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Partial list of symbols

Symbol Meaning

N {0; 1; 2; 3; : : :}
N+ {1; 2; 3; : : :}
[a; b) {x ∈ R : a ≤ x < b}
R+ [0;∞)

, Is defined to be
≈ Is approximately equal to
∝ Is proportional to
∼ Is distributed according to
a← b a is assigned the value b
N (—;Σ) Multivariate normal distribution with mean vector — and covariance Σ
Λ Lebesgue measure
f ◦ g Composition of functions f and g

‖x‖Γ

√
xTΓ−1x

|K| Determinant of matrix K
Γ(s) Gamma function with argument s
d:→ Converges in distribution to
‹x;x ′ Dirac delta function
a ∧ b min(a; b)
—� � — is absolutely continuous with respect to �
X ⊥⊥ Y X and Y are independent random variables
1[a;b] 1[a;b](x) = 1 if a ≤ x ≤ b, otherwise 0.
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pmf Probability mass function
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colleague and friend Jarmo Mäkelä, Prof. Jouni Pulliainen, and Dr. Maarit Raivonen.
Discussions with Prof. Johanna Tamminen and Dr. Janne Hakkarainen lead me to
start looking into remote sensing-related problems, and that has been both a positive
challenge and a pleasure.

From the years as a researcher at FMI, I want to thank the companionship and
help of Drs. Leif Backman, Yao Gao, Sauli Lindberg (UHEL), Tiina Markkanen,
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1 Introduction

Climate change is one of the most critical challenges that humankind faces in the
twenty-first century. It will potentially cause huge economic, societal and environ-
mental disruptions, which the general public is in many parts of the world slowly
starting to realize. In recent years politicians, scientists and news outlets among oth-
ers have attributed events such as devastating hurricanes, forest fires, giant icebergs
splintering away from glaciers, floods, catastrophic losses in biodiversity in pristine
rainforests, extreme droughts, crop failures, and so on, to climate change. The re-
search presented in this thesis strives to explain parts of the underlying mechanisms
better.

Climate change is caused by heat-trapping gases, most notably carbon dioxide
(CO2) and methane (CH4), that are released to the atmosphere both naturally and
by humans. The radiative forcing potential of atmospheric carbon dioxide compared
to the pre-industrial level is currently at 1.68 W/m2 whereas that of methane is at
0.97 W/m2, according to the latest report by the Intergovernmental Panel on Climate
Change (IPCC) (IPCC, 2013). Other gases effect the radiative balance as well, but
CO2 and CH4 are the most important ones, and by a wide margin.

The major source of CO2 is the burning of fossil fuels to power factories, cars,
power plants, etc. The natural CO2 sources are dwarfed in comparison to these an-
thropogenic sources, without which the atmospheric CO2 concentrations would be
stable. For methane, the anthropogenic sources include leaks from oil and natural gas
fields, farming, landfills, and coal mining, but wetlands, where peat is anaerobically
decomposed by archaea (prokaryotic organisms), are also an important component.
The inner workings of wetlands differ widely from one to another, depending for in-
stance on temperature, local plant species, soil chemistry, and availability of nutrients.

How carbon circulates in air, land, and water, is complicated and consists of a
large number of processes. Much of the carbon dioxide emitted to the atmosphere
is dissolved in water, little by little lowering the pH of the oceans. Another part
is photosynthesized by plants, adding to the terrestrial carbon pool. The leftover
CO2 stays to increase the atmospheric concentration, which during the last 30 years
has risen by almost 20%. The second order mechanisms are complex – for instance
changes in terrestrial and marine ecosystems affect their responses to the changing
levels of atmospheric carbon dioxide.

An important part of most modern analyses of the carbon cycle is uncertainty

1



2 1 Introduction

quantification. Uncertainty quantification tries to formally analyze and attribute
sources of uncertainty in any estimates to different parts of the estimation process,
such as the uncertainty arising from measurement and modeling errors. Evaluating
the uncertainties sometimes critically changes outcomes of research, as was shown for
instance by an Oxford study from summer 2018: after accounting for uncertainties, it
was found to be plausible that there is no alien life in the Milky Way, contrary to the
usual opposite conclusion from a non-probabilistic application of the Drake Equation.

For producing actionable climate-related scientific results, sources, sinks, and
stocks of carbon need to be estimated, typically with complicated climate models
and/or sophisticated statistical techniques. This task is not made easier by the inti-
mate coupling of Earth’s water and carbon cycles. In the research presented in this
thesis, several such complications that arise from intertwining and interacting pro-
cesses are looked at. Photosynthesis takes place by the action of plants opening their
stomata, which inevitably lets out water vapor. In times of drought, wetland carbon
decomposition changes from anaerobic to aerobic, but this behavior is difficult to
model due to the nonlinear changes in the microbial populations affecting decompo-
sition of organic matter. Finally, climate change affects the snow clearing date across
the Boreal ecosystems, which is reflected in the total gross primary production during
the growing season.

This thesis looks into both modeling different aspects of the carbon cycle and
evaluating the associated uncertainties. The work utilizes site-level carbon dioxide and
methane flux measurement data with time series analysis and Markov chain Monte
Carlo (MCMC) (Gamerman, 1997) techniques, global climate modeling with large
amounts of flux measurement data from all over the world, and remote sensing CO2
data from the NASA Orbiting Carbon Observatory 2 (OCO-2) satellite (Crisp et al.,
2012; O’Dell et al., 2012) with stochastic processes and spatial statistics techniques.

The simplest way to estimate a quantity by modeling is to obtain a prediction
by initializing the model according to best expert knowledge and data available and
performing a single model simulation. This method is often used when the computer
model in question is extremely expensive, as is the case with computational fluid
dynamics models, which are used for e.g. climate and weather models and rocket
engine or aircraft component performance simulations. An example of such direct
simulation is also part of Paper III, where the gross primary production response to
changing snow clearance date is evaluated and compared against flux measurement
data with the ECHAM5/JSBACH/CBALANCE family of models (Roeckner et al.,
2003a) from the Max Planck Institute for Meteorology in Hamburg. Due to a single
simulation taking several weeks, no uncertainty quantification was possible.

If the model is computationally less demanding, statistical methods utilized for
uncertainty quantification can be more sophisticated. Paper IV employs an MCMC
algorithm to evaluate parameter posteriors of several parameters affecting the carbon
and water cycles. Similarly to Paper III, Paper IV uses the JSBACH model, but
restricts the spatial domain to measurement sites instead of performing the simu-
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lations for a larger region. Pre-computed weather data is used for model forcing,
saving remarkably in computation time by refraining from solving the complicated
and expensive atmospheric component at each time step.

A wetland methane emission model is utilized in Paper II to analyze what parts
of the methane production process are constrained by flux measurement data. Since
the model is less complex, a more sophisticated modeling approach can be used for
modeling uncertainties. An adaptive MCMC algorithm is employed in a Metropolis
within Gibbs setting with hierarchical modeling of annually changing environmental
parameters with an autoregressive moving average time series model for defining the
error model. The results indicate that without further measurement data, it is very
challenging to state the importance of the different processes. This is an important
result, since there are enormous quantities of peat in the boreal wetlands, which might
be eventually released by the thawing of the Siberian permafrost. The full parameter
posterior uncertainty of such models has not been extensively evaluated earlier in
literature, nor has a hierarchical approach been used.

In contrast to the flux measurement observations used in Papers II-IV, Paper
I utilizes remote sensing CO2 measurements from the OCO-2 satellite. Remote
sensing of greenhouse gas concentrations has obvious benefits compared to in situ
measurements in that remote sensing provides almost global coverage and measures
similarly everywhere. However, the approach also brings problems: gaps in data due
to clouds, unknown biases and errors, and long distances between satellite trajectories.
Utilizing remote sensing data for constructing time-dependent high resolution CO2
distributions is therefore still work in progress, and so far estimates published in the
literature show overly smoothed CO2 fields, not being able to utilize the data to its
full potential. The results we present should hence be an important opening: an open
source multi-scale Gaussian process software, able to compute the demanding spatial
statistics problem with enormous amounts of data (at least hundreds of millions
of observations), and retaining the local fine structure. The computation enables
calculating the posterior mean and marginal variances, but also drawing samples of
random functions and calibrating covariance kernel parameters based on data. We
additionally describe several novel ideas for covariance modeling, some of which have
not been used either in this or any other context before, such as wind-informed kernels,
multi-scale kernels, and periodic kernels. We validate the multi-scale approach with
synthetic studies, and show initial applications of the methodology to the OCO-2 v9
data product.

The Papers described above underline the multidisciplinary nature of climate sci-
ence. This thesis has to deal with all of those disciplines and therefore it contains
some more fundamental aspects of mathematics (measure theory, probability, random
functions), more applied topics (statistics), computational paradigms (programming,
graphical models, inference algorithms), physical modeling (process/forward mod-
els), and climate science (analyzing the results). To communicate that full scientific
process, most of these technical aspects are presented in Chapters 2 and 3. The
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presentation of the mathematical theory in chapter 2 is not always comprehensive,
since a full treatment would take up too much space. The topics are well known in
literature, however, and the reader is referred to the literature cited below for further
details.

For a general introduction to inverse problems, see e.g. Mueller and Siltanen
(2012); Tarantola (2005). For general Bayesian and non-Bayesian statistics, see
Gelman et al. (2013), Casella and Berger (2002), or Bickel and Doksum (2015,
2016). For the measure-theoretic foundations of probability, (Williams, 1991) is a
good starting point. Kalman filter and dynamic linear models are treated in Särkkä
(2013) and Durbin and Koopman (2012). For Gaussian processes, good references,
and the ones mainly used for this thesis are Rasmussen and Williams (2006) and
Santner et al. (2003). For an interesting measure-theoretic exposition of random
functions but technically beyond the level required in this work, see e.g. Karatzas
and Shreve (1998); Stroock (2018). A solid general treatment of Bayesian inverse
problems, emphasizing infinite-dimensional settings, is also given by Stuart (2010),
while Gamerman (1997) describes more comprehensively the fundamentals of MCMC.

This thesis is structured in the following way: Chapter 2 will explore theory,
starting from a very short review of basic probability, introducing Bayes’ theorem
and inverse problems. It will then cover uncertainty, linear models, Gaussian random
functions, and graphical models, through which the algorithms used in the Papers are
explained. This is followed by a presentation of the Monte Carlo techniques used in
the Papers, such as MCMC including Gibbs sampling, and importance sampling. The
chapter ends with a discussion of hierarchical Bayesian models and autoregressive
moving average (ARMA) time series modeling. Chapter 3 discusses the research in
the Papers against the theoretical background, concentrating on computational issues
and climate science. Chapter 4 contains a short discussion of how the analyses could
be further improved, where the current limitations of the presented approaches are,
and how some of the most straightforward lines of future work look like.



2 Theory

Quantifying uncertainty is based on the notion of probability. The uncertainty of
predicted CO2 concentration in June 2050 in Helsinki can be given as a credible
interval : with a given probability the concentration is between x − ‹ and x + ‹ ppm.
Another way of describing the uncertainty is describing the distribution of possible
values, for instance by stating that the predicted concentration is a random variable
distributed according to, say, normal distribution with mean x and variance ‹2

4 .

Uncertainty quantification in geosciences is important, since it affects how to
best evaluate risk. This includes for instance how to minimize expected (arbitrary)
loss due to climate change, deforestation, particulate emissions, wildfires and natural
disasters, among others.

Uncertainties are in this work predominantly quantified using the Bayesian paradigm
and the essential theory for doing so is presented in this chapter. The readers who
are intimately familiar with Bayesian models, time series, random functions, and as-
sociated algorithms, may choose to skip this review and only use it as reference when
necessary. Likewise, the reader with very little mathematical background may just
want to skip the chapter, since it is rather condensed and not suitable for self-study
– for that purpose the references at the end of chapter 1 can serve as starting points.
For the reader who is familiar with the problems described in especially Papers I-II,
this chapter may provide valuable information about how to in practice go about
solving the associated modeling and computational problems.

2.1 Probabilistic background and notation

2.1.1 Probability and random variables

Let Ω be the set of possible outcomes of an experiment. A ff-algebra of Ω, F , is a
set of subsets of Ω such that complements and countable unions of any F ∈ F are
also members of F , as is the full space Ω. A probability space is a triplet (Ω;F ; —),
where — is a probability measure, — : F → [0; 1] s.t. —(∅) = 0 and —(Ω) = 1 (Bickel
and Doksum, 2015). The sets F ∈ F are then called —-measurable. Given spaces
(Ω;F ) and (Ω′;F ′), a mapping h : Ω→ Ω′ is a measurable function if ∀F ′ ∈ F ′ it
is true that h−1(F ′) ∈ F (Williams, 1991).

Measure — is absolutely continuous with respect to �, written —� �, if ∀F ⊂ F ,

5
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it holds that �(F ) = 0 ⇒ —(F ) = 0. The measure � is ff-finite if Ω = ∪∞i=1Fi with
Fi ∈ F and ∀i , �(Fi ) < ∞. The Radon-Nikodym Theorem (Williams, 1991) states
that given —� � with � ff-finite, there exists a function g : Ω→ [0;∞] such that

—(F ) =

Z
F
g(x)d�(x): (2.1)

The function g is called the Radon-Nikodym derivative of — with respect to �. Given
in the above setting a second measurable space (Ω′;F ′) and a measurable function
h : Ω→ Ω′, the pushforward measure of — is denoted by h∗(—) : Ω′ → [0;∞) with

h∗(—)(F ′) , —(h−1(F ′)); (2.2)

where F ′ ∈ F ′ (Peyré and Cuturi, 2018).
A random variable X is a measurable function from a probability space to a

measurable space, X : (Ω;F ; —)→ (S;S ), where S is a ff-algebra on the nonempty
set S (e.g. Williams (1991)). In this work the random variables are generally real-
valued, S = R. The set Ω is called the sample space (Casella and Berger, 2002).

Given a real-valued random variable X as above, the law of X, LX , is defined
as LX , X−1 ◦ —. This can be thought of as the pushforward X∗(—)(U) for sets
U ∈ B(R) via (2.2), where B(R) denotes the standard Borel ff-algebra over R. The
(cumulative) distribution function of X (cdf) is then defined (Williams, 1991) by

FX(a) , LX ((−∞; a]) = — ({! ∈ Ω : X(!) < a}) : (2.3)

For all practical purposes, finite-dimensional random variables are often associated
with probability density functions (pdf), and discrete with probability mass functions
(pmf). The pdf of a real-valued random variable X, fX(x) , if it exists, is defined viaR b
a fX(x)dΛ(x) = Pr(a ≤ X ≤ b), where Λ denotes the standard Lebesgue measure.
If LX � Λ, the pdf can also be described (Williams, 1991) as the Radon-Nikodym
derivative of the law of X with respect to the Lebesgue measure,

fX =
dLX
dΛ

: (2.4)

A real-valued random vector is a random variable, which maps the sample space
onto Rq for some q ∈ N (Casella and Berger, 2002). The definitions of pmf, pdf,
and cdf generalize trivially. Functions of random variables are random variables.

For random variables X and Y the joint density is the pdf/pmf of the random
vector (X; Y ), and is denoted by fX;Y (x; y). The joint density can be marginalized
over either of the arguments by integration, for instance by fX(x) =

R∞
−∞ f (x; y)dy

(Williams, 1991; Casella and Berger, 2002). Conditioning the random variable X
on Y , denoted X|Y defines a new random variable whose density function is called
the conditional density, of X given Y and it is denoted and defined by fX|Y (x) =
fX;Y (x; y)=fY (y). The elementary chain rule is the definition of conditional probability
written in the form fX;Y (x; y) = fX|Y (x)fY (y).
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The expectation of a function g of a random variable or vector X : (Ω;F ; —)→
Rq is given by E[g(X)] =

R
Ω g(X(!))d— (Casella and Berger, 2002), which, given

a density function fX(x) for X, boils down to E[g(X)] =
R

Ω g(x)fX(x)dΛ(x). With
that the covariance of a random variables X and Y is given by Cov(X; Y ) = E[X −
E[X]]E[Y −E[Y ]], with variance of X defined as Cov(X;X) and written as V[X]. The
covariance matrix C of a random vector X has elements Ci j = Cov(Xi ; Xj) (Casella
and Berger, 2002). The correlation between random variables X and Y is defined as

Corr(X; Y ) = Cov(X;Y )√
V[X]V[Y ]

.

For finite samples x1 : : : xN from any distribution, the unbiased estimates of the
mean and covariance are given by x = 1

N

PN
i=1 x

i and S = 1
N−1

PN
i=1(x i−x)(x i−x)T

respectively (Casella and Berger, 2002). In this thesis sample sizes are generally very
large, and therefore sample covariances are also often denoted by letter C. The
elements Ckl describe the covariance between the kth and l th dimension of vectors x .
With pairs of vector data (x1 : : : xn; y1 : : : yn), correlation refers to a matrix with the
Pearson correlation coefficients as elements, as in

Corr(x1 : : : xn; y1 : : : yn)kl =
1

N − 1

NX
i=1

(x ik − xk)(y il − y l)Tp
V[Xk ]V[Xl ]

: (2.5)

Two sub-ff-algebras F1;F2 of F – that is, they are ff-algebras and F1;F2 ⊆ F
– are independent if Pr(x ∈ F1 ∩ F2) = Pr(x ∈ F1)Pr(x ∈ F2) for all F1 ∈ F1,
F2 ∈ F2. Two random variables independent, if their ff-algebras are independent,
written X ⊥⊥ Y (Williams, 1991). In practice for distributions with well-behaving
density functions this translates to that two random variables X and Y are indepen-
dent if fX;Y (x; y) = fX(x)fY (y) (Casella and Berger, 2002). In addition, they are
conditionally independent given a third random variable Z, written X ⊥⊥ Y |Z, if
(X|Z) ⊥⊥ (Y |Z) (Bickel and Doksum, 2015).

In the Bayesian formulation of probability (e.g. Gelman et al. (2013)), which is
followed in this work, it is conventional to write p(x) instead of fX(x) for a random
vector X and from here on that notation is adopted, except for where reference to the
particular random vector is explicitly desired. While traditionally in the frequentist
view, any model parameters are treated as unknown constants, in the Bayesian setting
they are modeled as random variables and the object of interest then is how those
parameters are distributed.

The famous Bayes’ theorem, on which Bayesian probability theory and statistics
are based (Gamerman, 1997), states that for arbitrary random variables X and Y ,

p(x |y) =
p(y |x)p(x)

p(y)
; (2.6)

and is directly proven by noting that p(y |x)p(x) = p(y; x) = p(x |y)p(y). The term
on the left hand side is the posterior distribution of X, the term p(y |x) is called the
likelihood, and despite the notation is considered to be a function of x , p(x) is the
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prior distribution that codifies all our a priori knowledge of the parameters X, and
p(y) is the marginal likelihood of observations y , or sometimes evidence (Gelman
et al., 2013; Tarantola, 2005), that usually cannot be computed in closed form.

Bayes’ formula presents a way to update our knowledge regarding a random vari-
able by updating the prior distribution with new data. Let —y denote the posterior
measure, the measure corresponding to p(x |y) in (2.6) as its pdf, and let —0 similarly
denote the prior measure with pdf p(x). With fixed data y , using (2.1) and (2.6),
and given some —y -measurable set F ,

—y (F ) =

Z
F
p(x |y)dx ∝

Z
F
p(y |x)p(x)dx =

Z
F
p(y |x)d—0

⇒ p(y |x) ∝ d—y

d—0
(2.7)

meaning that the likelihood is proportional to the Radon-Nikodym derivative of the
posterior with respect to the prior. The benefits of this approach is discussed in detail
by e.g. Stuart (2010).

2.1.2 Model calibration via Bayes’ theorem

Bayesian calibration of a nontrivial model M, where the evidence term cannot be
evaluated in closed form (e.g. a weather model or some other partial differential
equation (PDE) model) is carried out by evaluating the nominator of the right hand
side of the Bayes’ theorem (denominator can be dealt with algorithmically, see section
2.6.1).

Models used in geophysics and in this work are often discretized in time but the
dynamics evolve continuously in time, meaning that the time parameter is in some
continuous space, t ∈ R. Let

x , M(„; x0) (2.8)

be the output of a discretization of such a dynamical model for the time-evolution
of some initial state vector x0 governed by parameters „ ∈ Θ, where Θ is some set,
typically Rq with some q ∈ N+. The observations are denoted by y ∈ Y, and a
function, ffi ∈ YX , called the observation operator, is used for mapping the space of
model paths X to the space of observables, Y (Stuart, 2010). These are in principle
some Banach spaces (normed complete linear spaces, see e.g. Rudin (1987)) – for
example Lp-spaces – but for discussing a finite number of states and observations,
finite-dimensional vector spaces suffice. In practice, in this work the mapping ffi is the
identity map, since the models are (unrealistically) thought to represent real physical
quantities.

For Bayesian estimation of parameters in the context of such a system, the ob-
servation equation or model equation (Stuart, 2010) can in case of additive error –
perhaps the most common situation – be written as

y = ffi(x) + ›; (2.9)
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where › ∼ �, where � is the density function of some probability measure. This
density �, according to which the model-observation mismatch is modeled, is in this
work sometimes referred to as an error model.

Equation (2.9) defines the likelihood term in (2.6),

p(y |„) = � (y − ffi(x)) ; (2.10)

where explicit dependence on the initial state has been suppressed. Time-discretized
versions of (2.8) and (2.9) can then be written as

xi , M(ti ; „; x0) and (2.11)

yi , ffi(x)i + ›i ; (2.12)

with states xi and observations yi , y(ti ) taken at times ti=1:::N and with the dis-
cretization of the continuous states mapped by the observation operator defined as
ffi(x)i , ffi(x)|t=ti . Another common model for the observations y substitutes a
multiplicative error for the additive one in (2.9).

The choice of � dictates how the model-observation mismatch is expected to be
distributed and the particular form of � is a modeling choice, which can be justified
by making sure that the residuals obtained by sampling the posterior p(„|y) are dis-
tributed according to �. This is a difficult step: first, the residuals may change
unexpectedly with „, especially with models with chaotic dynamics, and second,
changing the values of any auxiliary model parameters or how the autocorrelation
structures are modeled also affect how � should be picked. Since in reality the
model-observation mismatch may be a result of several different processes with dif-
ferent statistical characteristics (e.g. Tarantola (2005), Ex. 1.22), the final choice of
� is often a well-justified compromise.

2.1.3 Forward models and inverse problems

The computer implementation of a mathematical model M(„; x0) as described in
(2.8) is called a forward model, and it is used to solve a forward problem (Mueller
and Siltanen, 2012; Tarantola, 2005), yielding a discretization of the continuous model
trajectory x given initial conditions and any required parameters. If M is computa-
tionally extremely demanding, solving the forward problem only once may be the best
available approach. Executing the forward model alone does not normally, however,
provide information about the model parameter uncertainties, nor does it produce
new information about the values of the model parameters.

The inverse problem (Mueller and Siltanen, 2012; Tarantola, 2005) associated
with the forward problem can be solved to provide estimates of „ and x0, either with
uncertainties or without. For obtaining point estimates, the problem can take any of
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the forms

„̂ = arg min
„

L („) (2.13)

x̂0 = arg min
x0

L (x0) (2.14)

„̂; x̂0 = arg min
„;x0

L („; x0); (2.15)

where L is a suitable loss function, for instance a negative logarithm of a likelihood
(NLL) given some observations and an observation model. Variations of this particular
form, L („) = − log p(y |„), are used widely in this work. They are treated in more
detail in section 2.1.4.

The famous Hadamard conditions (Mueller and Siltanen, 2012) state, that a
problem is ill-posed, if it does not have a solution, if the solution is not unique, or
if the solution is not a continuous function of the initial conditions. If none of these
conditions (i.e. remove the word not) hold, the problem is well-posed. In geophysics
all three conditions are often true, meaning that problems are strongly ill-posed, and
the practical implications of this often is that the inversion presented in (2.13 - 2.15)
gets stuck in local minima since the optimization problems are very rarely convex.

For linear problems with Gaussian errors, (2.13) has a closed-form solution. How-
ever, adding noise often quickly shatters the usability of the naive inversion – inverting
the forward model – in many systems. This can be avoided by perturbing the setup
and adding a regularization term, the most commonly used one of which is the ridge
regression or Tikhonov regularization (Mueller and Siltanen, 2012), which in the
Bayesian setting with log-likelihood as the loss function amounts to incorporating a
Gaussian prior to the optimization problem in (2.13 - 2.15),

„̂ = arg min
„

L („) + ¸‖„‖2
2; (2.16)

where ¸ is a regularization parameter controlling the prior weight. By using different
forms of the regularization term such as ‖„‖2

Γ for some positive definite matrix Γ,
different types of prior formulations can be prescribed.

In the context of geophysical models, closed-form solutions for the inversion are
not available and optimization algorithms need to be used. The present work utilizes
L-BFGS (Nocedal, 1980), BOBYQUA (Powell, 2009), and Nelder-Mead (Nelder and
Mead, 1965) algorithms for solving for point estimates in various inverse problems.
For state estimation, the 4DVAR algorithm (Dimet and Talagrand, 1986) is commonly
used in numerical weather prediction, and the Kalman filter family of algorithms can
be utilized for both state and parameter estimation.

While prescribing a prior alone may work, several other approaches are available to
work around the problem of local minima in the response surface of the loss function.
For obtaining point estimates, stochastic optimization algorithms such as stochastic
gradient descent have become popular recently, especially in the machine learning
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community. While this is a viable approach, it is not feasible when the gradients are
not available. For moderate parameter dimension, scaling down L to ensure mixing
and using a Markov chain Monte Carlo algorithm to find E[„] can work reliably
and sometimes be faster than using global optimization algorithms such as ISRES
(Runarsson and Xin Yao, 2005).

2.1.4 Standard point estimation and cross validation methods

If L („) = − log p(y |„) in (2.13), the corresponding „̂ is called a maximum likelihood
estimate of „. By setting L („) = − log p(„|y), the maximum a posterior estimate
(MAP) is obtained instead (Casella and Berger, 2002; Stuart, 2010). Since log is
a monotonous function, its presence above is not necessary, but often convenient.
The MAP estimate corresponds to „̂ in (2.16) when L in that equation is the NLL.
While maximum likelihood estimation is useful and often used, it may overestimate
the confidence in the predictive performance of the model. If observation/model error
covariance is not fully known, it is relatively common practice in geosciences to use a
diagonal covariance model with a Gaussian likelihood as a best guess (for an example,
see e.g. Mäkelä et al. (2016)).

From a Bayesian perspective, overconfidence with predictive performance is a
general issue for point estimation, since any predictive quantities obtained by using
a point estimate for model parameters do not reflect the uncertainty that should
be carried over by the propagation of uncertainty in those model parameters. This
may be overcome by using cross-validation (Gelman et al., 2013), where the cross-
validation prediction error for a set of observations Ai is estimated by excluding that
set from the training set, obtaining an estimate for the model parameters „ denoted
by „̂iXV using that training set, and then predicting the observations in Ai using

the parameters „̂iXV and finally comparing to the true observed quantities. Usually,
∪Mi=1Ai = A and Ai ∩ Aj = ∅ when i 6= j . A much-used special case is when, for
all i , Ai = {yi}. This is called leave one out cross validation (LOOCV) (Gelman
et al., 2013). Cross validation is used in a regression modeling setting in Paper II to
evaluate what independent variables best explain annual model parameter variations
produced by the hierarchical model used.

2.2 Uncertainty

2.2.1 Sources of uncertainty

The term › in (2.9) describes the total uncertainty in the model-observation mismatch
y −ffi(x). In reality it needs to describe errors from various sources. If characteristics
of separate sources of model-observation mismatch are known, › can and should be
split into several different components (Stuart, 2010). In Paper II, where the model-
data mismatch is known to change in time, ARMA modeling is used to describe
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the correlation structure in the time series while additional modeling accounts for
heteroscedasticity.

The most straightforward error source to describe is often the measurement error,
which describes the error contribution from sensor noise of the instrument making
the measurement. This error component is typically assumed to be independent
and identically distributed (i.i.d.) Gaussian. However, for instance in the case of
CH4 flux measurements in Paper II, it is better described by the Laplace distribution
(Richardson et al., 2006).

For discretized dynamical models, representation error describes how averaging
over a finite domain (e.g. time-space hypercube of a grid point from one model time
step to the next) to compare with localized observations induces error (e.g. Ganesan
et al. (2014)). This source is controlled by the exact form of ffi.

Other sources are random model error and model bias due to for instance rare or
unmodeled events or incomplete information about the initial conditions, autocorre-
lation of the observation errors, and numerical error from finite machine precision.

While problems arising from machine precision can be a nuisance, e.g. when
calculating a Cholesky factorization, C = LTL (Trefethen and Bau, 1997; Boyd and
Vandenberghe, 2004) of a covariance matrix with a large condition number using
single precision, a greater difficulty with geophysical models (and many other models
as well) is caused by model bias and unmodeled events. An example of such an event
is extreme drought in Finland, where photosynthesis is normally not limited by the
availability of water, and models typically have not needed to take that to account.

2.2.2 Distributions for uncertainty modeling

In the context of any specific problem, the form of › in the observation equation (2.9)
needs to be prescribed. The choices utilized in the various problems tackled in this
thesis are presented in this section.

A random vector X following the normal or Gaussian distribution (Casella and
Berger, 2002) with mean — and covariance matrix C has the probability density
function

N (—; C) , fX(x) = (2ı)−
n
2 |C|−

1
2 exp

„
−1

2
‖x − —‖2

C

«
; (2.17)

where ‖x − —‖C stands for
p

(x − —)TC−1(x − —). If the random vector X is split
into two parts of sizes p and q, i.e. X = (X1; X2)T , then the joint distribution can
be written as „

X1

X2

«
∼ N

„»
—1

—2

–
;

»
C(X1; X1) C(X1; X2)
C(X2; X1) C(X2; X2)

–«
(2.18)

and the conditional distribution fX1|X2
is Gaussian with its moments given by

E[X1|X2] = —1 + C(X1; X2)C(X2; X2)−1(X2 − —2) (2.19)

Cov(X1|X2) = C(X1; X1)− C(X1; X2)C(X2; X2)−1C(X2; X1): (2.20)
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The right hand side in (2.20) is known as the Schur complement of C(X2; X2) (Boyd
and Vandenberghe, 2004), and in the setting of (2.18), the marginal distributionR
Rq fX1;X2(x1; x2)dx2 is also Gaussian.

For any random variable Z, with mean —z and finite variance ff2
z , the central limit

theorem (CLT) states, that at the limit when N → ∞, 1√
N

PN
i=1

Zi−—z
ffz

d.→ N (0; 1)

(e.g. Williams (1991); Vershynin (2018)). In practice this means that large-sample
averages are well-behaved in that their tails are controlled by the squared exponent
in (2.17). The CLT does not, however, state how fast the tail probabilities vanish –
this depends on what kind of a random variable Z is. For instance for sub-Gaussian
random variables (tails probabilities decaying at least at squared exponential speed)
Hoeffding’s inequality gives the exact tail bounds (Vershynin, 2018).

The ffl2-distribution with k ∈ N+ degrees of freedom describes the distribution
of the sum of squares of k standard normal N (0; 1) random variables and hence is
supported on x > 0. The weighted sum of squares from the quadratic form in the
log-likelihood of a normal observation model, (2.17), is ffl2-distributed, given that in
that equation the Cholesky factor of C whitens the residuals xi − —i .

The scaled inverse ffl2-distribution (Gelman et al., 2013) adds a scale parameter
s > 0, and has the pdf

fX(x) =

„
k

2

« k
2

e

“
2x
ks2

”
skx−( k

2
+1)

Γ(k=2)
(2.21)

with E[X] = s2k
k−2 and V[X] = 2k2s4

(k−2)2(k−4)
. It can be used for e.g. prescribing priors

for variance parameters.
Often in finite sample sizes the tails of the normal distribution are too thin. A

heavier-tailed version to be used in finite-sample settings would be the Student’s t-
distribution, but we utilize the two-sided exponential or Laplace distribution (Casella
and Berger, 2002) instead, with pdf

fX(x) =
1

2ff
exp

„
−|x − —|

ff

«
; (2.22)

where — and ff > 0 are the location and scale parameters, respectively. Additionally,
E[X] = — and V[X] = 2ff2. Flux measurements done with instruments designed to
be used for measuring trace gas fluxes at the biosphere-atmosphere boundary have
been reported to follow the Laplace distribution instead of the normal distribution.

The uniform distribution is denoted by U[0;1] and has the probability density func-
tion fX(x) = 1[0;1]. If X follows the discrete Bernoulli distribution with parameter
p, denoted X ∼ Ber(p), it has the probability mass function fX(x) ∈ {0; 1} s.t.
Pr(X=1) = p (Casella and Berger, 2002).

All of the aforementioned continuous distributions belong to or are closely related
to the Gamma family of distributions, an exponential family (Bickel and Doksum,
2015). This is convenient and by design, since using distributions from the same
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family results in conjugacy that can be exploited when used in e.g. hierarchical models,
as described in section 2.7.

2.3 Linear regression

One of the most commonly used tools in any context to statistically analyze data
is linear regression (Casella and Berger, 2002), which amounts to fitting parameters
controlling the orientation of a hyperplane to minimize squared error between that
plane and some data. Let A ∈ Rp×n be a data matrix containing n vector-valued
measurements, called independent variables, of length p in the columns, let y ∈ Rn be
a vector of dependent variables, and let ˛ ∈ Rp be a vector of regression coefficients
with prior covariance Σ. The regression problem is written as

AT˛ = y + ›; (2.23)

where › ∼ N (0; Γ) is the measurement error associated with y . For an exactly
determined or overdetermined system, rank(A) ≥ p, the (Tikhonov-)regularized least
squares solution of (2.23) and its covariance are given by (Tarantola, 2005)

E[˛|y ] = ˆ̨ = arg min
˛

n
‖AT˛ − y‖2

Γ + ‖˛‖2
Σ

o
(2.24)

= (AΓ−1AT + Σ−1)−1AΓ−1y , and

Cov(˛|y) = (AΓ−1AT + Σ); (2.25)

where the notation ‖ · ‖Σ was defined in the context of (2.17). If in this equation
Σ−1 = 0, ˆ̨ is the ordinary least squares solution. As an alternative, the use of
sparsity-inducing ‘1-norm for regularization is customary in big data applications, but
this comes at the cost of needing to use an algorithm such as the least absolute
shrinkage and selection operator (LASSO) for obtaining ˆ̨ (Tibshirani, 1996). In this
work only ridge regression-type regularization and Gaussian priors are used, however.
For further details, see e.g. (Lassas and Siltanen, 2004).

2.4 Gaussian processes

Given an index set D , a stochastic process or random function is an indexed set of
random variables Xd : (Ω;F ; —) → (S;S ) for all d ∈ D (Williams, 1991), and the
space S is usually taken to be Rd with the Borel ff-algebra B(Rd). A classical example
of a stochastic process is the Wiener process (random walk), for which D = R+, and
it holds that

d1 < d2 < d ⇒ (Xd1 ⊥⊥ Xd)|X2, and (2.26)

Xd |Xd2 ∼ N (xd2 ; d − d2): (2.27)
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A Gaussian process, or Gaussian random function is a stochastic process indexed over
an index set D defined by a mean function m(d) and a covariance function k(d; d ′)
in that for any finite collection of size N of indices D ⊂ D , the joint distribution of
random variables {Xd : d ∈ D} is multivariate Gaussian (Rasmussen and Williams,
2006) with

XD ∼ N (m;K); (2.28)

where XD = (Xd1 ; : : : ; XdN )T , m = (m(d1); : : : ; m(dN))T and K is a matrix with
elements Ki j = k(di ; dj). The requirement that K is a covariance matrix implies that
k is symmetric in its arguments. While the measure-theoretic treatment of stochastic
processes leads to many interesting results, this level of mathematical detail is not
needed here; see e.g. (Karatzas and Shreve, 1998; Stroock, 2018; Rozanov, 1998;
Øksendal, 2010) for further details.

If the index set D is two-dimensional, the term Gaussian field is often used in
the literature. For a time-dependent process, the index set is usually taken to be R+

and, non-surprisingly, the letter t is used. For the Gaussian processes in Paper I, a
spatio-temporal index set is used and the index set elements are denoted by x . A
Gaussian process is stationary if its unconditional mean and covariance functions do
not change under translation.

That a quantity of interest Ψ is modeled as a Gaussian process with mean and
covariance functions m(d) and k(d; d ′; „), is written Ψ ∼ GP(m(d); k(d; d ′; „)),
following Rasmussen and Williams (2006) and Gelman et al. (2013). Given a set
of observations  D ∈ Rn of the quantity of interest Ψ indexed by some index set
D ⊂ D , the log marginal likelihood for a given set of covariance kernel parameters „
can be directly evaluated (Rasmussen and Williams, 2006) via (2.17) as

log p( D|„) = −1

2
‖ D −m‖2

K −
1

2
log |K| − n

2
log(2ı): (2.29)

The mean function selection affects the maximum likelihood estimate of the covari-
ance parameters given observed data, and the decision of what to include in the mean
function and what to leave for the covariance function is a modeling choice.

For calculating the marginal distribution of Ψ at some test input d∗ =∈ D, d∗ ∈ D
conditioned on observations  D, equations (2.18 - 2.20) can be directly employed,
with X1 = Ψ∗ and X2 =  D. Here Ψ∗ denotes the marginal distribution of random
field Ψ at test input d∗. The covariance K( D;  D) then has the elements k(d; d ′)
with d; d ′ ∈ D.

An alternative way to model the evolution of randomness in a dynamical system
is a dynamic linear model (DLM), in which a state space model is used in conjunc-
tion with the Kalman filter or Kalman smoother algorithms for parameter estimation
(Durbin and Koopman, 2012; Gamerman, 1997). Given a linear model M and a Gaus-
sian observation model in (2.9), the Kalman filter first predicts xt |xt−1, the state at
time t given the state at time t − 1 and its covariance, and then updates those esti-
mates using any available observations at time t. In Paper I the DLM approach could
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have been utilized for state estimation, much like was done in Laine et al. (2014),
even though due to the size of the problem and the nature of the data this would
have been challenging.

2.4.1 A parametric form for the Gaussian process mean function

In case the mean of a Gaussian process prior is not zero, a convenient way of pre-
scribing it is via the parametrization (Santner et al., 2003)

m(d) =

pX
i=1

“i (d)˛p; (2.30)

where “i are some functions of index d that are expected to capture the dynamics of
the variation, and ˛i are coefficients that can be determined for best fit.

Let F be a matrix with elements Fi j = “i (dj) and „ be the covariance function
parameters. The least-squares solution for the ˛-parameters are once again given by
(2.23 - 2.25), with A← F , Γ← K, and y ←  , yielding

˛| ; „ ∼ N
“

(FK−1F T )−1FK−1 ; (FK−1F T )−1
”
: (2.31)

While this form is useful in that knowing the covariance model it allows one to get
closed-form point estimates of the ˛-factors and their uncertainties, it does not cover
non-linear cases such as parameters appearing in the arguments of a non-linear “i .

2.4.2 Gaussian process covariance kernels

There are several standard parameterized forms for describing covariance kernels, and
of those the exponential, Matérn, and periodic kernels are utilized in Paper I. The
notation presented here is from that paper, and it is reused in chapter 3.

Let „ be the set of parameters controlling a covariance kernel, often containing at
least a scale parameter ‘, and a maximum covariance parameter fi2. As a shorthand,
let

‰‚‘I (d; d
′) =

X
c∈I

|dc − d ′c |‚

‘‚c
; (2.32)

where I 3 c is the set of dimensions c of the members of the index set D . For
instance for a Gaussian process indexed with both a time and space dimension s.t.
d = (dx ; dt)

T ∈ R2, it is natural that the time and space axes can have different
covariance scale parameters ‘x and ‘t .

The ‚−exponential family of covariance kernels (Rasmussen and Williams, 2006)
with „ = (‚; ‘; fi2), is defined by the covariance function

kexp(d; d ′; „; I) = fi2 exp
“
−‰‚‘I (d; d

′)
”
; (2.33)
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which, with ‚ = 2, yields infinitely differentiable realizations of the random process
that look very smooth.

The Matérn family of covariance kernels (Rasmussen and Williams, 2006), with
„ = (�; ‘; fi2), is given by

kM(d; d ′; „) =
fi2s�

Γ(�)2�−1
K�(s); (2.34)

where s = 2
√
�‰1
‘I

(d; d ′), � = ¸ − q
2 , where ¸ is a smoothness parameter and q is

the dimensionality of s, and K� is the modified Bessel function of the second kind of
order �. The value ¸ =∞ corresponds to the squared exponential kernel and ¸ = 1
corresponds to the exponential kernel with ‚ = 1. Despite this similarity between
the Matérn and exponential kernels, the realizations of the random function from the
processes with values 1 < ¸ < ∞ do not correspond to those from the kernel kexp

with any values of ‚. The smoothness parameter � is not estimated in this work, but
that can also be done, see e.g. (Roininen et al., 2018).

The Matérn kernel is expensive to evaluate for any � that is not a half-integer,
since K� is an infinite series that truncates only for the half-integer values. Figure
2.1 gives a visual example of how realizations from exponential and Matérn can look
like.

γ = 2, τ = 1, l = 2 γ = 2, τ = 1.5, l = 0.25 γ = 1, τ = 1, l = 1

ν = 0.5, l = 1 ν = 1.5, l = 1 ν = 1.5, l = 0.5

Figure 2.1: Example draws from Gaussian processes with exponential (first row) and
Matérn (second row) covariance kernels show how the smoothness and scale change
when the covariance kernel parameters „ are varied. These draws were generated by
explicitly calculating the covariance matrix K by evaluating the covariance function
in question between all pixel pairs, and drawing from that covariance by multiplying
an i.i.d. standard normal vector by the Cholesky factor of K.

A periodic kernel with „ = (fi2; ‘per; „exp) is defined in Paper I based on (Gelman
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et al., 2013) by

kper(d; d
′; „; I) = fi2exp

„
−2‘−2

per sin2

„
ı(t − t ′)

∆t

«
− ‰‚‘I\{t}(d; d

′)

«
; (2.35)

in which the term „exp defines the scale parameters for the exponential functions
‰ controlling the spatial component, and ‘per gives the periodic (e.g. inter-annual)
covariance width for the temporal dimension. Normally the exponential spatial de-
pendence, the last term in the exponent (2.35) is not present, but in the context of
this work the periodicity is wanted to be restricted to the time dimension only.

The periodic kernel can be used to describe situations, where the dynamics of the
data is expected to be periodic. For instance carbon dioxide fluxes do have an annual
cycle due to the seasons repeating every year. If the mean function has periodic bias,
this also can be caught by the periodic kernel. The periodic kernel is particular in
that covariance over large temporal distances is possible, and, as in the context of
Paper I, it can therefore be thought of having predictive capabilities even outside the
temporal domain of the available observations.

A symmetric matrix C ∈ Rn×n is positive semi-definite (PSD) if ‖x‖C ≥ 0 for
all x ∈ Rn (e.g. (Gruber, 2013)). In this work PSD matrices are always symmetric,
even though sometimes the notion is taken to more generally refer to the situation
where 1

2 (CT +C) is PSD. Since sums of PSD matrices are PSD, linear combinations
of covariance functions are also valid covariance functions. This allows for lots of
flexibility in describing combined effects of covariances of different scale, roughness,
and amplitude.

A multi-scale covariance kernel, as defined in Paper I, captures covariances at
various length scales. Given observation error variances of ff2

x for each observation at
x , the multi-scale covariance function may then have for instance the form

k(x; x ′; „) = ‹x;x ′ff
2
x + kper(x; x

′; „; IS) + kM(x; x ′; „) + kexp(x; x ′; „; IST ): (2.36)

These kernel components are called subkernels in Paper I. What complexity and
how many scale levels or kernel components are needed depend on the data. The
identifiability of the parameters given data sampled using a multi-scale kernel is looked
at in section 3.3.3.

The Gaussian process prediction problem can be solved locally using covariance
tapering, as done in Paper I. Such Vecchia approximations (Vecchia, 1988) have
been recently studied also by others, e.g. with a satellite remote sensing applica-
tion to chlorophyll fluorescence data presented by Katzfuss et al. (2018). There are
also various additional types of approximations to Gaussian processes to make them
tractable with large data sets. A recent comparison of these methods is presented in
Heaton et al. (2017).
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2.5 Graphical models

A graphical model (Lauritzen, 1996; Wainwright and Jordan, 2008) is a model on a
graph G = (V; E) where V is the set of vertices or nodes, and E is the set of edges.
The vertices correspond to random variables and the edges describe how those random
variables depend on each other. Graphical models facilitate describing the conditional
dependence structure, such as Markov structure, in Bayesian models. They are often
used in situations where these dependency structures are complex and approximate
inference algorithms are used to make the inference task tractable. The objective of
the inference task is typically find out marginal distributions of the nodes, or the joint
MAP estimate.

The graphical model framework can be also seen as an approach to looking at
(typically high-dimensional) statistical inference problems. For different classes of
graphical models there exist standard algorithms for performing inference (Wain-
wright and Jordan, 2008). This usually amounts to calculating expectations or point
estimates or sampling from posterior distributions, conditionals, and marginals.

2.5.1 Directed graphical models

A directed graphical model (Wainwright and Jordan, 2008) or a Bayesian network
describes the conditional dependence structure of a directed acyclic graph (DAG),
where edges ei→j ∈ E have a direction and where there are no loops. In that case,
the meaning of the DAG is, that the joint distribution of all the vertices factorizes
according to

p({� ∈ V}) =
Y
�∈V

p(�|�parents): (2.37)

The Kalman filter (KF) (Kalman (1960), for a modern exposition see e.g. Särkkä
(2013) or Law et al. (2015)) can be used as example of such a model, as is shown
in figure 2.2, where the conditional dependence structure described by the arrows
implies that the joint distribution p(x0 : : : xN ; y0 : : : yN) may be computed as in (2.37)
as p(y0|x0)p(x0)

QN
i=1 p(yi |xi )p(xi |xi−1). This decomposition is a modeling choice,

without which use of the KF algorithm would not be justified. The KF can also be
described as an algorithm for solving the hidden Markov model (HMM) represented
by the graph and its decomposition – hidden in that the states xi are not directly
observed, and Markov since Yi |X0 : : : Xi = Yi |Xi . Alternatively, a state space model
could be used, by specifying e.g. xi+1 = f (xi ) +‰i and yi = xi +›i with ‰i ∼ N (0; Γi )
and ›i ∼ N (0;Σi ) for some covariance matrices Σi and Γi . In the case of the standard
KF, the function f would be linear. The state space approach is developed thoroughly
for time series data by e.g. Durbin and Koopman (2012). Due to not using the KF
in the Papers, the KF update formulas are not presented here.

In addition to the Kalman filter, for instance Markov chain Monte Carlo algorithms
and hierarchical Bayesian models, both of which are described later, can be described
as directed graphical models. Such models can be thought of as being generative in
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that given parents �parents, realizations of � can be generated directly. This paradigm
is widely used in machine learning with for example generative adversarial networks
and other models, see e.g. Goodfellow et al. (2014).

Figure 2.2: In the Kalman filter algorithm, the mean and the covariance of state x
are updated at each time step i whenever observations yi ∼ Yi become available, as
is represented by this DAG.

x0 x1 x2 x3 x4 x5 x6

y0 y1 y2 y3 y4 y5 y6

2.5.2 Undirected graphical models

An undirected graphical model or Markov random field (MRF) is a graphical model
whose edges are not directed. These undirected edges determine if the global, local,
or pairwise Markov properties hold (Lauritzen, 1996). These properties are equal if
p(�V) is always strictly positive. For the algorithms in this work, the global Markov
property is assumed, stating that any two different vertices �i and �j of a graph
G = (V; E), which are separated by a set of nodes A (in other words e�i�j =∈ E) are
conditionally independent given A.

With the condition p(�V) > 0, the joint distribution of the graph can be written
as a maximal clique factorization,

p({� ∈ V}) =
1

Z

Y
c∈C

 (�c); (2.38)

where Z is the normalizing partition function, and the set of maximal cliques C, with
∪C = V, contains maximal sets of nodes c such that if �i , �j ∈ c, then e�i�j ∈ E.
The functions  are called potential or compatibility functions. For a lattice graph
the maximal cliques are the adjacent pairs of random variables.

According to Hammersley and Clifford (1971), the maximal clique factorization
and the conditional independence structure given by the graph are essentially identical.
This suggests that efficient algorithms can be derived by working with maximal cliques
of a graph.

The mean function modeling in Paper I is an example of an undirected graphical
model, where the spatial dependence of the mean function parameters of a Gaussian
process is modeled according to (3.3) and these ˛-parameters are allowed to change
from one location to another based on spatially local observations.The important
difference between the undirected and (acyclic) directed graphical models is that the
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interdependence of the nodes is bi-directional ruling out straightforward sequential
inference by just following the arrows of a DAG. Connections between Gaussian MRFs
and Matérn class Gaussian processes is discussed e.g. by Lindgren et al. (2011).

An example of approximate inference in an undirected graph is given in figure
2.3, where marginalization in a lattice graph can be carried out effectively by diag-
onally calculating marginals corner-to-corner and back and carefully accounting for
propagating beliefs (calculated marginals). In the variable elimination algorithm, the
reconstituted graphs after elimination would have diagonal edges. In Paper I those
are not considered for performance reasons, since the nodes diagonal to each other
can then be computed in parallel due to absence of diagonal edges in the graph. Since
solving the ˛ coefficients in (2.31) involves inverting the covariance matrix K, and
since this inversion is an O(n3) process in the number of observations, computing the
marginals in parallel separately is for large grids around 100 times faster even with a
12-threaded standard desktop workstation.

Not using the exact variable elimination algorithm does introduce an approxima-
tion error, but in the application of Paper I it is for several reasons typically either
small or very small. First, with remote sensing data there are generally a large num-
ber of observations available for computing the ˛ for each vertex �. This means that
when the spatial resolution of the grid is not excessively fine, the covariance with the
observations selected for the other vertices of the reconstituted graph, referring to
matrix K of the joint system in (2.31), would be much smaller. Second, when there
are not that many observations available for fitting the parameters at each vertex
the different vertices will share observations leading to similar ˛ coefficients due to
shared data. Third, at present only the modes are actually used, and therefore the
joint and marginal variances of the ˛ factors are not of paramount importance. Im-
plementation of the exact variable elimination algorithm is planned to be added to
the software tool presented in Paper I in the future.

2.6 Monte Carlo algorithms

In this section X denotes a real-valued random variable or vector, i.e. X : (Ω;F ; —)→`
Rd ;B(Rd);Λ

´
, and y denotes the observed data. Formulations with more general

state spaces are common, but in this work Rd with Lebesgue measure Λ suffices.

Given any distribution fX(x) that samples need to be generated from, if its cu-
mulative distribution function FX(x) is available, then independent samples can be
trivially generated with the inverse cumulative distribution function sampling or in-
version sampling (Tarantola, 2005): If u ∼ U[0;1], then obviously F−1

X (u) ∼ fX(x). A
closed form of the cumulative distribution function is, however, rarely available.

In the Bayesian inverse problem setting Bayes’ theorem (equation (2.6)) is used
for finding the posterior distribution p(x |y) of x by evaluating the likelihood func-
tion, p(y |x). When p(y |x) is computationally demanding to evaluate, usually also
the evidence term p(y) =

R
Rd p(y |x)p(x)dx is intractable, and for finding the pos-
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Figure 2.3: Figure from Paper I with i denoted by @�i . The marginal distribution
of vertex �, p(�), is conditional only on the neighbors @�1 : : : @�4 (red edges) due to
the Markov structure in the pictured lattice graph. This graph is used for solving for
mean function coefficients in Paper I. Each connected pair is a maximal clique in this
particular case. For effective solving, the vertices on the diagonal dashed lines are
computed simultaneously. The order numbers labeling the diagonal lines represent an
ordering in which the diagonals can be computed in parallel to get all the marginals
in O(N) wall time, where N = nlat + nlon − 1. The (N + 1)th computation in the
corner is not conditioned on already-computed neighbors to avoid double counting
data.



2.6 Monte Carlo algorithms 23

terior distribution clever algorithms are needed. Monte Carlo algorithms, nowadays
discussed in a multitude of standard references such as Gamerman (1997); Gelman
et al. (2013); Bickel and Doksum (2016); Tarantola (2005), are algorithms that utilize
randomness for calculating expectations or drawing samples from a distribution. They
are useful and necessary when a closed-form expression of the likelihood function is
not available, which is always the case with complex geophysical process models.

One of the simplest such methods is the rejection sampling (Bickel and Doksum,
2016) algorithm: given an unknown unnormalized distribution f (x), a constant M,
and a known distribution gX(x), such that i.i.d. samples can be generated from
gX(x), and given that for all x ∈ support(f ) it holds that f (x) ≤ Mg(x), samples

xi drawn from g are accepted as samples from f if Yi = 1, where Yi ∼ Ber
“

f (xi )
Mg(xi )

”
.

While this method works well for very low-dimensional targets if a good guess at M
and g are available, the curse of dimensionality quickly destroys its performance. For
this reason more sophisticated algorithms are utilized, which despite often producing
correlated samples offer far superior performance. The Monte Carlo methods used
in this work and described in this section are Gibbs sampling, Adaptive Metropolis
MCMC, and sampling-importance resampling (SIR).

2.6.1 Markov chain Monte Carlo

A Markov chain is a sequence of random variables X1; X2 : : : XN such that for all i ,
the Markov property

p(xi |x1 : : : xi−1) = p(xi |xi−1) (2.39)

is satisfied (Gamerman, 1997). This extremely simple generative model is described in
figure 2.4. As a conceptual bridge to section 2.4, Markov chains can be characterized
as random functions with a discrete index set D = N+ (Williams, 1991) and as
with stochastic processes in section 2.4, it is useful to think about Xi as states of a
dynamical system and of the indexes i as time. An obvious difference to the rejection
sampling and inverse cdf sampling methods is that the samples generated by MCMC
are not independent.

Figure 2.4: The random variables in a Markov chain depend only on the value of the
preceding member. In MCMC algorithms this is exploited for efficiently generating
correlated samples from a desired target distribution p(x), since in theory Xi ∼ p(x)
approximately for all sufficiently large i (Bickel and Doksum, 2016).

X1 X2 Xi−1 Xi Xi+1 XN−1 XN. . . . . .

A Markov chain is homogeneous (Bickel and Doksum, 2015) if (2.39) is satisfied
and fXi |Xi−1

(xi |xi−1) = fX2|X1
(x2|x1) ∀i ∈ N, i ≥ 2, in other words the conditionals are

not dependent on the index i . The evolution of a homogeneous chain is determined
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by the Markov transition kernel,

q(x1; x2) = p(x2|x1); (2.40)

which is a function giving the probability of transitioning from x1 to x2. If the state
space is finite, then q is a matrix, whose elements qi j give the transition probabilities
from xi to xj . Given an MCMC chain with state space X and with transition kernel
q(·; ·), the stationary distribution of the chain, ı, if it exists and is unique, is given
by

ı(y) =

Z
Rd
ı(x)q(x; y)dx (2.41)

with some states x; y ∈ Rd . If a chain can be constructed in such a way that it can
be thought of as integrating over the state space as in the formula above, then the
MCMC chain, after discarding some burn-in (or warm-up according to Gelman et al.
(2013)) period to forget the starting point of the chain, can be seen as representing
correlated draws from ı. For if Xi ∼ ı, then Xj ∼ ı for all j > i . Not any q will do,
however, and the conditions for allowing this interpretation are clarified below. The
following definitions are presented e.g. in Gamerman (1997) and Bickel and Doksum
(2015).

A Markov chain is stationary if ∀k ∈ N and ∀m ∈ N+,

fX1;:::;Xm(x1; : : : ; xm) = fXk+1;:::;Xk+m(xk+1; : : : ; xk+m): (2.42)

A finite state Markov chain is aperiodic if it does not revisit the same state at fixed
intervals, and for continuous state spaces such as Rn, aperiodic chains do not visit
any sets F ⊂ Rn s.t. Λ(F ) > 0 at fixed intervals.

A finite state Markov chain is positive recurrent, if the expected visit time to any
state is finite. For continuous states, the concept of Harris recurrence is used instead:
a chain is Harris recurrent if the probability of revisiting any set F ⊆ Rq s.t. Λ(F ) > 0
in a finite number of steps is one.

A finite state Markov chain is irreducible if any state x in the state space is
reachable from any other state x ′ in a finite number of steps. For continuous state
spaces, let � be a measure on some state space (S;S ), typically (Rd ;B(Rd)). The
chain is �-irreducible if for any x ∈ S and any F ⊂ S with �(F ) > 0 there is an i0
such that Pr(Xi+i0 ∈ F |Xi = x) > 0. The chain is irreducible if any such � exists.

An irreducible and aperiodic finite-state Markov chain is called ergodic. In the
continuous case a Markov chain is ergodic if it is irreducible and Harris-recurrent.
Furthermore, if the chain satisfies detailed balance,

ı(x)q(x; y) = ı(y)q(y; x); (2.43)

then the chain is said to be reversible. This can be stated in that the probability flow
from x to y is the same as from y to x . For an ergodic MCMC chain, (2.43) can be
trivially manipulated withZ

Rd
ı(x)q(x; y)dx =

Z
Rd
ı(y)q(y; x)dx = ı(y): (2.44)
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Equation (2.44) is actually just (2.41), meaning that transitioning from x , which is
a random draw from the stationary distribution ı, with the kernel q, yields another
draw from ı.

This development leads to the conclusion that devising transition kernels which
generate ergodic reversible chains is desirable, since such chains ultimately auto-
matically produce samples from the target distribution. The effectiveness, however,
depends on the mixing time – how fast the random state variables of a Markov chain
initialized at random end up being distributed according to ı – and how correlated
the samples are.

The Metropolis-Hastings (MH) algorithm is by far the most famous MCMC al-
gorithm, and it is satisfies the detailed balance condition (Gamerman, 1997). Let
t(y ; x) be the proposal density, which is a probability density on Rd evaluated at y .

The MH transition kernel q(x; y) is defined with the help of the acceptance
probability

¸(x; y) ,

„
1 ∧ ı(y)t(x ; y)

ı(x)t(y ; x)

«
; (2.45)

using which it can be written in the form

q(x; y) = t(y ; x)¸(x; y) x 6= y: (2.46)

From this it follows that the probability the chain stays put is

Pr(Xi+1 = Xi ) = 1−
Z

z∈Rd\{xi}

q(xi ; z)dz; (2.47)

as demonstrated by Gamerman (1997) in the discrete state space case. The function
t is most often parametrized by the location x of the chain at the previous iteration.
A notable exception to this rule are independent proposals, which do not depend on
the current chain location x .

While ergodicity depends on the proposal distribution, detailed balance for the
MH algorithm follows from a direct calculation: for ı(y)t(x ; y) > ı(x)t(y ; x) and
ı(x)t(y ; x) > ı(y)t(x ; y); respectively,

ı(x)q(x; y) = ı(x)t(y ; x)¸(x; y) = ı(x)t(y ; x) = ¸(y; x)t(x ; y)ı(y) = ı(y)q(y; x);

ı(y)q(y; x) = ı(y)t(x ; y)¸(y; x) = ı(y)t(x ; y) = ¸(x; y)t(y ; x)ı(x) = ı(x)q(x; y);
(2.48)

and the case ı(y)t(x ; y) = ı(x)t(y ; x) is trivial. When the proposal is symmetric,
t(x ;y)
t(y ;x) = 1 and the MH-algorithm reduces to the Metropolis algorithm (Tarantola,

2005).
The power of the MH algorithm (and MCMC algorithms in general) is in how

the density ı in (2.46) is evaluated. When sampling a posterior distribution as given
by Bayes’ theorem (2.6), the observed data is fixed and whether a proposed point is



26 2 Theory

accepted or not depends only on the outcome of a Bernoulli trial whose parameter is
the ratio of the posterior density evaluated at the proposed and current points. This
makes evaluating the evidence term unnecessary.

Since the samples generated with MCMC are correlated, calculating the effective
sample size (ESS) is useful. The (1-d) ESS is defined by (Gamerman, 1997)

” = N

 
1 + 2

∞X
i=1

i (xn)∞n=1

!−1

; (2.49)

where N is the length of the Markov chain (xn)Nn=1, i , Corr(x1 : : : xN−i ; xi+1 : : : xN)
is its lag-i autocorrelation coefficient, and the series is in practice truncated due to
finite chain length and due to that after the initial decay in autocorrelation the terms
tend to only contribute noise. There are many options for computing essential sample
sizes for multivariate chains, but a canonical version of the ESS does not exist. One
common way is to compute the ESS for each coordinate projection separately.

Draws generated with MCMC algorithms should be seen as draws from the pos-
terior only after the chain has mixed well (Gelman et al., 2013), since only after some
i0 it is true that Xi0+i ∼ ı for all i ∈ N. A practical way to find such an i0 is to
run multiple chains initialized at random points and to include as posterior samples
from each chain the tails s.t. the inter-chain statistics agree with the within-chain
statistics. If a single chain is used for e.g. computational reasons, whether the chain
finds the target distribution or not can be usually also seen by looking at the chain
for each state variable separately. In the rare case when ı is multi-modal, comparing
2-d pairwise marginals with varying degrees of burn-in may be more revealing. While
MCMC is used in Papers I, II, and IV, only the experiments with real-world data in
Paper I exhibited multi-modal features (not shown).

As for the other Monte Carlo estimates, central limit theorems apply, implying
that the variance of the estimator for the mean of a scalar target density ı behaves
according to |E[ı]− 1

N−i0
PN

i0
xi | ∼ N (0; ff

2

” ), where ” is given by (2.49) and iterations
before i0 have been discarded as burn-in.

The applications presented in Papers I, II and IV use a variation of the MH
algorithm, the Adaptive Metropolis (AM) algorithm (Haario et al., 2001), which
produces non-homogeneous chains and therefore is not reversible. The chains are,
however, ergodic and converge to the target distribution when the chain length tends
to infinity. The sampling procedure with AM is identical to that of standard MH,
except for that the covariance of the Gaussian proposal density is recalculated every
once in a while1 to match the sample covariance, scaled by the factor 2:42

d , where d is
the parameter dimension. This choice yields an optimal acceptance ratio for Gaussian
targets (Roberts et al., 1997).

1How often the adaptation is done is implementation-dependent. It is known, however, that
adapting at every iteration may lead to the algorithm misbehaving. As an example, in Paper II the
adaptation was done whenever the iteration number was the square of an integer.
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If the target is non-Gaussian, AM will still work, but not quite as effectively. In
order to decrease the correlatedness of the samples, the Delayed Rejection (DR) al-
gorithm (Tierney and Mira, 1999) may be implemented on top of AM, resulting in
the Delayed rejection adaptive Metropolis (DRAM) algorithm (Haario et al., 2006).
When a proposed state is rejected for the first time, the DR algorithm, instead of
immediately repeating the previous value in the chain, proposes other points from
scaled proposal densities. These later proposals are accepted with a modified ac-
ceptance probability that takes care of that the chain remains reversible. Practical
experience, for instance from preliminary simulations for Paper II, showed that while
DRAM works it will in many cases not improve nor deteriorate the performance of
the sample generation. With multi-modal targets, the performance can, however, be
dramatically improved with DR (see comment SC1 by Laine, Susiluoto, Tamminen,
and Haario in the discussion of Lu et al. (2017)).

There are many alternative MCMC algorithms and new ones are, such as (Tit-
sias and Papaspiliopoulos, 2016; Bouchard-Côté et al., 2015), are continuously being
developed. Many of these more modern algorithms as well as the older Metropolis-
adjusted Langevin (Grenander and Miller, 1994) and Hamiltonian Monte Carlo (Du-
ane et al., 1987), utilize gradient information of the posterior density to improve the
quality of the samples. Without gradients or good guesses at the covariances in the
posterior, the AM method in practice performs well, as is shown in the Papers.

2.6.2 Gibbs sampling and Metropolis within Gibbs

Gibbs sampling is a Markov chain Monte Carlo method, where a multivariate target
ı of state X = (X1; : : : ; Xd)T with random variable elements X i is sequentially
sampled component by component with the Markov transition kernel

q(x; y) =
dY
i=1

p(y i |z−i ); (2.50)

where z−i = (y1; : : : ; yi−1; xi+1; : : : ; xd) (Gamerman, 1997). The resulting chain is
homogeneous, and Gibbs sampling has been shown to have the full joint posterior
distribution as the stationary distribution (Tierney, 1994). Gelman et al. (2013)
presents Gibbs sampling as a special case of the MH algorithm.

Given the form of the proposal, it is natural to use Gibbs sampling in situations
where analytic forms of the conditionals are available. This situation arises when a
hierarchical statistical model is constructed utilizing conjugate priors, as outlined in
section 2.7. When some of the conditionals are not available in closed form, other
forms of sampling may be employed, such as rejection sampling or the Metropolis
algorithm. In the latter case, the algorithm is then called Metropolis within Gibbs
(Gamerman, 1997). It is used in Paper II.

Generally the number of samples needed in Monte Carlo sampling scales very
poorly with parameter dimension even with best methods. Limiting the dimension
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of the Metropolis-sampled part may help somewhat due to that in Gibbs sampling
proposed parameters are always accepted (Gamerman, 1997). In the presence of
parameter correlations, Monte Carlo algorithms proposing the correlated parameters
together are generally superior. If an approximation of the joint posterior density is
available, this can be used to rotate the parameter axes for achieving better mixing.
Often-cited methods improving sampling efficiency based on this idea, applicable in
generic Monte Carlo sampling settings, include for instance Active subspaces (Con-
stantine et al., 2015), Likelihood-informed subspaces (Cui et al., 2014), and truncat-
ing the standard singular value decomposition (Mueller and Siltanen, 2012; Gruber,
2013).

2.6.3 Importance sampling and resampling

Let random variable X ∼ ı take values x ∈ X , and let ıb(x) be a distribution
from where samples can be generated, called the biasing distribution, with the corre-
sponding measure denoted by —b. Importance sampling is a method for estimating
expectations of a function g(x) by evaluating it at samples drawn from ıb and re-
weighting those samples according to the ratio of g and ıb. More formally,

E[g(X)] =

Z
X

g(x)ı(x)

ıb(x)
d—b(x); (2.51)

which with a finite sample of size N becomes

E[g(X)] ≈ ĝ ,
X
x∼ıb

g(x)

ıb(x)=ı(x)
; (2.52)

where ĝ is called the importance sampling estimate of E[g(X)]. Gelman et al. (2013)
treat ı(x) as an unscaled posterior density, but while this may be a useful depiction,
conditioning on data is not generally necessary for describing importance sampling.

Importance sampling is particularly useful for rare event simulation with compu-
tationally demanding models; in case only tails of a parameter distribution trigger a
rare event such as a catastrophic drought, flood, nuclear reactor meltdown or a flu
pandemic, compared to naive Monte Carlo sampling the accuracy of the calculated
expectation can be increased dramatically by using a biasing distribution with most of
the mass in this rare event triggering region. The condition support(g) ⊆ support(ıb)
needs to be satisfied for importance sampling to work – otherwise it could happen
that no samples are used from an area in X where g is large, and this would introduce
bias to ĝ . The optimal choice for the biasing distribution that minimizes the variance
of ĝ is ıb(x) ∝ |g(x)|ı(x) (Casella and Berger, 2002).

If the samples for computing the sum over the biasing distribution in (2.52) are
taken from a previous Monte Carlo sample, the procedure of computing ĝ can also
be used to generate samples from g by re-weighting those Monte Carlo samples with
ı(x)g(x)
ıb(x) and drawing independently according to the obtained weights. With g(x) ≡ 1
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this is called Sampling-Importance-Resampling (SIR) (Gelman et al., 2013). The
method can be useful e.g. if after conducting a Monte Carlo experiment there is need
for an adjustment of the likelihood function, or if adequate data exists for repurposing
output of model evaluations for calculation of additional statistics. The SIR method
is utilized in Paper II.

2.7 Hierarchical Bayesian models

A hierarchical Bayesian model (Gamerman, 1997; Gelman et al., 2013) is a modeling
approach for situations where parameters of a distribution need to be modeled as
random variables. A typical example and the one utilized in this work involves creating
a model for an ensemble of related experiments indexed with i ∈ {1; : : : n}. These
experiments are conducted in such a way that the dependency structure of the data on
any associated random variables is shared but observations yi differ for each ensemble
member.

In the hierarchical model described in figure 2.5 the parameters „i , possibly as-
sociated with each ensemble member, share a common prior distribution p(„i |�)
parameterized with parameters �, but the parameters „i can have different posterior
marginal distributions p(„i |y) depending on the data y . The � are called hyperpa-
rameters and their priors are called hyperpriors (Gelman et al., 2013). It is possible
to have the data also depend on auxiliary parameters fi that are prescribed a fixed
prior. In such a setting the full joint posterior distribution can be written as

p(„; fi; �|y) ∝ p(�)p(fi)
Y

p(yi |„i ; fi)p(„i |�): (2.53)

Figure 2.5 expresses the model described above as a directed graphical model, as
is customary for hierarchical models (Wainwright and Jordan, 2008). The graphical
description intuitively reveals the conditional independence structure in (2.53).

More complex hierarchical models describing multiple levels of shared dependence
structure may also be constructed. For instance the (hyper)parameters � could again
depend on other random variables “ with assigned hyperprior distributions p(“), in-
stead of just depending on the fixed parameters s.

Sampling from posterior distributions of these models often is facilitated by using
conjugate priors, meaning that the families of the prior distributions are chosen to be
such that the conditional distributions have closed forms and are easy to sample from
(Gelman et al., 2013; Gamerman, 1997). This is for instance the case in the example
of (2.53) if fi ∼ N (—fi ;Σfi ) with some vector fi and covariance Σfi , � = (—„; ff

2
„),

„i ∼ N (—„; ff
2
„), —„ ∼ N (—0; ff

2
0), and 1

ff2
—
∼ Scale-inv-ffl2(s) with some hyperprior

parameters —0; ff
2
0, and s. If the „i parameters are not mutually correlated, and

especially if furthermore the fi parameters are not correlated with the „i , then the
„i parameters may be effectively Gibbs-sampled and the dimension of Metropolis-
sampling the fi parameters remains smaller as mentioned earlier in section 2.6.2.
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Figure 2.5: An example of the simple hierarchical model in (2.53) described as a
DAG. Observations yi are generated by parameters „i , all of whose priors depend on
hyperparameters �1 and �2, and parameters fi which have a fixed prior with parameters
sfi . The priors of the hyperparameters � are the hyperprior distributions with fixed
parameters s�1 and s�2 .

�1 �2

s�1 s�2

„3„2„1 „4 „5 fi

sfi

y3y2y1 y4 y5

This is called Metropolis within Gibbs or Gibbs within Metropolis, depending on the
source.

2.8 Bayesian modeling with time series data

In geosciences, trace gas flux measurements are often done at flux measurement sites
with fixed instruments producing time series data. Typical time series measurement
data yt with time index t ∈ {1 : : : T} is evenly distributed in time, even though more
often than not there are gaps in the data due to various reasons such as instrument
malfunction, power outages, or weather. In Paper II time series flux measurement
data is used for Bayesian model calibration. As with other Bayesian modeling, also in
that setting the posterior shape depends strongly on how the residual autocorrelations
in (2.10) are modeled.

The model M, designed to produce states x related to observations y as in (2.8)
and (2.9) has unknown biases and random errors which may be time-dependent, as is
the case in e.g. Paper II. The probability model for the model-observation mismatch
needs to account for any such structure generated by any error source, see also section
2.1.2.
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2.8.1 AR, MA, and ARMA models

Let the model-data residuals be denoted by rt with t ∈ {1 : : : T}. A possible model
for the residual autocorrelations is the autoregressive model (Harvey, 1990; Durbin
and Koopman, 2012; Chatfield, 1989) of order n, AR(n), which models the time series
r with

ri =
nX
j=1

ffij ri−j + ›i ; (2.54)

where ffij is the lag-j autocorrelation coefficient and ›i are some random variables,
which are assumed to be independent. However, if after fitting the ffij parameters
with a reasonable choice of order n the ›i still de facto end up being autocorrelated,
other models may be tried. A second much used model for time series data is the
moving average model of order m, MA(m) (ibid.), given by

ri =
mX
k=1

‰k›i−k + ›i ; (2.55)

where the difference to the AR models is that while AR models add random error on
top of a weighted sum of the previous data values, the MA model adds the random
error on top of a weighted sum of previous random errors. These models can be
combined to form an autoregressive moving average model of order (m; n), denoted
ARMA(m; n) (ibid.), with

ri =
nX
j=1

ffij ri−j +
mX
k=1

‰k›i−k + ›i : (2.56)

There are several variations to these models such as introducing nonlinearities or
exogenous inputs (Durbin and Koopman, 2012). However, since model complexity is
a liability when interpreting the results, these were not used in Paper II.

2.8.2 Practical parameter estimation in the ARMA setting

This section follows the presentation in Paper II, where the ri in (2.56) are generated
by a non-trivial dynamical model via (2.9). To perform Bayesian inference with Monte
Carlo methods, the parameters ‰ and ffi add another layer of difficulty since the likeli-
hood given any model parameters „, p(y |„), depends on both the ARMA parameters
ffi and ‰ in addition to „. While the fully Bayesian way of doing this would be find-
ing the full joint posterior distribution p(„; ffi; ‰|y) via evaluating p(y |„; ffi; ‰)p(„; ffi; ‰),
where the prior parameters would usually be independent, this optimization problem
is not generally convex and both minimization algorithms and MCMC algorithm may
get stuck in local minima and/or drift to nonphysical parameter regions. It may
also happen that the model parameters are not constrained by the data under the
statistical model used.
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An alternative to finding the full joint parameter posterior distribution is to find
a point estimate „̂ of the model parameters by minimizing some statistic of the
data (residuals), e.g. sum of absolute values, running mean, or sum of squares of the
residuals or their subset, and then find point estimates for the error model parameters
‰ and ffi. Monte Carlo simulations to find the posterior distribution of the model
parameters can then be performed given these estimates.

Given „̂, finding the order (m; n) of the model and point estimates of the param-
eters ffi and ‰ can be done by minimizing the Bayesian information criterion (BIC)
(Bickel and Doksum, 2016) – a standard method for model selection – giving

(ffî; ‰̂; m; n) = arg min
(ffi;‰;m;n)

BIC = arg min
(ffi;‰;m;n)

{npar log(nobs)− 2 log (p(r |ffi; ‰))} : (2.57)

In the above expression, nobs is the number of observations, which in the absence of
gaps in data equals T , and npar = m+n is the number of parameters. Other popular
criteria for model selection, such as the Akaike information criterion (AIC) (Bickel and
Doksum, 2016), which uses the penalty 2npar instead of npar log(nobs), often produce
similar (but not identical) results. For finding the ARMA(2,1) parameters used in
Paper II, residuals r were simulated by random sampling fifty parameter vectors „
from an approximate posterior, and the vast majority of those residual time series
resulted in optimal ffi and ‰ parameters close to each other.

The resulting time series of error terms › in (2.56) can be checked to not to be
autocorrelated by calculating the Durbin-Watson statistic (Durbin and Watson, 1950,
1951),

T (›) =

PT
i=2(›i − ›i−1)2

›T ›
; (2.58)

where a gapless observation series has been assumed, but gaps can be taken care of
if needed by discarding any indexes with no observations. If T (›) is close to 2, the
time series has no substantial lag-1 autocorrelation (see p. 26).

Model residuals as in (2.10) are usually expected to be zero-mean, since any
constant term could be simply added to the definition of model M in (2.8). To
make sure the error model is correct and the obtained posterior shape is accurate, the
appropriate scale parameters for the distribution of the ›i in (2.56) need to be found.
If the magnitude of the error terms varies in time as is often the case in geophysical
applications, the error is called heteroscedastic (Harvey, 1990). To utilize such time
series for the likelihood formulation, an easy way to proceed is to preprocess the series
using a parametric model ‚ with parameters ¸, resulting in a new homoscedastic time
series ›∗ = ‚(›;¸).

These ¸ can for uncorrelated zero-mean residuals be found by minimizing some
distributional distance such as the Kullback-Leibler divergence (KL-divergence) (dis-
cussed e.g. in Peyré and Cuturi (2018)) between an empirical distribution (histogram)
”‚(›;¸)(x) of the ›∗-terms, and the actual error model �(x). The KL-divergence for
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two continuous real-valued distributions p and q is given by

DKL (p(x)‖q(x)) =

Z
Rd
p(x) log

„
p(x)

q(x)

«
dx (2.59)

and the appropriate parameters for the error model can be expressed with it as

ˆ̧ = arg min
¸

DKL

`
”‚(›;¸)(x)‖�(x)

´
: (2.60)

The process described in this section outlines one simple approach to do covariance
estimation in a time series context, which is an important and often also a difficult part
of Bayesian parameter estimation studies. This difficulty reflects the complexities of
the error structures arising from combining real-world data and complicated computer
models. The outline of the parameter estimation procedure presented here can be
compared with the parameter estimation procedure of Gaussian process covariance
kernels in (2.29) and mean functions parameter fields in section 2.5.2, which however
omit the model selection and heteroscedasticity considerations. For the GP work in
Paper I, these considerations still remain to be fully addressed.
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3 Applications to geosciences

3.1 Overview of scientific contributions

The large-scale geoscientific problems in the title of this thesis refers to the topics
presented in Papers I-IV and this section provides motivational context for that work
while the details are discussed later. More emphasis is given to Papers I and II than
to Papers III and IV.

3.1.1 Spatio-temporal high resolution CO2 distributions

The research carried out in Paper I tries to answer the following question: Where
is the carbon dioxide in the atmosphere? This question is important in its own right
since the general public has shown much interest in it, but the answer could be applied
to atmospheric flux inversion, or statistical emission models could be developed based
on the results. Since Gaussian processes provide uncertainty information via the theory
in section 2.4, the results can also be applied to validation schemes and hypothesis
testing.

Current scientific literature of Gaussian processes or kriging applied to atmospheric
remote sensing of global CO2 does not contain any high resolution studies that the
authors of Paper I would be aware of. The high number of observations leads to
computational compromises which often result in overly smoothed posterior fields.
However, the multi-scale approach presented in Paper I is able to produce arbitrarily
high resolution CO2 maps with both fine and coarse scale features.

The spatial statistics software presented is not constrained to CO2 or the OCO-2,
but can be used with any remote sensing data in principle. The software is able to
learn kernel and mean function parameters, and is able to sample from extremely high-
dimensionally discretized posterior or prior distributions as defined by the multi-scale
kernel description.

3.1.2 Uncertainties in Boreal wetland CH4 emission processes

Out of all methane emissions, those from natural wetlands have the highest uncer-
tainty. While this in itself is more than enough reason to study uncertainties in
process-based wetland emission models, there is another important reason as well:

35
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changing climate increases uncertainty regarding future emissions. Paper II studies
a Finnish boreal wetland site with a model that was developed in tandem with writ-
ing Paper II (Raivonen et al., 2017). The central questions that we try to answer
are how much uncertainty is there in the model parameters controlling the physical
processes, and do the model parameters and hence the wetland’s behavior react to
environmental changes.

Many wetland methane emission models have been written, but their systematic
calibration has in general not been a research priority in the community. More specif-
ically, at the time of writing we were unaware of any Bayesian calibration studies of
wetland emission models. For this reason it is valuable that the work answers ques-
tions such as, given flux measurements, model, and input data, how are the model
parameters correlated in the posterior distribution, and how much interchangeability
is there between the methane production and transportation processes.

One difficulty that this study does not yet tackle arises from that the many differ-
ent types of wetlands all over the boreal region all behave differently. Understanding
the functioning of these different environments would require a calibration process for
all these types and to accomplish that a spatial statistics or regression/classification
study of boreal wetland distributions would be needed. Despite this opportunity for
future research, Paper II can be seen as groundwork for future larger-scale studies of
uncertainties related to boreal wetland CH4 emissions.

3.1.3 Effects of climate change on growing season and gross pri-
mary production

Carbon emissions to the atmosphere are the main driving force of climate change and
while the overall mechanisms have been known for a long time, how climate changes
is actually a complex process. The emissions are balanced partly by the uptake of
carbon from the atmosphere by plants, and the magnitude of this uptake is controlled
by many factors. In the boreal region, the date of snow clearance regulates when the
growing season starting date (GSSD). Paper III answers the questions how many
days earlier does the growing season start than in the 1970s, and how much additional
carbon is getting photosynthesized in this process?

To answer these questions, Paper III utilizes a wide latitude of flux measure-
ments from all over the boreal region, and compares that with global climate model
simulations forced with data from the European Center for Medium-Range Weather
Forecasts (ECMWF).

While boreal ecosystems have been studied widely, the connection between snow
clearance date and gross primary production (GPP) has not been studied previously
in this fashion. This study is a pure simulation study in the sense that, unlike in the
other Papers, uncertainties are not quantified (except for providing the p-values of
regression estimates).
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3.1.4 Monte Carlo estimates of land surface scheme hydrology
and gas exchange parameters

In land surface schemes (LSS) of climate models the model hydrology description of-
ten poses difficulties since changes in hydrological conditions may produce nonlinear
effects on other modeled variables such as GPP. In models the hydrology-related sub-
routines are intimately connected to the carbon exchange via stomata, since stomata
control both CO2 and water transport in the gaseous phase. Since models utilize
discrete plant functional types1 for land cover description, the parameter values con-
trolling model behavior for each type are generic, average best guesses. Therefore,
in case of a rare event such as a major drought, the model may perform worse than
it could with calibrated parameter values. Furthermore, the generic parameter values
are generally not the best ones available for a particular measurement site.

Against this background, Paper IV looks at how the hydrology-related parameters
of the land surface scheme correlate in the posterior distribution, and asks whether
the model is able to capture a rare event (drought) with calibrated parameters. In
addition, the MCMC calibration is done with different temporal poolings of the data,
allowing to look at how the uncertainty estimates and model performance change
depending on the data averaging performed.

3.1.5 Other related work

Two additional publications co-authored by J.S., Raivonen et al. (2017) and Mäkelä
et al. (2019), are intimately connected to Papers II and IV, respectively. Even though
they are not a part of this thesis work, they are briefly mentioned here to give context
to Papers II and IV.

In Raivonen et al. (2017), the HIMMELI wetland methane emission model and
the physical processes are described in detail, and this article provides motivation
behind the modeling choices and more clarity regarding the underlying biology than
Paper II does. In its approach, it is purely a model development manuscript and does
not explicitly employ the techniques described in Chapter 2.

As a continuation of Paper IV, Mäkelä et al. (2019) evaluates how different
stomatal conductance formulations in the JSBACH LSS are or are not able to explain
measured fluxes under different environmental conditions. It looks at a wider variety
of flux measurement sites (10 as opposed to two in Paper IV), uses an adaptive
population importance sampler (APIS) for carrying out the Monte Carlo sampling,
and has, due to the different conductance models, a model selection flavor. The more
comprehensive and methodical approach than the one taken in Paper IV brings the
findings closer to upstream integration to improve the performance of JSBACH in
the boreal region.

1Plant functional types are collections of parameters with which the model distinguishes ecosystem
types from each other. These parameters contain values for e.g. maximum leaf area index, biomass,
nitrogen deposition rate, etc.
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3.2 Models, observations, and algorithms control com-
putational cost

3.2.1 Parallel models and parallel algorithms

Geoscience is a versatile field of applied science that often serves as a testing ground
for novel computational methods. Despite this versatility, a large variety of these
problems, especially when it comes to uncertainty quantification, are computationally
constrained, as is easily seen from the descriptions of the Monte Carlo algorithms in
section 2.6. While parallel resources for computation are nowadays readily available,
creating efficiently scalable code is a challenge, often due to data and memory band-
width limitations, but also due to the sequential nature of many sampling techniques.

Figure 3.1 describes the computational cost of the problems tackled in this thesis
and helps to explain why the inference algorithms and modeling paradigms were
chosen in the very way they were. In Paper I, (light blue arrow, bottom right in
figure 3.1) the Gaussian process software is able to compute marginals globally in
a half-degree grid for every day for four and a half years with OCO-2 data (with
reasonable settings) in ten months’ time on one CPU core. The inbuilt OpenMP
parallelization brings this down to a few days on a modern supercomputer node, but
since utilizing several nodes would require architectural changes, the maximum size
of the problems is currently limited by available single-node resources. The current
implementation requires keeping all observations in memory, and therefore problems
with the largest numbers of observations can not be computed on a modern laptop.
On a supercomputer node, computing with billions of observations is possible. This
also applies to generating gridded draws from the GP.

In Paper II, (red and orange arrows in the middle), the forward model – a wet-
land methane emission model – runs parallelized (downward component of arrows)
to yield a speed-up in computation. The experiment was designed so that the for-
ward model simulations of the different years for any given parameter in the MCMC
chain were run on different cores simultaneously, meaning that the temporal domain
was split into several parts. This guided the inference algorithm choice towards the
Metropolis within Gibbs MCMC paradigm, which is well suited for hierarchical mod-
eling, see sections 2.7 and 2.6.1. In the first preliminary experiments (orange arrow),
available in the discussion paper of Paper II, several experiments were performed
with different model discretizations. While this aspect was dropped from the final
version, the parallelization scheme employed decreased the amount of simultaneous
model evaluations by the number of different discretizations (leftward component).
Together these choices took the core hour requirement down from several years to
less than a month. In the final simulations a single MCMC chain was computed and
therefore no algorithmic parallelization was possible. However, the speed-up from the
time domain decomposition remained.

Paper IV employed several parallel MCMC chains to generate posterior estimates
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Figure 3.1: This figure shows how the computational cost is divided between sampling
schemes and sample generation. The x-axis shows the number of samples, and the
y -axis shows the cost per sample. The diagonal white lines show the contours for
constant 1-core computation time. Arrows start at the total computational cost of a
problem, and end at the computational cost that takes to account both model and
algorithm parallelization. All the experiments conducted are constrained by available
CPU time and the logarithmic scales along both axes provide perspective to how
expensive the most demanding simulations in Papers I-IV were. The black area in
the very upper right is unfeasible without massive parallelization or with dedicated
accelerators. Increasing Gaussian process model or climate model resolution would
easily extend the light blue and the brown arrows to that area. The initialism GSSD
in the legend stands for growing season starting date.
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of a set of land surface model parameters (pink arrow in the middle). The uncoupled
simulations were run on a fast laptop with four hyperthreaded cores. More effective
parallelization possibilities could have been utilized on a supercomputer, but that was
avoided here to facilitate code development and avoid code porting.

The very opposite to Paper I in terms of parallelization is Paper III (brown arrow
in the top left corner), where no algorithm was used – just a single climate model
simulation with reanalyzed ECMWF forcing data and with the objective of producing
data for a regression analysis to back up and quantify other scientific reasoning based
on multiple sources of in situ measurement data. The simulation was carried out on
ten supercomputer nodes (parallelized using the Message Passing Interface library)
and in several segments due to model instability. Performing the final simulation
required generating initial carbon and water pools, which doubled the amount of
computation.

The common denominator of these computational challenges is that only algo-
rithms which in practice yield results in a month’s walltime are feasible, and the exper-
iments were designed accordingly. While the arrows in figure 3.1 are not normalized in
that they represent true computation times in different computing environments, they
still reveal where the practical computational constraints are in the research reported
in this thesis.

Even though a month is a reasonable amount of time to be spent on computer
simulations, for all the above experiments that time is only the tip of an iceberg.
Different model configurations needed to be tested and tried before the final product-
yielding simulations could be performed, and many of the computational problems in
the Papers contained smaller but still important computational sub-problems, such
as calculating the MLE of model parameters, creating initial conditions, etc. Those
are not pictured in figure 3.1.

3.2.2 The role of the observation data

Observations are used in the Papers for four primary purposes; (1) forward model
forcing, (2) forward model calibration, (3) error model calibration, and (4) forward
model validation. The term forward model is reserved here for dynamical models
– the statistical models describing the model-observation mismatch are called error
models as was discussed in section 2.1.2.

The number of observations and the way they are utilized in the Papers varies
wildly and therefore a summary of observation usage is given in Table 3.1. In the
table an observation vector may contain several variables, which are detailed in the
Papers themselves.

Paper I uses OCO-2 satellite observations, of which there are 249 million for the
time period considered, and even after selecting data according to quality-flagging,
116 million observations remain. There is no dynamical forward model, only a statis-
tical model describing the data. Since the model parameters are fitted to all the data,
separate validation is not needed. The calculated set of marginals can be effectively
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Table 3.1: Number or observation vectors used for each Paper, and the ways in
which observations are utilized. Here forcing refers to model forcing (setting model
states based on data), learn M refers to learning parameters „ controlling the model
M, as in (2.8), learn › refers to learning error model parameters as in (2.9), and
validate refers to whether observations are used in a direct validation scheme, such
as cross validation.

#obs vectors Forcing Learn M Learn › Validate Comments

I ~120,000,000 N/A N/A yes no Details in section 3.3.1
II ~2,500 yes yes yes yes
III ~100,000 yes N/A N/A no Full reanalysis fields
IV ~100,000 yes yes no yes Data is aggregated

regarded as a statistic T (y) that adequately (to the modeler) summarizes the huge
number of observations. The approximate GP algorithm, presented in section 3.3.1,
describes how the large number of inputs is handled.

Papers II and IV utilize time series flux observations for constraining the models,
and while Paper II also does cross validation for the hierarchical model, in Paper IV
a straightforward simple validation is performed on an alternate site. The difference
between number of observations is explained by that Paper IV uses half-hourly data,
whereas Paper II uses daily means, since the model used in II does not realistically
describe the diurnal cycle and therefore using the half-hourly observations would
amount to fitting noise. Both of these Papers utilize measurement data to force the
forward model, but the error model calibration in Paper IV is not rigorous, while
Paper II actually uses draws from an approximate posterior predictive distribution to
calibrate the error model parameters before the final Bayesian model calibration is
performed.

Paper III does not contain a calibration step, and therefore parameter finding
is not applicable. The 100,000 forcing fields are full T63-resolution reanalysis fields
from ECMWF – either ERA Interim or ERA-40, depending on the year. Paper III

utilizes also flux measurement data from 10 sites in Finland, Sweden, Russia, and
Canada, but these are not directly tied to the modeling – only via aggregate statistics
in Table 1 of Paper III – and therefore they are not reported here.

With a large number of data, a common complication with Bayesian model cali-
bration in geosciences is that the posterior density may in practice contract towards
a point estimate that is sometimes not realistic. This behavior is aggravated by
any (often unavoidable) model misspecification, but it also takes place without it
in the small observation error limit of overdetermined Bayesian inverse problems, as
described e.g. by Stuart (2010). With MCMC the practical implication is that the
observation error variance in the observation model may need to be inflated to al-
low posterior exploration. As a result, the size of the posterior is in the end not
necessarily reliable. Paper IV solves this problem by building the statistical model
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for data averages instead of individual points, and Paper II utilizes an exploratory
MCMC based on which an error model used by the SIR algorithm is calibrated. De-
spite the calibration and due to model misspecification, the choices the modeler has
to make are apparent in how the posterior looks like. Parameter correlations in the
posterior are more resistant to log-posterior scaling than e.g. marginal variances, since
Corr(X; Y ) = Cov(X;Y )√

V(X)V(Y )
. For this reason physics-based interpretation and analysis

of results of the Bayesian model calibration is justified to be based on analyzing the
posterior correlation structures. Among the Papers, this is most emphasized in Paper
II.

3.3 Efficient multi-scale Gaussian processes for mas-
sive remote sensing data

This and the following sections present the research of each individual Paper in more
detail than was done in sections 3.1 and 3.2. For even further details, please consult
the Papers themselves.

The first Paper of the thesis, Susiluoto et al. (2019), deals with a computational
spatial statistics approach to regularize a sparse set of satellite observations into a
spatio-temporal grid with arbitrary resolution. The method used is Gaussian process
regression, and both marginals and samples from both the prior and the posterior
are obtained. The space-dependent mean function of the Gaussian process is learned
utilizing an approximate elimination algorithm on a regular lattice graph to learn the
modes of the marginal distributions over a Markov Random Field.

The Gaussian process theory is described in section 2.4, the MRF and the elimi-
nation algorithm are described in section 2.5.2, the objectives and highlights of this
part were briefly stated in section 3.1.1, and an outline of computational cost and
size of the problem was given in section 3.2. While these will be slightly expanded
here, the main focus is on additional key details, computation, and discussion.

Several kriging/GP studies such as Zeng et al. (2013, 2017); Nguyen et al. (2014);
Hammerling et al. (2012b,a); Tadić et al. (2017); Zammit-Mangion et al. (2015), and
Zammit-Mangion et al. (2018) have been conducted with remote sensing CO2 data
over the years. The majority of those have used data from the GOSAT satellite,
while a handful of exploratory publications related to the OCO-2 satellite have been
published. For details, see the introduction section in Paper I.

Compared to other CO2 measuring instruments the sun-synchronous OCO-2 satel-
lite is particularly interesting, since it provides high resolution column-integrated dry
air CO2 mole fraction (XCO2) measurements. It does so by applying an algorithm
to retrieved absorption spectra of reflected sunlight. The footprint of a single mea-
surement is only 1.29 by 2.25 kilometers in size, with eight measurements abreast.
Clouds and aerosols often result in quality-flagged and missing measurements. The
approximate revisiting time to any particular location is 16 days, but obviously not
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all area between two trajectories is covered during one 16-day period, and the closer
to the equator the satellite is, the larger the uncharted area.

Despite the high spatial resolution of the satellite measurements, there are at the
moment, as far as we know, no published CO2 maps based on only data and showing
any of that finer structure. The central problem is computation: in order to calculate
the Gaussian process posterior, the covariance matrix of the observations needs to
be inverted. This is lots of work with hundreds of millions of observations. How the
calculations are performed algorithmically is described next.

3.3.1 Gaussian process model algorithm description

The random field Ψ, in Paper I the spatio-temporal XCO2-field, was defined in section
2.4 to be a Gaussian process, denoted Ψ ∼ GP(m(x); k(x; x ′)), if the joint distribution
of the process at any finite set of points was multivariate normal. The function m
had a parametric form given below in (3.3) and exponential, Matérn, and periodic
covariance kernels were supported by the software. An additional non-stationary
kernel, the wind-informed kernel, is proposed and discussed below in section 3.3.6.

The Gaussian process model computation in practice comes down to computing
conditional expectations and variances of the multivariate Gaussian distribution given
in (2.19) and (2.20). These distributions are enormous - in the largest simulation in
Paper I the dimension n equals 116489343 and storing or solving this size of a linear
system, which is an O(n3) operation, is not directly possible. For this reason an
efficient algorithm and its implementation are needed. The satGP program, consisting
of roughly 4000 lines of highly optimized C code and presented in Paper I, is able to
approximately compute (level of approximation is controllable with input parameters)
the desired spatio-temporal grid of marginals in

cost = O
 
Antimes

!2

"
(nker»)3 +

nkerX
l=1

(rl log(rl) + » log »)

#!
(3.1)

time. In this equation, A is the grid area, ntimes is the number of time steps, ! the
grid resolution, nker the number of subkernels as in (2.36), » the maximum subkernel
size, and rl ∝

Qq
i=1 ‘

l
i is a factor determining the size of the hyper-ellipse outside

which covariance with the test input is less than the prescribed covariance threshold
ff2

min. The values of rl also depend on the maximum covariance parameters fi2.
This scaling is linear in number of marginals, and the parts in the brackets — first
term for inverting the constructed full multi-scale covariance and second for finding
observations that are informative for each test input where the marginal is computed
— is highly optimized. For additional details regarding observation selection and
multiple other computational aspects, please see Paper I and the satGP source code.

The downside of obtaining the linear scaling with the number of test inputs of
course is that the full posterior covariance will not be retrieved, only the marginal
variances. The posterior covariances can still in principle be calculated from posterior
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sample covariances. Another natural possibility is constructing a multi-grid or multi-
fidelity Gaussian process (Peherstorfer et al., 2018; Kennedy and O’Hagan, 2000),
and this extension would not be impossible to implement in satGP.

The satGP program can draw from the random process by conditioning on previous
predictions. Computing the Gaussian field roughly amounts to interpolation by solving
a linear system of equations locally at the test input using the observations that are
within a desired radius. If the ordering for generating the field is chosen so that
instead of interpolation, extrapolation is performed (for instance if in the 1-d case the
sampled points would reside at x1 = 0, x2 = 0:1, x3 = 0:2. . . ), such ordering may in
practice lead to oscillations in the generated data. For this reason a sparse ordering is
used, both in space and time: if the number of inputs where the field is generated is
ntot = nlatnlonntimes, then the mth computed point is number (mp mod(ntot)) in the
linear ordering along axes (time, latitude, longitude), with the last of these changing
fastest. In the above, p is taken to be the largest prime number under 0:9ntot.

The satGP software also contains routines to learn the maximum marginal likeli-
hood estimates (marginalized over the Gaussian process realizations) of the covariance
function parameters „ using an approximate random-sampling based method

„̂MLE = arg min
„

X
xi∈Eref

n
‖ obs

i ‖K̃i + log |K̃i |
o
; (3.2)

where Eref is a set of randomly sampled points from the specified spatio-temporal
domain. The vector  obs

i ∈ Rdi contains at most nker» observations closest in covari-
ance to xi from which the mean function value at xi has been subtracted, and K̃i is
the corresponding covariance matrix determined by the covariance function with pa-
rameters „ and the observations  obs

i . Due to randomly selecting Eref , this procedure
results in the log-likelihood including an unknown multiplicative coefficient and hence
an unknown multiplier of covariance in the exponent. Therefore, while posterior mean
estimates (for unimodal symmetric), posterior medians, and MAP estimates remain
valid, the true size of e.g. credible regions is not known.

The most important input parameters needed by satGP together with the algo-
rithm description illustrate how the software works, and they are shown in table 1
and figure 4 in Paper I.

3.3.2 Obtaining the GP mean function from a Gaussian MRF

For describing the XCO2 field observed by the OCO-2, the mean function (2.30) is
assigned the explicit form

m(x; t;˛; ‹) = f (t; ‹)T˛ = ˛0 sin

„
2ıt

∆t
+ ‹

«
+˛1 cos

„
4ıt

∆t
+ ‹

«
+˛2 +Ct; (3.3)

where ∆t is the length of the period, that is, one year, and where the spatial depen-
dence denoted by the argument x comes from the selection of observations for fitting
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the coefficients of the mean function. The particular form of (3.3) was chosen for its
ability to represent the increase in the CO2 concentration as a global trend, and also
because with this form it is possible to describe the seasons both in the tropics and
closer to the poles. The resulting mean function coefficients are shown in figure 3.2.

For spatial smoothness, a Gaussian MRF utilizing the setting presented in section
2.5.2 is used. Since in addition to the ˛-parameters also the ‹-parameter varies from
place to place, (2.31) cannot be used directly due to the ‹-parameter not conforming
to its form. Instead, a first pass calibration is performed utilizing the BFGS gradient-
based optimization algorithm to find the mode of all parameters for each vertex, by
minimizing

l�(˛; ‹) =
1

nobs

nobsX
i=1

(m(x; t;˛; ‹)− yi )2 +
X
�′∈@�

 (�; �′); (3.4)

where the latter sum is over the edge potentials corresponding to Gaussian priors
defined by the modes of the neighbors. The scaling is arbitrary since the objective is
to merely fit the ‹-parameter to produce fields that look smooth to enable computing
p(˛|‹; y).

In propagating the posterior marginals (beliefs) when computing the ˛-factors,
the precision of the neighboring points is scaled according to the distance to those
points on the latitude-longitude grid, since close to the poles the grid points are
closer to each other than on the equator. For fitting the parameters with (2.31) at
each grid point, observations that are nearest in spatial covariance (disregarding the
time component) are chosen, and the marginals are computed conditioning on the
optimized ‹. The uncertainties of the ˛-factors are given by (2.31), but they are also
approximated by the BFGS-algorithm, which therefore in principle could also be used.
However, in Paper I the exact computation via (2.31) was utilized.

While only a minor part of Paper I, Fig. 3.2 shows several intriguing features.
The constant term ˛2 has high values where emission hotspots are known to be.
The parameter controlling slow oscillations, ˛0, shows the reversed seasons between
the northern and southern hemispheres, and ˛1 shows a semiannual signal of higher
amplitude in the Congo area. The phase shift parameter ‹ appears noisy in areas
where the ˛0 and ˛1 parameters are close to zero, which is exactly when the ‹-
parameter plays very little role. To conclude it is worth remembering that since the
parameters act together to describe the CO2 field, drawing far-reaching conclusions
from individual maps should be avoided.

3.3.3 Identifiability of multi-scale parameters

The justification for using the multi-scale covariance kernel formulation, (2.36), is
not obvious — it could be that the parameters of the multi-scale model would not
be identifiable in practice. In Paper I, multi-scale kernel parameters are recovered
from synthetic data generated by drawing a sample from the GP prior. While this
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Figure 3.2: Local ˛ factors, and the ‹ phase-shift of the mean function as in (3.3).
The trend component, C, has been fitted to global values, and does not vary spatially.

parameter inversion fails with optimization algorithms, MCMC can be successfully
used as a stochastic optimizer. The posterior mean value is a good estimate for
parameters as shown in figure 3.3 in a synthetic study with two subkernels. Notice
that while the true values are not in the very centers, the scales of the axes reveal
that the true values are within a small distance from the center in the parameter
space.

This synthetic study validates the multi-scale approach in that since the param-
eters of the different subkernels are recoverable, the different kernels may indeed
be needed for describing the field. In Paper I, a three-component kernel is shown,
and while there the length-scale parameters of the smaller-size kernels are slightly
overestimated, the ability to approximately find the true parameter values remains.

Table 3.2: Covariance function parameter values learned from OCO-2 data. First col-
umn shows the Matérn subkernel parameters, and the second column the parameters
of the exponential subkernel.

(·) = mat (·) = exp

fi (·) 0.899 2.72

‘
(·)
lat 0.00513 0.0418

‘
(·)
lon 0.0363 0.397

‘
(·)
t 20h 22min 16d 20h 12min

After validating the parameter estimation process for the multi-scale kernel, the
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Figure 3.3: Approximate posterior with unknown scaling of the log-posterior from a
synthetic study with two subkernels. The first subkernel is of Matérn type and the
second an exponential one with smaller and larger length scale parameters respectively.
The data was sampled using a random spatial pattern from the prior and 1% noise
was added, after which the parameters were learned.

parameters corresponding on the OCO-2 data were learned. No data thinning was
applied, and the number of reference points in Eref was set to be 12 with » = 256.
The resulting parameter values are shown in Table 3.2. The notable aspect of the
parameter values is the elongation of covariance ellipses of both kernels in the more
informative zonal direction.

3.3.4 Learning multi-scale kernel parameters from OCO-2 data

The multi-scale kernel allows larger scale features to be combined with local enhance-
ments. In figure 3.4 a covariance kernel consisting of a single subkernel alone with
large length scale parameters was compared with that same subkernel combined with
a subkernel with shorter length-scale parameters. Observations from the OCO-2 v9
data product were used.

The parameters of the kernels are given by Table 3.2. The total kernel size was
kept at 1024 (» = 512 for (a-b) and » = 1024 for (c-d)) in both experiments.
Random data thinning with “train = 5 was applied: the parameter determines how
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(a) XCO2 (ppm), multiscale kernel (b) Uncertainty (std), multiscale kernel

(c) XCO2 (ppm), larger-scale kernel only (d) Uncertainty (std), larger-scale kernel only 

(e) Difference in XCO2 (ppm) (f) Difference in uncertainty (std)
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Figure 3.4: Comparison of a multi-scale kernel with two components with the pa-
rameters shown in Table 3.2, and a kernel containing only the exponential subkernel
in Table 3.2. The observations used are shown in panels (a) and (c) as circles. The
large ones with white borders are observations from the present day, September 15th

2014, medium circles are observations from 14th and 16th, and small circles from 13th

and 17th.

likely including the next observation is, and this probability depends on the distance

to the previously added observation with Pr(add y |yprev) =
|x−xprev‖2

!“train
, where ! is the

grid resolution and x and xprev denote, as earlier, the locations where observations
y and yprev were made. Such thinning discourages observations very close to each
other from being included; for further details, see Paper I. Earlier, Tadić et al. (2017)
has also used a distance-based probabilistic approach for observation selection, even
though the inclusion probability is different. In both of the experiments ! = 1

2 was
used and the exact same set of observations was utilized for calculating the marginals.

The figure clearly shows where present day observations are found as local en-
hancements. With the single subkernel with the larger length-scale parameters, the
uncertainties are unreasonably low.
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3.3.5 Posterior XCO2 fields

A central reason for creating the Gaussian process software for remote sensing data is
to be able to get better estimates of the spatio-temporal distributions of the quantity
of interest with uncertainties. Figure 3.5 shows the means and uncertainties of the
Gaussian process posterior calculated via (2.19) and (2.20) in a grid. The slight
edginess far from observations, especially visible where the uncertain portion starts
on the bottom of the lower part, is due to capping the search radius at 1100 km (10
equatorial degrees) in order to facilitate computation. In total 351 million marginals
were computed with » = 256 and using no data thinning, with parameter values from
Table 3.2. The total number of observations used was 116 million.

Figure 3.5: Global GP posterior marginals with uncertainties on first of June 2016. In
the summer months, the coverage of the satellite does not reach the South Pole due
to lack of sunlight. The circles with the white edges are the current-day observations,
the medium circles are observations from one day away, and the smallest circles are
observations from two days away. Notice how the uncertainty increases from day to
day due to the smaller kernel reducing local uncertainty less and less.
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3.3.6 Wind-informed kernel

One of the novel ideas in Paper I is the wind-informed covariance kernel, which rotates
the covariance ellipse according to the wind axes. Given zonal and meridional wind
vectors u and v , it is defined by parameters „ = (fi; ‘; ; w∗). The kernel itself is an
exponential kernel whose length-scale component to the direction of the wind, ‘‖,
is scaled by

p
1 + |w∗|, where w∗ is the wind velocity vector at the test input x∗

(listed above as a parameter since it does not depend on individual inputs x and x ′).
The additional parameter  determines how large a role the wind speed should play.
The length scale parameter perpendicular to wind, ‘⊥, is not scaled, i.e. ‘⊥ ← ‘.
Figure 3.6 shows equicovariance contours for various combinations of  and w∗.

x∗

x

x′

ρ = 0

ρ = 1, w∗ = (2, 1)T

ρ = 1, w∗ = (3,−1)T

ρ = 7, w∗ = (3,−1)T

Figure 3.6: Equicovariance ellipses from the wind-informed kernel with various wind
vectors w∗ and values of . The wind velocities are taken at the test input x∗ but
the covariance function k is of course evaluated also for each pair of observations x
and x ′.

The rationale behind the formulation of the wind-informed kernel is that e.g.
trace gases are spread by winds and therefore the covariance direction should change
according to wind direction. This subkernel type may also be combined with others
in a multi-scale kernel.

The wind kernel parameters were calibrated by finding the medians of the approxi-
mate posterior calculated with the approximate marginal maximum likelihood method
given by (3.2). The parameters found were fi = 2:07, ‘ = 0:038, and  = 56:7, and
the values of » = 1024 and grid resolution of 0.7° were used with the thinning pa-
rameter “train = 1 introducing some thinning. An example of the results is shown in
figure 3.7, and as expected the uncertainty is clearly reduced where wind is blowing
directly towards or away from the observations. The predicted mean of the concen-
tration field is also spread due to the winds. The posterior marginal mean field looks
less monotonous than the fields from fixed-direction kernels.

The wind-informed covariance kernel could be formulated in various ways and
which formulation works best with what data still needs to be studied further. The
winds used in figure 3.7 were processed from the local winds that come with the OCO-
2 data. Obviously, winds derived from an actual wind data product would provide
better accuracy, especially when the test inputs x∗ are far from any observations.
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Figure 3.7: Japan, Koreas, China: GP posterior marginal mean field of XCO2 and
the corresponding uncertainties produced with the wind-informed kernel. As before,
circles with the white edges are present-day observations, medium ones are from
adjacent days, and the smallest ones are from two days away. Wind direction and
magnitude are given by the arrows.

3.4 Bayesian inference of physics of a Boreal wetland
with hierarchical MCMC

Boreal wetlands and peatlands are a major source of CH4 emissions to the atmo-
sphere, and it is likely that the magnitude of these emissions will grow as climate
change progresses. In addition to CH4, wetlands – in particular drained and managed
wetlands – release and/or have the potential to release substantial amounts of CO2.
How substantial these emissions are and will be is not fully known, since peatland
carbon emission estimates currently have high uncertainties (or uncertainties are not
reported) and Bayesian analysis in the field of wetland emission modeling remains
rare.

The research in Paper II and its objectives and results were briefly introduced
in section 1 and 3.1.2, related work was mentioned in section 3.1.5, and the com-
putational cost was discussed in section 3.2. The published literature pertaining
to Bayesian modeling or model calibration in the context of wetland CH4 emission
models is covered in the introduction section of Paper II. This section describes the
computational problem referencing section 2 and discusses some of the main results.

3.4.1 The HIMMELI forward model

The wetland methane emission model HIMMELI2, developed in collaboration between
University of Helsinki and Finnish Meteorological Institute (Raivonen et al., 2017), is
a 1-d partial differential equation model discretized by soil layers of variable thickness.
In addition to CH4, explicit formulations of CO2 and O2 are also included. The model
contains processes for CH4 production from root exudate decomposition and anaer-
obic peat decay. The transportation of the gases to the surface takes place in three
ways: diffusion, transport via stems of aerenchymatous plants, and transportation

2HIMMELI stands for HelsinkI Model of MEthane buiLd-up and emIssion for peatlands.
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due to bubble formation, called ebullition.

Methane is produced predominantly when oxygen is not available and this is in
HIMMELI controlled by the water table depth (WTD). The exudate input is provided
as pre-calculated net primary production (NPP), fraction of which is passed on to
the roots. The root depth distribution determines at which depth the exudates are
deposited. If the water table level is above that deposition depth, methane may be
produced.

The model version in Paper II, called sqHIMMELI, contains also the processes
dealing with root exudates and peat decay, whereas in Raivonen et al. (2017) those
processes are described as external functions for generating input. The 21 equations
defining much of the sqHIMMELI model and the role of the model parameters are
described in sections 3.4 and 3.5 of Paper II.

In addition to NPP and WTD, the model takes in soil temperature profiles and
leaf area index (LAI) data, which broadly speaking tells how many layers of leaves in
the canopy intercept solar radiation. The simulations and the study were performed
utilizing measurement time series of the inputs and CO2 and CH4 fluxes from a
research station in Hyytiälä, Southern Finland. Data from years 2005-2014 was used.
For some input variables, filling gaps or other additional modeling were needed, see
section 2 in Paper II.

3.4.2 Bayesian Inference

The posterior distribution of the parameters controlling most parts of the model
physics was computed with Monte Carlo methods. The posterior is a joint distribution
of 14 parameters, which are presented in Table 3.3. The parameters partly affect the
same processes, and all of the processes are coupled in the model code. For this
reason, using samples from the posterior some correlations are to be expected in both
the parameters and also between predicted quantities.

The Bayesian calibration was conducted via a hierarchical model described in sec-
tion 2.7 and shown in figure 2.5. The parameters were divided into two sets: one
where the parameters have a changing hyperprior, whose parameters have a fixed
prior, and another where the parameters only have a fixed prior. The former are
called here (and in Paper II) “hierarchical” and the latter “non-hierarchical” param-
eters, even though this terminology is not universal. The hierarchical parameters “exu

and Q10 varied from year to year, and their normal priors shared common hyperpa-
rameters, with 1

ff2 ∼ Scale-inv-ffl2(k; s) and — ∼ (—0; ff
2
0), with fixed k , s, —0 and

ff2
0. These parameters were sampled with Gibbs sampling (section 2.6.2), and the

non-hierarchical parameters (see third column in table 3.3) were sampled with an
Adaptive Metropolis step (section 2.6.1).

The sqHIMMELI model calculates CH4 fluxes from the wetland given the model
initial state, input data, and parameters. The observation operator is not well known,
since even the footprint area of the measurements depends on time-varying external
factors such as wind at the surface. Partly for this reason, a heavier tailed Laplace-



3.4 Bayesian inference of physics of a Boreal wetland with hierarchical
MCMC 53

Table 3.3: Parameters examined in Paper II. The first column contains parameter
symbols, second lists the primary process to which the parameter contributes, and
the third lists whether the parameter was modeled in a hierarchical fashion or not. A
short functional description of the parameters is given in the last column. The symbol
“→” reads “decomposition into” and T stands for temperature. See also Table 3 in
Paper II, which gives the prior limits, units, and references.

Relevant to Hier. Parameter controls. . .

fiexu CH4 prod. no decay rate of exudates
“exu CH4 prod. yes fraction of NPP converted to exudates
ficato CH4 prod. no rate of peat→CH4
Q10 CH4 prod. yes dependence on T of peat→CH4
f CH4
exu CH4 prod. no fraction of anaerobic peat→ CH4

VR0 Resp. no heterotrophic respiration rate
∆ER Resp. no dependence of heterotrophic respiration on T
VO0 CH4 oxid. no base rate of CH4 oxidation
∆Eoxid CH4 oxid. no dependence of CH4 oxidation on T
–root Gas transport no root depth
 Gas transport no root ending area per biomass
fi Gas transport no root tortuosity parameter
fD;a Gas transport no diffusion rate in air-filled peat
fD;d Gas transport no diffusion rate in water-filled peat

distributed error model was used with the scaling of the error depending on the day
of year, and for this heteroscedasticity model two additional parameters were fitted
(see Appendix A of Paper II). The residuals were assumed to be correlated and their
covariance structure was described with an ARMA(2,1) model, see section 2.8.1.
The ARMA(2,1) parameters were learned as described in section 2.8.2 by minimizing
the KL-divergence between the formal error model and the empirical distribution of
the residuals. This was done after an initial, exploratory MCMC experiment was
conducted to find an approximate posterior mean. The final posterior distribution
was estimated using importance resampling, see section 2.6.3, with the exploratory
posterior used as a biasing distribution.

3.4.3 Results and discussion

The setting presented in the previous section allows for lots of analysis. Figure 3.8
shows the output fluxes from the posterior mean parameter values, including credible
intervals as shaded areas generated by random sampling the error model. The figure
visually verifies that the calibrated model is able to produce fluxes that look realistic.
The exudate pool sizes and the CH4 emissions closely follow the NPP input and the
predictive credible intervals look reasonable.

The parameter posterior distribution shown in figure 3.9 contains various correla-
tions reflecting interchangeability between the processes given the likelihood function
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Figure 3.8: Output from the model with posterior mean parameter values. While
the fit is good, the calibration is performed with the same observation dataset and
therefore the residuals are only relevant for training error.

and the observed flux data. When the model is run with random samples drawn from
the posterior distribution, correlations between the processes can be evaluated, as
shown in figure 5 in Paper II for year 2012. That figure reveals that plant transport
of CH4 (via hollow stems) is driven by exudate decomposition, and that ebullition is in
practice perfectly correlated with diffusion, raising the question of whether modeling
ebullition is actually an unnecessary complication. With additional data, such as soil
gas profiles, the processes might become better separated. Some of the correlations
shown in figure 3.9 are strong, and they are rooted in the model equations, but of-
ten indirectly. These correlations are thoroughly discussed in sections 5.3 and 5.4 of
Paper II.

For prediction, the hierarchical parameter calibration is of course not possible, and
therefore other methods needed to be used for obtaining the Q10 and “exu parameters
for predictive purposes. Two schemes were used in Paper II: simply using the mean of
the hierarchical parameters, and constructing a regression model for the “exu and the
Q10 parameters. The latter was performed by taking the posterior mean estimates for
all the annually changing Q10 and “exu parameters and then regressing those values
against the mean soil temperature at 35 cm depth of the first 10 weeks of each year
for Q10, and against the NPP of 130 first days of each year for “exu. The annual
errors are shown in figure 3.10. In the figure plant transport is missing since it is
the complement of diffusion. The term “all ebullition” refers to any ebullition that
is released from the underwater part of the peat layer to air, and since water table is
most of the time at least slightly under the surface, this is not a real flux, since the gas
will be emitted to the atmosphere ultimately via diffusion in the air. On the right, the
regression-based predictions are shown to not produce better annual predictions than
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the non-hierarchically modeled parameters, implying that either assessing auxiliary
performance metrics – such as using time intervals shorter than a year – is needed, or
more complicated parametric models need to be constructed for modeling the time
dependence of the parameters.

3.5 Climate and land surface modeling

Papers III and IV are different from Papers I and II in many respects, but most
importantly they both utilize a significantly more complicated forward model, the
JSBACH land surface scheme from the Max Planck Institute for Meteorology (MPI-
M) in Hamburg. That model is a part of the ECHAM3 climate model and it describes
processes interfacing the biosphere and the atmosphere. JSBACH makes independent
predictions at each grid point based on external forcing. In Paper III that forcing
comes from the atmospheric component of the ECHAM6 climate model, and in Paper
IV from measured meteorological conditions at flux measurement sites.

This section describes briefly the research findings of Papers III and IV. The
objectives and background for them were discussed in section 1, 3.1.3, and 3.1.4.
The computational cost and observations used were described briefly in section 3.2.

3The JSBACH name creatively stands for Jena Scheme for Biosphere-Atmosphere Coupling in
Hamburg. Inspiration for such naming came from a previous model called MOZART. Furthermore,
the EC in ECHAM stands for the European Center, from where initial code was adapted, while
the HAM part of that name once again refers to Hamburg. For code availability, as of 2019, see
mpimet.mpg.de/en/science/models/mpi-esm/jsbach.html.

mpimet.mpg.de/en/science/models/mpi-esm/jsbach.html
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3.5.1 The ECHAM/JSBACH forward model

The JSBACH model is a complicated PDE model described partly in Roeckner et al.
(2003a), more fully in the official model documentation available with the source
code, and for relevant parts also in Appendix A of Mäkelä et al. (2016). The ECHAM
model, which is used to produce the forcing data for JSBACH in Paper III, solves the
atmospheric part including transport of species such as water vapor and trace gases,
among everything else. It is a very complicated and heavily parametrized model, and
its version 5 is described in the technical reports (Roeckner et al., 2003a,b). The
performance of version 6 is further described in Stevens et al. (2013).

The JSBACH model describes different terrain types with plant functional types,
which summarize the average physical functions of the different terrain types from
glaciers to tropical rain forests. In Paper III, particularly changes in areas with the
plant functional type extratropical coniferous forest were evaluated, and while that
same type was used in Paper IV, there the associated parameters were adapted to the
local conditions. The most important output variables for the purposes of the Papers
were gross primary production, net primary production, evapotranspiration (ET), and
snow coverage. All of these variables have to do with the carbon, water, or energy
balance of the biosphere-atmosphere boundary.

3.5.2 Paper III – climate change has shifted the growing season

Paper III by Pulliainen et al. (2017) utilizes flux measurement data from the Boreal
region, passive microwave retrievals of snow clearance date (SCD), modeling, and
meteorological reanalysis data to evaluate how much earlier the starting date of spring
recovery (SR) has shifted due to climate change, and how much that shift has affected
the carbon balance in the first 180 days of the year. The result is that the onset of
spring has become 0.23 days earlier each year, translating into an increase in the
uptake of carbon of 52 megatons per decade.

The inference process to produce these estimates was the following: the passive
microwave remote sensing data was used to retrieve snow clearance dates, and those
data were used with in-situ flux measurements of CO2 to learn the parameters of
a regression model for predicting the timing of SR based on SCD. The ECHAM6-
JSBACH model was used to calculate the GPP, and earlier SR was found to be weakly
correlated with higher springtime GPP.

To produce reliable quantities with modeling, carbon pools in the model were spun
up with a 2000-year initial simulation with a lightweight model, CBALANCE, after
which a hydrology spin-up was performed using ECHAM with no outside forcing from
year 1870 up until 1958. From 1959 onwards the ERA-interim reanalysis dataset was
used to nudge the model to keep the meteorology close to the observed, and starting
1979 the ERA-40 dataset was used for that same purpose. The GPP/SR trends were
calculated for each grid point from the 36-year period of 1979-2014.

In addition to the global results quoted above, the combination of modeling with
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flux measurements allowed looking at the changes regionally. It appears that in
Eurasia the change in springtime GPP per decade was proportionally higher (6.8%)
than in North America (5.5%). Similarly, the shift of the starting date of spring
recovery is also larger in Eurasia, where this figure is a remarkable 3.0 days per
decade, while in North America the shift is smaller but still sizable at 1.3 days per
decade.

3.5.3 Paper IV – constraining LSS parameters with flux data with
adaptive MCMC

In the last included work, Paper IV, parameters of the JSBACH land surface model
were calibrated using the Adaptive Metropolis MCMC algorithm. This work has been
introduced in section 1, 3.1.4, and 3.2. Markov chain Monte Carlo was described in
section 2.6.1.

The work in Mäkelä et al. (2016) utilizes flux data from two measurement sites.
The first of these is in Hyytiälä (61◦51′N; 24◦17′E), and the second one is in So-
dankylä (67◦22′N; 26◦38′E). These sites are long-running measurement sites where
the predominant tree species is the Scots pine (Pinus Sylvesteris). For Hyytiälä, half-
hourly measurements of CO2 and H2O fluxes were used from 1999-2008, while for
Sodankylä, the time period was 2000-2008. The JSBACH model calibration used the
Hyytiälä data from 2000-2004, whereas for generating the initial conditions for the
model the year 1999 was used. For Sodankylä, this spin-up was done with data from
all the years and no calibration was performed, instead reusing the data for validation.
The aim of the spin-up process was to stabilize the fast carbon pools and the water
pools so that local conditions would be represented in initial states of the model.

Since the objective of the study was to improve and better understand how the
gas exchange processes in the model are able to describe conditions at these particular
sites, the parameters chosen for the calibration were related to gas exchange. These
15 parameters are described in Table 1 of Paper IV. The parameters were calibrated
using three different loss functions: one with seasonally averaged data, another one
with daily averaged data, and the third one with the original half-hourly data. Three
of the parameters were only calibrated with the first one of these.

Even though MCMC usually gives a statistically meaningful posterior distribution,
in this work rigorous uncertainty quantification was not attempted as the distributions
of the model-observation residuals were not carefully analyzed. The cost functions
used were of the standard quadratic form corresponding to a Gaussian observation
model

L („) =
X
i

(x − y)TΓ−1(x − y); (3.5)

where „ is the model parameter vector, the model output x depends on „, and the sum
is over the (potentially averaged) observations. For the calibration with seasonally
averaged data, the vectors x and y contained residuals of mean GPP, mean ET,
and maximum LAI, and the diagonal Γ matrix contained, for each period, means
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of the observed GPP and ET squared and maximum of the observed LAI squared.
For daily and half-hourly calibration LAI was not used, and the elements of Γ were
further multiplied with the square root of the number of corresponding observations,
inflating the size of the posterior.

A principal component analysis of the MCMC chains revealed that estimates of
two parameters controlling bare-soil evaporation – soil dryness-based relative humidity
and skin reservoir field capacity (how much water can be held at the very top of the
vegetation in a layer of some millimeters) – are in this calibration the least reliable
ones. Using the posterior mean values from the MCMC run of the calibration period
for Hyytiälä, model performance as measured by (3.5) improved for all the validation
runs with the exception that the seasonal calibration in Hyytiälä lead to degraded
performance as measured by the daily and half-hourly cost function values. For the
Sodankylä site, performance improved with all calibration methods and all metrics
when compared to the default parameter values, implying that parameter calibration
is generalizable from one site to a similar site at a different location.

The calibrated model was not able to describe a rare drought event in 2006 in
Hyytiälä (GPP drop in August 2006 in figure 2 of Paper IV). However, since there
were no extended dry periods in the calibration data, the failure of the calibrated
model to accommodate for this anomaly was not unexpected.
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4 Conclusions and future work

The methods presented in section 2 represent a small and relatively simple subset of
the very large number of techniques nowadays used for uncertainty quantification and
data science. Similarly, the context provided by climate change, and more generally
geosciences, is huge, and therefore this work scratches only a corner or two of an
immense problem space. In this sense it is fortunate that the mathematical theory is
agnostic to the applications and the methods and algorithms can easily be reused.

Each of the Papers presented contained three building blocks: models, data,
and algorithms. These building blocks were together used to answer specific climate
change-related research questions: statistical models marry process models and obser-
vational data, and carefully analyzing the different aspects of the model-observation
mismatch enabled the utilization of Bayes’ theorem for solving inverse problems, either
with Monte Carlo methods or via point estimation.

While models and data were used in all the Papers, only the first two utilized non-
trivial statistical estimation techniques to try to understand the statistical properties of
the data. Still, even in those two publications, much room was left for further analysis,
and in Papers III and IV the price for omitting Bayesian uncertainty quantification
was that the posterior and posterior predictive uncertainties remained unknown. On
one hand this lack of uncertainty quantification adversely affects how actionable the
results are, but on the other hand when expensive computational models are used,
conducting Bayesian analysis is often impossible. This was in particular the case with
Paper III.

Certain themes recur when evaluating how the research could have been improved.
When model-generated input data – for instance wind data in Paper I or leaf area
index, net primary production, and water table depth data in Paper II – were used, the
propagation of uncertainties pertaining to those quantities were overlooked. While
disregarding uncertainties in input data is often necessary, the implications of that are
that uncertainty estimates from settings involving modeled input data and complex
models need to be approached with caution. The flip side of the coin is that even
when all modeling is perfect, the results of any inference are only as good as the data
that is used. This was most evident in Paper I, where the quality of the uncertainty
information provided with the XCO2 observations was not always reliable.

The work in the Papers may be critiqued in more specific ways to guide future
research endeavors. In Paper I the covariance between measurement errors of the

61
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individual measurements are not known, and neither are the various biases that are
known to exist in the data. Regarding satGP, there is room for development in how
observations for each subkernel are selected, and the effects of this still need to be
analyzed and minimized. The ˛ coefficient fields with their uncertainties may provide
further useful information that can be used to devise better formulations of the mean
function. Other possible next steps include applying the satGP software to other
problems, combining multiple data products, performing model selection to select
the best combinations of subkernels for the multi-scale kernels, and general code
development and usability enhancements.

The most pressing issue in Paper II is the lack of uncertainty quantification for
input data generation. Following that, the error modeling can be further enhanced
by treating the instrument error and other error sources separately in the observation
equation, potentially yielding improved models for describing the data. Cross vali-
dation at other measurement sites and computing regional fluxes with uncertainties
would be valuable, both in terms of the actual results and in terms of learning how
well the modeled processes actually describe what they are intended to describe.

The regression plots in Paper III show large deviations, which tend to dispropor-
tionally affect the trends when Gaussian errors are assumed (e.g. figure 4 in Paper
III). Furthermore, while Paper III includes uncertainties in the presentation of the
springtime GPP increase due to changes in the spring recovery date (Table 1 in Paper
III), those trends were calculated using data from only two measurement stations in
both Eurasia and North America, and this may lead to increased representation error.

The ad hoc nature of the cost function formulations in Paper IV rules out proper
uncertainty quantification, and with it e.g. the possibility to compute Monte Carlo
estimates of future carbon balance based on parameter posteriors. The differences in
the optimal parameter values between the different loss function formulations shows
how important data selection and averaging are, and points out that the design of any
model calibration exercise must be based on future modeling needs. The incapability
of the model to describe the dry event in the summer of 2006 suggests that process
modifications need to be carried out. That this work was undertaken in Mäkelä et al.
(2019) (see section 3.1.5) serves as an example of how process models may and
should be improved based on statistical analyses.

When research is constrained by the availability and quality of observations, col-
lecting more data and refining the analyses little by little provides more and more
confidence in the conclusions. This is what the IPCC reports describe, with each new
version having more weight and urgency in both the details and the overall message.

The research presented in this thesis consists of technical results related to climate
change, carbon cycle, models, and data. These technicalities, however, hide an
important aspect of the work, which is to underline that climate change has already
advanced very far (Papers I,III), and this results in unpredictable and difficult-to-
model phenomena (Papers II-IV). For these reasons, action needs to be taken to
address the problems reported by the scientific community in addition to performing
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and funding more research. While a scientist can use Bayesian analysis to improve
the models, that same analysis can also be used by policy makers and voters as a
small ingredient in cooking up a way to save the world from the most catastrophic
climate change scenarios.
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R. Castano, B. Connor, N. M. Deutscher, A. Eldering, D. Griffith, M. Gunson,
A. Kuze, L. Mandrake, J. McDuffie, J. Messerschmidt, C. E. Miller, I. Morino,
V. Natraj, J. Notholt, D. M. O’Brien, F. Oyafuso, I. Polonsky, J. Robinson,
R. Salawitch, V. Sherlock, M. Smyth, H. Suto, T. E. Taylor, D. R. Thompson,
P. O. Wennberg, D. Wunch, and Y. L. Yung. The ACOS CO2 retrieval algo-
rithm – ndash; Part II: Global XCO2 data characterization. Atmospheric Mea-
surement Techniques, 5(4):687–707, 2012. doi: 10.5194/amt-5-687-2012. URL
https://www.atmos-meas-tech.net/5/687/2012/.

T. Cui, J. Martin, Y. M. Marzouk, A. Solonen, and A. Spantini. Likelihood-informed
dimension reduction for nonlinear inverse problems. Inverse Problems, 30(11):
114015, oct 2014. doi: 10.1088/0266-5611/30/11/114015. URL https://doi.

org/10.1088%2F0266-5611%2F30%2F11%2F114015.

65

https://www.atmos-meas-tech.net/5/687/2012/
https://doi.org/10.1088%2F0266-5611%2F30%2F11%2F114015
https://doi.org/10.1088%2F0266-5611%2F30%2F11%2F114015


66 References

F.-X. L. Dimet and O. Talagrand. Variational algorithms for analysis and assimilation
of meteorological observations: theoretical aspects. Tellus A, 38A(2):97–110, 1986.
doi: 10.1111/j.1600-0870.1986.tb00459.x. URL https://onlinelibrary.

wiley.com/doi/abs/10.1111/j.1600-0870.1986.tb00459.x.

S. Duane, A. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid monte carlo.
Physics Letters B, 195(2):216 – 222, 1987. ISSN 0370-2693. doi: https:
//doi.org/10.1016/0370-2693(87)91197-X. URL http://www.sciencedirect.

com/science/article/pii/037026938791197X.

J. Durbin and S. Koopman. Time Series Analysis by State Space Methods: sec-
ond Edition. Oxford Statistical Science Series. OUP Oxford, 2012. ISBN
9780199641178.

J. Durbin and G. Watson. Testing for serial correlation in least-squares regression, I.
Biometrika, 37:409–428, 1950.

J. Durbin and G. Watson. Testing for serial correlation in least-squares regression, Ii.
Biometrika, 38:159–178, 1951.

D. Gamerman. Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Infer-
ence. Chapman & Hall/CRC Texts in Statistical Science. Taylor & Francis, 1997.
ISBN 9780412818202.

A. L. Ganesan, M. Rigby, A. Zammit-Mangion, A. J. Manning, R. G. Prinn,
P. J. Fraser, C. M. Harth, K.-R. Kim, P. B. Krummel, S. Li, J. Mühle, S. J.
O’Doherty, S. Park, P. K. Salameh, L. P. Steele, and R. F. Weiss. Charac-
terization of uncertainties in atmospheric trace gas inversions using hierarchical
bayesian methods. Atmospheric Chemistry and Physics, 14(8):3855–3864, 2014.
doi: 10.5194/acp-14-3855-2014. URL https://www.atmos-chem-phys.net/

14/3855/2014/.

A. Gelman, J. Carlin, H. Stern, D. Dunson, A. Vehtari, and D. Rubin. Bayesian Data
Analysis. Chapman and Hall/CRC, 3rd edition, 2013.

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative Adversarial Networks. arXiv e-prints, art.
arXiv:1406.2661, Jun 2014.

U. Grenander and M. I. Miller. Representations of knowledge in complex systems.
Journal of the Royal Statistical Society. Series B (Methodological), 56(4):549–603,
1994. ISSN 00359246. URL http://www.jstor.org/stable/2346184.

M. Gruber. Matrix Algebra for Linear Models. Wiley, 2013. ISBN 9781118608814.

H. Haario, E. Saksman, and J. Tamminen. An adaptive metropolis algorithm.
Bernoulli, 7(2):223–242, 2001.

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1600-0870.1986.tb00459.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1600-0870.1986.tb00459.x
http://www.sciencedirect.com/science/article/pii/037026938791197X
http://www.sciencedirect.com/science/article/pii/037026938791197X
https://www.atmos-chem-phys.net/14/3855/2014/
https://www.atmos-chem-phys.net/14/3855/2014/
http://www.jstor.org/stable/2346184


References 67

H. Haario, M. Laine, A. Mira, and E. Saksman. Dram: Efficient adaptive mcmc.
Statistics and Computing, 16(4):339–354, 2006. ISSN 1573-1375. doi: 10.1007/
s11222-006-9438-0. URL http://dx.doi.org/10.1007/s11222-006-9438-0.

D. M. Hammerling, A. M. Michalak, and S. R. Kawa. Mapping of CO2 at high
spatiotemporal resolution using satellite observations: Global distributions from
OCO-2. Journal of Geophysical Research: Atmospheres, 117(D6), 2012a. doi:
10.1029/2011JD017015. URL https://agupubs.onlinelibrary.wiley.com/

doi/abs/10.1029/2011JD017015.

D. M. Hammerling, A. M. Michalak, C. O’Dell, and S. R. Kawa. Global CO2 distribu-
tions over land from the Greenhouse Gases Observing Satellite (GOSAT). Geophys-
ical Research Letters, 39(8), 2012b. doi: 10.1029/2012GL051203. URL https:

//agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2012GL051203.

J. Hammersley and P. Clifford. Markov random fields on finite graphs and lattices.
1971.

A. C. Harvey. Forecasting, Structural Time Series Models and the Kalman Filter.
Cambridge University Press, 1990. doi: 10.1017/CBO9781107049994.

M. J. Heaton, A. Datta, A. Finley, R. Furrer, R. Guhaniyogi, F. Gerber, R. B. Gra-
macy, D. Hammerling, M. Katzfuss, F. Lindgren, D. W. Nychka, F. Sun, and
A. Zammit-Mangion. A Case Study Competition Among Methods for Analyzing
Large Spatial Data. arXiv e-prints, art. arXiv:1710.05013, Oct 2017.

IPCC. Summary for Policymakers, book section SPM, pages 1–30. Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
ISBN ISBN 978-1-107-66182-0. doi: 10.1017/CBO9781107415324.004. URL
www.climatechange2013.org.

R. Kalman. A new approach to linear filtering and prediction problems. Transactions
of ASME – Journal of Basic Engineering, 82:35–45, 1960.

I. Karatzas and S. E. Shreve. Brownian Motion and Stochastic Calculus. Springer
Graduate Texts in Mathematics. Springer-Verlag, ”2nd” edition, 1998. doi: 10.
1007/978-1-4684-0302-2.

M. Katzfuss, J. Guinness, and W. Gong. Vecchia approximations of Gaussian-process
predictions. arXiv e-prints, art. arXiv:1805.03309, May 2018.

M. C. Kennedy and A. O’Hagan. Predicting the output from a complex computer
code when fast approximations are available. Biometrika, 87(1):1–13, 2000. ISSN
00063444. URL http://www.jstor.org/stable/2673557.

http://dx.doi.org/10.1007/s11222-006-9438-0
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011JD017015
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011JD017015
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2012GL051203
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2012GL051203
www.climatechange2013.org
http://www.jstor.org/stable/2673557


68 References

M. Laine, N. Latva-Pukkila, and E. Kyrölä. Analysing time-varying trends in strato-
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C. W. O’Dell, B. Connor, H. Bösch, D. O’Brien, C. Frankenberg, R. Castano,
M. Christi, D. Crisp, A. Eldering, B. Fisher, M. Gunson, J. McDuffie, C. E.
Miller, V. Natraj, F. Oyafuso, I. Polonsky, M. Smyth, T. Taylor, G. C. Toon,
P. O. Wennberg, and D. Wunch. Corrigendum to ”The ACOS CO2 retrieval
algorithm – Part 1: Description and validation against synthetic observations”
published in atmos. meas. tech., 5, 99–121, 2012. Atmospheric Measurement
Techniques, 5(1):193–193, 2012. doi: 10.5194/amt-5-193-2012. URL https:

//www.atmos-meas-tech.net/5/193/2012/.

B. Øksendal. Stochastic Differential Equations: An Introduction with Applications.
Universitext. Springer Berlin Heidelberg, 2010. ISBN 9783642143946.

B. Peherstorfer, K. Willcox, and M. Gunzburger. Survey of multifidelity methods
in uncertainty propagation, inference, and optimization. SIAM Review, 60(3):
550–591, 2018. doi: 10.1137/16M1082469. URL https://doi.org/10.1137/

16M1082469.
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T. Markkanen, J. Lemmetyinen, J. Susiluoto, S. Dengel, I. Mammarella, J.-P.
Tuovinen, and T. Vesala. Early snowmelt significantly enhances boreal spring-
time carbon uptake. Proceedings of the National Academy of Sciences, 114(42):
11081–11086, 2017. ISSN 0027-8424. doi: 10.1073/pnas.1707889114. URL
http://www.pnas.org/content/114/42/11081.

M. Raivonen, S. Smolander, L. Backman, J. Susiluoto, T. Aalto, T. Markkanen,
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