyphae has so far only been demonstrated for some of the termite species 
(Hyodo et al. 2003). 

Division of labor between castes in food processing has been studied in the 
termite genera Macrotermes and Odontotermes (Batra and Batra 1979; Sieber 
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and Leuthold 1981; Badertscher et al. 1983; Gerber et al. 1988; Hinze and 
Leuthold 1999; Hinze et al. 2002; Li et al. 2015). In all studied species the food 
processing chain starts from termite foragers that typically are old major 
workers (Badertscher et al. 1983; Hinze and Leuthold 1999). The foragers 
collect plant litter from the environment and transport it to the nest where the 
material is eaten by younger workers (Sieber and Leuthold 1981; Badertscher 
et al. 1983). The homogenized and partly decayed plant biomass is soon 
defecated into sponge-like compost structures (fungus combs, Figure 1B) 
where it becomes substrate for the Termitomyces mycelium growing within 
the combs (Sieber and Leuthold 1981; Rouland-Lefèvre and Bignell 2001). In 
addition to foraged plant material, young workers consume spherical fungal 
structures (nodules, Figure 1C) produced in matured parts of fungus combs 
(Sieber and Leuthold 1981; Leuthold et al. 1989). Nodules contain fungal 
conidia that effectively inoculates the newly added plant material (Leuthold et 
al. 1989). Nodules contain also fungal enzymes that degrade lignin and 
cellulose synergistically with enzymes produced both by the termites and their 
gut bacteria (Abo-Khatwa 1978; Martin and Martin 1978; Veivers et al. 1991; 
Nobre and Aanen 2012; Poulsen et al. 2014; Li et al. 2017; da Costa et al. 2018). 
Finally, the old stagnant parts of the fungus combs are eaten by old workers 
who also ingest soil and plant litter during foraging (Sieber and Leuthold 1981; 
Badertscher et al. 1983). All the other termite castes are fed by the workers 
either with solid comb material or liquid food excreted presumably from their 
labial glands (Sieber and Leuthold 1981; Badertscher et al. 1983 ; Hinze et al.  
2002). 

While the symbiotic Termitomyces plays a vital central role in the ecology 
of a termite colony, the fungus itself is totally dependent on care of the termite 
workers. In addition to providing a constant food supply, termites prevent the 
growth of bacteria and competing fungi in fungus combs via mechanical 
weeding (Wood and Thomas 1989) and by applying antibiotic compounds 
produced by the termites or their gut-symbiotic bacteria (Lamberty et al. 2001; 
Mathew et al. 2012; Um et al. 2013). Many species of fungus-growing termites 
also construct soil structures that effectively regulate nest interior climates and 
enhance ventilation, thus creating favorable conditions for the fungal growth 
(see section 1.4). 

1.3 HOST-SYMBIONT INTERACTIONS 

Phylogenetical analyses have indicated that the cultivation of fungi within 
termites has evolved only once and no later returns to a non-symbiotic lifestyle 
have occurred within the group (Aanen et al. 2002; Rouland-Lefèvre et al. 
2002; Frøslev et al. 2003). Concurrently, the genus Termitomyces currently 
only includes termite symbiotic species (Aanen et al. 2002; Rouland-Lefèvre 
et al. 2002). Based on molecular dating and fossil records, the initial 
domestication of Termitomyces by Macrotermitinae seems to have occurred 
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Figure 1 A. Fungal chambers in an opened Macrotermes mound. B. Fungus comb taken out 
from the chamber. C. Fungal nodules produced by the Termitomyces in mature 
parts of a fungus comb. Photos: Risto Vesala (A, B) and Jouko Rikkinen (C). 

ca. 30 MA in African rain forests (Aanen and Eggleton 2005; Brandl et al. 
2007; Nobre et al. 2011; Roberts et al. 2016). The current diversity of fungus-
growing termites include ca. 330 species in 10 genera (Kambhampati and 
Eggleton 2000; Aanen et al. 2002). The diversity of Termitomyces is still 
poorly known. Some 40 fungal species have been described within the genus 
(Kirk et al. 2008), but DNA sequences have recently indicated a much higher 
diversity (e.g. Aanen et al. 2002; Frøslev et al. 2003; Osiemo et al. 2010 ; 
Makonde et al. 2013). Gap between the described species and DNA data is 
largely due to the fact that many species do not produce basidiomata or 
produce them only rarely (Johnson et al. 1981; Frøslev et al. 2003, Koné et al. 
2011). 

Most genera of fungus-growing termites (e.g. Macrotermes, 
Odontotermes, Acanthotermes) show relatively high levels of symbiont 
specificity (Aanen et al. 2002, 2007). For example all Termitomyces 
symbionts cultured by the species of the genus Macrotermes form a 
monophyletic group that is not cultivated by any other genera of 
Macrotermitinae (Aanen et al. 2002; Nobre et al. 2011). On the contrary, 
termite genera Microtermes, Ancistrotermes and Synacanthotermes have 
been found to share a single Termitomyces lineage (Aanen et al. 2002). 
Different levels of specificity have also been observed within single genera: for 
example South African Macrotermes natalensis (Haviland) seems to always 
associate with one specific Termitomyces lineage whereas several other 
Macrotermes species (e.g. M. subhyalinus Rambur and M. bellicosus 
Smeathman) typically cultivate several distinct lineages within the 
Macrotermes associated Termitomyces clade (Aanen et al. 2007; Nobre et al. 
2011). 
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Only one Termitomyces genotype is always found from a single termite 
colony, or at least this has been the case in all termite colonies studied so far 
(Aanen et al. 2002, 2009; Katoh et al. 2002; Makonde et al. 2013). The fungal 
monoculture of a fungus comb seems to be established and maintained by 
frequency dependent propagation during food processing (Aanen et al. 2009). 
As the dominant Termitomyces genotype produces the highest yield of fungal 
nodules, termite workers ingesting nodules (including abundantly fungal 
conidia) tend to automatically favor this genotype to inoculate newly added 
plant matter, which eventually leads to the predominance of one fungal lineage 
within the whole comb (Aanen 2006; Aanen et al. 2009). However, it remains 
unclear why and how a particular Termitomyces genotype is initially selected 
for cultivation in newly founded termite colonies (Nobre and Aanen 2012). 

Symbiont transmission between termite generations appears to be 
horizontal in most cases, meaning that the hosts and the fungal symbionts 
disperse separately, and the initial Termitomyces inoculum (presumably 
haploid spores) are obtained from the nest environment by the first generation 
of foraging workers (Johnson et al. 1981; Sieber 1983; Korb and Aanen 2003; 
Nobre et al. 2011). However, as many Termitomyces species have never been 
observed to produce fruiting bodies and sexual spores, the actual origin of the 
fungal inoculum remains unknown in many cases (Johnson et al. 1981; Korb 
and Aanen 2003). Horizontal transmission is believed to be the ancestral 
mode of symbiont dispersal in termite-fungus symbioses, whereas vertical 
transmission (i.e. inoculum obtained and transported by alates from their 
parental colonies) has evolved independently in two termite lineages: in 
Macrotermes bellicosus where the fungal inoculum is carried by dispersing 
males, and in the genus Microtermes where the inoculum is carried by 
dispersing females (Korb and Aanen 2003; Nobre et al. 2010). Vertical 
transmission may be especially beneficial in long-distance dispersal and 
probably explains why Microtermes is the only genus of fungus-growing 
termites that has been able to colonize Madagascar (Nobre et al. 2010). 
However, occasional symbiont switching and sexual recombination seem to 
take place also in termite species that largely rely on vertical symbiont 
transmission (Aanen et al. 2002, 2007; Nobre and Aanen 2010; Nobre et al. 
2010, 2011). 

1.4 MOUND ARCHITECTURE 

The conspicuous termite mounds that characterize many African savanna 
landscapes are mostly built by the species of the genus Macrotermes (Korb 
2011). Also some species of Odontotermes and Pseudacanthotermes build 
above-ground mounds, which however are typically quite modest compared to 
those built by Macrotermes (Darlington 1994; Turner 1994; Darlington 1997). 
Mound building as such is not restricted to fungus-growing termites: for 
example some Amitermes species construct the large ‘compass mounds’ in 
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northern Australia (Korb 2003a). However, the architecture and purpose of 
such mounds differ considerably from those built by the Macrotermitinae, 
which principally construct mounds to provide favorable growth conditions 
for their Termitomyces symbionts (Korb 2011).  

In some areas of Central Africa soil structures built by the Macrotermes 
termites can reach heights of up to 10 meters and have basal diameters of up 
to 15 meters (Pullan 1979). However, such massive ‘termite hills’ typically 
evolve through repeated cycles of mound building and erosion during 
hundreds or even thousands of years, and termite activity typically only occurs 
in the topmost parts (Pullan 1979; Erens et al. 2015). Mounds built by the East, 
West and South African Macrotermes species tend to be smaller, with typical 
dimensions up to a few meters. Although recolonization of old and abandoned 
mound sites occurs, majority of the existing mound structure is typically built 
by the most recent termite colony. Pomeroy (1976) found that the most active 
development of M. bellicosus mounds in Uganda took on average three years 
after which growth rates slowed down as the colonies achieved maturity. The 
erosion of large abandoned Macrotermes mounds may, in turn, typically take 
20–25 years (Pomeroy 1976; Lepage 1984). 

Fungus-growing termites build above-ground mounds to regulate 
temperature and humidity in their nests and to facilitate gas exchange (Turner 
2001; Korb 2003b, 2011). Effective control of nest interior climate is crucial 
for the symbiotic Termitomyces which grows best at temperatures of ca. 29–
31 °C and needs constant humidity that is typically maintained at the level of 
98–99 % (Lüscher 1961; Collins 1977; Thomas 1981). The ambient 
temperature and humidity regimes of arid and semi-arid savannas are thus far 
from optimal for the symbiotic fungi. The thick walls of large termite mounds 
buffer temperature fluctuations and prevent evaporation. Large termite 
colonies also produce large quantities of respiratory gases, including up to 
1500 liters of carbon dioxide per day (Darlington et al. 1997), which must be 
disposed of and continually replaced with fresh air. Mound cavities induce air 
circulation within the nests which, in turn, promotes gas exchange between 
nest interior and ambient air (Weir 1973; Korb 2011; King et al. 2015; Ocko et 
al. 2017).  

Architectural details of mound structure are species specific to a certain 
degree, and the inhabitant termites can often be identified based on the basis 
of mound structure (Korb 2011). For example, two closely related Kenyan 
Macrotermes species are morphologically almost identical, but build different 
types of mounds: the mounds of M. subhyalinus (Rambur) have several large 
ventilation shafts that open to the mound surface, whereas the mounds of M. 
michaelseni (Sjöstedt) lack open shafts (Arshad 1981; Darlington 1984a; 
Darlington 1985; Bagine et al. 1994). Instead, the topmost parts of M. 
michaelseni mounds are porous enabling the easy passage of respiratory gases 
and fresh air through the walls (Turner 2001). The physical basis of the two 
types of mounds are completely different with the ventilation of open mounds 
type being wind-induced and that of closed mounds relying on solar-induced 
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within-mound air circulation (Weir 1973; Korb 2011; Ocko et al. 2017). The 
closed mounds of the West African M. bellicosus (Smeathman) are 
functionally similar to those of M. michaelseni but their nests are typically 
situated higher in relation to the soil surface than in mounds of M. michaelseni 
(Korb 2011). Finally, open mounds built by the Kenyan M. jeanneli (Grassé) 
can be easily distinguished from the mounds of M. subhyalinus as they 
typically have a tall central chimney with a single large ventilation shaft 
opening to the top (Darlington et al. 1992, 1997; Korb 2011). 

In addition to architectural differences in mounds of different termite 
species, also mounds built by a single termite species may differ in architecture 
when built in different habitats, thus reflecting complicated equilibria between 
above-ground mound structure, nest thermoregulation and gas exchange, 
which can be differently balanced depending on local temperature and wind 
conditions, vegetation, and other external factors (Korb and Linsenmair 
1998a, 1998b, 1999, 2000a, 2000b; Korb 2003b, 2011). 

1.5 ROLE IN ECOSYSTEM 

Conditions in arid and semi-arid savannas are highly disadvantageous for 
saprotrophic fungi, especially during the dry season. However, the innovation 
of fungus cultivation in architecturally advanced nests has allowed 
Macrotermitinae and their Termitomyces symbionts to effectively occupy this 
harsh ecological niche (Collins 1983; Jones 1990; Aanen and Eggleton 2005; 
Jouquet et al. 2011). As a result, fungus-growing termites and their fungal 
symbionts are now major litter decomposers in many dry regions in tropical 
Africa (Collins 1983; Jones 1990; Schuurman 2005; Jouquet et al. 2011). For 
example in the drier parts of the Tsavo Ecosystem (Kenya) fungus-growing 
termites and their symbionts may take care of up to 90 % of wood litter 
decomposition (Buxton 1981). In the relatively humid Southern Guinea 
savanna of Nigeria their contribution was more modest but it was still 
estimated to account for 60 % of wood and 24 % of total annual litter 
decomposition (Collins 1981). In dry tropical forests fungus-growing termites 
were found to mineralize 7.5–11.2 % of all carbon stored in the annual above-
ground litterfall (Yamada et al. 2005). Similar magnitudes were reported from 
humid West African savannas where CO2 emissions of Ancistrotermes 
cavithorax and Odontotermes pauperans colonies represented 11.3 % of the 
annual above-ground production of organic carbon that was not mineralized 
by fire (Konaté et al. 2003).  

Fungus-growing termites can utilize a wide selection of grasses and both 
leaf litter and woody tissues of trees and shrubs as their main food source, and 
the selection of food often depend on the spatial and temporal availability of 
different types of plant matter (Lepage 1981; Boutton et al. 1983; Lepage et al. 
1993; Dangerfield and Schuurman 2000). To obtain a sufficient amount of 
nitrogen especially from nutrient-poor wood, termite colonies need to process 
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large amounts of plant material, and excessive carbon is released to the 
atmosphere mostly as CO2 (Collins 1983; Jones 1990; Higashi et al. 1992). 
While a significant proportion of the mineral nutrients obtained from the plant 
matter may return to circulation via predation of foraging workers and 
swarming alates, major amounts of nitrogen, phosphorus and other nutrients 
are concentrated into termite nests in the form of living biomass, fecal material 
and termite saliva used in wall construction (Jouquet et al. 2011). As mound 
walls erode during seasonal rains, these minerals are flushed onto mound 
outwash pediments where they are again readily available for grasses and 
other plants (Arshad 1982; Dangerfield et al. 1998). 

In addition to their contribution to element cycles and nutrient 
translocation, fungus-growing termites also affect to physical soil properties 
by carrying subsoil material with high clay content to the ground surface 
(Arshad 1981; Arshad 1982; Dangerfield et al. 1998; Jouquet et al. 2002a; 
Jouquet et al. 2011; Abe et al. 2012). Termites have been shown to alter clay 
mineralogical properties although the actual mechanisms of this process 
remain poorly known (Jouquet et al. 2002b; Jouquet et al. 2011). Obviously 
termite nests affect the local water balance of arid savannas especially during 
the dry season, as the humidity inside active nests remains constantly high 
(Lüscher 1961; Turner 2006). Innumerable foraging tunnels around the nest 
areas also increase soil porosity and facilitate the infiltration of surface water 
(Darlington 1982; Jouquet et al. 2011). Due to all these effects, large termite 
mounds tend to represent ‘islands of fertility’ especially in nutrient-poor 
savanna ecosystems where nitrogen and phosphorus deficiency and other 
challenging soil conditions strictly limits plant cover (Sileshi et al. 2010; 
Jouquet et al. 2011). 

By altering soil conditions in many different ways, the fungus growing 
termites act as true ‘ecosystem engineers’, and significantly influence the 
structure of plant communities by increasing species and functional diversity 
around their nests (Arshad 1982; Dangerfield et al. 1998; Davies et al. 2014; 
Joseph et al. 2014; Davies et al. 2016a). This generates and maintains spatial 
heterogeneity and vegetation patchiness so characteristic of many vegetation 
types in African savannas (Sileshi et al. 2010; Erpenbach et al. 2012; Okullo 
and Moe 2012). This, in turn, has many indirect consequences that affect many 
animals including large mammals: termite nest areas can often provide high 
quality food for both grazers and browsers (Holdo and McDowell 2004; Davies 
et al. 2016b), provide nesting and perching facilities for birds (Joseph et al. 
2011), and maintain appropriate microclimates for several different animals 
(Joseph et al. 2016; Joseph et al. 2018). Such effects of termite mounds may 
also decrease the overall vulnerability of dry ecosystems to drought and even 
protect them against desertification (Bonachela et al. 2014). 
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2 OBJECTIVES OF THE THESIS 

The main objective of my thesis was to explore Termitomyces diversity in East 
African Macrotermes mounds, to study environmental and ecological 
interactions behind the observed diversity patterns, and to provide new 
precise information on the nutritional role of the fungal symbionts for the 
fungus-growing termites. I used state-of-the-art tools and methods from 
several disciplines, including molecular phylogenetics, geoinformatics and 
stable isotope techniques.  

In the first article (I) we mapped and sampled termite mounds from several 
study areas representing different semi-arid savanna habitat types within 
Taita-Taveta County in Southern Kenya. The principal aims were to study 
interactions between the host termites and their symbionts in different 
environments and to fulfill a major gap in knowledge regarding the overall 
diversity and relative abundance of different Termitomyces species at the 
habitat and landscape level. As even the preliminary analyses soon indicated 
that the relative abundances of different Termitomyces species were not 
constant but varied within the landscape, the logical next step was to try to 
identify some ecological factors that might explain the observed patterns. 

In the second article (II) we studied interactions between mound ambient 
and nest temperatures and the Termitomyces symbionts cultivated by the two 
dominant Macrotermes species (M. subhyalinus and M. michaelseni) in the 
Tsavo Ecosystem. As mound architecture was known to be involved in 
regulation of nest microclimates, we hypothesized that, if the different 
Termitomyces species would have different thermal requirements for optimal 
growth, some relationship might exist between mound architecture and the 
species identity of the cultivated fungus. We also wanted to get more precise 
information of how differences in mound building activities affect the nest 
interior temperatures of our target species. The mound architecture of 
numerous termite colonies was modeled by using 3D photogrammetry and the 
nest interior temperatures were measured using long-term data logging.  

In the third manuscript (III) we focused on another important factor with 
obvious links to symbiont diversity: food selection and processing within 
termite colonies. The original idea was to use carbon and nitrogen stable 
isotopes to determine how termite colonies with different fungi utilize 
different food sources in the environment. However, as many important 
details in symbiotic food processing and colony nutrition are still poorly 
understood, we decided to first elucidate major principles of the element cycles 
that take place within individual termite colonies. Thus, the primary aims were 
(1) to reveal how the fungal degradation within termite nests affects to the 
compositions of carbon and nitrogen stable isotopes, and (2) to obtain more 
detailed information about the nutritional role of the symbiotic fungus for 
different termite castes and age-groups present within Macrotermes colonies. 
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3 MATERIALS AND METHODS 

3.1 STUDY AREA 

Field research was conducted in the dry savannas, shrublands and woodlands 
surrounding the Taita Hills and Mount Kasigau in Taita-Taveta County, 
southern Kenya (Figure 2). The study area is situated between the Tsavo West 
and Tsavo East National Parks. The annual mean temperature in the area is 
ca. +23 °C with March being typically the warmest (+25 °C) and July the 
coolest (+20 °C) month of the year (Figure 3 in article II). Annual precipitation 
is ca. 600 mm with most of the rainfall concentrating on two rainy seasons: 
‘long rains’ on March–May and ‘short rains’ on November–December. 
However, the rains are typically erratic and periods of prolonged drought are 
common.  

Most of the studied termite colonies were located at eight study sites 
representing semi-arid savanna habitats all slightly different with respect to 
vegetation type and land use intensity (Figure 2 and Table 1 in article I). Some 
termite mounds studied in article II were sampled also outside these sites, but 
all the colonies were located within the maximum distance of 80 km from each 
other. 

3.2 SAMPLING OF TERMITE COLONIES 

To obtain biological material for DNA analysis (articles I and II) nests were 
excavated using a pickaxe and shovel until the first fungal chambers were 
reached. Several termites representing different castes and Termitomyces 
nodules were collected from the chambers with tweezers and preserved 
immediately in absolute ethanol. In case of 16 colonies (article I) parallel 
specimen sets were collected from opposite sides of the mounds to confirm 
that the cultivated fungus was genetically uniform in all chambers within the 
nest. 

In addition to DNA specimens, materials for stable isotope analysis was 
obtained from four termite colonies (manuscript III). Three of these colonies 
situated at the Kasigau Road study site representing Acacia-Commiphora 
woodland with negligible grass cover present during the sampling (October 
2018). One of the colonies was sampled nine months earlier (January 2018) at 
the Mbula study site representing bushland savanna with abundant shrubs 
and small trees and also with some grass in the field layer. Fungus combs, 
fungal nodules and different castes of termites (minor/major workers and 
soldiers, larvae representing different instars, king and queen) were collected 
from fungal chambers, queen chambers and from nursery areas of each 
studied colony. Food storages, fecal material, immature alates (nymphs) and 
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presoldiers were also collected when found. In order to compare stable isotope 
values of nest interior materials to those of the surrounding vegetation, plant 
specimens (including grasses and woody tissues/leaves of trees/shrubs) were 
collected from the surroundings of the sampled mounds. All biological 
specimens were dried within 24 hours of collection using a mushroom drier 
(+40 °C, overnight). 

3.3 DNA METHODS AND PHYLOGENETICAL 
ANALYSIS 

Ribosomal ITS1-5.8S-ITS2 DNA region was amplified from fungal nodules 
and mitochondrial cytochrome c oxidase subunit 1 coding gene (COI) from 
termites by using direct PCR method (Thermo Scientific, Phire Animal Tissue 
Direct PCR Kit for the termite and Phire Plant Direct PCR Kit for the fungal 
samples). We used either universal primer ITS1 (article I) or Termitomyces 
specific primer ITS1FT (article II) in combination with ITS4 (White et al. 1990; 
Aanen et al. 2007) for the fungal specimens. Termite specific COI primers 
TL1862 and TH2877 (Aanen et al. 2002) were used for the host insects. PCR 
program included initial denaturing (98°C for 5 min), 40 amplifying cycles 
(98° for 5 s, 55°C for 5 s, 72° for 20 s) and the final elongation (72°C for 1 min). 
Exo I/FastAP protocol (Thermo Scientific, Werle et al., 1994) was used to 
purify the PCR products prior sequencing, after which they were sequenced in 
two directions in FIMM Sequencing Unit (Helsinki). The two directions were 
aligned and manually checked using CodonCode Aligner 6.0.2 for Windows. 
Because of the ITS polymorphisms typically occurring in DNA extracted from 
heterokaryotic Termitomyces nodules (de Fine Licht et al. 2005) alignment of 
some fungal sequences was laborious. In such cases, either the two ITS 
haplotypes were deduced and corrected manually, or the fungal species was 
identified from the chromatograms by using two species specific marker sites 
within ITS1 (Figure 1 in article I). A total of 83 Macrotermes COI sequences 
and 104 Termitomyces ITS sequences from different termite colonies have 
been deposited in GenBank (accession numbers KY197485–KY197625 for COI 
and KY197626–KY197709 and MK275596–MK275616 for ITS sequences). 

For the phylogenetical analysis of the article I all Termitomyces ITS 
sequences published in UNITE and NCBI GenBank (prior 2016) were 
downloaded using PlutoF workbench. To produce an up-to-date phylogeny of 
Termitomyces based on all published ITS sequences, and to find all those 
sequences that belong to the Macrotermes associated Termitomyces clade, the 
previously published sequences, three representatives of our new sequences, 
and three Lyophyllum spp. ITS sequences from GenBank (outgroup) were 
aligned in SeaView (version 4.5.4.) with MUSCLE. Maximum-likelihood 
phylogeny was produced in RAxML (version 8) using model GTR-CAT and 
1000 bootstraps.  
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The group of Macrotermes associated Termitomyces was studied more 
detailed in a separate analysis. All sequences from the previous analysis that 
clustered within this group, twelve of our own new sequences, and three 
Termitomyces ITS sequences that clustered to the Odontotermes-associated 
clade (outgroup) were aligned (MUSCLE) in SeaView, and the maximum-
likelihood analysis was run in RAxML using model GTR-GAMMA with 1000 
bootstraps. 

To study genetic diversity of the sampled host termites a total of 141 COI 
sequences obtained from the insect specimens were aligned in SeaView using 
MUSCLE and the maximum-likelihood analysis was run in RAxML using 
model GTR-GAMMA with 1000 bootstraps. 

3.4 MOUND ARCHITECTURE AND TEMPERATURE 
MEASUREMENTS 

In article II we recorded mound sizes in the field by measuring heights and 
widths from a total of 164 termite mounds including both M. subhyalinus and 
M. michaelseni colonies. Many of the measurements were done already during 
the sampling for the article I. Fourteen different-sized M. subhyalinus mounds 
were documented in high detail by producing photogrammetrical 3D models. 
Models were based on 50–120 photographs taken from the distance of 2–5 
meters from the mounds with Nikon d5000 equipped with a 35 mm fixed focal 
length lens. Images were combined into 3D models using Agisoft PhotoScan 
software and the scales were determined based on a 45 cm long scale bar 
included in each of the acquired photographs. Mound volumes and surface 
areas were computed from the models by using Geomagic Qualify 11 software. 
Ventilation shafts (their number, size and mutual distances) were investigated 
by using Fiji ImageJ (v. 1.51) software from directly up to down orientated 
orthophotographs that were produced from the 3D models. In addition to the 
external mound dimensions, underground nests were measured in case of two 
small ‘miniature mounds’ of M. subhyalinus to get a general idea of the nest 
sizes. These colonies were completely excavated, and the maximum width and 
height of the nest interior were determined. 

Temperature data logging of termite nests was performed during two 
independent time periods: January – August 2015 in two M. subhyalinus and 
two M. michaelseni mounds (first measurement campaign), and March 2016 
– April 2017 in 14 different-sized M. subhyalinus mounds (second 
measurement campaign; Figure 1 and Table 1 in article II). The 14 mounds 
studied during the second campaign were the same that were 3D modeled. 
Temperatures were always measured from fungal chambers by using 
temperature data loggers (iButton Thermochron DS1922L, Maxim). To insert 
the temperature sensors each studied mound was opened by digging from the 
mound base until the first active fungus chambers were exposed. After 
installation the sensors in one of these chambers, the mound wall was repaired 
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and filled to its original level. In addition, a single data logger was installed in 
a tree (at height of ca. 2 m, covered with light-impermeable shields) at each 
study site to measure the local air temperature in the immediate proximity of 
the studied termite colonies. During campaign 1 the data loggers were 
programmed to record temperature at each full hour, and during the second 
campaign at three hour intervals (00:00, 03:00, 06:00, etc.). 

3.5 ANALYSIS OF CARBON AND NITROGEN STABLE 
ISOTOPES 

Dried specimens were pretreated in laboratory, including e.g. preparation and 
exploration of gut contents of workers under a stereo microscope (separation 
of first and second gut passages), division of queens into three sub-specimens 
(whole, abdomen, head/thorax), and clean-up of specimens containing 
mineral soil (food storages, final feces). Samples were then homogenized 
either manually by using a mortar and pestle (fungus combs, termites, 
nodules, final fecal material) or cryo-milled with liquid N2 cooling (plant 
specimens).  

Homogenized samples were weighed in tin cups and the contents of carbon 
and nitrogen and the stable isotopic compositions were measured at the 
Laboratory of Chronology of Finnish Museum of Natural History (Helsinki) 
using NC2500 elemental analyzer coupled to Thermo Scientific Delta V Plus 
isotope ratio mass spectrometer. The raw isotope data was normalized with a 
multi-point calibration using certified isotopic reference materials (USGS-40, 
USGS-41, IAEA-N1, IAEA-N2, IAEA-CH3 and IAEA-CH7). Parallel analyses of 
subsamples placed consecutively within the analytical sequence yielded always 
reproducibility of ≤ 0.1 ‰ for both δ13C and δ15N values. Measurements of 
quality control reference materials over the entire analytical period indicate an 
internal precision of ≤ 0.2‰ for both δ13C and δ15N. 

3.6 DATA ANALYSIS AND STATISTICS 

The maps in articles I and II were produced by using QGIS (2.8.1. Wien) or 
ArGIS (10.3.1.) software. Wood coverage and habitat heterogeneity (article I) 
was evaluated based on Google Earth satellite images using OpenLayers 
Plugin (QGIS Development team 2016). Graphs of the articles II and III were 
produced in R Studio (1.9.153). All graphics including phylograms, maps and 
charts were finalized in CorelDRAW Graphics Suite 2017. 

Statistical analysis applied in article II were performed in R Studio 
(1.0.153). The effect of different mound architectural variables on nest interior 
temperatures was studied using generalized least squares models (GLS) in 
package nlme (Pinheiro et al. 2017). Weather data included in GLS models was 
obtained from the Maktau weather station of the Taita Research Station. To 
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evaluate correspondence of temperatures measured at the weather station and 
at the two study sites we used simple linear regression. Distribution of 
different Termitomyces species in different-sized mounds was studied by 
using one-way ANOVA. 

 
 
 
 
 

 

 

Figure 2 Figure 2. Research area around the Taita Hills and Mt. Kasigau and the exact 
locations of the eight study sites introduced in the first article (I). 
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4 MAIN RESULTS AND DISCUSSION 

4.1 DIVERSITY OF TERMITOMYCES SYMBIONTS 

A total of 104 complete Termitomyces ITS sequences originating from 
different Macrotermes colonies were obtained during the study (GenBank 
accession numbers KY197626–KY197709 and MK275596–MK275616). In 
order to compare our sequences with previously published sequences and to 
obtain an updated view of currently known diversity of Macrotermes 
associated Termitomyces, we performed a maximum likelihood analysis of all 
good quality Termitomyces ITS sequences available in GenBank (article I). In 
congruence with previous studies (Aanen et al. 2002; Rouland-Lefèvre et al. 
2002; Frøslev et al. 2003; Osiemo et al. 2010; Nobre et al. 2011), the symbionts 
of the termite genus Macrotermes formed a well supported monophyletic 
group (Figure 3A).  

The results of the more concise analysis concentrating solely on 
Macrotermes associated Termitomyces, together with comparisons with the 
Species Hypothesis (SH) groups of UNITE, suggested that the clade included 
9 or 14 fungal species depending on the selected cut-off level (97 % or 98.5 %, 
respectively). The global diversity in the genus Macrotermes includes 47 host 
termite species (Kambhampati and Eggleton 2000), although the real number 
is probably higher, as cryptic species are known to exist (Brandl et al. 2007). 
However, Termitomyces ITS sequences currently available in GenBank 
represent symbionts from only eight different Macrotermes hosts. This 
implies that also diversity of Macrotermes associated Termitomyces may well 
be higher than is presently known. 

Our novel ITS sequences represented three different fungal species that 
were tentatively named as Termitomyces sp. A, B and C in article I (Figure 3B). 
Two species (A and C) clustered together with several other ITS sequences 
obtained from different Macrotermes hosts originating from different parts of 
Africa (Figure 3 in article I). ITS sequences almost identical to our 
Termitomyces sp. A had been previously found from the western and southern 
parts of Africa, whereas the sequences clustering with Termitomyces sp. C 
originated from both East and West Africa but the geographical distribution 
was seemingly restricted to the equatorial areas (Figure 3B). In contrast, 
Termitomyces sp. B did not cluster with any previously published ITS 
sequences, suggesting that the overall distribution of this fungus may be 
limited.  

We sampled Termitomyces species A and C from the nests of M. 
subhyalinus and M. michaelseni, whereas species B was only found in 
association with M. subhyalinus. Based on GenBank information, especially 
Termitomyces species A seems to be commonly cultivated also by several 
other termite species including M. bellicosus, M. natalensis and M. jeanneli 
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(Figure 3B). The wide diversity of observed host termites and large 
geographical range suggests that this symbiont is a generalist and highly 
adaptable to different environments and ecological settings. 

Our maximum likelihood analysis of the Macrotermes associated 
Termitomyces demonstrated also that M. muelleri, a termite species that 
inhabits rain forests of Central Africa (Ruelle 1970; Aanen and Eggleton 
2005), interestingly seems to have its own symbiont lineage that is not shared 
with any of the termite species occurring in savanna habitats (Figure 3B). Data 
also suggests that, within the group of Macrotermes associated Termitomyces, 
at least two independent out of Africa migrations have occurred into tropical 
Asia (Figure 3B). Termitomyces lineages originating from Macrotermes nests 
in Thailand, Vietnam or Malaysia were not shared with any of the African 
species, suggesting that both migration events have occurred in the relatively 
distant past. 
 

 
 

 
 
 

Figure 3 Figure 3. Maximum likelihood phylogeny of all Termitomyces ITS sequences 
published in GenBank prior 2016 (A) and more detailed phylogeny of Termitomyces 
ITS sequences in Macrotermes associated clade with sample information (country 
and host termite when available) provided in GenBank (B). See article I for more 
detailed results and accession numbers for the sequences used in the analysis. 
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4.2 MACROTERMES AND TERMITOMYCES DIVERSITY 
IN THE TSAVO ECOSYSTEM 

The maximum likelihood analysis of termite COI sequences from a total of 141 
termite colonies (article I) showed that two closely related but genetically 
distinct Macrotermes species occurred in our study area (Figure 4A). The 
more common COI lineage was largely restricted to open mounds (Figure 4C) 
characteristic for East African M. subhyalinus (Darlington 1984a), while the 
other lineage mostly inhabited closed mounds (Figure 4B) typically built by M. 
michaelseni (Darlington 1985; Schuurman and Dangerfield 1996; Turner 
2000). As in only in four cases the ‘wrong termite’ was identified from a 
specific mound type (Figure 4A) we felt quite confident that the more common 
COI lineage represented M. subhyalinus Rambur 1842 and the other COI 
lineage M. michaelseni Sjöstedt 1914. 

Three Termitomyces species were found from a total of 172 nests analyzed 
during the study (articles I and II). Consistently with all previous studies 
(Aanen et al. 2002, 2009; Katoh et al. 2002; Makonde et al. 2013), only one 
fungal genotype was always found when several samples were analyzed from 
opposite sides of the same mounds. Species Termitomyces A was the most 
common fungal symbiont and it was identified from 131 termite mounds, 
representing 76 % of analyzed colonies. Termitomyces C was the second most 
common species and occurred in 33 nests (19 %), whereas species B was 
relatively rare and was only found from eight termite colonies (5 %). 

Both Macrotermes and Termitomyces diversities varied between the 
different study sites representing different savanna habitats. Termite species 
M. michaelseni occurred only at three of the eight sites included in article I, 
whereas the more common M. subhyalinus was present in all studied habitats 
(Figure 2 in article I). Fungal diversity was highest at the Maktau study site 
where all three Termitomyces species co-occurred with relatively equal 
abundances. In contrast, the Bungule study site had very low symbiont 
diversity with Termitomyces sp. A being present in all 22 analyzed termite 
colonies. The most common Termitomyces species A was the dominant fungal 
symbiont at all study sites. Considering its dominance also at the global scale 
(see section 4.1.), Termitomyces species A seems to be quite pre-eminent in 
most African environments when compared with all other fungal symbionts 
associated with Macrotermes species. 

Ecological reasons behind the obvious success of the Termitomyces species 
A in the Tsavo Ecosystem may include its tolerance for a rather wide range of 
different growth temperatures, as suggested by the results of the article II (see 
section 4.3.). Another explanation could involve enzymatic differences 
between the fungal symbionts that, in turn, might favor the use of different 
food sources (e.g. herbaceous vs. lignified plant tissues). The high 
Termitomyces diversity observed at the Maktau study site could be explained 
by this, as it clearly was the most heterogeneous landscape analyzed with 
respect to different food sources available. Potential enzymatic differences bet- 
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Figure 4 Figure 4. Maximum likelihood analysis of Macrotermes COI sequences originating 
from 141 different termite mounds (A) representing either closed (Macrotermes 
michaelseni) mounds (B) or open (Macrotermes subhyalinus) mounds with several 
large open ventilation shafts (C). 
 

ween the different Termitomyces species have not yet been studied, and 
therefore this hypothesis remains to be tested in future studies. 

4.3 NEST THERMOREGULATION AND SYMBIONT 
DIVERSITY 

 
Results of the article II demonstrated that mound architecture has a major 
influence on the temperatures experienced within the fungal chambers of 
termite nests. During the cool period in June and July the temperatures within 
closed Macrotermes michaelseni mounds were consistently higher than those 
in open M. subhyalinus mounds (Figure 4 in article II). The wind-induced gas 
exchange of open mounds (Weir 1973; Korb 2011) clearly cools the nest 
interior more effectively than the solar-induced within-nest air circulation of 
closed mounds (Ocko et al. 2017). This may be disadvantageous for M. 
subhyalinus populations that occur in open locations and in regions that 



 

25 

experience relatively low temperatures during the cool season. On the other 
hand, the open ventilation type gives effective protection against overheating 
during hot weather. Species specific differences in nest thermoregulation may 
thus explain why M. michaelseni is more common at relatively high elevations, 
whereas M. subhyalinus is the dominant mound builder in constantly hot 
lowland habitats (Bagine et al. 1994; Pomeroy 2005).  

When open M. subhyalinus mounds were studied more detail, we found 
that small ‘miniature mounds’, having reduced ventilation shafts and 
diameters of less than 1.5 meters, constantly had much higher temperatures 
than large mounds with many wide ventilation shafts (Figure 5 in article II). 
The difference was most pronounced during the coolest season from June to 
August when diurnal mean temperatures in miniature mounds were typically 
more than 3 °C higher than in large open mounds. 

DNA sequencing of the fungal symbionts revealed that the three 
Termitomyces species were distributed unequally among different-sized M. 
subhyalinus mounds. In these open mounds Termitomyces sp. C was largely 
confined to small mounds whereas Termitomyces species A occurred equally 
in both small and large mounds (Figure 6A in article II). A concurrent pattern 
was not observed in closed M. michaelseni mounds in which the distribution 
of neither Termitomyces species correlated with mound size (Figure 6B in 
article II). As large M. subhyalinus mounds maintained occasionally much 
lower nest temperatures than any other mound types, and on the other hand, 
Termitomyces species C was absent from such mounds, this fungus seems to 
be thermophilic and is probably intolerant of the cool nest temperatures 
experienced in large open mounds during the coolest season. Low 
temperatures might reduce fungal growth or lower its enzyme activity, which 
in turn, could effectively jeopardize the food processing of termite hosts, thus 
predisposing the colony to starvation.  

It remains unclear, whether termites can actively adjust their mound 
building behavior to meet the specific thermal needs of fungal symbionts. Such 
a process would allow the M. subhyalinus hosts of Termitomyces species C to 
actively limit mound size and build only narrow ventilation shafts in order to 
maintain the constantly high nest temperatures required by their thermophilic 
symbiont. This might have a considerable negative feedback effect via poor 
nest ventilation, as the amount of air moving through ventilation shafts is 
known to correlate positively with the size of above-ground mound structures 
(Weir 1973). From this perspective the architecture of open miniature mounds 
must be disadvantageous by default, and may set strict limits for colony 
productivity and growth. In any case, because of the obvious trade-off between 
mound ventilation and nest temperature maintenance, the total absence of 
Termitomyces species C from large M. subhyalinus mounds may be explained 
by the fact that termite colonies with this symbiont do not have the option of 
building effectively ventilated, i.e., large mounds. 

Regardless of the exact mechanisms generating the observed interaction 
patterns between mound architecture and symbiont diversity, our study areas 



Main results and discussion 

26 

in Tsavo seem to represent a suboptimal habitat for the Termitomyces species 
C during the coolest months of the year. Termitomyces sp. C may be adapted 
to more low-lying equatorial regions where temperatures remain constantly 
hot. It is also possible that this fungus is primarily adapted to live in the 
constantly warm closed mounds of M. michaelseni, and an association with M. 
subhyalinus would always represent a kind of misstep for the species. This 
could also mean that for M. subhyalinus, at least in the Tsavo Ecosystem, 
establishing an association with Termitomyces sp. C would be much less 
advantageous than establishing a relationship with either of the two other 
fungal symbionts. 

4.4 FOOD SELECTION 

The results of stable isotope analyses, provided important information about 
litter utilization of Macrotermes michaelseni and M. subhyalinus. Carbon 
stable isotopes have been widely used to study food habits of herbivores in East 
African savannas (Tieszen et al. 1979; Boutton et al. 1983). The approach is 
based on the fact that C4 photosynthetic savanna grasses accumulate higher 
proportions of heavy carbon (13C) in their tissues than C3 photosynthetic trees 
and shrubs, leading to much higher δ13C values in grasses than in woody plants 
(Smith and Epstein 1971; Smith and Brown 1973). This is also reflected to the 
carbon isotope compositions of herbivorous animals that are typically 13C 
enriched by approximately 1 ‰ compared to their diets (DeNiro and Epstein 
1978).  

The low δ13C values obtained from termite food storages and fungus combs 
analyzed in manuscript III indicate that the studied termite colonies fed on 
plant material derived mostly from trees and shrubs. This was expected as all 
the analyzed colonies were from woody vegetation types with limited grass 
availability (especially in Kasigau Road). However, both M. subhyalinus and 
M. michaelseni also occur in neighboring grassland areas (Figure 2 in article 
I), where the colonies consume exclusively grasses (Vesala et al. unpublished). 
Thus, our results confirm the previous observations that both grasses and 
woody plants are present in diets of M. michaelseni with their proportions 
depending on local availability (Boutton et al. 1983). Although the exact food 
preferences of M. subhyalinus and M. michaelseni are not well-known, both 
species have been regarded primarily as grass-litter feeders (Collins 1983; 
Darlington 1984a, 1984b; Darlington and Dransfield 1987). This needs to be 
re-evaluated as the species can obviously also survive on tree/shrub based 
diets. 

The nitrogen isotope values (δ15N) obtained from the analyzed food 
storages and fungus combs ranged roughly from 5 to 7 ‰, which corresponded 
more closely to the δ15N values of leaves than those of wood (Table 1 and Figure 
3 in manuscript III). Thus, majority of the plant matter in fungus combs 
seemed to have originated from leaf litter which makes sense because of the 
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much higher nitrogen contents in leaf tissues than in wood (see e.g. Table 1 in 
manuscript III). The δ15N values of the three colonies sampled at Kasigau Road 
were much lower than those in the single colony at Mbula, suggesting higher 
leaf litter consumption at the later site. However, variation in δ15N values in 
plant specimens was found to be relatively high (Table 1 in manuscript III), 
reflecting the fact that nitrogen isotope composition of plants is affected by 
several factors, including e.g. mechanisms of nitrogen uptake and 
assimilation, symbiotic interactions, and the form and abundance of nitrogen 
in soils (Handley and Raven 1992; Evans 2001). 

Termitomyces diversity was not assessed in manuscript III. However, 
fungal symbionts might well affect to the food selection and utilization of 
Macrotermes colonies. Assuming that different Termitomyces species would 
have acquired enzymatic traits that allow them to specialize on the 
degradation of divergent types of plant matter, the cultivation of different 
fungal species by neighboring termite colonies could allow the colonies to 
primarily utilize different food sources. This, in turn, could effectively reduce 
the competition between different termite colonies, and might even allow a 
higher number of termite colonies, with partly overlapping foraging 
territories, to exist per given area. In future studies, dietary data should be 
collected that would allow effective comparison between Macrotermes 
colonies that rely on different fungal symbionts. 

4.5 THE ROLE OF TERMITOMYCES IN TERMITE 
NUTRITION 

The average nitrogen content of plant specimens collected around the studied 
termite colonies ranged from 1.0 % (wood tissues) to 2.8 % (leaves of 
trees/shrubs) (Table 1 in manuscript III). The highest nitrogen contents (up to 
4.8 %) were found from Acacia tortilis leaves. The nitrogen contents of fungus 
combs (ca. 2.5 % nitrogen) were in the same range as those of plant material, 
without consistent differences between fresh and old comb parts. Conversely, 
a multifold increase in nitrogen contents was detected from fungus combs to 
Termitomyces nodules (7–9 % nitrogen). Comparable nitrogen contents have 
been reported from fungus combs and Termitomyces nodules of several 
different termite species (Matsumoto 1976; Abo-Khatwa 1977; Rohrmann and 
Rossman 1980; Collins 1983).  

The high nitrogen content of fungal nodules compared to the fungus combs 
indicates that nitrogen is actively transported within the fungal mycelium and 
predominantly allocated into nodules. Although such a protein rich food 
source is of obvious potential importance for the colony, it has been thought 
that species of Macrotermes would predominantly feed on plant material 
pretreated by the fungus (Hyodo et al. 2000, 2003). Thus, consumption of 
fungal nodules would be mostly due to translocation of fungal lignocellulolytic 
enzymes that are known to act synergistically with termite and bacterial 
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enzymes within termite guts and fresh parts of fungus combs (Abo-Khatwa 
1978; Martin and Martin 1978; Martin and Martin 1979; Rouland et al. 1988a; 
Rouland et al. 1988b; Rouland et al. 1991; Nobre and Aanen 2012; Poulsen et 
al. 2014, da Costa et al. 2018). However, focusing only on termite workers, 
which were exclusively analyzed by Hyodo et al. (2003), may produce a 
strongly biased view of the dietary patterns of entire termite colonies. Eggs and 
larvae constitute a large proportion of Macrotermes populations (Darlington 
1984b; Darlington and Dransfield 1987) and developing instars that constantly 
accumulate new biomass obviously need more proteins than adult workers. 
Also the queen, due to her constant and massive egg production of up to 18 
000 eggs per day (Kaib et al. 2001), needs to be constantly supplied with large 
amounts of food with a high nitrogen content. 

The results of our carbon stable isotope analysis (manuscript III) clearly 
confirmed that different termite castes and age-groups within the 
Macrotermes colonies get their nourishment from different sources, some 
from Termitomyces mycelium and/or nodules, and others mainly from partly 
decomposed plant matter. The queen and larvae were mostly fed with fungal 
material, whereas the adult workers and soldiers, and surprisingly also 
nymphs (developing alates), utilized fungus combs as their main source of 
food. This challenges the general idea that the fungal symbiont would have a 
universal main role, i.e. lignocellulose degradation, in nutrition of 
Macrotermes colonies (Hyodo et al. 2000, 2003). Also Termitomyces nodules 
probably have several functions in colony food processing, which either are 
not mutually exclusive: 1. source of fungal conidia that inoculate fresh plant 
material and stabilizes fungal monocultures (Leuthold et al. 1989; Aanen 
2006; Aanen et al. 2009), 2. source of enzymes that enhance plant degradation 
(e.g. Martin and Martin 1978; Rouland et al. 1991), and 3. source of nitrogen-
rich food for maintaining colony reproduction and growth (manuscript III). 

There was a dramatic difference in the distribution of nitrogen stable 
isotopes between Macrotermes queens and kings. Kings always had the 
highest and the queens the lowest δ15N values among all termites analyzed 
from the same colony (Figure 3 in manuscript III). This can only be explained 
by the fact that nitrogen incorporated in their tissues originates largely from 
different sources. The mechanisms that accumulate heavy nitrogen (relatively 
enriched in 15N) in kings and light nitrogen (relatively depleted in 15N) in 
queens are currently unknown, but feasible explanations may involve uric acid 
recycling and/or fixation of atmospheric N2. 

Uric acid is typically accumulated in abdominal fat body tissues of old 
termite workers, from where it is recycled by utilizing uricolytic hindgut 
bacteria, presumably mostly via cannibalism or necrophagy (Potrikus and 
Breznak 1980a, 1980b, 1981; Collins 1983; Slaytor and Chappell 1994). Tayasu 
et al. (2002) found that abdominal uric acid content correlates with 15N 
depletion of Macrotermes workers, suggesting that 15N is discriminated 
during uric acid synthesis in termites. Thus, assuming that uric acid would be 
offered to queen, continuous consumption of 15N depleted uric acid 
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accumulated in old workers (i.e. cannibalism of offspring) might act to 
decrease the δ15N values of the queens. At least direct consumption of uric acid 
would require uricolytic bacteria to occur within queen digestive tract, which 
needs to be unraveled in future studies.  

The other potential explanation involves symbiotic nitrogen fixation, which 
is known to occur in the guts of many termites (Brune and Ohkuma 2011). It 
has been recently shown, that also Macrotermes species harbor diazotrophic 
bacteria, capable to fix atmospheric nitrogen, although their functionality in 
vivo remains to be resolved (Sapountzis et al. 2016). Atmospheric N2 shows 
δ15N values of ca. 0 ‰ (Peterson and Fry 1987). Thus, constant input of N2 in 
termite–fungus food web would generally decrease the δ15N values from the 
level of colony food sources (5–7 ‰, manuscript III). The highly 15N depleted 
queens, together with the observed absence of 15N depletion in analyzed 
workers’ guts, suggests that, if atmospheric nitrogen is indeed fixed within 
termite mounds, it could take place in the gut or some specific tissues of the 
queen. Such a process would make ecological sense, as the nitrogen demand 
of physogastric Macrotermes queens appears to be higher than could be 
gained from the available dietary sources. The existence of a diazotrophic 
microflora in the queen would be highly advantageous for the whole termite 
colony, as the queen presents a central node in within-colony nitrogen cycle 
(Figure 1 in manuscript III). The phenomenon could be especially significant 
for explaining the extremely high reproduction rates of Macrotermes colonies 
(Kaib et al. 2001). 
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5 CONCLUSIONS AND FUTURE 
PROSPECTS 

During this thesis project we studied the ecology of Termitomyces species and 
their Macrotermes hosts on several different levels ranging from 
phylogenetical and co-evolutionary questions to carbon and nitrogen cycling 
within termite mounds. This holistic approach provided answers for several 
intriguing questions from several different subject areas. On the other hand, 
an equal number new questions arose and were left unanswered. This 
underlines the fact that many fundamental aspects in ecology of fungus-
growing termites and their symbionts still remain poorly known. 

In article I we showed that local Termitomyces communities occupying 
termite mounds in East African savannas typically consist of a few fungal 
species that seemingly share their niche. Shared host termites, identical 
dwellings (fungus combs), and very similar microhabitats within underground 
nest chambers, raise many questions regarding the evolutionary origins of 
such narrow but obviously well-established symbiont diversity. What have 
been the mechanisms of speciation that have generated the extant patterns, 
with a handful of apparently sympatric species colonizing these savanna 
landscapes? And what are the mechanisms that maintain this diversity and 
prevents Termitomyces A from outcompeting the other two fungi?  

The evolutionary questions could be addressed in controlled laboratory 
conditions by exposing Termitomyces pure cultures to variable conditions, 
which might include e.g. cultivation in different temperatures and with 
variable carbon sources. Enzymatic and genomic studies especially focusing 
on comparisons of different Termitomyces species would provide another 
applicable approach. Large-scale samplings in other regions of Africa could 
also produce new ideas, and provide a more comprehensive understanding of 
large-scale diversity and host-symbiont patterns. 

The results of article II indicate that behavioral differences in mound 
building may affect local Termitomyces diversity. The key determinant for 
fungal diversity may lie in the ability of termites to maintain nest 
microclimates appropriate for specific symbionts. Different architectural 
solutions may result in different outcomes that may favor different 
Termitomyces species. On the other hand, identical architecture may lead to 
different nest microclimates in different environments. Comparable 
temperature time series from structurally different termite mounds and from 
different habitats and climates are needed to better understand the 
complicated interactions between mound architecture and nest 
thermoregulation. Termitomyces symbionts should not be forgotten in 
subsequent studies, as architectural variation in part controls their living 
conditions. 
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The results of the manuscript III provided new precise information on the 
nutritional role of Termitomyces for Macrotermes colonies. The most 
important conclusion was that the role of the symbiotic fungus in colony 
nutrition is pluralistic: termites colonies utilize the fungus both directly (by 
eating mycelium) and indirectly (by eating plant material decayed by the 
fungal enzymes). However, the direct utilization of Termitomyces obviously is 
largely restricted to the reproductive individuals and larvae. Especially the 
ambiguous nitrogen isotope patterns need further studies. These could include 
e.g. stable isotope analysis of nitrogenous gas emissions of termite mounds. 
Compound specific isotope analysis of amino acids might also provide an 
applicable tool to elucidate caste-specific diets and within-nest nutrient fluxes 
more detailed. One interesting research question is related to the potential 
fixation of atmospheric nitrogen within Macrotermes queens, which definitely 
deserves further studies. 
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