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Maxey-Riley equation and its simplified versions represent the most widespread tool

to investigate dynamics and dispersion of inertial small particles in turbulent flows.

Numerical solution of such models is often very challenging, and some of their terms,

such as the molecular diffusivity or the Basset history force, are often neglected to

reduce the complexity upon suitable approximations. Here we propose exact results

with regard to the rate of transport on large time scales in random shear flows.

These can be expediently used as a benchmark to develop and assess algorithms when

solving this class of stochastic integro-differential problems on large time scales.
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I. INTRODUCTION

The study of the dynamics of small particles in a fluid flow where their inertia cannot

be neglected has been a topic of paramount importance in many research fields. These

range from theoretical problems arising in statistical mechanics1 to applications such as the

radiation scattering in atmosphere2, astrophysics3,4, droplet dynamics in rain initiation5–7,

plasma physics 8–10, and biological oceanography11. To tackle these problems, the starting

points are the old Basset-Boussinesq-Oseen equation1,12,13 and the modern, more rigorous,

and well-known Maxey-Riley equation14–16 (in short, BBO and MR respectively). The former

is still often used when suitable hypotheses are fulfilled, thanks to its simplicity in comparison

to the latter. Moreover, the infamous Basset history force term is sometimes neglected in

turn, as its slow time decay makes it computationally expensive to handle 17–21. We refer to

Refs. 13 and 22 as to the validity, the usages, and the approximations of the several models.

Besides establishing a model for the inertial particle dynamics, the other important ingre-

dient in this category of problems corresponds to the type of carrier flows and the regime one

wants to analyze. In this sense, the stochastic construction of turbulent synthetic models

is a typical tool to produce particle-laden flows when investigating small-scale turbulence

and turbulent dispersion. This technique indeed renders it possible to control the statistical

properties of turbulence better than by other methods based on Direct Numerical Simu-

lations (DNS) or chaotic flows. The advantage of having more controllability justifies why

synthetic models are oftentimes utilized although some key differences from DNS are present,

especially when it comes to particle transport23–26.

Within this context, in the past decade the study of dispersion in the presence of white

noise and stochastic flows mimicking turbulence also took place in literature, in a growing

demand of more and more sophisticated, general, and rigorous numerical models23,27–29.

On the one hand, the role of the molecular Brownian motion can indeed be crucial for

the particle dynamics in a flow; it can enhance or hinder the transport via interference

mechanisms30. In most extreme scenarios, the presence of a small molecular diffusivity can

trigger standard diffusion from a trapped configuration (e.g. in cellular flows) or, conversely,

regularize superdiffusive regimes31,32. On the other hand, the Basset history force can be

as determinant in creating ballistic diffusion regimes in flows where dispersion would be

normal otherwise33,34. It is therefore natural that in plenty of situations one is interested
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in accounting for the effects of all these terms and their mutual interplay, which cannot be

deemed trivial in general.

However, there is no closed-form solution for the Maxey-Riley equation, due to the com-

plexity induced by the very Basset history force, which features slow decay and nonlocality

with respect to time27. Although well-established numerical schemes are available for the

pure deterministic Maxey-Riley equation27,35, its solution in the presence of white noise en-

tails Monte Carlo techniques to generate the trajectories. The strong patchiness of such

trajectories can make the convergence difficult to achieve when the Basset term is present.

This occurs in that the methods for ordinary differential equations have a lower accuracy

order when stochastic processes enter into play. For example, it is well known that the

common, explicit Euler method is of order O(
√

∆t) in the presence of white noise rather

than O(∆t). Higher order algorithms, for instance 4-th order Runge-Kutta methods, are in

general different and more complex than a trivial application of the ones for deterministic

ODEs36. Moreover, the Basset term puts things into an even more complicated situation.

As already said previously, that term in fact is a slowly decaying convolution integral with

respect to the past trajectory history, and it is usually approximated by means of expo-

nential interpolating functions35. When one has to cope with both Brownian trajectories

and stochastic flows together, it is therefore useful to have a benchmark whatsoever. One

is indeed given the opportunity to compare it to results from possible numerical schemes

adapted to the stochastic case, or even new approaches.

The aim of the present article therefore is to provide an exactly evaluable quantity for

the most common models of inertial particles – to wit, Basset-Boussinesq-Oseen and Maxey-

Riley. Namely, we will compute the so-called eddy diffusivity tensor30,37–39, the large-time

transport rate for asymptotic, standard diffusion (i.e., the mean square displacement of the

particle evolving linearly as a function of time) for a well-known class of exactly solvable

flows in these problems, that is the class of the shear flows40. For such a category, we will

reduce calculating the eddy-diffusivity tensor to the evaluation of double integrals. Unlike

the original stochastic integro-differential problem, the latter can be numerically carried out

by standard and robust techniques implemented in widespread commercial softwares too.

Our flow will be a stochastic one having well-defined statistical properties set a priori, in a

similar manner to synthetic models for turbulence23,24,26. The value of the eddy diffusivity

will thus be dependent on the very statistical properties of the shear flow, namely its time-
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space correlation function.

With such an approach, we thus achieve a twofold goal. The first is to give an insight

about the interaction between Basset history force, Brownian motion, and other possible

refinement terms in the Maxey-Riley equation, albeit for a toy model such as the random

parallel flow. As we will see, those terms engender contributions to the transport which

are not trivial at all even in a simple case like that. The second is to provide an exact

test case for algorithms solving BBO or MR when white noise is included, specifically in

asymptotic-time regimes. This in practice entails to compute the eddy diffusivity and exploit

it as a benchmark to assess the accuracy of algorithms or schemes employed in numerical

simulations on long time scales. Such a test would be just a first step in the validation of

the scheme, along with other possible comparisons verifying the performance at short time

or in more complex flows than the random shear geometry, for which analytical solution

are not available. In this framework, given any resolution scheme, on the one hand it is

always possible to generate a random shear flow whose statistical properties are the ones

considered in this work. On the other hand, it is always possible to contrast the eddy

diffusivity deriving from Monte Carlo trajectories with the analytical result contained in

this work. This approach is actionable regardless of the values of the parameters involved

in the BBO or MR equations.

In Sec. II we will algebrically manipulate the BBO model in order to calculate the eddy

diffusivity for a random shear flow, and will depict and table the resulting numbers for some

significant parameter values both of the model and the velocity Eulerian correlation function.

The steps involved to obtain the results for this case will be preparatory for Sec. III, where

these calculations will be reused and extended so as to obtain the eddy diffusivity of the

full MR equation. Again, results will be depicted for some sample but significant parameter

choices. This should give us a full insight about the involved dynamics . Sec. IV will be

dedicated to the conclusions, and details about the computation steps and how to generate

random shear flows with the correlation functions considered herein will be postponed to

the Appendix.
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II. GENERAL PROPERTIES OF THE BASSET-BOUSSINESQ-OSEEN

EQUATION

The Maxey-Riley model in the original Basset-Boussinesq-Oseen approximation12,14, sup-

plemented by an additive white noise38, can be written in the following dimensionless form:

dξ

dt
= v(t) (1a)

dv

dt
= −v − u(ξ(t), t)

St
+ β

du(ξ(t), t)

dt
+

√
2D0

St
η(t)

+

√
3β

πSt

∫ t

0

dt′
√

1

t− t′
d

dt′
[u(t′)− v(ξ(t′), t′)] (1b)

where ξ is the particle coordinate, v is the particle velocity, β =
3ρf

ρf+2ρp
, 0 6 β 6 3, with ρf

and ρp being the fluid and particle (mass) density, d
dt

= ∂t + v ·∇, η is a Gaussian white

noise (i.e. the time derivative of a d− dimensional Wiener process), D0 is the dimensionless

molecular diffusivity (i.e. the Péclet number) and, finally, St =
r2p

3νβT
is the Stokes number.

In the latter definition, T is a typical time of the carrier flow u, ν is the fluid kinematic

viscosity and rp is the particle radius. The first addend on the left hand side in the particle

acceleration equation constitutes the Stokes viscous drag. The second addend is the added

mass effect caused by the pressure gradient. The third is the molecular Brownian motion

and the fourth is the well-known Basset history force, which depends on the past trajectory

of the particle in the flow. Eq. (1) is valid under a number of physical hypotheses which we

recall here briefly12,14. It assumes low particle Reynolds number (that is, max|u(ξ(t), t) −

v(t)|rp/ν � 1), small Stokes numbers and small particle radius in comparison to the typical

flow wavelength (i.e., rp/L� 1). All these hypotheses implicate that the particle is passively

advected in the flow, which means there is no feedback effect of the particle on the flow in

turn. The particle experiences a Stokes flow at any time, thus making many nonlinear terms

negligible in the Navier-Stokes equation. In addition to that, the approximation Stβ � 1

is made to have no significant difference between material derivatives along the trajectory

of the particle and following the fluid14. We finally need to impose the further condition

v(0) = u(ξ(0), 0) for the validity of this form of the Basset integral term41. Generalizations

of the latter are possible, but those will not be relevant for us. This is because they just

introduce transients depending on the initial conditions, whereas we are going to analyze
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the asymptotic transport22. We can thus safely stick to the original Basset history term

expression.

To start our analysis, it is convenient to take the Laplace transform (which here will be

denoted by ·̂ ) of both sides of Eq. (1) and recast the several terms in the following form:

v̂(s) = σ̂(s) + K̂0(s)û(s) +
√

2D0K̂1(s)η̂(s) (2)

where have introduced the functions:

σ̂(s) =
(1− β)u(ξ(0))

s+ 1
St +

√
3βs
St

K̂0(s) =
βs+ 1

St +
√

3βs
St

s+ 1
St +

√
3βs
St

K̂1(s) =
1
St

s+ 1
St +

√
3βs
St

, (3)

bearing in mind the initial condition v(0) = u(ξ(0), 0). From the above expressions the

following relationship easily follows:

K̂0(s) = 1 + (β − 1)StK̂1(s) s (4)

Also note that:

K̂0(0) = K̂1(0) = 1 (5)

The role and the importance of the latter observation will become clearer in Sec. IIA.

By computing the inverse Laplace transform of (2), we get the following compact form of

Eq. (1):

v(t) = σ(ξ0,v0, t) +

∫ t

0

K0(t− t′)u(ξ(t′), t′)dt′ +
√

2D0

∫ t

0

K1(t− t′)η(t′)dt′ (6)

It is now evident that the functions K0, K1 are nothing but Green functions characterizing

the linear response of the dynamical system (1), similarly to those commonly encountered

in statistical mechanics. The function σ instead is a transient term depending on the

initial condition, which does not play any role into the asymptotic dynamics. By direct

computation (see Appendixes A-C for details) one can arrive at the explicit expressions for

K0(t) and K1(t):

K1(t) =
1

St(A2 − A1)

(
A2e

A2
2terfc(A2

√
t)− A1e

A2
1terfc(A1

√
t)
)

, (7)

where erfc is the complementary Euler error function and A1 and A2 are given in Appendixes

A and C. The expression for K0(t) follows from Eq. (4):

K0(t) = δ(t) + (β − 1) + StK ′1(t)

= δ(t) +
β − 1

A2 − A1

(
A3

2e
A2

2terfc(A2

√
t)− A3

1e
A2

1terfc(A1

√
t)
)

(8)
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Noteworthy, the properties we have determined up to this point are completely general;

we have not specified the type of external flow yet. The particular case of heavy particles

(i.e., β = 0), where the Basset term disappears and A1, A2 are imaginary and complex

conjugates, has already been analyzed in Ref. 40.

A. Eddy diffusivity for shear flows: effect of the Basset history term

Our aim at this point is to exploit and generalize achievements of Ref. 40 in order

to obtain first-principle results (i.e. following from the ruling equation (1) without ap-

proximations) with regard to the large-scale transport of inertial particles. The large-scale

transport regime we are going to consider here is the one characterized by the so-called eddy

diffusivity37,42:

D = lim
t→∞

1

2t

〈
δξ(t+ t0)⊗ δξ(t0) + δξ(t0)⊗ δξ(t+ t0)

〉
, (9)

where δξ(t) = ξ(t)−〈ξ(t)〉 and the average is meant over the sample space of the Brownian

motion and the one of the stochastic flow or the initial conditions of the particles31. The

definition above goes under the assumption that the diffusion is standard (that is, the

variance of the mean square displacement grows asymptotically like ∝ t), and that quantity

itself is independent of the initial conditions. The latter statement is equivalent to say that

Lagrangian correlation functions (and the diffusion consequently) are statistically stationary,

at least over long time scales.

For tracer particles (i.e., St = 0), the eddy diffusivity can be obtained by means of

Taylor’s 1922 celebrated formula43:

D = D0I+ lim
t→∞

1

2

∫ t

0

ds
〈
u(ξ(t), t)⊗ u(ξ(s), s) + u(ξ(s), s)⊗ u(ξ(t), t)

〉
(10)

Remarkably, when we have (asymptotic) stationarity, the correlation function decays suffi-

ciently fast and Eq. (5) is fulfilled, the same Taylor formula formally holds for many more

general models of particle dynamics, including the one in Eq. (1) – see also Ref. 22 for

a rigorous illustration. Our large-scale transport will thus be completely defined in terms

of the eddy-diffusivity tensor D, the expression of which reads formally identical too Eq.

(10). Of course the key point is that the trajectories over which the Lagrangian correlation
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functions are evaluated are dramatically different in the tracer case and the inertial particles

we are considering here. They are indeed results of different dynamical models. Obtaining

an analytical expression for D by exploiting the ruling equation (1) is the main aim of this

section.

For general carriers flows this problem can be only tackled via numerical techniques. This

is a consequence of the character of Eq. (1), which is nonlinear and nonlocal with respect

to time. These difficulties can be reduced and handled for the class of shear flows:

u(x, t) = u1(x2, . . . , xd)e1 (11)

where e1 = (1, 0, ..., 0) is the constant unit vector associated to the first axis. This simple

geometry readily enforces the incompressibility condition.

According to the hypotheses of Taylor’s formula, we need to evaluate the correlation

function of the flow field over the particle trajectories 〈u(ξ(t1), t1)⊗u(ξ(t2), t2)〉 and verify

that the process is asymptotically stationary. That is, for a finite constant t = t2 − t1, we

should get:

lim
t1→∞

〈u(ξ(t1), t1)⊗ u(ξ(t1 + t), t1 + t)〉 = C(|t|)

If this happens, then the eddy diffusivity is given by:

D = D0I+

∫ ∞
0

C(t)dt (12)

The remarkable point is that for the shear flow (11) such an expression can be calculated

on analytical ground. Indeed, along the directions n 6= 1 the flow components are zero and

Eq. (6) reduces to:

vi(t) =
√

2D0

∫ t

0

K1(t− t′)ηi(t′)dt′,

(13)

In these directions, the transient term σ(ξ0,v0, t) in Eq. (6) is identically zero due to the

absence of flow.

We now need to define the nature of the shear flow. Our choice is for a zero-mean

Gaussian random field having a homogeneous and stationary Eulerian correlation function.

In plain symbols:

〈u(x, t)〉 = 0 (14)

〈u(x1, t1)⊗ u(x2, t2)〉 = B(x1 − x2, |t1 − t2|) e1 ⊗ e1
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From the above expressions, we can get the Lagrangian correlations in Fourier space (Fourier

transformed fields are denoted by ·̌ ):

〈u(ξ(t1), t1)⊗ u(ξ(t2), t2)〉

=

∫
dkd−1

1

(2π)d−1

∫
dkd−1

2

(2π)d−1
〈ei(k1·ξ(t1)+k2·ξ(t2))ǔ(k1, t1)⊗ ǔ(k2, t2)〉

=

∫
dkd−1

1

(2π)d−1

∫
dkd−1

2

(2π)d−1
〈ei(k1·ξ(t1)+k2·ξ(t2))〉 〈ǔ(k1, t1)⊗ ǔ(k2, t2)〉

=

∫
dkd−1

(2π)d−1
〈eik·(ξ(t1)−ξ(t2))〉 B̌(k, |t2 − t1|) e1 ⊗ e1 (15)

In the above steps we made use of the independence between the flow and the trajectories,

with the former pointing solely in the direction n = 1 and the latter being affected only by

the molecular diffusion. We also exploited the homogeneity of the flow, i.e.:

〈ǔ(k1, t1)⊗ ǔ(k2, t2)〉 = B̌(k1, |t2 − t1|) δ(k2 − k1)e1 ⊗ e1

In the imaginary exponential above, we see from Eq. (11) that only the directions n 6= 1

play a role, and from Eq. (13):

ξi(t) =
√

2D0

∫ t

0

G(t− s)ηids, G(t− s) =

∫ t

s

K1(s′ − s)ds′ (16)

The last ingredient we need is to compute the average in Eq. (15) exploiting the first ex-

pression in Eq. (16). The resulting expression reads:

〈ei
√

2D0k·
∫∞
0 dw(s)[H(t1−s)G(t1−s)−H(t2−s)G(t2−s)]〉 (17)

where we denoted the Heaviside step function by H(x) . We have already removed the tran-

sient term proportional to the initial condition because we are interested in the asymptotic

behaviour of the above Lagrangian correlation function. By means of lengthy integration

over the Gaussian measure of the Wiener processes, we get that the foregoing mean value is

equivalent to:

e−D0||k||2
∫∞
0 ds[H(t1−s)G(t1−s)−H(t2−s)G(t2−s)]2 (18)

As detailed in Appendix B, the exponent of (18) can be simplified exploiting the relationship

between G and K1 – see the rightmost side of Eq. (16) – and the explicit expression for K1
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given by Eq. (7). The results reported in Appendix B lead to the expression for G

G(t) =
1

2i A1A2=A2 St

[
2i=A2 − A2A1e

A2
1t + A1A2e

A2
2t
]

+
1

2i=A2 St

[
1√
π

∫ t

0

e−A
2
1(r−t) − e−A2

2(r−t)
√
r

dr

]

=
1

A1A2St
− 1

2i=A2 St

[
eA

2
1t − eA2

2t − 1√
π

∫ t

0

eA
2
1r − eA2

2r

√
r + t

dr

]
(19)

from which the eddy diffusivity from Taylor’s formula can be determined once B̌ is known:

D = D0I+

∫ ∞
0

dt

∫
dkd−1

(2π)d−1
e−D0||k||2

[
t+2

∫∞
0 dsG(s)

(
G(s)−G(t+s)

)]
B̌(k, |t|) e1 ⊗ e1 (20)

B. Expansion at the first order in molecular diffusivity

The expression (20) for the eddy diffusivity is now explicit, and one could use it to already

get results by numerical computation. Nonethless,its complexity suggests us to proceed to

simplify it. A good starting point is to take into account that the molecular diffusivity D0

(in dimensionless units) is typically a small number in applications. Along this line, let us

keep the leading order in the small D0 expansion30,40:

D' D0I+

∫ ∞
0

dt

∫
dkd−1

(2π)d−1
B̌(k, |t|) [1−D0||k||2t]e1 ⊗ e1

+ 2D0

∫
dkd−1

(2π)d−1
||k||2

∫ ∞
0

dtB̌(k, |t|)
∫ ∞

0

dsG(s)
(
G(t+ s)−G(s)

)
e1 ⊗ e1

(21)

The last addend in Eq. (21) includes the contribution from the Basset history term. Let

us focus our attention on it. For the sake of simplicity, let us consider a single-mode,

oscillating velocity correlation function having the (dimensionless) wavenumber k0 = 1, a

(dimensionless) exponential correlation time 1 and (dimensionless) frequency Ω:

B̌(k, |t|) = (2π)d−1E(k0)e−|t| cos(Ωt)[δ(k − k0) + δ(k + k0)] (22)

In Appendix C we report an method (see also Refs. 24 and 44 for other specific applications)

about how to generate a flow field having such properties. An exponentially decaying,

oscillating correlation function was observed in some flow models where particles were also

endowed with a molecular diffusivity45.It therefore embodies a representative, meaningful

choice, as it captures both diffusion decay and recirculation structures in a simple way .
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By recalling Eq. (22), the term under consideration becomes

4D0E(k0)∆1(St, β,Ω) e1 ⊗ e1 (23)

having defined:

∆1(St, β,Ω) =

∫ ∞
0

dte−t cos(Ωt)

∫ ∞
0

dsG(s)
(
G(t+ s)−G(s)

)
(24)

The eddy diffusivity follows from (21) and reads:

D ' D0I+ 2E(k0)

∫ ∞
0

dte−|t| cos(Ωt) [1−D0t]e1 ⊗ e1 + 4D0E(k0)∆1(St, β,Ω) e1 ⊗ e1

= D0I+

{
2E(k0)

[
1

1 + Ω2
−D0

1− Ω2

(Ω2 + 1)2

]
+ 4D0E(k0)∆1(St, β,Ω)

}
e1 ⊗ e1

(25)

The sum of the terms proportional to D0 needs be much smaller than 2E(k0)/(1 + Ω2), in

order to remain in a perturbative regime.

Similarly to the most common simplified versions of Eq. (1), which are the cases of heavy

particles with β = 0 or when the history term is neglected17,18, for shear flows inertia plays

a role only when molecular diffusivity is present. Eqs. (20) and (25) indeed yield the same

result as the free tracer when D0 = 030,40:

Dtrac =
2E(k0)

1 + Ω2
e1 ⊗ e1 (26)

If D0 6= 0, however, Eq.(25) tells us that in the full BBO model (1) the eddy diffusivity

depends on the density ratio β, unlike the above mentioned simplified models40. The function

∆1 represents in fact the contribution of Stokes drag and history force term appearing in

Eq. (1) to the interference between carrier flow and molecular diffusion. This interference

mechanism had been investigated in Ref. 30 for the tracer case. Such a result is a

quantitative effect of the Basset history term.

C. Analysis of test cases

Our simplifications allowed us to arrive at Eq. (25) where only time integrations are

involved. They can be easily performed by standard methods (see below). As explicit test

cases, we are going to consider β = 1/10, 1/3, 1, and 3.
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Let us now show the numerical results of the double integral (24) for the above mentioned

values of β, and compare those with the result of in the absence of Basset history term. In

this latter case G(t) is (see also Eq. (C4) in the Appendix B):

G(t) = 1− e−
t
St

and in Eq. (24) one would have:∫ ∞
0

dsG(s)
(
G(t+ s)−G(s)

)
=

St
2

(
1− e−

t
St

)
(27)

Therefore, by exploiting the expression above one gets:

∆1 =
St

2(1 + Ω2)
− St2(St + 1)

2[1 + St(2 + St + StΩ2)]
(28)

To calculate the double integral in Eq. (25) numerically when the Basset term is present,

the domain for the variables (t, s) of Eq. (25) was initially restricted to a rectangle [0, T1]×

[0, T2]. Afterwards, the integral was computed through an automatic global adaptive algo-

rithm provided in a commercial software making sure that the result was sufficiently stable

under a certain error threshold upon changes of settings. Computation was consequently

accomplished by increasing T1, T2 up to convergence and assessing such a convergence with

respect to the settings per each choice of those two values. The integral proved overall to

be convergent within an error of order ∼ 0.1%− 1% when T1 = 20 - that is, increasing this

number further did not change the result - and T2 was varied over the rather wide range

106 − 108. Values of the quantity ∆1 from this computation are depicted in Figs. 1-2 for

Ω = 0 and Ω = 0.8 respectively. The latter have been chosen similarly to Ref. 40 as represen-

tative values for a purely-decaying and a decaying-oscillating correlation function. A strictly

positive correlation function like the case Ω = 0 in Fig. 1 implicates that on average the flow

is globally in the same direction at any time; it represents a limit case with no recirculation.

We thus expect the contribution to diffusion from inertia to be always positive. Conversely,

when an oscillating correlation function is present, at a certain time we have points where

velocities are in opposite directions, a situation that reveals the presence of vortexes and

recirculation. In the latter scenario, the particles can remain trapped and the transport can

be reduced (see Fig. 2)30. Of course the Stokes response time St of the particles needs to

be sufficiently small so that they can actually be sensitive to the recirculation time of the

flow structures.
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Note that, no matter what density ratio is considered, all the curves seem to converge

to the same asymptote as the Basset-less case when St increases. Given that at high St

numbers the Basset force decreases like St−1/2, all the cases converge to the heavy-particle

scenario, β = 0, where Basset’s term is also not present. This fact can be used to test the

right behaviour of a numerical solver for the BBO equations when St is particularly high.

Also, in Table I a list of ∆1 values for the smallest and highest values of β herein considered

is presented for the two different frequencies Ω = 0, 0.8, in order to be promptly used as a

benchmark for numerical testing. For instance, if one setsD0 = 0.2, E(k0) = 1, St = 0.2,Ω =

0, and β = 3 in a numerical solver for the BBO equation, by reading Table I and plugging

the numbers into Eq. (25), the result is D11 = 2.1064. The sum of the terms proportional

to D0 in Eq. (25) is -0.0936, which is sufficiently smaller than 2, thus confirming we are

safely in a perturbative regime where our formulas are valid. It is finally important to point

out that the integral in Eq (25) could be evaluated via standard techniques at even higher

precision than the one reported in the table, where necessary.

0 5 10 15 20 25 30

St

0.0

0.1

0.2

0.3

0.4

0.5

0.6

∆
1

β = 0/No Basset
β =1/10
β =1/3
β =1
β =3
Asymptot of β = 0

FIG. 1. Values of ∆1 at different Stokes and β compared to the asymptote for β = 0 when St→∞.

This term represent the contribution to diffusion caused by inertia – Stokes drag and Basset force.

The asymptote is evidently the same for any β. Here Ω = 0. All the cases converge to the heavy-

particle scenario, β = 0, where Basset’s term is not present. The monotonic behaviour is due to

the absence of the recirculating structures, resulting in the particle inertia always enhancing the

long-time diffusion.
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0.02
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∆
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0.06
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FIG. 2. Values of ∆1, the inertia contribution to the diffusion, for Ω = 0.8. Plots are at different

Stokes and β, and are compared to the asymptote of β = 0 when St→ ∞. Upper panel: linear

scale. Lower panel: semilogarithmic scale for the St-axis, in order to view the curves better at low

St. The presence of an oscillating autocorrelation reveals the existence of recirculation structures.

Thus it is possible to have a reduction to the transport when the response time St is small enough

for the particle to be sensitive to those structures.
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TABLE I. Values of the inertia contribution ∆1 for the lowest and the highest β analyzed, at Ω = 0

(upper panel) and 0.8 (lower panel) with respect to Stokes number. With the numerical method

and settings used herein, the error amounts to ∼ 0.1%− 1%, including the round-off.

∆1|Ω=0

St 0.1 0.2 0.3 0.5 0.75 1 2 4 5 10 20 30

β = 0.1 0.149 0.200 0.235 0.281 0.318 0.344 0.398 0.439 0.449 0.472 0.485 0.490

β = 3 0.340 0.383 0.405 0.429 0.444 0.454 0.472 0.483 0.486 0.492 0.495 0.496

∆1|Ω=0.8

St 0.01 0.05 0.1 0.2 0.3 0.5 1 2 5 10 20 30

β = 0.1 0.0182 0.0379 0.0502 0.0639 0.0713 0.0830 0.0786 0.0815 0.0759 0.0722 0.0698 0.0689

β = 3 0.0523 0.0695 0.0735 0.0751 0.0752 0.0745 0.0729 0.0712 0.0692 0.0683 0.0676 0.0674

III. RESULTS FOR THE MAXEY-RILEY EQUATIONS

Let us now tackle the same problem of determining the eddy diffusivity for another widely

used model for the dynamics of inertial particles. The model we are going to consider is

described in terms of the full, dimensionless Maxey-Riley equations:

dv

dt
(t) =

u(ξ(t), t)− v(t) + 1
6
r2
p∇2u(ξ(t), t)

St
+ β

Du(ξ(t), t)

Dt
+
β

30
r2
p

d

dt
∇2u(ξ(t), t)

+

√
3β

πSt

∫ t

0

ds√
t− s

d

ds

(
u(ξ(s), s)− v(s) +

1

6
r2
p∇2u(ξ(s), s)

)
+

√
2D0

St
η(t)

(29)

with D
Dt

= ∂t + u ·∇.

Maxey and Riley derived this model in quite a rigorous manner (see Ref. 14), and can

be considered as a refinement of the prior version in Eq. (1) In fact, it takes into account

higher order corrections with respect to the particle ratio rp/L � 1 and the dimensionless

group Stβ ∼ r2
p/(Tν) � 1, with L and T being some characteristic length scale and time

scale of the fluid field, respectively. In particular, note that the pressure gradient causing the

added mass effect is now proportional to the acceleration of the fluid particle, rather than

the inertial particle like in Eq. (1). Besides, the higher order corrections in rp/L constitute

the so-called Faxén drag, representing the interaction between the particle volume and the
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curvature of the underlying flow lines.

Along the directions n 6= 1 the flow velocity is zero and Eq. (29) coincides with Eq. (1).

It then follows that the components n 6= 1 of the trajectories are still given by Eq. (16).

Taking into account the initial condition v(0) = u(ξ(0), 0), the term depending on it decays

asymptotically with respect to time, and we can set it to 0 from the very beginning by putting

v(0) = u(ξ(0), 0) = 0. This will not cause loss of generality, because we are interested in

asymptotic properties of the transport problem.

As detailed in Ref. 22, a generalized Taylor’s formula for the model (29) does not involve

the sole flow velocity correlations. New terms do appear and the resulting eddy diffusivity

reads:

D = D01 +

∫ ∞
0

dt

〈[
u(ξ(t), t) + βSt

Du

Dt
(ξ(t), t) +

1

6
r2
p∇2u(ξ(t), t)

]
⊗
[
u(ξ(0), 0) + βSt

Du

Dt
(ξ(0), 0) +

1

6
r2
p∇2u(ξ(0), 0)

]〉
(30)

A. Eddy diffusivity for shear flows: the full Maxey-Riley model

We can now work to simplify the expression 30 by restricting ourselves to shear flows

and availing ourselves of their properties. The starting point is to note that, in such flows,
Du
Dt

(x, t) = ∂tu(x, t) evaluated in x = ξ(t). Moreover, we can exploit both the stationarity

of the Lagrangian correlation function and the linearity of the derivation operator:〈
u(ξ(t), t)⊗ ∂u

∂t
(ξ(0), 0)

〉
= −

〈
∂u

∂t
(ξ(t), t)⊗ u(ξ(0), 0)

〉
〈
∇2u(ξ(t), t)⊗ ∂u

∂t
(ξ(0), 0)

〉
= −

〈
∂u

∂t
(ξ(t), t)⊗∇2u(ξ(0), 0)

〉
(31)

We also have that for a general correlation function f : R→ R

∇2
r1
∇2
r2
f(|r1 − r2|) = ∇4

r1
f(|r1 − r2|)

∂

∂t1

∂

∂t2
f(|t1 − t2|) = − ∂2

∂t21
f(|t1 − t2|)

(32)

Such a property follows from the fact that the Laplace operator does not change the spatial

parity of the homogeneous correlation function. Its time derivative, however, is an odd
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function of time, as the time correlation function is stationary and, as a consequence, an

even one.

As a result of all the above considerations, the following expression is obtained:

D = D01 +

∫ ∞
0

dt

〈[
u(ξ(t), t) + βSt

∂u

∂t
(ξ(t), t) +

1

6
r2
p∇2u(ξ(t), t)

]
⊗
[
u(ξ(0), 0) + βSt

∂u

∂t
(ξ(0), 0) + u(ξ(0), 0)

]〉
(33)

The products can be expanded and recast to get:

D = D01+

∫ ∞
0

dt

[
〈u(ξ(t), t)⊗ u(ξ(0), 0)〉

+ β2St2

〈
∂u

∂t
(ξ(t), t)⊗ ∂u

∂t
(ξ(0), 0)

〉
+

〈
u(ξ(t), t)⊗ 1

6
r2
p∇2u(ξ(0), 0) + u(ξ(0), 0)⊗ 1

6
r2
p∇2u(ξ(t), t)

〉
+

〈
1

6
r2
p∇2u(ξ(t), t)⊗ 1

6
r2
p∇2u(ξ(0), 0)

〉]
,

(34)

and, after trivial algebraic manipulation, the latter in turns corresponds to:

=

∫ ∞
0

dt

[
〈u(ξ(t), t)⊗ u(ξ(0), 0)〉 − β2St2 ∂

2

∂t2
〈u(ξ(t), t)⊗ u(ξ(0), 0)〉

+

〈
∇2u(ξ(t), t)⊗ 1

3
r2
pu(ξ(0), 0)

〉
+

〈
1

36
r4
p∇4u(ξ(t), t)⊗ u(ξ(0), 0)

〉]
(35)

This expression involves four different terms which we are going to evaluate step-by-step.

This will be done first in the general form and afterwards specializing in the monochromatic

flow field (22).

The first addend in the first line of Eq. (35) has been already calculated in Eq. (15), as

the trajectories along the directions n 6= 1 are the same as in Eq. (16).

The second addend of the first line originated from the autocorrelation along the inertial

particle trajectory of the fluid particle acceleration, which was in turn an estimation of the

pressure gradient around the inertial particle14. This addend can be promptly computed:
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β2St2 ∂
2

∂t2
〈u(ξ(t), t)⊗ u(ξ(0), 0)〉

= β2St2 ∂
2

∂t2

[∫
dkd−1

(2π)d−1
〈eik·(ξ(t)−ξ(0))〉 B̌(k, |t|) e1 ⊗ e1

]
= β2St2

∫
dkd−1

(2π)d−1
e−D0||k||2

[
t+2

∫∞
0 dsG(s)

(
G(s)−G(t+s)

)]
∂2

∂t2
B̌(k, |t|) e1 ⊗ e1

(36)

Finally, we are only left with the two terms in the second line of Eq. (35) depending on

the particle radius. They respectively represent the crosscorrelation between Faxén drag and

flow velocity and the autocorrelation of the Faxén drag itself. Those two addends embody

the fact that, when letting a particle have a non-null volume, a spatial correlation between

noncontiguous point arises. In plain works, what matters is no more just the autocorrelation

along each point trajectory like in Taylor’s 1922 formula, but the correlation between the

points that the volume of each particle occupied during the motion. By taking into account

Eq. (15):

〈
∇2u(ξ(t), t)⊗ 1

3
r2
pu(ξ(0), 0)

〉
+

〈
1

36
r4
p∇4u(ξ(t), t)⊗ u(ξ(0), 0)

〉
=

∫
dkd−1

(2π)d−1

∫ ∞
0

dte−D0||k||2
[
t+2

∫∞
0 dsG(s)

(
G(s)−G(t+s)

)]
×
[

1

3
r2
p||k||2 +

1

36
r4
p||k||4

]
B̌(k, |t|) e1 ⊗ e1

(37)

Now let us again leverage the shear flow hypothesis in Eqs. (36) and (37). If we plug the

correlation (22) into Eq. (36), we arrive at:

β2St2 ∂
2

∂t2
〈u(ξ(t), t)⊗ u(ξ(0), 0)〉

= 2β2St2e−D0||k0||2
[
t+2

∫∞
0 dsG(s)

(
G(s)−G(t+s)

)]
E(k0)

×
[
−2δ(t) + (1− Ω2)e−|t| cos(Ωt) + 2Ωe−|t| sin(Ω|t|)

]
e1 ⊗ e1 (38)

We need to integrate the above expression with respect to time in order to be able to plug
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it into Eq. (35) later:

β2St2

∫ ∞
0

dt
∂2

∂t2
〈u(ξ(t), t)⊗ u(ξ(0), 0)〉

= 2β2St2

∫ ∞
0

dt e−D0||k0||2
[
t+2

∫∞
0 dsG(s)

(
G(s)−G(t+s)

)]
× E(k0)

[
−2δ(t) + (1− Ω2)e−|t| cos(Ωt) + 2Ωe−|t| sin(Ω|t|)

]
e1 ⊗ e1 (39)

By virtue of the formal identity
∫∞

0
dtδ(t) = 1/2, we promptly see that when D0 = 0, this

integral equals 0. In this case, the difference between the eddy diffusivities in the Maxey-

Riley and the Basset-Boussinesq-Oseen models lies only in the terms originating from the

Faxén friction; by considering the flow in Eq.(22), Eq. (37) becomes:〈
∇2u(ξ(t), t)⊗ 1

3
r2
pu(ξ(0), 0)

〉
+

〈
1

36
r4
p∇4u(ξ(t), t)⊗ u(ξ(0), 0)

〉
= 2e−D0

[
t+2

∫∞
0 dsG(s)

(
G(s)−G(t+s)

)] (
1

3
r2
p +

1

36
r4
p

)
E(k0)e−|t| cos(Ωt)e1 ⊗ e1

(40)

Again rp has now been nondimesionalized with respect to the charcteristic flow wavelength

2π/k0 = 2π. Taking into account the time integral in Eq. (35) and Eq. (26), when D0 = 0

the eddy diffusivity for a stochastic shear flow is:

D =
2E(k0)

1 + Ω2

(
1 +

1

3
r2
p +

1

36
r4
p

)
e1 ⊗ e1 (41)

It is important to recall that for this model to hold true, it must be rp � 1. Faxén drag

always creates a transport enhancement, albeit of small magnitude.

B. Expansion at the first order in the molecular diffusivity

IfD0 6= 0, we can again carry out a first-order expansion with respect to the dimensionless

molecular diffusivity D0, due to the same reason we have stated in Sec. IIB. The expansion

of Eq. (36) is:

β2St2 ∂
2

∂t2
〈u(ξ(t), t)⊗ u(ξ(0), 0)〉

' β2St2

∫
dkd−1

(2π)d−1

{
1−D0||k||2

[
t+ 2

∫ ∞
0

dsG(s)
(
G(s)−G(t+ s)

)]} ∂2

∂t2
B̌(k, |t|) e1 ⊗ e1

(42)
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and, evaluating it for the correlation (22):∫ ∞
0

dtβ2St2 ∂
2

∂t2
〈u(ξ(t), t)⊗ u(ξ(0), 0)〉

' 2β2St2

∫ ∞
0

dt

{
1−D0

[
t+ 2

∫ ∞
0

dsG(s)
(
G(s)−G(t+ s)

)]}
× E(k0)

[
−2δ(t) + (1− Ω2)e−|t| cos(Ωt) + 2Ωe−|t| sin(Ω|t|)

]
e1 ⊗ e1

= 2β2St2

∫ ∞
0

dt

{
D0

[
t+ 2

∫ ∞
0

dsG(s)
(
G(t+ s)−G(s)

)]}
× E(k0)

[
(1− Ω2)e−|t| cos(Ωt) + 2Ωe−|t| sin(Ω|t|)

]
e1 ⊗ e1

= 2D0β
2St2E(k0)

[
−1 + 2(1− Ω2)∆1(St, β,Ω) + 4Ω∆2(St, β,Ω)

]
e1 ⊗ e1 . (43)

In the above expression the following function was introduced to ease the notation:

∆2(St, β,Ω) =

∫ ∞
0

dte−t sin(Ωt)

∫ ∞
0

dsG(s)
(
G(t+ s)−G(s)

)
(44)
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FIG. 3. Values of ∆2 at different Stokes and β compared to the asymptote when St→ ∞. The

asymptote is evidently the same for any β. Here Ω = 0.8. This term is proportional to the diffusion

reduction caused by the fluid acceleration autocorrelation that is out of phase with respect to the

flow velocity autocorrelation along each inertial particle trajectory.

The contribution to the eddy diffusivity in Eq.(43) comes from the autocorrelation of the

fluid particle acceleration as already said, and it depends on both ∆1 and ∆2, the former
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being proportional to the autocorrelation of the velocity. The expression (44) encapsulates

the contribution from the fluid acceleration autocorrelation that is out-of-phase with respect

to the velocity. This can be easily noticed by contrasting Eq. (44) to Eq. (24). Evidently

it is not zero only when Ω 6= 0. From a physical point of view, it means that the advective

time derivative, which appears in Eq. (29) in contrast to the Lagrangian time derivative

of Eq. (1), creates a difference in diffusion where recirculation is strong45. From Fig. 3 it

is clear that it always provides a reduction to the diffusion, given the global negative sign

appearing in Eq. (35) in front of the term depicted in Eq. (43). From the figure, it is also

immediately clear that the asymptote again is independent of β. One could therefore exploit

Eq. (27) and calculate:

∆2(St, β = 0,Ω) =
(Ω + 2StΩ)St

2(1 + Ω2)[1 + St(1 + St + StΩ2)]

Hence, the asymptote valid for any β is:

lim
St→∞

∆2(St, β = 0,Ω) =
Ω

(1 + Ω2)2
,

which equals ' 0.297 when Ω = 0.8. Data in Table II shows the numerical computation of

the integral (44) is compatible with this asymptote. However, it should be borne in mind

that the last line of (43) altogether is proportional to (βSt)2 and its absolute value also

increases with respect to Ω. Thus, the higher Ω, the lower product D0Stβ is allowed in

order to remain in a perturbation regime.

TABLE II. Values of ∆2 for the lowest and the highest β analysed at Ω = 0.8 with respect to Stokes

number. With the numerical method and settings used herein, the error amounts to ∼ 0.1%− 1%,

including the round-off.

∆2|Ω=0.8

St 0.01 0.05 0.1 0.2 0.3 0.5 1 2 5 10 20 30

β = 0.1 0.0301 0.0648 0.0893 0.121 0.143 0.173 0.213 0.245 0.273 0.285 0.291 0.293

β = 3 0.112 0.179 0.208 0.233 0.24 0.260 0.274 0.283 0.291 0.293 0.295 0.296
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As for the terms involving the Faxén force, from Eq. (40) one has:〈
∇2u(ξ(t), t)⊗ 1

3
r2
pu(ξ(0), 0)

〉
+

〈
1

36
r4
p∇4u(ξ(t), t)⊗ u(ξ(0), 0)

〉
' 2

{
1−D0

[
t+ 2

∫ ∞
0

dsG(s)
(
G(s)−G(t+ s)

)]}(1

3
r2
p +

1

36
r4
p

)
E(k0)e−|t| cos(Ωt)e1 ⊗ e1

(45)

Its time integral is:∫ ∞
0

dt

{〈
∇2u(ξ(t), t)⊗ 1

3
r2
pu(ξ(0), 0)

〉
+

〈
1

36
r4
p∇4u(ξ(t), t)⊗ u(ξ(0), 0)

〉}
' 2

{
1

1 + Ω2
−D0

1− Ω2

(Ω2 + 1)2
+ 2D0∆1(St, β,Ω)

}(
1

3
r2
p +

1

36
r4
p

)
E(k0)e1 ⊗ e1

(46)

Looking at the full Taylor formula (35) and plugging in all the contribution from Eqs. (25),

(43) and (46) , we get the complete expression at the first order in D0 for the eddy diffusivity:

D ' D0I+
2E(k0)

1 + Ω2
e1 ⊗ e1 + 2D0E(k0)

{[
− 1− Ω2

(Ω2 + 1)2
+ 2∆1(St, β,Ω)

](
1 +

1

3
r2
p +

1

36
r4
p

)

− β2St2
[
−1 + 2(1− Ω2)∆1(St, β,Ω) + 4Ω∆2(St, β,Ω)

]}
e1 ⊗ e1 (47)

Of course, for the approximation to be valid, the term within the curly brackets must be far

smaller than 1/[D0(1 + Ω2)].

In the same way as Eq. (25), Eq. (47) along with Tables I-II can be used to calculate

the component D11 of the eddy diffusivity tensor. By way of example, let us suppose to set

D0 = 0.2, rp = 0.1, E(k0) = 1, St = 0.2,Ω = 0, and β = 3 in a numerical solver for the MR

equation. By reading the Tables I-II and plugging the numbers into Eq. (47), the result is

D11 = 1.9398. The result fulfills the perturbation hypothesis as the part proportional to D0

of the expansion (47) – the one between curly brackets – is 0.0301, thus much smaller than

1. It can be therefore used as a benchmark to assess the validity of a solver of the ruling

equations (29), including not only the computationally demanding Basset history term but

also the convective derivative contribution and the Faxén drag force.

IV. CONCLUSION

In this work we have determined the eddy diffusivity for a wide class of inertial particles in

shear flows for both any Stokes number and any particle density. This was done analytically
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both for the Basset-Boussinesq-Oseen model, where the history force makes the biggest

difference in the asymptotic diffusion dynamics, and the Maxey-Riley equation, where both

the advective time derivative and the Faxén drag play a further role. The exact results

we obtained for the eddy diffusivity gave us insight about how the several terms affect

asymptotic transport regime. Although only for shear flows, these results represent a

significant, analytical benchmark for numerical solvers and algorithms for either BBO or

MR equations when one has the molecular Brownian motion, a stochastic carrier flow and is

interested in testing the long-time accuracy . In such equations, those terms plus the history

force and the possible further higher order corrections with respect to the Stokes number

have a mutual influence which the scenario rather complex. The significance of these results

lies in the lack of exact quantitative results for BBO and MR models having all the above

mentioned features accounted for. Within this context, tables and graphes to substantiate

numerical testing have been included too.
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Appendix A: Details on the Laplace transform of the Basset-Boussinesq-Oseen

equation

By explicit computation, the following relationship can be obtained from Eq. (3):

K̂1(s) =
1
St

s+ 1
St +

√
3βs
St

=
1
St

(
√
s+ A1)(

√
s+ A2)

=
1

St(A2 − A1)

(
1√

s+ A1

− 1√
s+ A2

)
. (A1)

Note that the last step is valid if and only if A1 6= A2, where:

A1 =
1

2

[√
3β

St
−
√

3β

St
− 4

St

]
(A2)

A2 =
1

2

[√
3β

St
+

√
3β

St
− 4

St

]
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It is worth noting the occurrence of a bifurcation when the arguments in each of the

second square roots become zero, that is A1 = A2 = 1/
√
St and 3β = 4. This occurs when

β reaches the critical value:

βc =
4

3

For any larger β, A1 and A2 are always real and positive. In this case, we can get the

expression of K1(t) by exploiting that the Laplace transform of 1/
√
s+ a iff a > 0, a ∈ R

is :
1√
πt
− aea2terfc(a

√
t)(s) . (A3)

This fact can be easily checked by direct calculation. The expression of K1(t) thus immedi-

ately follows:

K1(t) =
1

St(A2 − A1)

(
A2e

A2
2terfc(A2

√
t)− A1e

A2
1terfc(A1

√
t)
)

, (A4)

indicating the complementary Euler error function by erfc:

erfc(a
√
t) = 1− 2√

π

∫ a
√
t

0

e−r
2

dr = 1− a√
π

∫ t

0

e−a
2r

√
r
dr (A5)

It is thus easy to see that Eq. (A4) is the correct antitransform when A1, A2 are real and

positive. At the critical value of β, we can still try to obtain the expression of the Green

function by taking the limit A1 → A2 in Eq. (A4). The coefficients before any term in Eq.

(1) suggest that, from a physical point of view, at the critical β there is a balance between

Stokes drag and Basset history force. Above this value, the Basset term overcomes the drag

friction. The opposite occurs for β below the critical value, for which A1 and A2 become

complex conjugates. Previous formula (A4) can be analytically extended to the complex

case too. Notice that, from Eq. (A5), if and only if <a2 > 0 we have limt→∞ erfc(a
√
t) = 0,

by virtue of the fact that ∫ +∞

0

e−a
2x2 =

√
π

2a
(A6)

only when <a2 > 0 or <a2 = 0 but =a2 6= 0 (here < and = denote the real and immaginary

part of a complex number, respectively). If that happens,
√
a2 is meant on the sub-branch

such that the argument of a is in the interval [−π/4, π/4], the role of a being played by

either A1 or A2.

The above mentioned bifurcation also occurs for the Green function K̂0(s), since its denom-

inator is the same as the denominator of K̂1(s).
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Appendix B: Details on the eddy diffusivity for shear flows

To begin, let us consider the exponent of Eq. (18). If one writes the integrals with respect

to the endpoints which the Heaviside function specifies, that expression can be recast as:∫ t1

0

ds[G(t1 − s)]2 +

∫ t2

0

ds[G(t2 − s)]2 − 2

∫ min(t2,t1)

0

dsG(t1 − s)G(t2 − s)

(B1)

Let us now suppose that t2 = t1 + t > t1. After changing variables, Eq. (B1) can be

arranged as:

2

∫ t1

0

ds[G(s)]2 +

∫ t+t1

t1

ds[G(s)]2 − 2

∫ t1

0

dsG(s)G(s+ t) ,

(B2)

and we get the stationary asymptotic limit through t1 → ∞. The function G(s) is easily

computable by integrating Eq. (7) by parts:

G(s) =
A1 − A2 + A2e

A2
1serfc(A1

√
s)− A1e

A2
2serfc(A2

√
s)

StA1A2(A1 − A2)
(B3)

From Eq. (B3), and taking into account Eqs. (A5-A6), since erfc(a
√
x) tends to 0 when

<a2 ≥ 0, it is easy to see that:

lim
s→∞

G(s) =
1

A1A2St
= 1 , (B4)

whenever <A2
1,<A2

2 ≥ 0. In the other case <A2
1,<A2

2 < 0, for the foregoing limit to be

verified one can rewrite Eq. (B3) by exploiting again Eq. (A5):

G(t) =
1

2i A1A2=A2 St

[
2i=A2 − A2A1e

A2
1t + A1A2e

A2
2t
]

+
1

2i=A2 St

[
1√
π

∫ t

0

e−A
2
1(r−t) − e−A2

2(r−t)
√
r

dr

]

=
1

A1A2St
− 1

2i=A2 St

[
eA

2
1t − eA2

2t − 1√
π

∫ t

0

eA
2
1r − eA2

2r

√
r + t

dr

]
(B5)

The last integral goes to zero at long time because:

0 ≤
∫ t

0

∣∣∣∣∣eA
2
1r − eA2

2r

√
r + t

∣∣∣∣∣ dr ≤ 1√
t

∫ t

0

[|eA2
1r|+ |eA2

2r|]dr =
M√
t
−→
t→∞ 0 ,
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since the integral over the absolute value of the complex exponentials are convergent. The

same exponentials decay to zero in the first square brackets of Eq. (B5) and, as a result of

this, one recovers the same limit as the real case (B4) when t tends to infinity.

We can therefore conclude that the second integral in Eq. (B2) tends to t, because the

integrating function tends to 1 when its argument becomes large. We also see thatK1(t)→ 0

as t→∞ and, as to the initial condition term in Eq.(6), we have σ(ξ0,v0, t)→ 0.

Appendix C: Explicit real expressions for the kernel K1(t)

We are going to show in this Appendix the explicit real form of Eq. (7) below the

bifurcation point. Real expressions might be easier to handle when one implements them in

a code or integrates them numerically.

Real case (β > βc)

When A1, A2 ∈ R, we can use Eq. (7). We will also need:

erfc(x) = 1− erf(x) (C1)

where erf(x)→ 1 when x→∞.

Complex case (β < βc)

Let us move to discuss the case when A1, A2 /∈ R. In this case, it is instructive to rewrite

the analytical continuations of the Euler functions in Eq. (7) so as to emphasise their

purely real and oscillating nature. To start, A2 = <A2 + i=A2 and A1 = <A2 − i=A2.Also,
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A2
2 = (<A2)2 − (=A2)2 + 2i=A2<A2 and A2

1 = (<A2)2 − (=A2)2 − 2i=A2<A2. We get:

K1(t) =
1

2i=A2 St

[
A2e

A2
2t − A1e

A2
1t
]

− 1

2i=A2 St

[
1√
π

∫ t

0

A2
2e
−A2

2(r−t) − A2
1e
−A2

1(r−t)
√
r

dr

]

=
1

St

[
<A2

=A2

e<A
2
2t sin(=A2

2t) + e<A
2
2t cos(=A2

2t)

]
− 1

=A2 St

[
1√
π

∫ t

0

<A2
2e
<A2

2(t−r) sin(=A2
2(t− r)) + =A2

2e
<A2

2(t−r) cos(=A2
2(t− r))√

r
dr

]
(C2)

Finally, in terms of β and St:

K1(t) =
e(

3β
2
−1) t

St

St

 1√
4

3β
− 1

sin

(√
3β

√
1− 3β

4

t

St

)
+ cos

(√
3β

√
1− 3β

4

t

St

)
− 1√

1− 3β
4
St3/2

1√
π

∫ t

0

dr
e(

3β
2
−1) r

St

√
t− r

×

[(
3β

2
− 1

)
sin

(√
3β

√
1− 3β

4

r

St

)
+

(√
3β

√
1− 3β

4

)
cos

(√
3β

√
1− 3β

4

r

St

)]
(C3)

It is worthy pointing out that, when we take the heavy-particle limit β = 0, we recover the

correct limit showed in40:

K1(t) =
e−

t
St

St
(C4)

When <A2
1,<A2

2 > 0, however, it is more convenient to exploit that:

erfc(a
√
t) :=

2√
π

∫ ∞
a
√
t

e−r
2

dr =
a√
π

∫ ∞
t

e−a
2r

√
r
dr, <a2 > 0 (C5)

The conditions of the square is necessary to guarantee the convergence of the Gaussian

integrals. This happens when, besides β < βc:

3β > 2 ⇒ β > β =
2

3
(C6)
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If the foregoing conditions are fulfilled, it follows that:

K1(t) =
1

St(A2 − A1)

1√
π

∫ ∞
t

dr
A2

2e
−A2

2(r−t) − A2
1e
−A2

1(r−t)
√
r

(C7)

=
1√

1− 3β
4
St3/2

1√
π

∫ ∞
0

dr
e−( 3β

2
−1) r

St

√
r + t

×

[(
3β

2
− 1

)
sin

(√
3β

√
1− 3β

4

r

St

)

+

(√
3β

√
1− 3β

4

)
cos

(√
3β

√
1− 3β

4

r

St

)]
(C8)

At the threshold β → β the exponential decay in the integral is suppressed and K1(t) takes

the following very simple form:

K1(t)|β=β =
1

St3/2

√
2

π

∫ ∞
0

dr
cos r

St√
r + t

(C9)

Appendix D: Generation of a shear, incompressible, stochastic flow with

oscillating autocorrelation in time

We hereby present a stochastic method to generate a parallel flow whose Eulerian corre-

lation function has a single wavenumber and decays in time like Eq. (22). Given N particles

to average over, we want to generate a stochastic flow for each particle p of the shape:

up = (Ap(t)cos(k0 · x+ φp), 0) (D1)

Each p-th particle will see a different Ap(t) and static phase φp. Such a flow will be statis-

tically homogeneous44. The energy of the flow in the asymptotic stationary limit

E = lim
t→∞

1

2
〈u2

1(t)〉

and the sole non-null component C11(t) of its correlation tensor

C(t) = lim
t′→∞
〈u1(t+ t′)u1(t′)〉

are evaluated averaging the quantities in the brackets over the N particles.
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In the case of pure exponential correlation, the amplitude of the flow in Eq. (D1) corre-

sponds to an Orstein-Uhlenbeck process with variance equal to 4 and unity decay time24:

dAi(t) = −Ai(t)dt+
√

8E dω(t) (D2)

where E = 〈A2〉/4 is the (asymptotically) stationary variance. Seeing that we want to have

a further oscillating contribution with angular frequency Ω, the above process needs to be

complexified and leveraged to get the following SDE:

dA(t) = −A(t)(1− ı Ω)dt+
√

2〈(<A)2〉[dω1(t) + ı dω2(t)] (D3)

where dω1(t), dω2(t) are two independent Wiener processes and 〈(<A)2〉 = 4E. All we need

is the real part of the solution of this complex SDE:

<A(t) = <A(t0)e−t cos(Ωt)−=A(t0)e−t sin(Ωt)

+
√

8E

[∫ t

t0

e−(t−t0) cos(Ω(t− t0))dω1(t)−
∫ t

t0

e−(t−t0) sin(Ω(t− t0))dω2(t)

]
(D4)

The mean value of the process above is manifestly zero. By recalling the well- known trigono-

metric Werner formulae, if A(t0) = 0 or, equivalently, if one waits a suitable thermalization

time � 1 for an arbitrary initial condition, we get the following expression:

〈<A(t1)<A(t2)〉 = 4Ee−|t1−t2| cos(Ω(t1 − t2)) (D5)
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