
Alma Mater Studiorum · University of Bologna

School of Science
Department of Physics and Astronomy

Master Degree in Physics

3D CNN Methods
in Biomedical Image Segmentation

Supervisor:

Prof. Nico Lanconelli

Co-supervisor:

Prof. Renato Campanini

Co-supervisor:

Dr. Matteo Roffilli

Submitted by:

Filippo Maria Castelli

Academic Year 2018/2019

The real trouble with this world of ours is not that it is an unreasonable world, nor
even that it is a reasonable one. The commonest kind of trouble is that it is nearly

reasonable, but not quite... It looks just a little more mathematical and regular
than it is; its exactitude is obvious, but its inexactitude is hidden; its wilderness

lies in wait.
G.K. Chesterton

i

Abstract

A definite trend in Biomedical Imaging is the one towards the integration of increas-
ingly complex interpretative layers to the pure data acquisition process. One of the
most researched goals in the field is the automatic segmentation of objects of interest
in extensive acquisition data, target that would allow Biomedical Imaging to look
beyond its main use as a diagnostic-aid tool to become a cornerstone in ambitious
large-scale challenges like the extensive quantitative study of the Human Brain. In
2019 Convolutional Neural Networks represent the state of the art in Biomedical
Image segmentation and scientific interests from a variety of fields, spacing from au-
tomotive to natural resource exploration, converge to their development. While most
of the applications of CNNs are focused on single-image segmentation, biomedical
image data -being it MRI, CT-scans, Microscopy, etc- often benefits from three-
dimensional volumetric expression. This work explores a reformulation of the CNN
segmentation problem that is native to the 3D nature of the data, with particular
interest to the applications to Fluorescence Microscopy volumetric data produced at
the European Laboratories for Nonlinear Spectroscopy in the context of two differ-
ent large international human brain study projects: the Human Brain Project and
the White House BRAIN Initiative.

Sommario

Un chiaro trend nell’Imaging Biomedicale è quello che punta all’integrazione di strati
interpretativi di crescente complessità nel processo di acquisizione del dato puro. Uno
degli obiettivi più ricercati dell’ambito è la segmentazione automatica di oggetti di
interesse in acquisizioni estese, traguardo che porterebbe l’Imaging Biomedicale a
spingersi oltre il proprio utilizzo principale come strumento di ausilio diagnostico
per diventare elemento fondante in challenge di larga scala quali l’analisi estensiva
del cervello umano ad un livello quantitativo. Ad oggi (2019) le Reti Neurali Con-
volutionali (CNN) rappresentano lo stato nell’arte nella segmentazione di immagini
biomediche ed il loro sviluppo è coadiuvato dalla convergenza di interessi di ricerca
da svariati ambiti, dall’automotive alla ricerca di risorse naturali. Nonostante la
maggior parte delle applicazioni delle CNN in tale senso sia focalizzata sulla seg-
mentazione di singole immagini, il dato biomedicale -siano acquisizioni CT, MRI,
microscopia, etc- molte volte beneficia di espressione volumetrica in tre dimensioni.
Questo lavoro esplora la possibilità di riformulazione del problema di segmentazione
con CNN in un formato nativo alla natura tridimensionale del dato, con particolare
interesse per le applicazioni a dati di Microscopia a Fluorescenza prodotti ai Lab-
oratori Europei di Spettroscopia Nonlineare (LENS) nel contesto di due iniziative
internazionali nello studio del cervello umano: lo Human Brain Project e la White
House BRAIN Initiative.

Acknowledgements

I would first like to thank my thesis advisor Prof. Nico Lanconelli of the Dept. of
Physics and Astronomy at the University of Bologna and my thesis co-advisors, Prof.
Renato Campanini and Dr. Matteo Roffilli, for their constant guidance, participa-
tion and support: their uninterrupted direction is what made this work possible and
their navigation what helped me find my own way.

I would also like to acknowledge Dr. Ludovico Silvestri of the Dept. of Physics
and Astronomy at the University of Florence and Biophotonics Group at the Eu-
ropean Laboratories for Nonlinear Spectroscopy as I am gratefully indebted to his
helpfulness during all the stages of this work.

I must express my very profound gratitude to my parents and to my family for
providing me with unfailing support and continuous encouragement throughout my
years of study. This accomplishment would not have been possible without their
support. Thank you.

A last special thanks goes to Prof. and Turing Laureate Yann LeCun, VicePres-
ident and Chief AI Scientist at Facebook for personally approving the use of his
quotes in this work Fig. 1.

Author
Filippo Maria Castelli

i

Figure 1: "I approve." - Yann LeCun

ii

Contents

Acknowledgements i

I Introduction and State of the Art in Image Segmenta-
tion 1

1 Deep Learning and Introductory Concepts 2
1.1 Introduction . 2

1.1.1 Historical Notes: ANNs and Deep Learning 3
1.2 Learning Algorithms . 7

1.2.1 Learning Components: Experience 8
1.2.2 Learning Components: Task 8
1.2.3 Learning Components: Performance Measures 9

1.3 Optimization, Loss, Gradient Descent 10
1.3.1 Gradient Descent Optimization 10
1.3.2 Loss Functions . 13
1.3.3 Segmentation-Specific Metrics 16

1.4 Overfitting, Underfitting, Model Capacity 17
1.5 Convolutional Neural Networks . 20

1.5.1 Convolutional Layers . 21
1.5.2 Padding . 23
1.5.3 Pooling Layers . 25
1.5.4 Fully Connected Layers . 26

1.6 Regularization Strategies . 28
1.6.1 L1 and L2 Regularization . 28
1.6.2 Data Augmentation . 30

iii

1.6.3 Dropout . 31
1.7 Other Methods in CNN Training . 32

1.7.1 BatchNormalization . 32

2 CNNs for Segmentation 34
2.1 State of the art in 2D Semantic Segmentation 34

2.1.1 The Sliding Window Approach 34
2.1.2 Convolutional Interpretation of Sliding Windows 35
2.1.3 Fully Convolutional Networks 39
2.1.4 Unpooling and Transposed Convolution 40
2.1.5 FCN-32, FCN-16, FCN-8 . 42
2.1.6 U-NET . 44

2.2 From 2D to 3D Segmentation . 45
2.2.1 2.5D Approaches . 46
2.2.2 3D Convolutions . 48
2.2.3 3D U-NET . 49
2.2.4 2D CNN vs 3D CNN: General Considerations 49

II Problem Framing and Methods 52

3 Motivation and Quantitative Study of the Brain 53
3.1 Human Brain Imaging at LENS . 54
3.2 Program for the Next Chapters . 56

4 Fluorescence Microscopy 57
4.1 The Jablonski Diagram . 59
4.2 Fluorescence Quantum Yield and Fluorescence Lifetime 60
4.3 Two-Photon Excitation . 62

4.3.1 Comparing the numbers . 65
4.4 LighSheet Fluorescence Microscopy (LSFM) 67

4.4.1 LSFM-SPIM and LSFM-DSLM 68
4.4.2 LSFM Image Properties and Artifacts 71
4.4.3 MultiView LSFM and LSFM Configurations 72
4.4.4 Problems Related to Data Handling 74

iv

5 A Biological Framework 76
5.1 Neural Tissue . 76

5.1.1 Neurons . 77
5.1.2 Neuroglia . 79

5.2 Anatomical framing . 81
5.3 Studying the Tissue . 84

5.3.1 Staining . 84
5.3.2 Tissue Clearing . 86

5.4 Examples of Other Imaging Approaches 88
5.4.1 Magnetic Resonance Imaging 88
5.4.2 Optical Coherence Tomography 89

6 CNN Models and Methods 90
6.1 2D Model . 91

6.1.1 Architecture . 91
6.1.2 Data Augmentation . 94
6.1.3 Training . 96

6.2 3D Model . 96
6.2.1 Architecture . 96
6.2.2 Data Augmentation . 98
6.2.3 Training . 99

6.3 Improving UNETs: Residual Learning 99
6.4 Patch-Based Reconstruction: SP3D 103

6.4.1 Border Artifacts . 103
6.4.2 Patch Blending . 103
6.4.3 Noise Reduction . 104

6.5 Finding 3D Surfaces: Marching Cubes 106

III Results and Conclusions 109

7 Results 110
7.1 Data Characterization . 110

7.1.1 Electron Microscopy Mithocondria Detection Dataset 110
7.1.2 Fluorescence Microscopy Dataset 111

v

7.1.3 Data Stitching: ZetaStitcher 111
7.2 Evaluation Metrics . 114

7.2.1 Terminology . 114
7.2.2 Confusion Matrix . 115
7.2.3 Overlap Based Metrics . 116
7.2.4 Receiver Operator Characteristic and Precision-Recall Curves 117

7.3 Electron Microscopy Dataset Analysis 121
7.3.1 Model Comparison . 122
7.3.2 Surface Reconstruction . 129

7.4 Fluorescence Microscopy Dataset Analysis 134
7.4.1 Model Comparison . 135
7.4.2 Surface Reconstruction . 142

8 Conclusions 148
8.1 On the Criticality of Data Availability 148
8.2 Future Challenges: Multiview and Multichannel LSFM Segmentation 149

A Upsampling Artifacts 151

B Convolutions as Matrix Multiplications 155
B.1 1D Discrete Convolutions . 156
B.2 2D Discrete Convolutions . 158

References 163

vi

List of Figures

1.1 Rosenblatt’s Perceptron Functional Scheme 4
1.2 Semantic Segmentation vs Instance Segmentation [119] 9
1.3 Intersection Over Union . 17
1.4 Overfitting and Underfitting . 19
1.5 Model Complexity . 20
1.6 Model Capacity and Training/Validation Errors [41] 20
1.7 Convolution Operation . 22
1.8 Activation functions . 23
1.9 Pooling Operation . 26
1.10 Data Augmentation . 30
1.11 Dropout [112] . 31

2.1 Semantic segmentation using sliding windows [55] 35
2.2 CNN Classifier with FC Layers, adapted from [104] 36
2.3 1x1 Convolution . 36
2.4 Efficient Computation of Sliding Windows, adapted from [104] 38
2.5 Unpooling . 41
2.6 FCN-32 [75] . 42
2.7 FCN-16 and FCN-8 [75] . 43
2.8 FCN-32 outputs compared to FCN-16 and FCN-8 [75] 43
2.9 U-NET [99] . 44
2.10 2.5D Approach . 46
2.11 2.5D Approach: Limitations . 47
2.12 2.5D Approach: "Cropping" Artifacts 48
2.13 3D U-NET [133] . 49

vii

3.1 Raw and Segmented Fluorescence Microscopy Data [80] 55
3.2 2D-CNN Segmentation Model . 55

4.1 Jablonski Diagram . 59
4.2 Simplified Jablonski Diagram [67] . 61
4.3 Absorbption and Emission spectra of fluorescein C20H12O5 62
4.4 Simplified Jablonski Diagram Two-Photon Excitation 63
4.5 Two Photon Excitation localization effect [67] 63
4.6 Single Photon Excitation vs Two Photon, Image by Xu Research

Group, Cornell University . 64
4.7 Confocal and LightSheet Microscopy Illumination and Detection Paths

[48] . 68
4.8 LightSheet Setup [103] . 69
4.9 SPIM (a) and DSLM (b) light sheet generation methods [64] 70
4.10 Light Sheet Interaction with Tissue [124] 71
4.11 Double-Sided Illumination of the Sample [64] 72
4.12 Pivoting the LightSheet [64] . 72
4.13 SPIM Configurations [64] . 73
4.14 Data Generated in SPIM LSFM [96] 75

5.1 Neuron Shapes [120] . 78
5.2 Different types of glial cells . 79
5.3 Main regions of the Central Nervous System [57] 81
5.4 Layers of the Neocortex with different staining methods [57]. 82
5.5 Brodmann map and neocortex layers in different cortical areas [57]. . 83
5.6 TPFM segmented view of brain tissue. [80] 85
5.7 Mouse brain cleared with CLARITY procedure and matched with a

FocusClear solution [21] . 87

6.1 SAME Padding . 93
6.2 VALID Padding . 93
6.3 Data Augmentation Transformation Examples 95
6.4 3D CNN Model . 97
6.5 Residual Unit [44] . 100
6.6 Different Positions for Activation Function [45] 101

viii

6.7 UNET Convolutional Block and Residual Convolutional Block 102
6.8 Spline Window Profile Compared to Triangular Window 104
6.9 Combining Shifted Profiles . 105
6.10 Section of a 64× 64× 64 Spline Window Function 105
6.11 SP3D Noise Reduction . 106
6.12 Marching Cubes Isosurface Crossing Configurations 107

7.1 Frame from Electron Microscopy Mithocondria Segmentation Dataset 111
7.2 Extended Two Photon Microscopy Frame 112
7.3 Detail of TPFM Frame: Multichannel 113
7.4 Detail of TPFM Frame: NeuN Only 113
7.5 ROC Curve : Ideal Classifier . 119
7.6 ROC Curve : Indecisive Classifier . 119
7.7 ROC Curve : Good Classifier . 119
7.8 ROC Curve : Reciprocating Classes 120
7.9 PR Curve . 121
7.10 EM Dataset: Training Data, GT, 2D and 3D Predictions 124
7.11 EM Dataset, ROC Curve Comparison: 2D Models 124
7.12 EM Dataset, ROC Curve Comparison: 2D Models, Detail 125
7.13 EM Dataset, PR Curve Comparison: 2D Models 125
7.14 EM Dataset, ROC Curve Comparison: 3D Models 126
7.15 EM Dataset, ROC Curve Comparison: 2D Models, Detail 126
7.16 EM Dataset, PR Curve Comparison: 3D Models 127
7.17 EM Dataset, ROC Curve Comparison: 2D vs 3D 127
7.18 EM Dataset, PR Curve Comparison: 2D vs 3D 128
7.19 EM Dataset: Surface Reconstruction from GT 130
7.20 EM Dataset: Surface Reconstruction from GT: Detail 130
7.21 EM Dataset: Surface Reconstruction from 2D Predictions 132
7.22 EM Dataset: Surface Reconstruction from 2D Predictions: Detail . . . 132
7.23 EM Dataset: Surface Reconstruction from 3D Predictions 133
7.24 EM Dataset: Surface Reconstruction from 3D Predictions: Detail . . . 133
7.25 FM Dataset, Training Data, GT and Predictions 136
7.26 FM Dataset, ROC Curve Comparison: 2D Models 137
7.27 FM Dataset, PR Curve Comparison: 2D Models 137

ix

7.28 FM Dataset, ROC Curve Comparison: 3D Models 138
7.29 FM Dataset, ROC Curve Comparison: 2D Models, Detail 138
7.30 FM Dataset, PR Curve Comparison: 3D Models 139
7.31 FM Dataset, ROC Curve Comparison: 2D vs 3D 139
7.32 FM Dataset, PR Curve Comparison: 2D vs 3D 140
7.33 Comparison Between GT and 3D Prediction 141
7.34 Detail of GT and Prediction Comparison: Cropping Artifacts in GT . 142
7.35 FM Dataset: Surface Reconstruction from GT 143
7.36 FM Dataset: Surface Reconstruction from GT: Detail 143
7.37 FM Dataset: Surface Reconstruction from 2D Predictions 144
7.38 FM Dataset: Surface Reconstruction from 2D Predictions: Detail . . . 144
7.39 FM Dataset: Surface Reconstruction from 3D Predictions 145
7.40 PD Dataset: Surface Reconstruction from 3D Predictions: Detail . . . 145
7.41 Merging Artifacts: GT Reconstructed Surface 146
7.42 Merging Artifacts: 2D Reconstructed Surface 146
7.43 Merging Artifacts: 3D Reconstructed Surface 147
7.44 Merging Artifacts: Comparison between 2D and 3D Reconstructed

Surfaces . 147

8.1 3D Convolutions with Multiple Channels [74] 150

A.1 Upsampling Artifacts in 2DCNN Outputs 152
A.2 Upsampling Artifacts: Uneven Coverage of Output Area [93] 152
A.3 Checkerboard Artifacts [93] . 153
A.4 Adjusting the Weights to Remove Artifacts [93] 153
A.5 Kernel Asymmetry Artifact [93] . 154

x

Part I

Introduction and State of the Art
in Image Segmentation

Chapter 1

Deep Learning and Introductory
Concepts

The paradigm for intelligence was logical reasoning, and the idea of
what an internal representation would look like was it would be some

kind of symbolic structure. That has completely changed with these big
neural nets.

Geoffrey Hinton

1.1 Introduction

The almost totality of modern science and engineering has been built upon a plurim-
illenary intellectual framing based on first principles that pre-dates Aristotle: reality
is something we, as humans, can aspire to understand logically and we do so by op-
erating simplifications and generalizations to identify underlying "pure" rules and
principles that describe how a system works. Using this approach, physical, bio-
logical and social systems are being thought and translated in mathematical forms
to be then verified and finely tuned in their parameters using experimental data.
This kind of reasoning is what we, as humans, perceive as the most effective path
to describe reality in a reproducible way and this intuition is validated by the most
evident of facts: it has always worked until now. Knowing this it’s trivial to observe
that this kind of setting naturally shaped the entirety of our knowledge, societies

2

1 – Deep Learning and Introductory Concepts

and technological advancements, simply because there was no other logical road to
follow.

Problems with this whole meta-epistemological setting arise when we face the
study of systems that are too complex to allow mathematical descriptions: in ab-
sence of first-principles (in a loose sense) we have to resort to approaches that don’t
necessarily rely on our ability to build logical and mathematical models. In the last
40 years the large availability of digital technology and the drop of sensor prices have
made possible a paradigm shift in scientific knowledge development and, consequen-
tially, in the way we create models of reality: we’ve passed from classical modeling
based on first principles to using large quantities of data to infer models, from using
data to validate, verify and calibrate models to making data itself the focus and the
first step of model creation.

Inspecting the matter from a slightly different perspective, from the front of tech-
nological development, we could affirm without any reasonable doubt that computers
and computing represent its highest and it shouldn’t come as a surprise that they
implicitly reflect the way of thinking they were conceived into: the way computers
classically solve tasks is to reproduce sequences of commands wisely put together
by a programmer, a human who has previously thought the task itself, has it in
his mind with perfect mathematical clarity and has deployed in machine-readable
language the instruments to automate his mental model.
Or at least it used to be this way.
The parallel process to the scientific modeling paradigm shift in the computational
field - or just another perspective of the same course - is the transition from pro-
gramming first principles in the form of definite instructions ordered to the solution
of a task, to the use of data to make the system learn in autonomy how to solve said
task: the scientific complex responsible for the development of statistical algorithms,
tools and knowledge to make it possible for a machine to learn how to solve tasks
is complexively known as Machine Learning.

1.1.1 Historical Notes: ANNs and Deep Learning

In this work we are going to focus on a particular subset of this paradigm-shifting
study field called Deep Learning (DL).

3

1 – Deep Learning and Introductory Concepts

DL makes use of Artificial Neural Networks (ANNs) - models vaguely inspired
by the biological neurons of the human visual cortex - to create algorithms that can
learn how to solve a task from data.

Theoretical foundations for ANNs can be traced back to the early 40s with the
work of McCulloch on neural models [82], the first learning hypothesis for such
machines were made by Hebb in the late 40s [46], leading, in the late fifties, to the
first true classifier based on such premises: Rosenblatt’s Perceptron [100].

...
... Σ f

Activation
function

y

Output

x1 w1

xN wN

Weights

Inputs

Figure 1.1: Rosenblatt’s Perceptron Functional Scheme

The idea behind the Perceptron was simple but effective and is schematically
represented in figure 1.1: as a biological neuron receive inputs from synapses and
propagates conditional output along its axon, the Perceptron as a number of inputs
and produces responses as linear combinations of those. The linear combination’s
weights determine relative importance of inputs and, by adjusting them to specific
values, one could make a simple classifier. The right set of weights could be searched
using a feedback system that iteratively compared expected results with actual ones
and updated the vector formed by the weights proportionally to the difference be-
tween the two: the result was a set of weights that proved to be able to solve simple
classification tasks.
The Perceptron was a very attractive solution for classification problems and was ex-
pected scale extremely well but it suffered from a deep-rooted issue: in 1969 Minsky
proved that single layer Perceptrons couldn’t handle any non-separable problem [86],
at least not with the set of available knowledge at the time. This was particularly
dramatic because, while a single Perceptron (or equivalently a layer of Perceptrons,
for multiple output categories) was able to solve many classification tasks, if linear
activation functions are used, linearity properties made stacking multiple layers of

4

1 – Deep Learning and Introductory Concepts

this kind, one connected to the previous 1,formally equivalent to using a single layer:
this property was convenient considering the lack of a working multi-layer training
strategy but, on the other side, implied that XOR problems 2 could be solved only
using multilayer architectures with nonlinear activation functions that couldn’t be
easily trained.
Theoretical issues with the Perceptron’s ability to resolve XOR problems lead to an
extensive lose of interest in ANNs from the scientific community, in the event that’s
known as the First AI Winter. This state of things lasted until the mid-seventies,
when Werbos’s backpropagation algorithm [125], based on a surprisingly simple ap-
plication of the derivation chain rule, made feasible efficient learning for multilayer
neural networks. During the following fifteen years Artificial Neural Networks saw
renewed enthusiasm thanks to the promises of unseen model plasticity that they
brought: suddenly there was an efficient algorithm to train those models and pre-
liminary results were raising expectations to unseen levels, even making their way
into pop culture. Unfortunately, the research community’s participation went cold
again when, despite the optimistic scenarios supported by theoretical advancements
in the field, it became clear that only expensive hardware, mostly created ad-hoc,
could possibly run computations that, although being relatively simple, came in
way larger numbers than those computers of the era could handle, with resulting
commercial systems being extremely expensive to create and to purchase. This ulti-
mately diverted remaining interest and sealed ANNs in what was historically known
as the Second AI Winter.

Even modest sized nets required a really high number of parameters to be trained,
and the only possible solution to the problem was some heavy form of parallelization.
During the 1990s and during all the 2000s parallel computing became major a topic
of interest, massive supercomputing facilities were being built to solve all kinds of
tasks and the possibility to parallelize this kind of computations was taken again
in consideration. It wasn’t until the 2009-2011 period that the current conception
of Deep Learning came to be, as the Google Brain team, under suggestion of Prof.

1In this configuration the middle layers conventionally assume the name of hidden layers.
2The problem of predicting the outputs of a logic XOR (exclusive-OR) gate between two binary

inputs: its peculiarity is that there exist no linear function that can separate the two output classes,
meaning that the only working solutions have to be nonlinear separation functions.

5

1 – Deep Learning and Introductory Concepts

Andrew Ng - who is now a key figure in the Deep Learning scene - started using
Nvidia GPUs for the training algorithms.

Graphical Processing Units are perfect to parallelize extremely large numbers of
repetitive calculations, such as geometrical transformations for 3D model rendering,
and, with the right amount of work could, they be used to run the backpropagation
algorithm with a fraction of the core-time CPU based systems would need. Switching
from CPU computation to GPUs was the crucial step in dramatically scaling ANNs
due to the large availability and reasonable price of pieces of hardware that were
mainly marketed for videogames. This, combined with ease of programming provided
by new tools like Nvidia’s CUDA, determined an unprecedented spread in Deep
Learning research and usage that is not going to slow down in any foreseeable future.

Deep Learning, especially after the recent developments, has changed the way we
look at new problems and challenges by opening possibilities that were hard to think
just ten years ago. Over the last six years - since the iconic AlexNet was brought to
existence - we’ve come to witness not only the emergence of new solving strategies
in an infinite number of contexts, but we are starting to see what could be defined -
with a small amount of audacity and optimism - as a paradigm shift in the Kuhnian
sense: the focus has now effectively shifted from "how to extract the most effective
features" to "what is the best architecture to help the model learn for itself".

Deep Learning has seen a massive application in almost all fields of science and
industry in a very small amount of time, with massive resources being invested and
improvements coming out at incredible rates while meeting both academical and
industrial interests and producing applications that range from event identification
in Particle Physics to autonomous driving and industrial automation. The reason of
this is to be searched in DL’s ability to obtain results with relative ease when com-
pared to traditional ML methodologies: where the success of a given technique was
largely influenced by the ML scientist’s expertise in manually engineering synthetic
features of the data for the model to compare and learn from, DL makes in most
cases this kind of work obsolete thanks to its ability to produce implicit feature rep-
resentations that - almost unexplicably - largely surpass in efficiency human-crafted
feature selection.

On the other hand this also means that, despite the latest incredible leaps forward
in network visualization [16], high dimensional inner representations of concepts and
decision criteria can be too complicated to be human-readable. This makes DL act,

6

1 – Deep Learning and Introductory Concepts

in many cases, as a "black box" the exact inner workings of which we struggle to
fully understand. Perhaps the most fascinating aspect of Deep Learning is the emer-
gent complex behaviour from building blocks of inherent simplicity and how simple
but correct intuitions on these large scale systems’s inner workings often introduce
game-changing advancements (a fascinating example of this, to say one, is Goodfel-
low’s simple and elegant explanation of adversarial example generation using nothing
more than some basic linear perturbative theory [42] [17], that in the blink of an
eye overturned the general perception of how a CNN classifier works in the public
perception).

In this section we are going to review some of the basic concepts upon which most
of the DL scenario is built upon and we will introduce some of the language that
will be used in the the next chapters, although some rudimentary prior knowledge
in machine learning is assumed from the reader.

1.2 Learning Algorithms

To talk about Deep Learning applications we have first to talk about what the
learning in Deep Learning refers to.
The first uses of the termMachine Learning can be traced back to the work of Arthur
Samuel: a common definition of Machine Learning attributed to him3 quotes [102]

Field of study that gives computers the ability to learn without being explicitly
programmed.

This kind of definition doesn’t fully answer how a machine learning algorithm learns
or what learning actually means, on this subject a much more precise and insightful
definition of what a learning algorithm is, is provided by Tom Mitchell [87]:

A computer program is said to learn from experience E with respect to some class
of tasks T and performance measure P, if its performance at tasks in T, as

measured by P, improves with experience E

3Although [102] has historically often been reported as source, the exact quote can’t be found
in the text but only close versions of it. Consistently with many previous textbooks and works I
decided to leave a reference to the 1959 article.

7

1 – Deep Learning and Introductory Concepts

A much more defined outline emerges here with three main components: a set
of tasks T, experience E and some kind of performance measure P.

1.2.1 Learning Components: Experience

Machine Learning algorithms are genereally of two types: unsupervised or su-
pervised, depending on what kind of "experience" is used. In the first case the
algorithm has to find some kind of structural property in the given data and the
final goal might be clustering (dividing the dataset in clusters of samples sharing
some property) or density estimation of the probability function that generated the
dataset: in these cases all the needed information is in the data itself and no extra
explicit annotations on "what" the data actually represents is intrinsically needed.

In the latter case (and this case covers the vast majority of Deep Learning al-
gorithms) each data point is coupled with a "label", i.e. a description of "what" the
data represents: this extra information is needed if we wish to create an algorithm
that implicitly associates some features of the data with some kind of classification,
so that it can make predictions of class membership on new and unseen examples.

Specifically, in the case of Deep Learning, the experience E is usually provided
in the form of a dataset i.e. a set of examples or data points, each characterized by
a collection of measured features. Typically an example of it is a real vector x ∈ Rn

with each component xi representing different feature: a 255 × 255 monochrome
image could be interpreted as a 65025-dimensional real vector with each component
associated to the intensity of the corresponding pixel 4.

1.2.2 Learning Components: Task

From the definition above we underline a simple concept: the set of tasks T is a
distinct entity from the learning itself. This means that learning is just the means
to attain ability to perform a specific task and not a task in itself. The variety of
tasks Machine Learning (and Deep Learning) algorithms can absolve is particulary
wide but can be subdivided into categories. Perhaps the most common task for a
ML algorithm is classification of examples into a set of categories: given an example

4although it’s much more common to represent data in a tensorial format: a 255 × 255 RGB
image can easily be expressed as a 255× 255× 3 tensor.

8

1 – Deep Learning and Introductory Concepts

we wish to find the category it belongs to among a set of pre-defined categories.
While other task can include regression of numeric input data, probabilty density
estimation, synthesis of new data and many more, we are especially interested in
segmentation. Segmentation generally refers to the task of performing pixel-wise
classification in an image: the algorithm receives as input an image and outputs a
map of class membership of every pixel of said image. Another step is represented
by the simultaneous identification of different "instances" of a same object in the
image, this kind of task is called Instance Segmentation while the other is known as
Semantic Segmentation.

Figure 1.2: Semantic Segmentation vs Instance Segmentation [119]

The difference between the two might be clearer if we look at figure 1.2: in the
case of Semantic Segmentation we are asking the algorithm to identify all the pixels
belonging to the "cell" class, while in the case of Instance Segmentation we are not
only asking the algorithm to identify "cell" pixels, but also to determine which pixels
belong to each "cell" instance. In this work we are going to focus on 3D Semantic
Segmentation although many of the used approaches can possibly be adapted to set
up 3D Instance Segmentation problems.

1.2.3 Learning Components: Performance Measures

The performance measure P provides a quantitative estimate of how well the al-
gorithm performs on the task T, and for that reason it has often to be tailored
specifically for the current task. In classification tasks a good estimate of how well
the model is performing can be an accuracy measure i.e. the proportion of exam-
ples for which the model produces the correct output. Performance measures can be

9

1 – Deep Learning and Introductory Concepts

tricky to finely tune to the problem: if we wish to promote particular behaviors of the
algorithm and we have no way of directly influence its decisions, then that kind of
information must be encoded in the way the algorithm looks for an optimal solution.
The typical example is represented by segmentation task performance evaluation in
the case the background class is over-represented in the dataset and the foreground
class is only present in a small portion of pixels: if we choose a performance metric
that gives the same importance to background and foreground correct classification
the algorithm would probably choose to trivially classify everything as background
to improve its performance metric as it would be wrong in only a small percentage
of the cases. To avoid this kind of problem metrics have to be chosen in such a
way that they represent the desired behavior of the model. Furthermore, another
typical restriction is the need for the performance metric to be a continuous and
differentiable function, the sense of this request is to be comprehended in the next
section.

1.3 Optimization, Loss, Gradient Descent

1.3.1 Gradient Descent Optimization

The previous section gives a very loose and generic description of how a learning
algorithm should work: on a more practical basis we’d say that each learning algo-
rithm is ultimately traceable to an optimization problem in which a loss function,
giving an inverse performance on the current task (how bad the model performs on
the task, typically the negative of the metric function from the above section) is
minimized with respect to the parameters of the model itself.

More specifically, virtually all optimization algorithms for Deep Learning are
based on Gradient Descent Optimization: Gradient Descent Optimization (GDO) is
an algorithm used to minimize a loss function by iteratively moving the evaluation
point in the direction of steepest descent, defined by the negative gradient of the loss
function itself. The basic idea behind GDO is that, being h(x) a function, defined
and differentiable in the neighborhood of a point x0, for small enough ε ∈ R+ the
point

x1 = x0 − ε∇xh(x) (1.1)

is such that h(x1) < h(x0). Applying this kind of reasoning in an iterative fashion

10

1 – Deep Learning and Introductory Concepts

we can build a succession of points x0,x1,x2 . . .xN with the rule

xn+1 = xn − ε∇xh(x) (1.2)

such that the h(xN) < h(xN − 1) < · · · < h(x0) and such that the last member
of the succession is a point arbitrarily close to a local minimum of h(x) 5. It’s to
be noted that the loss function, in order to be optimizable with gradient descent,
should at least be differentiable, and this reduces the space of usable metrics.6

Adam Stochastic Gradient Descent

The basic formulation of 1.2 is just the simplest of many Gradient Descent algo-
rithms. One of the most widely known Gradient Descent Algorithms is Adam (short
for Adaptive Moment Estimation), introduced in 2014 by D. Kingma [60]. With re-
spect to the "naive" GDO algorithms, Adam takes advantage of a few improvements:
the learning rate is not fixed anymore but is adapted (hence the adaptive part of the
name) for each of the model’s weights using the first and second moments of the loss
function’s gradient. The loss function gradient, being evaluated over a random batch
of data, can be considered to be a random variable. The first and second moments
of the gradient are estimated using exponentially moving averages defined by

mt = β1mt−1 + (1− β1)∇wLt

vt = β2vt−1 + (1− β2)(∇wLt)2
(1.3)

where L is the cost function, mt and vt are the estimators for the first and second
moments of the gradient computed at the step t, while ∇wL is the gradient on the
current batch with respect to the weight parameter w.

To see thatm and v are actually good estimators for the first and second moment
of the gradient we compute their expectation values, anticipating to find something
similar to

E[mt] ∼ E[∇wLt]
E[vt] ∼ E[(∇wLt)2]

(1.4)

5If the loss function is convex all local minima are also global minima and gradient descent
converges to the global solution.

6For the avoidance of doubt, the differentiability is a requirement only to the loss function:
other non-differentiable metrics can be used for keeping track of performance and fine tuning the
model, it’s just the training function that needs to be differentiable.

11

1 – Deep Learning and Introductory Concepts

where equality would hold in the case we find m and v to be unbiased estimators.
Writing down the first terms of m

m0 = 0
m1 = β1m0 + (1− β1)∇wL1 = (1− β1)∇wL1

m2 = β1m1 + (1− β1)∇wL2 = β1(1− β1)∇wL1 + (1− β1)∇wL2

m3 = β1m2 + (1− β1)∇wL3 = β2
1(1− β1)∇wL1 + β1(1− β1)∇wL2 + (1− β1)∇wL3

(1.5)

we can see how we can express the moving average mt in a much more concise way

mt = (1− β1)
t∑
i=0

βt−i1 ∇wLi (1.6)

and computing its expected value

E[mt] = E[(1− β1)
t∑
i=1

βt−i1 gi]

= E[∇wLi](1− β1)
t∑
i=1

βt−1
1 + ζ

= E[∇wLi](1− βt1) + ζ

(1.7)

where in the second line we approximated ∇wLi with ∇wLt, taking it out of the
sum and introducing an error ζ that converges to zero, we then just treated the sum
as a geometric series expansion. It’s easy to see that for v holds the analologus

E[vt] = E[g2
i](1− βt2) + ζ (1.8)

The resulting estimators for ∇wL and ∇wL
2 are biased so we have to introduce two

correction terms:

m̂t = mt

1− βt1
v̂t = vt

1− βt2

(1.9)

The weight update for each individual parameter can then be expressed as

wt = wt−1 − η
m̂t√
v̂t + ε

(1.10)

where η is the learning step size and ε is a finite quantity for regularization, yielding
a sequence of updates that is expected to converge faster than GDO.

12

1 – Deep Learning and Introductory Concepts

1.3.2 Loss Functions

We introduced loss functions and said that they would need to be chosen in a
problem-specific way, but how should I decide what loss function to adopt for my
particular application? Maybe the question is more transparent if we look at it from a
slightly different perspective by formalizing the learning problem in the classification
context7.

Let’s say we have a space X of possible inputs and a space Y - typically {−1,+1}
in classification tasks - of target labels and we want to learn a function f(~x) : ~x→ R
that maps X to Y . Let’s also assume that the data is actually generated by a joint
distribution p(~x, y) with y ∈ Y , which we do not know explicitly. The loss function
we introduced above describes how different is the model’s prediction from the actual
"true value" and we indicate it by h(f(~x), y) where f(~x) represents the prediction
and y is the actual label. The goal of a learning algorithm would then be to minimize
the expectation value of said function over the probability distribution of the data
which can be simply expressed as the risk integral 1.11.

I[f] =
∫
X×Y

h(f(~x), y)p(~x, y)d~xdy (1.11)

The first thing to notice in the integral above is that it’s not directly evaluable,
mainly because we do not have access to the distribution p(~x, y) (and trivially if
we knew its values we wouldn’t probably be searching for f(~x)), instead we have
access to a finite set of labeled couples {(~x1, y1), (~x2, y2), . . . , (~xm, ym), } that cannot
possibly describe p(~x, y) with full detail. What we do instead is approximating p(~x, y)
with an empirical distribution

pemp(~x, y) ≈ 1
m

i=m∑
i=1

δ(xi)δ(yi) (1.12)

where the index i counts all the available data points. What we obtain then is that,
given that our dataset sufficiently describes p(~x, y), we can get a good estimate of
the risk integral 1.11 as

I[f] ≈
∫
X×Y

h(f(~x), y)pemp(~x, y)d~xdy = 1
m

i=m∑
i=1

h(f(~x), y) (1.13)

7These considerations are actually consistent with the segmentation cases as they can ultimately
be seen as pixel-wise classifications.

13

1 – Deep Learning and Introductory Concepts

Different types of loss functions help us encode different types of desired behavior,
depending on their structure and mathematical formulation. A natural choice for a
function that accounts for error in classification would trivially be

h(f(~x, y)) = H(−yf(~x)) (1.14)

where H is the Heavyside function: such loss function would be 1 when prediction
and label share the same sign, and 0 otherwise. Perfectly simple at first glance,
on a closer look one realizes that it doesn’t meet the differentiability requirements
and, because of this, the step function doesn’t lend itself to an easy integration in
gradient descent optimization algorithms. The next logical choice is to find other
differentiable functions that express the same approximate behavior, here we take a
look at some of the most common ones.

Square Loss

One of the simplest loss function should actually be quite familiar to anyone who
has encontered least square regression at some point in their life. Square Loss is
simply the squared difference between prediction and the actual label:

h(f(~x, y)) = (y − f(~x))2 (1.15)

Despite its extremely simple appearance, square loss provides a convex formula-
tion and matches the 1.14 indicator function when yf(~x) = 0 and yf(~x) = 1. It can
easily be seen that this kind of loss function heavily penalizes outliers in the dataset
when |yf(~x)| takes high values: this is effect slows significantly convergence so it’s
not common to see square losses in practical applications.

Hinge Loss

Hinge Loss can be defined as

h(f(~x, y)) = max(0, 1− yf(~x)) = |1− yf(~x)|+ (1.16)

Hinge loss matches 1.14 when sign(f(~x)) = y and |yf(~x)| ≥ 1 and doesn’t penalize
points with yf(~x) > 1. The 1.16 form, though, it’s not differentiable in yf(~x) = 1 so,
in this loss definition it’s not suitable for gradient descent optimization: it’s common
to use instead a Generalized Smooth Hinge Loss defined as

14

1 – Deep Learning and Introductory Concepts

h(f(~x, y))α =


α
α+1 if z < 0

1
α+1z

α+1 − z + α
α+1 if <= 0 < z < 1

0 if z ≥ 1

(1.17)

where z = yf(~x) and α is a real parameter. This function provides the same
general behavior as the Hinge Loss but in a differentiable format.

Cross Entropy Loss

Cross Entropy Loss is perhaps the most used Loss Function in Deep Learning, it’s
defined as:

h(f(~x, y)) = −t ln σ(~x)− (1− t) ln (1− σ(~x)) (1.18)

where t = (1 + y)/2 so that t ∈ {0, 1} and we define σ~x as

σ(~x) = 1
1 + e−f(~x) (1.19)

In this case there’s no point that’s assigned exactly zero penalty but strong pre-
dictions are encouraged. Class imbalance can be taken into account using weighted
versions of this function, like the Weighted Cross Entropy function (WCE) defined
as

h(f(~x, y)) = −βt ln σ(~x)− (1− t) ln (1− σ(~x)) (1.20)

where a real parameter β can be used as a to adjust for false positive or false
negatives: β > 1 decreases the number of false negatives, β < 1 decreases the number
of false positives

Another cross entropy variant is the Balanced Cross Entropy function (BCE),
it’s defined similarly to 1.20 the parameter β this time controls also the negative
examples:

h(f(~x, y)) = −βt ln σ(~x)− (1− β)(1− t) ln (1− σ(~x)) (1.21)

15

1 – Deep Learning and Introductory Concepts

1.3.3 Segmentation-Specific Metrics

The main question we want our performance metric to answer should be "how well
does the predicted set of pixels does approximate the ground-truth set?", it can be
non-trivial to come with a definitive answer, especially when class imbalance and
regularity requirements are taken into account. When evaluating the effectiveness
of a segmentation task a few concepts can be borrowed from the Image Processing
area: many metrics in Image Segmentation are based on general concepts of set
similarity, with few additional class-balancing and regularization tricks.

Set Similarity Metrics

Most loss functions for Image Segmentation are based on one of two slightly different
metrics: one is the Jaccard Similarity Coefficient and the other is the Dice Coefficient.

The Jaccard Similarity Coefficient is mainly known with the simpler and more
intuitive name Intersection over Union. As the name suggest, Jaccard index is just
a fancier name for the ratio of two terms: the first is the number of common pix-
els between the ground truth set and the predicted set, the second is the number
pixels in the union of the two sets. Let’s call our prediction and ground truth sets,
respctively P and G:

IoU = |P | ∩ |G|
|P ∪G|

= |P | ∩ |G|
|P |+ |G| − |P ∪G| (1.22)

Intersection Over Union is an extremely common metric for performance evalua-
tion and hyperparameter selection but, in the simple formulation 1.22, can’t be used
as a loss function. On this front there are some recent attempts of approximation
and generalization of Intersection Over Union metrics to loss functions, notably [97]
and [128].

The other important metric for segmentation is the Dice Similarity Coefficient.
The Dice Coefficient’s formulation is very similar to Jaccard Coefficient’s:

DSC = 2|P ∩G|
|P |+ |G| (1.23)

Although being extremely similar to 1.22, when 1.23 is expressed in vector no-
tation (expressing G and P as vectors) it becomes

16

1 – Deep Learning and Introductory Concepts

Figure 1.3: Intersection Over Union

DSC = 2 〈~p|~g〉
‖~p‖2

2 + ‖~g‖2
2

= 2∑N
i=1 pigi∑N

i=1 pi
2 +∑N

i=1 gi
2 (1.24)

where we used the `2 norm and N is total number of pixels (or voxels if we
work in higher dimensionality spaces). Expression 1.24 can be differentiated w.r.t.
an arbitrary pixel (voxel):

∂DSC

∂pj
= 2gj(

∑N
i=1 p

2
i +∑N

i=1 g
2
i)− 2pj(

∑N
i=1 pigi)

(∑N
i=1 p

2
i +∑N

i=1 g
2
i)2 (1.25)

to be used as a proper loss function in gradient descent algorithms.
It’s important to notice that the response of the model isn’t directly a 0-1 clas-

sification but rather a probability map with real values between 0 and 1, both of
these metric families become dependent on the particular choice of probability level
over which we consider a pixel to be positively segmented.

1.4 Overfitting, Underfitting, Model Capacity

The optimization process has the goal of minimizing the loss function with respect
to the model’s parameters, but simple minimization of the loss function on a finite
dataset, though, is not per se guaranteed to yield the best outcome. This is mainly
ascribable to two order of reasons. When introducing loss functions we tried to min-
imize the risk integral 1.11 by approximating the data generator distribution with

17

1 – Deep Learning and Introductory Concepts

an empirical one 1.12, we affirmed that this approximation should hold when the
training dataset is descriptive enough of the real distribution. One could suppose
that the level of descriptive accuracy should be high enough that we’re able to accu-
rately reproduce the general trends with an high feature space granularity: this can
hold well in low-dimensional spaces, but as we move to extremely high-dimensional
spaces like those generated by images 8 one can simply see that this strategy cannot
be pursued. What happens instead is that a training dataset manages to represent
the underlying generative distribution with a certain granularity and different iden-
tically sized datasets lead to significative diverse reconstructions of the underlying
probability distribution. We should then shift the objective of the training task from
indefinitely optimizing the performance metric on the training dataset to optimizing
enough to reproduce the general trends of the data, but not enough to reproduce the
granularity effects of the particular sampling of data-generating distribution. The
situation of failing to reproduce general traits of the data-generating distribution is
called underfitting while overfitting describes the case in which the model starts
to optimize around sample-related specific traits and cannot generalize to other
distribution samplings.

A basic but essential strategy to avoid overfitting is using two different datasets
in the training phase: a training set which we use as the main proxy for the data-
generating distribution and a validation set against which we validate model perfor-
mance. Assuming that these two datasets are indipendently extracted and identically
distributed, the optimization goal becomes lowering the train and validation errors
while ensuring that the difference between the two stays low.

Measuring performance metrics on both datasets during an optimization run will
show that performance improves for both datasets until the model starts to repro-
duce the peculiarities of the training dataset: in this case we observe that the train
performance continues to slowly decrease while the validation error increases as the
model starts to overfit: interrupting the training process before the validation error
starts to increase should ensure that the model optimizes while retaining enough
generalization capabilities, this trick is called early stopping.

8Monochrome 8-bit 512x512 images have 262.144, pixels each with 255 possible gray levels, even
if we assume that all non-random images live in a lower-dimensional variety of this space, uniform
sampling is simply not feasible.

18

1 – Deep Learning and Introductory Concepts

Figure 1.4: Overfitting and Underfitting

Of course, when evaluating the absolute performance of the model, neither the
training set nor the validation set can be used because of the implicit statistical
correlation: a third test dataset shall be used to evaluate performances in a repro-
ducible way.

Another key factor in generalization capabilities is given by model capacity. The
particular choice of the model and the number of its degrees of freedom determines
its representational capacity. Large model complexities can expose the model to
overfitting, the concept is better understood by looking at figure 1.5: fitting three
different polynomial models to the data we easily see that using simplistic models
the distinctive features of the data are not captured, and introducing too many
parameters reduces the training error at the cost of loss of generalization.

Using, again, a training set and a validation set we can reveal a behavior that
closely resembles figure 1.4: training models with increasing capacities lowers the
training errors but too high model complexities cause the models to inevitably over-
fit.

19

1 – Deep Learning and Introductory Concepts

Figure 1.5: Model Complexity

Figure 1.6: Model Capacity and Training/Validation Errors [41]

1.5 Convolutional Neural Networks

Among all the possible Machine Learning models, this work focuses on a particular
subset called Convolutional Neural Networks (CNN). CNNs are a particular type of
the Artificial Neural Networks we introduced in 1.1.1 and can basically be considered
graphs of operations with a layered structure and tunable free parameters, they have
in input layer, one or more hidden layers and one output layer that, in classification
tasks, has the same cardinality as the number of classification classes, or, in the

20

1 – Deep Learning and Introductory Concepts

segmentation case, can form an image. The main new element that CNNs introduce
is the use of the convolution operation with free parameters as layers in the network’s
computation graph: while layers in MLPs are fully connected - i.e. every neuron of
a given layer shows as a weighted input for every neuron in the next layer (we shall
see a more fitting definition in section 1.5.4) - in CNNs feature maps are obtained
using sequential convolution operations with trainable kernels.

1.5.1 Convolutional Layers

The convolution concept is ubiquitous in Physics, Mathematics, Engineering and any
scientific or technical field so there are high chances that it is already be familiar
to the reader but for clarity we shall provide a quick and concise definition anyway.
We define the convolution operation between two functions x(t) and w(t) as

s(t) = (x ∗ w)(t) =
∫ +∞

−∞
x(a)w(t− a)da (1.26)

This definition is valid if both x(t) and w(t) are real-valued functions defined on
a continuous index, but when dealing with digital images all we have at hand are
discrete-valued functions. Convolution operation is simply defined for these discrete
functions as well :

s(t) = (x ∗ w)(t) =
+∞∑

a=−∞
x(a)w(t− a) (1.27)

When passing from one to two dimensions, with X(i, j) and W (i, j) being our two-
dimensional functions, we can easily generalize definition 1.27 as

S(i, j) = (X ∗W)(i, j) =
+∞∑

m=−∞

+∞∑
n=−∞

X(m,n)W (i−m, j − n) (1.28)

Convolutions benefit from commutative property: this means that the expression
1.28 is totally equivalent with the case in which the operator order is inverted

S(i, j) = (W ∗X)(i, j) =
+∞∑

m=−∞

+∞∑
n=−∞

X(i−m, j − n)W (m,n) (1.29)

Looking at the indexes inside the summations we see that this is possible because
the two images are read in opposite order: one image is "flipped" with respect to the

21

1 – Deep Learning and Introductory Concepts

0 1 1 1 0 0 0

0 0 1 1 1 0 0

0 0 0 1 1 1 0

0 0 0 1 1 0 0

0 0 1 1 0 0 0

0 1 1 0 0 0 0

1 1 0 0 0 0 0

X

∗
1 0 1

0 1 0

1 0 1

W

=

1 4 3 4 1

1 2 4 3 3

1 2 3 4 1

1 3 3 1 1

3 3 1 1 0

X ∗W

1 0 1

0 1 0

1 0 1

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

Figure 1.7: Convolution Operation

other. While this kind of property is mathematically interesting, on the implementa-
tion side it doesn’t give any significant advantage and flipping one of the two images
adds to the computational cost without any practical return on the learning pro-
cess. Computationally speaking it’s more convenient to implement cross-correlation
instead: cross-correlation is conceptually very similar to convolution but avoids flip-
ping one of the two images:

Scross-correlation(i, j) = (W ∗X)(i, j) =
+∞∑

m=−∞

+∞∑
n=−∞

X(i+m, j + n)W (m,n) (1.30)

Convolutional Neural Networks should then be called Cross-Correlation Neural
Networks, nevertheless they mantain the convolutional term for association pur-
poses with the very familiar convolution concept as opposed to the lesser known
cross-correlation.
Discrete convolutions can actually be viewed as matrix multiplications with a par-
ticularly constructed matrix, more on this topic will be mentioned in appendix B
but for now it’s enough to say that the possibility of calculating convolutions using
basic multiplications represents a major computational advantage as it means that
they can be evaluated in an heavily vectorized and efficient form.

Neural Networks can be built using the convolution concept if, starting from one
input layer, we define the next layer as the result of a convolution with a weight
image whose matrix values, W (i, j) are free parameters of which we learn the values

22

1 – Deep Learning and Introductory Concepts

using Gradient Descent or any loss minimizer. In order to preserve non-linearity
and representational capabilities of the model (a small note on that in sec. 1.39),
outputs of the convolution operation can be passed through a nonlinear activation
function like ReLU (Rectified Linear Unit) defined as

ReLu(x) = max(0, x) (1.31)

which breaks linearity and inhibits negative responses of the network. Other non-
linear monotonic functions can be used for activation purposes such as sigmoid
functions or hyperbolic tangents.

Figure 1.8: Activation functions

Networks built in this way feature very interesting properties. Firstly, instead of
learning a set of weights that scales with image dimension, we’re learning a small
fraction of this set by sharing most of these parameters, in the process we gain a
shift invariance property that is particularly useful in classification tasks. Another
interesting property is the fact that convolution filter response is intrinsecally local
(response of a neuron is directly influenced only by a small number of near pixels
in the input image, called receptive field), this makes CNNs particularly good at
identifying patters in images.

1.5.2 Padding

The 2D discrete convolution operation, as described in 1.5.1, takes an n × n input
X, a f × f filter W and outputs an n− f + 1×n− f + 1 image: the reason of this is

23

1 – Deep Learning and Introductory Concepts

easily understood by looking at figure 1.7 and noticing that there are only n− f + 1
possible positions of the kernel on the image that can produce an output.
This property highlights two main issues: in the first place, if we have several convo-
lutional layers, the output size contraction is going to noticeably reduce the inputs’s
sizes after a few layers, which is an effect we may want to avoid if the network is
particularly deep, secondly, if the kernel slides sequentially across the inputs, border
pixels are going to figure in the convolution computation way less than the central
ones as the sliding window is going to cover them in fewer occasions.

To overcome both problems the inputs can be extended by adding p zeros to their
borders before convolution so that the new outputs are n−f+1+2p×n−f+1+2p
sized. There are three types of padding that are generally used in convolutional
nets, known as full padding, same padding and valid padding. Valid padding just sets
p = 0 so that the outputs are n − f + 1 and represents the same exact operation
as convolution without padding, In full padding we want every possible complete
or partial superposition of the kernel to the inputs to be taken into account in the
outputs so that outer pixels of the inputs no longer result as less important in the
final output: this can be done by extending the input image in such a way that the
new size is n + f − 1, implying p = f − 1. In the same padding case we want the
new outputs to have the same dimensionality as the inputs, meaning that

n+ 2p+ f + 1 = n

p = f − 1
2

(1.32)

for same padding to be employed we need the filters size to be odd.
To better visualize the concept let’s consider the convolution of a 5 × 5 sized

input X with a 3× 3 filter W :

X =



27 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9


W =


1 3 1
0 5 0
2 1 2

 (1.33)

The different paddings of X are

24

1 – Deep Learning and Introductory Concepts

Xpadded =



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 27 24 1 8 15 0 0

0 0 23 5 7 14 16 0 0

0 0 4 6 13 20 22 0 0

0 0 10 12 19 21 3 0 0

0 0 11 18 25 2 9 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0



full

same

valid

(1.34)

The resulting convolutions then are

X ∗W =



17 75 90 35 40 53 15

23 159 165 45 105 137 16

28 198 120 165 205 197 52

56 95 160 200 245 184 35

19 117 190 255 235 106 53

20 89 160 210 75 90 6

22 47 90 65 70 13 18



full

same

valid

(1.35)

1.5.3 Pooling Layers

Another fundamental building block of CNNs is the Pooling layer: pooling is a form
of down-sampling of the original image. What, an intuitive level, a pooling layer
does, is to replace the original image with a summarized version of it by dividing it
in subsections and applying a selection rule, being it linear or nonlinear. The most
used pooling layer is the the max-pooling that outputs the maximum of a selected
cell.

25

1 – Deep Learning and Introductory Concepts

7 9 3 5 9 4

0 7 0 0 9 0

0 1 2 5 8 4

3 2 9 7 4 2

2× 2 max pooling

9 5 9

3 9 8

2

2

Figure 1.9: Pooling Operation

In figure 1.9 we can see an example of max-pooling in which the original image
is divided in 2x2 cells and from each cell only the highest value is selected, creating
a downsampled image with a rough map of max activations.

Other pooling layers include average pooling and mean pooling. Pooling opera-
tions are useful in reducing the number of parameters and model complexity and,
therefore, controlling overfitting, especially in classification tasks. Most pooling lay-
ers are approximatively invariant to small transformations of the inputs and help
the network generalize classification task with almost-scale-invariant internal repre-
sentations.

1.5.4 Fully Connected Layers

The connectivity scheme of MultiLayer Perceptrons is not completely discarded in
Convolutional Neural Networks and, actually, creating connections between every
neuron of two successive layers is often necessary in classification tasks where the
internal representations of the data have to be linked to a small number of output
classes, in these scenarios Fully Connected or Dense layers make excellent classifi-
cation steps.

A fully-connected layers is generally implemented as an affine transformation
followed by a nonlinear element-wise function. The affine transform

~z(~x) = W ᵀ~x+~b (1.36)

is a simple transformation of the same kind we would have found in a Perceptron.
It’s important to consider that the composition of two or more affine transformations

26

1 – Deep Learning and Introductory Concepts

still is an affine transformation: let’s try to compose two of these transforms

~z(~x) = W ᵀ~x+~b

~s(~y) = Mᵀ~y + ~d
(1.37)

without introducing a nonlinearity in the composition the result will always be an
affine transformation

~t(~x) = ~s(~z(x))
= Mᵀ~z + ~d

= Mᵀ(W ᵀ~x+~b) + ~d

= MᵀW ᵀ~x+Mᵀ~b+ ~d

≡ T ᵀ~x+ ~k

(1.38)

from a representational point of view stacking more of these layers would bring no
advantage as no change to the space of functions that this operation could define
is made. When nonlinearity is introduced in the form of an element-wise transfor-
mation g(~x) the resulting transform is no longer affine and con be combined in a
representationally meaningful way.

~z(~x) = g(W ᵀ~x+~b) (1.39)

Since g(~x) is an element-wise transform, z(~x) can still be expressed in an easy matrix
form

~z(~x) = g(W ᵀ~x+~b)

= g



W11 W12 . . . W1K
...

WK1 WK2 . . . WKK



x1
...
xK

+


b1
...
bK




= g



W11x1 + b1 W12x2 + b2 . . . W1KxK + bK

...
WK1x1 + b1 WK2x2 + b2 . . . WKKxk + bk




=


g(W11x1 + b1) g(W12x2 + b2) . . . g(W1KxK + bK)

...
g(WK1x1 + b1) g(WK2x2 + b2) . . . g(WKKxk + bk)



(1.40)

27

1 – Deep Learning and Introductory Concepts

Dense layers are way heavier than Convolution layers in the sense that they
introduce extremely high number of free parameters: it’s not unusual that the vast
majority of a network’s degrees of freedom are located in its dense layers. Not every
task needs this kind of connectivity and networks that don’t have Dense layers
are called Fully Convolutional Neural Networks9 and there’s an entire branch of
segmentation tasks that employ these networks.

1.6 Regularization Strategies

A major problem in training Convolutional Neural Networks, as mentioned in 1.4,
is overfitting: in a training/test set setup this translates as good performance on the
test set and large errors on the test set. The main goal of the training process is
producing models that perform well on previously unseen data, or, in other terms,
reducing overfitting.
Regularization is a collective name that refers to all the strategies that aim to reduce
test errors, usually at the cost of higher errors in the training dataset. There are many
different approaches in reaching this goal that look at the problem from different
perspectives: in this section we introduce some of the most common ones.

1.6.1 L1 and L2 Regularization

As seen in 1.4, a primary cause in overfitting is model complexity: too many free
parameters make the model prone to overfitting. A possible way to look at the
problem would be finding a way to let the training process preferrably choose simpler
models. This can be done by introducing terms in the loss function that penalize
complexity in the model making simple structures artificially preferrable. Model
complexity is a function of the number of nonzero weights: if a weight is zero the
link’s contribution is null and the specific term controlled by that weight doesn’t
effectively add to its effective capacity. Inserting a term in the loss function that
specifically penalizes high weight values should make "unuseful" link weights vanish
to zero, this is exactly what happens in L1 and L2 regularization strategies.

9In section 2.1.2 we will see that the classification of architectures either as fully-convolutional or
non-full-convolutional is indeed a false dichotomy as dense layers can be interpreted as a particular
case of convolutional layers.

28

1 – Deep Learning and Introductory Concepts

The new loss functions will then be in the form

J̃(w,X, y) = J(w,X, y) + αΩ(w) (1.41)

where J(w,X, y) represents the original loss function, w represents model weights
and the term α is a regularization hyperparameter.

In L2 regularization the additional term is the `2 norm of the weight vector

Ω(w) = 1
2‖w‖

2
2 (1.42)

so that the actual loss function becomes

˜JL2(w,X, y) = J(w,X, y) + α
1
2w

ᵀw (1.43)

The loss function remains differentiable and its gradient is

∇w
˜JL2(w,X, y) = ∇wJ(w,X, y) + αw (1.44)

1.44 can be interpreted as an iterative subtraction of a certain portion of w
proportional to α, this encourages small weight values but doesn’t force weights to
be exactly zero, thus mantaining model complexity, if not in an effective sense, at
least in the storage needed to represent the model. It would be ideal to force to
exactly zero those weights that are too small to influence the model and enforce
model sparsity in those cases: this can be done using L1 regularization.

In this case the regularization term is the `1 norm of the weight vector

Ω(w) = ‖w‖1 =
∑
i

|wi| (1.45)

the loss function becomes

˜JL1(w,X, y) = J(w,X, y) + α‖w‖1 (1.46)

which has a corresponding gradient

∇w
˜JL1(w,X, y) = ∇wJ(w,X, y) + α sign(w) (1.47)

In this case we have that the iterative weight subtraction has a fixed step, but the
whole loss function doesn’t remain differentiable in w = 0, this makes L1 regular-
ization incompatible with simple gradient descent, even if modern optimizers can
handle piecewise continuous functions.

29

1 – Deep Learning and Introductory Concepts

1.6.2 Data Augmentation

Figure 1.10: Data Augmentation

Another perspective on the problem is that of the training dataset’s limitedness:
small datasets don’t cover much of the data-generating distribution’s space of defi-
nition. Fortunately, in most cases, this problem can be tackled by simulating feasible
transformations of the input data to generate new likely inputs for the model. Of
course the kind of allowed transformations depends on the expected symmetries of
the dataset: when segmenting cars on a dataset for driving automation it’s perfectly
reasonable to generate new artificial data points by horizontally mirroring original
images10 but not doing the same operation on the vertical axis as it’s very unlikely
that the original distribution contains many examples of upside-down cars, same
goes for 90 degree rotations as we don’t expect in our daily commute to the Phyisics
Department to find many examples of Teslas in perfect vertical balance on their
front or on their back. Another thing one has to avoid is applying transformation
that - in classification cases - would lead to class change: when designing a character
recognition system, rotations of the "d" and "b" characters would effectively change

10One could argue that the car’s commands asymmetry would produce non-valid augmented in-
puts: considering that an horizontal flip of a left-driving car would result in a right-driving car (and
vice-versa) and that a driving automation company is not likely to produce two different machine
vision systems for left-driving and right-driving countries, I’d happily dismiss this argument as non
practically relevant.

30

1 – Deep Learning and Introductory Concepts

their class. Possible transformations space from rotations and reflections to transla-
tions11, color shifts, noise introduction, elastic transformation: every transformation
that produces a likely new data input is to be used.

1.6.3 Dropout

Figure 1.11: Dropout [112]

An interesting and extremely effective technique in regularization is dropout: the
main idea behind dropout is that of the random exclusion of a number of weights
from a training step, at each training step, every node is either "dropped" with a
probability p or "kept" with a probability 1 − p, in the case of drop both the node
and its connecting edges are temporarily removed from the model and the training
happens on the remaining neurons. The intuitive reason of why this process works is
because it breaks the network’s tendency to overly specialize certain weights: during
the training, some of the weights tend to be assume critical roles with neighboring
neurons becoming more and more reliant on their activations, this tendency in over-
specialization can make the model fragile when exposed to new data. By randomly
deactivating some of the neurons, the neighboring nodes have to step in and activate
to maintain correct predictions. This makes the network less sensitive to locally spe-
cific weights and is believed to create multiple concurrent internal representations
that help the model generalize to unseen data.

11Even models that are designed to be spatially invariant benefit from small translations in data
augmentation phase [41]

31

1 – Deep Learning and Introductory Concepts

1.7 Other Methods in CNN Training

1.7.1 BatchNormalization

A typical issue in training deep neural networks is known as the Internal Covariate
Shift problem. In deep neural models with multiple stacked layers we can view the
outputs of each layer as composite functions of the outputs of the previous layers, in
an iterative way, up to the inputs, so that the outputs of a certain layer depend on
the parameters of all the ones up in the computation graph. The obvious consequence
is that minor changes in the parameters of a layer tend to propagate and amplify in
the following ones, more and more prominently as the network gets deeper.
To better focalize the problem let’s imagine we have a network made of only two
layers F1 and F2, each with a single parameter, respectively θ1 and θ2. The network
parameters are learned to minimize a loss

` = F2(F1(u, θ1), θ2) (1.48)

where u is the network’s input. The F2 layer is ideally equivalent to a stand-alone
network that computes ` using x = F1(u, θ1) as inputs so that

` = F2(x, θ2) (1.49)

Applying a simple gradient descent like the one in 1.3.1 to the two-layer network
we can update θ2

θ2 ← θ1 −
α

m

m∑
i=1

∂F2(xi, θ2)
∂θ2

(1.50)

where m is the batch size and α the learning step. Notice that the 1.50 update
step is perfectly equivalent to what we would have written considering the F2 network
alone, with x inputs.

It’s rather intuitive to see how the learning process for the F2 standalone network
would be easier if the distribution of x wouldn’t change at every update step of θ1.
The problem of the changes in the distribution of network activations due to the
change of network parameters during training is known as the Internal Covariance
Shift problem and it has been known for a long time.

In 2015 Szegedy et al. introduced an innovative method to tackle the ICS prob-
lem: the main idea behind it is that, for the model to correctly train its weights, the

32

1 – Deep Learning and Introductory Concepts

distribution of input network activations cannot -obviously- be fixed but for a given
layer one could transform the outputs of preceeding ones in such a way that both
their mean and variances are fixed. In order to do such transformation, ideally, one
should know in advance all the activation distributions related to the entire dataset:
this is extremely impractical, thus the mean and variance are estimated using the
mini-batch of the training process as a proxy for the full distribution.

Let us denote B as a training mini-batch of activations, with size m. The mean
and variance of B are defined as

µB = 1
m

m∑
i=1

xi

σ2
B = 1

m

m∑
i=1

(xi − µb)2
(1.51)

We can normalize separately each dimension of the activations for a layer with
a d-dimensional input x = (x(1), . . . , x(d)), with respect to µB and σB

x̂
(k)
i = x

(k)
i − µ

(k)
B√

σ
(k)
B

2
+ ε

(1.52)

with k ∈ [1, d], i ∈ [1,m] and µ
(k)
B σ

(k)
B

2
are the k-components of respectively

respectively the mean and variance.
The resulting distribution (ignoring ε which is just a small finite term for numer-

ical stability) is a characterized by zero mean and unitary variance.
Of course constraining a layer’s outputs to have null mean and unitary variance

could limit its representational capacity: to overcome this, two additional learnable
parameters are added in a second transformation step

y
(k)
i = γ(k)x̂

(k)
i + β(k) (1.53)

by learning γ(k) and β(k) the model restores some of the representational capac-
ity that has been lost after normalization. It’s important to notice that, while the
second transformation y(k) = BNγ(k),β(k)(x̂(k)

i) is passed to the subsequent layers, the
normalized output x̂(k)

i remains internal to the current layer.

33

Chapter 2

CNNs for Segmentation

In Convolutional Nets, there is no such thing as "fully-connected
layers".

Yann LeCun
comment on his Facebook page

2.1 State of the art in 2D Semantic Segmentation

This work aims to use a particular kind of Convolutional Neural Network to solve
a semantic segmentation task, as defined in 1.2.2: we want to train a model that,
given an image, returns us a per-pixel classification of it. There are many different
approaches to this kind of task, each with its own perks and advantages and each
facing the problem from slightly different angles, the specific approach used in this
work is based on the so-called U-NETs, which we’ll introduce a few paragraphs
below.

2.1.1 The Sliding Window Approach

Down at its core semantic segmentation is just a classification task repeated for every
single pixel of an image: a possible solution path for acccomplishing this kind of task
would be tracing back the segmentation problem to a single-pixel classification tasks,
repeated for the total number of pixels in the image. This can be done by using a
"sliding window" approach: in its classical setting a CNN classifier is trained to

34

2 – CNNs for Segmentation

express the class membership probability of the central pixel in a small patch: the
input image can be divided into overlapping patches (with opportune padding at the
borders) and fed into an array of classifiers to obtain a matrix of predictions which
we can use make out a segmented version of the original image. A naive version
of this kind of approach with an instance of the same model being deployed for
each classification patch comes with great computational expense, although many
optimizations are possible so that the computational cost of the algorithm does not
scale linearly with the number of pixels.

Figure 2.1: Semantic segmentation using sliding windows [55]

2.1.2 Convolutional Interpretation of Sliding Windows

The most concerning aspect of employing an entire instance of a neural network to
classify an image, one window at the time, is the computation redundancy in the
overlapping regions. The process of sequentially sliding a window across an input
plane should trigger an intuitive association to section 1.5.1 where we introduced the
concept of convolutions. Convolutional layers are fundamentally just very efficient
implementations of the convolution with a sliding kernel operation we just intro-
duced (in appendix B we will actually see that discrete convolution can actually be
expressed as a much simpler and more intuitive matrix multiplication), making it
very similar to the sliding operation used for segmentation. As observed in Sermanet,
LeCun et. al - "Overfeat: Integrated Recognition, Localization and Detection using

35

2 – CNNs for Segmentation

Figure 2.2: CNN Classifier with FC Layers, adapted from [104]

Convolutional Networks" [104], this similarity can be used to evaluate responses over
an extended images by exploiting the inherent efficiency of convolutions.

Let’s suppose we have a CNN classifier like the one in figure 2.2. Temporarily
omitting depth dimensions for both feature maps and filters and just mentioning
the "spatial" dimensions, the figure describes a network that accepts 14 × 14 sized
inputs, has a feature extracting stage made of a 5× 5 convolution followed by 2× 2
maxpooling that creates a 5 × 5 feature map, which we convolve with a 5 × 5
kernel to obtain a single-pixel-wide response (depth dimensions are omitted in this
representation but it shall be clear that response is actually an array of pixels which
dimension depends on the actual number of employed 5 × 5 convolution filters),
this single-pixel layer, lastly, undergoes a final classification stage with two fully-
connected layers to produce the final output response.

Figure 2.3: 1x1 Convolution

36

2 – CNNs for Segmentation

In "Network in Network" by Lin et al. [73] it’s suggested that fully connected
layers can actually be viewed as 1 × 1 × d convolutions : when convolving with
1 × 1 × d filters each 1 × 1 × d slice of the input matrix undergoes a dot product
with the 1× 1× d filter, so that a 1× 1× d convolution of a n× n× d input results
in a n × n output and, by changing the number of filters, different output shapes
can be obtained.

Making a numerical example, let’s see how we can reformulate a fully connected
layer as a convolution step. We start from the fully connected layer f(x) defined by
a weight matrix W and a bias vector ~b:

f(x) = ReLU(W · ~x+~b) ~x ∈ R3

W =
0 1 1

2 3 5

 ~b =
 8

13

 (2.1)

The connection matrixW with its bias vector ~b can actually be seen as two different
1× 1× 3 convolution kernels, each with a single bias value

~w1 =
[
0 1 1

]
b1 =

[
8
]

~w2 =
[
2 3 5

]
b2 =

[
13
] (2.2)

Each convolution can then be computed using the 1.30 definition -notice that we
use the cross-correlation definition instead of the proper convolution one- and the
bias value is added afterwards, so that

fconv(~x) = ReLU

[0, 1, 1] ∗ ~x
[2, 3, 5] ∗ ~x

+
 8

13

 (2.3)

If we use as a numeric input value

x = [1,2,3] ∈ R3 (2.4)

and index the elements of ~x, ~w1, ~w2 as −1, 0, 1, we can apply definition 1.30

~w1 ∗ ~x =
∑

j=[−1,0,1]


0
1
1

 [j]


1
2
3

 [j + 0] = 5

~w2 ∗ ~x =
∑

j=[−1,0,1]


2
3
4

 [j]


1
2
3

 [j + 0] = 23

(2.5)

37

2 – CNNs for Segmentation

so that the convolution layer computes

fconv(~x) = ReLU

 5
23

+
 8

13

 = ReLU

13
36

 (2.6)

Which is exactly the same result we would have obtained via dot product:

f(~x) = ReLU


0 1 1

2 3 5

 ·


1
2
3

+
 8

13


 = ReLU

13
36

 (2.7)

Now that we established that fully connected layers can be interpreted as 1× 1
convolutions we can apply this knowledge to reformulate the sliding windows prob-
lem. Looking at the upper part of figure 2.4 we see the same network as 2.2 but now
the fully connected layers have been replaced by 1 × 1 convolutions. If we want to

Figure 2.4: Efficient Computation of Sliding Windows, adapted from [104]

calculate the response of the same network on a wider, image with 16 × 16 pixels
instead of 14 × 14, using the sliding window approach we would create a 14 × 14
window and slide it over the 16× 16 image to get a 3× 3 output image - if using a

38

2 – CNNs for Segmentation

1 pixel stride - or a 2× 2 image when using a 2 pixel stride.
A way to drastically increase efficiency by sharing most of the calculation between
overlapping regions is to use the same network, with the same convolutions and
weights, directly on the 16 × 16 image [104]. The first convolution layer produces
a 12 × 12 feature map, which dimensions are halved to 6 × 6 by the pooling layer,
the 5 × 5 convolution then does not produce a 1 × 1 input but a 2 × 2 one and
the 1 × 1 convolutions mantain the same space dimensions to the network output.
The same identical network does not produce a single pixel anymore but a 2 × 2
response map where each pixel corresponds to the network’s response at each of the
four positions when sliding a 14× 14 window with stride 2. If the network is made
only of convolution and pooling steps the sliding window stride is determined by the
number and type of pooling stages, this introduces the concept of a native stride of
the classifier as the stride at which the convolutional network is going to produce
output maps when used on extende images.

A classifier network with its fully connected layers reformulated as 1× 1 convo-
lutions can be thought to act as a single filter with an associated snative stride that
is 1 when no poolings are involved and whose outputs have size

O = W − F
snative

(2.8)

where W and F are, respectively, the image and filter sizes.
A way to produce outputs that have the same size as the inputs is counter the

native stride by artificially upsampling the image before feeding it to the network
using, for example, a bilinear or nearest neighbor interpolation. Depending on the
specific application and data characterization this can possibly produce noticeable
artifacts but makes it possible to have 1:1 responses using just a classifying network.

2.1.3 Fully Convolutional Networks

In order to avoid image shrinking one could imagine a network that consists only
of padded convolution layers that preserve the image size across its whole extent,
this kind of network would not need multiple passes for a single prediction and
wouldn’t have fully-connected layers. On the other side a model made only large-
scale convolutions would still be computationally expensive and, unlike traditional

39

2 – CNNs for Segmentation

classifying CNNs, its architecture wouldn’t structurally push the training towards
the abstraction of increasingly complex features in the last low dimensional layers.
CNNs usually extract complex features from the inputs by reducing their dimension-
ality across the network, this downscaling is done using both strided convolutions
and pooling layers, resulting in summarized versions of the features that are mapped
to a classification class using one or more fully connected layer. The general idea
behind the use of low dimensional internal representations to make the network ab-
stract complex features from large inputs can be used to build fully convolutional
segmentation networks by introducing upscaling trainable layers that increase di-
mensionalities instead of decreasing them. These networks would be formed by two
different stages: an "encoding" one that extract a low dimensional representation
of the inputs and a "decoding" stage that uses upscaling layers to recreate high-
resolution output segmentations from low-dimensional internal representations of
the inputs.

2.1.4 Unpooling and Transposed Convolution

To make the "upscaling" part of the network we need layers that were not introduced
in Chapter 1. There are many image processing methods to obtain high-resolution
images from their low-resolution versions that involve some kind of interpolation
policy to assign a value to the extra pixels, such as nearest neighbor rules or bilin-
ear interpolation. These methods do not have trainable free parameters and always
produce the same results, meaning that their behaviour is not going to be optimized
during training . The simplest upsampling method is Unpooling: unpooling can be
viewed as an approximate inverse of the "pooling" operation and creates an high
resolution version of the input image by placing values in fixed locations, the re-
maining pixels can be set to zero -producing what’s called a bed of nails unpooling-
or can be filled in using a nearest neighbor policy. The new positions for the pixels
are not necessarily hard-coded: if the network is symmetrical, the pixels positions
from a pooling layer in the downscaling segment can be used in the corresponding
unpooling layer in the upscaling part to retrieve some of the compressed spatial
information.

Although it’s very common - and often produces good results - to couple a "clas-
sic" deterministic upsampling method with a convolutional layer to mimic "trainable"

40

2 – CNNs for Segmentation

Figure 2.5: Unpooling

upsampling, there is a way of formulating such a layer as a convolutional layer.
Transposed Convolution can be used as a trainable filter for upsampling. The general
idea to comprehend the function of a transposed convolution layer is that it enables
us to go in the "opposite direction" of a normal convolution: from a tensor with the
shape of the convolution output to another that has the shape of the inputs. In fully
connected layers this can easily be achieved by using a weight matrix with trans-
posed shape, but it’s not trivial to get the same functionality with convolutions. The
key to the problem resolution is that discrete 2D convolutions can actually be ex-
pressed as matrix multiplications using Toeplitz matrices, as thorougly explained in
appendix B. Making a simple example in one dimension, we consider a convolution
between two vectors ~x = [x, y, z] and ~a = [a, b, c, d] and convert one of the inputs to
a Toeplitz matrix, such that their convolution can be rewritten as

~x ∗ ~a = X~a =


x y z 0 0 0
0 x y z 0 0
0 0 x y z 0
0 0 0 x y z





0
a

b

c

d

0


=


ax+ bz

ax+ by + cz

bx+ cy + dz

cx+ dy

 (2.9)

The transpose convolution operation can be created from 2.9 simply by transposing

41

2 – CNNs for Segmentation

the first term and using a slightly different padding scheme for the second one

~x∗ᵀ~a = Xᵀ~a =



x 0 0 0
y x 0 0
z y x 0
0 z y x

0 0 z y

0 0 0 z




a

b

c

d

 =



ax

ay + bx

az + by + cx

bz + cy + dx

cz + dy

dz


(2.10)

This formulation is particularly useful because the so-obtained convolution trans-
poses are actually just regular convolutions with the only difference of the padding
rules. The procedure for 2D and 3D matrices is not conceptually different and re-
quires the use of block Toeplitz matrices.
Layers built this way are generally known in literature as UpConvolution or De-
convolution layers: the Deconvolution name is misleading because it may suggest
inverse convolution, which is not what these layers do, the general inspiration for
this name is just that deconvolution layers act in the "opposite" way of convolutions
in terms of tensor shapes.

2.1.5 FCN-32, FCN-16, FCN-8

Thanks to the Transposed Convolution and the Unpooling layers we now can create
contracting structures that extract high-level features followed by expanding sections
that upsample the feature map to the original image size: this is exactly what has
been proposed by Long et al. [75] contextually to the introduction of the concept of
Fully Convolutional Network at CVPR 2015.

Figure 2.6: FCN-32 [75]

Their network had a traditional contracting section made of subsequent convolu-
tions and maxpoolings that was able to extract high-level features from the original

42

2 – CNNs for Segmentation

image and created an high resolution segmentation output, originally using a bilin-
ear interpolation upsampling layer at the end of the chain. It’s easy to notice that
in such a network, called FCN-32 and depicted in 2.6, spatial information would be
gradually lost going down the chain as maxpoolings produce coarser low-resolution
feature maps, the upsampled versions fo these maps would necessarily miss most of
the original granularity of the inputs. To fight this, Long et al. produced two other
networks, FCN-16 and FCN-8, which combined in summation, before the final up-
sampling stage, partially upsampled versions of the feature maps in the lower stages
with the output of pooling layers up the chain: this helped the model recover some
of the localization information that was lost in the last stages while mantaining high
level comprehension of the context.

Figure 2.7: FCN-16 and FCN-8 [75]

As seen in figure 2.8, the additional information helps the network to retrieve
some of the spatial information that was inevitably discarded during the contracting
phases.

Figure 2.8: FCN-32 outputs compared to FCN-16 and FCN-8 [75]

43

2 – CNNs for Segmentation

2.1.6 U-NET

The next step in semantic segmentation using Fully Convolutional Neural Networks
is represented by U-NET by Ronneberger et al. [99], depicted in figure 2.9.

Figure 2.9: U-NET [99]

U-NET, at the first look, appears very different from FCN-32, FCN-16 and FCN-
8 but on a closer inspection, it clearly mantains and improves most of the original
insight:

• the network is no longer a long contracting path with a single upsampling
stage at the end - like the one in FCN-32 - but presents two symmetrical
contracting and expanding stages with the same number of convolution and
pooling/unpooling stages. Each stage is made of two 3x3 convolutional filters
and a 2x2 maxpooling layer.

• the upscaling stages are now Transposed Convolutions, meaning that the up-
scaling parameters can be learned instead of relying on deterministic bilinear
interpolation

44

2 – CNNs for Segmentation

• the idea of combining deep features with the ouptuts of previous poolings to
retrieve spatial information is preserved but implemented in a very different
way: while FCN-16 and FCN-8 use summation to combine upscaled outputs
to pooling layers, in U-NET previous pooling layers are concatenated to the
up-convolution output tensors (if the convolution layers don’t use "SAME"
padding, meaning that the image size across the convolution filters is not
preseserved, the previous layers are cropped to the correct size before being
concatenated).

This kind of network, created for biomedical image segmentation, received spectac-
ularly accurate results in the ISBI 2015 cell tracking challenge, achieving IoU scores
of 0.92 while the second best could only score 0.83, establishing itself as the new
state of the art in biomedical image segmentation.

2.2 From 2D to 3D Segmentation

In the last section we have introduced some of the methods for bidimensional CNN
segmentation: models produce a segmented output starting from a standard 2D
image. There are problems, like the segmentation task we will review in the next
sections, that require us to extend the segmentation framework from 2D images to
volumetric data.
Tumour segmentation in MRI brain volumetric data can be the case: in this scenario
the MRI setup is able to provide a stack of co-registered scans of the brain which
can be interpreted volumetrically, what we want the CNN model to do is provide us
a volumetric segmentation of eventual anomalies in the tissue. Another volumetric
segmentation scenario -which happens to be the final application field of this work- is
the volumetric segmentation of structures in microscopic data: in particular, the final
goal of my work is to use volumetric segmentation techniques to segment cellular
structures in Two Photon Fluorescence Microscopy and Light Sheet Fluorescence
Microscopy volumetric data.
There are mainly two kinds of paths for tackling these problems, one of them relies
on the 2D Convolutional Neural Network segmentation framework explored in the
last section while the other path is to find a native 3D formulation that conforms
to the volumetric nature of the data and need other kinds of convolutional layers to

45

2 – CNNs for Segmentation

be introduced.

2.2.1 2.5D Approaches

Figure 2.10: 2.5D Approach

A possible way to face the task of volumetric data segmentation is to trace it
back to a 2D segmentation task. Assuming that the input data comes in the form
of a sequence of registered axial slices of the volume of which we know the spatial
resolution characterization in the three axes, we can ideally map every every point
of the acquisition data to a point in the 3D space. By serially feeding bidimensional
"slices" of the 3D volume to a specialized 2D CNN model one could create a stack of
probability images where each pixel value correlates to a class membership probabil-
ity, effectively building up a cloud of planarly aligned 3D probability points. Using
isosurface search algorithms like Marching Cubes [76] [70] 3D isoprobability surfaces
can be interpolated from this point cloud, giving us a 3D representation of the seg-
mented objects. Figure 2.10 illustrates this kind of workflow: stacks of images from
the volumetric input are fed through a 2D CNN model and the resulting heatmaps
are combined to form a 3D volume, from this stack of probabilistic representations a
surface recognition algorithm can be used to reconstruct 3D meshes corresponding
to a given probability threshold. This kind of approach could be seen as a naive
interpretation of the problem but has many positive perks: the prediction model
does not require more than one slice at the time to make predictions -this could be
useful in scenarios where the images are produced and elaborated in real time- and
training only involves annotating 2D patches which can be obtained, assuming that
the features are sufficiently homogeneous across the volume, from a small part of

46

2 – CNNs for Segmentation

the original data.

Figure 2.11: 2.5D Approach: Limitations

The main limitation of 2.5D approaches is that, during the slice segmentation
phase, the model cannot benefit from the high correlation of visual features between
subsequent images of the same stack as every slice is processed separately, meaning
that the model can only use 2D contextual information for every single slice while
it totally ignores spatial information along the orthogonal dimension wrt the image
plane. This kind of limitations become particularly critical when the visual context
is not simple enough that the 2D CNN algorithm can accurately segment sections of
the objects of interest in every slice: in many cases marginal slices of an object are
too small to be effectively distinguished from the 2D context, resulting in inaccurate
volumetric reconstructions which appear to be missing marginal details. In figure
2.12 we can see an example of this: it represents a mesh obtained using a surface
recognition algorithm on the predictions of a 2.5D model recognizing neuron somas
in Two Photon Fluorescence Microscopy volumetric data, the top slices presented too
small visual features to be accurately segmented, resulting in inaccurate volumetric

47

2 – CNNs for Segmentation

Figure 2.12: 2.5D Approach: "Cropping" Artifacts

estimation of the object.

2.2.2 3D Convolutions

We’ve seen that 2.5D approaches inherently fail to leverage voxel context from ad-
jacent slices: a way to make use of the discarded 3D information is to redesign the
CNN model using 3D Convolutional layers. 3D Convolution is the natural extension
of the 2D discrete convolution we’ve seen in section 1.5.1 and don’t introduce any
major conceptual difference. In this case both the kernel and the input image are
3D tensors instead of 2D matrices, we can write a 3D version of equation 1.28 just
by using the correct summation indices

S(i, j, k) = (W ∗X)(i, j, k) =
+∞∑

m=−∞

+∞∑
n=−∞

+∞∑
l=−∞

X(i−m, j − n, k − l)W (m,n, l)

(2.11)
or, if we wish, we can switch for the more practical cross-correlation operation

that can be easily defined as

Scross-correlation(i, j, k) = (W ∗X)(i, j, k) =

=
+∞∑

m=−∞

+∞∑
n=−∞

+∞∑
l=−∞

X(i+m, j + n, k + l)W (m,n, l)
(2.12)

48

2 – CNNs for Segmentation

Along with the 3D Convolution, 3D versions of all the other layers like Pooling
layers and Transposed Convolutions can be defined, giving us the building blocks to
make entirely three-dimensional CNN architectures.

2.2.3 3D U-NET

One of the most notable examples of 3D Fully Convolutional Neural Networks is the
3D equivalent of U-NET. 3D U-NET by Cicek et al. [133] was presented at MICCAI
2016 as a novel semantic segmentation architecture that could take advantage of
3D space context, as seen in figure 2.13, its structure is very resemblant of U-NET
(figure 2.9) with the obvious difference that every layer has been replaced by its 3D
equivalent.

Figure 2.13: 3D U-NET [133]

The 3D U-NET paper received more than 600 citations and is surely establishing
a reference point for many CNN segmentation works.This is the foundation for the
3D CNN models used in this work, which closely match this structure and the
working intuitions behind it.

2.2.4 2D CNN vs 3D CNN: General Considerations

Passing from 2D CNN models to 3D CNNs can potentially be beneficial in seg-
mentation task if we consider that 3D CNNs can exploit 3D spatial context that

49

2 – CNNs for Segmentation

2D CNNs inherently discard but training a 3D model poses a series of new and
nontrivial challenges that are related to the very nature of the task.

2D and 3D segmentation, although being naturally linked in a conceptual way,
are two very different tasks.

Let’s say we want to build a 2D semantic segmentation model which can distin-
guish between a foreground and a background class based on a optimized version of
the sliding windows approach, as described in section 2.1.1. the model we’re trying
to train is functionally a monodimensional classifier that predicts a central pixel
class membership (the pixel is either foreground or background) with a patch of
pixels - let’s say 64× 64 - as receptive field. The model implicitly maps a function f
from a space R64×64 = R4096 to the space of possible outcomes, which is R in if the
model predicts a probabilistic output instead of a simple label

f : R64×64 = R4096 → R (2.13)

The problem’s scales change when, instead of predicting just one label from a
single patch like in the sliding window approach, we want to predict probabilistic
segmentation labels with the same size of the input image. Now we’re not mapping
to the real axis, but to a space with same cardinality as the original one

f : R64×64 = R4096 → R4096 (2.14)

When 3D convolutions are taken into account the cardinality of the involved
spaces inflates rapidly: now we don’t have just 64× 64 input pixels but we want to
work with volumetric patches of shape 64 × 64 × 64 so that the new model has to
learn a mapping function such that

f : R64×64×64 = R262144 → R262144 (2.15)

Massively increased dimensionalities mean that by naively passing from a 2DCNN
to a 3DCNN model we would certainly occur in the so-called curse of dimension-
ality: a 3D CNN model cannot work with the same number of examples as a 2D
one as geometrically increasing numbers of examples are needed in order to make
an accurate representation of a probability density in an high dimensional space.

Most of the time one does not have access to such large amounts of additional
data and the only way is to artificially increase the number of samples by data

50

2 – CNNs for Segmentation

augmentation: data augmentation stages have to be carefully crafted in order to
obtain 3D CNN model convergences.

The other thing to take into consideration is the increased computational com-
plexity of the model itself: both training and evaluating phases are expected to take
significantly more resources when compared to the 2D case.

With limited data availability and limited computational resources it’s possible
that the potential advantages of 3D CNNs in segmentation performance wouldn’t
be sufficiently backed up by on-field experimental results in the context of this work
other than in limited and circumscribed cases.

51

Part II

Problem Framing and Methods

Chapter 3

Motivation and Quantitative
Study of the Brain

The human brain, then, is the most complicated organization of matter
that we know.

Isaac Asimov

Understanding the human brain is one of the greatest challenges that the 21st
century science will face: getting a grasp on the inner workings of our central nervous
system at different scales can help us understand ourselves while making leaps in
medical treatments for brain disease and developing new ICT. Current-day neuro-
sciences are extremely developed and prolific but the unsystematic way knowledge
of the brain is developed makes it suffer from major fragmentation. It’s in an effort
to create a common framework for coordinating and powering brain studies through
multidisciplinar interaction that large scale international programs, like the Human
Brain Project or the BRAIN Initiative are born. Such large-scale projects aim to
develop an entirely new paradigm in neuroscience and brain studies by producing
large scale and extensive knowledge with the coordinated effort of multiple research
groups working on many different aspects: from biological research, to physical study
of imaging solutions to computer simulations of models based on experimental data.

To give a sense of how extensive these frameworks are let’s take a look at the
European international effort in quantitative brain study, the Human Brain Project
(HBP) aims to put in place an ICT-based scientific infrastructure organized in four
different main goals, each serving as a catalyst for future research: a Data goal that

53

3 – Motivation and Quantitative Study of the Brain

aims to create extensive brain atlases, a Theory goal that wants to identify what
mathematical principles are at the base of the relationships between different lev-
els of the brain organization as well as a theoretical study of the brain’s ability to
represent store information, an ICT Platforms goal to provide innovative ICT sys-
tems for neuroscience research and, lastly, an Applications goal to develop prototype
technologies based on the brain study results.

3.1 Human Brain Imaging at LENS

The European Laboratory for Non-Linear Spectroscopy (LENS) in Florence, the
Biophotonics group, led by Francesco Saverio Pavone is involved in one of the HBP
subprojects and currently develops techinques for fluorescence microscopy brain
imaging. Having conducted studies on Fluorescence Microscopy imaging of whole
mouse brains, using both Two Photon Microscopy (TPFM) and Light Sheet Mi-
crsocopy (LSFM), the group is now applying the same approaches to large-scale
imaging of human brain tissue. For this kind of imaging to serve as the basis for the
creation of complete atlases of the human brain at cytoarchitectural level and to be
used a solid foundation for other higher-level quantitative studies to build onto, an
interpretative layer has to be added to the "raw" images coming from the microscopy
apparatus. For models to be built onto these atlases, high level information has to
be extracted from large raw volumetric acquisitions which, from a computational
standpoint, are just large matrices of values with no additional information on what
the image is representing and where the objects are. For this kind of information
to be available for computational query, the images need to be segmented, in an
automated way as manual image segmentation is simply not feasible in terms of
human work-hours.

In 2018 the Biophotonics group at LENS managed to achieve automated seg-
mentation of neuron somas in TPFM using Convolutional Neural Networks [80]:
this result made it possible to sequentially process large bidimensional optical sec-
tions of brain tissue and stack the results to create 3D reconstructions of the objects.
This kind of solution takes with it some inevitable artifacts, some of which have al-
ready been covered in Chapter 2. The avoidance of those intrinsic artifacts, along
with the suggestion of a path to improve segmentation performances in the next
future, is the main motivation for this work and for my effort to reformulate LENS’s

54

3 – Motivation and Quantitative Study of the Brain

Figure 3.1: Raw and Segmented Fluorescence Microscopy Data [80]

Figure 3.2: 2D-CNN Segmentation Model

CNN neuron segmentation problem into a 3D native format. The switch from tra-
ditional CNNs to 3D CNNs, from processing images to processing volumes poses

55

3 – Motivation and Quantitative Study of the Brain

a series of new theoretical and technical challenges that need to be addressed and
solved and will be subject of future research. This work’s primary aim is to provide
proof of applicability of 3D Convolutional Neural Network methods to the segmen-
tation problem and not to offer a drop-in replacement solution: as a matter of fact
the increased resource requirements, in terms of memory, GPU and CPU computing
power and human labeled data are likely to require a full redesign of the acquisi-
tion and elaboration process in terms of pipeline and needed hardware. If, on one
side, this kind of switch can potentially not be immediately implemented, on the
other posing a research question in a new direction can potentially bring a change
of perspective on the problem and hopefully help to overcome the limitations of the
current approach.

3.2 Program for the Next Chapters

This work stems from the necessity of finding new approaches to the neuron seg-
mentation problem at LENS. Because of this the choice of this particular route of
action in Deep Learning techniques followed an extended phase of study of both the
biological subject and the physics of the involved imaging methods. Understanding
the subject is a necessary step to think an adequate solution, so we wanted this
work to not only be focused on Machine Learning and Deep Learning aspects of
the proposed models but also to reflect the processes that lead to the choice of a
particular form of Machine Learning model.

The next three chapters will offer a biological, an imaging/physical and a
machine learning framing for the segmentation problem we introduced and par-
tially discussed in chapter 2. If the choice of multiple perspectives that, on a first
glance, do not significantly overlap seems odd to the reader, it is not fully unorthodox
from a modern neuroscientific point of view that a specialist -being him a physicist,
a biologist, a chemist, a mathematician....- has to acquire knowledge out ouf his
initial expertise field in order to come up with new solutions for problems in such
a multidisciplinar environment as the one created by large programs like HBP. In a
sense, we wanted this work to reflect, at least partly, the many-discipline collabo-
rative environment it has been conceived into and hopefullythe next three chapters
will reflect that plurality of views and perspectives.

56

Chapter 4

Fluorescence Microscopy

It was certainly a curious sight to see the tube instantaneously lighted
up when plunged into the invisible rays: it was literally darkness

visible.
Altogether the phenomenon had something of an unearthly appearance

George Gabriel Stokes
On The Change of Refrangibility of Light, 1852

This chapter wants to expand onto the physics and methodology behind the ac-
quisition process of the volumetric imaging stacks of cortical tissue. Two technologies
were involved in the generation of this data, both relying on different aspects of the
phoenomena: Light Sheet Fluorescence Microscopy and Two Photon Fluorescence
Microscopy. In the next sections we will touch upon the basics of Fluorescence Mi-
croscopy and its most relevant principles.

Fluorescence is the emission of light caused by radiative transitions from excited
singlet states of a molecule to the singlet ground state. Excited states are reached via
the absorption of a photon with wavelength generally shorter than the emitted one:
the energy loss is due to vibrational relaxation of the molecule in the excited state,
this shift towards higher wavelengths is called Stokes Shift after Sir George Gabriel
Stokes, who first suggested an explanation for the phoenomena his welll-known 1852
paper On the Change of Refrangibility of Light [114].

57

4 – Fluorescence Microscopy

Records of fluorescence date back to late sixteenth century when Bernardino de
Sahagùn, Franciscan missionary in Mexico, described what at the time were unexpli-
cable luminescences of an infusion of lignum nefriticum, scientifically Eysenhardtia
polystachya, a native plant of Central America: what Sahagùn observed were actu-
ally the fluorescence properties of formononetin, an oxidation product of one of the
flavonoids found in the wood. Three centuries later Sir Gabriel Stokes documented
the properties of uranium glass and fluorite (hence the fluorescency term) that were
observed to emit visible light when exposed to ultraviolet wavelength, isolating for
the first time the real mechanism of fluorescence.

Fluorescence phoenomena serve as base for Fluorescence Microscopy: the main
idea behind the technique is that, instead of illuminating the sample with visible
light and observing in the same spectrum, the sample (generally organic tissue) is
exposed to specific wavelengths that can trigger photon absorption and successive
fluorescence in specific markers, called fluorophores. The variety of available fluo-
rophores makes it possible to selectively study different aspects of the biological
sample depending on their chemical and biochemical properties. Biological samples
can be labelled with fluorescent stains which can be targeted to specific biomolecules
exploiting immunological process by binding antibodies (proteins belonging to the
globulin group, synthetized by B-lymphocytes) or antigens to fluorophores: this tech-
nique is commonly known as immunofluorescence.1 Current knowledge of genetic
manipulation techniques is also used to modify DNA code to make proteins of in-
terest fluorescent: this allows to track those proteins even in live samples.

In the next paragraphs we try to give a minimal overview of fluorescence phoenomenon
in its generalities and shed some light on some of the applications that made this
work possible.

1Immunofluorescence techniques are generally of two kinds: a direct, simpler type uses specific
antibodies obtained by immunizing an animal against an antigene we’re interested in knowing
the spatial distribution, the other indirect process sees the antigene reacting with an unmarked
primary antibody, the antibody-antigene complex is then made visible when the bonding with
a secondary, previously marked, antibody. Many secondary antibodies can possibly bond to the
primary antibody-antigene complex, amplifiyng the fluorescence signal.

58

4 – Fluorescence Microscopy

4.1 The Jablonski Diagram

Jablonski Diagrams, proposed for the first time by Polish physicist Alexandre Jablon-
ski in 1933 [53], are a way of visualizing electronic states of a molecule and the
transitions between them. In Fig 4.1 we see a typical diagram depicting levels and
transitions of a fluorescent molecule, electronic states are represented with thick
lines, whereas coordinated vibrational levels are depicted as thinner lines: in this
case singlet ground, first and second electronic states labeled respectively as S0, S1

and S2, successive lines represent coordinated vibrational levels.

Figure 4.1: Jablonski Diagram

Arrows indicate the possible transitions between levels: radiative transitions are
generally represented by straight lines whereas curved ones specify nonradiative pro-
cesses.
Looking at Figure 4.1 we can see that excited states can be reached from the ground
state via the absorption of one photon, effectively promoting an electron into a
new orbital with higher energy. Absorbption processes usually happen in a few
femtoseconds, not allowing the positional adjustment to equilibrium of the much
heavier nuclei, the so changed charged distribution results in net forces on the nu-
clei themselves causing vibrational mode excitation and successive dissipation in the
surrounding medium (indicated by short dotted vertical lines) until a new equilib-
rium position is reached, these processes happen in very short timescales between

59

4 – Fluorescence Microscopy

10−14 to 10−11 seconds. From here S0 and correlated vibrational states are reachable
via spin-allowed photon emissions, such type of emission is named fluorescence:
this process happens in time spans ranging from 10−9 to 10−6 seconds.

Fluorescence is not the only possible relaxation process and not even the only
optically-observable one. If there’s significant overlapping between different elec-
tronic and vibrational levels, crossover of two states with same multiplicity is pos-
sible, leading to subsequent vibrational relaxation: this whole mechanism is known
as internal conversion and happens in the same timescale as normal vibrational
relaxations. Another concurrent pathway is intersystem crossing: in this case we
have crossover between electronic states with different multiplicity, passing from an
excited singlet state to an excited triplet state, this is a forbidden transition that’s
not allowed by regular selection rules and thus happens in a much wider timescale,
taking anywhere from 10−8 to 10−3 seconds. After intersystem crossing further deac-
tivation may happen through phosphorescence. The decay of a triplet state back
into a singlet state is another forbidden transition due to different spin multiplicity
and the requirement of angular momentum conservation, however spin-orbit coupling
is observed to explain a relaxation of this last restriction letting phosophorescence
ultimately possible: timescales for this last process are extremely large, spanning
from 10−3 to 100 second orders.

4.2 Fluorescence Quantum Yield and Fluorescence
Lifetime

We’ve discussed how an excited electron can undergo radiative and non-radiative
relaxation paths without worrying about introducing some kind of quantification
for what are the relative ratios for the various processes: we shall now introduce the
fluorescence quantum yield as a way of keeping track of this kind of information.
Fluorescence Quantum Yield is defined as the ratio of the number of emitted
photons to the number of absorbed ones

Q = nemitted

nabsorbed
(4.1)

Helping ourselves with a simplified version of the Jablonski Diagram in which we

60

4 – Fluorescence Microscopy

Figure 4.2: Simplified Jablonski Diagram [67]

focus only on processes responsible for return in the ground S0 state we can express
the above quantity in terms of rate constants: in particular we’re interested in the
emissive rate Γ and the rate of non-radiative decay knr 2

Q = Γ
Γ + knr

(4.2)

Lifetime of the excited state can also be evaluated using emissive and non-
radiative rates:

τ = 1
Γ + knr

(4.3)

In case of absence of non-radiative processes the fluorescence lifetime is named
natural lifetime and can simply be expressed as

τn = 1
Γ (4.4)

combining 4.4 with 4.3 and 4.2 we can then write natural lifetime in terms of
fluorescence quantum yields and lifetimes

τn = τ

Q
(4.5)

Finding a way of express Γ in terms of known quantities would help us complete
our picutre: as a matter of fact Γ can be calculated from the fluorophore’s emission

2in knr we’ve summarized all non-radiative processes: if we wish to keep track of single non-
radiative rates we might as well use the notation knr =

∑
knri

61

4 – Fluorescence Microscopy

Figure 4.3: Absorbption and Emission spectra of fluorescein C20H12O5

and absorbtion spectra, which can be directly measured, like the ones depicted in
figure 4.3 for the fluorescein C20H12O5 molecule. Calculations involves nontrivial
integrals that can be numerically computed:

Γ ≈ 2.88× 10−9n2
∫
F (ν̄)dν̄∫ F (ν̄)dν̄

ν̄3

∫ ε(ν̄)
ν̄
dν̄ = 2.88× 10−9n2 < ν̄−3 >−1

∫ ε(ν̄)
ν̄
dν̄ (4.6)

where F and ε are respectevely the emission and absorption spectra and n is
the refractive index of the medium: for fluorescein the obtained lifetime is 4.0± 0.1
nanoseconds.

However, the above formula ignores interactions with the solvent and does not
account for differences between absorption and emission refraction index. Better
results can be obtained accounting for degeneracies in the lower and upper states,
gl and gu, introducing a G = gl/gu multiplicative factor.

4.3 Two-Photon Excitation

Multiphoton excitations are non-linear processes involving the simultaneous absorp-
tion of two or more photons in a single event, in particular two-photon excitation
processes (known as 2PE opposed to single-photon excitation 1PE) see the coop-
eration of two low-energy photons (typically from the same laser source) to cause a
higher-energy electronic transition in a fluorescent molecule. Two-photon absorption

62

4 – Fluorescence Microscopy

Figure 4.4: Simplified Jablonski Diagram Two-Photon Excitation

rate depends on the second power of the light intensity, this effect can be exploited
to increase localization simply by focusing the excitation beam.

Figure 4.5: Two Photon Excitation localization effect [67]

Let’s take the case of a focused beam passing inside a photoluminescent medium:
figure 4.6 quickly summarizes the cases of single-photon and two-photon excitations,
in the 1PE case focusing the beam doesn’t change the total amount of passing light
at a certain position x keeping absorption constant on all the x planes (assuming
neglegible attenuation), when we consider 2PE instead we can see that absorption

63

4 – Fluorescence Microscopy

is highest in proximity of the focus and quadratically drops with distance: this is
due to the fact that absorption rate depends quadratically on the intensity.

The main consequence of the localization of excitation is an increased contrast
and resolution in three-dimensional imaging, other than reduced photobleaching (i.e.
the photochemical alteration of fluorophores such that they lose their fluorescence
properties) and photodamage (biological damage to the tissues due to electromag-
netic interaction) because of the smaller exposed areas, whereas in single-photon
microscopy the entire thickness of the sample would have been subject to photo-
bleaching even if data was only collected from the focal plane. Other advantages
over 1PE techniques are represented by the use lower wavelengths that better pen-
etrate tissue when compared to visible wavelengths used in one-photon microscopy
because of reduced scattering and absorption by endogenous chromophores.

Figure 4.6: Single Photon Excitation vs Two Photon, Image by Xu Research Group,
Cornell University

As a consequence of the highly localized excitation, contributions due to scattered
photons are limited to small focal volumes around the focal points instead of being
spatially extended over the sample: this is one of the reasons why, while single-
photon microscopy generally needs a detector pinhole to allow only light generated
in the spatial region of interest to collected, in two-photon microscopy all photons
collected by the objective constitute useful signal.

64

4 – Fluorescence Microscopy

Because of two-photon excitation small cross sections high intensities are re-
quired: these are possible with te use of Ti:sapphire mode-locked lasers producing
trains of pulses, illuminating small portions of tissue with efficiencies increasing as
the inverse of pulse durations, typically in the order of 100 fs.

4.3.1 Comparing the numbers

Willing to do a more objective comparison between 1PE and 2PE techniques let’s
consider 1PE and 2PE cross sections. Single-photon excitation cross sections are
measured in cm2 and offer an intutive geometrical interpretation, they typically
range from 10−17cm2 to 10−15cm2 and can be seem as effective interaction square
areas of 0.3Å to 3Å side, compatible with fluorophore physical sizes. On the other
hand, 2PE cross sections are measured in GM units (Goppert-Mayer, from the name
of Maria Goppert-Mayer, who elaborated the two-photon absorption process theory),
where 1GM = 10−50cm4s/photon: in this case the geometrical interpretation is not
as trivial.
The use of this unit can be understood by looking at the single-photon and double-
photon cases: in the 1PE case we can express the number of absorbed photons per
second as

N1PE[photons/s] = σ[cm2]I[photon/cm2s] (4.7)

where σ is the 1PE cross section and I is the photon intensity. If we wish to
write down the same quantity for 2PE we shall take in consideration the quadratic
nature of the process: in this case the number of absorptions per second will be
proportional to the square of the intensity

N2PE[photons/s] = δI2[photon/cm2s]2 (4.8)

where we used δ to indicate the 2PE cross section. Comparing the two quantities
we can easily get a grasp of what’s the correct interpretation of GM units.

To better tackle the problem of comparing the two processes we can imagine
2PE cross sections having both a "spatial" and a "temporal" component since both
photons are required to interact with the fluorophore inside a small time window,

65

4 – Fluorescence Microscopy

so that 2PE cross sections can be seen3 as the product of two areas (one for each
photon) and an interaction time: if we assume the spatial component to be compara-
ble with the 1PE one, given that single-photon excitation would be a "spatial-only"
cross section, we can think it to be in the order of 10−16cm2. That would leave us,
for a 2PE cross section in the order of 1GM , with a 10−18s/photon temporal com-
ponent which gives us an idea of what the allowed temporal distances between the
two interacting photons would be.

On the power requirements side, we can compare fluorescence saturation in the
two cases. We start by defining the fluorescence saturation situation as the one
in which emission rates equate absorption ones. Adopting the inverse of a typical
fluorescence lifetime as the emission rate and using an indicative cross section σ =
10−16cm2 we can use equation 4.7 to retrieve the 1PE required intensity:

N1PE = 1
Γ = σI1PE

IPE = 1
Γσ ≈

1
4ns · photons−110−16cm2 = 2.5 · 1024 photons cm−2s−1

(4.9)

The amount of power that a 488nm continuous wave laser would need to bring
a focused diffraction-limited area of (488)2nm2 = 2.4 · 10−9cm2 to saturation can be
calculated. The energy of a single emitted photon would be

ESP = h c

λ
= 6.62 · 10−34J s · 2.99 · 1010cm s−1

4.88 · 10−5 cm
= 4.06 · 10−19 J photons−1 (4.10)

so we can express the irradiance or flux density for such a source as

E488nm = ESP · IPE
= 4.06 · 10−19 J photons−1 · 2.5 · 1024 photons cm−2 s−1 = 1.0MW cm−2

(4.11)

If we multiply the flux density by the needed area we obtain a total needed power
of P1PE,sat = 2.4mW : less than the power generated by a laser pointer.
Two photon excitation, on the other hand, would require both photons to arrive in

3This comparison is to be intended just as a visualization tool and does not describe the actual
physics of the process.

66

4 – Fluorescence Microscopy

a 10−18s time window and be closer than 3Å. To obtain the same N1PE number
of absorbed photons per second given by an I1PE = 1MWcm−2 we would need
intensities in the order of I2PE = 106MWcm−2, 100000 times the 1PE case: these
continuous-wave intensities would be comparable to the ones used in laser welding,
definitely not suitable for biological-tissue application. The loophole here is that
we don’t necessarily need continuous power: mode-locked Ti:sapphire lasers can
output 10−13s pulses at a repetition rate of 100MHz, staying off 105 more times the
intervals that they’re actually on, while the pulse itself is actually 105 times longer
than the time window we need for 2PE events to be possible. Instead of kilowatt-
like consumptions, by using mode-locked lasers, we can reach the needed saturation
intensities using just tens of times the power needed for 1PE microscopy with CW
sources.

4.4 LighSheet Fluorescence Microscopy (LSFM)

Typical aims for fluorescence microscopy generally include finding ways to reduce
photobleaching and phototoxicity, capturing highly dynamic processes in three di-
mensions, improving image quality and minimizing detection contributions of out-
of-focus fluorescence: standard confocal microscopy tends to be generally flawed in
these areas due to intrinsic geometric limits.

Being that illumination and detection share the same light path, a common issue
with confocal microscopy is the unselective illumination of areas outside the focal
plane with consequent photobleaching of non-imaged zones (problem worsened dur-
ing scanning if lightpaths of different patches significantly overlap) or contributions
of said areas in the final image.

Also, scanning of the imaged area is a relatively slow process that’s not suitable
for capturing significantly dynamic processes where temporal consistency of the var-
ious acquisitions forming the image is a strict requirement.

An approach for tackling these problems is represented by the set of strategies
under the common name of LightSheet Fluorescence Microscopy: the main intuition
behind them is the decoupling of illumination and detection paths by routing them
perpendicularly. The specimen is illuminated with a laser light sheet - a laser beam
planarly focused in the focal plane using a cylindrical lens - while fluorescence light

67

4 – Fluorescence Microscopy

Figure 4.7: Confocal and LightSheet Microscopy Illumination and Detection Paths
[48]

from all the illuminated plane is observed on an orthogonal axis using an imaging
sensor (usually a CCD or a CMOS camera), as depicted in figure 4.8.
This setup has two main advantages over standard confocal microscopy: only the
needed slice of the sample is illuminated, thus greatly reducing photobleaching and
phototoxicity effects, and on the other hand, perpendicular observation allows for
entire slices to be captured in a single acquisition, greatly reducing detection times.

The orthogonal geometry of lightsheet setups and the relatively quick acqui-
sition times open up various imaging possibilities that are far less feasible using
classic confocal microscopy: rotations or translations either of the specimen or the
light sheet can be used to achieve multiview microscopy and images from different
illumination/detection paths can be merged to obtain symmetrical resolution in 3D
sliced imaging. LSFM can be combined with 2PE microscopy with all the advantages
described in the previous section.

4.4.1 LSFM-SPIM and LSFM-DSLM

There are multiple geometries for lightsheet microscopes and most of them share
the same two working principles to generate a light sheet: in LSFM-SPIM a laser

68

4 – Fluorescence Microscopy

Figure 4.8: LightSheet Setup [103]

beam is expanded and focused using a cylindrical lens to form an actual extended
light sheet that sections the sample, while in LSFM-DSLM a scanning approach is
used: a "virtual" light sheet is generated by scanning in a single direction a focused
beam perpendicular to the detection axis.

In figure 4.9 we can see a SPIM and a DSLM setup from a top down and a
side perspective.4.9 a) depicts a typical SPIM setup, a laser source of diameter db
is focused though a cylindrical lens - LCV - and adapted to a diameter dh using a
telescopic system formed by LT1 and LT2, the beam, focused on the BFP back focal
plane of the illumination objective OLi wich projects the light on the focal plane of
the detection objective OLd. 4.9 b) is a DLSM setup: here we see no cylindrical lens
but a scanning mirror that sweeps a beam across the illumination path, effectively
creating a virtual light sheet at the focal plane of the detection objective, the height
of the light sheet can be changed by changing the sweep amplitude and the thickness
is regulated by varying the diameter of the incoming beam, allowing flexibility to
the imaging needs.
Compared to SPIM, DLSM’s scanning nature introduces more light, thus higher
photobleaching is to be taken into account when planning acquisitions. During the

69

4 – Fluorescence Microscopy

Figure 4.9: SPIM (a) and DSLM (b) light sheet generation methods [64]

scan only a small region of the FOV produces an image, while there are many out-of-
focus contributions that would be detrimental to detection accuracy: this is generally
taken care of by synchronizing the rolling shutter of the CMOS sensor in such a way
that only the well-focused area at a given time contributes to the image, creating a
"virtual pinhole" that excludes out-of-focus contributions. When confronting DSLM
light sheet to SPIM the former usually has a more uniform intensity profile along
its height, however "real" simultaneous plane illumination is preferred for high-speed
imaging applications as it avoids motion artifacts.

70

4 – Fluorescence Microscopy

4.4.2 LSFM Image Properties and Artifacts

LightSheet microscopy image quality are inevitably affected by interaction of light
with the sample, producing predictable effects in the final image. Interaction with
the sample happens broadly in the forms of absorption and scattering of the
incoming light. Scattering of laser light outside the focal plane produces an increase
in thickness of the lightsheet, therefore affecting slice selection capabilities, this effect
can be significantly attenuated by choosing an appropriate polarization: scattering
in tissue is polarization-dependent so a polarizing filter can be used to maximize
scattering in the focal plane (that doesn’t impact negatively on the image quality)
and minimize out-of-plane scatter events.

Figure 4.10: Light Sheet Interaction with Tissue [124]

Absorption of excitation photons in a dense medium can be described by the
Lambert-Beer law

I(x) = I0e
−µx (4.12)

where I is the light intensity at a given x position, and µ is an absorption coeffi-
cient defined by the medium properties. For an approximately isotropic and uniform
environment, we should have an exponential decay of light intensity across the sam-
ple, this is generally not the case in biological tissues since they present internal
structuring with varying densities and physical properties (good thing, considering
that viewing internal structure should be the main interest of microscopical imag-
ing): what is normally observed is a combination of Lambert-Beer exponential (or
multi-exponential) attenuation and stripe-like shadowing effects of denser area that
are closer to the light source.

One way of mitigating this effect is illuminating the sample from both sides:

71

4 – Fluorescence Microscopy

Figure 4.11: Double-Sided Illumination of the Sample [64]

this can be done using two sources, either simultaneously or in an alternated fash-
ion by keeping half of the image (the well-illuminated part) from both takes, as
schematically represented in figure 4.11.

Figure 4.12: Pivoting the LightSheet [64]

Another way of facing the same problem is by pivoting the light source: by
scanning the light sheet over an extensive angle at kHz frequencies with the use of
a resonant mirror during a single exposure of the camera, striping effects can be
heavily attenuated as the obstacles are homogeneously illuminated from a range of
angles.

4.4.3 MultiView LSFM and LSFM Configurations

LSFM SPIM techniques are naturally affected by scattering and attenuation-related
limitations making areas facing illumination appear with higher contrast and signal-
to-noise ratios than the less exposed ones. This problem can be faced by acquiring
multiple views of the sample in different perspectives: entire z-stacks of the speci-
men viewed from different angles can be obtained by simply rotating the sample, if
acquisition process of a stack is fast enough (or the processes inside the sample slow

72

4 – Fluorescence Microscopy

enough) to keep different stacks compatible with each other.
Multiple views can then be combined together to obtain global higher-quality infor-
mation on the sample, an example of that is the possibility represented by perpen-
dicular acquisitions: z-axis resolution is almost always lower than resolution in the
detection plane and ,ideally, low resolution in such direction in one dataset can be
improved by exploiting higher planar resolutions in the complementary dataset.
To merge multiple-angle z-stacks into higher-quality 3D data, computational ap-
proaches for deconvolution of multiple views based on point spread functions recorded
from different perspectives have been thoroughly explored, though they suffer from
several drawbacks. High precisions in both specimen rotation and rotation axis po-
sitioning are needed, but very difficult to achieve, often making images obtained by
specimen rotation inherently misaligned: this problem can be confronted from the
perspective of fine motor control or by selecting fluorescent fiducial markers inside
the specimen itself.
Another problem is the time-related dataset incompatibilities due to biologic pro-
cesses happening in the period between two acquisitions.
These and other acquisition problems can be dealt with by selecting a particular

Figure 4.13: SPIM Configurations [64]

73

4 – Fluorescence Microscopy

LSFM geometry, in figure 4.13 we can see a schematic selection of the most common
configurations: a) represents the standard setup with an orthogonal light source and
detection path, b) illustrates a three-lens SPIM where a second illumination path
generates an additional light sheet to illuminate the sample, c) can be exploited
to tackle the problem of simultaneous multi-view imaging [63] with the addition of
a separate detection/illumination path, d) ultramicroscope configurations are typ-
ically designed around large samples and finally e) dual inverted SPIM (diSPIM)
setups provide multiview imaging by combining two different illumination/detection
paths in two optical objectives, alternating illumination and detection. The last one
is the particular setup used for data acquisition.

4.4.4 Problems Related to Data Handling

LightSheet microscopy, especially in its 3D multiview variants, can generate large
volumes of data when high spatial and temporal resolutions are taken into account:
data quantities can be orders of magnitude higher than the ones in conventional
confocal microscopy, reaching sometimes the same sizes and stream rates of some
CERN experiments [96]. Knowing this, real-time elaboration needs to be wisely
planned as every step of a pipeline with such massive quantities of raw data is
almost assured to be a bottleneck if extra effort is not put into the design phase:
everything, from single storage devices writing and reading speeds, to network cards
and switches needs to professionally selected ahead to reflect the current (or even
near-future) state of the art in the IT panorama.

In figure 4.14 a) we have a comparison of the amount of data generated over
24h by confocal laser microscopy, SPIM using CCD sensors and SPIM using cMOS
sensors: the need of difference in approach emerges clearly from a quick size compar-
iso. Figure 4.14 b) offers a comparison of typical hardware differences in designing
pipeline for CLSM and SPIM technologies, 4.14 c) table provides examples of sug-
gested pc setups for SPIM data visualization and handling.4

4specifications are relative to year 2015, when the figure was generated: while 10 Gbit network
speeds, storage and memory figures are still reasonable options today, for GPU memory NVIDIA
at the present day (2019) offers way more capable graphic processors even at consumer-grade
with RTX-2080Ti GPUs having 11 GBs of GDDR6 onboard memory while dual CPU workstation
motherboards, in AMD environments, are rapidly getting replaced with EPYC sockets offering up
to 64 phyisical cores (128 hyperthreads) with accessible pricetags.

74

4 – Fluorescence Microscopy

Figure 4.14: Data Generated in SPIM LSFM [96]

Distinctions need to be made between cold, warm and hot data blobs with care-
ful weighting of write speed/access speed/per-gigabyte cost trade-offs, selecting the
appropriate storage mean that can ideally range from long-term tape back-up for
cold data to NVMe-connected SSDs for the hottest data blobs. Data routing prob-
lems are only one face of the medal: all this data needs to be elaborated and custom
software has to be designed with heavy parallelization in mind. On the computing
side, elaboration hardware is to be specifically tailored for the application needs.
These aspects needs to be evaluated by professional figures with prior expertise in
the field to not result in catastrophic bottlenecking.

75

Chapter 5

A Biological Framework

The brain is a world consisting of a number of unexplored continents
and great stretches of unknown territory.

Santiago Ramon y Cajal

The work of 3D neuronal segmentation is set in a well-developed brain research
context that branches off in a large variety of approaches: a pre-condition to every
single one of those methodological views is a basic - at least - comprehension of
the underlying biological framework. In this section we’re going to remark some
basic neurobiological aspects to get a firmer grasp of the problem, explore a few
problematics and nodal points in brain tissue imaging and then we’ll proceed to a
quick overview of some scientific approaches - other than fluorescence microscopy -
that serve us as a baseline to compare results.

5.1 Neural Tissue

The vertebrate nervous system is formed by the Brain, the Spinal Cord, which
together compose the so-called Central Nervous System, the Sensorial Organs, and
by all the nerves that interlink those organs with the rest of the body, composing
the Peripheral Nervous System. Human brain tissue is composed by an order of 1010

cells which can be distinguished in two main classes: neural cells(neurons) are
highly differentiated cells which can transmit electrical and chemical signals while
there are many types of cells that serve as structural and functional support for

76

5 – A Biological Framework

the neurons that go under the name of glial cells or neuroglia1. While neurons
are characterized by membrane excitability and conductivity, making them fit to
conduct signals using a membrane depolarization wave mechanism, glial cells don’t
share such properties.

5.1.1 Neurons

Each neuron is composed of a cell body, the soma, that hosts the nucleus many
cytoplasmic organelles, short cytoplasmic processes known as dendrites which pas-
sively conduct neuronal impulses coming from other cells, and a long cylindrical
projection that actively propagates signals from the cell body to other neurons,
the axon.Neurons can communicate via some specialized membrane regions called
synapses that are located at the terminations of both the axon and the dendrites.

In the central nervous system neural tissue shows a well-defined histological con-
figuration: the neuron somas, along with their dendrites and the initial tract of the
axon that’s not embedded in myelin (see below in the glyal cell section), aggregate
to form grey matter which is localized in the outermost part of cerebral and cere-
bellar hemispheres (called cortex), in the central part of the encephalon and in the
spinal cord. Axons embedded in myelin that emerge from the gray matter form the
white matter, which occupies the central part of cerebral and cerebellar hemispheres
and the external part of the spinal cord.

Neurons present themselves in different forms, varying in number and ramifi-
cations of the cytoplasmic processes, length of the axon and soma’s dimensions
(ranging from 4µm in cerebellar granule cells to 100µm for motor neurons in the
spinal cord) and can be classified by different criteria.

By classifying them relatively to cellular body morphology and ramification of
the cytoplasmic processes we can find four different categories, as depicted in figure
5.1:

1the name originates from the Greek γλια "glue", which suggest initial assumptions of a
structural-only function of those cells, it is later discovered that architectural purpose is just is
just one of the many roles that this class of cells play.

77

5 – A Biological Framework

Figure 5.1: Neuron Shapes [120]

1. Unipolar neurons They have a single extension, mainly present in the ma-
ture human body as photoreceptive neurons and olfactory neurons.

2. Bipolar Neurons They have two extensions: an axon and a main dendrite,
in humans are present in cochlear ganglion the vestibular ganglion an in the
retina.

3. Pseudo-unipolar Neurons Spherically shaped, they have a main extension
that generates from the cellular body and then ramificates in a T shape, a
branch directed peripherically and a branch going towards the CNS, both
processes share the same morphological axon properties but have different
functional behavior: one acts as a dendrite, conducting neural impulses towards
the cell body, the other acts as an axon, conducting from the neural body to
the CNS. Such neurons can be find in cranial nerve ganglia and in the roots
of the spinal nerves.

4. Multipolar Neurons They have many dendrites, allowing connection to
many other neurons and a single axon, they are the most numerous in the
CNS and can have different shapes: pyramidal shape, as the pyramidal neu-
rons in the cerebral cortex, flasklike as Purkinje neurons in cerebellar cortex

78

5 – A Biological Framework

and star-like as the motor neurons in the spinal cord.

5.1.2 Neuroglia

Neuroglial cells are 10 times as many as neural cells and form a dense network
that embeds bodies and processes of the neurons, providing both mechanical and a
metabolic support. They are classified as astrocytes, oligodendrocytes, microglia and
ependymal cells in the CNS, Schwann cells and satellite cells in the PNS. Since our
areas of interest are located in the CNS we’re going to spend a few words on the
glial cells found there, overlooking PNS glial cells.

Figure 5.2: Different types of glial cells

Astrocytes

Astrocytes form the largest cell population amongst glial cells, they present 8µm
wide cell bodies and many cytoplasmic projections that link neurons to their blood
supply while forming the blood-brain barrier. Astrocytes influence the chemical en-
vironment of neurons by removing excess potassium ions and take part in the

79

5 – A Biological Framework

metabolism of glutamate and gamma-aminobutyric acid (or GABA) neurotrans-
mitter, removing them from synapses and methabolizing into their precursor ammi-
noacid: glutamine. It has been shown that astrocytes, although they can’t produce
long-distance signals, can "communicate" by opening membrane channels for Ca2+:
neuronal activity can directly influence astrocytes and they can influence back neu-
rons by regulating local blood flow.

Oligodendrocytes

Oligodendrocytes show slightly lower dimensions than astrocytes and are charac-
terized by few cytoplasmic processes. There are two different classes of oligoden-
drocytes: satellite oligodendrocytes are present in grey matter, in close contact with
neuron somas and processes while interfascicular oligodendrocytes are found in white
matter, forming row structures between axons and myelin fibers. The main function
of oligodendrocytes is to to deposit myelin around axons in the CNS, providing
insulation of the axon itself and allowing for better signal propagation.

Microglia

They’re the smallest glial cells and actually are specialized macrophages charac-
terized by small and irregular cellular bodies with many thin and short dendritic
extensions. They’re observed to increase in number in correspondence of damaged
tissue areas: they’re capable of cytokine and hydrolytic enzyme production and their
function is to protect neurons of the CNS by phagocytosis of damaged or degenerate
neuron fragments.

Ependymal cells

Ependymal cells - or ependymocytes - form a lining of ventricular cavities of the
encephalon and the spinal cord central canal. They’re involved in the creation and
secretion of cerebrospinal fluid: within the brain ventricles a population of ependymal
cells and capillaries form a structure, called the choroid plexus which is responsible
for the production of the cerebrospinal fluid.

80

5 – A Biological Framework

5.2 Anatomical framing

Figure 5.3: Main regions of the Central Nervous System [57]

The central nervous system is composed by the the brain and the spinal cord.
The spinal cord can be considered the simplest part of the CNS: it extends from
the skull base roughly to the first lumbar vertebra, it receives sensory information
from the skin, the muscles of the torso and the limbs and contains motor neurons
that arbitrate voluntary movements and reflexes. Our subject of interest, though, is
located in the brain. Brain and can be divided into six distinct regions: the medulla
oblungata, the pons, the cerebellum, the mesencephalon, the diencephalon and the
cerebral hemispheres or telencephalon, we’re particularly interested in the last. The
cerebral emispheres are the widest area of the CNS, they comprehend the cerebral
cortex, the white matter underneath it and three deeper formations: the basal gan-
glia, the amigdala and the hippocampus. Cerebral emispheres are involved in sensory,
cognitive and motor functions as well as in memory and emotion, they’re linked only
by the corpus callosum. The cerebral cortex, that is the outmost region of the cere-
bral emispheres, is responsible for higher functions such as the planning of actions,
it’s divided into four lobes: a frontal lobe, a parietal lobe, a temporal lobe and an
occipital lobe.

81

5 – A Biological Framework

The Neocortex

The outermost region of the cortex and the closest to its surface is called the neocor-
tex : here happens most of the neural activity and from here comes the tissue we’re
analyzing with CNN segmentation techniques. The neocortex is organized in vertical
columns and each of them is organized in six different layers, progressively numbered
from the outermost layer to the innermost, in direction of the white matter. We can
see a schematic representation in figure 5.4.

Figure 5.4: Layers of the Neocortex with different staining methods [57].

• Layer I Called the molecular layer, has very few neurons and cells in itself and
mainly contains dendrites from lower layer cells and axons making connections
to other cortex areas.

• Layer II Mainly contains granule cells and it’s then called external granule
cell layer, its function is to receive inputs from other areas of the neocortex.

• Layer III Called external pyramidal cell layer, it’s made up of pyramidal
cells: neurons in the lower part of layer III are generally bigger than those in
the higher part of it. Along with neurons of layer II, these neurons mediate
intracortical communication as their axons generally project to other neurons
of the same cortex areas.

82

5 – A Biological Framework

• Layer IV Contains a large number of small spherical neurons so it’s named
internal granule cell layer. Granule cells in this layer receive sensory input and
relay it to adjacent neocortex column. In the primary visual cortex it’s thick
enough to be divided into three subsection.

• Layer V It’s called Internal pyramidal cell layer and it’s populated by pyra-
midal cells: these pyramidal cells are bigger than those in layer III, their axons
create the principal outward links of the neocortex and projects to other cor-
tical areas and subcortical structures.

• Layer VI Many different neurons form this layer which is then called Mul-
tiform layer, it’s the closest to the white substance and it’s responsible for
receiving and integrating information from the brainstem.

Figure 5.5: Brodmann map and neocortex layers in different cortical areas [57].

The thickness of the layers and the detail of their functional organization varies
thoughout the cortex: using as criteria cell dimensions, packing and relative promi-
nence of layers above and below layer IV, in 1909 Korbinian Brodmann - early
student of the cerebral cortex - divided the cerebral cortex in 47 different regions

83

5 – A Biological Framework

[13]. These divisions, known as Brodmann maps have been corrected, refined and
improved in the years and are the most widely known and cited cytoarchitectural
organization of the human cortex. In figure 5.5 we can see a Brodmann map along
with sections of the neocortex in different cortical areas.

Inside the neocortex information exchange happens via both feed-forward and
feedback connections, depending on the specific cortical area. Neocortical neurons
are often organized in column structures traversing layers. Every cortical column
has a diameter of millimeter fractions and neurons from the same column tend to
share similar reaction properties, suggesting that they are part of local information
elaboration networks: columns are thought to be the fundamental computational
modules of the neocortex.

5.3 Studying the Tissue

There are many ways of observing the tissue involving completely different technical
approaches and each one of them helps to shed light upon particular aspects. A com-
mon approach is embed the tissue in a solid material that support thin sectioning,
slice the tissue itself using a microtome and successively stain the obtained sections
for optical study. Microtomes can be conceptually as simple as a razor blade Most
microtomes share the same basic functionality having a cutting edge with different
properties depending on the material it’s made of, a specimen holder and a system
of relative positioning of the specimen to the knife. These methods come with the
disadvantage of deformation of the tissue, other than the inevitable destruction of
the sample.

5.3.1 Staining

Since most cells are essentially transparent, contrast is generally introduced using
staining techniques.

"Classic" Techniques

Routine histology uses a combination of hematoxylin and eosin, commonly referred
as H&E. Hematoxylin is a basic stain with a purple color and stains basophilic

84

5 – A Biological Framework

structures like chromatin and the ribosomes, while eosin is an acidic stain with a red
color that stains acidophilic parts of the tissue. There is a high number of techniques
other than H&E, each one makes it possible to highlight different structures and
properties of the tissue. Looking back at figure 5.4 we can see some examples of
"classic" staining techniques: Golgi staining is a silver-based staining method that
uses potassium dichromate and silver nitrate to induce microcrystallization of silver
chromate inside the neurons to make axons and dendrites optically visible, Nissl
staining uses basic dyes to highlight negatively charged nucleic acids to mark cell
bodies.

Immunohistochemistry (IHC)

Immunohistochemistry staining techniques exploit antigen-antibody binding prop-
erties to selectively identify specific proteins in the tissue. Antibodies can be con-
jugated to enzymes that catalyse a color-producing reaction: this is the case of
immunoperoxidase staining in which an antibody is tagged to the enzyme peroxi-
dase. An antibody can be tagged to a fluorophore instead, such as fluorescein: this
makes the tagged proteins visible in fluorescence microscopy.
Tissues studied with the two-photon apparatus were treated with a NeuN antibody,

Figure 5.6: TPFM segmented view of brain tissue. [80]

that recognises the NeuN protein, present in neurons, and identify their somas: this
marking is the one seen by the CNN model. Neural tissue was also treated with a

85

5 – A Biological Framework

secondary marker, ab150080: the combined use of different markers offers a differ-
ent perspective on the tissue and helps in the human labeling phase. Multistaining
can be integrated in a multi-view model as part of a future development stage. In
figure 5.6 we can see an example of an already segmented (yellow contours) view
of a tissue sample in two-photon microscopy from [80] paper: the NeuN marking
is represented by the red channel of the image while the green channel traces the
secondary marking.

5.3.2 Tissue Clearing

Mechanical sectioning of the tissue, other than inevitably leading to the destruction
of the sample itself and introducing significant structural deformations, is a time-
consuming process: serial acquisitions for tridimensional reconstruction of a tissue
volume is, in most cases, straight up not feasible.
Optical sectioning of tissue is normally hampered by opaqueness of the tissue itself:
some form of clearing is to be implemented to render the sample optically accessi-
ble. Tissue opaqueness is due to both absorption and scattering events, though the
latter is to be considered the principal component. Biological samples are largely
constituted by molecules characterized by high refractive index, such as lipids and
proteins, while they’re immersed in relatively low refractive media like water.
Refractive index of dry tissue can be estimated to be around ndry = 1.50 which is
considerably distant from the refractive index of water nwater = 1.33: the solution
strategy is to reduce as much as possible the mismatch between refractive indexes
either by removing some components, like lipids, or modifying their optical proper-
ties. Final refractive indexes nclear, according to the particular technique used (more
than 20 approaches have been proposed in literature during the years), can range
from 1.38 to 1.56. The particular clearing method choice is not a trivial one as one
has to carefully weight pros and cons of every procedure, aiming to both mantaining
high transparency of the sample and preserving endogenous fluorescence or, alter-
natively, allowing staining methods like IHC. Also, these evaluations must take into
account possible photobleaching or photoquenching effects.
Different categories of approaches are possible, one of them is the immersion of
the sample in a mixture of benzyl alcohol and benzyl benzoate, simply known as
BABB (Benzyl Alcohol Benzyl Benzoate), since BABB is unmixable with water,

86

5 – A Biological Framework

previous accurate dehydration of the sample using ethanol is required. Since organic
solvents are in some cases observed to cause fluorescence quenching, protein-friendly
acqueous environments are sometimes preferrable and many water-based solutions
with moderate (n < 1.48) refractive indexes are available.
It’s possible to simultaneously tackle the problem from the other side by lowering
the effective refractive index of the proteins or by removing lipidic components using
polyalcohols. Lipid removal can result in protein content loss: tissue transformation
techniques have been developed to mantain proteins by crosslinking them to some
form of gel mesh. The proven state of the art in this regard is represented by the
CLARITY method [21] and its derived procedures: protein structures are placed
into a polyacrylamide hydrogel scaffolding so they remain in place when lipids are
removed by detergents, the sample is then submerged in a refractive index matching
solution to render it transparent. A more recently derived method named SWITCH
replaces the polyacrylamide mesh with a more stable glutaraldehyde one that allows
for more efficient IHC staining. In the original procedure a commercially available

Figure 5.7: Mouse brain cleared with CLARITY procedure and matched with a
FocusClear solution [21]

solution with n = 1.45 named FocusClear - the composition of which is a trade
secret - is used but cheaper "open-source" alternatives are available: an example is
2,2’Thiodiethanol - or TDE - with n = 1.42 which has been proposed as an alter-
native solution [24].
There’s no "absolute best" clearing approach but the most adequate methodology
is dictated by a number of factors, including the type of involved sample, the kind
of target to observe (are we observing endogenous fluorescence, like in the case of

87

5 – A Biological Framework

transgenic mice, or are we immunostaining an ex-vivo sample?) and the instrumen-
tal or economical limitations.
LightSheet Fluorence Microscopy typically uses 1PE illumination, linearity of exci-
tation makes the whole technique sensitive to light scattering inside the sample so
the clearing technique choice should take into account requirements for whole sample
uniform high transparency. Confocal two photon microscopy on the other hand is
much more sensible to optical aberrations, requiring specific lenses corrected for the
refractive index of the chosen solution and it’s greatly limited by the imaging speed
of point-by-point image reconstruction. Long-term stability of the sample is to be
taken into account, but at the same time nonlinear excitation improves localization
and relaxes requirements on high transparency.

5.4 Examples of Other Imaging Approaches

Fluorescence Microscopy is not the only imaging approach, comparison between
fluorescence imaging and other imaging techniques is useful to get a baseline to
measure results against: here we introduce two methods that can possibly serve as
large-scale references.

5.4.1 Magnetic Resonance Imaging

Important results in brain imaging and tractography have been achieved by Magnetic
Resonance Imaging MRI and Diffusion Magnetic Resonance Imaging DMRI, these
methods are extremely useful to large-scale brain analysis of living patients with
virtually no detrimental consequences and are routinely used for diagnostic purposes.
On a finer scale, huge quantities of human brain fiber tracts data have been collected
during the last 15 years giving a substantial comprehension of large-scale connections
in the human brain, this data can possibly be integrated with the microscopic data
that Fluorescence Microscopy is creating a multi-scale comprehension perspective
of the brain inner workings.

88

5 – A Biological Framework

5.4.2 Optical Coherence Tomography

Optical Coherence Tomography (OCT) can provide volumetric reconstruction of
tissue with micrometric resolution and video-like rate speeds. Optical imaging such
as fluorescence microscopy can be complementary coupled with Optical Coherence
Tomography: OCT has been utilized for optical brain tractography resolving up to
1µm resolutions exploiting intrinsic optical contrast in all three dimensions and,
combined with optical clearing, can be used to resolve myelinated fibers both in
vivo and ex vivo.

89

Chapter 6

CNN Models and Methods

Is learning better networks as easy as stacking more layers1?

He et al. - Deep Residual Learning for Image Recognition [44]

Two different classes of Convolutional Neural Network models were explored: a
2D Fully Convolutional model in a 2.5D segmentation setup and a native 3D CNN
model. The two networks share the same architectural intuitions as they’re inspired,
respectively, by Ronnenberger’s original U-NET [99] and 3DU-NET [133] by Cicek et
al., which represent the current state of the art in CNN-based image segmentation.

An improvement to 3D UNET is then proposed by integrating the problem in a
Residual Learning framework [44].

Both 2D and 3D CNN models work in a patch-based mode, meaning that they’re
not exposed to the entire image field but only to relatively small patches (2D squares
in the first case, 3D cubes in the other case). This approach has been chosen for
two order of reasons: one related to resource availability and the other to model
versatility.

Trivially, the first reason is that training a convolutional model with large inputs
is too computationally expensive for consumer hardware like the machine I used in
this work as all the model’s tensors (both the inputs, outputs and training variables)
are to be allocated in single-digit gigabytes VRAM GPU memory.

On the other side adopting a patch-based approach allows us to decouple model

1Spoiler alert: it’s not.

90

6 – CNN Models and Methods

input sizes from the actual input image size and, if a good patch merging strategies
are implemented, the model can be scaled to arbitrarily large inputs in a size-agnostic
way. This setup effectively produces an intermediate approach between the sliding
windows philosophy described in section 2.1.1 and the "pure" fully convolutional one.

Another focus in this chapter will be the a 3D patch-based reconstruction algo-
rithm I coded specifically for this context that aims not only to fuse together patches
while suppressing border artifacts, but also to reduce prediction noise by exposing
the network to multiple transformed views of the same input volume and averaging
the responses.

6.1 2D Model

The 2D network model serves as a baseline for 3D CNN reconstruction and it’s based
on U-NET, which we introduced in 2.1.6, with a few structural changes.

6.1.1 Architecture

The model is designed to work with 64 × 64 wide single-channel images, and is
composed of a total of 52 different layers, organized in three sections:

• a contraction phase made of 4 consecutive downsampling blocks

• a single-block bottleneck phase

• an expansion phase made of 4 upsampling blocks

The downsampling blocks are composed as

• a Convolution layer, with a nfilters convolutional filters, a 3x3 kernel and a
ReLU activation function

• a BatchNormalization layer

• another Convolution layer with same characteristics as the previous one

• a 2× 2 MaxPooling layer

91

6 – CNN Models and Methods

where the number of convolutional filters nfilters increases with the layer depth: 16
filters for the first stage and, respectively, 32, 64, 128 filters for the subsequent blocks.

The bottleneck phase is made of

• 256 Convolution filters with a 3× 3 kernel with ReLU activation function

• a BatchNormalization layer

• 256 other Convolution filters, same characteristics as the first layer

• another Batchnormalization layer

The network decontracts features through upsampling blocks that are made of:

• a 2×2 Transposed Convolution layer, with same number of filters nfilters as the
symmetrical downsampling block in the contracting phase, that upsamples the
features

• ta Concatenation with the BatchNormalization output in the symmetrical
block

• a BatchNormalization layer

• a Convolution layer with nfilters 3× 3 filters and ReLU activations

• a Dropout layer with same kdrop dropout ratio as the symmetrical downsam-
pling block

• another Convolution layer, same specifics as the previous one

• a BatchNormalization layer

The model’s output, lastly, goes through a sigmoid activation function so that
the final output is a float image with values in [0,1].

92

6 – CNN Models and Methods

Convolution Paddings: VALID vs SAME

There are some structural differences between this model and the one proposed in
[99]: in the original work convolutional filters were applied in an unpadded mode
meaning that at every convolutional step border pixels of the feature maps were lost,
this, on one side, made the network’s outputs smaller than the inputs, and on the
other made it necessary to use cropping strategies during the concatenation phases.

Figure 6.1: SAME Padding

Figure 6.2: VALID Padding

The original paper does not go into much detail on the reasons behind the choice
of "VALID" convolution strategies instead of "SAME" ones but they can be inferred
easily: in a "VALID" convolutional operation only real pixels are part of the com-
putation, meaning that there are potentially no artifacts due to "spurious" values

93

6 – CNN Models and Methods

being considered in the computation. Zero-paddings, on the other side, by artificially
introducing zeros at the image borders, tend to produce spurious results in those
pixels of the final feature map that are exposed to less information, resulting in bor-
der effects. While the use of unpadded convolutions and cropping possibly reduces
border effects in the outputs, the patch-based implementation I envisioned for this
setup made me prefer to address this problem at the reconstruction stage rather
than embed it structurally. Using "SAME" paddings made it possible to achieve a
better architectural symmetry, letting symmetric blobs directly concatenate without
introducing any cropping strategy. Another advantage of using padded convolutions
is that outputs could be made to have the same size of the inputs, making it al-
gorithmically easier to obtain full-scaled predictions over extended inputs. More on
this topic will be covered in the Reconstruction Strategies section.

6.1.2 Data Augmentation

The above depicted model, once compiled, leaves us 905.681 trainable parameters: a
zero-order statistical evaluation would find it reasonable to assume that model con-
vergence would need an amount of training examples that’s similar to the number of
free parameters. An exaustive statistical discussion of model convergence in terms
of free parameters and effective examples would be both arduous and lengthy, the
reader will be redirected on specialistic tractations of such themes for such kinds
in-depth analysis: we limit ourselves to point out that, even if Convolutional Neural
Networks variances can converge with way less examples than the number of free
parameters, thanks to both regularization strategies and intrinsic a-priori assump-
tions on the data distributions that can be though as hard-coded on a structural
level, the number of labeled examples provided in a dataset is rarely large enough
for a model to successfully train without any data augmentation. Limited quanti-
ties of segmented data require us to virtually extend the dataset in a statistically
meaningful way by developing a data augmentation pipeline.

In the 2DCNN case a pipeline for data augmentation was created: at each training
step the training examples had indipendent probabilities to undergo one or more of
these transformations:

Horizontal Flip : inversion of the horizontal coordinates of the image.

94

6 – CNN Models and Methods

Vertical Flip : inversion of vertical coordinates.

Random rigid rotation : random rotation by an integer multiple of 90◦

Transposition : exchange of vertical and horizontal coordinates.

Random Brightness and Contrast Adjust : application of a linear LUT of the
type xt = a ∗ x + b where a is randomly sampled in a range between 0.8 and
1.2 and b is sampled in the range −0.2 and 0.2.

Addition of Gaussian Noise : Addition of Gaussian noise sampled from a distri-
bution with a variance that’s randomly selected in a range between 0.01× 255
and 0.01× 255.

Figure 6.3: Data Augmentation Transformation Examples

More complex transforms are also possible but temporarily discarded in order
to mantain acceptable computation times2 Randomly transforming each image in

2Even if computation times in transformations like grid-based distorsions can be added in
reasonable times for the 2D images, they can be extremely lenghty for 3D patch augmentations.
Since we want both the 2D and 3D model to share most of the premises for a reasonable comparation
we try not to give one of the models unfair advantages with respect to the other and try to avoid
implementing conceptually different types of data augmentation transforms.

95

6 – CNN Models and Methods

the dataset, at runtime, produces an effective dataset of plausible examples that is
way larger than the original. The augmentation process is beneficial to the training
as long as the transformed images are likely to have been drawn from the "real"
distribution: all the applied transformation should produce results that don’t differ
from the inputs in critical ways (an example of the validity limitations of such
transformations would be the automotive dataset example in 1.6.2).

6.1.3 Training

The model was trained using the Adam algorithm described in 1.3.1 using an initial
learning rate η = 0.001 and the terms for the moving averages for gradient moment
estimation being set at β1 = 0.9 and β2 = 0.999. An extra policy was used to sequen-
tially reduce the learning rate η when the validation loss stagnates for more than 5
epochs. The weights were randomly initialized using the methodology descripted in
by Glorot and Bengio in [40]: for each hidden unit samples from a uniform distribu-
tion within −l, +l are drawn, where l is

√
6

fin+fout
, fin is the number of input units

in the weight tensor and fout is the number of output units in the weight tensor for
each hidden unit.

The chosen loss function is the binary cross-entropy function described in 1.18,
while both accuracy and Dice score metrics were monitored during the training.

6.2 3D Model

The 3D Neural Network is modeled after 3D U-NET [133] and tries to exploit
the same architectural intuitions of the 2D network in a 3D framework. Resource
constraints make it necessary to use reduced the sizes of receptive fields: in this case
inputs are monochrome volumes of 64× 64× 64 voxels.

6.2.1 Architecture

As in the 2D model, the architecture includes a downsampling a bottleneck and an
expanding phase:

the downsampling section is composed of three downsampling blocks, each built
as a sequential combination of two Convolutional Blocks followed by a 2 × 2 × 2

96

6 – CNN Models and Methods

Figure 6.4: 3D CNN Model

Maxpool layer, where I defined Convolutional Blocks as a simple sequence of

• A 3D Convolution layer of the type in 2.2.2 with nfilters 3×3×3 convolutional
filters, with "SAME" padding and 1× 1× 1 stride

• A BatchNormalization layer

• A Dropout layer

• A Relu activation function

The second convolutional block of every downsampling block has two times the filters
as the first one, the number of filters is derived as

nfilters = (2d) ∗ nbase (6.1)

where d is an index representing depth of the block (0 for the first block, 1 for the
second, 3 for the third) and nbase is a base number of filters, set to 16.

The bottleneck part is composed of two subsequent convolutional blocks of the
above type with nfilters(3) = 128 and 2× nfilters = 256 filters.

The Upsampling phase is symmetric to the Downsampling one, with three Up-
sampling blocks made of

• A 3D Transposed Convolution layer of the type in 2.1.4 with nfilters 2× 2× 2
transposed convolution filters, with "SAME" padding and 2× 2× 2 stride

97

6 – CNN Models and Methods

• A Concatenation with the output of the symmetrical block in the downsam-
pling phase

• A Convolutional Block of the type descripted above, with nfilters filters

• A second Convolutional Block

The last layer of the network is represented by a sigmoid activation function that
converts the outputs of the network in a [0,1] range.

6.2.2 Data Augmentation

Scarcity of input data is an even heavier problem in the 3D case due to the geo-
metrical scaling of the receptive fields. As in the previous case the input dataset is
augmented in a real-time manner using random generators but the processing of 3D
cubes instead 2D patches brings additional operation complexity that make complex
image transformations like elastic transforms or random grid distorsions too slow
for this kind of setting. The resulting pipeline is composed of

Flips : inversion of the x and y axes, the z axis is not inverted because of the
vertically oriented nature of neocortical structure

Transpositions : exchange of of x and y axis

Random Rigid Rotations : 3D rotations around the vertical axis

Addition of Gaussian Noise : addition of Gaussian noise drawn from a distribu-
tion with variance chosen in a range between 0.006 and 0.01

Random Brightness and Contrast Adjust : in the same fashion as the ones
described in 6.1.2.

We acknowledge that implementing heavier forms of data augmentation would be
beneficial to the training but limit ourselves to the above methods for computational
resource limitations.

98

6 – CNN Models and Methods

6.2.3 Training

There’s no substantial difference in the training process between the 3D CNN and
2D CNN models: both use an Adam optimization algorithm with a cross-entropy loss
function. Both models are available for download on GitHub at filippocastelli/CNN3Dbase,
the chosen framework for both models was Tensorflow 1.15, with extensive use of
the integrated Keras functional API.

6.3 Improving UNETs: Residual Learning

As they are, UNETs and 3D UNETs represent the state of the art in a large variety
of medical segmentation tasks, however in the satellite image segmentation field it
has been showed that they can be improved by integrating concepts from other suc-
cessful Deep Learning approaches, namely Deep Residual Learning [131]. The term
Deep Residual Learning appears in 2015 in a paper from He and al. [44] and refers
to a simple yet brilliant and innovative approach to training deep networks.

Deep Convolutional Networks’ unpaired learning ability is to be ascribed to the
sequential abstraction of information that, layer by layer, creates synthetic repre-
sentations of the input data. One is consequentially prone to logically conclude that,
when increasing model depth, representational capacity is to increase as well, pos-
sibly boosting performances. Simonyan et al. actually showed a direct correlation
between model depth and performance in 2014 [110] that led many to think the
whole Deep Learning problem as a stack more layers challenge. Unfortunately for
the expectation of many, training very deep neural networks almost inevitably led
to vanishing gradients and to accuracy degradation problems: the accuracy gets sat-
urated and then rapidly degrades in successive epochs in a way that’s not traceable
to overfitting, and adding more layers just worsens the problem, leading to higher
and higher training errors. The idea that a larger network seems to be more diffi-
cult to optimize than a shallow one seems to be a rather counterintuitive one (you
would expect that with more representational capacity the model would be prone to
rapidly overfit to the data) but the mere fact that the degradation problem exists is
actually a suggestion -and a very profound one indeed- that there might be intrinsic
and deep-rooted differences between training shallow and deep models.

99

6 – CNN Models and Methods

With a bit of mental abstraction we can consider a shallow model, made of a few
layers, that solves a classification problem. An indefinitely deep model that solves
the same exact problem can be built by adding an number of identity mapping layers
in which the outputs are just identical copies of the inputs, so at least one solution
for the problem has to exist: the one where all added layers are identities.

While this idea alone is not enough to prove that identity mappings are indeed
optimal solutions in the real world (it’s quite unlikely that the optimal solution for
layer happens to be an exact identity mapping), the ineluctable appearance of the
degradation problem might suggest that gradient descent solvers have problems at
creating identity mappings by finely tuning multiple nonlinear layers.

The simple but brilliant idea behind the paper is the one of flipping the problem
by making the network learn the layer functions in terms of perturbative solutions
of the identity mapping, or, in their terms, letting the layer optimize residual map-
pings: the underlying concept being that learning to zero-out weights of the residual
mapping should fundamentally be easier than optimizing a number of nonlinear
layers to represent an identity function.

Figure 6.5: Residual Unit [44]

Let’s consider a simple layer block with x input for which the optimal solution
is H(x), such as the one in 6.5. We can let the system learn the function F(x) :=

100

6 – CNN Models and Methods

H(x) − x by directly summing the outputs of the block to its inputs, effectively
creating the mapping

y = h(x) + F(x) (6.2)

where h(x) represents an identity mapping function. The necessity of defining a
mapping function h(x) arises from the consideration that the output of the F(x)
block might not have the same size as x: a simple solution is to transform minimally
the input with a linear projection Ws so that h(x) = Wsx and

y = Wx+ F(x) (6.3)

Note that this can easily and efficiently be implemented with a bias-less 1× 1 con-
volution. The representational capability of the resulting block is slightly increased
because of additional the free parameter introduced by the projection: the projection
can be avoided if input and output sizes are compatible.

Figure 6.6: Different Positions for Activation Function [45]

What would be the best configuration for a similarly constructed block and how
should convolution blocks (or fully connected in the original paper), activations
and batchnormalizations be arranged? A common practice for convolutional neural
networks is to place batchnormalization layers and activation functions after the
convolution block, but, when considering a plain network with N convolution lay-
ers and N − 1 activations, it isn’t particularly binding if we think activations as

101

6 – CNN Models and Methods

being placed before or after convolution blocks as long as they regularly alternate:
a post-activation of a layer can easily be seen as a pre-activation by the next one.
In residual blocks like the one depicted in 6.5 this approximate isotropy is broken
by the elementwise sum and, as a consequence, not all the convolution-activation
configurations are equivalent.

The same authors compared different combinations of transformation blocks,
batch normalizations and activations [45] and measured that the most effective ar-
rangement is the one depicted in figure 6.6 (e): the classic post-activation approach
in this new setting proves itself to be ineffective as placing a ReLU activation right
before the addition forces the transform F(x) to output only non-negative values
(see definition 1.31), this harms the representational capacity of F that can now
learn only positive functions

Figure 6.7: UNET Convolutional Block and Residual Convolutional Block

Having introduced the residual learning framework, the only thing that remains
is to integrate it into the UNET-like model. The extremely intuitive formulation
of residual blocks makes it possible to easily create a substitute for the UNET
convolutional blocks as illustrated in figure 6.7: the network’s structure remains
unchanged, exception made for the basic convolutional blocks, Upconvolution blocks
share the same organization of convolutional blocks with the addition of initial

102

6 – CNN Models and Methods

Upsampling and Concatenation steps.

6.4 Patch-Based Reconstruction: SP3D

When it comes to making segmentations of large 3D volumes we must face the fact
that the our model accepts only small 64×64×64 patches: to overcome this limitation
a patch-based reconstruction strategy of these large volumes needs to be thought.
Here we introduce a reconstruction library, coded in Python, I developed to solve
this problem called SP3D, short for SmoothPredict 3D. The tool can be thought to
be a loosely derivative work of a pre-existing project that applied similar strategies
to 2D full-scale image reconstruction, created by GitHub user G. Chevalier [20]. The
code is freely available on GitHub at filippocastelli/smooth_predict3D.

6.4.1 Border Artifacts

The naive option would be to serially divide the input volume into contiguous
64 × 64 × 64 patches, feeding them one by one (or in batches) through the net-
work and using the resulting prediction volumes to reconstruct a segmented version
of the original inputs. This approach usually results in very noisy and discontinuous
outputs because of border artifacts of the network: as mentioned in 6.1.1 we use a
zero-padding strategy that produces spurious zeros in the inputs at every convolu-
tional level, resulting in observable border effects in the final image. The presence of
observable border effects ideally translates to a non-uniformity of prediction accu-
racy over the output’s volume: parts of the prediction that are close to the borders
are less accurate than those on the geometrical center.

6.4.2 Patch Blending

One way to address the problem would be making predictions of overlapping patches
from the inputs and spatially averaging the results in such a way that every part of
the final image would be passed, at least one time, through the "accurate" part of
the network’s receptive field. This, empirically, produces better results than a non-
overlapping approach, but still doesn’t completely solve the problem of accuracy
non-uniformity over the receptive field. The adopted solution tackles the problem

103

6 – CNN Models and Methods

by introducing a weighted mean over patches by using a 3D window function in such
a way that, during the averaging phase, the pixels that are closer to the center of
the patch are more relevant than the peripheral ones. The window function is a 3D
version of a second-order spline window that smoothly goes to zero to the sides of
the input cube and ensures a smooth transition between overlapping 3D patches. In

Figure 6.8: Spline Window Profile Compared to Triangular Window

figure 6.8 we represent a 1D profile of the window function compared to a triangular
window function profile, such profiles can be shifted and added together, yielding a
constant exposure over the whole image, as seen in figure 6.9.

In figure 6.10 we plotted a 2D section of the 3D profile descripted above.

6.4.3 Noise Reduction

Another problem I wanted to tackle in large scale reconstruction was the reduction of
noise in the predicted images: to achieve this, additionally to the overlapping patches
weighting we introduced an additional strategy. Given that the training data includes
a set of geometric transformation invariances (typically the same transformations
used in the data augmentation phases), one could assume that transforming the
extended input volume in the same way (by rotating or flipping it), the network’s

104

6 – CNN Models and Methods

Figure 6.9: Combining Shifted Profiles

Figure 6.10: Section of a 64× 64× 64 Spline Window Function

105

6 – CNN Models and Methods

Figure 6.11: SP3D Noise Reduction

output would be the same, just transformed. This reasoning doesn’t hold exactly true
as there are small differences in the responses depending on the particular orientation
of the inputs. We can ideally model the small differences in segmentations due to
the inputs under a set of transformations as a noise component such that ŷ = y + ε

where ε is a noise variable that assumes random values in different observations.
By averaging over different observations of the predictions (transforming the inputs,
feeding the transformed inputs to the patch-based reconstruction system and then
back-transforming the output to be in the same format as the input) we should be
able to retrieve a better estimate of the "true signal". This is exactly what SP3D does:
the user defines a set of transformations (flips and rotations) under which the model
response should be invariant and SP3D creates accordingly transformed versions of
the inputs, for each of them it proceeds to create overlapping patches of the inputs,
feeds them to the CNN model and reconstructs a single "view" of the large-scale
input that it back-transforms, all these single views then get averaged to retrieve a
less noisy final output.

6.5 Finding 3D Surfaces: Marching Cubes

At the end of the reconstruction phase we are left with a tensor of values, each
representing a class-membership probability at a certain location in space. For most
visualization tasks, scrolling sections of the volume as you would do with regular

106

6 – CNN Models and Methods

image stack, might be informative enough but there are particular setups in which
it will be more practical to look at the 3D data from different perspectives as a
3D rendered object. The prediction data is in a probability format, with values
continuously3 ranging from 0 to 1. Rendering 3D data requires us to find surfaces
that contain values above a certain probability threshold: this is done using a variant
of the classical marching cubes algorithm by Lorensen et al. [76] that reconstructs
probable isosurfaces corresponding to a given threshold level, starting from a point
cloud of values.

Figure 6.12: Marching Cubes Isosurface Crossing Configurations

Marching cubes is a simple but effective algorithm for estimating isosurfaces
of a 3D scalar field as polygonal meshes, it was presented at SIGGRAPH-1987 by
Lorensen and Cline [76] and, initially developed for visualization of CT and MRI scan
data, in the next years became the go-to algorithm for a very large class of imaging
problems. The algorithm’s founding principle is extremely simple: by thresholding a
the scalar field one would have a lattice of points where the field is sampled, whose
binary value would either be 0 (sampled field value under threshold) or 1 (sampled

3with float level granularity

107

6 – CNN Models and Methods

value over threhsold). By considering a cube defined by 8 contiguous vertices there
are only 28 = 256 inferrable ways in which the cube can be cut by the isosurface
with either zero or one intersections on each of the cube’s edges. Considering both
rotational and mirroring symmetries, the 256 possibilities can be summarized in
just 14 distinct cases, shown in figure 6.12. For each vertex the crossing position is
estimated using bilinear interpolation with the original scalar values on the vertices.
The original algorithm, which actually was under patent until 2005 and could not be
used in its original form without paying royalties, has been refined multiple times
to better manage ambiguous cases in which multiple surface reconstructions are
compatible with the vertex distribution, the particular version we used was proposed
by Lewiner in 2003 [70] and comprehends improvements that guarantee topologically
correct reconstructions without the possibility of cracks and inconsistencies.

108

Part III

Results and Conclusions

Chapter 7

Results

7.1 Data Characterization

Two different types of data were used in this work: an already cleaned and optimized
Electron Microscopy dataset, mainly for testing and architectural search, and actual
Fluorescence Microscopy data acquired at LENS. Working on a "simple" dataset was
crucial during the development phases as a way to decouple data cleaning problems
from the rest of programming and architectural design challenges.

7.1.1 Electron Microscopy Mithocondria Detection Dataset

The first dataset was created by the Lausanne Polytechnic Computer Vision Labo-
ratory Group as part of their research on automated mithocondria volumetric recog-
nition in the CA1 hippocampus region of the brain [77]. The datasets consists of a
1065 × 2048 × 1536 volume, with voxel resolution 5 × 5 × 5nm, corresponding to
approximately a 5 × 5 × 5µm section of hippocampus in the CA1 region. Of this
data two 165 × 758 × 1024 sub-volumes are manually annotated: one for training
and one for testing.

From a visual standpoint mithocondria are extended objects that present very
distinct features and the segmentation task is not an arduous one: the use of a
relatively small and "easy" dataset is a significative help when it comes to debugging
both the neural network that the reconstruction algorithm.

110

7 – Results

Figure 7.1: Frame from Electron Microscopy Mithocondria Segmentation Dataset

7.1.2 Fluorescence Microscopy Dataset

Fluorescence microscopy images of cortical tissue are a obtained by the Biophotonics
group at LENS using both Confocal Two Photon Fluorescence Microscopy and Light
Sheet Fluorescence Microscopy techniques. We primarly use stitched data from the
TPFM setup: TPFM images come in a multi-channel format, with each channel
corresponding to a different marker, of which we use only the first channel, corre-
sponding to the NeuN marker. The NeuN marker highlights only neuron somas,
leaving us an image -like the detail in figure 7.4- that should primarily represent the
position of neurons bodies in the tissue. As we can see, these images are significantly
more visually complex than the ones in the EM dataset: visual features of the neu-
ron bodies are much less prominent and the acquisition process inevitably produces
gradients that are particularly evident in the extended stitched reconstructions.

7.1.3 Data Stitching: ZetaStitcher

Both LSFM and TPFM setups produce data in a mosaic-like manner as images are
produced in the form of partially overlapping 3D volumes that need to be fused
together to obtain large views of brain tissue. LENS developed, specifically for this

111

7 – Results

Figure 7.2: Extended Two Photon Microscopy Frame

task, a Python library called ZetaStitcher [81] that finds an optimal stack align-
ment by evaluating cross-correlation of overlapping areas through FFT. The tool
creates a symbolic representation of the stitched dataset without actually storing a
full-aligned copy of it in memory, a specifically designed API can be used to perform
queries to the so-obtained dataset. In this work the models are not directly inter-
faced with this API and use already stitched copies of the data. In the near future
plans are to directly interface stitching, prediction and reconstruction algorithms
into a single pipeline.

112

7 – Results

Figure 7.3: Detail of TPFM Frame: Multichannel

Figure 7.4: Detail of TPFM Frame: NeuN Only

113

7 – Results

7.2 Evaluation Metrics

In order for us to evaluate results we need to establish some evaluation metrics set
first. In the vast majority of cases automatic segmentation is evaluated in terms
of overlap measures, such as the ones introduced in section 1.3.3. We will consider
metrics that follow the same set-similarity measure idea for evaluating our results.
We take as reference Taha, Hanbury - Metrics for evaluating 3D medical image
segmentation: analysis, selection, and tool [117] from which we derive the following
definitions.

7.2.1 Terminology

The rest of the section will be built upon a terminological common ground with a
few basic terms. Let the imaging volume be defined on a 3D grid of w × h× d size,
each point on the grid is called a voxel and the whole image can be represented as
a set of voxels

X = {x1, x2, . . . , xn} |X| = w × h× d (7.1)

The ground truth segmentation can be defined as a partition Sg = {S1
g , S

2
g} of X

with an assignment function

f ig(x)

0 if x ∈ Sig
1 if x /∈ Sig

(7.2)

and let the model segmentation be another partition of X, St = {S1
t , S

2
t }, such that

its assignment function f it (x) is a function in [0, 1], one could view f it (x) as the
probability that x in a member of class Sit . In the particular case that f it (x) only
assumes discrete values in {0, 1} (this can simply be obtained by thresholding), we
say that the segmentation is crisp, as opposed to the general fuzzy case. The classes
are conventionally assigned so that

(
S1
g , S

1
t

)
is the class of interest and

(
S2
g , S

2
t

)
is

the background class. We assume that the membership of a point x sums to 1 over
classes

f 1
t (x) + f 2

t (x) = 1 ∀x ∈ X (7.3)

in accordance to the probabilistic interpretation of the assignment functions.

114

7 – Results

7.2.2 Confusion Matrix

All the presented metrics will be based on four measures, complexively known as the
confusion matrix : namely the true positives (TP), false positives (FP), true negatives
(TN) and false negatives (FN).

Confusion Matrix =
m1,1 = TP m1,2 = FP
m2,1 = FN m2,2 = TN

 (7.4)

These measures are easily defined in the case that we have a crisp segmentation
(let’s say we adopted a threhsold classification rule in which we consider as posi-
tively classified every voxel with class membership probability above 0.5, we just
transformed the fuzzy output of the model into a crisp segmentation.) as

mi,j =
|X|∑
r=1

f ig(xr)f it (xr) (7.5)

on a more intuitive basis one could equivalently define the confusion matrix elements
as

True Positives : Count of the voxels that are positively classified both in GT and
model segmentation.

False Positives : Count of the voxels that are positively classified in segmentation
but are negatives in GT.

True Negatives : Count of the voxels that are negatively classified both in GT
and model segmentation.

False Negatives : Count of the voxels that are negatively classified in segmentation
but are positives in GT.

In the case of fuzzy segmentations equation 7.5 can be generalized using a trian-
gular norm

g : [0,1]× [0,1]→ [0,1]
g(p1, p2) = min(p1, p2)

(7.6)

for modeling the agreement between the two segmentations on the positie classi-
fication of particular voxel, implying that the agreement on the same voxel being

115

7 – Results

background is g(1− p1, 1− p2). The disagreement between the two segmentations is
modeled by the signed difference p1 − p2.

The elements of the generalized confusion matrix can then be expressed as

TP =
|X|∑
r=1

min
(
f 1
t (xr), f 1

g (xr)
)

FP =
|X|∑
r=1

max
(
f 1
t (xr)− f 1

g (xr),0
)

TN =
|X|∑
r=1

min
(
f 2
t (xr), f 2

g (xr)
)

FN =
|X|∑
r=1

max
(
f 2
t (xr)− f 2

g (xr),0
)

(7.7)

The use of the t-norm in the definition allows the particular property

TP + FP + TN + FN = |X| (7.8)

For the avoidance of doubt in the next sections, until otherwise specified, we will
always use the TP, FP, TN, FN acronyms to indicate the crisp versions of the
metrics in 7.5.

7.2.3 Overlap Based Metrics

We have already encountered the first two metrics back in chapter 1.3.3: the Dice
Coefficient and the Jaccard Index.

The Dice Coefficient, also called Overlap Index, is the most common segmenta-
tion metric and can be redefined in terms of the confusion matrix as

DICE =
2|S1

g ∩ S1
t |

|S1
g |+ |S1

t |
= 2TP

2TP + FP + FN
(7.9)

The Jaccard Index can also be redefined as

JAC =
|S1
g ∩ S1

t |
|S1
g ∪ S1

t |
= TP

TP + FP + FN
(7.10)

We also notice that both the Jaccard Index and the Dice Coefficient offer the
same informative content as one can be expressed in terms of the other

116

7 – Results

JAC =
|S1
g ∩ S1

t |
|S1
g ∪ S1

t |
=

2|S1
g ∩ S1

t |
2
(
|S1
g |+ |S1

t | − |S1
g ∩ S1

t |
) = DIE

2−DICE (7.11)

or, analogously

DICE = 2JAC
1 + JAC

(7.12)

The next metric is the True Positive Rate, also known as Recall or Sensitivity,
which intuitively indicates the proportion of actual positives among every positively
classified voxels. It is symmetrically opposed to the True Negative Rate or Specificity,
which measures the proportion of actual background voxels among all the voxels that
are negatively classified.

Recall = Sensitivity = TPR = TP

TP + FN

Specificity = TNR = TN

TN + FP

(7.13)

The two measures that are complementarily defined are the False Positive Rate or
Fallout and the False Negative Rate:

Fallout = FPR = FP

FP + TN
= 1− TNR

FNR = FN

FN + TP
= 1− TPR

(7.14)

One last important metric is the Positive Predictive Value or Precision, which
measures the ratio of true positives over all the positive calls.

Precision = PPV = TP

TP + FP
(7.15)

7.2.4 Receiver Operator Characteristic and Precision-Recall
Curves

When deploying a segmentation model it’s extremely unlikely that the outputs in
the application case are in the fuzzy format defined in 7.2.1, what happens instead
is that the model outputs binary predictions (crisp segmentations as defined in
7.2.1) by applying a simple threshold or a series of more advanced post-processing

117

7 – Results

operations 1. These operations depend on additional parameters - e.g. a thresholding
value - that influence the final output and for each of these values a set of different
confusion matrix is produced.

A major insight on how the model performs when changing its classification
parameters is given by the Receiver Operator Characteristic Curve (ROC) and the
Precision-Recall Curve.

ROC Curve

The ROC curve is defined as the True Positive Rate values plotted against the False
Positive Rate and serves as a device for measuring the model’s ability to separate
classes. Looking at definitions 7.14 and 7.13 one can easily see how, by fixing the
total number of positives and negatives, specifying a point in the TPR-FPR space
determines an unique confusion matrix so that tracing a ROC curve actually offers
a general representation of the behaviour of the confusion matrix at the changing
of the classification threshold. The area under the ROC curve can be used as a
measure of class separability.

We introduce some graphics to better understand the role of a ROC curve:
let’s imagine that positives and negatives are modeled by two partially overlapping
distributions and that the decision rule is represented by a threshold. An ideal model
would produce two perfectly separated distributions so that, moving the threshold,
for every possible false positive rate, the true positive rate would always be one as
no false positives are ever registered. The ROC curve would then be identically 1,
as in figure 7.5.

A completely indecisive model like the one in figure 7.6, on the other hand,
would represent the two distributions as completely overlapped: in that case the
TPR would increase linearly with the FPR and would result in a linear ROC curve.

Figure 7.8 shows an intermediate case in which the TPR rises overlinearly with
the FPR. Best performing models - with minimal distribution overlap - will occupy
the upper left parts of the FPR-TPR space.

1e.g. when identifying extended objects, simple thresholding may produce prediction inconsis-
tencies that one might want to fix with morpohlogical operations. Alternatively if threhsolding
produce too much prediction inconsistency one might replace it with more advanced statistical
blob recognition algorithms.

118

7 – Results

Figure 7.5: ROC Curve : Ideal Classifier

Figure 7.6: ROC Curve : Indecisive Classifier

Figure 7.7: ROC Curve : Good Classifier

Underlinear ROC curves actually represent the unlucky case in which the model
reciprocates the classes, systematically classifying positives as negative and negatives
as positive.

119

7 – Results

Figure 7.8: ROC Curve : Reciprocating Classes

Precision-Recall Curve

One of the drawbacks of using ROC curves is that they are prone to offering overly
optimistic views of performances if the dataset suffers from class imbalance and
one of the two classes is over-represented [30]: this is actually the case when trying
to identify sparse objects on a background. Precision-Recall Curves are often used
when the negative classifications largely outnumber the positive ones. Looking at
definitions 7.15 and 7.13 one can see the reason of this: in ROC (TPR vs. FPR)
a large number of false positives might lead to a small change in the total Fallout,
while Precision offers a comparison between true positives and false positives that
is less sensitive to the large number of correctly classified background instances.

If Recall is not null, there exists a one-on-one correspondence between curves in
ROC space and curves in PR space, such that the same exact confusion matrices are
contained in the curves: this is a direct consequence of the fact that each point in
the ROC space uniquely defines a confusion matrix (if the total numbers of positives
and negatives are fixed) and TP, FN, FP can be used to determine a point in the
PR space. These three numbers cannot possibly represent another confusion matrix
with a different TN because of the total negatives constraint. Same reasoning goes
for translating a point from the PR space to the ROC space, with the only exception
made by the Recall = 0 axis: in this case FP cannot be recovered and there is no
one-on-one mapping.
We can translate point by point any curve from the ROC space to a curve in the PR
space when Recall /= 0: an interesting consequence of this is the fact that a curve
dominates another curve in the ROC space if and only if the first dominates the
other in PR space [27]. What this means is that we can equivalently compare results

120

7 – Results

in one space and be sure that the same comparison would lead to same results in
the other space: this property comes in particularly handy when dealing with un-
balanced datasets, which produce difficult-to-read ROC curves.

The typical aspect of a PR curve is delineated in figure 7.9: in this case the inde-
cisive classifier produces a constant line whose value is determined by the proportion
between positive and negative cases

Plimit = P

P +N
(7.16)

an ideal classifier would produce a constant 1 line, except for Recall = 1 where
it would assume Plimit value. Every other classifier would trace a curve in between
these two extremes.

Figure 7.9: PR Curve

7.3 Electron Microscopy Dataset Analysis

Both UNET and 3D UNET styled models such as those described in section 6, with
residual structural variations (at least in the 3D case), were trained on the EM
dataset.

121

7 – Results

The two volumes were split in a 3-way mode as a training subvolume, a validation
and a test one in 60 : 20 : 20 proportions. The 2D models were trained on a 64× 64
crops of the volume slices while the 3D models used random 64×64×64 volumetric
crops. All the models were written in Tensorflow 1.15 using the Keras functional
library and trained locally on a machine with an AMD 2700X CPU and an RTX2070
GPU.

In this configuration each model version was trained for 250 epochs, where the
epoch size was decided by estimating the number of passes over the training data:

epoch length2D = ceil
(txtytz
wxwy

)
epoch length3D = ceil

(txtytz
wxwywz

) (7.17)

where tx, ty, tz and wx, wy, wz are respectively the dimensions of the training volume
and the input window. The total training area consisted of a 1024×768×165 volume,
each training session took a computation time of approximately 5 hours 2

7.3.1 Model Comparison

Model Name AUC-ROC AUC-PR DICE JAC
UNET3D 0.9903 ± 0.0001 0.918 ± 0.001 0.84 ± 0.01 0.73 ± 0.01

Residual 3D U-NET: Post-Act 0.9890 ± 0.0002 0.961 ± 0.001 0.91 ± 0.01 0.83 ± 0.01
Residual 3D U-NET: Pre-Act 0.9957 ± 0.0001 0.967 ± 0.001 0.92 ± 0.01 0.85 ± 0.01

UNET 0.9951 ± 0.0001 0.938 ± 0.001 0.86 ± 0.01 0.75 ± 0.01
Residual U-NET: Post-Act 0.9955 ± 0.0001 0.940 ± 0.001 0.86 ± 0.02 0.76 ± 0.03
Residual U-NET: Pre-Act 0.9957 ± 0.0001 0.951 ± 0.001 0.88 ± 0.02 0.78 ± 0.03

Model Name FALLOUT FNR PREC. RECALL SPEC.
UNET3D 0.010 ± 0.002 0.12 ± 0.02 0.81 ± 0.03 0.88 ± 0.02 0.989 ± 0.002

Residual 3D U-NET: Post-Act 0.004 ± 0.001 0.09 ± 0.01 0.91 ± 0.01 0.91 ± 0.01 0.996 ± 0.001
Residual 3D U-NET: Pre-Act 0.004 ± 0.001 0.08 ± 0.01 0.91 ± 0.01 0.92 ± 0.01 0.996 ± 0.001

UNET 0.003 ± 0.001 0.19 ± 0.03 0.91 ± 0.02 0.81 ± 0.03 0.996 ± 0.001
Residual U-NET: Post-Act 0.005 ± 0.001 0.16 ± 0.02 0.88 ± 0.02 0.84 ± 0.02 0.994 ± 0.001
Residual U-NET: Pre-Act 0.004 ± 0.001 0.14 ± 0.02 0.90 ± 0.02 0.86 ± 0.02 0.996 ± 0.001

Predictive performance was evaluated on the test dataset partition using the met-
rics in 7.2: both models use the same training, testing and validation partitions and

2Possibly better training times could have been reached using more efficient data augmentation
methods.

122

7 – Results

the 2D model performances are evaluated over the entire 2.5D-reconstructed testing
volume. Values in the summary table are obtained by setting a 0.5 probabilistic
threshold (every response over 0.5 is considered positive)3, Receiver Operator Char-
acteristic and Precision Recall curves are obtained by setting different thresholds
and serially evaluating true positive ratio, false positive rate and positive predictive
values for each value.

3Confidence intervals of the various metrics and curve integrals, both in this case and in the
fluorescence microscopy one, are clearly under-estimated. An accurate K-fold or bootstrap analysis
of the errors would have required the study of a whole new training strategy that support the use
of uncontiguous volumes: a complete redesign of more efficient and flexible training data generators
is in the near future goals of my PhD. We chose to use a differentiated error evaluation strategy
for AUCs and static metrics: for ROC and PR areas we used a bi-normal approximation [11] [61]
to estimate the expected variances, obtaining errors that are roughly compatible with the observed
comparison points, but following the same approximation for the other metrics revealed itself to
be an unfruitful path as the resulting expected variances were way under the observed comparison
points. We chose to use as a comparative tool, in this case, a standard error evaluated over ten
different takes of the metrics in a sphere of 0.1 around the actual decision threshold. It’s also to
be noted that asymptotically low errors in ROC curve integrals (and general readability of the
curves themselves) are to be ascribed to very strong class imbalance (in FM datasets positive
voxels are less than 4% of the total): ROC curves suffer the fact that the almost totality of the
correctly classified examples are background voxels. In this case the area under PR curves should
offer a more representative datum but, being limited to [0,1], high values of AUC-PR show again
asymptotical effects.

123

7 – Results

Figure 7.10: EM Dataset: Training Data, GT, 2D and 3D Predictions

Figure 7.11: EM Dataset, ROC Curve Comparison: 2D Models

124

7 – Results

Figure 7.12: EM Dataset, ROC Curve Comparison: 2D Models, Detail

Figure 7.13: EM Dataset, PR Curve Comparison: 2D Models

125

7 – Results

Figure 7.14: EM Dataset, ROC Curve Comparison: 3D Models

Figure 7.15: EM Dataset, ROC Curve Comparison: 2D Models, Detail

126

7 – Results

Figure 7.16: EM Dataset, PR Curve Comparison: 3D Models

Figure 7.17: EM Dataset, ROC Curve Comparison: 2D vs 3D

127

7 – Results

Figure 7.18: EM Dataset, PR Curve Comparison: 2D vs 3D

A comparison is made among six different models: three 2D UNET-syle models
and three different 3DUNET models. For each of the groupps, the first is based on on,
respectively, the original U-NET paper [99] by Ronneberger and 3D-UNET model
by Cicek [133], the other two are, respectively a naïve implementation of residual
learning in the first model, realized by inserting a skip connection (1×1 convolution
+ batch normalization) between the inputs and the outputs of the convolutional
blocks, and the other is a pre-activation setup that replaces the convolutional blocks
with the residual blocks described in figure 6.7. The high number of negative cases
in the dataset makes the ROC curves in figure 7.11 and 7.14 difficult to read, we
provide a detail of the upper-left quadrant in figures 7.12 and 7.15 in which the
single curves are more recognizable. The Precision-Recall curve in figures 7.13 and
7.16 should be readable regardless of class imbalance.

Starting from 2D model comparison, both figure 7.11 and 7.13 highlight a slight
preference for the residual model implementations, with marginal differences in the
area integrals, the same is to be observed when comparing 3D models.

The comparison between the best 2D model and the best 3D model reveal a

128

7 – Results

noticeable (at least in the PR curve) performance improvement of the residual im-
plementation of 3D U-NET over the residual implementation of U-NET.

It’s to be stressed out that the models were trained on the same amount of data.
The number of true examples the 3D model is exposed to is geometrically lower
than the number of examples 2D models can train upon. Looking at expression 7.17
it’s easy to see that the 2D model receives wz times the examples of the 3D ones:
when considering 64× 64× 64 windows, there’s a factor of 64 between the amount
of employed examples in the 2D and 3D case.
The performances of 3D models can reasonably be expected to increase when the
same numbers of training examples are used. In this setup we preferred to make
comparisons keeping the same amount of original data to give a sense of what the
expected performances when a plausible scenario, in which the 3D models are used
as a drop-in replacements for the 2D ones, is considered.

Looking at the metric summary table, the so underpowered Residual 3D UNET
with full pre-activation residual blocks still seems to achieve best results both on
ROC and PR integral areas and "static" metrics (decision threshold set to 0.5), with
exception made for the False Positive Rate, Precision, True Positive Rate and True
Negative rates that are compared beyond the third decimal digit, resulting in prac-
tically identical performances between best achievers in those areas.

7.3.2 Surface Reconstruction

Three-dimensional surface representations of predictive results were obtained using
the marching cubes algorithm described in section 6.5, generating meshes in the
standard .stl format to be readable by any 3D manipulation program like Blender.
Although no meaningful quantitative comparison between the meshes generated by
different models was carried out, we wanted to make a few qualitative remarks on
the appearance of reconstructed objects.

129

7 – Results

Figure 7.19: EM Dataset: Surface Reconstruction from GT

Figure 7.20: EM Dataset: Surface Reconstruction from GT: Detail

In figure 7.19 and 7.20 we can see the surface reconstructed from baseline groundtruth
segmentation of the data. A rapid visual inspection reveals a blocky and jagged ap-
pearance of the surfaces that can be explained by two order of reasons: in the first
place the 2D slice-by-slice manual segmentation method inevitably leads to minor

130

7 – Results

inconsistencies between subsequent appearances of the same object as the manual
operator has to sequentially trace the same objects in consecutive volume slices. In
secundis, a less trivial cause for jagged appearance of said surfaces can be pointed
back to how the Marching Cubes algorithm works. Marching Cubes creates isosur-
faces of a scalar field sampled over a 3D lattice by evaluating, for every set of 8
contiguous lattice points, what is the general topology class of the isosurface inter-
section with the faces of the cube they describe, among 256 different possibilities.
This is done by assigning a binary label to each vertex depending on whether its
value is above or below a certain threshold (corresponding to the wanted isovalue)
and using a reference table to a particular geometry for each of the 8 bit combina-
tions. The actual position of each of the crossing points is determined using bilinear
interpolation between the original values of the vertices relative to the interested
edge. What happens if we feed the Marching Cubes algorithm a binary image, like
the ground truth one, is that each of the bilinear interpolation evaluations is go-
ing to give exactly 0.5 as result, meaning that each found isosurface intersection
point will be placed exactly halfway on its edge. The results are not in any way less
accurate than ones obtained using continuous valued images and Marching Cubes
gives a coherent representation of the isosurface at a voxel resolution level. The only
noticeable difference is in the subvoxel estimation of the isosurface which appears
more blocky in the case of a binary image. The following figures show the surface
reconstructions made from predictions of both 3D and 2D models

131

7 – Results

Figure 7.21: EM Dataset: Surface Reconstruction from 2D Predictions

Figure 7.22: EM Dataset: Surface Reconstruction from 2D Predictions: Detail

132

7 – Results

Figure 7.23: EM Dataset: Surface Reconstruction from 3D Predictions

Figure 7.24: EM Dataset: Surface Reconstruction from 3D Predictions: Detail

The first thing we notice is an overall smoothness of the surfaces in figures 7.21
and 7.23 when compared to 7.19 that is to tribute at least partly to the subvoxel
interpolation effects discussed above. Comparing the reconstructions from 2D model

133

7 – Results

predictions and 3D model predictions, where in both cases a 0.5 classification thresh-
old was used to find the isosurfaces, we can point out a that the 3D model produces
a globally more readable image with less false positives. Looking at details 7.22 and
7.24, with particular attention to the rightmost object, we can have a visual confir-
mation of increased coherence in the z-axis as in the 3D case the objects tend not
to show discontinuities: this is one of the positive effects we expected from using
three-dimensional receptive fields.

7.4 Fluorescence Microscopy Dataset Analysis

Training 3DCNNs requires fully-labeled data volumes or extended stacks with fully
annotated images. This kind of data is extremely difficult and time-consuming to
produce and, at the current time, no large human-labeled versions of this dataset
exist (even though strategies for efficient labeling of large 3D frames without geo-
metrically increasing human segmentation time are being studied at the moment).
The only kind of annotated data available for this dataset are 2D frames made us-
ing LAIRA™("Laira is an AI-based Research Assistant" [66]), a proprietary tool by
Bioretics S.r.L. for ML-assisted data labeling: this kind of data is not suitable for
3DCNN training, which requires entirely labeled stack. A compromise path had to
be found. The adopted solution is represented by an intermediate form of annotation
in which 3D volumes are "pre-labeled" using a pre-existing 2D classifier, trained on
2D sparse data, to densely annotate 3D labels one slice at a time: the so obtained
3D extended pseudo-labels are then used to train the 3D model.

The following scheme represents the actual course of action we followed: a 2DCNN
model recognizing neuron somas in 2D slices of TPFM images [80] [2] was trained on
2D sparsely annotated data using Aliquis™, a proprietary MachineVision framework
by Bioretics srl, and was used to serially produce segmentation maps of every slice
of an extended volume. These maps served as a pre-annotation for another volume
which I proceeded to manually refine in the most critical cases: the results of this
kind of annotation are obviously suboptimal as I’m not a biologist and do not have
the required expertise to produce accurate segmentations: the obtained labels are
to be considered noisy and inaccurate versions of a true segmentation. The 3DCNN

134

7 – Results

model was trained on this semi-automatically annotated version of the dataset, pro-
ducing a model that is to be interpreted as a weak learner : the algorithm learns
from noisy and inaccurate data and the resulting segmentation is weakly correlated
to the actual belonging classes, hopefully still being able to generalize well enough
to produce usable results.

Improving the performance of such weakly trained model is possible by reformu-
lating the problem as an ensemble learning task where multiple models are trained
on different data samples and average their responses to reduce the final classifi-
cation variance. The complete reformulation of this segmentation problem into a
weak learning problem exceeds the scope of this work -which is to be considered a
starting point and a proof of concept for future more accurate applications of 3D
Convolutional Neural Networks to this particular dataset- so the results of just a sin-
gle model at a time are considered, expecting very low performance when compared
to a model trained on properly annotated data.

The number of employed epochs is chosen using 7.17: being the training dataset
significantly larger (2244×2060×112 voxels) than the Electron Microscopy Dataset
training times are much longer, reaching 15 to 17 hours in some cases.4

7.4.1 Model Comparison

Model Name AUC-ROC AUC-PR DICE JAC
3D U-NET 0.9956 ± 0.0001 0.893 ± 0.001 0.79 ± 0.01 0.66 ± 0.01

Residual 3D U-NET: Pre-Act 0.9952 ± 0.001 0.885 ± 0.001 0.75 ± 0.03 0.60 ± 0.03
U-NET 0.9975 ± 0.001 0.935 ± 0.001 0.85 ± 0.01 0.74 ± 0.01

Residual U-NET: Post-Act 0.9975 ± 0.001 0.935 ± 0.001 0.85 ± 0.01 0.74 ± 0.01
Residual U-NET: Pre-Act 0.9975 ± 0.001 0.935 ± 0.001 0.84 ± 0.01 0.73 ± 0.02

Model Name FALLOUT FNR PREC. RECALL SPEC.
3D U-NET 0.005 ± 0.001 0.23 ± 0.05 0.83 ± 0.03 0.76 ± 0.05 0.995 ± 0.001

Residual 3D U-NET: Pre-Act 0.003 ± 0.001 0.34 ± 0.06 0.88 ± 0.03 0.66 ± 0.06 0.996 ± 0.001
U-NET 0.004 ± 0.001 0.16 ± 0.03 0.87 ± 0.03 0.83 ± 0.03 0.996 ± 0.001

Residual U-NET: Post-Act 0.004 ± 0.001 0.16± 0.03 0.86 ± 0.02 0.84 ± 0.03 0.996 ± 0.001
Residual U-NET: Pre-Act 0.003 ± 0.001 0.19 ± 0.02 0.89 ± 0.02 0.80 ± 0.04 0.997 ± 0.001

4Again, efficient implementations could drastically reduce training times

135

7 – Results

Figure 7.25: FM Dataset, Training Data, GT and Predictions136

7 – Results

Figure 7.26: FM Dataset, ROC Curve Comparison: 2D Models

Figure 7.27: FM Dataset, PR Curve Comparison: 2D Models

137

7 – Results

Figure 7.28: FM Dataset, ROC Curve Comparison: 3D Models

Figure 7.29: FM Dataset, ROC Curve Comparison: 2D Models, Detail

138

7 – Results

Figure 7.30: FM Dataset, PR Curve Comparison: 3D Models

Figure 7.31: FM Dataset, ROC Curve Comparison: 2D vs 3D

139

7 – Results

Figure 7.32: FM Dataset, PR Curve Comparison: 2D vs 3D

In this case, both ROC and PR internal comparisons between 2D implementa-
tions (non-residual, residual with post-activation and residual with pre-activation)
and 3D ones in figures 7.26 and 7.28 highlight basically no difference between per-
formances of models in the same class. A definite preference for 2D models over 3D
ones is registered in PR comparison in figure 7.32.

The same emerges when looking at the summary table where 2D models appar-
ently achieve best results in both curve integrals and most static metrics, even if
a straight preference for the residual implementation of U-NET is not expressed.
What’s more interesting is that the residual implementation of 3D U-NET scores
best in False Positive Rates, True Positive Rates and, in a more marginal way, in
True Negative Rates: this implies that the model is less likely to erroneously ad-
dress as positive a background pixel than the 2D one and suggests that most of the
"inaccurate" classifications might come from "erroneous" positive assignments. The
reason why we used quotes on erroneous and inaccurate in the last sentence comes
from the observation that the reference ground truth is actually a loosely annotated
version, obtained from an independent 2D model, not actually representing a true

140

7 – Results

annotation. Lowest Fallout rates for the 3D models are compatible with the hypoth-
esis that a good portion of the classification error comes from marginal slices in
objects that are extended in the z-stacks, that these objects might not be correctly
recognized in the original segmentation (see figure 2.12), and that the 3D model
generalizes enough that it tries to signal their presence in top and bottom slices, in
disagreement with the adopted GT.

Unfortunately, in absence of a human-labeled dataset we cannot conclusively
prove or disprove this hypothesis but a visual comparison between ground truth
data and model outputs on the test data can be made. This question will hopefully
be explored in depth in future works on the same theme.

Figure 7.33: Comparison Between GT and 3D Prediction

In figure 7.33 red channel is assigned to ground truth labels and green channel is
related to 3D Residual U-NET predictions (yellow pixels represent overlap between
ground truth data and predictions), by exploring the stack in the z dimension we can
see examples like the one in figure 7.34 where the object is not initially acknowledged
by the GT but is positively predicted by the model. The same thing happens where
the spatial extent of the object ends in the z-stack.

141

7 – Results

Figure 7.34: Detail of GT and Prediction Comparison: Cropping Artifacts in GT

If our explanation is confirmed with the means of a small (but expectedly expen-
sive in terms of biologist work-hours) test dataset, this could be a strong confirm
that the model successfully generalizes from unreliable ground truth data, posing
the foundations for an approximate segmentation strategy that could exponentially
reduce deployment costs of this kind of models.

7.4.2 Surface Reconstruction

Surface reconstruction from GT, figure 7.35, again suffers from the same blocky
and jagged appearance caused by Marching Cubes applied to binary images: in this
case, where the objects of interest are much smaller, image readability is noticeably
degraded by this effect as we can see in figure 7.36.

142

7 – Results

Figure 7.35: FM Dataset: Surface Reconstruction from GT

Figure 7.36: FM Dataset: Surface Reconstruction from GT: Detail

2D and 3D reconstructions, are very similar in a large-scale view (figure 7.37
and figure 7.39) but show minor visual differences at a smaller scale (figure 7.38
and 7.39) with the 2D model producing slightly more conservative segmentations,
resulting in apparently bigger objects and less defined surfaces.

143

7 – Results

Figure 7.37: FM Dataset: Surface Reconstruction from 2D Predictions

Figure 7.38: FM Dataset: Surface Reconstruction from 2D Predictions: Detail

144

7 – Results

Figure 7.39: FM Dataset: Surface Reconstruction from 3D Predictions

Figure 7.40: PD Dataset: Surface Reconstruction from 3D Predictions: Detail

An interesting difference between the segmentation provided by the 2D and 3D
model is the disappearing of some merging artifacts in which two different objects
are actually recognized a single extended one: in figure 7.41 we can see two objects
that are already erroneously merged in GT and that UNET2D still reconstructs as

145

7 – Results

merged,(7.42), the 3D model instead recognizes the two objects as separate (figure
7.43 and 7.44), suggesting good generalization beyond unreliable GT data.

Figure 7.41: Merging Artifacts: GT Reconstructed Surface

Figure 7.42: Merging Artifacts: 2D Reconstructed Surface

146

7 – Results

Figure 7.43: Merging Artifacts: 3D Reconstructed Surface

Figure 7.44: Merging Artifacts: Comparison between 2D and 3D Reconstructed Sur-
faces

147

Chapter 8

Conclusions

I think AI is akin to building a rocket ship. You need a huge engine and
a lot of fuel. If you have a large engine and a tiny amount of fuel, you
won’t make it to orbit. If you have a tiny engine and a ton of fuel, you
can’t even lift off. To build a rocket you need a huge engine and a lot of

fuel.

Andrew Ng

8.1 On the Criticality of Data Availability

Large rockets need lots of fuel. The famous quote from Andrew Ng perfectly describes
what is perhaps the biggest problems we encountered in training large models: the
scarcity of extensively segmented data to train upon. If training on images requires
large amounts of data, training on volumes geometrically worsens the problem. The
main weapons against data scarcity (other than the obvious solution of getting more
data) is data augmentation, but there are limits to the extent to which data can be
effectively augmented, both from an analytical point of view (not every plausible
data point can be reached via a simple transformation from another data point) and
from a purely practical perspective: transforming data requires both computational
power and efficient algorithms. If 2D data augmentation is a mainstream field of
research with lots of interest, both from the academia and industry, and solutions
for efficient data augmentation are continuously studied, implemented and deployed,
the same can’t be said about 3D data augmentation. Most of the times the generators

148

8 – Conclusions

for data augmentation are manually implemented by the same groups who propose
models and are not particularly computational efficient (that’s surely the case of my
own implemented data generators). This problematic directly translates to a tradeoff
between computational times and effective dataset sizes. Results in this work were
heavily limited by dataset size, computational resources and computational efficiency
of my own data augmentation implementations, future work will surely benefit both
from more powerful hardware and by more efficiency-aware algorithmic design.

8.2 Future Challenges: Multiview and Multichan-
nel LSFM Segmentation

The proposed 3D CNN model cannot be considered a drop-in solution for the neuron
segmentation problem even though a prospective shift on the data opens possibili-
ties future research at LENS. LightSheet imaging with diSpim setups offer massive
quantities of imaging information thanks to their multi-view and multi-channel ca-
pabilities: the possibility of fully exploiting such enormous imaging potential is yet
to be explored and this work serves as an initial foundation for that (near) future
effort.

On the multi-channel front, the proposed 3D model can be easily generalized to
multi-channel operation using a multi-channel generalization of the 3D Convolution
operation we used in this work: 3D Convolutions of a [W, H, L, C] sized input with
a [k, k, d] sized filter is always possible as long as L < d

A major challenge is posed, though, by the presence of multiple views of the
same volume. The diSpim lightsheet apparatus is capable of obtaining two orthog-
onal views of the subject, each with a resolution of roughly 1 × 1 × 5µm. Analytic
methods for combining the two different anisotropic resolution volumes into one sin-
gle volume with isotropic resolution have been proposed by Wu et al [126] back in
2013. Although it might be an interesting option to train the models on isotropic
resolutions, analytic volume reconstruction methods inevitably introduce artifacts.
To solve the problem of multi-view data integration one could potentially follow two
roads: one being feeding the network the isotropic resolution volumetric reconstruc-
tions and training on those, the other being experimenting with much more complex
models with multiple paths that simultaneously process the corresponding volumes

149

8 – Conclusions

Figure 8.1: 3D Convolutions with Multiple Channels [74]

in both views and produce an unified isotropic response. The second one is surely
an ambitious path but there are some results that point in that direction. In 2017
Kamnistas et al. produced a 3D model that integrated multi-scale views of the same
subject with encouraging results [56], suggesting that models can actually benefit
from multiview integration, and in 2018 Mylnarski et al. proposed the combination
3D CNNs with additional 2D features for segmentation improvement [89], proving
the possibility of using additional features to standard 3D CNNs, even if they do
not share the same volumetric format.

The road to multiview and multichannel CNN analysis in LSFM is a mostly
unpaved one, with lots of questions yet to be answered: 3DCNNs can hopefully
provide both the correct formulation and solution indications for the challenge.

150

Appendix A

Upsampling Artifacts

Specific checkerboard-like artifacts generated by Transposed Convolution layers were
first observed in 2015 Gauthier in a work on Generative Adversarial Networks
(GANs)[37]. The "mosaic-like" artifacts he observed were caused by the upsampling
phases of the network and are the same that can appear in the outputs of a U-NET-
like model: in figure A.3 we can see an example of that in the 2D model’s outputs,
as the object in the lower right clearly presents regular high-frequency noise.
The explanation for this kind of behavior is intuitive and can be traced to the way
transposed convolution layers produce images: it is particularly clear by looking at
figure A.2 that, when reconstructing the output image, it is likely to obtain uneven
coverage of the output area if the size of the convolutional kernel is not divisible by
the stride: some of the pixels are going to be exposed to more "passes" of the kernel
than the other.

By extending the same reasoning to 2D Images (and, of course, to 3D ones),
we can see that the effect is even more prominent, giving rise to checkerboard-style
noise observed in A.1.

Figures A.2 and A.3 refer to a single transposed convolution layer but, when
sequentially upscaling by chaining more transposed convolutions in the network
graph (like in the U-NET and 3D-UNET cases), such effects can become even more
noticeable and appear on multiple frequencies and scales, with early deep transposed
convolutions creating low frequency noise and the last upsampling levels causing
higher frequency patterns.

151

A – Upsampling Artifacts

Figure A.1: Upsampling Artifacts in 2DCNN Outputs

Figure A.2: Upsampling Artifacts: Uneven Coverage of Output Area [93]

The network, ideally, can eventually learn to overcome these effects by accord-
ingly adjusting the weights in the transposed convolutions layers, as in figure

152

A – Upsampling Artifacts

Figure A.3: Checkerboard Artifacts [93]

Figure A.4: Adjusting the Weights to Remove Artifacts [93]

it’s to be noted, though, that this kind of adjustment reduces the effective repre-
sentational capacity of the model by posing constraints on the relative importance
of weights in the same kernel.

A possible strategy for reducing this problem could be using only strides that are
divisible by the kernel size, but even then the model can sometimes learn kernels that
present significant asymmetries in the weight distribution, causing similar effects. In
figure A.5 we can observe that a kernel of size 4, when convolved using stride 2 (stride
is divisible by kernel size), can cause similar artefacts if one weight is significantly
higher than the others.

A solution that seems to eliminate at the base this kind of artifact is to completely
decouple the upsampling and convolution phases by first resizing the input image
using a bilinear or nearest neighbor upsampling and then applying a convolutional
layer to the resized image.

It’s a fun and interesting thing to notice that this problem has been known in

153

A – Upsampling Artifacts

Figure A.5: Kernel Asymmetry Artifact [93]

the network visualization community for some years, although in a symmetrically
different form. From a matrix multiplication perspective, the backpropagation pass
of an ordinary convolution layer is actually equivalent to a transposed convolution in
the forward pass, so the checkerboard artifacts we observe in the upsampled outputs
are virtually the same that can be observed in the form of high frequency noise in
model gradients: these artifacts are exactly the same that appear when trying to
visualize a CNN model’s gradient distribution in its various layers.

In conclusion: the existence of checkerboard artifacts is intrinsic to the nature
of transposed convolutions and the problem can be alleviated using a kernel size
divisible by the stride and can be completely avoided using standard convolutions
after a deterministic upsampling layer.

154

Appendix B

Convolutions as Matrix
Multiplications

Perhaps one of the most interesting properties of discrete convolutions is that they
can be actually viewed as matrix multiplications of the inputs with a particularly
constructed matrix. In the case of monodimensional and bidimensional convolutions
the convolution matrix can be constructed using generalizations of what is known
as a Toeplitz matrix : a Toeplitz matrix is a matrix in which values along the main
diagonal and all the sub-diagonals are constant. An N×N Toeplitz matrix is entirely
defined by a (2N − 1) long tn sequence of elements ordered in such a way that

{tn| − (N − 1) ≤ n ≤ (N − 1)} (B.1)

Given the sequence t1 . . . t(2N−1 the Toeplitz matrix T (m,n) can be constructed
by simply placing the elements as

T (m,n) = T (m+ 1, n+ 1) ≡ tm−n (B.2)

In other words, you can obtain a Toeplitz matrix by putting the first half of
the sequence in a descending order in the first column, starting from t0 to t(N−1),
shifting the sequence in the following column one element at the time so that the last

155

B – Convolutions as Matrix Multiplications

element disappears in T ((N − 1), c) and a new element appears in position T ((0, c).



t0 t−1 t−2 · · · · · · · · · · · · t−(N−1)

t1 t0 t−1 t−2
...

t2 t1 t0 t−1
.

... t2
.

... t−2
...

... . . . t1 t0 t−1 t−2

... t2 t1 t0 t−1

t(N−1) · · · · · · · · · · · · t2 t1 t0



(B.3)

We can extend this definition for series with positive-only indexes by replacing
every negative-indexed element with 0: a Toeplitz 4× 4 matrix for a f [n] = {1,2,3}
sequence shall be

T (f) =


1 0 0 0
2 1 0 0
3 2 1 0
0 3 2 1

 (B.4)

B.1 1D Discrete Convolutions

Let’s say we want to calculate the convolution of two monodimensional arrays:

h = [h0, h1, h2, h3]
x = [x0, x1, x2]

(B.5)

Which we can define as by the definition 1.27.

yk = h ∗ x =
∞∑

i=−∞
xihk−i k = 0,1, . . . , (n+m− 1 = 6) (B.6)

156

B – Convolutions as Matrix Multiplications

Calculating one by one the terms of the convolution we can see a pattern:

y0 = ∑∞
i=−∞ xih−i = x0h0 + 0 + 0

y1 = ∑∞
i=−∞ xih1−i = x0h1 + x1h0 + 0

y2 = ∑∞
i=−∞ xih2−i = x0h2 + x1h1 + x2h0

y3 = ∑∞
i=−∞ xih3−i = x0h3 + x1h2 + x2h1

y4 = ∑∞
i=−∞ xih4−i = x1h3 + x2h1 + 0

y5 = ∑∞
i=−∞ xih5−i = x2h3 + 0 + 0

(B.7)

The convolution terms are exactly the same as what we would have obtained by
multiplying the x array by a positive-term only 6 × 3 Toeplitz matrix built using
tn = hn as the generator sequence.



y0

y1

y2

y3

y4

y5


=



h0 0 0
h1 h0 0
h2 h1 h0

h3 h2 h1

0 h3 h2

0 0 h3




x0

x1

x2

 (B.8)

Following the same reasoning we can write every convolution between two arbi-
trarily sized arrays

h = [h0, . . . , hm]
x = [x0, . . . , xn]

(B.9)

as a multiplication between one of the arrays and the Toeplitz matrix obtained the
other with sizes m+ n− 1× n or m+ n− 1×m in the two cases.1

1Because of the commutative property of convolution the order in which the operation is taken
is not going to change the final result.

157

B – Convolutions as Matrix Multiplications

y = h ∗ x =



h0 0 · · · 0 0
h1 h0

... ...
h2 h1 · · · 0 0
... h2 · · · h0 0

hm−1
... . . . h1 h0

hm hm−1
... h1

0 hm
. . . hm−2

...
0 0 · · · hm−1 hm−2
... ... hm hm−1

0 0 0 · · · hm





x0

x1

x2
...
xn


(B.10)

Transposed Convolutions can be calculated with the same ease, just using the
transposition operator.

yT =
[
h0 h1 h2 · · · hm−1 hm

]


x0 x1 x2 · · · xn 0 0 0 · · · 0
0 x0 x1 x2 · · · xn 0 0 · · · 0
0 0 x0 x1 x2 . . . xn 0 · · · 0
...
0 · · · 0 0 x0 · · · xn−2 xn−1 xn 0
0 · · · 0 0 0 x0 · · · xn−2 xn−1 xn


(B.11)

B.2 2D Discrete Convolutions

Calculating 2D convolution matrices is not conceptually different from calculating
1D ones, it just takes an additional tool in the Topelitz matrices framework, known as
Doubly Blocked Toeplitz Matrices. Doubly Blocked Toeptliz Matrices (which for now
on we’re abbreviating in DBTMs for remembering the full name is a greater mental
effort than actually understanding what they are) represent the natural extension
of Toeplitz matrices to block matrices.

A block matrix A defined as

158

B – Convolutions as Matrix Multiplications


A11 A12 · · · A1N

A21 A22 · · · A2N
...

AM1 AM2 · · · AMN

 (B.12)

is a DBTM if

1. all of its individual blocks Aij are Toeplitz Matrices

2. its structure with respect to its block is Toeplitz, i.e. Ai,j = Ai+1,j+1

Reformulating 2D discrete convolutions as matrix multiplications takes a bit
more effort than the 1D case but ultimately applies the same concept. In the fol-
lowing paragraph we will show the general steps of 2D convolution conversion to a
matrix multiplication problem without providing extensive justification of each step,
as the purpose of this appendix is just to mention an equivalence - quite a crucial
one when introducing transpose convolution - that most sources I encountered prefer
to leave as implicit.

The first part of 2D discrete convolution conversion to matrix multiplication is
figuring out the dimensions of the outputs: in the 1D case we had that convolving
two arrays of m and n dimensions lead to an m + n − 1 output, by extending this
reasoning to two dimensions it’s trivial to conclude that the convolution of two 2D
inputs sized respectively m1×n1 and m2×n2 is a m1 +m2−1×n1 +n2−1 output.
This is the "full" size of a discrete convolution: "same" and "valid" convolutions can
be obtained as submatrices of the "full" ouput.

If we want to convolve an 2× 3 input I with a 2× 2 filter F such that

I =
1 2 3

4 5 6

 (B.13)

And let the filter be:

F =
10 20

30 40

 (B.14)

the resulting "full" output will be sized 3× 4.
The next step is padding the filter matrix to have the same size as the output

by adding zeros to the top and right sides of the filter, so that filter F becomes

159

B – Convolutions as Matrix Multiplications

Fpadded =


0 0 0 0
10 20 0 0
30 40 0 0

 (B.15)

For each row of the padded filter a Toeplitz matrix with n1 columns each is
created with a resulting m1 + m2 − 1 × n1 size: in our example case we shall write
three (nout = 3) Toeplitz matrices from the rows of Fpadded

F0 =


30 0 0
40 30 0
0 40 30
0 0 40



F1 =


10 0 0
20 10 0
0 20 10
0 0 20



F2 =


0 0 0
0 0 0
0 0 0
0 0 0



(B.16)

This sequence of Toeplitz matrices is now used to create a DBTM with n1 block

160

B – Convolutions as Matrix Multiplications

columns:

C =


F0 0
F1 F0

F2 F1



=



30 0 0 0 0 0
40 30 0 0 0 0
0 40 30 0 0 0
0 0 40 0 0 0
10 0 0 30 0 0
20 10 0 40 30 0
0 20 10 0 40 30
0 0 20 0 0 40
0 0 0 10 0 0
0 0 0 20 10 0
0 0 0 0 20 10
0 0 0 0 0 20



(B.17)

The input matrix is then reshaped as a vector by sequentially writing its rows
in inverse order, the so-obtained vector is to be multiplied with the matrix B.17 to
have the final output the same vectorized format.

I =
1 2 3

4 5 6

→ Ivector =



4
5
6
1
2
3


(B.18)

161

B – Convolutions as Matrix Multiplications

Ovector = C · Ivector =



30 0 0 0 0 0
40 30 0 0 0 0
0 40 30 0 0 0
0 0 40 0 0 0
10 0 0 30 0 0
20 10 0 40 30 0
0 20 10 0 40 30
0 0 20 0 0 40
0 0 0 10 0 0
0 0 0 20 10 0
0 0 0 0 20 10
0 0 0 0 0 20





4
5
6
1
2
3


=



120
310
380
240
70
230
330
240
10

40 70
60



(B.19)

Ovector =



120
310
380
240
70
230
330
240
10

40 70
60



→ O =


10 40 70 60
70 230 330 240
120 310 380 240

 (B.20)

The output matrix B.20 corresponds to the "full" discrete convolution: the "valid"
convolution is obtained by just selecting the two central values [230, 330]. This is
not the only algorithm for converting a 2D discrete convolution to a matrix multi-
plication and is particularly memory-consuming (matrix B.17 is most populated by
zeroes) when confronted to others, but hopefully this small appendix is enough to
pass the idea that, despite the unintuitive formulation, the convolution calculation
problem is directly mappable to a series of easy matrix multiplications.

162

Bibliography

[1] Jayesh Bapu Ahire. The XOR Problem in Neural Networks. Dec. 2017. url:
https://medium.com/@jayeshbahire/the- xor- problem- in- neural-
networks-50006411840b (visited on 06/19/2019).

[2] Aliquis . Bioretics srl. url: https://www.bioretics.com/aliquis (visited
on 08/19/2019).

[3] Stephen P. Amato et al. “Whole Brain Imaging with Serial Two-Photon To-
mography”. English. In: Frontiers in Neuroanatomy 10 (2016). issn: 1662-
5129. doi: 10.3389/fnana.2016.00031. url: https://www.frontiersin.
org/articles/10.3389/fnana.2016.00031/full (visited on 05/04/2019).

[4] Peter Atkins and Julio de Paula. Atkins’ Physical Chemistry. Inglese. 9 edi-
zione. Oxford ; New York: OUP Oxford, Nov. 2009. isbn: 978-0-19-954337-3.

[5] Adriano Azaripour et al. “A survey of clearing techniques for 3D imaging
of tissues with special reference to connective tissue”. In: Progress in His-
tochemistry and Cytochemistry 51.2 (Aug. 2016), pp. 9–23. issn: 0079-6336.
doi: 10.1016/j.proghi.2016.04.001. url: http://www.sciencedirect.
com/science/article/pii/S0079633616300043 (visited on 05/09/2019).

[6] Daniele Bani, Tiziano Baroni, and Ennio Becchetti. Istologia umana. Italiano.
Napoli: Idelson-Gnocchi, 2011. isbn: 978-88-7947-541-9.

[7] Beniamino Barbieri. A Short History of Fluorescence. en. url: https://
fluorescence-foundation.org/lectures/madrid2010/lecture1.pdf.

[8] Klaus Becker et al. “Chemical Clearing and Dehydration of GFP Expressing
Mouse Brains”. In: PLoS ONE 7.3 (Mar. 2012). issn: 1932-6203. doi: 10.
1371/journal.pone.0033916. url: https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC3316521/ (visited on 05/09/2019).

163

https://medium.com/@jayeshbahire/the-xor-problem-in-neural-networks-50006411840b
https://medium.com/@jayeshbahire/the-xor-problem-in-neural-networks-50006411840b
https://www.bioretics.com/aliquis
https://doi.org/10.3389/fnana.2016.00031
https://www.frontiersin.org/articles/10.3389/fnana.2016.00031/full
https://www.frontiersin.org/articles/10.3389/fnana.2016.00031/full
https://doi.org/10.1016/j.proghi.2016.04.001
http://www.sciencedirect.com/science/article/pii/S0079633616300043
http://www.sciencedirect.com/science/article/pii/S0079633616300043
https://fluorescence-foundation.org/lectures/madrid2010/lecture1.pdf
https://fluorescence-foundation.org/lectures/madrid2010/lecture1.pdf
https://doi.org/10.1371/journal.pone.0033916
https://doi.org/10.1371/journal.pone.0033916
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3316521/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3316521/

BIBLIOGRAPHY

[9] Floris van Beers. “Using Intersection over Union loss to improve Binary Image
Segmentation”. nl. bachelor. July 2018. url: http://fse.studenttheses.
ub.rug.nl/18139/ (visited on 07/03/2019).

[10] Bruce Blaus. Types of Neuroglia. Sept. 2013. url: https : / / commons .
wikimedia.org/wiki/File:Blausen_0870_TypesofNeuroglia.png (vis-
ited on 05/05/2019).

[11] Kendrick Boyd, Kevin H. Eng, and C. David Page. “Area under the Precision-
Recall Curve: Point Estimates and Confidence Intervals”. en. In: Advanced
Information Systems Engineering. Ed. by David Hutchison et al. Vol. 7908.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 451–466. isbn: 978-
3-642-38708-1 978-3-642-38709-8. doi: 10.1007/978-3-642-40994-3_29.
url: http://link.springer.com/10.1007/978- 3- 642- 40994- 3_29
(visited on 09/05/2019).

[12] Per Brodal. The Central Nervous System, Fourth Edition. Inglese. 4 edizione.
New York: OUP USA, Apr. 2010. isbn: 978-0-19-538115-3.

[13] K. Brodmann. Vergleichende Lokalisationslehre der Grosshirnrinde in ihren
Prinzipien dargestellt auf Grund des Zellenbaues. Open Library ID: OL25918683M.
Leipzig: Barth, 1909.

[14] Renato Campanini et al. “A novel featureless approach to mass detection in
digital mammograms based on support vector machines”. en. In: Physics in
Medicine and Biology 49.6 (Feb. 2004), pp. 961–975. issn: 0031-9155. doi:
10.1088/0031-9155/49/6/007. url: https://doi.org/10.1088%2F0031-
9155%2F49%2F6%2F007 (visited on 09/05/2019).

[15] Renato Campanini et al. “A Support Vector Machine Classifier based on
Recursive Feature Elimination for Microarray Data in Breast Cancer Char-
acterization”. In: Jan. 2002.

[16] Shan Carter et al. “Activation Atlas”. In:Distill 4.3 (Mar. 2019), 10.23915/dis-
till.00015. issn: 2476-0757. doi: 10.23915/distill.00015. url: https:
//distill.pub/2019/activation-atlas (visited on 06/13/2019).

[17] Filippo Castelli.Generazione di Immagini Avversariali in Tensorflow. original-
date: 2018-04-25T15:13:40Z. Apr. 2019. url: https://github.com/filippocastelli/
adversarial_examples_tutorial-tensorflow (visited on 06/13/2019).

164

http://fse.studenttheses.ub.rug.nl/18139/
http://fse.studenttheses.ub.rug.nl/18139/
https://commons.wikimedia.org/wiki/File:Blausen_0870_TypesofNeuroglia.png
https://commons.wikimedia.org/wiki/File:Blausen_0870_TypesofNeuroglia.png
https://doi.org/10.1007/978-3-642-40994-3_29
http://link.springer.com/10.1007/978-3-642-40994-3_29
https://doi.org/10.1088/0031-9155/49/6/007
https://doi.org/10.1088%2F0031-9155%2F49%2F6%2F007
https://doi.org/10.1088%2F0031-9155%2F49%2F6%2F007
https://doi.org/10.23915/distill.00015
https://distill.pub/2019/activation-atlas
https://distill.pub/2019/activation-atlas
https://github.com/filippocastelli/adversarial_examples_tutorial-tensorflow
https://github.com/filippocastelli/adversarial_examples_tutorial-tensorflow

BIBLIOGRAPHY

[18] C. Castilla et al. “Segmentation of actin-stained 3D fluorescent cells with
filopodial protrusions using convolutional neural networks”. In: 2018 IEEE
15th International Symposium on Biomedical Imaging (ISBI 2018). Apr.
2018, pp. 413–417. doi: 10.1109/ISBI.2018.8363605.

[19] Vladimir Cherkassky and Filip M. Mulier. Learning from Data: Concepts,
Theory, and Methods. en. John Wiley & Sons, Sept. 2007. isbn: 978-0-470-
14051-2.

[20] Guillaume Chevalier. Smoothly Blend Image Patches. original-date: 2017-08-
25T20:26:36Z. Aug. 2019. url: https://github.com/Vooban/Smoothly-
Blend-Image-Patches (visited on 08/31/2019).

[21] Kwanghun Chung et al. “Structural and molecular interrogation of intact
biological systems”. en. In: Nature 497.7449 (May 2013), pp. 332–337. issn:
1476-4687. doi: 10.1038/nature12107. url: https://www.nature.com/
articles/nature12107 (visited on 05/10/2019).

[22] Davy Cielen, Arno Meysman, and Mohamed Ali. Introducing Data Science:
Big Data, Machine Learning, and more, using Python tools. English. 1 edi-
tion. Shelter Island, NY: Manning Publications, May 2016. isbn: 978-1-
63343-003-7.

[23] Fiorenzo Conti. Fisiologia medica: 1. Italiano. 2 edizione. Milano: Edi. Ermes,
2005. isbn: 978-88-7051-346-2.

[24] Irene Costantini et al. “A versatile clearing agent for multi-modal brain imag-
ing”. en. In: Scientific Reports 5 (May 2015), p. 9808. issn: 2045-2322. doi:
10.1038/srep09808. url: https://www.nature.com/articles/srep09808
(visited on 05/07/2019).

[25] Gabriela Csurka, Diane Larlus, and Florent Perronnin. “What is a good
evaluation measure for semantic segmentation?” en. In: Procedings of the
British Machine Vision Conference 2013. Bristol: British Machine Vision
Association, 2013, pp. 32.1–32.11. isbn: 978-1-901725-49-0. doi: 10.5244/
C.27.32. url: http://www.bmva.org/bmvc/2013/Papers/paper0032/
index.html (visited on 07/19/2019).

165

https://doi.org/10.1109/ISBI.2018.8363605
https://github.com/Vooban/Smoothly-Blend-Image-Patches
https://github.com/Vooban/Smoothly-Blend-Image-Patches
https://doi.org/10.1038/nature12107
https://www.nature.com/articles/nature12107
https://www.nature.com/articles/nature12107
https://doi.org/10.1038/srep09808
https://www.nature.com/articles/srep09808
https://doi.org/10.5244/C.27.32
https://doi.org/10.5244/C.27.32
http://www.bmva.org/bmvc/2013/Papers/paper0032/index.html
http://www.bmva.org/bmvc/2013/Papers/paper0032/index.html

BIBLIOGRAPHY

[26] Data Tables | Fluorescence Lifetime Standards | ISS. url: http://www.iss.
com/resources/reference/data_tables/FL_LifetimeStandards.html
(visited on 04/16/2019).

[27] Jesse Davis and Mark Goadrich. “The relationship between Precision-Recall
and ROC curves”. en. In: Proceedings of the 23rd international conference on
Machine learning - ICML ’06. Pittsburgh, Pennsylvania: ACM Press, 2006,
pp. 233–240. isbn: 978-1-59593-383-6. doi: 10.1145/1143844.1143874. url:
http://portal.acm.org/citation.cfm?doid=1143844.1143874 (visited
on 08/23/2019).

[28] Deep neural networks: preventing overfitting. July 2017. url: https://www.
jeremyjordan.me/deep- neural- networks- preventing- overfitting/
(visited on 07/03/2019).

[29] Alexey Dosovitskiy et al. “Learning to Generate Chairs, Tables and Cars
with Convolutional Networks”. In: arXiv:1411.5928 [cs] (Nov. 2014). arXiv:
1411.5928. url: http://arxiv.org/abs/1411.5928 (visited on 07/28/2019).

[30] Chris Drummond and Robert C Holte. “What ROC Curves Can’t Do (and
Cost Curves Can)”. en. In: (), p. 7.

[31] Vincent Dumoulin and Francesco Visin. “A guide to convolution arithmetic
for deep learning”. In: arXiv:1603.07285 [cs, stat] (Mar. 2016). arXiv: 1603.07285.
url: http://arxiv.org/abs/1603.07285 (visited on 07/28/2019).

[32] European Molecular Biology Laboratory (EMBL). Digital Scanned Laser
Light-sheet Microscopy - Structured Illumination (DSLM-SI). url: https:
//www.youtube.com/watch?v=5xDN-4YLu-o (visited on 04/22/2019).

[33] Fluorescence and Phosphorescence. en. Oct. 2013. url: https : / / chem .
libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_
Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_
Chemistry)/Spectroscopy/Electronic_Spectroscopy/Fluorescence_
and_Phosphorescence (visited on 04/15/2019).

[34] Fluorescence, Phosphorescence, Photoluminescence Differences. en-GB. url:
https://www.edinst.com/blog/photoluminescence-differences/ (vis-
ited on 04/15/2019).

166

http://www.iss.com/resources/reference/data_tables/FL_LifetimeStandards.html
http://www.iss.com/resources/reference/data_tables/FL_LifetimeStandards.html
https://doi.org/10.1145/1143844.1143874
http://portal.acm.org/citation.cfm?doid=1143844.1143874
https://www.jeremyjordan.me/deep-neural-networks-preventing-overfitting/
https://www.jeremyjordan.me/deep-neural-networks-preventing-overfitting/
http://arxiv.org/abs/1411.5928
http://arxiv.org/abs/1603.07285
https://www.youtube.com/watch?v=5xDN-4YLu-o
https://www.youtube.com/watch?v=5xDN-4YLu-o
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Spectroscopy/Electronic_Spectroscopy/Fluorescence_and_Phosphorescence
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Spectroscopy/Electronic_Spectroscopy/Fluorescence_and_Phosphorescence
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Spectroscopy/Electronic_Spectroscopy/Fluorescence_and_Phosphorescence
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Spectroscopy/Electronic_Spectroscopy/Fluorescence_and_Phosphorescence
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Spectroscopy/Electronic_Spectroscopy/Fluorescence_and_Phosphorescence
https://www.edinst.com/blog/photoluminescence-differences/

BIBLIOGRAPHY

[35] Fluorophores and Optical Filters for Fluorescence Microscopy. en. url: https:
/ / www . edmundoptics . com / resources / application - notes / optics /
fluorophores-and-optical-filters-for-fluorescence-microscopy/
(visited on 04/16/2019).

[36] David Fortin et al. “Tractography in the study of the human brain: a neuro-
surgical perspective.” In: The Canadian journal of neurological sciences. Le
journal canadien des sciences neurologiques 39.6 (2012), pp. 747–756. doi:
10.1017/S0317167100015560.

[37] Jon Gauthier. “Conditional generative adversarial nets for convolutional face
generation”. In: 2015.

[38] Marc Gellman and J. Rick Turner, eds. Encyclopedia of Behavioral Medicine.
English. 2013 edition. New York: Springer, Dec. 2012. isbn: 978-1-4419-1380-
7.

[39] Antonino Paolo Di Giovanna et al. “Whole-Brain Vasculature Reconstruction
at the Single Capillary Level”. En. In: Scientific Reports 8.1 (Aug. 2018),
p. 12573. issn: 2045-2322. doi: 10 . 1038 / s41598 - 018 - 30533 - 3. url:
https://www.nature.com/articles/s41598-018-30533-3 (visited on
05/10/2019).

[40] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training
deep feedforward neural networks”. en. In: Proceedings of the Thirteenth In-
ternational Conference on Artificial Intelligence and Statistics. Mar. 2010,
pp. 249–256. url: http://proceedings.mlr.press/v9/glorot10a.html
(visited on 07/31/2019).

[41] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. en.
Google-Books-ID: Np9SDQAAQBAJ. MIT Press, Nov. 2016. isbn: 978-0-
262-03561-3.

[42] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining
and Harnessing Adversarial Examples”. In: arXiv:1412.6572 [cs, stat] (Dec.
2014). arXiv: 1412.6572. url: http://arxiv.org/abs/1412.6572 (visited
on 06/13/2019).

167

https://www.edmundoptics.com/resources/application-notes/optics/fluorophores-and-optical-filters-for-fluorescence-microscopy/
https://www.edmundoptics.com/resources/application-notes/optics/fluorophores-and-optical-filters-for-fluorescence-microscopy/
https://www.edmundoptics.com/resources/application-notes/optics/fluorophores-and-optical-filters-for-fluorescence-microscopy/
https://doi.org/10.1017/S0317167100015560
https://doi.org/10.1038/s41598-018-30533-3
https://www.nature.com/articles/s41598-018-30533-3
http://proceedings.mlr.press/v9/glorot10a.html
http://arxiv.org/abs/1412.6572

BIBLIOGRAPHY

[43] Mohammad Haft-Javaherian et al. “Deep convolutional neural networks for
segmenting 3D in vivo multiphoton images of vasculature in Alzheimer dis-
ease mouse models”. en. In: PLOS ONE 14.3 (Mar. 2019), e0213539. issn:
1932-6203. doi: 10.1371/journal.pone.0213539. url: https://journals.
plos.org/plosone/article?id=10.1371/journal.pone.0213539 (visited
on 05/14/2019).

[44] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In:
arXiv:1512.03385 [cs] (Dec. 2015). arXiv: 1512.03385. url: http://arxiv.
org/abs/1512.03385 (visited on 08/25/2019).

[45] Kaiming He et al. “Identity Mappings in Deep Residual Networks”. In: arXiv:1603.05027
[cs] (Mar. 2016). arXiv: 1603.05027. url: http://arxiv.org/abs/1603.
05027 (visited on 08/25/2019).

[46] D. O. Hebb. The Organization of Behavior: A Neuropsychological Theory.
en. Google-Books-ID: ddB4AgAAQBAJ. Psychology Press, Apr. 2005. isbn:
978-1-135-63190-1.

[47] David Huang et al. “Optical Coherence Tomography”. In: Science (New
York, N.Y.) 254.5035 (Nov. 1991), pp. 1178–1181. issn: 0036-8075. url:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4638169/ (visited
on 05/10/2019).

[48] Jan Huisken and Didier Y. R. Stainier. “Selective plane illumination mi-
croscopy techniques in developmental biology”. In: Development (Cambridge,
England) 136.12 (June 2009), pp. 1963–1975. issn: 0950-1991. doi: 10.1242/
dev.022426. url: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC2685720/ (visited on 05/13/2019).

[49] IBS - Photophysics of fluorescent proteins -. url: http://www.ibs.fr/
research/research-groups/dynamics-and-kinetics-of-molecular-
processes-group-m-weik/pixel/photophysics-of-fluorescent/ (vis-
ited on 04/13/2019).

[50] Introduction: Fluorescence Microscopy - Soft Matter Physics Division - Uni-
versity of Leipzig. url: http://home.uni-leipzig.de/pwm/web/?section=
introduction&page=fluorescence (visited on 04/13/2019).

168

https://doi.org/10.1371/journal.pone.0213539
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0213539
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0213539
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1603.05027
http://arxiv.org/abs/1603.05027
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4638169/
https://doi.org/10.1242/dev.022426
https://doi.org/10.1242/dev.022426
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685720/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685720/
http://www.ibs.fr/research/research-groups/dynamics-and-kinetics-of-molecular-processes-group-m-weik/pixel/photophysics-of-fluorescent/
http://www.ibs.fr/research/research-groups/dynamics-and-kinetics-of-molecular-processes-group-m-weik/pixel/photophysics-of-fluorescent/
http://www.ibs.fr/research/research-groups/dynamics-and-kinetics-of-molecular-processes-group-m-weik/pixel/photophysics-of-fluorescent/
http://home.uni-leipzig.de/pwm/web/?section=introduction&page=fluorescence
http://home.uni-leipzig.de/pwm/web/?section=introduction&page=fluorescence

BIBLIOGRAPHY

[51] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift”. In: arXiv:1502.03167
[cs] (Feb. 2015). arXiv: 1502.03167. url: http://arxiv.org/abs/1502.
03167 (visited on 07/31/2019).

[52] Fabian Isensee et al. “Brain Tumor Segmentation and Radiomics Survival
Prediction: Contribution to the BRATS 2017 Challenge”. In: arXiv:1802.10508
[cs] (Feb. 2018). arXiv: 1802.10508. url: http://arxiv.org/abs/1802.
10508 (visited on 07/29/2019).

[53] A. Jablonski. “Efficiency of Anti-Stokes Fluorescence in Dyes”. En. In: Nature
131.3319 (June 1933), p. 839. issn: 1476-4687. doi: 10.1038/131839b0. url:
https://www.nature.com/articles/131839b0 (visited on 04/13/2019).

[54] Jablonski diagram. en. Oct. 2013. url: https://chem.libretexts.org/
Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/
Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Spectroscopy/
Electronic_Spectroscopy/Jablonski_diagram (visited on 04/13/2019).

[55] Justin Johnson. CS231n Convolutional Neural Networks for Visual Recogni-
tion. url: http://cs231n.github.io/ (visited on 07/28/2019).

[56] Konstantinos Kamnitsas et al. “Efficient multi-scale 3D CNN with fully con-
nected CRF for accurate brain lesion segmentation”. In: Medical Image Anal-
ysis 36 (Feb. 2017), pp. 61–78. issn: 1361-8415. doi: 10.1016/j.media.
2016.10.004. url: http://www.sciencedirect.com/science/article/
pii/S1361841516301839 (visited on 05/13/2019).

[57] Eric R. Kandel, James H. Schwartz, and Thomas M. Jessell. Principi di
neuroscienze. Volume unico. Italiano. Trans. by V. Perri and G. Spidalieri. 4
edizione. Rozzano (MI): CEA, Nov. 2014. isbn: 978-88-08-18445-0.

[58] Philipp J. Keller et al. “Digital scanned laser light-sheet fluorescence mi-
croscopy (DSLM) of zebrafish and Drosophila embryonic development”. eng.
In: Cold Spring Harbor Protocols 2011.10 (Oct. 2011), pp. 1235–1243. issn:
1559-6095. doi: 10.1101/pdb.prot065839.

169

http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1802.10508
http://arxiv.org/abs/1802.10508
https://doi.org/10.1038/131839b0
https://www.nature.com/articles/131839b0
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Spectroscopy/Electronic_Spectroscopy/Jablonski_diagram
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Spectroscopy/Electronic_Spectroscopy/Jablonski_diagram
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Spectroscopy/Electronic_Spectroscopy/Jablonski_diagram
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Spectroscopy/Electronic_Spectroscopy/Jablonski_diagram
http://cs231n.github.io/
https://doi.org/10.1016/j.media.2016.10.004
https://doi.org/10.1016/j.media.2016.10.004
http://www.sciencedirect.com/science/article/pii/S1361841516301839
http://www.sciencedirect.com/science/article/pii/S1361841516301839
https://doi.org/10.1101/pdb.prot065839

BIBLIOGRAPHY

[59] Meenakshi Khosla et al. “3D Convolutional Neural Networks for Classifica-
tion of Functional Connectomes”. In: arXiv:1806.04209 [cs, stat] (June 2018).
arXiv: 1806.04209. url: http://arxiv.org/abs/1806.04209 (visited on
05/13/2019).

[60] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Op-
timization”. In: arXiv:1412.6980 [cs] (Dec. 2014). arXiv: 1412.6980. url:
http://arxiv.org/abs/1412.6980 (visited on 08/03/2019).

[61] Martina Kottas, Oliver Kuss, and Antonia Zapf. “A modified Wald interval
for the area under the ROC curve (AUC) in diagnostic case-control studies”.
en. In: BMC Medical Research Methodology 14.1 (Dec. 2014), p. 26. issn:
1471-2288. doi: 10.1186/1471-2288-14-26. url: http://bmcmedresmethodol.
biomedcentral.com/articles/10.1186/1471- 2288- 14- 26 (visited on
09/05/2019).

[62] Mateusz Koziński et al. “Learning to Segment 3D Linear Structures Using
Only 2D Annotations”. en. In: Medical Image Computing and Computer As-
sisted Intervention – MICCAI 2018. Ed. by Alejandro F. Frangi et al. Lecture
Notes in Computer Science. Springer International Publishing, 2018, pp. 283–
291. isbn: 978-3-030-00934-2.

[63] Uros Krzic et al. “Multiview light-sheet microscope for rapid in toto imaging”.
eng. In: Nature Methods 9.7 (June 2012), pp. 730–733. issn: 1548-7105. doi:
10.1038/nmeth.2064.

[64] Ulrich Kubitscheck, ed. Fluorescence Microscopy: From Principles to Biolog-
ical Applications. English. 2 edition. Weinheim: Wiley-Blackwell, June 2017.
isbn: 978-3-527-33837-5.

[65] Andrey Kurenov. A ’Brief’ History of Neural Nets and Deep Learning. en.
url: /writing / ai / a - brief - history - of - neural - nets - and - deep -
learning/ (visited on 06/19/2019).

[66] LAIRA - "Laira is an AI-based Research Assistant" - Bioretics srl. url:
https://laira.bioretics.com/ (visited on 08/19/2019).

[67] Joseph R. Lakowicz. Principles of Fluorescence Spectroscopy. en. 3rd ed.
Springer US, 2006. isbn: 978-0-387-31278-1. url: https://www.springer.
com/it/book/9780387312781 (visited on 04/13/2019).

170

http://arxiv.org/abs/1806.04209
http://arxiv.org/abs/1412.6980
https://doi.org/10.1186/1471-2288-14-26
http://bmcmedresmethodol.biomedcentral.com/articles/10.1186/1471-2288-14-26
http://bmcmedresmethodol.biomedcentral.com/articles/10.1186/1471-2288-14-26
https://doi.org/10.1038/nmeth.2064
/writing/ai/a-brief-history-of-neural-nets-and-deep-learning/
/writing/ai/a-brief-history-of-neural-nets-and-deep-learning/
https://laira.bioretics.com/
https://www.springer.com/it/book/9780387312781
https://www.springer.com/it/book/9780387312781

BIBLIOGRAPHY

[68] Nieradzik Lars. Losses for Image Segmentation. en. Sept. 2018. url: https:
//lars76.github.io/neural- networks/object- detection/losses-
for-segmentation/ (visited on 06/24/2019).

[69] Yann A. LeCun et al. “Efficient BackProp”. en. In: Neural Networks: Tricks of
the Trade: Second Edition. Ed. by Grégoire Montavon, Geneviève B. Orr, and
Klaus-Robert Müller. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 9–48. isbn: 978-3-642-35289-8. doi:
10.1007/978-3-642-35289-8_3. url: https://doi.org/10.1007/978-3-
642-35289-8_3 (visited on 08/07/2019).

[70] Thomas Lewiner et al. “Efficient Implementation of Marching Cubes’ Cases
with Topological Guarantees”. en. In: Journal of Graphics Tools 8.2 (Jan.
2003), pp. 1–15. issn: 1086-7651. doi: 10.1080/10867651.2003.10487582.
url: http://www.tandfonline.com/doi/abs/10.1080/10867651.2003.
10487582 (visited on 08/19/2019).

[71] R. Li et al. “Deep Learning Segmentation of Optical Microscopy Images Im-
proves 3-D Neuron Reconstruction”. In: IEEE Transactions on Medical Imag-
ing 36.7 (July 2017), pp. 1533–1541. issn: 0278-0062. doi: 10.1109/TMI.
2017.2679713.

[72] Chunfeng Lian et al. “Multi-channel multi-scale fully convolutional network
for 3D perivascular spaces segmentation in 7T MR images”. In:Medical Image
Analysis 46 (May 2018), pp. 106–117. issn: 1361-8415. doi: 10.1016/j.
media.2018.02.009. url: http://www.sciencedirect.com/science/
article/pii/S1361841518300409 (visited on 06/28/2019).

[73] Min Lin, Qiang Chen, and Shuicheng Yan. “Network In Network”. In: arXiv:1312.4400
[cs] (Dec. 2013). arXiv: 1312.4400. url: http://arxiv.org/abs/1312.4400
(visited on 08/17/2019).

[74] Zhiqiang Liu et al. “A Uniform Architecture Design for Accelerating 2D and
3D CNNs on FPGAs”. In: Electronics 8 (Jan. 2019), p. 65. doi: 10.3390/
electronics8010065.

[75] Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully Convolutional
Networks for Semantic Segmentation”. en. In: (), p. 10.

171

https://lars76.github.io/neural-networks/object-detection/losses-for-segmentation/
https://lars76.github.io/neural-networks/object-detection/losses-for-segmentation/
https://lars76.github.io/neural-networks/object-detection/losses-for-segmentation/
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1080/10867651.2003.10487582
http://www.tandfonline.com/doi/abs/10.1080/10867651.2003.10487582
http://www.tandfonline.com/doi/abs/10.1080/10867651.2003.10487582
https://doi.org/10.1109/TMI.2017.2679713
https://doi.org/10.1109/TMI.2017.2679713
https://doi.org/10.1016/j.media.2018.02.009
https://doi.org/10.1016/j.media.2018.02.009
http://www.sciencedirect.com/science/article/pii/S1361841518300409
http://www.sciencedirect.com/science/article/pii/S1361841518300409
http://arxiv.org/abs/1312.4400
https://doi.org/10.3390/electronics8010065
https://doi.org/10.3390/electronics8010065

BIBLIOGRAPHY

[76] William E. Lorensen and Harvey E. Cline. “Marching Cubes: A High Resolu-
tion 3D Surface Construction Algorithm”. In: Proceedings of the 14th Annual
Conference on Computer Graphics and Interactive Techniques. SIGGRAPH
’87. New York, NY, USA: ACM, 1987, pp. 163–169. isbn: 0-89791-227-6. doi:
10.1145/37401.37422. url: http://doi.acm.org/10.1145/37401.37422.

[77] Aurelien Lucchi, Yunpeng Li, and Pascal Fua. “Learning for Structured Pre-
diction Using Approximate Subgradient Descent with Working Sets”. en. In:
2013 IEEE Conference on Computer Vision and Pattern Recognition. Port-
land, OR, USA: IEEE, June 2013, pp. 1987–1994. isbn: 978-0-7695-4989-7.
doi: 10.1109/CVPR.2013.259. url: http://ieeexplore.ieee.org/
document/6619103/ (visited on 08/05/2019).

[78] Douglas Magde, Gail E. Rojas, and Paul G. Seybold. “Solvent Dependence
of the Fluorescence Lifetimes of Xanthene Dyes”. en. In: Photochemistry and
Photobiology 70.5 (1999), pp. 737–744. issn: 1751-1097. doi: 10.1111/j.
1751-1097.1999.tb08277.x. url: https://onlinelibrary.wiley.com/
doi/abs/10.1111/j.1751-1097.1999.tb08277.x (visited on 04/16/2019).

[79] Caroline Magnain et al. “Optical coherence tomography visualizes neurons
in human entorhinal cortex”. In: Neurophotonics 2.1 (Jan. 2015). issn: 2329-
423X. doi: 10.1117/1.NPh.2.1.015004. url: https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC4346095/ (visited on 05/04/2019).

[80] G. Mazzamuto et al. “Automatic Segmentation of Neurons in 3D Samples
of Human Brain Cortex”. en. In: Applications of Evolutionary Computation.
Ed. by Kevin Sim and Paul Kaufmann. Lecture Notes in Computer Science.
Springer International Publishing, 2018, pp. 78–85. isbn: 978-3-319-77538-8.

[81] Giacomo Mazzamuto et al. Software Tools for Efficient Processing of High-
Resolution 3D Images of Macroscopic Brain Samples. url: https://www.
osapublishing.org/abstract.cfm?uri=Microscopy- 2018- JTh3A.64
(visited on 08/19/2019).

[82] Warren S. McCulloch and Walter Pitts. “A logical calculus of the ideas im-
manent in nervous activity”. en. In: The bulletin of mathematical biophysics
5.4 (Dec. 1943), pp. 115–133. issn: 1522-9602. doi: 10.1007/BF02478259.
url: https://doi.org/10.1007/BF02478259 (visited on 06/18/2019).

172

https://doi.org/10.1145/37401.37422
http://doi.acm.org/10.1145/37401.37422
https://doi.org/10.1109/CVPR.2013.259
http://ieeexplore.ieee.org/document/6619103/
http://ieeexplore.ieee.org/document/6619103/
https://doi.org/10.1111/j.1751-1097.1999.tb08277.x
https://doi.org/10.1111/j.1751-1097.1999.tb08277.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-1097.1999.tb08277.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-1097.1999.tb08277.x
https://doi.org/10.1117/1.NPh.2.1.015004
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4346095/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4346095/
https://www.osapublishing.org/abstract.cfm?uri=Microscopy-2018-JTh3A.64
https://www.osapublishing.org/abstract.cfm?uri=Microscopy-2018-JTh3A.64
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259

BIBLIOGRAPHY

[83] Jing Men et al. “Optical Coherence Tomography for Brain Imaging and De-
velopmental Biology”. In: IEEE journal of selected topics in quantum elec-
tronics : a publication of the IEEE Lasers and Electro-optics Society 22.4
(2016). issn: 1077-260X. doi: 10.1109/JSTQE.2015.2513667. url: https:
/ / www . ncbi . nlm . nih . gov / pmc / articles / PMC5049888/ (visited on
05/10/2019).

[84] A. Mikołajczyk and M. Grochowski. “Data augmentation for improving deep
learning in image classification problem”. In: 2018 International Interdisci-
plinary PhD Workshop (IIPhDW). May 2018, pp. 117–122. doi: 10.1109/
IIPHDW.2018.8388338.

[85] Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. “V-Net: Fully
Convolutional Neural Networks for Volumetric Medical Image Segmenta-
tion”. In: arXiv:1606.04797 [cs] (June 2016). arXiv: 1606.04797. url: http:
//arxiv.org/abs/1606.04797 (visited on 07/03/2019).

[86] Marvin Lee Minsky and Seymour Papert. Perceptrons: An Introduction to
Computational Geometry. en. Google-Books-ID: Ow1OAQAAIAAJ. Mit Press,
1972. isbn: 978-0-262-63022-1.

[87] Tom M. Mitchell. Machine Learning. English. 1 edition. New York: McGraw-
Hill Education, Mar. 1997. isbn: 978-0-07-042807-2.

[88] Mitochondria Detection in EM Stacks – CVLAB. en-GB. url: https://
cvlab.epfl.ch/research/page-90578-en-html/research-medical-em-
mitochondria-index-php/ (visited on 06/28/2019).

[89] Pawel Mlynarski et al. “3D Convolutional Neural Networks for Tumor Seg-
mentation using Long-range 2D Context”. In: arXiv:1807.08599 [cs] (July
2018). arXiv: 1807.08599. url: http://arxiv.org/abs/1807.08599 (vis-
ited on 05/13/2019).

[90] Evan Murray et al. “Simple, scalable proteomic imaging for high-dimensional
profiling of intact systems”. In: Cell 163.6 (Dec. 2015), pp. 1500–1514. issn:
0092-8674. doi: 10.1016/j.cell.2015.11.025. url: https://www.ncbi.
nlm.nih.gov/pmc/articles/PMC5275966/ (visited on 05/13/2019).

173

https://doi.org/10.1109/JSTQE.2015.2513667
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5049888/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5049888/
https://doi.org/10.1109/IIPHDW.2018.8388338
https://doi.org/10.1109/IIPHDW.2018.8388338
http://arxiv.org/abs/1606.04797
http://arxiv.org/abs/1606.04797
https://cvlab.epfl.ch/research/page-90578-en-html/research-medical-em-mitochondria-index-php/
https://cvlab.epfl.ch/research/page-90578-en-html/research-medical-em-mitochondria-index-php/
https://cvlab.epfl.ch/research/page-90578-en-html/research-medical-em-mitochondria-index-php/
http://arxiv.org/abs/1807.08599
https://doi.org/10.1016/j.cell.2015.11.025
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5275966/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5275966/

BIBLIOGRAPHY

[91] Mark Muyskens and Ed Vitz. “The Fluorescence of Lignum nephriticum: A
Flash Back to the Past and a Simple Demonstration of Natural Substance
Fluorescence”. In: Journal of Chemical Education 83.5 (May 2006), p. 765.
issn: 0021-9584. doi: 10.1021/ed083p765. url: https://doi.org/10.
1021/ed083p765 (visited on 04/16/2019).

[92] M. Caroline Müllenbroich et al. “High-Fidelity Imaging in Brain-Wide Struc-
tural Studies Using Light-Sheet Microscopy”. eng. In: eNeuro 5.6 (Dec. 2018).
issn: 2373-2822. doi: 10.1523/ENEURO.0124-18.2018.

[93] Augustus Odena, Vincent Dumuolin, and Chris Olah. Deconvolution and
Checkerboard Artifacts. url: https://distill.pub/2016/deconv-checkerboard/
(visited on 08/07/2019).

[94] Omar E. Olarte et al. “Light-sheet microscopy: a tutorial”. EN. In: Advances
in Optics and Photonics 10.1 (Mar. 2018), pp. 111–179. issn: 1943-8206. doi:
10.1364/AOP.10.000111. url: https://www.osapublishing.org/aop/
abstract.cfm?uri=aop-10-1-111 (visited on 04/23/2019).

[95] Diana Porro-Muñoz et al. “Tractome: a visual data mining tool for brain
connectivity analysis”. en. In: Data Mining and Knowledge Discovery 29.5
(Sept. 2015), pp. 1258–1279. issn: 1573-756X. doi: 10.1007/s10618-015-
0408-z. url: https://doi.org/10.1007/s10618-015-0408-z (visited on
05/10/2019).

[96] Emmanuel G. Reynaud et al. “Guide to light-sheet microscopy for adven-
turous biologists”. en. In: Nature Methods 12 (Dec. 2014), pp. 30–34. issn:
1548-7105. doi: 10.1038/nmeth.3222. url: https://www.nature.com/
articles/nmeth.3222 (visited on 04/24/2019).

[97] Hamid Rezatofighi et al. “Generalized Intersection over Union: A Metric and
A Loss for Bounding Box Regression”. In: arXiv:1902.09630 [cs] (Feb. 2019).
arXiv: 1902.09630. url: http://arxiv.org/abs/1902.09630 (visited on
07/03/2019).

[98] Matteo Roffilli. “Advanced Machine Learning Techniques for Digital Mam-
mography”. PhD Thesis. Tech. Rep. UBLCS-2006-12, University of Bologna,
Mar. 2006. url: http : / / www . cs . unibo . it / people / phd - students /
roffilli/.

174

https://doi.org/10.1021/ed083p765
https://doi.org/10.1021/ed083p765
https://doi.org/10.1021/ed083p765
https://doi.org/10.1523/ENEURO.0124-18.2018
https://distill.pub/2016/deconv-checkerboard/
https://doi.org/10.1364/AOP.10.000111
https://www.osapublishing.org/aop/abstract.cfm?uri=aop-10-1-111
https://www.osapublishing.org/aop/abstract.cfm?uri=aop-10-1-111
https://doi.org/10.1007/s10618-015-0408-z
https://doi.org/10.1007/s10618-015-0408-z
https://doi.org/10.1007/s10618-015-0408-z
https://doi.org/10.1038/nmeth.3222
https://www.nature.com/articles/nmeth.3222
https://www.nature.com/articles/nmeth.3222
http://arxiv.org/abs/1902.09630
http://www.cs.unibo.it/people/phd-students/roffilli/
http://www.cs.unibo.it/people/phd-students/roffilli/

BIBLIOGRAPHY

[99] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolutional
Networks for Biomedical Image Segmentation”. In: arXiv:1505.04597 [cs]
(May 2015). arXiv: 1505.04597. url: http://arxiv.org/abs/1505.04597
(visited on 05/13/2019).

[100] F. Rosenblatt. “The perceptron: a probabilistic model for information stor-
age and organization in the brain”. eng. In: Psychological Review 65.6 (Nov.
1958), pp. 386–408. issn: 0033-295X.

[101] Ali Salehi. Step by step explanation of 2D convolution implemented as matrix
multiplication using toeplitz matrices: alisaaalehi/convolution_as_multiplication.
original-date: 2018-08-15T04:46:54Z. July 2019. url: https://github.com/
alisaaalehi/convolution_as_multiplication (visited on 08/14/2019).

[102] A. L. Samuel. “Some Studies in Machine Learning Using the Game of Check-
ers”. In: IBM Journal of Research and Development 3.3 (July 1959), pp. 210–
229. issn: 0018-8646. doi: 10.1147/rd.33.0210.

[103] Olaf Selchow and Jan Huisken. “Lichtblattmikroskopie: Das Beleuchtungskonzept
revolutioniert die 3D-Analyse lebender Proben”. de. In: (), p. 4.

[104] Pierre Sermanet et al. “OverFeat: Integrated Recognition, Localization and
Detection using Convolutional Networks”. In: arXiv:1312.6229 [cs] (Dec.
2013). arXiv: 1312.6229. url: http://arxiv.org/abs/1312.6229 (vis-
ited on 08/13/2019).

[105] Connor Shorten and Taghi M. Khoshgoftaar. “A survey on Image Data Aug-
mentation for Deep Learning”. en. In: Journal of Big Data 6.1 (Dec. 2019),
p. 60. issn: 2196-1115. doi: 10.1186/s40537-019-0197-0. url: https:
//journalofbigdata.springeropen.com/articles/10.1186/s40537-
019-0197-0 (visited on 08/03/2019).

[106] L. Silvestri et al. “Confocal light sheet microscopy: micron-scale neuroanatomy
of the entire mouse brain”. EN. In:Optics Express 20.18 (Aug. 2012), pp. 20582–
20598. issn: 1094-4087. doi: 10.1364/OE.20.020582. url: https://www.
osapublishing.org/oe/abstract.cfm?uri=oe-20-18-20582 (visited on
04/22/2019).

175

http://arxiv.org/abs/1505.04597
https://github.com/alisaaalehi/convolution_as_multiplication
https://github.com/alisaaalehi/convolution_as_multiplication
https://doi.org/10.1147/rd.33.0210
http://arxiv.org/abs/1312.6229
https://doi.org/10.1186/s40537-019-0197-0
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0197-0
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0197-0
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0197-0
https://doi.org/10.1364/OE.20.020582
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-20-18-20582
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-20-18-20582

BIBLIOGRAPHY

[107] Ludovico Silvestri et al. “Clearing of fixed tissue: a review from a micro-
scopist’s perspective”. In: Journal of Biomedical Optics 21.8 (Mar. 2016),
p. 081205. issn: 1083-3668, 1560-2281. doi: 10.1117/1.JBO.21.8.081205.
url: https://www.spiedigitallibrary.org/journals/Journal- of-
Biomedical-Optics/volume-21/issue-8/081205/Clearing-of-fixed-
tissue-- a- review- from- a- microscopists/10.1117/1.JBO.21.8.
081205.short (visited on 05/09/2019).

[108] Ludovico Silvestri et al. “Towards a Full Volumetric Atlas of Cell-specific
Neuronal Spatial Organization in the Entire Mouse Brain”. EN. In: Bio-
photonics Congress: Biomedical Optics Congress 2018 (Microscopy/Trans-
lational/Brain/OTS) (2018), paper JTu3A.62. Optical Society of America,
Apr. 2018, JTu3A.62. doi: 10.1364/TRANSLATIONAL.2018.JTu3A.62. url:
https://www.osapublishing.org/abstract.cfm?uri=BRAIN- 2018-
JTu3A.62 (visited on 06/29/2019).

[109] P. Y. Simard, D. Steinkraus, and J. C. Platt. “Best practices for convolutional
neural networks applied to visual document analysis”. In: Seventh Interna-
tional Conference on Document Analysis and Recognition, 2003. Proceedings.
Aug. 2003, pp. 958–963. doi: 10.1109/ICDAR.2003.1227801.

[110] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Networks
for Large-Scale Image Recognition”. en. In: arXiv:1409.1556 [cs] (Sept. 2014).
arXiv: 1409.1556. url: http://arxiv.org/abs/1409.1556 (visited on
08/25/2019).

[111] Larry Squire et al. Fundamental Neuroscience. en. Google-Books-ID: QGzJFu_NyzcC.
Academic Press, Dec. 2012. isbn: 978-0-12-385871-9.

[112] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Net-
works from Overfitting”. In: Journal of Machine Learning Research 15 (2014),
pp. 1929–1958. url: http://jmlr.org/papers/v15/srivastava14a.html
(visited on 07/06/2019).

[113] Staining methods: Staining of nerve tissue. url: https://pathologycenter.
jp/crrinpa/crrinpa10.html (visited on 05/06/2019).

176

https://doi.org/10.1117/1.JBO.21.8.081205
https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics/volume-21/issue-8/081205/Clearing-of-fixed-tissue--a-review-from-a-microscopists/10.1117/1.JBO.21.8.081205.short
https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics/volume-21/issue-8/081205/Clearing-of-fixed-tissue--a-review-from-a-microscopists/10.1117/1.JBO.21.8.081205.short
https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics/volume-21/issue-8/081205/Clearing-of-fixed-tissue--a-review-from-a-microscopists/10.1117/1.JBO.21.8.081205.short
https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics/volume-21/issue-8/081205/Clearing-of-fixed-tissue--a-review-from-a-microscopists/10.1117/1.JBO.21.8.081205.short
https://doi.org/10.1364/TRANSLATIONAL.2018.JTu3A.62
https://www.osapublishing.org/abstract.cfm?uri=BRAIN-2018-JTu3A.62
https://www.osapublishing.org/abstract.cfm?uri=BRAIN-2018-JTu3A.62
https://doi.org/10.1109/ICDAR.2003.1227801
http://arxiv.org/abs/1409.1556
http://jmlr.org/papers/v15/srivastava14a.html
https://pathologycenter.jp/crrinpa/crrinpa10.html
https://pathologycenter.jp/crrinpa/crrinpa10.html

BIBLIOGRAPHY

[114] G. Stokes.On the Change of Refrangibility of Light. eng. Royal Society of Lon-
don, Jan. 1852. url: http://archive.org/details/philtrans03348300
(visited on 04/13/2019).

[115] Carole H. Sudre et al. “Generalised Dice overlap as a deep learning loss func-
tion for highly unbalanced segmentations”. In: arXiv:1707.03237 [cs] 10553
(2017). arXiv: 1707.03237, pp. 240–248. doi: 10.1007/978-3-319-67558-
9_28. url: http://arxiv.org/abs/1707.03237 (visited on 07/03/2019).

[116] Karel Svoboda and Ryohei Yasuda. “Principles of Two-Photon Excitation
Microscopy and Its Applications to Neuroscience”. In: Neuron 50.6 (June
2006), pp. 823–839. issn: 0896-6273. doi: 10.1016/j.neuron.2006.05.
019. url: http : / / www . sciencedirect . com / science / article / pii /
S0896627306004119 (visited on 04/16/2019).

[117] Abdel Aziz Taha and Allan Hanbury. “Metrics for evaluating 3D medical
image segmentation: analysis, selection, and tool”. In: BMC Medical Imaging
15 (Aug. 2015). issn: 1471-2342. doi: 10.1186/s12880-015-0068-x. url:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4533825/ (visited on
08/22/2019).

[118] Giles Tetteh et al. “DeepVesselNet: Vessel Segmentation, Centerline Predic-
tion, and Bifurcation Detection in 3-D Angiographic Volumes”. In: arXiv:1803.09340
[cs] (Mar. 2018). arXiv: 1803.09340. url: http://arxiv.org/abs/1803.
09340 (visited on 06/28/2019).

[119] Yuta Tokuoka et al. “Convolutional Neural Network-Based Instance Seg-
mentation Algorithm to Acquire Quantitative Criteria of Early Mouse De-
velopment”. en. In: bioRxiv (June 2018), p. 324186. doi: 10.1101/324186.
url: https://www.biorxiv.org/content/10.1101/324186v3 (visited on
06/21/2019).

[120] Types of neurons. en. Nov. 2017. url: https://qbi.uq.edu.au/brain/
brain-anatomy/types-neurons (visited on 05/03/2019).

[121] Juan P. Vigueras-Guillén et al. “Fully convolutional architecture vs sliding-
window CNN for corneal endothelium cell segmentation”. In: BMC Biomedi-
cal Engineering 1.1 (Jan. 2019), p. 4. issn: 2524-4426. doi: 10.1186/s42490-

177

http://archive.org/details/philtrans03348300
https://doi.org/10.1007/978-3-319-67558-9_28
https://doi.org/10.1007/978-3-319-67558-9_28
http://arxiv.org/abs/1707.03237
https://doi.org/10.1016/j.neuron.2006.05.019
https://doi.org/10.1016/j.neuron.2006.05.019
http://www.sciencedirect.com/science/article/pii/S0896627306004119
http://www.sciencedirect.com/science/article/pii/S0896627306004119
https://doi.org/10.1186/s12880-015-0068-x
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4533825/
http://arxiv.org/abs/1803.09340
http://arxiv.org/abs/1803.09340
https://doi.org/10.1101/324186
https://www.biorxiv.org/content/10.1101/324186v3
https://qbi.uq.edu.au/brain/brain-anatomy/types-neurons
https://qbi.uq.edu.au/brain/brain-anatomy/types-neurons
https://doi.org/10.1186/s42490-019-0003-2
https://doi.org/10.1186/s42490-019-0003-2
https://doi.org/10.1186/s42490-019-0003-2

BIBLIOGRAPHY

019-0003-2. url: https://doi.org/10.1186/s42490-019-0003-2 (vis-
ited on 07/28/2019).

[122] Chengjia Wang et al. “A two-stage 3D Unet framework for multi-class seg-
mentation on full resolution image”. In: arXiv:1804.04341 [cs] (Apr. 2018).
arXiv: 1804.04341. url: http://arxiv.org/abs/1804.04341 (visited on
05/13/2019).

[123] Hui Wang et al. “Reconstructing micrometer-scale fiber pathways in the
brain: multi-contrast optical coherence tomography based tractography”. In:
NeuroImage 58.4 (Oct. 2011), pp. 984–992. issn: 1053-8119. doi: 10.1016/
j.neuroimage.2011.07.005. url: https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC3178460/ (visited on 05/10/2019).

[124] Michael Weber, Michaela Mickoleit, and Jan Huisken. “Light sheet microscopy”.
eng. In: Methods in Cell Biology 123 (2014), pp. 193–215. issn: 0091-679X.
doi: 10.1016/B978-0-12-420138-5.00011-2.

[125] Paul JohnWerbos. Beyond Regression: New Tools for Prediction and Analysis
in the Behavioral Sciences. en. Google-Books-ID: z81XmgEACAAJ. Harvard
University, 1975.

[126] Yicong Wu et al. “Spatially isotropic four-dimensional imaging with dual-
view plane illumination microscopy”. In: Nature biotechnology 31.11 (Nov.
2013), pp. 1032–1038. issn: 1087-0156. doi: 10 . 1038 / nbt . 2713. url:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4105320/ (visited
on 08/07/2019).

[127] Chris Xu and Watt W. Webb. “Measurement of two-photon excitation cross
sections of molecular fluorophores with data from 690 to 1050 nm”. en. In:
Journal of the Optical Society of America B 13.3 (Mar. 1996), p. 481. issn:
0740-3224, 1520-8540. doi: 10.1364/JOSAB.13.000481. url: https://
www.osapublishing.org/abstract.cfm?URI=josab-13-3-481 (visited on
09/04/2019).

[128] Jiahui Yu et al. “UnitBox: An Advanced Object Detection Network”. In:
Proceedings of the 2016 ACM on Multimedia Conference - MM ’16 (2016).
arXiv: 1608.01471, pp. 516–520. doi: 10 . 1145 / 2964284 . 2967274. url:
http://arxiv.org/abs/1608.01471 (visited on 07/03/2019).

178

https://doi.org/10.1186/s42490-019-0003-2
https://doi.org/10.1186/s42490-019-0003-2
https://doi.org/10.1186/s42490-019-0003-2
https://doi.org/10.1186/s42490-019-0003-2
http://arxiv.org/abs/1804.04341
https://doi.org/10.1016/j.neuroimage.2011.07.005
https://doi.org/10.1016/j.neuroimage.2011.07.005
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3178460/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3178460/
https://doi.org/10.1016/B978-0-12-420138-5.00011-2
https://doi.org/10.1038/nbt.2713
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4105320/
https://doi.org/10.1364/JOSAB.13.000481
https://www.osapublishing.org/abstract.cfm?URI=josab-13-3-481
https://www.osapublishing.org/abstract.cfm?URI=josab-13-3-481
https://doi.org/10.1145/2964284.2967274
http://arxiv.org/abs/1608.01471

BIBLIOGRAPHY

[129] Lequan Yu et al. “Volumetric ConvNets with Mixed Residual Connections
for Automated Prostate Segmentation from 3D MR Images”. en. In: (), p. 7.

[130] Sergey Zagoruyko and Nikos Komodakis. “Wide Residual Networks”. en. In:
arXiv:1605.07146 [cs] (May 2016). arXiv: 1605.07146. url: http://arxiv.
org/abs/1605.07146 (visited on 08/25/2019).

[131] Zhengxin Zhang, Qingjie Liu, and Yunhong Wang. “Road Extraction by Deep
Residual U-Net”. en. In: IEEE Geoscience and Remote Sensing Letters 15.5
(May 2018). arXiv: 1711.10684, pp. 749–753. issn: 1545-598X, 1558-0571.
doi: 10.1109/LGRS.2018.2802944. url: http://arxiv.org/abs/1711.
10684 (visited on 08/25/2019).

[132] Z. Zhong et al. “3D fully convolutional networks for co-segmentation of tu-
mors on PET-CT images”. In: 2018 IEEE 15th International Symposium on
Biomedical Imaging (ISBI 2018). Apr. 2018, pp. 228–231. doi: 10.1109/
ISBI.2018.8363561.

[133] Özgün Çiçek et al. “3D U-Net: Learning Dense Volumetric Segmentation from
Sparse Annotation”. In: arXiv:1606.06650 [cs] (June 2016). arXiv: 1606.06650.
url: http://arxiv.org/abs/1606.06650 (visited on 05/13/2019).

179

http://arxiv.org/abs/1605.07146
http://arxiv.org/abs/1605.07146
https://doi.org/10.1109/LGRS.2018.2802944
http://arxiv.org/abs/1711.10684
http://arxiv.org/abs/1711.10684
https://doi.org/10.1109/ISBI.2018.8363561
https://doi.org/10.1109/ISBI.2018.8363561
http://arxiv.org/abs/1606.06650

	Acknowledgements
	I Introduction and State of the Art in Image Segmentation
	Deep Learning and Introductory Concepts
	Introduction
	Historical Notes: ANNs and Deep Learning

	Learning Algorithms
	Learning Components: Experience
	Learning Components: Task
	Learning Components: Performance Measures

	Optimization, Loss, Gradient Descent
	Gradient Descent Optimization
	Loss Functions
	Segmentation-Specific Metrics

	Overfitting, Underfitting, Model Capacity
	Convolutional Neural Networks
	Convolutional Layers
	Padding
	Pooling Layers
	Fully Connected Layers

	Regularization Strategies
	L1 and L2 Regularization
	Data Augmentation
	Dropout

	Other Methods in CNN Training
	BatchNormalization

	CNNs for Segmentation
	State of the art in 2D Semantic Segmentation
	The Sliding Window Approach
	Convolutional Interpretation of Sliding Windows
	Fully Convolutional Networks
	Unpooling and Transposed Convolution
	FCN-32, FCN-16, FCN-8
	U-NET

	From 2D to 3D Segmentation
	2.5D Approaches
	3D Convolutions
	3D U-NET
	2D CNN vs 3D CNN: General Considerations

	II Problem Framing and Methods
	Motivation and Quantitative Study of the Brain
	Human Brain Imaging at LENS
	Program for the Next Chapters

	Fluorescence Microscopy
	The Jablonski Diagram
	Fluorescence Quantum Yield and Fluorescence Lifetime
	Two-Photon Excitation
	Comparing the numbers

	LighSheet Fluorescence Microscopy (LSFM)
	LSFM-SPIM and LSFM-DSLM
	LSFM Image Properties and Artifacts
	MultiView LSFM and LSFM Configurations
	Problems Related to Data Handling

	A Biological Framework
	Neural Tissue
	Neurons
	Neuroglia

	Anatomical framing
	Studying the Tissue
	Staining
	Tissue Clearing

	Examples of Other Imaging Approaches
	Magnetic Resonance Imaging
	Optical Coherence Tomography

	CNN Models and Methods
	2D Model
	Architecture
	Data Augmentation
	Training

	3D Model
	Architecture
	Data Augmentation
	Training

	Improving UNETs: Residual Learning
	Patch-Based Reconstruction: SP3D
	Border Artifacts
	Patch Blending
	Noise Reduction

	Finding 3D Surfaces: Marching Cubes

	III Results and Conclusions
	Results
	Data Characterization
	Electron Microscopy Mithocondria Detection Dataset
	Fluorescence Microscopy Dataset
	Data Stitching: ZetaStitcher

	Evaluation Metrics
	Terminology
	Confusion Matrix
	Overlap Based Metrics
	Receiver Operator Characteristic and Precision-Recall Curves

	Electron Microscopy Dataset Analysis
	Model Comparison
	Surface Reconstruction

	Fluorescence Microscopy Dataset Analysis
	Model Comparison
	Surface Reconstruction

	Conclusions
	On the Criticality of Data Availability
	Future Challenges: Multiview and Multichannel LSFM Segmentation

	Upsampling Artifacts
	Convolutions as Matrix Multiplications
	1D Discrete Convolutions
	2D Discrete Convolutions

	References

