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AABSTRACT
Background. Abiotic stresses affect the productivity and the evolutionary pathway of adaptation in
crops in different agricultural regions. Soil acidity and drought are two major abiotic stresses, when
severe, reduce the suitability of fertile lands for crop production, and when moderate, reduce yield
and often quality. Faba bean (Vicia faba L.) is sensitive to acidity, aluminium toxicity and limitation
of soil moisture, and these stresses greatly reduce the yield potential and stability of the crop. The
overall objectives of this study were to investigate complementarity in shoot and root morphological
and physiological phenotypic markers to acid soil and drought adaptation in pre-flowering faba bean
plants, and to identify sources of tolerance for further breeding work. These objectives were tested in
light of four hypotheses: acid zone germplasm would have higher acid and Al3+ tolerance index than
other germplasm (publication I);  dry-zone germplasm would have more prolific root systems than
wet-zone germplasm (publication II); dry-zone germplasm would maintain its root system growth
better in drought than wet-zone germplasm would (publication II); and drought avoidance is based
on a combination of leaf gas exchange and exploitation of soil water (publication III).

Materials and Methods. Multiple sets of faba bean accessions were chosen based on their expected
exposure to acidity, aluminium, or drought stresses in their regions of provenance, and based on
previous research data and reports. Experiments were established in aquaponic, peat and perlite media
in controlled/environment growth chambers, greenhouses and a robotic phenotyping facility to
evaluate the performance of a range of faba bean accessions in acid, aluminium, and watering
treatments. Key root and shoot data were collected and analysed.

Results and Discussion.  Acidity  and  Al3+-toxicity treatments were sufficiently strong to initiate
detectable variation in root length, stain score and Al3+ tolerance index, SPAD value, stomatal
conductance, biomass and leaf area in solution culture, peat, and perlite experiments. Roots behaved
differently  in  response  to  pH  and  Al3+ treatment differences. Al-tolerant accessions showed
contrasting shoot Al content, indicating multiple Al tolerance mechanisms in faba bean. The results
of acid tolerance index in aquaponic and perlite media experiments were positively correlated. Trait
expression complementarity and variability were observed across the experiments owing to
differences in growth media. Accessions differed in root regrowth length in solution culture and in
SPAD values and taproot length in perlite medium to changing pH and Al3+ concentrations as shown
by accession by treatment interactions. Root tolerance index, root regrowth length, and SPAD values
were found to be largely informative traits in solution culture, and peat and perlite pot experiments.
In aquaponics experiment, 41 μmol/l Al3+ was not informative, 82 μmol/l Al3+ was informative, 123
μmol/l Al3+ was severe. As a result, 82 μmol/l Al3+ was used in the next peat and perlite experiments.
However, 82 μmol/l Al3+ was found to be less informative in peat experiment, hence 123 μmol/l Al3+

could be recommended for selection of outstanding accessions in solid media. Overall, accessions
responded to acid and Al3+ treatments independently. Cultivars Aurora and Messay were found to be
Al3+ tolerant but acid sensitive;  Kassa and GLA 1103 acid tolerant,  but Al3+-sensitive;  NC 58 and
Dosha were tolerant to both Al3+ and acidity, while Babylon was sensitive to both. Aquaponic media
for mass screening and perlite media for verification experiments were found to be convenient
(publication I).

Screening of germplasm for drought was successfully conducted in a perlite-based pot experiment,
which allowed quicker screening of a large set of materials and enabled detection of variation in
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constitutive traits among accessions. Use of the GROWSCREEN Rhizo phenotyping facility allowed
detection of useful differences between treatments and among accessions. In both the screening and
phenotyping drought experiments, accessions originating from the drier regions of the world showed
drought avoidance behaviour thereby confirming FIGS as a valuable strategy (publication II and III).
In germplasm screening, root and shoot dry mass and their fractions, along with SPAD value provided
useful information in discriminating accessions with potential drought-avoidance characteristics. In
the phenotyping experiment, root traits were strongly and positively correlated with each other and
with shoot traits, but these correlations indicated specific plasticity of traits with watering treatments
(publication III). In the well watered treatment, total dry mass was correlated with root length traits,
whereas in the water-limited treatment, it was correlated with root width and convex hull area.
Apparent root length density was positively correlated with second order lateral root length in the
well watered treatment and with apparent specific root length in water limited treatment, indicating
high surface area to volume ratio to maximize water absorption is a key strategy in droughted
condition. In the water-limited treatment, root traits contributing to drought avoidance such as lateral
root length and root system depth, convex hull area and root system width, and apparent root length
density (publication II and III) were positively associated with shoot traits such as total dry mass, leaf
number, and leaf mass fraction reported in publication III. Accession DS70622 exhibited deeper and
wider growing roots that filled the root system volume with long and thin laterals. The larger root
system combined with moderately high total dry mass and stomatal conductance endorsed this
accession as a potential drought-avoiding candidate by effective use of water suitable in transient
droughts. Accessions such as DS11320 and ILB938/2 that combined a large and thick root system
with low root length density, low specific root length and low stomatal conductance can be
recommended as potential sources of drought-avoiding traits by improved water use efficiency
suitable in terminal droughts. Future research directions on the development of multiple abiotic stress
tolerant cultivars enables climate change resilience in crops. Most acid soils are subject to Al3+-
toxicity, and drought can occur on this soils as it occurs in others. Hence, multiple stress tolerance
traits, mechanisms and QTLs need to be investigated in faba bean to identify host accessions with
multiple tolerance to Al3+ and drought stresses for breeding of high yielding materials.
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11 INTRODUCTION

1.1 Faba bean (Vicia faba L.): The crop

Faba bean (Vicia faba L.) (Figure 1), also known as fava bean, field bean, broad bean, horse bean,

bell bean and tick bean (Lim 2012), is an annual herbaceous plant, belonging to the family Fabaceae,

subfamily Faboideae, tribe Vicieae and genus Vicia L (Muratova 1931). Faba bean is diploid with

12 chromosomes (2n = 12) with large nuclear genome size of 1C DNA = 13330 Mb (Johnston et al.

1999), while all other Vicia species contain 14 chromosomes (2n = 14) (Duc et al. 2010).

Figure 1. Faba bean plant, root, stem, leaves, flowers, pods, and seeds.

Faba bean is an erect robust plant growing from 60 to often > 200 cm tall (Lim 2012). The roots

possess a taproot system with branching laterals naturally bearing nodules with nitrogen-fixing

bacteria Rhizobium leguminosarium bv viciae and the roots can form endomycorrhizal associations

(Duc 1997; Link et al. 2008). The stem with indeterminate growth habit is hollow with or without

basal branches arising from the leaf axils, with nodes and internodes bearing leaves, mostly without

tendril, and inflorescences with two to twelve flowers in the leaf axil (Ladizinsky 1975; Link et al.

2008). Leaflets are oblong, elliptic or obovate reaching up to 10 cm long and 4 cm wide (Lim 2012).

The flowers can be black spotted with veining on a background of white, red, brown or violet.

Entirely white flowers are indicators of zero tannin in the seed. Generally pods have short velvet

cover, and are short (3-4 ovules per pod) in minor, intermediate (4-8 ovules per pod) in equina, and
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long and hanging (8-12 ovules per pod) in major types (Link et al. 2008). With one to two pods per

inflorescence each bearing three to four seeds, a plant can bear about twelve pods. The seed can be

yellow, black, red, green, beige, brown, or violet in color, and it is gray in zero-tannin genotypes

(Duc 1997; Link et al. 2008; Lim 2012).

Flower blooming in faba bean mostly takes place a day after anthesis (Ladizinsky 1975). Owing to

their floral biology, three of the faba bean varieties are moderately self/cross-pollinating (Stoddard

and Bond 1987) with subspecies paucijuga greatly tending to autogamy (Cubero 1973). Natural

outcrossing in faba bean is estimated in the range of 2 to 84%, with a mean of 32% and outcrossing

is assisted by pollinator insects such as honeybees (Apis mellifera), bumblebees (Bombus spp.) and

other solitary insects (Bond and Poulsen 1983). As Stoddard and Bond (1987) summarized, in the

absence of bee-mediated pollination, 36% to 70% seed number reduction can occur in faba bean

plants. Geographical location, type of pollinating insects and their activity are sources of variation

in outcrossing levels (Duc 1997).

Though faba bean is an old-world legume used since the Late Neolithic and Early Bronze Age

(Zohary and Hopf 1973; Zohary 1977; Caracuta et al. 2015, 2016) and is supposed to be the first

grain legume consumed by humans (Muratova 1931), its center of origin is still debated (Caracuta

et al. 2015; Caracuta et al. 2016). However, the probable origin of faba bean was postulated by

Cubero (1973) as Near East, Iraq and Iran, from where secondary origins Ethiopia and Afghanistan

were later evolved. Recently, Caracuta et al. (2016) found seed remains of wild V. faba that grew

14000 years ago in Mount Carmel, northern Israel, the region where the first documented

domestication and faba bean farming was started some 10200 years ago (Caracuta et al. 2015).

Today, however, no wild relative of faba bean with 12 chromosomes has been found, and no

successful crossing with any other Vicia species has been reported (Zeid et al. 2003). In faba bean,

seed size is the main indicator of diversity within the species, and V. faba L.  is  divided into two

subspecies: paucijuga (about < 0.3 g seed size) and eu-faba (Adsule and Akpapunam 1996). Eu-

faba is subdivided into three botanical varieties: var. minor Beck (0.4-0.6 g), var. equina Pers (< 1.0

g) and var. major (1-2.6 g) (Muratova 1931; Cubero 1974; Ladizinsky 1975). Paucijuga has been

developed in India, minor in Ethiopia and Egypt (Muratova 1931), equina in the Middle East and

North Africa, and major in South Mediterranean and China (Cubero 1974).

Currently, faba bean grows world-wide from temperate to tropical, and from humid to semi-arid

climatic conditions. According to FAOSTAT (http://www.fao.org/faostat/en/#data/QC), globally,

faba bean occupied 2.2 x 106 ha and 2.4 x 106 ha in 2014 and 2016 with corresponding yield of 4.2

x 106 and 4.5 x 106 tonnes. The observed increase in yield was because of the increased area of
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production. Within the years mentioned, global yield per unit area productivity of faba bean fell

4.5%. Decrease in productivity in Europe alone reached 13.7%, while 19.3% increase in area of

production was indicated. China, Ethiopia and Australia, in their order, were the three world leading

countries in terms of area coverage and production of faba bean in 2016. In Europe, the United

Kingdom is the major producer of faba bean followed by France. Though there has been great

fluctuation, the continental average yield in Europe ranged from 2.6 to 3.2 t/ha between 2011 and

2018, and the highest productivity was 6 t/ha from relatively small areas in Ireland and Montenegro

between 2010 and 2017 (www.https//ec.europa.eu/eurostat/data/database).

Figure 2. Local food made from faba bean in Ethiopia. (A) faba bean snack: sprouted faba bean
boiled with salted water; (B) faba bean sauce: eaten with injera as lunch or dinner; (C) faba bean ful:
usually eaten with bread as a breakfast dish.

Faba bean has food and feed values. The minor and equina varieties, referred to as field beans or

horse beans, are mainly used for animal feed, and the large seeded major variety commonly called

broad beans, are grown for human consumption (Knott 1990; Link et al. 1999; Crépon et al. 2010).

Faba bean is an important human food in North Africa, the Middle East and China (Stoddard and

Bond 1987; Stoddard et al. 2016). Across accessions, protein content ranges from 27 to 34% of seed

dry matter (Duc 1997), and faba bean is considered as a meat substitute (Link et al. 2008). In ancient

Rome, it was used for making porridge and a special purée (Renfrew 1973) and it was a preferred

dish of the ancient Hebrews (Muratova 1931). Presently, faba bean is used as vegetable in green or

dried form, and worldwide, 20% of it has green use (Link et al. 2008). In the Mediterranean region

and Mediterranean ethnic markets of North America it is marketed for human consumption

(McVicar et al. 2008). In China, extruded starch products (vermicelli) and sauces are made from

faba bean (Mathews 2003). Faba bean sprouts seasoned with condiments, or boiled with salted water,

or sprouted and roasted are popular snacks in Ethiopia (Figure 2A). Faba bean sauce is consumed as

a principal dish with local “ingera” [(pancake made from tef (Eragrostis tef (Zucc.) Trotter) flour)]

during lunch and dinner time (Personal observation) (Figure 2B). In Ethiopia and Sudan, whole or

hulled bean sauce is served as a breakfast dish called “ful” (Figure 2C), a word probably derived
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from the Arabic name “fûl” meaning faba bean.

Another benefit of faba bean is its ecosystem service in sustainable agriculture: biological nitrogen

fixation, improving of soil biological, physical and chemical properties, and breaking of crop pest

cycles (diseases, insects, and weeds) (Jensen et al. 2010; Rubiales 2010). The use of biofertilizers in

crop production decreases the use of inorganic fertilizers (Dashadi et al. 2011), and faba bean is one

of the best crops used in rotation with cereals to improve the productivity and meet the nitrogen (N)

need of the succeeding crop (Atemkeng et al. 2011; Singh et al. 2012). The crop has the potential to

fix free nitrogen at 150 to 300 kg N/ha (Singh et al. 2012), and the N benefit for the following crop

reaches 100-200 kg/ha (Jensen et al. 2010). Faba bean has low fertilizer, pesticide, and fungicide

requirements thus making it environmentally friendly wherever sustainable agriculture is sought (Duc

1997). Inoculation of faba bean with Rhizobium leguminosarum bv viciae or co-inoculation with

Azotobacter chroococcum increased nodulation and total nitrogen content, and improved water and

nutrient uptake of the crop under water stress conditions (Dashadi et al. 2011). With appropriate

inoculum, this characteristic can be exploited in N-poor agricultural fields. Green manuring of soils

at a rate of 9 tonne dry matter of faba bean per ha improved soil organic matter and microbial

population,  C  and  N  content,  soil  structure  and  water  holding  capacity  (Jensen  et  al.  2010  and

references therein).

As a crop, growth and yield of faba bean are determined by climatic, edaphic, and management

practices. Faba bean is best adapted to cool and moist agricultural areas (Mathews 2003). Hot, dry

spells will result in desiccation injury to the plants and may reduce flowering and seed set (McVicar

et al. 2008). Faba beans are especially sensitive to drought during the flowering stage (Duc 1997). In

areas where terminal drought is common, early planting of faba bean is the best strategy for drought

escape (Duc 1997; Khan et al. 2007; Link et al. 2008). In low-rainfall semi-arid Mediterranean

environments, early sowing resulted with greater biomass and yield as compared to the late sown

ones (Loss et al.1997). The optimal temperature for faba bean growth is 18-27 °C, it prefers soil types

with pH ranging from neutral to alkaline (pH of 6.5 to 9.0) (Jensen et al. 2010), and it is highly

sensitive to soil acidity and toxic levels of Al3+ concentration (Horst and Göppel 1986a, 1986b).

Under field growth conditions the yield of faba bean can reach as high as 6.15 t/ha (EUROSTAT

2019), but yields are reduced by abiotic stresses such as acid soil and drought stresses. One of the

important aspects of soil acidity is the availability of aluminium ion that reduces growth and yield by

causing root damage and oxidative stress. Drought, another source of oxidative stress and yield-

limiting factor, affects the growth and productivity of faba bean at various stages. Al3+-toxicity and

drought interact, and their damage on the crop is synergistic (Yang et al. 2012, 2013).
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11.2 Acid soil stress

1.2.1 Acid soil and its implication in crop production

The activity of hydrogen ion (H+) expressed as pH determines soil acidity (Hede et al. 2001), and

when the activity of the H+ surpass that of the hydroxyl ions (OH-), the soil is said to be acidic (Abebe

2007). Soil is a complex medium in that soil acidity is related with the amount of H+ and Al3+ ions in

exchangeable form (Abebe 2007). Acid soils, with pH < 5.5, are estimated to cover about 30% of the

world’s total ice-free land, and over 50% of the global potential arable lands are acidic (von Uexküll

and Mutert 1995). Combinations of complex processes involving human and natural factors are

responsible for the occurrence of acid soils in the world. Natural factors such as soil parent material

and processes of weathering, rainfall and temperature conditions, the type of vegetation cover, the

uptake of bases by plants and leaching of bases in the soil, and release of carboxylates and protons

by plant roots (von Uexküll and Mutert 1995; Hede et al. 2001; Abebe 2007) along with the formation

of weak acids such as carbonic acid from decomposition of plant materials all contribute to the soil

acidification process (Mukherji and Ghosh 1996). Management practices known to accelerate soil

acidification include frequent application of ammonium-based synthetic nitrogen fertilizers, removal

of basic cations with plant material from the soil in the form of grain and livestock feed, excessive

soil leaching in uncovered crop fields, and acid precipitation from polluted air (von Uexküll and

Mutert 1995; Chen 2006; Zheng 2010).

Unless it is coupled with mineral element toxicities and/or deficiencies, plant growth is seldom

affected by low pH alone (von Uexküll and Mutert 1995). However, soil pH values as low as 4.0 for

faba bean and 3.5 for maize were reported to be critical, below which net H+ release and root growth

were inhibited (Yan et al. 1992). Broadly, the low productivity of acid soils is associated with soil

nutrient content and soil physical characteristics. Nutritionally, the combined effects of toxicities

arising from Al3+, Mn2+ (manganese ion) and Fe2+ (iron ion), and deficiencies associated with soil P

(phosphorus), Ca (calcium), Mg (magnesium), and K (potassium) are considered as causes of crop

failure in acid soils (von Uexküll and Mutert 1995; Vardar and Unal 2007; Dharmendra et al. 2011).

Depending on the soil type, physically, acid soils are characterized by low water holding capacity,

susceptibility to crusting, erosion and compaction (von Uexküll and Mutert 1995). Moreover,

deficiencies of some micronutrients, legume nodulation failures and increased plant disease are other

crop production problems associated with acid soils (Dharmendra et al. 2011; Kochian et al. 2004;

Vardar and Unal 2007).
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In acid soils, crop production is inhibited by Al and Mn toxicities and P deficiency (White and Brown

2010; Zheng 2010), Al toxicity being the primary factor limiting crop production in 67% of global

acid soil lands (Eswaran et al. 1997) causing 25–80% yield losses in various crop species

(Dharmendra et al. 2011). Aluminium is the third most abundant element next to oxygen and silicon

(Ma  et  al.  2001;  Pilon-Smith  et  al.  2009)  constituting  about  8%  of  the  earth’s  crust,  and  it  is  a

component of primary and secondary minerals (Hede et al. 2001). In neutral or weakly acidic pH, Al

exists as a stable complex with oxygen and silicate (Vardar and Unal 2007; Zhang et al. 2009), which

is insoluble, biologically inactive deposit and inoffensive to plants (Chen 2006; Brunner and Sperisen

2013). At lower pH, Al is solubilized into an ionic form from the primary and secondary minerals

and becomes phytotoxic (Hede et al. 2001). At pH lower than 5.0, Al(H2O)6
3+, which is known as

Al3+,  is  the dominant aluminium species (Vardar and Unal 2007).  Naturally,  acid soils are high in

Al3+ concentration and low in base cations (BC) such as Ca2+, Mg2+, and K+ (Brunner and Sperisen

2013). A ratio of Ca2+ /Al3+ or BC/Al3+ in  the  soil solution lower than 1 is commonly used as an

environmental indicator of possibly adverse effects of Al3+ stress. Alternatively, the availability of

toxic Al3+ in the soils can be indirectly determined from the Al and Ca concentrations in fine roots

(Brunner and Sperisen 2013).

A toxic concentration of Al3+ in the rhizosphere is associated with harmful changes in root anatomy,

morphology, and physiological functions (Liao et al. 2006) and inhibits root growth and function

(Pineros and Kochian 2001) by destroying the structure of cells at the root apex (White and Brown

2010; Zheng 2010). Consequently, root tips and lateral roots develop into wrinkled, short, swollen

and brittle structures (Vardar and Unal 2007) with limited capacity for nutrient and water absorption

(Zheng 2010). Shoot symptoms seen because of Al3+ toxicity  are  the  outward  expressions  of  root

damage (Vardar and Unal 2007), that may be displayed as reduced shoot photosynthesis and photo-

protective systems, reduced water, carbohydrate, and mineral content, organic acid and nitrogen

metabolism (Chen 2006). However, plant species exhibit different levels of tolerance to acid soil and

Al3+-toxicity.

11.2.2 Mechanisms of Al3+ toxicity tolerance

Plant species and genotypes vary in their tolerance and mechanism of tolerance to Al3+ toxicity. The

existence of these differences indicates that tolerance to aluminium toxicity is genetically controlled

(Singh et al. 2011). Genetic variability to Al3+-toxicity tolerance has been indicated in tef (Abate et

al. 2013), sorghum (Sorghum bicolor L.) (Hill et al. 1989), maize (Zea mays L.) (Maron et al. 2010),

barley (Hordeum vulgare L.) (Cai et al. 2013), wheat (Triticum eastivum L. emend Thell) (Stodart et

al. 2007), rice (Oryza sativa L.) (Nguyen et al. 2002), common bean (Phaseolus vulgaris L.) (Eticha
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et al. 2010), pigeon pea (Cajanus cajan L.) (Choudhary et al. 2011), Medicago truncatula Gaertn

(Chandran  et  al.  2008)  and  other  crops.  Breeding  programs dedicated  to  the  development  of  Al3+

tolerant  varieties  can  benefit  from  these  genetic  variabilities  to  develop  novel  genotypes  with

enhanced aluminium tolerance.

Broadly, there are two physiological mechanisms that allow plants to tolerate toxic levels of Al3+ in

soil solution: excluding Al3+ from the root tip (Delhaize et al. 1993; Jorge and Arruda 1997; Hocking

et al. 2000; Maron et al. 2010; Castilhos et al. 2011), referred to as external tolerance; and providing

Al3+ tolerance or detoxification in the plant symplasm, referred to as internal tolerance (Hocking et

al. 2000; Hede et al. 2001; Ma et al. 2001; Vardar and Unal 2007; Brunner and Sperisen 2013).

Exclusion may involve secretion of organic acids, formation of a rhizosphere pH barrier, selective

permeability of the plasma membrane, and Al3+ efflux (Arunakumara et al. 2013). However, in Al3+

-tolerant plants, aluminium-induced release of organic acids from the roots plays a major role in the

tolerance mechanism.

The chief mechanism of Al exclusion involves preventing Al from entering the root symplast by Al-

activated release of organic acid anions such as citrate, malate, and oxalate that chelate and detoxify

Al3+ outside the root tips (Zheng 2010; Brunner and Sperisen 2013). Sensitive plants in this group

accumulate Al3+ in the epidermal layer and in the cortical layer below the epidermis (Delhaize et al.

1993), and probably this is the Al that is detectable by staining. Plant species and genotypes vary in

the type and amount of organic acid they release and the number of genes involving in Al-tolerance,

so there is variability in the degree of Al-tolerance (Pellet et al. 1996; Dharmendra et al. 2011). Al3+

-activated release of citrate in faba bean (Chen et al. 2012), maize (Jorge and Arruda 1997; Maron et

al. 2010) and common bean (Miyasaka et al. 1991), malate in wheat (Delhaize et al. 1993; Pellet et

al. 1996) and soybean (Glycine max) (Liao et al. 2006) have been reported. In wheat cultivars and

lines for example, Al3+ -tolerance in cultivar Atlas was found to be multigenic but that in line ET3

was conditioned by the single Alt1 locus, and multigenic tolerance was reported to be 3 times as

effective as monogenic tolerance (Pellet et al. 1996). Similarly, Al3+ exclusion in oat (Avena sativa

L.) is controlled by a single gene in which a diverse pattern of Al3+ accumulation at root apexes across

genotypes was reported (Castilhos et al. 2011). In chickpea (Cicer arietinum L.)  Al3+ tolerance is

controlled by a monogenic dominant trait (Singh and Raje 2011).

Internal Al tolerance mechanisms involve chelation of Al entering the root and transportation and

sequestration into less sensitive parts of the plant and sub-cellular compartments (Brunner and

Sperisen 2013). Organic acid anions and phenolic compounds have been implicated in internal Al3+

tolerance (Ma et al. 2001). Plants that accumulate Al in their leaves detoxify it by forming complexes
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with organic acids such citrate and oxalate. Presumably, this chelation may reduce the activity of Al3+

entering the cytosol and limits its toxicity.

11.2.3 Management of acid soils for crop production

In acid soils, phyto-available P may be naturally low in quantity (Hocking et al. 2000) or the P is

bound by clay minerals (Zheng 2010) rendering it unavailable for plant absorption. Additionally, in

these soils aluminium is solubilized into Al3+ form, which is toxic to many plants (Hede et al. 2001).

Consequently, crop production is largely limited in acid soils where low P availability is combined

with Al3+ toxicity  (Hocking  et  al.  2000).  Application  of  lime  to  raise  soil  pH  and  P  fertilizers  to

increase the phyto-availability of P in the soil are traditional recommendations to improve crop

production in acid soils (Figure 3). However, these practices are not always practically and

economically successful (Hede et al. 2001), in agricultural regions involving large areas of acid soils

and where cropping is predominantly low-input (Hocking et al. 2000). The amelioration of aluminium

toxicity through application of lime is expensive, ineffective in the subsoil and in some cases heavy

application may have a deleterious effect on the soil structure (Zheng 2010) while application of P

fertilizers is not always economical for farmers of developing countries (Atemkeng et al. 2011). In

their four-year field study of aluminium chemistry in acid soils with high organic matter content,

Brown et al. (2008) found that broadcasting lime raised the soil pH to a depth of 15 cm, but reduction

of the activity of Al3+ was observed only in the top 5 cm of the soil. Similarly, these authors reported

that the application of lime in a band at a soil depth of 5-10 cm did not significantly increase soil pH,

so it had no effect on the yield of experimental crops. From the environmental point of view, frequent

application of N and P fertilizers in agricultural lands contribute to the pollution of water bodies,

resulting in eutrophication (White and Brown 2010). Hence, liming and fertilization practices alone

are not sufficient in sustaining agricultural productivity in acid soils unless combined with the

development of cultivars able to tolerate Al3+ toxicity and access poorly available soil P (Hocking et

al. 2000; Hede et al. 2001).
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Figure 3. Schematic drawing of responses and requirements of faba bean under acidic and Al3+-
toxicity stresses. Faba bean grows best between pH of 6.5 and 9.0. Below 6 soil acidity and below 5
Al3+-toxicity are the major challenges affecting yield and biological N fixation, and P availability and
liming requirements.

Yield limitation in acid soils due to toxic mineral elements and mineral deficiencies is generally

mitigated by the combined application of agronomic strategies and the development of novel tolerant

cultivars (White and Brown 2010). Development of P-efficient cultivars that are able to utilize both

soil and applied P in acid soils would be both sustainable and economical (Zheng 2010). However,

conventional breeding efforts to identify and develop genotypes with improved P uptake and P use

efficiency has been slow unless integrated with molecular approaches (Atemkeng et al. 2011).

Incorporating carboxylate-exuding legume species in the cropping system may be a suitable

agronomic practice to enhance P uptake in the current and subsequent crops. Hocking et al. (2000)

summarized that the exudation of organic acids from plant roots is stimulated by both P deficiency

and exposure to Al3+, and that the organic acids are responsible for detoxification of Al3+ and

solubilization of fixed soil P, indicating the important role of organic acids in enhancing plant nutrient

acquisitions in acid soils. Faba bean genotypes known for their P efficiency and malate exudation in

acid soils were reported to improve the growth and P uptake of wheat crops grown afterwards (Rose

et al. 2010). Similarly, an Al3+-tolerant common bean cultivar exuding citric acid in the rhizosphere

was reported to enhance the availability of P from insoluble aluminium phosphate (Miyasaka et al.
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1991). For low-input agriculture, breeding of legumes with improved ability to establish symbiotic

relationships with arbuscular mycorrhizal fungi may improve P uptake in acid soil (Atemkeng et al.

2011). Hence, integrating the use of Al3+-tolerant and P-efficient cultivars with soil amendment and

fertilizer management practices provides the most effective strategy for production of economically

important crops in acid soils.

11.2.4 Screening of crops for aluminium tolerance

Several screening methods for detecting Al3+-tolerance in plant species and genotypes have

contributed to accelerated breeding efforts to develop acid soil tolerant cultivars. In screening of crop

genotypes from a wide germplasm pool, laboratory and greenhouse experiments are commonly

employed using nutrient solution culture and solid media such as soil, peat, perlite, and sand

(Villagrcia et al. 2001; Wang et al. 2006; Choudhary et al. 2011). Field screening in limed and non-

limed plots can be applied to investigate the effect of Al3+ on root development or plant growth at

different stages of growth (Samac and Tesfaye 2003). However, each method has its own advantages

and shortcomings, so relying on a single method may yield misleading results (Samac and Tesfaye

2003; Narasimhamoorthy et al. 2007).

Evaluating shoot and root performance parameters in response to toxic levels of Al3+ concentrations

provides good separation of tolerant and sensitive genotypes (Wang et al. 2006). Measurements of

absolute and relative root length, root re-growth, and staining of roots with hematoxylin (indicator of

the Al uptake by sensitive plants) and lumogallion (a fluorescent stain specific for Al) are the

commonly used screening methods (Samac and Tesfaye 2003), and the use of Chrome Azurol S in

faba bean (Chen et al. 2012) and of eriochrome cyanine R in pea (Pisum sativum L.) (Kichigina et al.

2017) were reported as staining procedures as well. Hematoxylin staining and root re-growth tests

are not only fast and effective techniques in screening genotypes, but also are advantageous over field

screening where large temporal and spatial variation in acidic soils makes it difficult to reliably rank

experimental materials (Choudhary and Singh 2011). The hematoxylin staining and root re-growth

methods with applications to genotypic selection (Ma et al. 2005; Stodart et al. 2007; Choudhary et

al. 2011; Choudhary and Singh 2011), genetic analysis (Echart et al. 2002; Nguyen et al. 2002), and

molecular characterization (Chandran et al. 2008; Raman et al. 2005) have been widely used in wheat,

pigeonpea, barley, rice, Medicago truncatula and other species for Al tolerance. Hematoxylin staining

provides a qualitative measure, while root growth measurements are quantitative, so they can be used

together to evaluate relative levels of Al tolerance (Stodart et al. 2007). Together with the methods

mentioned above, biochemical markers for antioxidant defense system including detection of the

activity of enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), germin-
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like protein (GEP), and non-enzymatic antioxidants such as ascorbate contents, and malondialdehyde

(MDA, CH2(CHO)2), which is a marker of oxidative lipid injury) and contents of reactive oxygen

species such as hydrogen peroxide (H2O2) and superoxide (O2
-) in roots and leaves can also be used

to discriminate faba bean accessions for Al3+-toxicity tolerance (Zhang et al. 2009; Chen et al. 2012;

Nahar et al. 2017).

11.3 Drought stress

Climate change and increase in temperature, land degradation and the recurrence of episodes of

drought on one side, and demographic growth and accompanying increase in food, feed, fiber, and

biofuel  demands  on  the  other  side,  present  major  challenges  for  humanity  in  the  21st century and

beyond. Drought is an episode that limits the growth and development of crops at all stages of their

life cycle. In different disciplines, drought is defined in a variety of ways. In agriculture, drought is a

gap between the transpiration demand of the crop and available soil moisture (Tuberosa 2012). In

rainfed agriculture, crops are exposed to periods of soil and atmospheric water deficit during their

life cycle, especially in arid and semi-arid environments. In the semi-arid agricultural zone of tropical

Sahel Africa, the length of the growing season was reported to be shorter than it was 50 years

beforehand (Hall 2004). In the future, the occurrence and frequency of drought is expected to increase

outside the current agricultural regions (Chaves et al. 2002), and under the slow and rapid climate

warming setting, an average crop yield decline by 38% and 72% were predicted to happen by the end

of  the  21st century (Hatfield et al. 2011 and the references in). In faba bean, CO2 enrichment

significantly increased photosynthesis, plant growth, yield and water use efficiency (WUE) under

adequate water supply but the effect was negative under drought condition (Wu and Wang 2000),

indicating the synergistic effect of drought and elevated atmospheric CO2 in growth and yield

reduction of faba bean that will be even more severe with the increased climate change scenarios in

the future.

Food grain and livestock feed production are mainly practiced in rainfed agricultural lands, whereas

vegetables and other crops considered high-value are produced in irrigated lands, and this trend is

expected to continue for the future (Passioura and Angus 2010). Hence, competition from high value

crops will further push grain legumes to marginal lands that will expose them to the risk of drought

(Mukeshimana et al. 2014). Under natural conditions, apart from water limitation, crops should cope

with various stresses arising from other abiotic and biotic factors, circumstances further complicating

their adaptation to moisture stress (Chaves et al. 2002). One of the many solutions suggested to
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manage this problem is the development of crop cultivars with minimum yield loss under water-

limited conditions.

Depending on the habitats where they originated and evolved, plant species have developed

distinctive morphological, physiological and biochemical drought stress tolerance mechanisms that

ensure their existence. These modifications are triggered by gene expression changes that provide

structural and metabolic abilities for improved function under the stress (Chaves et al. 2002; Farooq

et al. 2017). Consequently, crop species and genotypes show great variation in their response to

limitation of water, and traits displayed differ with drought type and crop phenology (Passioura 2012).

Due  to  the  variable  nature  of  drought,  a  trait  that  improves  yield  in  one  type  of  drought  may  be

ineffective in another (Passioura 1983). To exploit sources of genetic variation, many international

and national seed banks have been established throughout the world that have accelerated the

improvement of agricultural crops in the last century. Sources of genetic variation can also be sought

in local landraces and wild relatives. Vicia faba ex situ collections in 37 institutions across the world

in 2008 identified 38360 known accessions (Duc et al. 2010), the International Center for Agricultural

Research in the Dry Areas (ICARDA) with 12015 accessions being the biggest collector in 2009

(croptrust.org). Various reviews and research articles have discussed the different mechanisms of

drought tolerance and tried to point to strategies of crop improvement (Levitt 1972; Chaves et al.

2002; Khan et al. 2010; Tuberosa 2012; Stoddard et al. 2016; Farooq et al. 2017; Kabbadj et al. 2017;

Negin and Moshelion 2017).

11.3.1 Mechanisms of drought tolerance

Plant responses to drought stress may range from adaptive responses to deadly effects; in the adaptive

case, depending on genotype, it may involve a mixture of stress avoidance and tolerance strategies

(Chaves et al. 2002). According to Levitt (1972), broadly, drought adaptation mechanisms in crop

plants can be categorized into dehydration avoidance and dehydration tolerance. The first involves

maintenance of tissue water status through morphological and physiological modifications including

vigorous root development, early flowering, osmotic adjustment and accumulation of cuticular

waxes. The second involves storage and remobilization of water-soluble carbohydrates and

accumulation of molecular protectants that provide a certain level of plant functionality under water

limitation.

In this classification, drought escape is grouped with dehydration avoidance mechanisms. Drought

escape involves shortening of duration of growth to ensure early flowering, grain development and

maturity before the onset of terminal drought (Link et al. 1999; Acosta-Diaz et al. 2009; Farooq et al.
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2017). This strategy has been reported to be successful in semi-arid Mediterranean environments in

faba bean (Link et al. 2008), in extreme semi-arid Sahelian Africa in cowpea (Hall 2004), and in

common bean cultivars (Rosales-Serna et al. 2004; Acosta-Diaz et al. 2009). Drought avoidance

(sensu stricto) is a strategy of maintaining high tissue water potential by osmotic adjustment (effective

use of water) (Blum 2009; Rosales et al. 2012) and effectively exploring moisture residing in the sub-

soil (Matsui and Singh 2003; Songsri et al. 2008; Zhao et al. 2017).

11.3.2 Phenotyping for drought tolerance

In plant pre-breeding, screening and phenotyping of accessions with the objective of quantifying their

structure and function in response to environmental changes will have multiple benefits. Firstly, the

phenotypic information helps to identify and prioritize traits that can be used as morphological,

developmental and physiological selection markers, which can further be aligned with genomic

information to identify molecular markers (Passioura 2012). Secondly, the information is useful to

identify host genotypes with desirable traits. Hence, by screening and phenotyping of genotypes

originating from different growing environments, we can improve our understanding of drought

tolerance mechanisms and their significance in crop adaptation.

High throughput screening and phenotyping for drought tolerance is generally hampered by lack of

high-precision facilities allowing non-invasive automated data generation (Duan et al. 2018; Atkinson

et al. 2019) and the absence of easy and reliable methods (Jeudy et al. 2016). The methods that employ

manual measurements of drought response traits are regarded as time-consuming, error-prone, often

subjective, and poorly quantified (Duan et al. 2018), so their application is less attractive and

ineffective in screening of many plants (Singh et al. 2013). Though various studies indicate the

potential of root traits in improving yield under drought, little achievement is recorded in exploiting

the existing variation in root traits in crop breeding (Vadez et al. 2008; Zhao et al. 2017). This may

be due to difficulties associated with high-throughput root phenotyping (Vadez et al. 2008; Jeudy et

al. 2016). However, recently, high-throughput phenotyping facilities and methods have been

developed in various institutes.

In the laboratory, noninvasive phenotyping of the root architecture and morphology has been possible

through the generation of 2D or 3D images, whereas in field-grown plants usually destructive

techniques such as shovelomics (root crown phenotyping) (Atkinson et al. 2019) and trench profiling

(side digging and observing the roots) are applied (Wasaya et al. 2018). The quality and extent of

data generated largely depend on the type of the growth medium and the technology employed.

Conventional root phenotyping techniques employ agar plates (Figure 4A), soil or peat filled
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rhizotrons (one sided glass window boxes) (Figure 4B), transparent RhizoTubes (Figure 4C), and

pouch systems to generate 2D images non-destructively that will translate to quantitative data using

automatic image analysis software (Nagel et al. 2012; Jeudy et al. 2016; Atkinson et al. 2019).

Similarly, it is possible to generate 3D images in plants grown in soil-less media such as hydroponic,

aeroponic or using any other optically transparent media (Atkinson et al. 2019). On the other hand,

nondestructive generation of 3D images in soil media require the application of more advanced

technologies that employ one or combination of the three tomographic techniques: X-ray computed

tomography (X-ray CT), nuclear magnetic resonance imaging (MRI), and positron emission

tomography (PET) (Fiorani and Schurr 2013; Li et al. 2014; Atkinson et al. 2019). However, these

tomographic applications are low throughput (Li et al. 2014) and have their own pros and cons. There

is also another type of phenotyping system that employs non-image whole plant characterization

technique (Figure 4D). This system follows a functional physiological phenotyping approach (Gosa

et al. 2018) and allows instantaneous and continuous measurement of physiological functions of each

experimental plant in the array within the soil-plant-atmosphere continuum (SPAC) (Negin and

Moshelion 2017). In this high-throughput system, each pot is monitored by three probes with an

automatic computer-based algorithm that characterizes whole-plant transpiration, biomass gain,

stomatal conductance and root flux under three time series treatment conditions: normal, stress, and

recovery phases (Halperin et al. 2017).

Figure 4. Examples of phenotyping facilities and methods. (A) agar plate phenotyping and (B)
GROWSCREEN-Rhizo phenotyping facility, Jülich Plant Phenotyping Center, Germany; (C)
RhizoTubes, being piloted at National Plant Phenotyping Institute (NAPPI), University of Helsinki,
Finland; (D) high-throughput functional physiological phenotyping platform, Robert Smith Institute
of Plant Sciences and Genetics in Agriculture, Rehovot, Israel.

Growth  reduction  due  to  moisture  stress  on  a  plant  is  a  result  of  a  complex  process  involving

numerous genes, enzymes, hormones, and metabolites acting either in co-ordination or in parallel or

series of actions (Tardieu et al. 2011). The importance of trait-based selection of genotypes for

drought tolerance had been reported in various papers, but, due to the large number of suggested traits

and the specific nature of traits in crop phenology, prioritization is necessary (Passioura 2012;
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Purushothaman et al. 2016; Negin and Moshelion 2017). Traits vary with type and periods of drought

(Passioura 2012). Grain yield under drought in chickpea, for example, was associated with crop

growth rate, canopy temperature depression, phenology, leaf area index (LAI) at mid-pod filling

stage, and shoot biomass at flowering, indicating the importance of breeding for the best combination

of traits with the right phenology (Purushothaman et al. 2016). Development of crop cultivars with

high drought tolerance or the ability to escape/avoid drought by earliness or by effective use of water

for prolonged duration can help maintain both yield and stability under limitation of water (Zhao et

al. 2017). In view of this, understanding of the morphological, physiological and biochemical drought

response traits and their role in drought adaptation mechanisms has paramount significance.

11.3.2.1 Morphological markers

Plants growing under different levels of soil moisture undergo variable morphological changes in

shoot and root biomass partitioning, root and shoot architecture, flowering and grain development

patterns. This variability has been studied in different grain and forage legumes. In response to

drought treatments, common bean cultivars showed significant differences in shoot biomass gain,

pod and seed weight, and relative water content (Rosales-Serna et al. 2004). In many plants, drought

limits production of new leaves and accelerates the death of the existing ones, ultimately leading to

reduced total leaf area (Wilkinson and Davies 2010). Decrease in leaf production in alfalfa in response

to moderate drought was suggested as means to maintain relative water content (Erice et al. 2010).

Similarly, large variation in shoot biomass productivity, specific leaf area (SLA) and LAI were

observed among genotypes of chickpea in response to limitation of water (Purushothaman et al.

2016). In soybean, water stress during the pod filling stage caused early leaf death and termination of

pod filling, resulting in considerable yield loss (Constable and Hearn 1978).

In order to address the optimum grain yield, optimizing the amount of biomass at anthesis is

important. Insufficient vegetative growth means that there is less biomass to partition into yield,

whereas excessive vegetative growth can lead to exhaustion of soil water and premature termination

of grain filling (Passioura and Angus 2010). In their study on drought tolerance response of 40 lentil

(Lens culinaris Medik) landrace collections, Sarker et al. (2005) found that stem length, taproot length

and lateral root number were highly correlated with yield, with stem length alone contributing 85%

of the variance observed in seed yield per plant. Faba bean genotypes tested in two contrasting water

regimes showed significant variation in shoot, root and nodule dry mass (Kabbadj et al. 2017), and

drought stress resulted in significant reduction in plant height and yield per plant reaching 22-29 cm

and 6.5 g, and acceleration of 8-11 days to maturity (Link et al. 1999). Reduction of plant height due
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to drought was positively correlated with greater yield and it was reported as a useful trait for drought

adaptation in faba bean (Link et al. 1999).

The timing of flowering is one of the important traits in drought-affected environments. Optimal

flowering time ensures a good balance between water used before and after flowering. Crops that

flower after the optimal time are exposed to increased risk of moisture stress during grain filling

(Passioura and Angus 2010). The progressive decline of soil moisture that starts prior to flowering

may be the reason for the occurrence of terminal drought in legumes (Farooq et al. 2017). Thus,

breeding of cultivars that flower close to the optimal time in a given environment will have a positive

outcome (Passioura and Angus 2010). However, variability of rainfall makes the practicality of this

strategy difficult. Significant reduction in number of days to maturity observed in tolerant common

bean cultivars was associated with high grain filling rate, and maturity acceleration was reported to

mitigate the effect of terminal drought (Rosales-Serna et al. 2004). Differences in yield and number

of days to maturity were reported in cowpea cultivars under severe drought conditions (Hall 2004).

A drought-sensitive common bean cultivar showed about 42% pod biomass reduction under severe

drought (25% field capacity) while the corresponding decrease in a tolerant cultivar was only 17%

(Rosales et al. 2012).

Adaptation to a specific agro-climatic zone is also one of the sources of morphological variation

among crop genotypes in response to drought stress. Link et al. (1999) reported that among faba bean

genotypes collected from geographically distant sites, North African and Latin American genotypes

were more adapted to drought stress than European genotypes. Similarly, Zhao et al. (2017)

demonstrated wide variation in root architectural and morphological traits of European faba bean

cultivars that were associated with adaptation to specific agro-climatic zones. Northern cultivars

showed greater reduction in total dry mass than southern cultivars under water stress condition. In

southern cultivars, the individual size of lateral roots and their proportion in the whole root system

were important traits contributing to water uptake in deeper soil layers (Zhao et al. 2017). In drought-

tolerant chickpea genotypes, high root length density was reported to confer grain yield advantages

during terminal drought (Purushothaman et al. 2017). Greater root length and thinner whole root

system especially  that  of  laterals  in  common bean  (Abenavoli  et  al.  2016)  along  with  deeper  root

growth and early stomatal closure in chickpea (Soltani and Sinclair 2012) were regarded as key target

traits in genetic improvement of these crops for drought prone environments.
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11.3.2.2 Physiological markers

One of the early symptoms of crops in drought stress is closure of stomata and subsequent reduction

of carbon assimilation and rate of photosynthesis, which may be associated with reduced relative

water content and leaf water potential (Rosales et al. 2012). Faba bean accessions from drought-prone

environments showed higher stomatal density and reduced gas exchange while maintaining warmer

leaves and higher leaf relative water content under drought stress than those from non-drought prone

regions (Khazaei et al. 2013b). In their study involving nine faba bean inbred lines at the vegetative

stage of growth, Khan et al. (2007) reported that moisture stress reduced water usage and shoot dry

mass, and drought-tolerant genotypes such as ILB938/2 showed lower stomatal conductance and

warmer leaves, while sensitive genotypes like Aurora/1 showed higher stomatal conductance and

cooler leaves. Under severe drought (25% field capacity), a sensitive common bean cultivar showed

63% and 70% decrease in transpiration and stomatal conductance, respectively, resulting in a 61%

reduction in net photosynthesis (Rosales et al. 2012). In common bean genotypes, there was a strong

positive correlation between stomatal conductance and photosynthesis under well watered and water

stress conditions, and stomatal conductance in the non-stressed treatment was 10-fold higher than

stressed treatment (Mukeshimana et al. 2014). Khan et al. (2007) concluded that stomatal

conductance, leaf temperature and ∆13C were suitable physiological markers of drought tolerance at

the pre-flowering stage in faba bean.

Drought during flowering damages seed set through pollen sterility or abortion of embryos and can

later impede filling (Passioura and Angus 2010). In some sensitive common bean genotypes, drought

stress during flower initiation caused closure of stomata and reduction in assimilation rate beginning

from the second day of drought treatment while leaf water potential was unaffected (Acosta-Diaz et

al. 2009); presumably this is a risk aversion behaviour induced by enhanced ABA concentration due

to drought. Yield reduction during the reproductive and grain filling stage was summarized to be in

the range of 26% in mashbean (Vigna mungo L.) to 65% in faba bean (Farooq et al. 2017). Kabbadi

et al. (2017) reported that under drought stress, C and N content of shoots and roots in faba bean were

highly reduced in sensitive genotypes. However, in a tolerant genotype, with greater correlation with

growth performance, N content in shoots and roots was increased by 17% and 38%, respectively, and

leaf relative water content, chlorophyll content, and efficiency of PSII were less affected under water

stress. In drought treatment, a strong positive correlation between chlorophyll density and

transpiration efficiency in peanut (Arunyanark et al. 2008), and a negative correlation between carbon

isotope discrimination and transpiration efficiency in faba bean (Khan et al. 2007) have been reported.

In lentil, chlorophyll content was positively correlated with root dry mass and root length, and
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chlorophyll content was recommended as a useful trait to discriminate lentil genotypes for drought

tolerance (Kumar et al. 2012). In their study of the effect of drought on two common bean cultivars

(sensitive and tolerant to drought), Rosales et al. (2012) found that the drought-tolerant cultivar

maintained seed production in terminal drought, due to early response, and fine-tuning of stomatal

conductance, CO2 diffusion and fixation, and by increased water use and avoidance of reactive

oxygen species (ROS).

Accumulation of assimilate reserves in stems and roots before the occurrence of drought and

remobilization of the reserves during the reproductive period is a coping strategy maintained by crop

plants to avoid reproductive failure (Blum 2015). In sorghum and soybean genotypes, water stress

during grain filling stage resulted with 17-25% stem dry mass reduction, which may be associated

the relocation of stored assimilates from the stem to the grain (Constable and Hearn 1978). This

indicates that storage of reserves before flowering is an important factor in maintaining yield and

survival of plants during periods of drought (Chaves et al. 2002). Moreover, staying green and

delaying senescence and maintaining CO2 assimilation under drought stress was discussed by Farooq

et al. (2017) as a suitable drought-adaptive strategy. In their experiment to determine shoot traits

related with drought tolerance in common bean genotypes, Mukeshimana et al. (2014) found that

those with a slow rate of wilting under water stress maintained green stems, showed smaller

reductions in biomass and pod number, and recovered more rapidly.

11.3.2.3 Biochemical markers

Most legume crop species have evolved to undergo osmotic adjustment (OA) and osmoprotection

under drought stress (Rosales et al. 2012; Kabbadj et al. 2017) by active accumulation of solutes

when the leaf water potential is low (Blum 2015). By retaining leaf turgor pressure, OA enables the

absorption of more water from the soil (Blum 2015) and enhances efficient use of water by the crop

under drought condition (Blum 2009). The solutes are either N-containing compounds such as proline

or other amino acids and polyamines or hydroxyl compounds such as sucrose, mannitol (sugar

alcohol), and oligosaccharides (Farooq et al. 2017). In common bean, higher accumulation of proline

was associated with maintenance of leaf water content and relative water content (Rosales et al. 2012).

Proline and sugar provide maintenance of membrane integrity, while mannitol helps scavenging

hydroxyl radicals and stabilizes macromolecular structures (Farooq et al. 2017). Under water stress,

proline and glycine betaine accumulated in roots, shoots and nodules of faba bean genotypes, the first

reaching 100-1000-fold increase in roots and nodules compared to the control (Kabbadj et al. 2017).

Especially higher levels of glycine betaine accumulation were observed in nodules (Kabbadj et al.
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2017), suggesting that this compound may also be involved in providing osmotic stress tolerance to

faba bean nodule rhizobia.

Under drought stress, the accumulation of abscisic acid (ABA) in desiccating roots and its effect on

closure of stomata leads to reduction of intercellular CO2 and photosynthesis (Chaves et al. 2002), a

characteristic feature that may leading to greater water use efficiency but not necessarily to greater

yield (Blum 2009). Further, reduction of intercellular CO2 leads to transfer of electrons to oxygen at

photosystem I (PSI) leading to the generation of ROS such as O2
-, H2O2, and the OH radical that may

result in photo-oxidation (Rosales et al. 2012). At higher concentration above the level of plant

defense, ROS cause oxidative damage to lipids, proteins, nucleic acids and DNA, and cause changes

in the behaviour of biomolecules and result in cell death (Farooq et al. 2017 and references in).

In response to this, plants have evolved to generate antioxidant defence through synthesis of

antioxidants such as ascorbate, carotenoids and phenolics, and trigger antioxidant enzymes such as

SOD, CAT and reductase that scavenge ROS (Kabbadj et al. 2017). Higher accumulation of proline

and mobilization of antioxidant enzyme activities such as ascorbate peroxidase (APX) and CAT in

drought-stressed faba bean genotypes in response to higher peroxidation levels of H2O2 in roots,

shoots and nodules were reported as plant adaptation strategies during water stress (Kabbadj et al.

2017). Rosales et al. (2012) reported that severely droughted sensitive common bean cultivars showed

46% and 55% increased levels of MDA and H2O2, respectively, as compared to the control treatment.

In this study, higher antioxidant enzyme activities of SOD, CAT, APX and a higher level of reduced

ascorbic acid concentration were correlated with higher peroxidation levels observed in the sensitive

cultivar. However, the accumulation of phenolic compounds and flavonoids was high in both tolerant

and sensitive cultivars under severe drought.

Phytohormones play a regulatory role to endogenous and exogenous stimuli and may act either

collectively or independently in response to drought. Among plant hormones, some consider ABA as

a drought tolerance hormone whereas others consider it as a drought survival hormone. Under

drought, the majority of ABA is produced in three organs, namely: the root, the leaf, and the seed (or

fruit) (Blum 2015). Drying soils and increase in air vapor pressure deficit induce the synthesis of

ABA in roots and shoots, respectively, and ABA induces the closure of stomata by interfering with

the uptake of potassium by leaf guard cells (Wilkinson and Davies 2010), resulting in increased leaf

turgor and reduction of transpiration (Blum 2015). Apart from its role in closure of stomata, ABA

increases root hydraulic conductivity and facilitates water uptake and transport in the plant (Tardieu

and Davies 1993), and has a role in robust root development (Wani et al. 2016). So, root-based ABA

contributes to both enhanced water uptake and reduced water loss through stomata. However, this
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twofold gain by the plant is transitory. Following the attainment of higher leaf water potential due to

the effect of ABA, plants become unable to absorb extra water from the soil owing to reduced water

potential gradient between the roots and the soil (Blum 2015), ultimately the plant suffers from

reduced carbon assimilation rate and inability to absorb the available moisture in the soil, leading it

to an unproductive quiescent state. On the other hand, the effect of ABA on yield can be beneficial

or harmful depending on the growth stage of the plant when drought stress occurs. During early stage

drought, ABA sensitive plants may benefit from enhanced ABA accumulation as it checks both

growth and soil moisture use, hence conserving moisture for terminal growth stage (Blum 2015).

Under drought stress, in maize yield and ABA accumulation were negatively correlated, and similarly

drought-tolerant wheat accumulated lower ABA and showed cooler mid-day canopy temperature

(Blum 2015 and references in).

The  expression  of  ABA  and  its  effect  on  the  plant  during  drought  stress  can  be  affected  by  the

signaling of other hormones. Soil drying increases the synthesis and transport of ethylene in shoots

and reduces the transport of cytokinins, the stomatal opening hormone, from roots to shoots

(Wilkinson and Davies 2010). The stay-green trait is controlled by cytokinin (Blum 2015). Ethylene

seems to possess a dual role in promoting and inhibiting the opening of stomata (Kazan 2015). For

example, under ozone pollution, ethylene antagonizes stomatal closure responses to ABA (Wilkinson

and Davies 2010), but on the other hand it promotes closure of stomata by promoting nicotinamide

adenine dinucleotide phosphate hydrogen (NADPH) mediated production of ROS in guard cells

(Kazan 2015). However, the effect of ethylene on stomatal mechanics is not well understood.

Generally, under water stress the concentrations of ABA and ethylene tends to increase while those

of auxin, gibberellins and cytokinin decrease in most plants.

In conclusion, a large root system (in depth, width, and volume) for effective soil moisture extraction,

a higher level of OA, higher levels of stomatal conductance (and sink accumulation), cooler

leaf/canopy temperature, and lower levels of ABA concentration are all associated with higher

drought tolerance and greater yield. This ideotype follows the anisohydric (water spending) model

described in Blum (2015), a crop type which can be most effective in moderately drought-prone

environments. On the other hand, higher levels of ABA accumulation, lower levels of stomatal

conductance (and low sink accumulation and growth rate during drought stress) and the

corresponding higher leaf temperature, are associated with drought surviving crop cultivars usually

exhibiting lower yield. According to Blum (2015), this model fits with isohydric ideotype (water

saving), and such crop cultivars are well suited to harsh dryland agricultural areas such as
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Mediterranean climates known with early season rainfall and terminal drought especially when they

incorporate heat tolerance mechanisms to avoid the heat built up during stomatal closure.

11.4 FIGS as a mining tool of adaptive traits

The Focused Identification of Germplasm Strategy (FIGS) is an approach to mine adaptive traits in a

wide germplasm collection potentially suitable for a certain agricultural environment (Street et al.

2016). The main principle in FIGS is that the influence of environment in natural selection and

distribution of accessions in agro-climatic space so strong. This strategy is applied to filter the traits

of interest in a given genetic resource collection (Khazaei et al. 2013a). In FIGS, habitat

characterization and development of priori information based on trait-environment relationship is

needed so that best-bet accessions are defined (Upadhyaya et al. 2011; Bari et al. 2012) and when

this  is  not  the  case,  FIGS  has  been  shown  to  be  a  valuable  tool  in  predicting  and  mining  trait

information lacking due to incomplete documentation or characterization as reported in Nordic barley

landraces (Endresen 2010). The strategy has been tested in finding agriculturally beneficial traits for

drought adaptation in faba bean (Khazaei et al. 2013a), phenology driven yield improvement in

chickpea (Berger et al. 2004), stem rust tolerance (Bari et al. 2012) and Russian wheat aphid

(Bouhssini et al. 2011) in wheat.

1.5 Interaction of aluminium and drought stresses

Drought and Al3+-toxicity are the two major abiotic stresses contributing to the greatest share of

global yield loss in most agricultural regions. More importantly, drought and Al3+ toxicity are known

to interact. The combined effect of drought and Al3+-toxicity stresses have been studied in several

crops including soybean (Goldman et al. 1989; Nian et al. 2004; Joris et al. 2013), common bean

(Yang et al. 2012), and barley and wheat (Tang et al. 2002; Karmanenko et al. 2011).

Al3+ stress inhibits root growth, and its effect on shoot is secondary as it is induced by the damage it

causes on roots. On the other hand, drought stress inhibits shoot growth but promotes root growth to

reach the available water in acidic sub-soil (Yang et al. 2013). When drought occurs in acid

aluminium toxic soils, the effect on both root and shoot growth will be profound. Combined Al3+-

drought stresses in common bean resulted in severe reduction of root elongation by 45-68%; partly

due to the direct effect of Al3+ injury on root tips and partly due to the effect of Al3+ on the reversion

of drought-enhanced expression of 9-cis-epoxycarotenoid dioxygenase (NCED), an enzyme that

regulate the biosynthesis of abscisic acids in roots (Yang et al. 2012). Al3+-tolerant wheat uses more

water and yields higher than Al3+ sensitive ones in soils with sub-soil acidity (Tang et al. 2002). In

soybean, combined treatment of Al3+ (100 μM AlCl3) and PEG-6000 resulted in higher shoot and
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root growth reduction than either of the treatments alone (Nian et al. 2004). Soybean plants grown

under drought and Al3+ stress did not recover from desiccation within the recovery period (Goldman

et al. 1989), indicating, unless that Al tolerance is integrated, drought tolerance cannot be fully

utilized in crops growing in aluminium-toxic acid soils because of a poorly developed root system.

Both Al3+-toxicity and drought are oxidative stresses resulting in the production of ROS. The

mechanisms of tolerance for the oxidative damage is controlled by enzymatic and non-enzymatic

antioxidant defense systems and/or through biochemical detoxification and cell protection systems.

In a drought and Al3+-tolerant rice cultivar, root to shoot ratio, relative water content and chlorophyll

content were affected by neither Al3+ nor drought nor the combined treatments, and tolerance to these

stresses was associated with increased activity of SOD, guaiacol peroxidase (GPX), APX and CAT

(Pandey et al. 2014). In mung bean (Vigna radiata L.), Al3+ stress induced reduction of leaf relative

water content by 16-23% and was accompanied by a 50-82% increase in the concentration of the

osmoprotectant molecule proline in 48-72 h (Nahar et al. 2017). Drought suppressed the Al-induced

expression of MATE gene involving in the biosynthesis of citrate, but Al-enhanced expression of

ACCO and reversion of NCED expression were responsible for inhibition of root elongation under

combined Al-drought stress condition (Yang et al. 2012).

Hence, screening and phenotyping of a wide range of accessions for novel traits of drought, acidity

and aluminium toxicity tolerance, and incorporating traits of interest into modern cultivars is a key

strategy to improve faba bean production and extending its production environments where these

stresses are prevalent.
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22 OBJECTIVES OF THIS STUDY
The  overall  objectives  of  this  study  were  to  investigate  complementarity  in  shoot  and  root

morphological and physiological phenotypic markers to acid soil and drought adaptation in pre-

flowering faba bean plants, and to identify sources of tolerance for further breeding work.

The specific objectives were:

to identify faba bean accessions that perform relatively well in acid soils, investigate the underlying

responses  to  acid  soil  and  Al3+-toxicity, and to develop a reliable technique for discriminating

sensitive and tolerant germplasm (Publication I);

to identify faba bean accessions that perform relatively well in drought stress, and investigate the

underlying root responses to drought stress. The first hypothesis, tested with a germplasm survey,

was that dry-zone germplasm would have more prolific root systems than wet-zone germplasm. The

second hypothesis, tested with the phenotyping robot, was that dry-zone germplasm would maintain

its root system growth better in drought than wet-zone germplasm would (Publication II); and

to investigate shoot response traits to drought avoidance under contrasting soil moisture conditions

and evaluate the complementarity of shoot and root traits. The hypothesis was that drought avoidance

is based on a combination of leaf gas exchange and exploitation of soil water, so evaluation of both

roots and shoots was needed (Publication III).
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33 MATERIALS AND METHODS
To achieve the objectives mentioned in Section 2, faba bean accessions for acid soil study were

chosen based on their expected exposure to acidity or aluminium stress in their regions of provenance;

and for drought tolerance study, the original set of 201 wet-adapted and 201 dry-adapted accessions

studied by Khazaei et al. (2013a) was reduced to 88 based on differences in canopy temperature

depression measured in the glasshouse (Khazaei et al. 2013a), country of origin and availability of

seeds. Ten other accessions (7 from Ethiopia and 3 from Europe) were selected based on previous

research findings and observations.  An outline of experimental  works of this study is presented in

Table 1, and measurements and instruments applied in each experiment indicated in Tables 2 and 3.

Designs and statistical tools and plant growth management conditions applied in experiments are

summarized below in sub-sections.

Table 1. Summary of methods applied in the original publications (I-III) of this study.

Method Publication
Germplasm screening for acidity and Al3+-toxicity tolerance in nutrient
solution culture

I

Testing acidity and Al3+-toxicity responses in peat growing medium I
Testing acidity and Al3+-toxicity response in perlite growing medium I
Growth medium and shoot Al concentration analysis using ICP-OES* I
Multivariate statistics I, II, III
Germplasm screening for drought adaptation II, III
Root and shoot phenotyping of selected accessions in automated phenotyping
platform GROWSCREEN-Rhizo

II, III

Quantification of root images using PaintRHIZO and WinRHIZO II
* Inductively coupled plasma-optical emission spectrometry.

3.1 Tests for acidity and Al3+-toxicity tolerances

3.1.1 Germplasm screening in solution culture

The experiment was conducted in growth chambers at the University of Helsinki, Finland in spring

2015. In total, 29 faba bean accessions were chosen (listed in Table 1 of publication I) based on their

expected exposure to acidity or aluminium stress in their regions of provenance. Twenty accessions

were delivered by Ethiopian Institute of Agricultural Research, Holeta Agricultural Research Center

(HARC) and the others were chosen from European and Canadian germplasm used in previous

experiments. These accessions were tested for their response to acidity and Al3+ toxicity  in  5

treatments (at pH 7.0 (control)), pH 4.5 (treatment for acid or control for Al3+), and pH 4.5 acid + 41,

82, 123 μmol/l Al2(SO4)3.16H2O) in 3 replications arranged in a split-plot design (replication as

blocks, tray as main plot, and accessions as sub-plots). The three levels of Al3+ concentrations were
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adopted from Choudhary and Singh (2011). The replicates were separated by 21 days in time rather

than physically in space, owing to space restrictions. Data on the root system were taken on the eight

and eleventh days after the seedlings were transferred into the solution culture as described in 3.3.1.

A.

33.1.2 Testing in pot experiments: peat and perlite media

A subset of 10 accessions representing different combination of Al3+ and acidity response in solution

culture (listed in Table 2 of publication I) were selected for further evaluation. The experiment was

conducted twice at the University of Helsinki, first on peat-based medium in open air (in summer

2015) and again on perlite medium in an open-sided greenhouse cage (in summer 2016) until the

beginning of flowering. The peat and perlite experiments were conducted in a split-plot design, with

four replicate blocks, three treatments (neutral, acid and 82 μmol/l Al2(SO4)3.16H2O)  as  the  main

plots and accessions as subplot. In these pot experiments, the 41 and 123 μmol/l aluminium treatments

were abandoned as they were found to be relatively uninformative in the solution culture experiment.

3.2 Tests for drought adaptation

3.2.1 Germplasm screening

A set of 89 accessions (listed in Table 1 of publication II) from wet and dry growing regions of the

world was defined according to the Focused Identification of Germplasm Strategy (Khazaei et al.

2013a) and screened in spring 2016 at University of Helsinki, Department of Agricultural Sciences

greenhouse facility in a perlite-sand medium under well watered condition arranged in a randomized

complete block design (RCBD) with 4 replications. The experiment was designed to maximize

expression of potential root mass by providing plentiful moisture and nutrients. At BBCH stage 39

(Meier 2001), when there were approximately 9 visibly extended internodes, 30-34 days after sowing

(DAS), measurements indicated in Table 3 were taken.

3.2.2 Root and shoot phenotyping

Eight accessions were chosen (listed in Table 4 of publication II) from the germplasm survey

according to morphological and physiological data. In order to get more information on root systems,

phenotyping of these selected accessions under contrasting soil moisture level was required.

Consequently, access to specialized equipment was needed, and access was given to the root

phenotyping facilities at the Jülich Plant Phenotyping Center (JPPC), Forschungszentrum Jülich

GmbH, Germany. The hypotheses were that accessions with a strong root system would be more

capable of withstanding the stress of water deficit than those with small or weak root systems that

rapidly run out of access to water (Publication II), and drought avoidance is based on a combination
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of leaf gas exchange and exploitation of soil water (Publication III). Thus, the eight accessions were

subjected to drought adaptation test using the automated root and shoot phenotyping platform

GROWSCREEN-Rhizo using rhizotrons with a size of 90 x 70 x 5 cm (Nagel et al. 2012) at JPPC in

winter 2017. The experiment was arranged in a split-plot design, with 4 replicate blocks, 2 treatments

(well watered and water limited) as the main plots and 8 accessions as subplots. Shoot and root data

indicated in Table 3 were taken during and at the end of the experimental period.

33.3 Measurements

Table 2. Measurements, instruments and methods used during experiments (publication I).

Measurement
Acidity and Al3+ tolerance*

Germplasm
survey

Peat
assay

Perlite
assay Instruments / methods / reference

Taproot length Yes Yes Ruler
Root regrowth length Yes According to Nava et al. 2006
Hematoxylin stain score Yes According to Polle et al. 1978
Hematoxylin stain root
imaging Yes Stereo microscope fitted with an AxioCam

ERc 5s imaging device

Acid root tolerance index No Ratio of taproot lengths grown at pH 4.5 to
pH 7.0 treatment

Aluminium root tolerance
index Yes Ratio of taproot lengths grown at pH 4.5

with & without Al treatment
Leaf rate of
photosynthesis Yes LI-6400 Portable Photosynthesis System

(LI-COR, Lincoln, NE, USA)

Stomatal conductance Yes Yes

LI-6400 Portable Photosynthesis System
(LI-COR, Lincoln, NE, USA) and Leaf

Porometer (Decagon Devices, Inc., Pullman,
WA, USA)

Canopy temperature Yes
FLUKE Model 574 Precision Infrared

Thermometer (Fluke Corporation, Everett,
WA, USA)

Leaf chlorophyll
concentration Yes Yes SPAD-502 (Minolta Camera Co, Ltd.,

Tokyo, Japan)

Total leaf area Yes LI-COR Model LI-3000A Portable Area
Meter (LI-COR, USA)

Root nodule quality and
quantity Yes Scoring based on color (white vs pink) and

presence and absence of nodule

Root and shoot dry mass Yes Yes Weighing using sensitive balance to the
nearest 0.01g

Potting medium and shoot
Al content analysis Yes ICP-OES (according to EPA 1996)

*3 treatment conditions: neutral (pH 7.0), acid (pH 4.5), acid + aluminium (pH 4.5 + 41, 82, 123
μmol/l Al2(SO4)3.16H2O).
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Table 3. Measurements, instruments and methods used during experiments (publication II & III).

Measurement

Drought tolerance experiments

Survey
Phenotyping
for drought Instruments / methods / reference Publication

Root Shoot

Seed weight Yes Weighing 10 dried seeds per accession II

Stomatal conductance Yes Yes Leaf Porometer (Decagon Devices, Inc.,
Pullman, WA, USA) II, III

Leaf surface temperature Yes Yes
FLUKE Model 574 Precision Infrared

Thermometer (Fluke Corporation, Everett, WA,
USA)

II, III

Leaf chlorophyll
concentration Yes Yes SPAD-502 (Minolta Camera Co, Ltd., Tokyo,

Japan) II, III

Maximum quantum
yield of photosystem II
(Fv/Fm)

Yes
Photosynthesis Yield Analyzer (MINI-PAM 3,

Heinz Walz GmBH, 91090 Effeltrich,
Germany)

III

Effective quantum yield
(EQY) Yes

Photosynthesis Yield Analyser (MINI-PAM 3,
Heinz Walz GmBH, 91090 Effeltrich,

Germany)
III

Leaf count Yes The first three leaf counts were taken 2, 9, 16
and during plant harvest at 19 DAT III

Total dry mass
Yes Weighing to the nearest 0.01g III

Leaf and stem dry mass

Leaf and stem dry
matter content (%) Yes

Calculated as leaf & stem dry mass (g) divided
by leaf & stem fresh mass (g), respectively,

multiplied by 100
III

Root and shoot dry mass Yes Yes Weighing using sensitive balance to the nearest
0.01g II, III

Root to shoot dry mass
ratio Yes Yes Root dry mass divided by shoot dry mass II, III

Root mass fraction Yes Yes Root dry mass divided by whole plant dry mass II, III
Shoot mass fraction Yes Soot dry mass divided by whole plant dry mass III

Apparent specific root
length (m/g) Yes

Taken as total root length (whole root system
length visible at the transparent plate of the

rhizotrons) (m) divided by whole root system
dry mass (g)

III

Apparent root length
density (cm/cm3) Yes

Calculated from total root length (cm) divided
by volume (cm3) of peat enclosed in the convex
hull area marked in the rhizotrons multiplied by

the breadth of the box (5 cm)

III

Taproot length Yes

Root images obtained with GROWSCREEN-
Rhizo were analyzed using PaintRHIZO

software package (according to Nagel et al.
2009 & 2012)

II

First order & 2nd order
lateral root lengths Yes

Total root length Yes
Root system depth Yes
Root system width Yes
Convex hull area Yes

Sample plant actual
whole root system
length

Yes

Root images obtained using manual root
scanner EPSON A3 Transparency Unit (Model
EU-88, Japan) were analyzed using WinRHIZO

software (according to Mühlich et al. 2008)

II
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33.3.1 Exposing of plants to acidity and Al3+-toxicity treatments (publication I)

A. Treatment management: solution culture screening experiment

Seeds of uniform size were selected, washed, surface sterilized, soaked in water for 24 h and

transferred to Petri dishes with moist filter paper layers for 72 h at 22 °C in the dark for germination.

Seedlings were allowed to grow in plastic trays (30 accessions each with 8 units of seedlings) covered

with a lid with holes through which roots were suspended inside aerated 0.5 mM CaSO4 solution for

96 h in a climate-controlled growth chamber (Figure 5). Then plants were grown in aerated nutrient

solution adjusted to pH of 7.0 (control), pH 4.5 (for acid and Al3+ treatments) for 3 days. On the fourth

day,  fresh  nutrient  solution  culture  was  provided  for  each  treatment  with  corresponding  pH

adjustment and the 3 aluminium treatments were initiated and were grown for 24 h in Al containing

nutrient solution. From the 8 seedlings of each accession, 4 were taken for hematoxylin staining and

the remaining 4 were left for 3 days in the tray to recover in Al-free nutrient solution adjusted to pH

4.5. The length of the tip to the point of callus formation was presented as root regrowth length. Fresh

nutrient  solutions  were  also  provided  for  the  control  and  acid-grown  plants  at  the  same  time  to

maintain the uniformity of experimental conditions.

Figure 5. Faba bean accessions receiving three levels (41, 82, and 123 μM) aluminium treatments in
one of the full sets of replicates.

B. Treatment management: peat and perlite media pot experiments

Peat assay. The peat medium was prepared in 9:1 peat:sand (v/v) ratio and poured into 120 pots each

with 7.5 l capacity. The pots were sunk into sand-beds prepared in open air. The treatments included

in this experiment were pH 7.0 (control), pH 4.5 (acid), and pH 4.5 + 82 μmol/l Al2(SO4)3.16H2O.

Upon delivery, the pH of the peat was 4.5, so one-third of the pots were brought to pH 7.0 by liming,

one-third were used for acid treatment as they were, and the remaining one-third were supplied with
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3 l of 82 μmol/l Al2(SO4)3.16H2O solution at sowing while the rest of the pots each supplied with 3 l

of tap water to bring them to field capacity. Seeds were inoculated with Rhizobium leguminosarum

biovar. viciae, 4 seeds/pot were sown at 2 cm depth and a week after emergence they were thinned to

3 plants per pot. Data were taken 25, 35, 45 and 58 days after sowing (DAS). Then, at day 58, the

experiment was terminated when plants started flowering.

Figure 6. Acidity and Al3+ toxicity tests in perlite medium.

Perlite assay. Plants were grown on two 3-l pots that were stacked on top of each other to provide

adequate depth for root growth. Adequate drainage holes were provided for each pot. The bottom pot

was filled with 2 l of perlite and on top of the perlite 1 l of fine sand was put to ensure firm hold for

the top pot (Figure 6). The top pot was filled with 3 l of perlite alone. Two seeds per pot were sown

and each pot was supplied with tap water to field capacity. After 5 days, each pot was thinned to 1

plant and for 10 days after sowing, pots received 200 ml of tap water every other day. Then, for the

next 32 days, each pot received 200 ml of nutrient solution prepared using 1 g/l complete fertilizer

(Superex Peat; Kekkilå Oy, Vantaa, Finland) supplied with 2 mmol/l CaCl2 on every other day with

nutrient solution adjusted to corresponding treatment conditions: pH 7.0 (control), pH 4.5 (acid), and

pH 4.5 + 82 μmol/l Al2(SO4)3.16H2O. Data were taken 41 and 42 days after sowing. Then, at day 42,

the experiment was terminated when plants started flowering.
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33.3.2 Plant and treatment management in drought adaptation experiments (publication II and III)

A. Plant growth management: germplasm survey experiment

In this experiment, the bottoms of 3 l capacity pots were lined with a membrane then filled with 0.2

l of sand at the bottom, 2.6 l of perlite at the middle, and 0.2 l of sand on the top (Figure 7). Two

seeds per pot were sown and thinned to one plant after 5 days. Fertilizer nutrient solution prepared

from 1 g/l  of Superex Peat (Kekkilä Oy, Vantaa,  Finland) supplemented with 2 mmol/l  CaCl2 was

automatically applied at 200 ml per pot every other day from sowing to the end of the experimental

period, 34 DAS.

Figure 7. Germplasm survey for drought adaptation. Four replicates were sown at seven-day intervals.

B. Plant growth management: root and shoot phenotyping experiments

This experiment was conducted during the vegetative stage of plant growth, covering 28 days from

seed soaking to destructive harvesting of experimental plants. Pregerminated seedlings of each

accession showing uniform root growth were transplanted into the rhizotrons. The growth medium

used was GRAB-ERDE, a dark peat-based substrate (Plantaflor Humus Verkaufs-GmbH, Germany).

The initial moisture content of the peat-soil was 66.3%. The well watered treatment rhizotrons were

filled with the peat without drying and part  of the peat was air  dried to 40% moisture content and

filled into the rhizotrons for the water-limited treatment.
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Figure 8. Phenotyping of 8 accessions in contrasting watering treatments using GROWSCREEN-
Rhizo automated phenotyping system, Jülich Plant Phenotyping Center, Germany.

The boxes were then fixed in the robotic system in the greenhouse and tilted at 43° from vertical

(Figure 8). During the establishment phase, each seedling in the well watered treatment received 200

ml water in the automatic irrigation system and those in water-limited treatment received 50 ml of

water to their roots manually. Thereafter, the well watered plants were given 100 ml of water every

12 h until the end of the treatment period. In the water-limited treatment, plants received the second

50 ml of water 4 days after transplanting with no watering afterwards. Data (Table 3) were taken five

days a week, from these, data taken at 5, 12, and 19 days after treatment (DAT) started were presented

in  Publication II, and shoot and root morphological and physiological data that were recorded 15 to

19 DAT were presented in Publication III.

33.3.3 Statistical analysis

Analysis of variance was conducted using SPSS version 22.0 or 24.0 (IBM Inc., Chicago, IL, USA)

software package, and treatment means were separated by either LSD or Duncan’s Alpha (5%)

(Publication I, II, and III). Accession and culture media were treated as fixed effects and replicate as

a random effect in the split-plot design and repeated measure analysis was conducted for SPAD value

(Publication I). Root images were analyzed using PaintRHIZO and WinRHIZO software packages

following the methods developed by Mühlich et al. (2008) and Nagel et al. (2009, 2012). Frequency

distributions were used to check for the presence of outliers. Independent-samples t-test was

conducted to test difference between the group means of the dry-adapted and wet-adapted sets in the
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germplasm survey. Two-way ANOVA was used to test the main effect of treatment, the main effect

of accession, and the treatment by accession interaction effect on multiple sampling dates (Publication

II). Genotypic means (across treatments) and phenotypic means (treatment means) were both tested.

Two-tailed Pearson correlations were calculated and principal component analyses between roots and

shoot measurement data were performed. Hierarchical cluster analysis of root and shoot data was

used to construct a dendrogram using average linkage between groups. Correlation network of traits

was conducted using R software package (Publication III).
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44 RESULTS AND DISCUSSION

4.1 Responses to acidity and Al3+-toxicity

4.1.1 Germplasm screening to acidity and Al3+-toxicity in solution culture

Root responses to aluminium depended on the concentration of Al3+ ion in the nutrient solution. At

the  lower  concentration  of  Al3+ (41 μmol/l Al3+),  larger  values  of  root  regrowth  length  and  Al3+

tolerance index were observed, whereas the stain score was high at higher Al3+ concentration (123

μmol/l Al3+), indicating increased sensitivity of roots to higher concentration Al3+.  Root  regrowth

length at 41 μmol/l Al3+ was 2.6- and 17-fold longer than those at 82- and 123 μmol/l Al3+,

respectively (Table 4). The root regrowth length at 82 μmol/l Al3+ was 6.6-fold longer than at 123

μmol/l Al3+ (Table 4), and stain score at 123 μmol/l Al3+ was  about  2-fold  higher  than  the  score

observed at the minimum concentration. In both cases, it appeared that root resiliency and the extent

of chelation of Al3+ depended on the Al3+ concentration in the growth medium. The root tolerance

index was significantly higher at 41 μmol/l Al3+ than the rest and was even larger than acidity

tolerance index, indicating an enhancement of root growth in the low concentration of Al3+ beyond

than in acidic medium alone. In similar research, root growth in faba bean was inhibited at 50 and

100 μmol/l Al3+, but not at 10 μmol/l Al3+ (Zhang et al. 2009). The Al3+ tolerance index fell by 67%

to 87% in a tolerant faba bean cultivar as Al3+ concentration increased from 50 up to 400 μm (Chen

et al. 2012), and the difference between the tolerant and sensitive cultivars increased as treatment

time increased from 2 h to 24 h (Chen et al. 2013).

Lower Al3+ concentration (41 μmol/l) tended to enhance root elongation whereas higher Al3+

concentration (82 and 123 μmol/l) and acid (pH 4.5) media reduced it. In a similar study, aluminium

tolerant and sensitive cultivars of faba bean did not show significant differences in Al3+ stain score at

lower concentration of Al3+ (50 μM), but at concentrations of 100 μM and above, the difference was

significant (Chen et al. 2012). Furthermore, roots were largest in the neutral followed by the 41 μmol/l

Al3+ treatment, and there was no difference in root length between 82- and 123 μmol/l Al3+ treatments.

In pea, Al3+ stress (500 μM) reduced root growth by 31 and 35% after 48 and 72 h exposure (Nahar

et al. 2017).
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Table 4. Accessions and treatment means of root regrowth length at three levels of Al3+ treatments in
solution culture medium, n=4.

Accessions Root regrowth length (cm) following Al3+ treatments of
41 μmol/l Al3+ 82 μmol/l Al3+ 123 μmol/l Al3+

Alexia 2.05 0.15 0.00
Aurora 1.72 0.82 0.33
Babylon 0.03 0.00 0.00
Bulga 70 2.24 0.28 0.33
CS 20 DK 1.34 0.18 0.07
Degaga 1.16 0.35 0.00
Divine 1.47 0.41 0.04
Dosha 2.80 1.28 0.10
EH 06006-6 1.52 0.32 0.08
EK 02016-1 2.43 0.77 0.00
Fatima 2.64 1.25 0.15
Gebelcho 1.55 0.87 0.05
GLA 1103 2.87 0.46 0.07
Gora 1.25 0.42 0.07
Hachalu 1.74 1.51 0.09
Holetta-2 1.82 0.56 0.08
Kassa 1.91 0.16 0.11
Kontu 0.92 0.33 0.00
KUSE 1.03 0.57 0.00
Mélodie 1.79 1.01 0.18
Messay 0.91 0.79 0.14
Moti 2.73 1.02 0.09
NC 58 0.68 0.94 0.03
OBSE 0.60 0.58 0.07
SSNS-1 2.60 0.35 0.17
Tesfa 1.79 0.67 0.20
Tumsa 3.01 1.29 0.19
Walki 1.62 0.61 0.13
Wayu 0.52 0.51 0.04
SE 0.24
LSD (5%) 0.67
Treatment mean 1.63 0.63 0.10
SE 0.04
LSD (5%) 0.12
P-value
Treatment **
Accession ***
Treatment x Accession ***

**, *** are significant at 0.01 and 0.001, respectively, SE is standard error, LSD is least significant
difference.

Aluminium, and other elements such as sodium, cobalt, selenium, and silicon are not required by all

plants  but  can  enhance  growth  in  certain  taxa  (Pilon-Smits  et  al.  2009),  and  under  certain

environmental conditions aluminium can improve plant growth (White and Brown 2010). A low
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concentration of Al3+ under acidic condition enhanced root growth in wheat seedlings (Kinraide

1993). Root length in tea [Camellia sinensis L. (Kuntze)] was enhanced by 2.5-fold at 400 μmol Al3+

at pH 4.2 treatment as compared to the root length observed in the control (without Al3+), presumably

due to the accompanying increase in Al3+-induced activities of antioxidant enzymes (Ghanati et al.

2005). Similarly, in Quercus serrata Murray, increase in root biomass was reported at  2500 μmol

Al3+ at pH 3.5 (Broadley et al. 2012 and references in).

Figure 9. Stain score, acid and aluminium tolerance indices of 29 faba bean accessions grown in acid
and Al3+ solution culture treatments. Mean stain score and Al3+ tolerance index (mean values of across
the three Al3+ treatments), mean acid tolerance index. Stain score: 0, <25% stain; 1, 25%<x≤50%
stain; 2, 50%<x≤75% stain; 3, >75% stain. Stain score: x̅ = 1.02, 1.68, and 1.87 at 41, 82, 123 μmol/l
Al3+, respectively. Al3+ tolerance index: x̅ = 1.12, 0.99, 0.98 at 41, 82, 123 μmol/l Al3+, respectively.
Mean acid root tolerance index was 0.84.

Root regrowth length after Al3+ treatments varied among accessions. At 41 and 82 μmol/l Al3+ Tumsa,

Dosha, Fatima, and Moti, and at 123 μmol/l Al3+ Bulga 70 and Aurora showed high root recovery

rates. At the opposite end, Babylon consistently showed little or no recovery at all treatment levels.

In the step from 41 μmol/l Al3+ to 82 μmol/l Al3+ Alexia, Kassa, Bulga 70, GLA1103 and SSNS-1

showed the highest reductions in root regrowth length (Table 4). Similarly, among 32 pigeon pea

genotypes, root regrowth decreased significantly with an increase in Al3+ concentration from 10 to

50 μM, and genotypic variation ranged from no regrowth in sensitive ones to 1.5 cm in tolerant
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genotypes at  50 μM Al3+ (Choudhary et al. 2011). Large Al3+ tolerance indexes were observed in

EH06006-6 and Tumsa followed by Aurora, and values were low in Mélodie and Gora followed by

Kassa (Figure 9). Root tolerance index ranging from 0.47 to 1.14 was recorded in 32 Medicago

truncatula genotypes in response to 25 μM Al3+ treatment (Narasimhamoorthy et al. 2007), indicating

wide variability. On the other hand, Kassa and NC 58 showed high values of acid tolerance index and

Tesfa showed the opposite (Figure 9). This indicated that the responses of accessions to acidity and

Al3+-toxicity were independent. In maize cultivar BR 201 F, root elongation was not affected by acid

treatment (pH 4.3), but exposure of roots to 20 and 50 μM Al3+ caused inhibition of root elongation,

whereas other cultivars showing sensitivity to acidic media showed root elongation under the same

Al3+ treatment,  presumably  due  to  amelioration  of  H+ toxicity  by  Al3+ (Llugany et al. 1995). This

might result partly from differences in soil chemical composition in regions where the accessions

evolved and adaptation to distinct response mechanisms to H+ and  Al3+ ions in acidic solution as

discussed in Shavrukov and Hirai (2016). In pea, variability in Al3+ tolerance among genotypes was

suggested to relate to place of origin (Kichigina et al. 2017). Generally, Aurora from Sweden

combined low stain score, high Al3+ tolerance index, and greater root regrowth length (indicators of

Al3+-toxicity tolerance) (Figure 10A), whereas OBSE from Ethiopia, combined high stain score, low

Al3+ tolerance index and lower root regrowth (indicators of Al3+ susceptibility) (Figure 10B).

Figure 10. Distribution of tolerant and sensitive accessions against Al3+ tolerance indicator variables.
(A) Accessions combining Al3+-tolerance traits: lower hematoxylin stain score (HSS), larger Al root
tolerance index (Al-RTI), and larger root regrowth length (RRL). (B) Accessions combining Al3+-
sensitivity traits: higher HSS, lower Al-RTI and lower RRL.

Aluminium-tolerant accessions showed contrasting shoot Al contents. Shoots of Aurora, Dosha and

Gebelcho contained relatively little Al whereas other tolerant accessions including NC 58 and Messay

accumulated more, indicating multiple Al tolerance mechanisms in faba bean that may involve
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chelation and/or sequestration. Compound Al3+ tolerance mechanisms have been reported in some

legumes. In white lupin (Lupinus albus L.) organic acids such as citrate and malate as well as phenolic

compound genistein were involved in Al3+-toxicity tolerance through external and intercellular

detoxification (Valentinuzzi et al. 2016). Activation of catalase enzymatic defense system and citrate

exudation were reported as mechanisms of Al tolerance in chickpea (Sharma et al. 2016). Similarly,

root zone detoxification of Al3+ and maintaining the ability to take up nutrients from the soil under

the stress were reported as Al tolerance mechanisms in pea (Kichigina et al. 2017).

44.1.2 Responses to acidity and Al3+ toxicity in pot experiments

In the peat experiment, SPAD value was significantly different (P<0.01) between treatments at 25

and 35 DAS, stomatal conductance (P<0.05) at 35 DAS, leaf area and total dry mass (P<0.001) and

root and shoot mass fraction (P<0.01) at 58 DAS (Table 5). Total dry mass followed the sequence

neutral  > Al3+ > acid, whereas root mass fraction followed acid = Al3+ > neutral.  In pigeon pea in

sand medium, root and shoot dry mass were reduced in response to 50 μM Al3+ treatment and the

effect was more pronounced in roots than in shoots (Choudhary et al. 2011). Taproot length in the

perlite experiment was in the order neutral > acid = Al3+. This is in agreement with the findings

reported in soybean that root and shoot length and dry mass were reduced at 150 μmol/l Al3+ at pH

of 4.0, but the calculated root mass fraction was larger than in the acid treatment alone (Shamsi et al.

2008). This may indicate that decreased root length and increased thickness are coordinated responses

to  toxic  levels  of  Al3+ by faba bean and other legumes. SPAD values in both peat and perlite

experiments and stomatal conductance in peat were greater in Al3+ and acid treatments than in the

neutral, but leaf area was in the order neutral > Al3+ > acid treatments, and mean SPAD values

decreased through time in the peat experiment. A similar increase in leaf chlorophyll concentration

in  stressed  plants  was  reported  in  wheat  in  response  to  salinity  stress  (Shah  et  al.  2017).  In  an

aluminium-tolerant sorghum cultivar, stomatal conductance progressively increased with time in

Al3+-treated plants (Peixoto et al. 2002), which may be due to increased respiration triggered by the

extra energy demand of the plant in ameliorating the effect of the stress or the plant was

physiologically adapted to the stress.
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Table 5. Accessions and treatment means of SPAD value, stomatal conductance, leaf area, total dry
mass, and root and shoot mass fractions in peat potting medium, n=4.

Accession
SPAD value

Stomatal
conductance
(mol
H2O/m2/s)

Leaf
area
(cm2)

Total
dry

mass (g)

Root
mass

fraction

Shoot
mass

fraction

25 DAS 35 DAS 45 DAS 35 DAS 58 DAS

Aurora 40.4 38.7 38.0 0.442 831 11.49 0.28 0.72

Babylon 45.4 40.8 38.4 0.495 722 10.31 0.34 0.66

Dosha 40.9 33.3 31.7 0.393 640 9.47 0.24 0.76

EH 06006-6 42.2 36.2 34.5 0.366 551 8.44 0.23 0.77

Gebelcho 40.6 34.6 32.6 0.489 617 8.90 0.24 0.76

GLA 1103 44.6 39.7 37.7 0.623 606 8.51 0.29 0.71

Kassa 37.6 34.8 29.9 0.503 533 8.06 0.22 0.78

Messay 38.3 34.3 31.7 0.473 547 8.27 0.23 0.77

NC 58 39.9 34.7 32.3 0.405 569 9.11 0.23 0.77

Tesfa 40.7 35.4 32.8 0.576 475 6.72 0.25 0.75

SE 0.7 0.6 1.0 0.037 32 0.39 0.01 0.01

LSD (5%) 2.0 1.7 2.7 0.104 89 1.11 0.03 0.03

Treatment
Neutral 38.5 34.5 32.9 0.354 780 10.98 0.22 0.78

Acid (pH 4.5) 41.9 37.4 34.9 0.513 491 7.43 0.27 0.73

Acid + 82 μmol/l Al3+ 42.8 36.8 34.1 0.564 556 8.38 0.27 0.73

SE 0.4 0.3 0.5 0.020 17 0.22 0.01 0.01

LSD (5%) 1.1 0.9 1.5 0.057 49 0.61 0.02 0.02

P-value
Treatment ** ** ns * *** *** ** **

Accession *** *** *** *** *** *** *** ***

Accession x treatment ns ns ns ns ns ns ns ns

Date x accession ***

*, **, *** are significant at 0.05, 0.01 and 0.001, respectively, ns is not significant, SE is standard
error, LSD is least significant difference.
In the peat experiment, accession differences were also observed in SPAD values, stomatal

conductance, leaf area, total dry mass, root and shoot mass fractions (Table 5). SPAD values were

high in Babylon and GLA 1103 at 25 DAS and decreased with time (Table 5), whereas GLA 1103

and NC 58 showed the highest and lowest values of stomatal conductance, respectively at 35 DAS.

Interaction  of  date  by  accession  for  SPAD value  was  significant  (P  <  0.001)  and  the  reduction  of

SPAD value through time was high in Dosha and Gebelcho and low in Aurora. Aurora had the largest

leaf area at 58 DAS followed by Babylon, while Tesfa and Kassa had the lowest areas (Table 5). In

similar studies variability in shoot and root biomass reduction among pea genotypes (Kichigina et al.

2017) and reduction of leaf area and total dry mass in tomato cultivars were reported (Simon, Smalley

et al. 1994). In contrast, reduction of stomatal conductance (Simon, Kieger et al. 1994) in tomato

cultivars, and reduction of chlorophyll content in wheat (Ohki 1986) due to Al3+ treatment have been

reported. In the perlite experiment, there were no differences among accessions in SPAD values and
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taproot length, but there were accession by treatment (P<0.01) interactions, indicating phenotypic

trait plasticity in response to treatments. Acid and Al3+ tolerance indices were significantly different

among accessions (P<0.01) and treatment by accession interactions were also significant (P<0.001).

The acid tolerance index was high in Kassa, GLA 1103 and NC 58, and low in Aurora, Babylon,

Tesfa, and Messay. The Al3+ tolerance index was high in Gebelcho, Dosha, Aurora and Messay, and

low in Kassa, Babylon and Tesfa. Similarly, variability of genotypes in Al3+ tolerance index was

reported in pea (Kichigina et al. 2017).

In  conclusion,  acidity  and  Al3+-toxicity treatments were sufficiently strong to initiate detectable

variation in root length, stain score, Al3+ tolerance index, SPAD value, stomatal conductance, biomass

and leaf area in solution culture, peat, and perlite experiments. Roots behaved differently in response

to  pH  treatment  and  pH  +  Al3+ concentration differences. Accessions responded to acid and Al3+

treatments independently. Al3+-tolerant accessions showed contrasting shoot Al content, indicating

the presence of multiple Al tolerance mechanisms in faba bean. Trait expression complementarity

and variability were observed across the experiments owing to differences in growth media. The

values of the acid tolerance index in the solution culture and perlite media experiments were

positively correlated with each other (R=0.97, n=10, P<0.01), but the results of Al3+ tolerance index

were not significantly correlated. The effect of Al3+ was  small  (P>0.05)  (Table  5)  in  the  peat

experiment, even though its concentration was the same as in the aquaponic experiment, indicating

that a higher concentration may be necessary in solid potting medium. As a result of this, Babylon

responded well in peat medium while the opposite was true in aquaponics and perlite media. This is

in agreement with soybean genotypes that responded differently to toxic levels of Al3+ due  to

differences in screening media (Villagarcia et al. 2001) in which 2-fold Al3+ concentration was needed

in hydroponic medium to produce the same effect in plants tested in sand medium.

Accessions adjusted their root regrowth length in solution culture, and SPAD values and taproot

length in perlite medium to pH and Al3+ concentrations as demonstrated by accession by treatment

interactions. Root tolerance index and root regrowth length were found to be informative traits in

solution culture, and SPAD values in peat and perlite pot experiments. The rate of photosynthesis in

peat, and stomatal conductance, leaf temperature and biomass weight in perlite were relatively

uninformative about responses to acidity and Al3+-toxicity. In germplasm screening, 41 μmol/l Al3+

was not informative, 82 μmol/l Al3+  was moderate, 123 μmol/l Al3+ was severe, hence, 82 μmol/l

Al3+ for mass screening in aquaponic and 123 μmol/l Al3+  for selection of outstanding accessions for

higher Al3+ tolerance is recommended. Aquaponic media for mass screening and perlite media for

verification experiments were found to be convenient.
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44.2 Responses to drought adaptation

4.2.1 Germplasm screening to drought adaptation

In the screening experiment conducted in well watered condition, significant differences among

accessions and between wet and dry sets were observed in constitutive potentially drought adaptive

traits, namely chlorophyll concentration along with shoot and root dry mass. Accessions originating

from dry regions of the world had significantly higher chlorophyll concentration, shoot and root dry

mass, hence verifying the hypothesis that accessions from the dry set would produce larger root

system than from the wet set. In similar research, faba bean accessions adapted to dry southern

European environments had larger root system than those adapted to wet northern European

environments (Zhao et al. 2017). Accessions DS70622 and DS74573 had largest root and shoot dry

mass coupled with intermediate stomatal conductance, and accession DS11320 coupled high stomatal

conductance with low leaf surface temperature, large root dry mass and above average shoot dry mass

(publication II). Drought responsive or acquired (drought adaptive traits expressed in response to

water deficit) traits such as leaf surface temperature and stomatal conductance differed significantly

among accessions but not between the two sets, indicating response similarity between the two sets

in the absence of the stress. In a different study, faba bean accessions from dry environments showed

higher stomatal density and reduced gas exchange under drought stress than those from wet

environments (Khazaei et al. 2013b). Based on the criteria mentioned in Table 4 of publication II,

eight accessions were selected and investigated further under well watered and water-limited

treatments with the aim of assessing root and shoot drought responsive and constitutive traits  and

testing whether accessions from the dry set differ from the wet set (publications II and III).

4.2.2 Phenotyping for drought adaptation

Drought affected total root length (taproot + laterals + second order laterals), root system depth, width

and convex hull area at 5, 12, and 19 DAT, in which larger values were recorded in the well watered

treatment. Treatment differences in total root length and root system width increased from 2 times at

5 DAT to 3.7 times at 19 DAT, indicating the increased severity of drought with time. Plants grown

in the well watered treatment had 3 times more convex hull area than plants grown in the water-

limited treatment (publication II). At the end of the treatment period, drought treatment significantly

lowered the biomass weight and stomatal conductance, and increased leaf and stem dry matter content

and SPAD value (publication III). Accession DS70622 showed high stomatal conductance in the well

watered treatment and intermediate in the water-limited treatment. In both treatments, DS11320 and

ILB938/2 showed intermediate and low stomatal conductance, respectively, and Mélodie/2 showed

high stomatal conductance in the water-limited treatment (publication III). In common bean, drought
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stress resulted in reductions of rooting depth by 14%, total root length by 35 %, root biomass by 29%

and root volume by 14% (Sofi et al. 2018), and significant decreases in stomatal conductance and

chlorophyll content were reported in common bean genotypes due to drought (Soureshjani et al.

2019). Stomatal behaviour that decreases transpiration rate in a drought-tolerant wheat cultivar was

reported to improve integral water use efficiency and photosynthetic rate in the drought condition (Li

et al. 2017). However, higher leaf stomatal conductance in common bean was positively correlated

with larger grain yield under drought stress (Polania et al. 2016), a response that may be associated

with effective use of water during drought.

Accessions adjusted their taproot and second order lateral root lengths, biomass weight and apparent

root length density differently in response to the watering treatments, as shown by the significant

accession by treatment interactions. Lateral root length contributed to two-third of the total root

length. Accessions from the dry set such as DS70622 and DS11320 with larger root and shoot dry

mass in the screening experiment also showed deep root systems across the three time points and

larger biomass at the end of the treatment period. In comparison, DS70622 exhibited the longest

lateral roots and greatest total root length in both treatments, and maximum convex hull area in water-

limited treatment, and the smallest taproot and lateral root length differences between the two

treatments. Accessions from the wet set, Mélodie/2 and WS99501, showed the opposite in the water-

limited condition (publication II). A drought-tolerant common bean cultivar, Topaz, was reported to

possess high values of root to shoot ratio, total root length and root volume under drought stress (Sofi

et al. 2018), and drought tolerance in recombinant inbred lines (RILs) of common bean was positively

correlated with root depth and root and shoot system vigour (Polania et al. 2017). Total dry mass in

faba bean accessions from southern Europe (Mediterranean climate) was less affected by drought

than those from north Europe (Sweden and Estonia) (Zhao et al. 2018).

Root growth in depth and width was more or less balanced in the two drought avoiding accessions,

DS70622 and DS11320. In both treatments, DS70622 and DS11320 showed linearly parallel increase

in convex hull area across time points, and as a group, the two accessions clearly diverged from the

benchmark accession ILB938/2 (Figure 11 A & B). However, DS70622 and DS11320 largely

differed one from the other by the production of lateral roots filling the convex hull area (Figure 11

C & D), and the differences were significantly large in the water-limited treatment where DS70622

developed the longest lateral roots. This morphological dimorphism in response to treatments is a

potential trait for drought avoidance. This is in agreement with the concept that root system

architecture is extremely responsive to drought stress (Ye et al. 2018). Similarly, the length of second

order lateral roots shown by DS70622 were twice and 38 times that of DS11320 in well watered and
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water-limited treatments, respectively (publication II). This may be the reason for the high apparent

root length density and apparent specific root length shown by DS70622 in both treatments reaching

2-fold and 3-fold larger than that of DS11320. On the other hand, DS11320 showed 1.2-fold and 1.5-

fold greater root mass fraction than DS70622, indicating a feature of coarser root development

(publication III).

Figure 11.Convex hull area and lateral root length of DS70622, DS11320, and ILB938/2. (A) Convex
hull area in well watered treatment; (B) Convex hull area in water-limited treatment; (C) Lateral root
length in well watered treatment; (D) Lateral root length in water-limited treatment.

Root length plasticity under contrasting watering regime was reported to be a promising trait for

peanut (Arachis hypogaea L.) drought tolerance (Thangthong et al. 2018). In drought-tolerant peanut

genotypes, root length density in contrasting watering regimes was more variable in the upper soil

layer (0-40 cm) than the lower layer (40-100 cm), indicating the greater association of root length

density variability with depth of soil under moisture stress in that drought avoiding genotypes had

greater root length density at deeper soil layer in response to drought (Songsri et al. 2008). Similarly,

under water stress condition, root dry mass and root length density of drought tolerant cowpea cultivar

tended to distribute downwards (Matsui and Singh 2003).
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44.2.3 Correlation of traits for drought avoidance

In both the screening and phenotyping experiments, accessions originating from the drier regions of

the world showed drought avoidance behaviour, thereby confirming FIGS as a valuable strategy. In

germplasm screening, root and shoot dry mass and their fractions along with SPAD value provided

useful information in discriminating accessions with potential drought avoidance characteristics. In

the phenotyping experiment, root traits were strongly and positively correlated with each other and

with shoot traits, but these correlations indicated specific plasticity of traits with watering treatments

(Figure 3 in publication III). In the well watered treatment, total dry mass was correlated with root

length traits, whereas in the water-limited one, it was correlated with root width and convex hull area.

Similarly, apparent root length density was positively correlated with second order lateral root length

in well watered treatment, and with apparent specific root length in the water-limited treatment,

indicating that a high surface area to volume ratio to maximize water absorption is a key strategy in

drought. In the water-limited treatment, root traits such as lateral root length and root system depth,

convex hull area and root system width, and apparent root length density contributing for drought

avoidance (publication II and III) were positively associated with shoot traits such as total dry mass,

leaf number, and leaf mass fraction reported in publication III. This is in agreement with Blum (2015)

that water scavenging plants maintain relatively larger biomass under drought condition. In faba bean,

maintaining larger shoot mass under limitation of water at the flowering stage was reported as an

indicator of drought tolerance (Khan et al. 2007).

4.3 Breeding for root traits

Root traits have a potential to improve yield under various abiotic stress conditions, yet little has been

done to exploit the information on root traits in breeding of high yielding cultivars (Zhao et al. 2017).

Evaluation of accession responses to acidity and Al3+-toxicity in solution culture and in solid media,

peat or perlite had benefits special to each media. In solution culture, the roots were visible from the

top  and  side  of  the  box  and  changing  the  entire  growth  medium at  a  given  time was  more  easily

conducted. The possible buffering effect to acidity that may arise from certain solid media such as

vermiculite (Indrasumunar and Gresshoff 2013) is not a concern in solution culture. It was also

possible to harvest the entire roots without any damage, and marking the damaged part and recovery

scars from the roots after the Al3+ treatment were easily conducted. Root tips remain intact or

unbroken so that they can be used for staining procedure. However, the lack of natural soil resistance

to root growth, the artificial supply of oxygen and the direct supply of nutrient solution to the roots

may alter their behaviour from what is natural in field grown plants. Hence, verification of results in

solid media, perlite or peat was important.
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Handling of roots in perlite medium was easier than in peat medium. In perlite, plants were

continuously provided with solution culture containing the appropriate treatment of pH and Al3+ until

the end of the experimental period. Harvesting and separation of roots from the perlite was

convenient, so intact roots provided taproot length without difficulty. In contrast, extraction of roots

from peat led to considerable breakage and loss of roots. The long fibers in the peat were tightly held

in the growing roots, so making it difficult to harvest the roots in their entirety.

In contrast, when the peat was pounded and sieved (thus breaking or removing the long fibers in it),

separation  of  roots  from the  medium was  not  difficult  in  the  GROWSCREEN Rhizo-box drought

experiment. The GROWSCREEN Rhizo phenotyping platform provided high throughput two

dimensional images non-invasively. Acquisition of image data on a daily basis offered an opportunity

to  monitor  root  growth  rates  and  architecture  as  a  whole  as  well  as  the  different  classes  of  roots.

However, extraction of roots from the medium showed that 68-75% of the root system was invisible

for imaging, so the system is not comprehensive, a typical feature and limitation of rhizotrons as

discussed in Atkinson et al. (2019). Furthermore, the system is uniquely designed for acquisition of

morphological and architectural root traits (Nagel et al. 2012), so it lacked checking mechanisms for

components of the plant-water relationship. Naturally, accessions differ in vigour, so they exhibit

corresponding differences in their water requirement for growth and development in the real situation

(Negin and Moshelion 2017).

Hematoxylin staining has been shown to be a useful indicator of Al3+ tolerance for species known to

tolerate Al3+-toxicity through chelation when genetically homogenous seeds are available. Various

staining procedures have been applied to study Al3+ tolerance in soybean, faba bean and pea (Akhter

et al. 2009; Chen et al. 2012; Kichigina et al. 2017) that confirmed the success of the procedure. The

test of Al3+-toxicity tolerance was made using seeds as received, so the roots showed wide variation

between individuals within an accession. This affected the interpretation of data in the course of data

analysis. Hence, root regrowth length as indicator of resiliency and recovery from the damage of Al3+

and root tolerance index as indicator of root length setback were used as primary parameters to

evaluate the treatment effect on different accessions. These two root growth parameters were found

to be highly informative in the heterogeneous faba bean accessions.

Roots in GROWSCREEN Rhizo-boxes showed to be highly variable in response to drought

treatments and the morphological dimorphism observed in accession to well watered and water-

limited treatments were indicators of water scavenging behaviours of accessions such as DS70622.

This behaviour was further supported by the positive correlation observed among stomatal

conductance, apparent specific root length and Fv/Fm in the well watered treatment, indicating that
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the maximum surface area to volume ratio of roots meets the transpiration demand of the plant during

the course of photosynthesis. Plants with higher values of specific root length (long but thin roots),

root length density and root system depth were reported to maintain yield under drought (Comas et

al. 2013). However, methods for screening large numbers of accessions for water-scavenging ability

have yet to be developed.

44.4 Conclusions and recommendations

Managing of acidic media and application of aluminium toxicity was demonstrated for a large set of

material in a seedling-based aquaponic technique, where root tolerance index and root regrowth

provided detection of differences among treatments and accessions. Further verification experiments

were conducted in two pot-based media, each of which had its pros and cons. The peat-based medium

was useful to evaluate response differences between treatments and accessions using SPAD value,

stomatal conductance, shoot and root dry mass. However, owing to its operative simplicity in

handling and separation of roots as well as because of its inert nature, the perlite medium was more

convenient than the peat. Based on the overall results: Aurora and Messay were found to be Al3+

tolerant but acid sensitive; Kassa and GLA 1103 acid tolerant, but Al3+-sensitive; NC 58 and Dosha

were tolerant to both Al3+ and acidity, while Babylon was sensitive to both.

Screening of germplasms for traits potentially associated with drought was successfully conducted in

the perlite-based pot experiment, which allowed quicker screening of a large set of materials and

enabled detection of constitutive traits indicating variation among accessions. The GROWSCREEN

Rhizo phenotyping facility allowed detection of variation between treatments and among accessions.

The dark peat-based medium in GROWSCREEN Rhizo provided contrasting background for

capturing root images nondestructively. Accessions showed wide plasticity for watering treatments,

and those from the drier regions revealed superior drought avoidance characteristics in both the

screening and phenotyping experiments. DS70622 exhibited deep- and wide-growing roots that

explored the root volume with long and thin laterals. A larger root system combined with moderately

high total dry mass and stomatal conductance endorsed this accession as a potential drought avoiding

candidate by effective use of water. Accessions such as DS11320 and ILB938/2 that combined large

and thick root system but with low root length density, specific root length, and low stomatal

conductance can be recommended as potential sources of drought avoiding traits by improved water

use efficiency.
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44.5 Future directions

Oxidative stresses such as soil acidity, drought, waterlogging, heat and salinity are major constraints

in crop production. Among these, acidity and drought are two of the most important stresses affecting

the yield and stability of faba bean.

Mechanisms of Al3+-toxicity tolerance, biochemical markers for antioxidant and enzymatic defence

system and quantitative trait loci (QTL) and underlying genes associated with these traits need to be

investigated.

Effective use of water under drought condition is a function of osmotic adjustment, stomatal gas

exchange and water scavenging behaviours of plants. These physiological and morphological

behaviours need to be further investigated in faba bean to identify host accessions for breeding of

high yielding materials under drought stress. Together with this, methods of detection to water

scavenging potential in a more rapid and easier way is a research area for investigation.

Most acid soils are subject to Al3+ toxicity, and drought and Al3+ toxicity interact. Al3+ stress inhibits

root growth, so they are less likely to find soil moisture, and its effect on shoot is secondary as it is

induced by the damage it causes on roots. On the other hand, the effect of drought is more pronounced

on shoot growth than on root growth. When drought occurs in acid Al3+-toxic soils, the combined

effect on both root and shoot growth has been shown to be synergistic in other crop species. Thus,

drought tolerance cannot be fully utilized in crops growing in Al3+-toxic acid soils unless Al3+

tolerance is also present. Hence, finding or developing for faba bean accessions with combined

tolerances to Al3+ and drought stress and integrating traits of tolerance in modern cultivars will have

significant effect on the productivity and production area expansion of the crop in the future.
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