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Abstract

Nella tesi presente si propone una trattazione esaustiva sui teoremi di Noether, cardine
delle più moderne ed avanzate teorie di gauge. In particolare si tenta di fornirne una
misura matematica rigorosa senza allontanarsi dalla cruciale intuizione fisica che celano:
la ricerca di simmetrie nella natura e la volontà di descrivere le interazioni conosciute
con un singolo modello. Più avanti, trovando i caratteri dominanti e l’ispirazione nelle
pubblicazioni di Noether, si affrontano i tratti generali della formulazione hamiltoniana
delle teorie di gauge, presentando la struttura dell’azione per una particella relativistica,
la teoria elettromagnetica e la teoria della relatività generale; si pongono infine alcuni
interrogativi sui valori di contorno che emergono dal formalismo adottato. Inoltre, per
ottenere un’esposizione più efficace e meno oscura, si accompagna ogni risultato con
esempi opportuni.
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Chapter 1

Preamble

There must in fact be some
substance, one or more, from
which the rest is generated while
remaining unchanged.

Aristotle

1.1 Overview

In classical mechanics, field theory and in a certain way also in quantum mechanics we
appeal to an object which encodes all the information about the system we are facing:
the action integral. For the simple case of a particle, this is a functional depending on
the path of the particle, defined as 1

I[q(t)] =

∫
L(q(t), q̇(t), t) dt. (1.1)

We will deal with infinitesimal transformations that leave the action unchanged, which
means we will treat such transformations which make the variation of the action vanish
(at least up to a boundary term 2). We also recall the method from which we obtain the
equations of motion, namely the Euler-Lagrange equations

d

dt

(
∂L

∂q̇i

)
−∂L
∂qi

= 0. (1.2)

1 Since the very beginning, let us be clear with notation. Whenever a function is indicated as q(t)
we refer to all the set of its components qi(t), while when we write qi(t) we obviously indicate its single
component in tensorial formulation. Moreover we also point out that we use from now on the Einstein
convention for the summation on repeated index. Finally let us remind that, since q(t) represents the set
of lagrangian generalized coordinates, each component of it stands for a different generalized coordinates
of a particle.

2 In this case of a single particle, the integral of a total time derivative.
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It consists in performing a variation on the action with fixed end points at which the
variation does not occur, and requiring the action to be an extreme value (usually a
minimum, the “least action principle”).

Combining these particular infinitesimal transformations that does not change the
action and the conditions which lead to the equations of motion we deduce Noether’s
first theorem, which can be read quite naively as follow: to every such transformations
is associated a certain quantity that stands still on the path of motion.

Although we will later discuss and furnish a far better explanation of this result it
might be interesting wondering on the physical meaning of it. If in the description of
nature we find a conserved quantity, we might say that we have found a constant, some-
thing that we can follow as a lighthouse during our searching. This reminds to the very
first studying of the realm surrounding us, which took place in the ancient Greek world
when the first query was towards uncovering the common root of our manifold nature, a
feature that holds its own identity whether everything was swirling or not. Leaving these
fascinating and perhaps less physical interpretations aside, we cannot avoid to recognize
the powerful approach of lagrangian formalism and Noether’s theorems, which provide
us with an elegant weapon we can tackle our studying with. The deepest conquer of her
theorems lays in establishing a connection between symmetries and conservation laws
that elevates the latter beyond useful empirical regularities. The influence of this insight
is pervasive in physics, also because it contains the seeds of gauge theories. Indeed there
is another theorem established by the genius of Emmy Noether. This is the so called
second theorem and it has been abandoned for a long time or at least no one has been
given credits to Noehter for it or understood the great importance of her works. This
theorem allows a more complete vision of interactions in nature: it finds a connection
between equations that describe the same phenomena but looks mathematically com-
pletely different and, in a certain way, arbitrary. Indeed, under the correct conditions,
the Lagrangian produces equations that connect the dynamical fields and thus reduce
the degree of freedom of the system considered. Further this equations depend from
arbitrary functions, hence the different manner to obtain a correct interpretations of the
same phenomenon. This, as mentioned before, gives birth to gauge theories which may
be the most powerful instrument in physics.

The first chapter is dedicated to Noether’s theorems. We present the concept of
symmetries and on-shell variations, providing some examples to better understand them.
We then report Noether’s first theorem with an intuitive approach and then extend its
treatment to field theory. Once we have introduced all the necessary mathematical
tools, we present again Noether’s first theorem but with a more rigorous formalism. To
extend rigid symmetries to arbitrary ones, we focus for a while on Lie derivatives in
order to introduce the topic of the next section: Noether’s second theorem, reported
and demonstrated in the very original version. We then give some application of the
two theorems inspecting the energy momentum tensor and some action integrals. In the
second chapter we deal with gauge symmetries, cast them in hamiltonian form and then
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use this formalism to analyze three lagrangians: the one for special relativity, the one for
electromagnetism and the ADM method for general relativity. Finally in the last chapter
we give a brief overview on all the boundary terms we neglected in our computations.
We also add three appendix to give reason and better explain the mathematical models
adopted.

Before the very beginning of the topic, let us say a word on Emmy Noether.

1.2 Emmy Noether: a brief biography

Since it is passed little more than a century from the publication of Noether’s theorem,
we dedicate few lines to her biography. Amalie Emmy Noether was born on the 23rd of
March, 1882 in Erlangen, a University town a bit north of Nürnberg. She was called by
her middle name because both her mother and grandmother were also named Amalie.
Emmy’s father, Max Noether, was a professor of Mathematics of some distinction at the
university of Enlargen: he was a member of the Academies of Berlin, Göttingen, Munich,
Budapest, Copenaghen, Turin, Accademia dei Lincei, Institut de France and the London
Mathematical Society.

Emmy Noether attended a school which should provide a preparation for the life of a
lady in which, if you had a profession at all, it would be teaching English and French to
other young ladies. After completing her first cicle of studies, she could not be accepted
in the University of Erlangen, since ladies were not allowed. It was possible, however, to
apply for special permission to listen to lectures. She also took private lessons in Mathe-
matics, preparing for universities studies. In 1903 she passed the university qualification
but she could not be admitted to the University of Erlangen. The University of Gottin-
gen was a little bit more open-minded: she went there for a semester, during which she
heard lectures from Minkowski, Klein, Hilbert and Schwarzschild. After one semester,
Erlangen saw the error of its ways and began admitting women, precisely two out of a
class of about a thousand, and so she was able to enroll at the University of Erlangen
as a student of mathematics. She finally managed to obtain her Ph.D and it appears
that Noether was the second woman Ph.D in Europe, following Sofia Kovalevskaya who
received her Ph.D in Göttingen. During all her life she taught mathematics, especially
algebra, group theory and differential equation, in Göttingen helped by Klein and Hilbert
who tried to find her a position in the University, although could not make it to be reg-
ularly paid. She was surrounded by a group of brilliant students who found exciting
inspirations in her lectures.

When the Second World War was about to break out, she moved to Pennsylvania at
Bryn Mawr College where she was occasionally allowed to give lessons. During spring
semester, she had abdominal surgery which was expected to be routine; she seemed to
be recuperating well, but suffered complications and died within a few days.

Although we cannot report all the interesting discoveries in her life, we only point
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out some quotations from the major scientists published in her honor at her death.
“ She was the most significant creative mathematical genius thus far produced since the
higher education of women was begun. In the realm of algebra, in which the most gifted
mathematicians have been busy for centuries, she discovered methods which have proved
of enormous importance in the development of the present-day younger generation of
mathematicians.”

Albert Einstein, letter of eulogy to the Times. New York Times, page 12, 4 May 1935.
https://nyti.ms/2GJc4o1.

“ This entirely non-visual and noncalculative mind of hers was probably one of the main
reasons why her lectures were difficult to follow. She was without didactic talent, and
the touching efforts she made to clarify her statements, even before she had finished
pronouncing them, by rapidly adding explanations, tended to produce the opposite effect.
And yet, how profound the impact of her lecturing was. Her small, loyal audience,
usually consisting of a few advanced students and often of an equal number of professors
and guests, had to strain enormously in order to follow her. Yet those who succeeded
gained far more than they would have from the most polished lecture. She almost never
presented completed theories; usually they were in the process of being developed. Each of
her lectures was a program. And no one was happier than she herself when this program
was carried out by her students. Entirely free of egotism and vanity she never asked
anything for herself but first of all fostered the work of her students. 3”

Bartel van der Waerden. 4

To honor the almost anniversary of the publication of her famous theorems, we reported
the first page of her outstanding masterpiece in Fig.1.1.

3Van der Waerden has written elsewhere that when they went walking in Göttingen, as she did with
her students at Bryn Mawr, Emmy Noether would talk so rapidly and with such excitement as to be
utterly incomprehensible. It came to him that if he led her on several laps around the city, she became,
by the third lap, slightly short of breath and spoke slowly enough that he could understand her.

4Reprinted in Auguste Dick’s Emmy Noether, 1882-1935, pp. 100–111.
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Figure 1.1: First page of Emmy Noether’s masterpiece on symmetries and groups.
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Chapter 2

Noether’s theorems

We will have to abandon the
philosophy of Democritus and
the concept of elementary
particles. We should accept
instead the concept of
elementary symmetries.

Werner Heisenberg

2.1 Noether’s first theorem

2.1.1 Noether’s symmetries

We now focus on the theorems mentioned earlier. We remind that one of their aims is
to associate a conserved charge to every given symmetry.

Since we are about to deal with them, let us introduce the concept of symmetry for
the action integral. Let q be a set of generalized coordinates; then a transformation of the
coordinates q(t) to new coordinates q ′(t) is a symmetry if the action functional does not
change when we evaluate it in these two different sets of coordinates, i.e. I[q ′(t)] = I[q(t)].
We will denote this change of coordinates as q(t)→ q ′(t). Above all, we will be interested
in a Lie group of symmetries, i.e. symmetries that depend on continuous parameters, so
that one can consider infinitesimal symmetries which are sufficiently close to the identity
q ′(t) = q(t) + δsq(t), and we can assume that the action integral behaves in the same
way as to when we deal with symmetries, namely we have that I[q(t) + δsq(t)] = I[q(t)].
Thus, symmetries are directions spanned by the q’s on which the action does not change.
However, the function δsq(t) could have a very complicated expression, depending on q(t)
and its derivatives as well. Noether’s theorems will characterize Lie groups of symmetries.
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We actually defined only a strong version of a symmetry, requiring that the action
is strictly invariant. Noether’s theorems extend to weaker variations, namely those ones
that leave the action invariant up to a boundary term. Therefore we define a (infinitesi-
mal) symmetry as a (infinitesimal) function δsq(t) such that, for any q(t), the action is
invariant up to boundary terms:

δsI[q(t)] ≡ I[q(t) + δsq(t)]− I[q(t)] =

∫
dt
dK

dt
; (2.1)

where we denote the boundary term with K. We remark that the variation δsI is the
variation of the action under the symmetry and so a function of both the configuration
q(t) and the symmetry δsq(t).

Any function δsq(t) that satisfies (2.1) belongs to a symmetry; hence a symmetry is
defined as a variation that changes the action integral by the integral of a total time
derivative: this is of great importance, since the action obtained taking account of this
type of variations furnishes the same structure for the equations of motion. Therefore
symmetries identify coordinate systems in which the equation of motion look in the
same way and thus frames of reference that are equivalent in this view. Eq. (2.1)
can be understood as an equation for δsq(t). If, for a given action I[q(t)], we find all
the variations δsq(t) satisfying (2.1), then we have found all possible symmetries of the
problem, which help in solving the equations of motion (we will provide two examples
below). We underline, once again, that the notion of symmetry is defined through
variations linked to arbitrary q(t).

2.1.2 Examples

We now provide a couple of examples in order to acquire a better understand of this
theorem.

The first one is the invariance under rotations of a system involving a central potential,
namely

I[ ~r(t)] =

∫
dt

(
m

2
~̇r 2 − V (r)

)
, (2.2)

where the symmetry is
~r → ~r ′(t) = R~r(t) (2.3)

and R is a constant orthogonal matrix, i.e. RT = R−1. To present this transformation
as an infinitesimal Noether’s symmetry we consider small angles α, for which one has
R~r = ~r + ~α× ~r and therefore

~r ′(t) = ~r(t) + ~α× ~r(t)⇒ δs~r(t) = ~α× ~r(t). (2.4)

Due to the orthogonality between ~α×~r(t) and ~r(t) and the smallness of the angle α this

transformation turns out to be a symmetry, that is I[ ~r(t) + ~α× ~r(t)] = I[~r(t)]. We note
that for this symmetry the boundary value K = 0.
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Figure 2.1: The paths q(t), q ′(t) related by a time translation t+ ε. At any given time,
their difference yields the variation δq(t).

Another example we provide is the invariance of the same action (2.2) under a different
symmetry:

δs~r(t) = −ε~̇r(t), (2.5)

where ε is constant. By direct calculation,

δsI[~r, δs~r] =

∫
dt

(
m~̇r · δs~̇r −∇V δs~r

)
=

∫
dtε(−m~̇r · ~̈r +∇V · ~̇r)

=

∫
dt
d

dt

(
−εm

2
~̇r 2 + εV (~r)

)
.

(2.6)

We see that the action integral is therefore invariant up to the boundary term

K = −ε
(
m
2
~̇r 2 − V (~r)

)
. Physically, we can relate this symmetry to time translations.

Indeed consider two function q(t) , q ′(t) representing the coordinate which are linked by
a time translation of magnitude ε.

As shown in Fig.2.1, we find that the values of q ′(t) are related to those of q(t) via:

q ′(t+ ε) = q(t). (2.7)

If ε is seen as an infinitesimal quantity, this equation can be cast as

q ′(t) + εq̇(t) = q(t)⇒ δsq(t) = −εq̇(t) (2.8)
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where we obviously expand in Taylor’s series q ′(t+ε) around t. Here δsq(t) = q ′(t)−q(t) is
the difference of the two functions evaluated at the same argument t. Before proceeding,
we should say something about the symmetry δsq(t) :

• The symmetry is represented by the function δsq(t) = −εq̇(t) which involves only
one time. We have transmuted the time translation into a deformation of the
function q(t).

• Since the symmetry is simply the difference of two functions evaluated at the same

time t, it follows directly that δs

(
d
dt
q(t)

)
= d

dt
(δsq(t)).

• We stress a fundamental interpretation of the transformations adopted: symmetries
will always be deformations of the fields, not the coordinates.

2.1.3 On shell variations

We now focus on another type of variation of the action: the on-shell variation. This
kind of variations is in a certain way the opposite to a symmetry. Indeed for symmetries,
the variations δsq(t) are forced to satisfy an equation, i.e. (2.1), while the fields q(t) are
totally arbitrary; on the other hand for on shell variations, the fields q(t) are forced to
satisfy their Euler-Lagrange equations (as it is well known from Analytical Mechanics)
while the variations δq(t) are arbitrary and not obliged to be symmetries (i.e. to satisfy
(2.1)).

Let δq(t) be an arbitrary infinitesimal deformation of the variable q(t) 1. Then, for an
action of the form I[q(t)] =

∫
dtL(q(t), q̇(t)) the variation δI[q(t)] = I[q(t)+δq(t)]−I[q(t)]

can be written as

δI[q(t), δq(t)] =

∫
dt

(
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i
)

=

∫
dt

(
∂L

∂qi
− d

dt

(
∂L

∂q̇i

))
δqi +

∫
dt
d

dt

(
∂L

∂q̇i
δqi
) (2.9)

1We aim to indicate precisely what we mean with a deformation, i.e. we specify what we indicate as
a variation. Given a path q(x) depending on the coordinates x = xµ in use (where µ runs over the range
desired, i.e. the space on which our functions are defined can be any space), we consider the family of
curves q(x, α) labeled by the Greek later α. The initial path is then q(x, 0) obviously. If we select any
function η(x), a possible varied path could be:

q(x, α) = q(x, 0) + αη(x),

where we define the arbitrary function η(x) as the variation of our initial path. The functions η(x), as
well as the family of curves q(x, α), are assumed to be as regular as required. The variations is thus

defined as δq(x) = d
dαq(x, α)

∣∣∣∣
α=0

= η(x).
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where we have suppressed the dependence from t of the fields q(t) in order to lighten the
notation and we have performed an integration by parts in the second line. We realize
that if the fields satisfy the Euler-Lagrange equations of motion associated to it (namely,
(1.2) for each index i), the bulk contribution vanishes and the variation reduces to a
total time derivative:

δoI[q(t)] ≡ I[q(t) + δq(t)]− I[q(t)] =

∫
dt
d

dt

(
∂L

∂q̇i
δqi
)
. (2.10)

The bar under q indicates that this is the variation evaluated on a solution of the Euler-
Lagrange equations of motion and the variation computed in this way are denoted by
the symbol δo (where the subscript o stands for on-shell). We enlighten once again that
(2.10) is valid for any fields δq. This variation is taken for a particular chosen solution
q and for arbitrary variations δq.

2.1.4 First theorem

Combining on-shell variation with symmetries we are ready to develop Noether’s first
theorem. We have now build two different equations that contain the variation of the
action:

symmetries δs : δsI[q(t)] = I[q(t) + δsq(t)]− I[q(t)] =
∫
dtdK

dt

on shell variations δo : δoI[q(t)] = I[q(t) + δq(t)]− I[q(t)] =
∫
dt d

dt

(
∂L
∂q̇i
δqi
)

Both terms are boundary terms but each one for very different reason. In the first term
δsq(t) satisfies a particular equation, while q(t) is completely arbitrary; on the other
hand, in the second term q(t) satisfies a particular equation, while δq(t) is completely
arbitrary.

Putting q(t) = q(t) into the symmetry equation and δq(t) = δsq(t) into the on shell
equation we note that the left sides of these equations is exactly the same. Subtracting
the second equation from the first one, the left hand sides cancel out and from the right
hand sides we obtain a conservation law:

d

dt
Q = 0 with Q = K − ∂L

∂q̇i
δsq

i (2.11)

Here we are: this is Noether’s first theorem: given a symmetry of the action δsq(t), the
combination Q showed in (2.11) is conserved on the paths of the equations of motion.

It is customary to refer to the conserved quantity Q as charge. Due to the elegance of
this equation, someone might suppose to fully understand its meaning, captured by the
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sharp intuition of it. Anyway it is necessary to see some examples to definitely master
the complete power of Noether’s first theorem.

In the beginning, we could refer to the first two examples of actions reported. The
action (2.2) for the central force potential is invariant under rotation with K = 0. Our
conserved quantity is therefore, by Noether’s theorem:

Qα = −m~̇r · δs~r
= −m~̇r · (~α× ~r)
= −α · (m~r × ~̇r),

(2.12)

where we recall that α is a constant angle. Hence we can conclude that the angular
momentum defined as the vector ~L = m~r × ~̇r is conserved along the trajectories of
motion determined by the action (2.2). In this way we have put the conservation of this
quantity in a more theoretical setting: it is not a matter of coincidence, but it is due
to the symmetry under rotations that the angular momentum happens to be conserved.
We found a constant through which we can probe nature.

The same action is invariant again under a different symmetry, namely time transla-

tions (2.5); we found that the boundary is K = −ε
(
m
2
~̇r 2− V (~r)

)
= −εL, where L s the

Lagrangian of the action considered. Using Noether’s theorem we immediately find that
the charge is:

Qε = −ε
(
m

2
~̇r − V

)
+εm~̇r 2 = εE, (2.13)

where E = m
2
~̇r 2 + V (~r) is the total energy. Once again we have related the empirical

conservation of a quantity to a theoretical explanation hiding under our vision of nature:
energy is conserved due the symmetry of the action under time translations.

The four conserved charges E and ~L for the central field action allow for simplification
in the search of solutions to the equation of motion m~̈r = ∇V . But we can go a little
further, with the so called example of the conformal particle, in order to see how we can
completely solve the equation of motion using only conserved charges, if we have enough
of them. We solve the problem in one dimension, since it is straightforward to extend
the treatment in more dimensions.

We focus our attention on the action

I[x] =

∫
dt

(
1

2
mẋ2 − α

x2

)
(2.14)

and show how we can completely integrate the dynamics only looking at symmetries.
The Euler-Lagrange equation of motion is

mẍ =
2α

x3
. (2.15)
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We know from the previous example that this action is invariant under time translations
and that this implies the conservation of energy, namely

E =
1

2
mẋ2 +

α

x2
. (2.16)

This equation states an algebraic relation between x(t) and ˙x(t).
Further we notice that the potential V (x) = α

x2
is a homogeneous function of the co-

ordinates (i.e. it satisfies V (γx) = γkV (x)). So we have that through the transformation

x→ x ′(t ′) = γx(t) t→ t ′ = βt (2.17)

where β = γ1− k
2 , the action is changed only by an overall multiplying factor αk. Since

the degree of homogeneity of the potential is −2 we find the Weyl symmetry

x→ x ′(t ′) =
√
λx(t) t→ t ′ = λt, (2.18)

where, actually, we have consider an overall factor γ =
√
µ. Indeed, under this transfor-

mation, dx/dt→ d(
√
λx)/d(λx) = 1√

λ
dx/dt, and the action remains unchanged

I →
∫
λdt

(
1

2
m
ẋ 2

λ
− α

λx2

)
= I. (2.19)

To make use of Noether’s theorem we should put the transformation (2.18) in a
suitable form, an infinitesimal variation acting on x(t) at some time t. Let λ = 1 + ε
with ε� 1 and expand the transformation for x(t) in (2.18) to first order in ε :

x ′((1 + ε)t) ≈
(

1 +
ε

2

)
x(t)⇒ x ′(t) + ẋ(t)εt ≈ x(t) +

ε

2
x(t) (2.20)

by which we extract

δsx(t) = x ′(t)− x(t) = −εtẋ(t) +
ε

2
x(t). (2.21)

We notice that this transformation act only on x(t) and is a symmetry for the action:

δsI[x] =

∫
dt

(
1

2
mδ(ẋ 2)− αδ

(
1

x 2

))
= ε

∫
dt

[
−m

(
1

2
ẋ 2 + tẋẍ

)
+α

x− 2tẋ

x3

]
= ε

∫
dt
d

dt

[
−m

(
tẋ 2

2
+
αt

x 2

)]
= ε

∫
dt
d

dt

[
−tL

]
,

(2.22)
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where we see that the boundary term is K = −tL. Hence the Weyl symmetry imposes
the conservation of the quantity

Q =
1

2
mxẋ−

(
1

2
mtẋ2 +

αt

x2

)
(2.23)

up to a sign and an ε factor which are both constants and so can be considered irrelevant.
Equations (2.16) and (2.23) are two algebraic equations 2 for x(t) and ẋ(t). Solving them
we obtain x(t) as a function of time and two integration constants Q and E, as it should
be for a second order differential equation; indeed the solution obtained in this way solves
completely the equation of motion (2.15).

We can explicitly check the conservation of the charge:

dQ

dt
=

1

2
m(ẋ 2 + xẋ)− 1

2
m(ẋ 2 + 2tẋẍ) + α

(
x 2 − 2txẋ

x4

)
= (x− 2tẋ)

[
1

2
mẍ− α

x3

]
= 0

(2.24)

due to the equation of motion (2.15).

2.1.5 Hamiltonian mechanics and Lie algebras

Noether’s theorem can be used on any functional, not only the action integral in la-
grangian form. Indeed, when we use a general action in the hamiltonian formalism (i.e.
in phase-space)

I[p(t), q(t)] =

∫
dt(piq̇

i −H(p, q)) (2.25)

we find an extra structure in it.
Consider the Poisson bracket defined in phase space

{F,G} =
∂F

∂qi
∂G

∂pi
− ∂F

∂pi

∂G

∂qi
(2.26)

where F (p, q, t), G(p, q, t) are functions of the whole set of coordinates and their conjugate
momenta and could have an explicit time dependence; its associated equations of motion
are

q̇i =
∂H

∂pi
= {qi, H}

ṗi = −∂H
∂qi

= {pi, H}.
(2.27)

2 Note that, in general, at least one of the conserved charges must be an explicit function of time,
otherwise there would be no dynamics.
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Recall that the total time derivative of a function of the same variables of F or G can
be expressed as

dF (p, q, t)

dt
= {F,H}+

∂F

∂t
, (2.28)

Whenever the function F considered has vanishing total time derivative, it turns into a
conservation quantity along the paths of the equations of motion. In many situations the
function F has no explicit time dependence, so that, in order to be a conserved charge,
(2.28) requires it has zero Poisson bracket with the Hamiltonian.

We now provide two important results:

1. Noether’s inverse theorem: If Q is a conserved charge, then the following transfor-
mations

δsq
i = {qi, εQ} = ε

∂Q

∂pi
, δspi = {pi, εQ} = −ε∂Q

∂qi
, (2.29)

where ε is a constant infinitesimal parameter, are symmetries of the action. This
is called inverse theorem since we first assume the existence of the charge and then
verify it give rise to a symmetry.

2. The Lie algebra of symmetries : The set of all conserved charges Qa(a = 1, 2, · · ·N)
satisfies a closed Lie algebra:

{Qa, Qb} = fab
cQc. (2.30)

The proof of these theorems is as follow.
Taking a conserved charge for which (2.28) vanishes and varying the action (2.25) we

find:

δsI[q(t), p(t)] =

∫
dt

(
δspiq̇

i + pi
d

dt
δsq

i − ∂H

∂pi
δspi −

∂H

∂qi
δsq

i

)
=

∫
dt

(
−ε∂Q

∂qi
q̇i +

d

dt
(piδsq

i)− εṗi
∂Q

∂pi
+ ε

∂H

∂pi

∂Q

∂qi
− ε∂H

∂qi
∂Q

∂pi

)
=

∫
dt

(
ε

(
−dQ
dt

+
∂Q

∂t
+ [Q,H]

)
+
d

dt
(piδsq

i)

)
=

∫
dt
d

dt

(
−εQ+ piδsq

i

)
,

(2.31)

which indeed is a total time derivative as required for a symmetry. We notice that we
took (2.28) to vanish in the last line. We also stress that we never made use of the
equations of motion. In order to obtain a charge, we have to compute the boundary
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term for the on-shell variation:

δoI[q(t), p(t)] =

∫
dt

(
δpiq̇

i + piδq̇
i − ∂H

∂qi
δqi − ∂H

∂pi
δpi

)
=

∫
dt

(
δpi

(
q̇i − ∂H

∂pi

)
−δqi

( ˙
pi +

∂H

∂qi

))
+

∫
dt
d

dt
(piδq

i),

(2.32)

where we performed an integration by parts in the last line. Due to the fact that we are
varying the action on the solutions of the equations of motion (2.27), the first integral in
the last line vanishes and we are left with a total time derivative i.e. a boundary term.

Noether’s theorem applied to (2.25) with (2.29) as symmetry yields:

Q̃ = K − piδsqi = εQ+ piδsq
i − piδsqi = εQ, (2.33)

a conserved charge up to an irrelevant infinitesimal constant ε.
To prove the second statement (2.30) suppose we have two conserved charges Q1 and

Q2 (i.e. (2.28) vanishes for both of them). Then we can show that also the Poisson
brackets of them is a conserved charge:

d

dt
{Q1, Q2} = {∂Q1

∂t
+ {H,Q1}, Q2}+ {Q1,

∂Q2

∂t
+ {H,Q2}} = 0, (2.34)

where we used the Jacobi’s identity3 for the Poisson brackets. Being a conserved charge,
the commutator {Q1, Q2} generates another symmetry. For instance it can be zero, it
may be a new charge, it may be an old one or at least a combination of the charges
involved. In any case, the conclusion is that a complete set of conserved charge Qa =
Q1, Q2, · · · must satisfies a Lie algebra (2.30). For further inspections on Lie algebras
and Poisson brackets, see Appendix B.

We should now give a brief overview of the conformal particle, studied in the above
examples, in hamiltonian formulation. The action integral (2.14) has two charges that
completely solves the equations of motion; in hamiltonian form it is embedded with an
extra structure. Performing a Legendre transformation 4 of the Lagrangian in (2.14) we
obtain the action integral in hamiltonian formalism, namely

I[q(t), p(t)] =

∫
dt

(
pq̇ −

(
p 2

2m
+

α

q 2

))
. (2.35)

We obtain, applying Noether’s theorem as explained before in (2.33), three conserved

3 Namely: {h, {f, g}} + {f, {g, h}} + {g, {h, f}} = 0, where f, g, h are arbitrary functions of the
phase-space.

4 We mean the Legendre transformation of L(q, q̇, t) with respect to q̇.
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charges:

H =
p 2

2m
+

α

q 2
,

Q = −tH +
1

2
pq,

K = t 2H + 2tQ− m

2
q 2.

(2.36)

Anyway, this system cannot have more than two integration constants. Indeed the
following relation can be found among the three charges above

2KH + 2Q 2 +mα = 0. (2.37)

5

2.1.6 Noether’s first theorem in field theory

Noehter’s theorem is perhaps more useful when applied to field theory, which is the
formalism used in describing the fundamental forces of Nature. So we aim to briefly
introduce the concepts that allow to extend lagrangian and hamiltonian formalism to
continuous systems and fields.

We focus on the most common fields, that is fields depending on the three independent
position coordinates (x, y, z) and time t. Our goal is to translate from the notation φi to
the different one φ(x, y, z), where just as every subscript i stands to indicate a different
generalized coordinate of the system, the same happens to every value of the position
coordinates (x, y, z) that stands for a different generalized coordinate. The difference
lays in the continuous nature of the index labeled with the position coordinate and the
discrete feature of the subscripts. We stress for the last time that the position coordi-
nates (x, y, z) are not lagrangian generalized coordinate: as we indicate a generalized
discrete coordinate with φi(t) = qi(t), we indicate a continuous generalized coordinate
with φ(x, y, z, t). The continuous nature arise when we consider a system made of a large
number of particles 6 that closely fills our space, so that we deal no more with a discrete
set but with a continuous one. The following classical example will clarify all our words.

5 Another interesting aspect, although it may seem not to be very appropriate for our topic of interest,
is that H,Q,K satisfy the SL(2,R) Lie algebra:

{Q,H} = H,

{Q,K} = −K,
{H,K} = 2Q.

(2.38)

6 In field theory we let better tend this number to infinite.
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Consider an infinitely long elastic rod that can undergo small oscillatory displace-
ments along the x-axis of the particles it is made of. A system composed of discrete
particles that can approximate the continuous rod is an infinite chain of equal mass
points spaced a distance a apart and connected by uniform massless springs having force
constant k. Assume further that the mass points can move only along the length of the
chain. Its Lagrangian is

L = T − V =
1

2

∞∑
i=1

[mφ̇ 2
i − k(φi+1 − φi) 2], (2.39)

where φ denotes the displacement of the ith particle from its equilibrium position. Rela-
tion (2.39) shows clearly that, when we take a number of particles that grows to infinite,
the integer index i identifying the particular mass point becomes the continuous position
coordinate x: instead of the variable φi we have φ(x) and we should better perform an
integration over our continuous generalized coordinates instead of a summation.

We aim to obtain a suitable lagrangian formulation for continuous systems. We have
just seen that in dealing with non discrete set of point masses, our Lagrangian looks
more like an integral over an object to which we could give the name of lagrangian
density since it gives the Lagrangian when we perform its integration over the position
coordinates. In order to extend our treatment to a three dimensional space we make the
following assumptions: a Latin letter index refers only to the three coordinates of the
physical space, a Greek letter index refers to all four coordinates, where the first three
are the space ones and the fourth is the time variable; a derivative of the field quantities
with respect to any one of the four coordinates xµ will be denoted by the relative index
of the variable we are taking the derivative with respect to, separated from the index
that stands from the component of the field by a comma, or with the symbol ∂ν ; namely

φρ,ν ≡ ∂νφρ ≡
dφρ
dxν

. (2.40)

We also denote the field component with the subscript ρ, assuming it is a tensor of
any order and that the Greek letter could then stands for a multiple index. We further
notice that in the hamiltonian principle of least action the time variable plays the same
role of the three position coordinates and that all these four variables are to be treated
as completely independent. So we are tempted to write the action as the integral in
4-dimensions of the lagrangian density:

I[φ(x)] =

∫
Ldt

=

∫ (∫
L(φ, φ,ν , x)d3x

)
dt ≡

∫
L(φ, φ,ν , x)d4x.

(2.41)

We notice that in general the lagrangian density depends also from the derivative of the
field φ with respect to the position coordinates and not only to the time coordinate;
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that is we allow also this dependence of the lagrangian density in order to treat all four
coordinates equally. To derive the equations of motion in field theory from Hamilton
principle we take the variation of the action and make it vanish. Recall that the variation
of the field vanishes at the bounding surface S of the region of integration, similar to
the case of integration along time variable only previously treated. We also point out
that the functions that should be varied are the ones from which the lagrangian density
depends on, namely φρ and φρ,ν ; that is we have to take the variation with respect to
the field and its partial derivatives. This could be written as

δI[φ(x)] =

∫ (
∂L
∂φρ

δφρ +
∂L
∂φρ,ν

δφρ,ν

)
d4x, (2.42)

integration by parts yields

δI[φ(x)] =

∫ [
∂L
∂φρ
− ∂ν

(
∂L
∂φρ,ν

)]
δφρ(d

4x) +

∫
∂ν

(
∂L
∂φρ,ν

δφρ

)
d4x. (2.43)

When the variation of the Lagrangian vanishes on the surface S the second term makes
no contribution. Since the variation of the fields are totally independent and arbitrary
we obtain the equations of motion in field theory:

∂L
∂φρ
− ∂ν

(
L

∂φρ,ν

)
= 0, (2.44)

which holds for each component of the field labeled with ρ as explained above. Comparing
it with the discrete case, since we deal with continuous spatial index xi, each of (2.44)
corresponds to an entire set of discrete equations of motion. In discrete systems the
Lagrangian is uncertain up to a total time derivative of an arbitrary function of the
generalized coordinates and time; with continuous systems the lagrangian density L is
uncertain up to a term of the form

∂ν Fν(φ, x) (2.45)

where F , as indicated, is any four differentiable functions of the field quantities and the
coordinates. Indeed its variation is zero, so that it does not change the equations of
motion:

δ

∫
∂ν Fν(φ, x)(d4x) = δ

∫
Fν(φ, x)dσν = 0 (2.46)

where dσν represents the components of an element of surface oriented along the direction
of the outward normal; we specify that this variation vanishes since we assumed that on
the surface S the variations of the fields are zero.
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The transition from discrete to field theory notation can be summarize as follow:

L→ L
t→ xµ

qi → φρ

q̇i → φρ,ν

(2.47)

We are now ready to derive Noether’s theorem in field theory. Clearly the on-shell varia-
tion, i.e. the variation of the action integral along the path described by the equations of
motion for arbitrary variation of the field and its partial derivative, are to be computed
as

δoI[φ(x)] ≡ I[φ(x) + δφ(x)]− I[φ(x)] =

∫
∂ν

(
∂L
∂φρ,ν

δφρ

)
d4x (2.48)

where, as before, with the underlying bar φ we indicate that we are taking the variations
on the trajectories of motion.

The set of symmetries for the field theory action is defined as the set of all infinitesimal
functions δsφ(x) such that, for arbitrary φ(x) :

δsI[φ(x)] ≡ I[φ(x) + δsφ(x)]− I[φ(x)] =

∫
∂νK

νd4x. (2.49)

That is: symmetries are variations of the fields such that the variation of the action
integral vanishes up to a 4-divergence of a boundary term Kν . As in the discrete case,
symmetries identify sets of coordinates in which the structure of the equation of motions
remain unchanged. Let us stress out the following details:

• (2.49) is an equation for the function δsφ, not for φ: δsφ is a symmetry provided
that (2.49) holds for all φ.

• The variations act directly on the fields: coordinates play no role, following the
tensorial formalism adopted.

Since (2.44) is valid for all variations δφ (and in particular for δsφ) and (2.49) is valid
for all fields φ (and for φ, too), thus, inserting δsφ into (2.44) and φ into (2.49), we notice
that the left hands sides are equal; subtracting both equations we obtain the conserved
current equation

∂µJ
µ with Jµ ≡ ∂L

∂φρ,µ
δsφρ −Kµ. (2.50)

Thus, infinitesimal symmetries enjoyed by a lagrangian density L give rise to conserved
charges, which can be used to drive our understanding of the model described by the
lagrangian density L.

21



2.1.7 Noether’s first theorem: a more precise formalism

Although we have already introduced Noether’s first theorem, we would like to put it in a
more precise form in order to shape it in a better formalism which suit a comparison with
Noether’s second theorem, which we will report in the next chapter once we will have
provided some necessary mathematical tools. We also leave the proof of this theorem
to the section dedicated to Noether’s second theorem. We will deal with the original
versions of these theorems, namely the ones introduced by Emmy Noether in her article,
even though they detach a little from the ones we can find in today literature as well as
the one we introduced earlier for the first theorem.

We will apply Noether’s theorems to lagrangian densities depending on an arbitrary
number of fields φρ, where ρ = 1, ..., N . We will assume our space to depend on four
coordinates, three space-like xi and one time-like t, and we indicate them with the
compressed notation xµ (recall that the Greek index run from 0 to 3). Further we let
the lagrangian density depends from the fields and their first derivatives and also the
coordinates, that is L = L(φ, φ,µ, x

µ). Both theorems are derived from the variational
problem of the action integral

∫
d4xL. We finally remind the reader to the definition of

symmetry: it is a transformation rule on the fields that makes the action invariant up
to boundary terms.

Theorem: Noether’s first theorem. Let Gη be a finite continuous group of transfor-
mations δsφρ depending in a differentiable manner on η constant parameters ωα (α =
1, ..., η). If the action integral is invariant under Gη, then the following relations hold:

N∑
ρ=1

[Φ]ρ
∂(δsφρ)

∂(∆ωα)
= ∂µj

µ
α (2.51)

where

jµα = −
[
L ∂(δxµ)

∂(∆ωα)
+

N∑
ρ=1

∂L
∂φρ,µ

∂(δsφρ)

∂(∆ωα)

]
(2.52)

Let us clarify our notation:

• [Φ]ρ is an expression associated to the field φρ and defined as:

[Φ]ρ =
∂L
∂φρ
− ∂µ

∂L
∂φρ,µ

, (2.53)

so that in this compact notation the Euler-Lagrange equations for the ρ-th field
are written as [Φ]ρ = 0.

• With ∆ωα we indicate an infinitesimal displacement from ωα; we are allowed to
do so since the group Gη considered is continuous. Further, since the group of
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transformations depends in a differentiable manner from the constant parameters
ωα, the infinitesimal variations δxµ, δsψi depend from the infinitesimal parameters
∆ωα in the same way and we can write them as:

δxµ =

ρ∑
α=1

∂(δxµ)

∂(∆ωα)
∆ωα δsφi =

ρ∑
α=1

∂(δsψi)

∂(∆ωα)
∆ωα, (2.54)

as we have highlighted in (2.52).

• The minus sign in the expression for the current jµα is somehow strange; however
this fact will be clearer when we will deal with Noether’s second theorem. Further,
when we assume that we are on the paths of motion, i.e. when the Euler-Lagrange
equations of motion are satisfied ([Φ]ρ = 0), this current turns out to vanish and
we recover the important result of having η conserved quantities. These indeed
are:

Qα =

∫
d3xj0

α(xi, t) (2.55)

2.1.8 Hamiltonian formulation

We should dig further in Noehter’s first theorem in field theory formalism, but first
we would like to introduce the hamiltonian formulation of it, since it will be of great
usefulness later. We define the canonical momentum densities as

πρ(x) =
∂L
∂φ̇ρ

, (2.56)

where as usual the superposed dot stands for partial derivation with respect to time
variable. The quantities φρ(x

i, t), πρ(xi, t) together define the infinite-dimensional phase
space describing the field and its development. As in the discrete case, it is straightfor-
ward to see that when the Lagrangian has some cyclic generalized coordinate φρ (i.e. it
does not contain φρ explicitly) we find a conserved quantity, namely

∂µ(
∂L
φρ,µ

) =
dπρ

dt
+ ∂i(

∂L
φρ,i

) = 0. (2.57)

Thus it follows that if φρ is cyclic, there is an integral conserved quantity

Πρ =

∫
πρ(xi, t)d3x. (2.58)

We can perform a Legendre transformation on the lagrangian density L(φρ, φρ,ν , x
ν)

with respect to φ̇ρ, obtaining the hamiltonian density

H(φ, φ,i, π, x) = πρφ̇ρ − L. (2.59)
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From this definition we can easily obtain the first equation of motion by

∂H
∂πρ

= φ̇ρ + πµ
∂φ̇µ
∂πρ
− ∂L
∂φ̇µ

∂φ̇µ
∂πρ

= φ̇ρ. (2.60)

Unfortunately, the equation for πρ requires a bit more calculation. To this purpose we
notice that H in terms of the canonical variables is a function of φρ through the explicit
dependence of L, and through φ̇ρ. Therefore we have:

∂H
∂φρ

= πµ
∂φ̇µ
∂φρ
− ∂L
∂φ̇µ

∂φ̇µ
∂φρ
− ∂L
∂φρ

= − ∂L
∂φρ

. (2.61)

With the help of Euler-Lagrange equations (2.44), this can be cast as

∂H
∂φρ

= −∂µ
(

∂L
∂φρ,µ

)
= −π̇ρ − ∂i

(
∂L
∂φρ,i

)
. (2.62)

Since we still have the presence of L, this is not a useful form. However, by an exactly
parallel derivation, we find

∂H
∂φρ,i

= πµ
∂φ̇µ
∂φρ,i

− ∂L
∂φ̇µ

∂φ̇µ
∂φρ,i

− ∂L
∂φρ,i

=
∂L
∂φρ,i

. (2.63)

Inserting the above equation into (2.62) we obtain the second canonical equation:

∂H
∂φρ
− ∂i

(
∂H
∂φρ,i

)
= −π̇ρ. (2.64)

Canonical equations (2.60) and (2.64) can be written in a notation more closely approach-
ing Hamilton’s equations for a discrete system by introducing the notion of a functional
derivative, defining it as:

δ

δψρ
=

∂

∂ψρ
− ∂i

(
∂

∂ψρ,i

)
. (2.65)

The functional derivative is clearly linear, obeys Leibniz rule and chain rule.
Due to the independence of H from πρ,i, the equations of motion can be written as

φ̇ρ =
δH
δπρ

, π̇ρ = − δH
δφρ

. (2.66)

With this symbolism the equations of motion (2.44) take the form

d

dt

(
∂L
∂φ̇ρ

)
− δL
δφρ

= 0. (2.67)
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Anyway, although it sketches an elegant parallelism with discrete system, the functional
derivative suppressed the parallel treatment of time and space variables and here is the
reason why it is used carefully. We notice that the variational problem can be put in
a more precise and formal structure in the following way. The problem of finding an
extreme value for the action integral can be computed via the functional derivative as:

δI =

∫
d4x

δL
δφρ δφρ = 0. (2.68)

Assuming the variations being arbitrary and vanishing at the borders, we find the extreme
value is given by the equations of motion above, namely Euler-Lagrange equations for
field theory (2.67).

Finally, we briefly introduce the notion of Poisson brackets in field theory, as we will
make use of them later. We aim to derive them as a natural generalization from the
discrete case we are at ease with. The subtle difference to grasp is, once again, the
continuous nature of generalized coordinates in field theory. Indeed we can associate to
every point of coordinates xµ a value of the generalized coordinates φρ(x

µ), in analogy
to the example of the infinite elastic rod tackled at the beginning. Hence we should have
a relation of the form (at fixed time):

{φρ(x), πρ(y)} =

{
1 if x = y
0 elsewhere

{φρ, φν} = 0,

(2.69)

where in the last equation we suppressed the dependence of the field from the position
coordinates since the result is unaffected by them. We are temped to express this relation
in distributional sense, since it fits its formalism quite neatly; that is

{φρ(x), πν(y)} = δ(x− y)δρ,ν , (2.70)

which corresponds to the well known equation {qi(t), pj(t)} = δij
7. Regarding the similar

equation for the associated momenta and the relation that holds between them and the
generalized coordinates, we have:

{φρ(x), πν(y)} = δ(x− y)δρν

{φρ, φν} = {πρ, πν} = 0.

(2.71)

We can now furnish a definition of the Poisson brackets for continuous systems, based
on the previous relations.

7 δ(x, y) is the delta Dirac distribution, δij is the Kronecker delta.
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Poisson brackets for fields. Given two quantities obtained by their respective densities

A =

∫
A(φ, φ,ν , π, π,ν , x

i, t)d3x

B =

∫
B(φ, φ,ν , π, π,ν , x

i, t)d3x,

(2.72)

where φ stands for the set of generalized coordinates adopted and π for their associated
momenta, their Poisson brackets are defined as:

{A,B} =

∫ ∑
ρ

(
δA
δφρ

δB
δπρ
− δB
δφρ

δA
δπρ

)
d3x (2.73)

where δ
δψ

is the functional derivative (2.65). We notice that this definition states that
the Poisson brackets for the fields considered has to be taken at a given time, at which
each field is evaluated.

We notice that this definition reduces to (2.71), as expected. Indeed, we immedi-
ately realize that the functional derivative depends on the point indicated with position
coordinates xµ; that is the functional derivative

δF (x)

δψρ(y)
=

[
∂F (x)

∂ψρ(y)
− ∂i

(
∂F (x)

∂ψρ,i(y)

)]
δ(x− y) (2.74)

is actually a distribution due to its behavior under integration through space coordinates.
We recall the definition of a distribution: given a space of functions Ω a distribution is
a linear functional on this space which is also continuous 8.

Once we have developed this formalism we can easily show that

dF (x)

dt
= {F,H}+

∂F (x)

∂t
. (2.75)

Therefore we have recovered the fundamental results obtained for the discrete case,
namely the two theorems tackled in (2.29) and (2.30), with the relative transitions in
notation for field theory.

8 Actually we should be more precise than this. Indeed, as it is well known, we should give a topology
on the space Ω in order to define continuity. Further, the space in use identifies the type of distributions.
We will deal with spaces of functions which have compact support or with the so called distribution with
compact support. We could just only ask the space Ω to be the Schwartz’s one and deal with temperate
distributions (as the Fourier’s transform).
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2.2 Noether’s second theorem

2.2.1 Lie derivatives and background fields

In Noether’s theorem it is of high importance to see variations as transformations acting
on fields instead of a change of coordinates: therefore we see transformations as active
operations instead of passive ones. As we have emphasized, this is the natural inter-
pretation of a symmetry. Indeed the form of the action may change if the coordinates
are changed, but not its value. Moreover we would like to tackle every kind of trans-
formations, not only those ones performed through constant parameters. These are the
leading ideas that drive the notion of Lie derivative, that is a derivation along congru-
ences on a manifold. We try to extend the variation used in Noether’s first theorem,
namely transformations that depends on a constant parameter, to transformations that
depends on a variable which can varies instead. Indeed, Noether’s second theorem copes
with this transformations and being able to deal with them is fundamental in order to
understand the meaning of the theorem. We stress for the last time that for Noether’s
theorems one never need to change the coordinates; only the fields transform.

We should be more precise about this topic; however we assume as well known the
notion of manifold and coordinates (namely, charts) on it. The idea is to find a set of
curves that behave as what we intuitively individuate as coordinates: when we follow
one of this line all the parameters that build the other coordinate lines do not change.
A congruence is, roughly speaking, a foliation of the manifold we deal with through
parametric lines. For instance, let us consider a two-dimensional manifold M, a curve
Σ0 and a vector field ~U = d

dµ
9. We recall that a vector field in an open set A ⊆ M is

an application which maps each point P ∈ A into a vector ~u belonging to the tangent
space TA of A. Indeed a vector ~u is a linear operator defined at a point on the manifold
M acting on scalar functions 10 and which gives the derivative of the function evaluated
at the particular point considered.

We call a congruence of the vector field ~U the family of integral curves of ~U that start
from the curve Σ0 (along which λ = λ0), covering the manifold M and which have the
vectors defined by the vector fields as derivatives at each point. By covering, we here
mean that there is one (and only one) integral curve of ~U on the manifold M. Moving
a point P (λ0) from Σ0 along the corresponding congruence to the point P (λ0 + ∆λ)
is called push forward or Lie dragging. This is the active interpretation of a change of
coordinates.

Spacetime translations xµ → x ′µ = xµ + εµ are seen as transformations of the field
as follow: given φ(x) one builds a new field, namely the Lie dragged field φ ′(x), whose

9 It turns out that, in order to perform the Lie derivative along this curves, the vector field ~U need
to be at least of class C1.

10 A scalar function f is a function defined from the manifold M to R.

27



Σ0

U

P(λ+ )λ0

P λ( )0

Δλ

Manifold

Figure 2.2: Lie dragging on a congruence. The vector field is denoted by ~U and generates
the integral curves depending on the parameter λ. The curve from which all of the
parametric lines depart is Σ0, along which the parameter λ takes the constant value λ0.
We also try to depict the Lie dragging of the point P from Σ0 by a displacement ∆λ
along the congruence.
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values are

φ ′(x) = φ(x− ε)
' φ(x)− εµ∂µφ(x),

(2.76)

where we retained first order in εµ. The variation of the field which is associated to a
translation of coordinates is then

δφ(x) = φ ′(x)− φ(x) = −εµ∂µφ(x). (2.77)

There is a formal way to obtain the Lie derivative of a vector field ~U . This is based on the
concept of Lie dragging and on the existence of coordinate lines. However, these topics
better fit the field of differential geometry; therefore we aim to introduce the notion of
Lie derivative in a more intuitive way, namely through infinitesimal displacements.

First of all we must recall that Lie derivative is defined on tensorial quantities and
that tensors transform according to precise law under a change of coordinates, which is
understood to be seen as an active operation. Moreover we stress that Lie derivative
obeys the Leibniz rule:

£~V (w̃( ~W )) = (£~V w̃)( ~W ) + w̃(£~V
~W ), (2.78)

where with £~V we indicate the Lie derivative along the congruence build on the vector

field ~V and with w̃ a one-form (i.e. a covariant tensor with components wρ). To compute
the correct formulae for tensors of any order we only miss the correct active transfor-
mation of the jacobian that individuates the change of coordinates of tensors. We stress
once again that transformations are to be considered as active operations. Hence we
have:

x ′µ = xµ + ζµ(x) (2.79)

⇒ ∂x ′µ

∂xν
= δµν + ∂νζ

µ(x) ,
∂xµ

∂x ′ ν
= δµν − ∂νζµ(x ′). (2.80)

We have provided all the tools to furnish the Lie derivative of tensors of any order. We
have always considered only transformations encoded in constant parameters; we aim to
extend our possibilities to any kind of traformations: Lie derivative is the operator that
allows us to do so. We recall that we are interested in infinitesimal transformations.

• Scalar fields →
These are tensors of order zero, for which the transformation law for a change of
coordinates yields

φ ′(x ′) = φ(x). (2.81)

Expanding φ ′(x+ ζ) = φ(x) to linear order in ζ we have

δφ(x) = φ ′(x)− φ(x) = −ζν(x)∂νφ(x) = £~ζ [φ]. (2.82)

This looks like the one we derive earlier but now the displacement ζµ(x) is arbitrary.
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• Vector fields →
These are contravariant tensors of order (1,0), for which the transformation law for
a change of coordinates implies

V ′µ(x ′) =
∂x ′µ

∂xν
V ν(x). (2.83)

Expanding right and left side to first order we find:

V ′µ(x) + ζν(x)∂νV
µ(x) = V µ(x) + (∂νζ

µ(x))V ν(x), (2.84)

from which we obtain

δV µ(x) = V ′µ(x)− V µ(x) = (δνζ
µ(x))V ν(x)− ζν(x)∂νV

µ(x) = £~ζ [
~V ] (2.85)

In the usual formalism this is written:

£~ζ [
~V ] = [~ζ, ~V ] =

(
ζ i
∂vj

∂xi
− vi∂v

j

∂xi

)
ej, (2.86)

where the square brackets do not stand for the Poisson ones but for the commutator
of the two vectors 11.

• One-forms → These are covariant tensors of order (0,1), for which the transforma-
tion law for a change of coordinates implies

A ′µ(x ′) =
∂xν

∂x ′µ
Aν(x). (2.87)

Expanding both sides we obtain:

A ′µ(x) + ζν(x)∂νAµ(x) = Aµ(x)− Aν(x)∂µζ
ν(x), (2.88)

hence it follows

δAµ(x) = A ′µ(x)− Aµ(x) = −ζν(x)∂νAµ(x)− Aν(x)∂µζ
ν(x) = £~ζ [Ã]. (2.89)

This can be expressed in a more traditional notation by means of (2.78), namely
12

£~ζ [Ã] =

(
ζj
∂Ai
∂xj
− Aj

∂ζj

∂xi

)
ei (2.90)

11 Lie brackets (i.e. the commutator) are defined on two operators and the space the operators belong
to is closed under their action. Indeed, as known from differential geometry, vectors are to be considered
as (linear) operators acting on fields (scalar functions defined from the manifold to R) of the manifold,
which give the derivative of them along the integral curve they define at the point considered. This is
the reason why we expanded them on the vectors ej , since they form a vectorial space and we picked
the canonical basis. In fact, as Lie brackets “remain” in the space they act on, the commutator of two
vectors is itself a vector.

12 Again, the same concepts are endorsed. In particular the Lie derivative of a one-form is itself a
one-form and the set of all one-forms (linear functional acting on vector spaces) is a linear space.
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Inspecting the transformation laws for tensors of higher order or exploiting the Leibniz
rule for Lie derivative, it is possible to obtain the variation of any tensors with the same
technique used above.

2.2.2 Second theorem

We can now deal with variations depending not only from constant parameters 13, which
was the case for Noether’s first theorem, but also from arbitrary functions. This is the
case treated in Noether’s second theorem, which endorses a deeper insight in symmetries
in physics. Noether’s second theorem did not receive enough attention, although it is of
great importance. Gauge theories find their roots in it, but literature does not give much
credit to this theorem. As for the first one, we report a formulation which is as close
as possible to the original version and we also provide a proof of the results obtained.
We still deal with the variation of integral action and we keep the same notation as for
Noether’s first theorem (see section (2.1.7)).

Theorem: Noether’s second theorem. Let G∞η be an infinite continuous group of
transformations δsφρ depending in a differentiable manner from η arbitrary functions
pα(xµ), (α = 1, ..., η) and their first derivatives. If the action integral is invariant under
G∞η, then the following relations hold:

N∑
ρ=1

[Φ]ρaα−ρ =
N∑
ρ=1

∂µ{[Φ]ρb
µ
α−ρ} (2.91)

where aα−ρ(x
µ, φ, ∂µφ) e bµα−ρ = bµα−ρ(x

µ, φ, ∂µφ) are arbitrary functions whose explicit
form depends from the particular transformations used.

We now give the proof of these results. We split it in two parts: in the first one,
which provides a proof also for Noether’s first theorem, we furnish the solution for the
variational problem of the action integral; in the second one, assuming that we are dealing
with a group G∞η, we demonstrate the results of Noether’s second theorem. To make it
simpler, we focus only with a single field φ, since it is easier to extend the treatment to
more fields.

Proof. Step 1. As we did in the above sections, we consider an infinitesimal transforma-
tion of the coordinates and we write it as a transformation of the fields, namely:

xµ → x ′µ = xµ + δxµ

φ→ φ ′(x ′µ) = φ(xµ) + δφ
(2.92)

13 Literature usually refers to them as rigid transformations.
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Recalling that we have:

δφ = φ ′(x ′)− φ(x) = φ ′(x+ δx)− φ(x)

= φ ′(x)− φ(x) + δxµ∂µφ
′ = δ∼φ+ δxµ∂µφ,

(2.93)

where we put δ∼φ = φ ′(x)− φ(x) and we exploit the relation ∂µφ
′(x) = ∂µφ(x) at first

order. Thus we can formally write δ = δ∼ + δxµ∂µ and for symmetries δ = δs + δxµ∂µ
Let now I be the action integral in field theory formalism associated to the lagrangian

density L. Varying it and considering variations that are symmetries, we obtain:

δsI =

∫
d4xδL+

∫
δ(d4x)L = 0 (2.94)

Let us focus on the first term. We compute the variation of the lagrangian density.

δL =
∂L
∂xµ

δxµ +
∂L
∂φ

δφ+
∂L
∂φ,µ

δ(∂µφ)

=
∂L
∂xµ

δxµ +
∂L
∂φ

(δsφ+ δxµ∂µφ) +
∂L
∂φµ

(δs + δxν∂ν)(∂µφ)

= δxν
[
∂L
∂xν

+
∂L
∂φ

∂νφ+
∂L
∂φµ

∂µ(∂νφ)

]
+

[
∂L
∂φ

δsφ+
∂L
∂φ,µ

δs(∂µφ)

]
= δxµ(∂µL) +

[
∂L
∂φ
− ∂µ

∂L
∂φ,µ

]
δsφ+ ∂µ

[
∂L
∂φµ

δsφ

]
(2.95)

We then focus on the second term of (2.94). We have to compute the variation of the
infinitesimal volume element of the four coordinates d4x. For an arbitrary transformation
we have d4x′ = |J(xµ)|d4x, where with the symbol |J(xµ)| we mean the absolute value
of the determinant of the jacobian of the transformation, i.e. J(xµ) ≡ det(∂x

′µ

∂xν
). The

transformation we are using is x ′µ = xµ + δxµ; therefore:

J(xµ) = δµν + ∂νδx
µ. (2.96)

We then define the matrix Mµ
ν = δµν + ∂νδx

µ. Exploiting the Levi-Civita symbol εµνρσ,
we can write

detM = εµνρσM0
µM

1
νM

2
ρM

3
σ. (2.97)
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Computing this determinant we find:

detM = εµνρσM0
µM

1
νM

2
ρM

3
σ

= εµνρσ(δ0
µ + ∂µδx

0)(δ1
ν + ∂νδx

1)(δ2
ρ + ∂ρδx

2)(δ3
σ + ∂σδx

3)

= ε0123(δ0
0 + ∂0δx

0)(δ1
1 + ∂1δx

1)(δ2
2 + ∂2δx

2)(δ3
3 + ∂3δx

3) + o((δx)2)

≈ (1 + ∂0δx
0)(1 + ∂1δx

1)(1 + ∂2δx
2)(1 + ∂3δx

3)

= (1 + ∂0δx
0 + ∂1δx

1 + ∂0δx
0∂1δx

1)(1 + ∂2δx
2 + ∂3δx

3 + ∂2δx
2∂3δx

3)

= [1 + ∂0δx
0 + ∂1δx

1 + o((δx)2)][1 + ∂2δx
2 + ∂3δx

3 + o((δx)2)]

= 1 + ∂0δx
0 + ∂1δx

1 + ∂2δx
2 + ∂3δx

3 + o((δx)2)

≈ 1 + ∂µδx
µ.

(2.98)

Therefore δ(d4x) = (∂µδx
µ)d4x. We see that in the third equality, putting µ, ν, ρ, σ

different from 0, 1, 2, 3 respectively, we obtain a product of infinitesimal quantities we
assume we can neglect, since it is higher than first order. We can finally write the
variation of the action integral in the following form:

δsI =

∫
d4x

{
[Φ]δsφ+ ∂µ

[
∂L
∂φ,µ

δsφ

]
+δxµ(∂µL) + L∂µδxµ

}
=

∫
d4x

{
[Φ]δsφ+ ∂µ

[
Lδxµ +

∂L
∂φ,µ

δsφ

]}
= 0.

(2.99)

Since this equality must be true for every arbitrary function pα and all quantities used
depends in a differentiable manner from these arbitrary functions, we obtain 14

[Φ]δsφ = ∂µB
µ, (2.101)

where we put −Bµ = Lδxµ + ∂L
∂φ,µ

δsφ. This is the solution to the variational problem for

the action integral. We can see that when we can recover the results of Noether’s first
theorem. Indeed in Noether’s first theorem instead of arbitrary functions pα(x) we have
constant parameters ωα that we can extract from every derivations in xµ. Therefore if
we insert the equations (2.54) in (2.101) we obtain the result (2.52) of Noether’s first
theorem. We also find the answer to the minus sign that shook our curiosity before.

Step 2. We now prove the second result of the theorem. We assume that the transfor-
mations of the group G∞η depend in a differentiable manner not only from the functions

14 Recall that the dependence of the quantities of the theorem can be put as follow:

δψ =

η∑
α=1

{ ∂ψ

∂(∆pα)
∆pα +

∂ψ

∂(∆pα,µ )
∂µ(∆pα)}, (2.100)

where ψ is either the coordinate x or the function φ. Further we explicitly dropped dependence of any
quantity from the second derivative of the functions pα(x) since they are second order terms.
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pα(x) but also from their first derivatives. Therefore the variation δsφ and the term Bµ

are linear in the infinitesimal variations ∆pα(x). Thus we can write:

δsφ =

η∑
α=1

{aα∆pα + bµα∂µ[∆pα]}, (2.102)

where

aα =
∂φ

∂(∆pα)

bµα =
∂φ

∂(∆pα,µ)

(2.103)

We then exploit the following identity:

[Φ]bµα∂µ(∆p) = ∂µ([Φ]bµα∆pα)− ∂µ([Φ]bµα)∆pα = ∂µA
µ − ∂µ([Φ]bµα)∆pα, (2.104)

where we put Aµ = ([Φ]bµα∆pα) and we use the Einstein convention for summation on
repeated index. Therefore we have:∑

α

{aα[Φ]− ∂µ([Φ]bµα)}∆pα = ∂µ(Bµ − Aµ). (2.105)

Now we aim to exploit the arbitrariness of the infinitesimal variations of the variables:

• We choose δxµ so that they vanish at the bound of the domain.

• We choose ∆pα so that they vanish at the bound of the domain as well as their
derivatives.

We then perform an integral over the whole space, obtaining:∑
α

∫
D
{aα[Φ]− ∂µ([Φ]bµα)}∆pαd4x =

∫
D
∂µ(Bµ − Aµ)d4x. (2.106)

We also write Aµ taking account of(2.102):

Aµ = Lδxµ +
L
∂φ,µ

∑
α

{aα∆pα + bµα(∂µ∆pα)} (2.107)

in order to understand the role the hypothesis assumed play. Indeed:

1. Since we assume the variations vanish at the bound of the domain, we can exploit
Green’s theorem in (2.106) and evaluate the integrand at the borders, where it
vanishes.
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2. We are thus left with ∑
α

∫
D
{aα[Φ]− ∂µ([Φ]bµα)}∆pαd4x = 0 (2.108)

We recall that the quantities ∆pα are arbitrary functions. Therefore 15 the term
in braces identically vanishes. In other words, we found the η relations we were
looking for:

[Φ]aα = ∂µ{[Φ]bµα} ⇒
N∑
ρ=1

[Φ]ρaα−ρ =
N∑
ρ=1

∂µ{[Φ]ρb
µ
α−ρ} (2.109)

where in the last equation we wrote the result for an arbitrary number N of fields.
Therefore to every parameter α of the group G∞η we can extract a conserved quantity
without requiring equations of motion to be satisfied.

2.2.3 Energy-momentum tensor

Noether’s theorems provide also an analogous equation for field theory to the Jacobi’s
integral for discrete systems. Inspecting this conservation equation we can extract a
Noether’s conserved current.

To begin with, let us take the total derivative of L with respect to xµ instead of the
total time derivative of L with respect to t; we have 16

dL
dxµ

=
∂L
∂φρ

φρ,µ +
∂L
φρ,ν

φρ,νµ +
∂L
∂xµ

. (2.110)

Using the equations of motion (2.44), this can be expressed as

dL
dxµ

= ∂ν

(
∂L
∂φρ,ν

)
φρ,µ +

∂L
∂φρ,ν

φρ,µν +
∂L
∂xµ

= ∂ν

(
∂L
∂φρ,ν

)
+
∂L
∂xµ

,

(2.111)

where we assumed that we can change the order of derivation in the second derivative
of the field. This can be written as:

∂ν

[
∂L
∂φρ,ν

φρ,µ − Lδµν
]
= − ∂L

∂xµ
. (2.112)

15This is the so called Du Bois-Reymond Lemma.
16 As it could be guessed, φρ,νµ stands for

∂2φρ
∂xν∂xµ .
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Whenever the lagrangian density does not depend explicitly upon xµ, the quantity in
square brackets is conserved. Indeed, as we are about to show, it is a Noether’s current.
First we should notice that this quantity is a tensor, called energy-momentum tensor:

T νµ =
∂L
∂φρ,ν

φρ,µ − Lδνµ, (2.113)

In particular, since we deal with conservation in time when we refer to Noether’s currents,
we should write the conservation equation (2.112) as a continuity equation, which, after
splitting its space and time components and if we assume that the lagrangian density
does not depend explicitly upon xµ, can be written as:

T νµ,ν =
∂T 0

µ

∂t
+
∂T iµ
∂xi

=
∂T 0

µ

∂t
+∇ · T iµ = 0. (2.114)

So that in this way we can find charges Pµ (the well known energy and momentum four
vector) conserved in time 17

Pµ =

∫
T 0

µd
3x. (2.115)

Since it represents the conservation of four independent currents, the energy-momentum
tensor must be associated to some symmetry in Noether’s theorem. Indeed, it can
be defined as the conserved current under constant spacetime translations 18, which
actually forces the Lagrangian to be invariant under this transformations. In other
words, constant space-time translations must be a symmetry for the action considered.
Since we are dealing with constant translations, the current derived must be linear with
respect to them and thus can be written as

Jµ = ενT µν (2.116)

17 We stress that what is actually yielded by the continuity equation (2.114) is the conservation of
the density of a physical property.

18 Energy-momentum tensor is better defined as Tµν = 1√
g
δS
δgµν , where gµν is the metric of the manifold

considered. However this is not our topic and for our purpose the definition given above produces the
same results; in fact the different definition is only used when the Noether’s current associated with
the space-time translation symmetry is not symmetric, and this happens only in the presence of a spin
source. This issue is recovered by introducing the Belinfante’s tensor (we will used this result in the next
chapter inspecting Einstein-Hilbert action). Just to be as clear as possible, we recall that the physical
meaning of the energy-momentum tensor is the following: Tµν represents the flux of the µ component
of the four-momentum in special relativity frame across a surface of constant xν . Therefore:

T 00 energy density
T 0i energy flux across xi surface
T i0 i momentum density
T ij flux of i momentum across xj surface
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where the coefficient T µν of the current are the components of the energy momentum
tensor, conserved since the current Jµ is. We now aim to examine two cases in particular
and to derive the relative energy-momentum tensor.

Scalar fields
If the Lagrangian does not depend on xµ explicitly, then it is invariant under spacetime
constant translations, namely

δsφ(x) = −εµ∂µφ(x), (2.117)

which, as shown earlier, is its Lie derivative under constant translations. Computing the
variations, we obtain:

δsI[φ(x)] =
∂L
∂φµ

δsφµ +
∂L
∂φµ,ρ

δsφµ,ρ

= −εν
[
∂L
∂φµ

φµ,ν +
∂L
∂φµ,ρ

φµ,ρν

]
= −∂ν(ενL),

(2.118)

which is actually a boundary term. We note that we exploit the independence of the
lagrangian density from xµ explicitly. Here we are: the conserved Noether’s current is

Jµ = ερ
[
∂L
∂φµ,ν

φµ,νρ − δµρL
]
≡ ερT µρ, (2.119)

from which we derive the same energy-momentum tensor (2.113) computed above.

Maxwell’s electromagnetism
The action in electromagnetism is:

I[Aµ(x)] = −1

4

∫
FµνF

µνd4x, (2.120)

where Fµν = ∂µAν − ∂νAµ. This theory is invariant under spacetime translations xµ →
xµ + εµ with constant εµ from which we can compute its associated energy-momentum
tensor. Furthermore it is also invariant under gauge transformations δAµ = ∂µλ(x);
hence we can compute an improved energy-momentum tensor, called Belinfante tensor,
which looks pretty nice: it is symmetric and gauge invariant. This property suggests
that this action is invariant under a larger group.

The variation of a one-form under constant translation is computed through its Lie
derivative, namely δinAµ = −εν∂νAµ, where we use the subscript in δin because we are
about to improve it with the additional invariance of Maxwell’s theory (the subscript
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should mean “initial”). This variation is a symmetry, since

δinI[Aµ] =

∫
δinF

2d4x

=

∫
2F µνδµνd

4x

=

∫
2F µνεα(∂µ∂νAα − ∂ν∂µAα)d4x

(2.121)

is a boundary term due to the sufficient continuity requirements on the second derivatives
of Aµ we can impose without any difficulty. However we immediately notice that this
variation is not gauge invariant under Lorentz transformations; therefore the current we
could obtain does not behave nicely under Lorentz transformations as it is not gauge
invariant. Hence we exploit the extended symmetry of the action to write a better
variation which is a combination of a constant spacetime translation together with a
particular gauge transformation:

δsAµ = −εα∂αAµ + ∂µ(εαAα) = Fµαε
α, (2.122)

where εα is constant. This variation is invariant under Lorentz transformations since the
derivatives of Aµ are involved only through the tensor Fµν .

In order to find the energy-momentum tensor we compute the variation of the action
under this variation 19 :

δsF
2 = 2F µνδsFµν = 2F µνεα(∂µFνα − ∂νFµα) = 2F µνεα(∂µFνα + ∂νFαµ)

= −2F µνεα∂αFµν = ∂α(−εαF 2) = ∂α(−εαL),
(2.123)

which is a boundary term. Hence the variation (2.122) is a symmetry for the action. We
stress that we used Bianchi’s identity for the third equivalence, namely ∂µFνλ + ∂λFµν +
∂νFλµ = 0.

Therefore the conserved Noether’s current is

Jµ =
∂L
∂Aρµ

δAρ −Kµ = −F µρεσFρσ + εµL

= εσ[−F µρFρσ + δµσL] = −εσ
[
F µρFρσ +

1

4
δµσF

αβFαβ

] (2.124)

from which we derive the electromagnetic energy-momentum tensor

T µσ = −F µρFσρ +
1

4
δµσF

αβFαβ. (2.125)

Since Fµν is Lorentz covariant, this tensor also is. Moreover it has zero trace, as it can
be showed by direct computation or by the argument we are about to provide below.

19 Recall that δI[Aµ] = δ
∫
F 2d4x =

∫
δF 2d4x.
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2.2.4 Further inspections

We aim to inspect two particular actions in order to underline some interesting applica-
tions provided by Noether’s theorems.

Maxwell’s theory, once again
We now focus once again on the action of Maxwell’s electrodynamics. Exploiting its
wider group of invariance we would like to try to extend the variation (2.122) from
constant εµ to arbitrary ζµ(x), i.e. we combine the transformation x ′µ → xµ + ζµ(x)
with a particular gauge transformation. Thus we compute the Lie derivative δAµ(x) and
then add to it a gauge parameter to cast it in a similar form to (2.122), that is

δsAµ = δAµ = −ζν∂νAµ − δµζνAν + ∂µ(ζνAν)

= Fµνζ
ν .

(2.126)

This choice could be argued since adding an extra term may vary the value of the
current which should be conserved. However, as we will see in the next chapter, gauge
transformations are better related to constraints and the charges associated to them are
always zero. Therefore in adding a gauge transformation we do not alter the conserved
current.

However, Maxwell’s theory is not invariant under an arbitrary ζµ(x) 20, but only to
vector fields satisfying the equation

ζµ,ν + ζν,µ =
1

2
ηµνζ

ρ
,ρ, (2.127)

where ηµν is the (3 + 1) Minkowski’s metric. These infinitesimal vector fields represent a
particular group of transformations called the conformal group. Any vector fields ζµ(x)
that belong to it is a symmetry of the action. We derive this result and its associated
currents computing them directly.

Our aim is to write the variation of the Lagrangian as δL = ∂µK
µ + f(ζ), for some

function f which depends on ζ but does not depend on the field Aµ, since we do not
want to change the dynamical fields but only to impose some restriction over the kind
of transformations of coordinates involved (namely, that they satisfy (2.127)). Hence we

20 We add that invariance under a general ζµ(x) is the symmetry of general relativity.
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have:

δsL = δs(
1

4
F 2)

= F µν∂µ(ζρFνρ)

= F µνFνρ∂µζ
ρ + F µνζρ∂µFνρ

= F µνFν
ρ∂µζρ +

1

2
F µνζρ(∂µFνρ + ∂νFρµ)

= −F µνF ρ
ν∂µζρ −

1

2
F µνζρ∂ρFµν

= −F µνF ρ
ν∂µζρ −

1

4
∂ρ(F

µνFµν)ζ
ρ

= −1

2
F µνF ρ

ν(∂µζρ + ∂ρζµ) +
1

4
F µνFµν∂αζ

α − 1

4
∂ρ(ζ

ρF 2)

= −1

2
F µνF ρ

ν

(
∂µζρ + ∂ρζµ −

1

2
ηµρ∂αζ

α

)
−∂ρ(ζρL),

(2.128)

where we exploited Bianchi’s identity in manipuLating the tensor ∂λFµν and the anti-
symmetry of the tensor Fµν . Therefore, when the vector field ζµ solves (2.127), (2.126)
is a symmetry of Maxwell’s action, since −∂ρ(ζρL) is a boundary term. We then find
the Noether’s current associated to it, by only applying Noether’s procedure:

Jρ =

(
∂L
∂Aµ,ρ

)
δsAµ −Kµ

= F ραζβFαβ +
1

4
ζρF 2

= ζβ
(
F ραFαβ +

1

4
δρβF

2

)
,

(2.129)

with ∂ρJ
ρ = 0 and ζµ satisfying (2.127).

Finally, to provide a brief overview, we list the possible vector fields that solves
(2.127):

• Constant translations (4 generators). This is the simplest solution, namely

ζµ(x) = ζµ0 . (2.130)

• Lorentz transformations (6 generators).

ζµ(x) = εµνx
ν , (2.131)

where εµν are constant parameters such that εµν = −εµν .
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• Dilatations (1 generators). A constant rescaling by λ, namely

ζµ(x) = λxµ. (2.132)

• Special conformal transformations (4 generators).

ζµ(x) = 2xνbνx
µ − bµxνxν , (2.133)

where bµ are constant parameters.

(2.127) is an equation whose solutions belong to the four group listed above. It is called
conformal Killing’s equation and its solutions conformal Killing’s vector fields. Physi-
cally, they represent curves along which the Lie derivative of the quantities involved in
the action combine as to keep the variation of the action equal to zero.

Schrödinger’s equation
We now aim to focus on Schrödinger’s equation inspecting the action it is derived from,
and see what physical meaning we could attribute to the conserved charge Noether’s
theorem provides.

The action we are looking for can be found in field theory and written as

I[ψ(x), ψ∗(x)] =

∫
dt

∫
d3x

(
i~ψ∗ψ̇ − ~2

2m
∇ψ∗ · ∇ψ − V (xi)ψ∗ψ

)
. (2.134)

Taking the extreme value of the action we find the equations of motion. Before going
through direct computations we notice that since ψ is complex, ψ and ψ∗ can be thought
as independent and are to be considered so. Varying with respect to ψ∗ we obtain:

δI[ψ(x), ψ∗(x)] =

∫
dt

∫
d3x

[
i~δψ∗ψ̇ − ~2

2m
∇δψ∗ · ∇ψ − V δψ∗ψ

]
=

∫
dt

∫
d3xδψ∗

[
i~ψ̇ +

~2

2m
∇2ψ − V ψ

]
− ~2

2m

∫
dt

∫
∂Ω

d3x(δψ∗(∇ψ · ~n)),

(2.135)

where we exploit the first Green’s identity on the function ∇δψ∗ · ∇ψ, and ∂Ω is the
surface that bounds the volume of integration with normal outward direction ~n. If we
assume that the function ψ evaluated at spacial infinite on the bound of the whole 4-space
vanishes, for arbitrary variations of ψ∗ we have

i~ψ̇ = − ~2

2m
∇2ψ + V ψ = Hψ, (2.136)
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that is: the Schrödinger’s equation. Proceeding in the same way for the variations of
ψ(x) we obtain the conjugate of the Schrödinger’s equation (2.136). (2.134) is clearly
invariant under phase transformation for constant α:

ψ → ψeiα. (2.137)

Let us find the associated Noether’s charge. First we need to write it as a suitable
infinitesimal transformation up to leading order in α:

δsψ = iαψ

δsψ
∗ = −iαψ∗.

(2.138)

It is straightforward to see that Schrödinger’s action is strictly invariant under these
transformations (i.e. its boundary term vanishes). Hence Noether’s charge follows only
from the on-shell variation, by replacing the variation with the symmetry, namely 21

δs,oI[ψ(x), ψ∗(x)] =

∫
dt

∫
d3x

∂L
∂ψ,µ

δsψ,µ

=

∫
dt

∫
d3xi~ψ∗δsψ̇

=

∫
dt

∫
d3x

i~
2

d

dt
(ψ∗δsψ)

= −α~
2

∫
dt
d

dt

∫
d3x(ψ∗ψ).

(2.139)

where with δs,o we mean that we are taking a symmetry variation for the action on the
equations of motion. The associated Noether’s charge is thus

Q = −
∫
d3x

~
2
ψ∗ψ = −

∫
d3x

~
2
ρ , (2.140)

or

Q =

∫
d3xψ∗ψ =

∫
d3x |ψ|2 =

∫
d3x ρ , (2.141)

that is the total probability of finding the particle in space. This is of great importance:
since this quantity is conserved, we can fix its value to be equal to 1 as we normally
does in quantum mechanics and thus refer to it as a probability. We stress that here we
considered only those functions ψ which vanish sufficiently rapidly at infinity; the same
argument can be carried out with non vanishing functions on a finite border obtaining
an analogous equation of conservation of a certain charge, turning out in defining a

21 Recall that d
dt (ψ

∗ψ) = ψ̇∗ψ + ψ∗ψ̇ = 2Re[ψ∗ψ̇].
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probability and a current of probability. Indeed in computing the on shell variation we
are left with a boundary term that we do not neglect this time:∫

dt

∫
∂Ω

d3x[− ~2

2m
δψ∗(∇ψ · ~n)] ; (2.142)

using the symmetry provided above and via Gauss theorem, it can be cast in the form

i~2

2m

∫
dt

∫
d3x∇ · [ψ∗(∇ψ)]. (2.143)

We can thus interpret the quantity ~j = i~
m
ψ∗(∇ψ) as a probability current; the coefficient

adopted will find an explanation in the following operation. Indeed Noether’s theorem
thus implies, using (2.139) and (2.140):

∂ρ

∂t
+∇ ·~j = 0, (2.144)

that is: an equation for the conservation of probability density in a finite volume along
the time evolution of the system. We finally notice that, since ρ is a real quantity
and Noether’s theorem is proved to be true, the probability current is better defined as
~j = ~

m
Im[ψ∗(∇ψ)].
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Chapter 3

Gauge theories in hamiltonian
formulation

Symmetry, as wide or as narrow
as you may define its meaning,
is one idea by which man
through the ages has tried to
comprehend and create order,
beauty and perfection.

Hermann Weyl

3.1 Introduction

All three fundamental interactions (electroweak theory, strong interaction and the theory
of gravity) are described by Lagrangian possessing a gauge invariance. Therefore it is
clear how the idea of gauge invariance is fundamental in developing physical models.
Moreover gauge theories provide a fulfilling theoretical interpretations of nature: all
is ruled by symmetries; that is: symmetries furnish a way to unveil the underground
correspondences and find the fundamental laws of interactions. Further all gauge theories
can be understood within the general hamiltonian structure we provide in this chapter.
This stands as a leading flag in the developing of a theory of great conceptual clarity
that is able to trace common features in nature.

Gauge theories share common aspects. First, they involve a gauge symmetry, namely
a transformation containing arbitrary functions of spacetime that leaves the variation of
the action integral equal to zero, at least up to a boundary term. Therefore it follows
readily that the equations of motion must be related among each other in a certain way;
thus the equations of motion do not empty all degrees of freedom of the action integral.
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Hence (at least in a Hamiltonian description) a gauge theory has constraints which act as
the generators of the corresponding gauge symmetries. We are about to be more precise
and meticulous in the following sections. The key is that we are dealing with theories
that seem to miss something, since their Lagrangians furnish less equations that unkowns
but that connect their dynamical fields someway. This strange behavior suggests that
we should exploit this particular attitude and find an elegant way to tune the physical
reality in a suitable mathematical model.

At first sight, these theories may look a bit presumptuous and not so useful, since the-
ories whose equations of motion do not fully determine the evolution of their variables do
not sound very physical and are intuitively perceived as pathological. However, digging
deeper, the great discovery of gauge symmetries uncovered the concept of equivalent class
of configurations: fields that may differ in their mathematical presentation but represent
the same physical reality. For instance Maxwell’s equations, which fully described the
behavior of electromagnetic field, are invariant by adding the derivative of an arbitrary
scalar function. Therefore, although mathematically they are two distinct and different
functions, physically they furnish the same fields and model the same physical reality.
Historically, Maxwell’s theory has been the first gauge theory discovered.

3.1.1 A quick insight

We should first provide the rigorous definition and description of gauge theories. Some-
times this turns out to not to be the more intuitive approach. Indeed, gauge theories tend
to be too much linked to a mathematical trick than to physical considerations. They are
built first by looking at the mathematics beyond Lagrangians and then through inter-
preting the results in a physical manner. Therefore we aim to underline gauge features
with a simple standard action integral, waiting for the next section to provide their
complete description.

We then begin with the following action:

I[A0(t), ψ(t)] =
1

2

∫
dt(ψ̇ − A0)2. (3.1)

Looking at this simple mechanical model, we find all the main characteristics of a gauge
theory.

1. Gauge symmetry: the action is invariant under the transformations

ψ → ψ + ε(t) and A0 → A0 + ε̇(t), (3.2)

where ε(t) is an arbitrary function of time. We should call it gauge symmetry, in
order to distinguish it from global or Noether’s symmetries. This gauge symmetry
imposes the following properties.
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2. Non independence of the equations of motion: when computing the variation with
respect to these transformations we obtain the equations of motion, namely:

d

dt

∂L

∂Ȧ0

− ∂L

∂A0

= (ψ̇ − A0) = 0

d

dt

∂L

∂ψ̇
− ∂L

∂ψ
=

d

dt
(ψ̇ − A0) = 0,

(3.3)

hence we can see that the equation for the field A0 already contains the equation
for ψ. Therefore the equations are not all independent: there is only one equation,
not two. Hence the solution contains arbitrary functions. We stress once again
that we have less equations than unknowns.

3. The general solution contains arbitrary functions: the solution of the equations of
motion is

ψ(t) = f(t), A0(t) = ˙f(t), (3.4)

and contains an arbitrary function of time. Given any initial condition, one can
always modify the evolution of the system at later times.

4. The Hamiltonian obeys constraints: we shall first write the Hamiltonian. Once
computed the momenta pA0 = ∂L

∂Ȧ0
= 0 and pψ = ∂L

∂ψ̇
= ψ̇ − A0, we can write it as

H(pψ(t), ψ(t), A0(t)) = pψψ̇ − L

=
1

2
p2
ψ + A0pψ.

(3.5)

The corresponding action in hamiltonian form is

I[pψ(t), ψ(t), A0(t)] =

∫ (
pψψ̇ −

1

2
p2
ψ − A0pψ

)
dt. (3.6)

The equations of motion (Hamilton’s equations in this formalism) for the ψ, pψ
variables are:

ψ̇ =
∂H

∂pψ
= pψ + A0

ṗψ = −∂H
∂ψ

= 0,

(3.7)

while for the A0 variable looks a bit different. Indeed this variable appears as a
Lagrange’s multiplier in the Hamiltonian and its associated equation is an example
of constraint

∂H

∂A0

= pψ = 0, (3.8)

that is an equation involving no time derivatives.
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There is one last thing to underline, linked to gauge fixing in the arbitrariness of the
function of time contained in the solution of the equations of motion. We said that the
equation of motion of ψ is already contained in the equation for A0, but not the other way
round. This means that one can dispose of ψ(t) and no information will be lost because
its equation is already there. Conversely, one cannot dispose of A0(t). To understand the
reason why a parallel treatment is not possible let us consider the following argument.

If we fix the gauge ψ(t) = 0 in the action we have:

Iψ=0[A(t)] =

∫
dtA2

0 → A0(t) = 0, (3.9)

where on the right hand side of the arrow we reported the equation of motion which
the action considered lead to. We uniquely fixed A0(t), and showed that the pure-gauge
action (3.1) in fact has no degrees of freedom at all. On the other hand, let us now fix
A0(t) = 0 instead; we find an action of the form

IA0=0[ψ(t)] =

∫
dtψ̇2 → ψ̈ = 0, (3.10)

which represent a free field ψ(t) carrying one degree of freedom. This problem is quite
subtle and the answer could be find in whether a variable is involved in the hamiltonian’s
action as a true variable or as a lagrangian’s multiplier. Let us be precise in next sections.

3.1.2 Gauge theories and Noether’s theorems

Although we only aim to deal with a particular formalism of gauge theories (the hamilto-
nian form), we would like to underline the relations between gauge theories and Noether’s
theorems. We remind to sections (2.1.7) and (2.2.2) for the notation we will use.

Let us assume that the local group G∞η has a non trivial global subgroup Gη. Further
let us assume that there exists a certain subgroup of the local group for which we have
∆pα(x) = ∆ωα

1; therefore we can write equation (2.102) for δsφ as:

δsφ =

η∑
α=1

{aα∆ωα + bµα∂µ(∆ωα)} =

η∑
α=1

aα∆ωα (3.11)

If we put this expression for δsφ in the equation for Noether’s first theorem (2.51), we
obtain: ∑

ρ

[Φ]ρaα−ρ = ∂µj
µ
α (3.12)

1 That is: a subgroup of infinitesimal arbitrary functions pα that equals the infinitesimal constant
parameters ωα of the group.
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Here we are: if Euler-Lagrange equations are satisfied for all fields, ( namely if [Φ]ρ =
0, ∀ρ ) we immediately obtain an equation for the conservation of the quantities jµα.
However, if instead we assume that for some ρ or all of them we have [Φ]ρ 6= 0, it is
possible to find a conserved quantity as well. Indeed for Noether’s second theorem we
have ∑

ρ

[Φ]ρaα−ρ =
∑
ρ

∂µ{[Φ]ρb
µ
α−ρ} (3.13)

from which it follows that:

∂µj
µ
α =

∑
ρ

∂µ{[Φ]ρb
µ
α−ρ} =⇒ ∂µJ

µ
α = 0, (3.14)

where

Jµα ≡
{
jµα −

∑
ρ

([Φ]ρb
µ
α−ρ)

}
. (3.15)

This brief treatment shows that, when a local group of transformations has a non trivial
global subgroup, it is possible to find some conserved quantities without requiring Euler-
Lagrange equations of motion to be satisfied and where arbitrary functions are involved.
This conservation laws are called improper laws of conservation and we can see the seeds
of gauge theories hiding in them. On the other hand, when Euler-Lagrange equations
of motions are satisfied we immediately find some conserved quantities which are called
proper conservation laws.

Since we are about to focus on gauge theories and improper transformations, we
would like first to introduce a brief example of a proper transformation. We provide the
easiest one, namely we focus on the so called Galileo’s group. This is a Lie group of ten
parameters (which means that the arbitrary functions of Noether’s second theorem are
ten constants) to which we expect we can extract ten conserved quantities. The action

integral from which we start is the one for a free particle
∫
dt m ẋiẋi

2
.

Galileo’s proper group

Space translations (3 parameters): we choose the transformation of the group to be

δxi(t) = ai(t) (3.16)

where ai(t) is an arbitrary function. An explicit calculation gives

δS[x] =

∫
dtmẋiȧi (3.17)

The term that multiplies the arbitrary function is the conserved quantity, namely the i-th
component of the momentum pi = mẋi. To prove it we only have to consider the variation
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of the action on the paths of motion (i.e. we assume that the Euler-Lagrange equations
of motion are satisfied). Indeed the variation now vanishes and after an integration by
parts we obtain:

0 = δoS[xi(t)] =

∫
dt pi(t)ȧi(t) = −

∫
dt ṗi(t)ȧi(t)⇒ ṗi(t) = 0. (3.18)

That is: due to invariance of the action under space translations, momentum is conserved.
Further we notice that if we consider ai(t) to be constant we obtain a symmetry of the
action. Time translation (1 parameter): we now consider an arbitrary translation in the
time coordinate

t→ t′ = t− ε(t) (3.19)

Computing the variation of the functions xi(t) we find a result obtained earlier, namely:

δxi(t) = ε(t)ẋi(t) (3.20)

The variation of the action integral assumes the following form:

δS[x] =

∫
dtmẋi∂t(εẋi) =

∫
dt

[
∂t

(
εm

2
ẋiẋi

)
+ε̇
m

2
ẋiẋi

]
=

∫
dt ε̇

(
m

2
ẋiẋi

)
(3.21)

where we neglect total time derivatives, assuming the boundary terms involved vanish.

The term E =

(
m
2
ẋiẋi

)
is the energy of the free particle. Here we are: if we evaluate

the variation of the action integral on the equations of motion δoS = 0, we obtain a
conserved quantity, that is the energy. Further we notice that if we consider ε(t) to
be constant we obtain a symmetry of the action. Space rotations (3 parameters): the

variations of the functions xi(t) under arbitrary space rotations wi(t) are:

δxi(t) = εijkωj(t)xk(t), (3.22)

where we used the Levi-Civita symbol εijk. The variation of the action integral reads

δS[x] =

∫
dt ω̇iεijkxjẋk (3.23)

Again, if we consider the functions wi(t) to be constant we obtain a symmetry, while if we
evaluate the variation of the action integral on the equations of motion we obtain three
conserved quantities, namely the component of the angular momentum Li = εijkxjpk.
Proper Galilean transformations (3 parameters): with proper Galilean transformations
we mean transformations between two inertial frames of reference in relative constant
motion with constant relative velocity vi. The transformations of the dynamical variables
for arbitrary time dependent velocities vi(t) are:

δxi(t) = vi(t)t (3.24)
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Computing the variation of the action integral we find:

δS[x] =

∫
dt v̇i(mẋit−mxi) (3.25)

from which we can see that when the functions vi are constant we obtain a symmetry;
on the other hand when we evaluate the variation on the equations of motion (δoS = 0)
we find three conserved quantities, i.e. Gi = mẋit−mẋi.

3.2 Gauge theories in hamiltonian form: general struc-

ture

Here we should present some of the most important gauge theories. We stress that we deal
only with the hamiltonian form and unfortunately we do not provide a straightforward
method of finding them. The general method is called the Dirac’s procedure and its
hard treatment is left to better manuals of a wide literature. However we include these
treatments in hamiltonian form in these pages since they arise from Noether’s second
theorem.

The most important gauge theory actions (i.e. the ones which belong to the funda-
mental interactions) in hamiltonian formalism assume the following form:

I[pi(t), q
i(t), λa(t)] =

∫
dt[piq̇

i −H0(pi, q
i) + λaθa(pi, q

i)] . (3.26)

Let us analyze it in detail. The functions pi(t), q
i(t), λa(t) are independent fields varied

in the action. The total Hamiltonian is composed of two terms: H0, which denotes
the part of the Hamiltonian that is not a constraint; −λaθa, which instead includes the
contributions from the constraints θa. Further it is important to notice that this action
contains no derivatives of the λ ’ s. To compute the equations of motion we have to take
arbitrary variations with respect to all three fields the action depends from, finding:

q̇i =
∂H0

∂pi
− λa∂θa

∂pi
,

ṗi = −∂H0

∂qi
+ λa

∂θa
∂qi

,

θa(pi, q
i) = 0.

(3.27)

This system of equations reveals its gauge nature in the presence of the Lagrange’s
multipliers λa(t) and the constraints θa(pi, q

i).
The first two equations determine the evolution of p, q given initial conditions p(0),

q(0). However, these initial conditions cannot be totally arbitrary since they must sat-
isfy the equation for θa which can be clearly interpreted as constraints; they define an
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hypersurface in the phase space on which the variables of motion p, q must lie along
the evolution of the system. Further, to actually integrate the equations of motion, the
expressions of the Lagrange’s multipliers λa(t) have to be found.

Therefore there must be some indication to follow in order to find out a way to chose
the functions λa(t); moreover we have to check that, given initial conditions, the solutions
p, q keep satisfying the equation for the constraints θa.

These issues can be handled looking at the constraints, which exactly contain the
meaning of gauge theories. Using Poisson brackets to compute time derivatives, we
obtain:

d

dt
θa(pi, q

i) = {θa, H0} − {θa, θb}λb. (3.28)

The equation for the constraints θa must always hold, which means that the evolution
of the system has to follow a path that keep its time derivative equal to zero, i.e.

{θa, H0} − {θa, θb}λb ≈ 0. (3.29)

The symbol ≈ (weakly zero) implies that we do not require θ̇a to be strictly zero every-
where, but it is enough if it vanishes on the surface defined by the constraints, namely
when θa = 0. Equation (3.29) is a consistency condition for the time evolution of the
system. Calling Gab = {θa, θb}, the following situations may occur:

1. Non-gauge theories. When the matrix Gab is invertible, (3.29) fixes completely
the functions λa(t) to the following value

λa(t) = Gab{θa, H0}. (3.30)

Therefore the functions λa(t) plays the role of preserving the third equation of
(3.27), that is it defines the dynamic variables p(t), q(t) in order to keep them on
the surface θa = 0 along the time evolution of the system.

2. Gauge theories. If the matrix Gab is zero, or at least if it is weakly zero (i.e. if
it vanishes on the surface θa = 0 : Gab ≈ 0 ), then (3.29) imposes no restrictions
on the functions λa(t) (as before, on the surface θa = 0) which therefore remained
undetermined by the equations of motion. Here lies the first sign of a gauge theory:
the equations of motion contain arbitrary functions of time. We are interested in
the so called first class constraints, namely a set of constraints such that

{θa, H0} = Ga
bθb , {θa, θb} = Gab

cθc, (3.31)

which are both weakly zero since the conditions required on Gab. Indeed, if θa ≈ 0,
also {θa, θb} ≈ 0 and {θa, H0} ≈ 0.
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The reason why we pick such conditions is remarkably: if the Hamiltonian and the
constraints satisfy (3.31), then the action (3.26) is invariant under the following
variations:

δGq
i = {qi, θa}εa(t)

δGpi = {pi, θa}εa(t)
δGλ

c = ε̇c(t) + εa(t)Ga
c − λaεb(t)Gab

c,

(3.32)

where εa(t) are arbitrary functions of time and with the symbol δG we highlight
the particular type of variations considered. Here we are: these transformations
are the gauge symmetries of the action. Therefore all actions of the form (3.26),
where the Hamiltonian and the constraints satisfy (3.31) have a gauge symmetry
(namely (3.32)). This is the reason why we write this variation as δG: they are
symmetries but of a particular type.

3. Mixed case. Although we completely avoid its treatment, we mention it for the
sake of completeness. This case endorses sets of constraints such that some of
them satisfy (3.31), thus related to gauge symmetries, and some other different
conditions related to the non-gauge symmetries as in the first case showed above.
2.

We should now demonstrate the invariance of the action (3.26) under gauge symmetries
(3.32). We begin with the variations of the canonical variables:

δGqi = εa
∂θa
∂pi

, δGpi = −εa∂θa
∂qi

. (3.33)

Hence the variation of the action is:

δGI[pi(t), q
i(t), λa(t)] = δG

∫
dt(piq̇

i −H0 − λaθa)

=

∫
dt

[
−εa∂θa

∂qi
q̇i − ṗiεa∂θa

∂pi
− ∂H0

∂qi
εa
∂θa
∂pi

+
∂H0

∂pi
εa
∂θa
∂qi

+

− δGλaθa − λa
(
∂θa
∂qj

εb
∂θb
∂pj
− ∂θa
∂pj

εb
∂θ − b
∂qj

)]
+

∫
dt
d

dt
(piδGq

i)

=

∫
dt

[
−εa d

dt
θa − εa[H0, θa]− δGλaθa − λaεb[θa, θb]

]
+

∫
dt
d

dt
(piδGq

i).

(3.34)

2 It is worth to underline that there is a much more mathematical and precise manner to determine
gauge theories, that is the one highlighted by Dirac’s procedure. However this procedure sometimes turns
out to be difficult and tricky and we preferred to focus only on the type of gauge theories mentioned,
since they cover almost all fundamental examples. Further, starting with the Hamiltonian we avoided
all the tedious computations of the standard method in order to derive them.
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If θa are all first class constraints (i.e. they satisfy (3.31) ), the variation above reduces
to:

δGI =

∫
dt[ε̇aθa + εaGa

bθb − δGλaεbGab
cθc] +

∫
dt
d

dt
(piδGq

i − εaθa)

=

∫
dt(ε̇c + εaGa

c − δGλc − λaεbGab
c)θc +

∫
dt
d

dt
(piδGq

i − εaθa)

=

∫
dt
d

dt
(piδGq

i − εaθa).

(3.35)

where we collect in the second integral all the boundary values rising from integration
by parts. Some comments regarding this kind of variation are worth to be addressed:

• No charge: since the gauge symmetry is a symmetry of the action we can compute
its associated Noether’s charge, namely:

Q = K − piδGqi = piδGq
i − εaθa − piδGqi = −εaθa = 0, (3.36)

since the constraints obey θa = 0 at any time 3.

• Degrees of freedom: a gauge theory contains 2N canonical variables corresponding
to the phase space for N degrees of freedom (namely p, q corresponding to 1

2
× 2

degrees of freedom) plus the additional constraints θa. Suppose that subscripts of
θa runs in the range a =, . . . , g. The equations that the dynamical variables must
satisfy θa(pi, q

i) = 0 subtract g of them. Therefore there are g gauge symmetries
which implies that not all of the canonical variables p, q are physically meaningful
by themselves, since there are some combinations of them that produce some others.
Gauge symmetries subtract g physically meaningful variables and the total number
of degrees of freedom is 1

2
(2N − 2g).

• Time evolution: in gauge theories the time evolution of the canonical variables
is the usual one q̇ = ∂pH0, ṗ = −∂qH0 plus an additional term λa∂pθa, λ

a∂qθa,
respectively, which is a gauge transformation with the gauge parameters being the
Lagrange’s multipliers.

In the next sections we provide some fundamental examples and applications of gauge
theories, trying to underline their common features. Our procedure will always be the
same: introduce lagrangian form, derive its hamiltonian action, and finally show how
the constraints generate the gauge symmetry.

3This topic is actually subtler than this, since it turns out that whenever the field considered is a
complex function, a gauge charge does exist and is different from zero. Anyway we will deal only with
real fields.
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3.2.1 Special relativity: point particle

The action for a spinless relativistic point particle parameterized as xµ(τ) is

I[xµ(τ)] = −m
∫
ds = −m

∫
dτ

√
−dx

µ

dτ

dxν

dτ
ηµν , (3.37)

where τ indicates any parameter describing the curve in a Minkowski’s space with its
well known related metric ηµν . We immediately find a transformation that leaves the
action unchanged, that is: a symmetry. This transformation is a bit nonphysical and
actually is a reparameterization:

τ ′ = τ ′(τ) , x ′µ(τ ′) = xµ(τ). (3.38)

In order to apply Noether’s theorem, we aim to express it in term of an infinitesimal
transformation of the field xµ rather than of the parameter (coordinate) τ . Taking
τ ′ = τ + ε(τ), we can write this transformation as δxµ(τ) = −ε(τ)ẋµ. It is a gauge
symmetry as the infinitesimal parameter ε(τ) is an arbitrary function of τ . Computing
explicitly its variation we obtain:

δsI[xµ(τ)] = −m
∫
dτ
−ẋµδẋµ
(−ẋ2)

1
2

= −m
∫
dτ

d

dτ

(
ε(τ)(−ẋ2)

1
2

)
,

(3.39)

where with the superposed dot we indicate a derivative with respect to the parameter
τ and we use δẋµ = d

dt
(δxµ) = −ε̇(τ)ẋµ − ε(τ)ẍµ. We also stress in the notation that

the function ε(τ) is not constant. The transformation considered is a symmetry, since

the variation of the action is the boundary term K = ε(τ)

(
−(ẋ2)

1
2

)
= ε(τ)L. Then

Noether’s conserved charge is:

Q = K − ∂L

∂ẋµ
δsx

µ = K −m ẋµ

(−ẋ2)
1
2

ε(τ)ẋµ = K − ε(τ)L = 0. (3.40)

As expected for a gauge theory, the Noether’s charge associated to this transformation
vanishes. We recognize again that we are dealing with a gauge symmetry. To relate
to the hamiltonian formulation of our treatment we must find the hamiltonian action.
Further we aim to find it in the form (3.26). However we obtain a momentum

pν =
mẋν√
−ẋµẋµ

, (3.41)

and we are incapable of solving ẋµ in terms of pµ. This issue could be imputed to
a random occurrence, but instead is another sign of a gauge theory: (3.41) seem to
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represent four independent equations although there are only three. Indeed there is a
constraint, rising when contracting (3.41):

θ ≡ pνp
ν +m2 = 0, (3.42)

satisfied without the equations of motion. To find a formulation which suits our general
structure we exploit a particular action called the Polyakov action. This action is derived
introducing an auxiliary variable, the einbein e(τ) which is treated as a dynamical field.
The Polyakov action is defined as

IP [xµ(τ), e(τ)] =
1

2

∫ (
1

e
ẋµẋµ − em2

)
dτ. (3.43)

This action is precisely of the form (3.1), taken as an introductory example. Notice that
its fundamental property is that it does not contain any derivatives of the einbein, so
that we can use its equation of motion as a constant:

∂L

∂e
= 0 ⇒ e(xµ) =

1

m

√
−ẋµ, (3.44)

and replace it in the Polyakov action, which gives back the relativistic action (3.37).
Therefore these two actions are completely equivalent and generate the same equations
of motion but the Polyakov’s one possesses a useful advantage: it is quadratic in the field
xµ. Since they are equivalent, the Polyakov action must be invariant under the same
reparameterization used above under which the einbein becomes e ′(τ ′) = e(τ) dτ

dτ ′
. The

infinitesimal version of this transformation is:

e ′(τ + ε) = e(τ)(1− ε̇(τ)) ⇒ δe(τ) = − d

dτ
(ε(τ)e(τ)). (3.45)

The variation of the Polyakov action is thus:

IP [xµ(τ), e(τ)] =
1

2

∫
dτ

(
2eẋµδẋµ − ẋ2δe

e2
−m2δe

)
= −1

2

∫
dτ

d

dτ

(
ε

(
ẋ2

e
−m2e

))
,

(3.46)

that is, a boundary term K = −1
2
ε(τ)

(
ẋ2

e
−m2e

)
= −ε(τ)L.

The Hamiltonian for the Polyakov action is easily found to be

H(pµ, x
µ, e) =

1

2
e(pµp

µ +m2), (3.47)

therefore the corresponding action in hamiltonian formalism reads as:

IP [pµ(τ), xµ(τ), e(τ)] =

∫
dτ

[
pµẋ

µ − 1

2
e(pµp

µ +m2)

]
(3.48)

This action has precisely the form underlined in the general structure:
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• Free Hamiltonian: H0 = 0; this fact is due to the gauge invariance: the Hamiltonian
is not conjugate to any physical time, because we are using the arbitrary parameter
τ to describe the evolution of the system.

• Lagrangian multiplier: e, the einbein.

• Constraint: θ = 1
2
(p2 + m2), which represents the Einstein’s equation for conser-

vation of energy-momentum in natural units. This set of constraints, since it is
composed by only one equation, is trivially first class, namely [θ, θ] = 0.

We can demonstrate that the constraint θ defines the gauge transformation δGx
µ, δGpµ

through Poisson brackets by direct calculations, and δGe by the formula given in the last
line of (3.32). We obtain:

δGx
µ = {xµ, ε(τ)

1

2
(p2 +m2)} = ε(τ)pµ

δGpµ = {pµ, ε(τ)
1

2
(p2 +m2)} = 0

δGe = ε̇(τ).

(3.49)

The variation of the Polyakov action under this symmetries is therefore:

δGIP [pµ, x
µ, e] =

∫
dτ

[
pµδGẋ

µ − 1

2
δGe(p

2 +m2)

]
=

∫
dτ

d

dτ

[
1

2
ε(τ)(p2 −m2)

]
,

(3.50)

that is: the variation of the action under this transformation vanishes up to the boundary
term K = 1

2
ε(τ)(p2 −m2). Its associated Noether’s charge, as expected, vanishes once

again on the surface described by the constraint θ = 0:

Q = K − pµδGxµ = ε(τ)

(
p2

2
− m2

2
+m2

)
= ε(τ)θ. (3.51)

3.2.2 Electromagnetism

Let us focus on the Lagrangian of electromagnetism, namely (2.120). Since we aim to
define an action of the form (3.26) and put it in a canonical structure, we first need to
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split it into its space and time components:

IEM [Aµ(x)] = −1

4

∫
d4xF µνFµν

=

∫
d4x

[
−1

2
F 0iF0i −

1

4
F ijFij

]
=

∫
d4x

[
1

2
(Ȧi − ∂iA0)(Ȧi − ∂iA0)− 1

4
FijF

ij

]
=

∫
d4x

(
1

2
ȦiȦ

i − Ȧi∂iA0 +
1

2
∂iA0∂

iA0 −
1

4
FijF

ij

)
,

(3.52)

where we exploited the antisymmetry of the tensor 4 F µν . Further we recall that the
Latin index run over the three numbers 1, 2, 3 and stand for the space variables, while
the Greek ones run over all the numbers that represent the dimension of the spacetime
variety, including the first one for the time coordinate, namely 0, 1, 2, 3. We then define
the conjugate momenta. We stress that in hamiltonian formalism they are defined only
for those variables that appear with time derivatives. Therefore we have:

πi =
∂L

∂Ȧi
= Ȧj − ∂iA0 ⇒ Ȧi = πi + ∂iA0. (3.53)

We see that the canonical momenta πi are the components of the electric field. The
Hamiltonian is thus, using (3.53):

H(pi, A
i) = πiȦ

i − L

= πi(π
i + ∂iA0)−

[
1

2
(πi + ∂iA0)(πi + ∂iA0)− (πi + ∂iA0)∂iA0 +

1

2
∂iA0∂

iA0 −
1

4
FijF

ij

]
=

1

2
πiπ

i +
1

4
FijF

ij + πi∂
iA0.

(3.54)

When we integrate the Hamiltonian in order to find the expression of the action we can
cast the last term in a different form exploiting integration by parts, namely:∫

d4x(πi∂
iA0) =

∫
d4x(−A0∂iπ

i) + (A0π
i)

∣∣∣∣
∂Ω

(3.55)

4 Just to be clear, we recall that this tensor reads, as it is well known:
0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0
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and we assume that the term evaluated at the border of the variety vanishes.
Hence the action in hamiltonian formalism for electromagnetism is:

IEM [Ai(x), πi(x), A0(x)] =

∫
d4x

[
πiȦ

i −
(

1

2
πiπ

i +
1

4
FijF

ij

)
+A0∂iπ

i

]
. (3.56)

Here we are: this action has already the form (3.26). Indeed:

• Free Hamiltonian: H0 = 1
2
πiπ

i + 1
4
FijF

ij = 1
2
( ~E2 + ~B2), which represents the

dynamical contribution to the Hamiltonian.

• Lagrange’s multiplier: A0.

• Constraint: θ = ∂iπ
i = ∇ · ~E = 0, that is: Gauss’ law, simply.

Here we must answer the same question: given initial condition for πi and Ai that satisfy
θ = 0, do their time evolution keep on respecting this condition? We know that this
is so, since Gauss’ law is never violated. However we aim to compute it directly in
gauge theories frame, using the formalism we provided in the sections above. We notice
that now we are dealing with what we called continuous generalized coordinates and
momenta, i.e. we are dealing with the field theory formalism. Hence we recall all the
mathematical notation introduced in section (2.1.8), and in particular the definition of
Poisson brackets. Let us impose the conservation of the constraint θ = ∂iπ

i. Since we
have only one constraint, the Poisson brackets {θ, θ} = 0 and we are left with:

dθ

dt
= {θ(xµ), H(x ′µ)}

= {∂iπi(xµ),
1

2
πi(x

′µ)πi(x ′µ) +
1

4
Fij(x

′µ)F ij(x ′µ)− A0(x ′µ)∂iπ
i(x ′µ)}

= 2∂k∂
′
i {πk(xµ), Aj(x

′µ)}F ij(x ′µ)

= −2(∂k∂
′
i δ

3(xµ − x ′µ))F ik(x ′) = 0,

(3.57)

where in the last equivalence we exploited the symmetry of the first tensor (due to the
definition of a distribution and its derivatives 5) and the antisymmetry of the latter.
Therefore the constraint θ is conserved along the equations of motion and must generate
the gauge symmetry through Poisson brackets. We note that in field theory, as defined

5 Indeed, providing the correct space of functions for the function φ, the derivative of a distribution
T is defined as

〈T ′, φ(x)〉 = −〈T, φ ′〉. (3.58)
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in previous chapters, the Poisson brackets are a functional. Hence they can act on an
arbitrary function Λ(x); we obtain:

δGAj(x)Λ(x, t) = {Aj, ∂iπi}Λ(x, t)

=

∫
dx ′

∑
i

(
δAj
δAi

δ(∂kπ
k)

δπi
− δ(∂kπ

k)

δAi

δAj
δπi

)
δ(x− x ′)Λ(x, t)

=

∫
dx ′∂k

∑
i

(
δAj
δAi

δπk

δπi
− δπk

δAi

δAj
δπi

)
δ(x− x ′)Λ(x, t)

=

∫
dx ′δik∂jδ(x− x ′)Λ(x, t)

= −
∫
dx ′∂jΛ(x ′, t)δ(x− x ′)

= −∂jΛ(x, t),

(3.59)

where we used the definition of derivative of a distribution and dropped the subscripts
in xi due to practical needs. Here the function Λ has any degree of regularity desired.
Similarly we have:

δGπj(x, t)Λ(x, t) = {πj, ∂kπk}Λ(x, t)

= −
∫
dx ′

∑
i

(
δπj
δπi

δπk
δAi
− δπk
δAi

δπj
δπi

)
δ(x− x ′)Λ(x ′, t)

= 0,

(3.60)

which shows how the momenta πi are gauge invariant, as they should be since they
represent the electric field. To compute the variation for the Lagrange multiplier A0

we see from the third equation of (3.32) that it consists only in the time derivative of
the arbitrary function εa, since Gab

c = 0 due the unique constraint θ. Therefore we
determine the variation of this quantity by requiring that it provides a gauge symmetry
for the action. We obtain:

δGIEM [Ai, πi, A0] =

∫
d4x[πiδGȦ

i + δGA0θ]

=

∫
d4x[−πi∂i∂0Λ + δGA0∂iπ

i]

=

∫
d4x[∂i(−πi∂0Λ) + ∂iπ

i∂0Λ + δGA0∂iπ
i]

=

∫
d4x[∂µK

µ + ∂iπ
i(δGA0 + ∂0Λ)],

(3.61)

where Kµ = (0,−πi∂0Λ) is a four vector, according to our notation. It is worth to notice
that we used the fact that πi, θ, H0 are all gauge invariant i.e. their variations vanish.
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Further let us stress that the prefactor of δGA0 + ∂0Λ does not vanish since we varied
the action for certain particular variations of the variables but for completely arbitrary
functions, namely we are not on the equations of motion (therefore neither on the surface
of constraints), as we explained in Thatcher (2). Hence we need δGA0 = −∂0Λ in order
for δGIEM to be a boundary term (namely, Kµ).

We then conclude that the gauge transformation of the field Aµ generated by the
constraint ∂iπ

i = 0 is indeed the expected one, i.e. δGAµ = −∂µΛ. Moreover we could
also check that the conserved charge implied by Noether’s theorem vanishes. Indeed
applying Noether’s theorem, we find:

Jµ = Kµ − πiδGA0

= πi[−∂0Λ + ∂0Λ] = 0
(3.62)

3.2.3 Generalisation in curved spaces: background fields and
general relativity

To see how the theory of general relativity can be read as a gauge theory we need to take
our treatment one step further. Indeed we realized that we dealt only with flat spaces,
that is with spaces that has a constant metric. The theory of general relativity finds its
roots just in the possibility to imagine a curved space-time with a metric as a function
of the coordinates of the manifold considered. As we could guess, the only difference is
that we have to take account the variation of the metric too, since it is is not constant
anymore. The subtle point is that we should define a sort of derivative in spaces that
are no more flat. To this aim we need to introduce the so called covariant derivative and
develop a formalism which is not straightforward at all. We remind the reader to the
Appendix C, where we briefly give an overview of the most important results, especially
in writing the Lagrange and Hamilton equations in covariant form.

We provide the derivation of the gauge features of general relativity exploiting the
ADM method. This method starts from the Lagrangian that provides Einstein’s equa-
tions, neglecting its term related to matter contributions. To be as clear as possible we
briefly introduce this Lagrangian. It enters the so-called Einstein-Hilbert action, which
reads as

I[gµν(x),Γ(x),LM(x)] =

∫ [
1

2
R + LM

]√
−gd4x (3.63)

where the range of the index is {0, 1, 2, 3}, gµν is the metric tensor, g its determinant 6

R the Ricci scalar, Γ the connection (say, the Christoffel’s symbols of the second kind
since we are considering a metric) and LM stands for the Lagrangian of matter fields
appearing in the theory. Further, we notice we used the natural units system. We want

6 We exploited the Minkowski’s metric with signature (1, -1, -1, -1) so that we must put a minus
sign in order to compute the square root.
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to prove that the choice made for the action integral is appropriate by showing that it
leads to the correct equations of motion for the gravitational field, namely the Einstein’s
one. Finding the paths of motion means finding the paths that make the variation of the
action integral vanish, so that we are computing an on-shell variation and we thus use
the symbol δoI to point the variation, in order to emphasize that we are computing a
variation on paths that solve the Euler-Lagrange equations of motion. So that performing
the variation of the action we find:

δoI[gµν(x), R(x),LM(x)] =

∫ [
1

2

δ(
√
−gR)

δgµν
+
δ(
√
−gLM)

δgµν

]
δgµνdx

=

∫ [
1

2

(
δR

δgµν
+

R√
−g

δ
√
−g

δgµν

)
+

1√
−g

δ(
√
−gLM)

δgµν

]
δgµν
√
−gd4x

= 0

(3.64)

Since this equation holds for arbitrary variations of the metric δgµν , the integrand van-
ishes:

δR

δgµν
+

R√
−g

δ
√
−g

δgµν
=

1√
−g

δ(
√
−gLM)

δgµν
. (3.65)

These are the equations of motion. To show that they coincide with the Einstein one
we only have to compute explicitly the variations of each terms. First we notice that
the right hand side is just the energy-momentum tensor (since the usual Lagrangian is
L =

√
−gLM and the energy-momentum tensor is given by 1√

g
δL
δgµν

). The computation

of the other two variations is much more laborious, but only a matter of calculus.
In order to find the expression of the variation of the Ricci’s scalar variation we

initially seek to obtain the variation of the Riemann’s tensor and then of the Ricci’s
tensor. Recall that these quantities are defined as

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ

R = gσνRσν ,
(3.66)

respectively, where Rσν comes from the contraction Rσν = Rµ
σµν .

The variation of the Riemann’s tensor is computed by noticing that although the
Christoffel’s symbol does not transform as a tensor, the difference Γρνσ−Γρµσ does instead
7. Thus we are allowed to compute its covariant derivative:

∇µ(δΓρνσ) = ∂µ(δΓρνσ) + ΓρµλδΓ
λ
νσ − ΓλµνδΓ

ρ
λσ − ΓλµσδΓ

ρ
νλ. (3.68)

7 Recall that the law of transformation for the connections are:

Γρνσ = ΓrmnX
ρ
rX

m
ν X

n
σ +Xr

νσX
ρ
r (3.67)

where with Latin index we refer to a certain system of coordinates and with Greek ones a different system
of coordinates; further Xm

ν···σ = ∂xm

∂xν ···∂xσ . Thus the quantity Cρνσ(x) = Γρνσ(x) − Γ ′ ρνσ(x) = δΓρνσ(x)
transforms as a tensor.

61



We clearly see that the variation of the Riemann’s tensor is exactly the difference of
covariant derivatives of connections, that is:

δRρ
σµν = ∇µ(δΓρνσ)−∇ν(δΓ

ρ
µσ). (3.69)

To obtain the variation of the Ricci’s tensor, we only have to contract two index of (3.69):

δRσν ≡ δRρ
σρν = ∇ρ(δΓ

ρ
νσ)−∇ν(δΓ

ρ
ρσ). (3.70)

This is called PaLatini’s identity.
The Ricci’s scalar is defined as R = gσνRσν ; hence its variation yields:

δR = Rσνδg
σν + gσνδRσν

= Rσνδg
σν +∇ρ(g

σνδΓρνσ − gσρδΓµµσ),
(3.71)

where in the second line we exploited the so called compatibility of the metric with the
connection, that is the requirement ∇ρg

σν = 0, which allows us to transport the metric
inside the covariant derivative 8. Since the quantity (gσνδΓρνσ − gσρδΓµµσ) = Bρ is a
vector field, we can cast the covariant derivative in a different form. Indeed

√
−gBρ is a

contravariant vector density 9, and we obtain:

∇ρ(
√
−gBρ) =

∂(
√
−gBρ)

∂xρ
. (3.73)

Finally, when we integrate this quantity in the variation of the action, applying Stokes’
theorem 10 we can write it as a boundary term and thus neglect it, at least if we push the

8 We recall that the requirement of compatibility of the metric forces the manifold to acquire a
common and intuitive feature: taken two vector transported in parallel, it makes the angle between
them remain constant during the parallel transportation. For further details see Appendix C.

9 Recall that if Tn is a relative vector of weight W , then

∇nTn =
√
g
(W−1) ∂

∂xn
[
√
g
(1−W )

Tn]. (3.72)

See [10] chapter VII, sections 7.1,7.2.
10 Recall that Stokes’s theorem yields:∫

RM

Tk1···kM−1,kMdτ
k1···km
(M) =

∫
RM−1

Tk1···kM−1
dτ

k1···kM−1

(M−1) , (3.74)

where RM is a space of dimension M with the space RM−1 as boundary, with the comma, as
usual, we indicate the partial derivative with respect to the index that stands on its right, and with

dτk1···kMM , τ
k1···kM−1

M−1 we denote the M -cell, M − 1-cell of the space RM , RM−1 respectively (the concept
of the M -cell is the one due to Grassmann, 1842). We also stress that this theorem holds since, al-
though the left hand side is not a tensor quantity, when contracted with the skew symmetry cell yields
a tensor. Further, this theorem is valid in non metrical spaces too, and, upon introducing a metric amn,
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boundary to infinite. We should pay attention when asking whether this term vanishes
at the boundary or not, since the integrand depends also on the derivative of the metric;
we will furnish a quick inspection on this topic in the next chapter.

However, when there is no boundary or the variation of the metric vanishes in a
neighborhood of the boundary, this term does not contribute to the variation of the
action. We therefore obtain

δR

δgµν
= Rµν . (3.76)

We are only left with the variation of the determinant. This is quite easy if we exploit
Jacobi’s formula for differentiating a determinant, namely δg = δ(det(gµν)) = ggµνδgµν .
We thus have:

δ
√
−g = − 1

2
√
−g

δg =
1

2

√
−g(gµνδgµν)

= −1

2

√
−g(gµνδg

µν)

(3.77)

where we use the rule for varying the inverse of a matrix δgµν = −gµσ(δgσλ)g
λν . Hence,

we conclude that:
1√
−g

δ
√
−g

δgµν
= −1

2
gµν . (3.78)

Combing all variations computed above, i.e. putting (3.71), (3.78) in (3.65) we obtain
Einstein’s equation:

Rµν −
1

2
gµνR = Tµν . (3.79)

This proves the correctness of the Einstein-Hilbert action.
We now focus on the ADM method, which begins with the Einstein-Hilbert action

just introduced above and cast its terms in a different way, in order to obtain an action in
hamiltonian form as the one of gauge theories. Just as in electrodynamics we separated
the field into A0, Ai, here we shall work with g00, gi0, gij. Everything else is completely
equivalent. This is called the ADM method. The purpose is the following: as we obtained
directly the correct formulation of the action in electromagnetism using this procedure,
we expect to reach the same conclusions also in general relativity.

In general relativity we work with a smooth but non trivial manifold M, which we
think as being composed by the set of 3-dimensional surfaces Σ3

t one for each constant

it becomes a generalization of Green’s theorem, namely:∫
RM

∂

∂xr
[
√
aT r]
√
advN =

∫
RN−1

T rnrdvM−1, (3.75)

where a is the determinant of the metric, nr is the unit normal to VM−1, and with dvN =
√
a|dxsxk|

we denote the volume element of the cell; the quantity |dxsxk| is the determinant of the matrix that
defines the cell. See [10], chapter VII, sections 7.3-7.6.
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Figure 3.1: Elements used in the ADM method, defined on a manifold.

time t, with a metric that we denote by gij(~x, t). In order to relate foliations at infinites-
imally close times, we define N(~x, t), the “lapse” function, such that starting from ~x
at t, if we advance a distance N(~x, t)dt in the (hyper)direction normal to Σ3

t at ~x, we
would reach exactly the surface Σ3

t+dt. We must also define N i(~x, t) such that N i(~x, t)dt
measures the “shift” produced, at constant time, between ~x+ d~x and the point that will
eventually hit (~x+d~x, t+dt) by projecting with Ndt (see Fig.3.1). The relation between
the metric components and the lapse and shift function N and N i is obtained by simply
writing the space-time interval between the point A and C in Fig.3.1 in both forms, and
a short calculation shows 11

g00 = −N2 +NiN
i , g0i = Ni, (3.80)

where spatial index are raised/lowered using the spatial metric gij and its inverse gij.
Exchanging g00, g0i in favor of N , N i, which is after all only a matter of computation,

the Einstein-Hilbert action takes the following form:

IEH [N,N i, gij] =

∫
d4xN

√
−(3)g((3)R−K2 +KijKij) +B, (3.81)

where B is a boundary term we assume we are allowed to neglect, and

Kij =
1

2N
[− ˙gij +Ni|j +Nj|i]

K = gijKij

(3.82)

11 See [16] section 3.2.
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where with Ni|j we denote the covariant derivative of Ni with respect to xj along the

surface Σ
(3)
t , and with (3)g, (3)R indicates the determinant and the Ricci’s scalar with

respect to the three dimensional metric gij, respectively. Thus, and this is important
to keep in mind since here lies all the effort of ADM method, (3)R contains no time
derivative; the only term with time derivatives is ġij contained in Kij. Therefore, as it
will be clear in the hamiltonian form of the action, the true dynamical field is gij, while
N , N i are lagrangian multipliers. Indeed g00, g0i are not fixed and their combinations
N , N i play the role of lagrangian multipliers.

In order to put the action in hamiltonian form we need to explicitly obtain the
Hamiltonian from the Einstein-Hilbert Lagrangian; that is we need to find the conjugate
momenta. Actually we also seek a sort of definition of them. We define them with
respect to the only field appearing with time derivatives in the action (2.27):

Πij =
∂L
∂ġij

. (3.83)

We can compute them from the variation of the action with respect to ġij; thus, recalling
the definition (3.82), we find:

δI =

∫
d3x
√
|g|[−2KδK + 2KijδKij]

=

∫
d3x
√
|g|[Kgij −Kij]δġij,

(3.84)

so that:
Πij =

√
|g|[Kgij −Kij]. (3.85)

Since we want the Hamiltonian only in terms of generalized coordinates and conjugate
momenta, we must invert this relation and solve for the terms containing ġij (namely
Kij) and write them as functions of Πij, gij. Taking the trace of last equation we find:

K =
Π

2
√
|g|
, (3.86)

where Π ≡ Πijgij. Hence we can cast Kij as

Kij =
1√
|g|

(
−Πij +

Π

2
gij
)
. (3.87)
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Then, from (3.82), we solve for ġij and write the Hamiltonian:

H =

∫
d3x(Πij ġij − L)

=

∫
d3x

[
Πij

(
− 2N√
|g|

(
Π

2
gij − Πij

)
+Ni|j +Nj|i

)
−N

√
|g|(R−K2 +KijKij)

]
=

∫
d3x

[
− 2N√
|g|

(
Π2

2
− ΠijΠij

)
+2ΠijNi|j −N

√
|g|R +N

Π2
√
|g|

4|g|
+

−N
√
|g|
|g|

(
3Π2

4
− 2

Π

2
Π + ΠijΠij

)]
=

∫
d3x

[
N

[
ΠijΠij√
|g|
− 1

2

Π2√
|g|
−
√
|g|R

]
−2Πij

|jNi

]
+ B

(3.88)

where with Πij
|j we always denote the covariant derivative of Πij along xj on Σ3

t and with
B a boundary term. Therefore we obtained the Hamiltonian in terms of hamiltonian
densities; indeed we can write it as:

H =

∫
d3x(NH +NiHi), (3.89)

where

H =
1√
|g|

(
ΠijΠij −

Π2

2

)
−
√
|g|R

Hi = −2Πij
|j .

(3.90)

Here we are: the hamiltonian formulation of the Einstein-Hilbert action I =
∫
pq̇−H0 +

λaφa reads as follow

IEH−ADM [gij(x),Πij(x), N(x), Ni(x)] =

∫
d4x[Πij ġij −NH−NiHi] (3.91)

We readily recognize the elements of a gauge theory:

• Free Hamiltonian: H0 = 0; this is typical of theories which are invariant under
generalized coordinate transformations (similarly to the Polyakov action).

• Lagrange’s multipliers: there are four of them, namely N and Ni.

• Constraints: also, we have four constraints, namely H = 0, Hi = 0.
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We should stress some comments. The degrees of freedom in principle would have 6 + 6
integration constants coming from Πij and gij (these are in fact symmetric matrices);
however we also have 4 constraints and 4 gauge symmetries that reduce the number of
degrees of freedom. Indeed we are left with 12− 4− 4 = 4 degrees of freedom, the same
as in the Einstein-Hilbert action formulation.

We aim to determine the gauge symmetries directly computing the Poisson brackets
of the field and the constraints. Recall that the Poisson brackets in field theory is a
distribution. Taking an arbitrary function ζ(x), we thus find:

δGgij(x)ζ(x) = {gij(x),Hi(x)}ζi(x)

= −2{gij,Πij
|j}ζi(x)

= −2({gij,Πij
|j})|jζi(x) + 2{gij|j,Πij}

= 2{gij,Πij}ζi|j(x)

= 2

∫
dx ′

1

2
(δki δ

l
j + δliδ

k
j )δ(x− x ′)ζi|j(x ′)

= ζi|j(x) + ζj|i(x) = £ζ [gij],

(3.92)

where we used the compatibility of the connection with the metric and Green’s theorem
as explained in the above footnotes (see Appendix C for further details). We notice
that (3.92) corresponds exactly to the Lie derivative of the field gij along the three-
dimensional surface Σ3

t . In order to recover this result we proceed as follow. Since

gijv
iwj = g̃(~V , ~W ) is a scalar, its Lie derivative and its covariant derivative coincide

and are a simple derivative with respect to the parameter that indicates the curve along
which we are moving. Therefore we can write:

£~V [g̃( ~A, ~B)] = ∇~V [g̃( ~A, ~B)]. (3.93)

where we refer to the metric as a 2-form acting on two vectors ~A, ~B of the manifold and
denote it with a superposed tilde (with a slight abuse of notation, we still denote it as
a covariant tensor of the second rank when we use its components). Applying Leibniz
rule on both sides of this equation and recalling the compatibility of the metric with the
connection, we find

£~V [g̃]( ~A, ~B) + g̃(£~V [ ~A], ~B) + g̃( ~A,£~V [ ~B]) = g̃(∇~V
~A, ~B) + g̃( ~A,∇~V

~B). (3.94)
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Using this relation onto the basis vectors ~ei, ~ej we obtain 12:

(£~V [g̃])ij = £~V [g̃](~ei, ~ej)

= (∂iV
kgkj + V kΓlikglj) + (∂jV

kgki + V kΓljkgli)

= Vj|i + Vi|j,

(3.95)

as we wanted to show. When we ask this derivative to be zero we obtain the so called
Killing’s equation, that is an isometry of the metric gij; in other words we have an
equation that gives the vectors of the integral curves along which the Lie derivative of
the metric vanishes.

Similarly, as in (3.92), we can obtain the gauge transformations of δΠij, δN , δN i,
exploiting the method introduced for a general gauge theory.

12 Recall that

£~V [~ei] = −[~ei, ~V ] = −∂iV k~ek
∇~V ~ei = V k∇~ek~ei = V kΓlik~el
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Chapter 4

Comments on boundary terms

The principle of least action is able to describe nature in an elegant formalism that
provides the keys to find the equations of motion for a system and inspect its deep
symmetries. A huge amount of phenomena is mastered by just one statement: the action
must be stationary under arbitrary variations of the dynamical variables. Since physical
interactions are described by fields, this powerful formulation is the core foundation
of classical and quantum mechanics. However, this principle requires that the initial
and final condition must be held fixed; this issue needs to be inspected with a careful
treatment of boundary condition at infinity. In this brief chapter, we do not aim to find a
solution to this problem, but only to show the reasonable questions from which it arises.

To appreciate this difficulty, let us first focus on non-gauge theory. Take the simplest
case of a single real scalar field on some manifoldM (which, after all, we consider to be
non-compact) and that possesses a set of four coordinates divided in a time coordinate
and the usual three space coordinates:

I[φ(x)] =

∫
M
L(φ, φ,ν , x)d4x. (4.1)

Its variation is:

δI[φ(x)] =

∫
M

(
∂L
∂φρ

δφρ +
∂L
∂φρ,ν

δφρ,ν

)
d4x

=

∫
M

[
∂L
∂φρ
− ∂ν

(
∂L
∂φρ,ν

)]
δφρd

4x+

∫
M
∂ν

(
∂L
∂φρ,ν

δφρ

)
d4x.

(4.2)

Via Green’s theorem we can cast the boundary term as

B =

∫
M
∂ν

(
∂L
∂φρ,ν

δφρ

)
d4x =

∫
M

∂L
∂φρ,µ

δφρdΣµ. (4.3)

The principle of least action requires that this term vanishes. However, consider a
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Figure 4.1: In order to depict the manifold, we reduced it to three dimensions, although
it actually possesses four coordinates.

manifold as in Fig.4.1. The boundary ofM has three pieces: the two covers at constant
times t1 and t2, where dΣµ = d3x pointing upwards and downwards in time respectively;
and the cylinder at r → ∞ where dΣµ = r2dΩdtr̂ (dΩ stands for the solid angle). The
boundary term is thus:

B =

∫
d3x

∂L
∂φρ,0�

�
��δφρ

∣∣∣∣t2
t1

+

∫
∂L
∂φρ,r

δφρr
2dΣdt

∣∣∣∣
r→∞

. (4.4)

The first term, evaluated at t1 and t2, vanishes because δφ(t1) = δφ(t2) = 0, i.e. the
initial and final states are fixed. This is in full consistency with the equations of motion
that require initial and final conditions for a unique problem; this corresponds to fix the
two constants of integration in the equations of motion. The last term is evaluated for
large r and one cannot assume that φ is also fixed there. If one fixes the field for large
r, the equations of motion may have no solution at all.

In non-gauge field theories one normally deals with fields with compact support where
φ(r)→ 0 fast enough for large r; indeed a massive field typically exhibits an exponential
decay. This means that ∂L

∂φρ,r
falls fast enough at infinity (it suppresses the growth of r2)

making the boundary term vanishes, so this does not become an issue and it is safe to
omit the discussion.

For a gauge theory the situation is quite different. First we could deal with non
massive fields, which means long range interactions and that we cannot assume a compact
support neither a fast decay. Further, and this turns out to be subtler, even if fields do
vanish fast enough asymptotically, the presence of Lagrange’s multipliers makes this
analysis delicate, since there are no dynamical equations restricting them.
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For instance, let us consider first Maxwell’s electrodynamics on a similar manifold
with time and three space coordinates. To derive Maxwell’s equations, we compute the
variation of I[Aµ(x)] = −1

4

∫
F 2:

δI[Ai(x)] = −
∫
M
d4xF µν∂µδAν

=

∫
M
d4x(∂µF

µν)δAν −
∫
M
d4x∂µ(F µνδAν).

(4.5)

The second term is the boundary term we are interested in. Via Green’s theorem we can
cast is as:

B =

∫
∂M

F µνδAµdΣν

=

∫
∂M

d3xF i0

�
�
��δAi

∣∣∣∣t2
t1

+

∫
∂M

dtdΣiF
0iδA0 +

∫
∂M

dtdΣjF
ijδAi.

(4.6)

As before, the first term vanishes due to fixed initial and final time condition, δAi(t1, t2) =
0. However the second and third terms need to be considered in a different way. The
second one further involves A0, a Lagrange’s multiplier as we saw in the previous chapter.
Since this field does not satisfy any equation of motion it can in principle take any value.
That is, it could be zero, finite or even infinity. One may be tempted to declare simply
that A0 must be such that this term vanish. Actually, a large literature on this topic
shows that this is not a wise choice.

Anyway, boundary terms problem can be solved in order to recover all the results
and formalism adopted in previous chapters. Our aim is not to show all the procedure,
but to underline how this issue is not straightforward and need to be studied carefully.
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Appendix A

Calculus of variations

We aim to specify what we mean with the variation of a functional, namely an operator
that acts on functions and gives back a real number. Formally a functional is defined as
follow.

Functional. A functional is a map I : F → R that associates a real number to every
element of a set of functions.

We tackle the issue in a way that is more physical and useful for our purposes.
The problem of calculus of variations arises from the study of optimizing paths, that is
finding the function that take the extreme value of a particular integral. To put it in a
mathematical form, the integral we refer to is

I[f(x, y, y ′)] =

∫
dxf(x, y, y ′), (A.1)

where f is the functions that stands for the quantity we need to vary, y ≡ y(x) is a
function of the x variable and y ′ ≡ y ′(x) its derivative. Our treatment will deal with
function of a single variable, since extending it to vectorial functions of many variables is
straightforward (if we pay attention to perform independent variations for each variables,
as it will be clear in the following lines). The unknown element to be obtained for the
purpose, is the form of y as a function of the variable x. We try to compute the value
of the integral on functions that differ a little from y, which we denote by y + δy. This
naif measure of the smallness of the difference could be put in a more definite form:

δy = εv (A.2)

where ε is an arbitrary constant so small in magnitude that any positive integral power
of I is unimportant relative to every lower positive integral power. Also, v is any regular
uniform function of x within the range of the integral and all its derivatives also are
regular uniform functions of x within that range. Further, v is an arbitrary function and
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we moreover assume that v is independent from ε. We will denote the quantity (A.2)
with δy and call it variation of the function y. We stress that is nothing but a function.
Writing the value of the functional on y and on y + δy with I and J , respectively, we
have

J − I =

∫
dx

[
f(x, y + εv, y ′ + εv ′)− f(x, y, y ′)

]
(A.3)

the integration extending between the fixed constant limits. We further assume that the
function f is of such a form that f(x, y + εv, y ′ + εv ′) can be expanded in a uniformly
converging series, which proceeds in powers of ε. Thus we have, after this expansion,

J − I = εI1 +
1

2
ε2I2 +R3; (A.4)

where

I1 =

∫ (
v
∂f

∂y
+ v ′

∂f

∂y ′

)
dx,

I2 =

∫ (
v2∂

2f

∂y2
+ 2vv ′

∂2f

∂y∂y ′
+ v ′ 2

∂2f

∂y ′ 2

)
dx,

(A.5)

with the same range of integration as for I and where R3 denotes the aggregate of terms
that involve third and higher powers of ε. It is clear that the quantity εI1 (called the
first variation) when non vanishing, dominates the value of the right-hand side and that
R3 is the term of lower interest, since it gives the smallest contribute with respect to the
others.

We know provide a way to determine the function that takes the extreme value of
the functional considered under some important conditions, namely that the variation
of the function f vanishes at the end points of the range of integration. This is quite
natural to assume, since we recall that we deal with a problem of optimizing paths and
we must fix a common feature of these paths, that is they have to begin and end at the
same points. Therefore we can cast the first variation in a different form. Indeed we can
write: ∫

dx v ′
∂f

∂y ′
= [v

∂f

∂y ′
]−
∫
dx v

d

dx

(
∂f

∂y ′

)
, (A.6)

where the quantity in square brackets is to be taken at the end points of the range of
integration. Since we assumed that no variation occurs there, the function v vanishes
when evaluated at the end points as well as the term in square brackets. Hence we can
write the first variation in the following form:

I1 =

∫
dx v

[
∂f

∂y
− d

dx

(
∂f

∂y ′

)]
. (A.7)

Since the quantity εI1 (when non vanishing) dominates the value of J − I, a change of
sign for ε changes the sing of εI1, that is, changes the sign of the value of J − I: in
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other words, one variation lead to an increase, and another variation to a decrease. As a
maximum needs to be characterized by a decrease for all variations, and a minimum by
an increase for all variations, the preceding possibility must be excluded: consequently
the quantity εI1, and therefore the integral I1 must vanish. Further, since the function

v is completely arbitrary, the only way to make I1 vanish is that the term ∂f
∂y
− d

dx

(
∂f
∂y ′

)
vanishes itself. Here we are: we have obtained an equation for the function f that makes
the value of the functional a maximum or a minimum. We note that this treatment is
equivalent as dealing with a Lagrangian f and an action I. We thus provided a method
for computing the equations of motions that happens to represent the paths that take
the extreme value (namely, a maximum or a minimum) of the action integral.

Modern literature provides a standard formal way to treat variations. Indeed the
variation of a functional can be written in a formal way as

δI ≡
∫
dx

δI

δf(x)
δf(x) (A.8)

where f(x) = f(x, y(x), y′(x)), and δ
δf(x)

is the functional derivative. Therefore the
problem of the variation of the action integral reads:∫

dx
δI

δf(x)
δf(x) = 0 (A.9)

Note that the functional derivative introduced before when dealing with field theory
reduces exactly to this one.
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Appendix B

Symplectic group

We now provide an overview on the symplectic manifolds in order to give a formal
meaning to the Poisson brackets. We begin with some definitions and results.

LetM2n be an even-dimensional manifold. A symplectic structure is a closed nonde-
generate differential 2-form w2 on M2n:

dw2 = 0 and ∀ζ 6= 0, ∃η : w2(ζ, η) 6= 0 (B.1)

where ζ, η ∈ TMx, and TMx is the tangent vector space of the manifold in the point x
and dw2 is the exterior derivative of the 2-form. The pair (M2n, w2) is called a symplectic
manifold.

Symplectic structures arise naturally from the Lagrangian function of a system. Con-
sider then a Lagrangian with configuration space V . The set of generalized velocities q̇ is
easily considered as a tangent vector space to the configuration manifold V ; the general-
ized momentum p = ∂L

∂q̇
, thus, could be considered as cotangent vectors, that is one-forms

that act on the tangent vector space to the manifold. We define the one-form w1 = pdq
and the 2-form taking its exterior derivative dw1 = w2 = dp ∧ dq =

∑
i dpi ∧ dqi, which

is therefore non degenerate and closed. That is: we have defined a symplectic structure
1.

Another definition is to be mentioned. Indeed a symplectic structure established an
isomorphism between the space of tangent vectors and its associated one-forms. In order
to define such isomorphism, to each vector ζ tangent to a symplectic manifold (M2, w2)
at the point x, we associate a 1-form w1

ζ on TMx by the formula 2:

w1
ζ(η) = w2(η, ζ) ∀η ∈ TMx (B.2)

1 This property is somewhat more general, since it is a result carried from a general theorem involving
tangent bundle and cotangent bundle.

2 This is the so called Fischer-Riesz theorem, we are allowed to consider if we assume that the
one-form ω1 is continuous as a functional.
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The vectorial space of the 1-forms defined on a tangent space TMx to a manifold M
represent the dual space of that tangent space and is denoted by TM∗

x . We denote by J
the isomorphism J : T ∗Mx → TMx constructed above. Recall that given a function H
on the manifold, its differential dH is a 1-form onM so that the isomorphism considered
could produce a vector field JdH on M.

We only miss the last concept, namely the phase flow gtH(x) of a function H :M2n →
R. It is defined as the one parameter group of diffeomorphism gt :M2n →M2n provided
by the vector field JdH:

d

dτ

∣∣∣∣
τ=0

gτ (x) = JdH(x), (B.3)

Let us be more explicit. Consider the symplectic manifold M2n = R2n = {(p, q)} where
q and p are the generalized coordinates and associated momenta of a certain hamiltonian
function H. Let qt, pt be the canonical coordinates evaluated at the instant t and qt+τ ,
pt+τ be their values evaluated at the instant t+ τ . These latter are functions of the first
ones and the time interval τ taken as a parameter:

qt+τ = q(qt, pt, τ), pt+τ = q(qt, pt, τ). (B.4)

If we consider these formulae as transformations from the variables qt, pt to the variables
qt+τ , pt+τ , this transformation is canonical. This is a map of the trajectories of the
solutions of the system depending continuously to the parameter τ . The generating
function 3that encodes this transformation is the action integral (upon a minus sign)
viewed as depending only on qt+τ and qt, namely S(qt, qt+τ ); indeed the differential of
the action integral in hamiltonian formalism S =

∫ t1
t0
pdq − Hdt is exact 4 and when

evaluated at the extreme values reads (along the equations of motion):

dS =
∑
i

(pi(t+ τ)qi(t+ τ)−H(t+ τ)d(t+ τ)− pi(t)qi(t) +H(t)dt)

=
∑
i

(pi(t+ τ)qi(t+ τ)− pi(t)qi(t))
(B.6)

Therefore the generating function F = −S(qt, qt+τ ) produces the one parameter group
diffeomorphism in (B.3) and maps the points qt, pt in the points qt+τ , pt+τ along the

3 We are dealing with a transformation of the first kind: given some canonical coordinates q, p,
aiming to find different coordinates Q,P that verify Q̇ = ∂H ′

∂P , Ṗ = −∂H
′

∂Q where H ′ is the Hamiltonian

in these different coordinates (that is: aiming to define some other canonical coordinates), a generating
function of the first kind is defined as a function F (q,Q, t) that gives:

pi =
∂F

∂qi
, Pi = − ∂F

∂Qi
, H ′ = H +

∂F

∂t
. (B.5)

4 Indeed, from the definition of the action integral we have S =
∫
dtL.
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equations of motion on the manifold:

Sτ (p(t), q(t)) = (p(t+ τ), q(t+ τ)), (B.7)

Indeed, using the notation of (B.3), we obtain:

d

dτ

∣∣∣∣
τ=0

Sτ (p(t), q(t)) = (ṗ, q̇) = JdH, (B.8)

clearly in canonical basis, since in this case J =

[
0 −I
I 0

]
where I is the identity matrix

and dH = (∂H
∂q
, ∂H
∂p

).
We now focus on Poisson brackets. We have just showed that to any function H

on the symplectic manifold we can define a one parameter group gτH : M2n → M2n

of canonical transformations of M2n. We called it the phase flow of the hamiltonian
function equal to H. Let F be another given function on the symplectic manifold. We
define their Poisson brackets as

{F,H}(x) =
d

dτ

∣∣∣∣
τ=0

F (gτH(x)), (B.9)

where obviously x = (p, q) 5. Therefore the Poisson brackets of two functions is again
a function. In other words, we see that the Poisson brackets of two functions F,H
is the derivative of F along the direction of the phase flow with hamiltonian function
H. Hence, we can give the Poisson brackets of two fields F , H on a manifold M a
deeper meaning: they are the Lie derivative of the function F along the phase flow with
hamiltonian function H 6.

In order to the deduce the standard form of the Poisson brackets we use the isomor-
phism J between 1-forms and vector fields on a symplectic manifold (M2n, w2). This
isomorphism is defined, exploiting (B.2), by the relation

w2(η, Jw1) = w1
Jω1(η) (B.10)

where Jω1 is a vector of the manifold. Exploiting the definition (B.3), we can cast the
Poisson brackets as:

{F,H} = dF (JdH) (B.11)

that is, the Poisson brackets of the functions F and H is equal to the value of the 1-form
dF on the vector fields IdH of the phase flow with hamiltonian function H. Further,
exploiting (B.10), we obtain:

{F,H} = w2(JdH, JdF ), (B.12)

5 As it should be clear, in the whole treatment of this section when we write (p, q) we mean
(p1, · · · , pn, q1, · · · , qn), as well as when we write (∂H∂q ,

∂H
∂p ) we mean ( ∂H∂q1 , · · · ,

∂H
∂qn

, ∂H∂p1 , · · · ,
∂H
∂pn

).
6 We see that gτH(x) is the push-forward of the point x on the manifold along the congruence spanned

by the integral curves of the equations of motion furnished by the Hamiltonian H.
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namely, the Poisson brackets of the functions F and H is equal to the skew scalar product
of the vector field of the phase flows with hamiltonian functions H and F .

We have now reached the results we were looking for: the Poisson brackets of the
functions F and H is a skew-symmetric bilinear function of F and H, that is

{F,H} = −{H,F}
{H,λ1F1 + λ2F2} = λ1{H,F1}+ λ2{H,F2} (λ1 ∈ R).

(B.13)

For instance, let us compute the Poisson brackets of two functions F and H in the
canonical coordinate space R2n = (p, q)

w2(ζ, η) = < Jζ, η >= ζTJTη. (B.14)

By (B.12) we have:

{F,H} =
n∑
i=1

∂H

∂pi

∂F

∂qi
− ∂H

∂qi

∂F

∂pi
, (B.15)

since the matrix J is the canonical one used above. We thus recovered the usual standard
formula of Poisson brackets.

Moreover it is easily checked that the Poisson brackets verifies the following proper-
ties:

Skew-symmetry: {F,H} = −{H,F};

Jacobi identity: {F, {G,H}}+ {H, {F,G}}+ {G, {H,F}} = 0;

Bilinearity: {H,λ1F1 + λ2F2} = λ1{H,F1}+ λ2{H,F2};

Closure: {F,H} is another function defined on the manifold.

Hence they define a Lie algebra. When dealing with first integral, namely with conserved
charges as explained in above sections, we notice that the corresponding functions con-
stitute a subalgebra, that is the subalgebra of the conserved charges (see 2.29).
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Appendix C

Tensors

We present here a subtle problem, that is the problem of independence of the equations
from the set of coordinates used. Actually this issue have been studied deeply and the
answer lies in using tensors. Indeed, tensorial equations, due to their transformations
laws among different sets of coordinates, keep their form in all coordinate systems: if
an equation involves some physical quantities in one coordinate system, when evaluated
in other coordinate systems it still involves the same quantities in the same manner,
obviously evaluated in the different coordinate systems. However, before facing this
problem, we should have defined what a coordinate system is. This is of great importance
and not so easy; the whole tools of differential geometry have been built to cope with
this problem. Although we cannot provide all the results, we only would like to bring
up some of them in order to introduce the concepts of background fields and show their
features.

The hardest part in dealing with tensors is defining a derivative, since the usual one
breaks their transformation laws. One type of derivative that could be provided is the
Lie ones, but we shall focus on another one, that is the so called covariant or absolute
derivative. This derivative turns out to be useful since it gives a law for the parallel
transport also in spaces (manifolds) in which it is puzzling to do so. For instance, it is
clear when two lines are parallel in a flat euclidean space, but it is not along the surface
of a sphere; further, if we do not have the possibilities to immerse the sphere in a higher
dimensional space, it is much more difficult to define what is parallel or not at first sight.
All this treatment is tied tightly to Lagrangian systems since the principle of least action
can be put in a geometrical form; indeed the equations of motion turn out to be the
paths that minimize the distance between two points in the configuration space, namely
the geodesics (actually, when energy is conserved).

The covariant derivative is defined as follow. Let M be a manifold and qm(u) the
coordinates of a curve parameterized by u. Given a (contravariant) tensor T r, where r is
an index running in a specific range r1, · · · rn, consider the tensor evaluated on the curve
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T r(q(u)), then the covariant derivative δTr
δu

of this tensor is defined as:

δTr
δu
≡ dT r

du
+

{
r

mn

}
Tm

dqn

du

=

(
∂T r

∂xn
+

{
r

mn

}
Tm
)
dqn

du

(C.1)

where the symbol

{
r

mn

}
is the Christoffel’s symbol (of the second kind), also indicated

as Γrmn, and defined as:{
r

mn

}
= ars[mn, s] = ars

1

2

(
∂asm
∂qn

+
∂asn
∂qm

− ∂amn
∂qs

)
, (C.2)

where amn is the metric tensor of the manifold 1. We note that we decomposed the
expression of the covariant derivative in two parts: the one in round brackets are the
components of the tensor obtained, the other is the basis namely the vector field with
parameter u. When the covariant derivative of a tensor vanishes, we say that it is
propagated in parallel along the curve qm(u). The covariant derivative of a covariant
tensor Sr can be obtained exploiting its contraction with the tensor above. In fact the
covariant derivative of a scalar is the usual one and vanishes since it is a constant. When
we contract the tensor Sr with a tensor T r propagated in parallel we obtain an equation
that yields the covariant derivative of the tensor Sr. Iterating this process we can obtain
the covariant derivative of a tensor of any rank 2.

We can now provide the Euler-Lagrange equations of motion in the so called covariant
form, namely in a form that it is invariant under change of coordinate system. When
the Lagrangian contains only the kinetic element, namely L = 1

2
amn(q)q̇mq̇n, we can vary

the action
∫
dtL(q, q̇) with fixed limit of integration obtaining the equations of motion:

d2qr

du2
+

{
r

mn

}
dqm

du

dqn

du
= 0. (C.3)

Since the tensor dqr

du
represents the tangent vector field of the curve qr, we have obtained

an equation that yields that the tangent vector to the curve is propagated in parallel

1 The covariant derivative is also denoted by ∇~V T
r = δTr

δu where ~V = d
du is the vector fields with

parameter u; its components are also denoted by ∇nT r = ∂T r

∂xn +

{
r

mn

}
Tm.

2 There is a more general way to introduce this topic. Indeed covariant derivative is defined also in
spaces that do not carry a metric tensor. It is defined methodically, requiring that it satisfies certain
properties. Upon introducing a metric tensor, we require that the covariant derivative of the tensor
vanishes; this is assumed in order to let the scalar product (induced by the metric) of two tensors
propagated in parallel remain unchanged under parallel propagation. This requirement leads to have the
affine connection coefficients equal to the Christoffel’s symbols computed above. Further the expression
of the covariant derivative also reduces to the one given above. See [10], chapter VIII.
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along the curve itself: we have thus obtained a geodesic, namely a “straight” line in
our curved space. We can also derive the hamiltonian form of them, by inspecting the
Hamiltonian deduce from the Lagrange of a free particle

L =
1

2
maij(q)q̇

iq̇j. (C.4)

The conjugate momenta are

pi ≡
∂L

∂q̇i
= maij q̇

j, (C.5)

hence the Hamiltonian reads

H(p, q) = piq̇
i − L(q, q̇) =

1

2m
aij(q)pipj. (C.6)

Therefore the equations of motion are:

q̇i = {qi, H} =
1

m
aij(q)pj

ṗi = {pi, H} = − 1

2m
(∂ia

kl)pkpl.
(C.7)

We aim now to show directly that the free Lagrangian L = 1
2
amn(q)q̇mq̇n is invariant

under a change of coordinates in a curved space, that is that the motion of the free
particle is independent from the coordinate system. Recall that we are dealing with a
transformation of the form:

qi → q ′ i(q) = qk
∂qi

∂q ′ k

aij → a ′ij(q
′) = akl(q)

∂qk

∂q ′ i
∂ql

∂q ′ j

(C.8)

where we used the transformation laws for tensors. In order to find the variation of this
terms, we need to compute their Lie derivatives. For a dragging along the congruence
defined by the integral curve ζ i(q) on the manifold, exploiting the results in section
(2.2.1), we find:

δqi = q ′ i − qi = −ζ i(q)∂iqi = −ζ i(q)δji = −ζ i(q) =

= £~ζ [(q
i)]

δaij = a ′ij(q)− aij − ζk∂kaij − aik(q)δjζk − akj(q)∂iζk

= £~ζ [(aij)]

(C.9)

Performing the variation of the action δI =
∫
dtδL, and substituting the variations using

(C.9), we obtain:

δL(q, q̇) = maijδq̇
iq̇j +

m

2
(δqk∂kaij)q̇

iq̇j +
m

2
δaij q̇

iq̇j = 0 (C.10)
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This symmetry, technically speaking, is different from the others, since we transformed
not only the dynamical variables but also the metric which describes the action of external
forces. To see how this is possible we have to adjust the principle of least action including
the potential in the metric. Let us show this procedure.

The Lagrangian of a mechanical system composed by a single particle of unit mass is
defined in general as the sum of two terms, the kinetic energy T = 1

2
amn(q)q̇mq̇n and the

potential U(q). If the total energy E = T + U is conserved (a case that in theoretical
physics occurs most of the time, at least under suitable approximations) we can find the
so called abbreviate action. Indeed the principle of least action reads

δI(p, q) =

∫
δ(pdq)− δHdt = δ

∫
pdq = δ

∫
piq

idt, (C.11)

since the Hamiltonian H is a constant function when the total energy is conserved. We
can write the generalized momenta as

pi =
∂L

∂q̇i
= aij q̇

j, (C.12)

and the constant energy as

E =
1

2
aij q̇

iq̇k + U(q). (C.13)

From last equation we find:

dt =

√
aijdqidqj

2[E − U(q)]
, (C.14)

When we insert this result in (C.12), (C.11) yields:

δI(p, q) =

∫ √
2[E − U(q)]aij(q)dqidqj. (C.15)

If we use the arc-length ds2 = aij(q)dqidqj and redefine the dσ2 = 2[E − U(q)]ds2, we
can cast the principle of least action as

δI(p, q) = δ

∫
dσ = 0, (C.16)

that is: to find the equations of motion we need to find the path that minimize the action;
this path is the shortest one, namely the geodesic of the metric dσ2 = 2[E − U(q)]ds2

which is deformed along the manifold by the potential U(q).
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To recover the equations of motion for a free particle found in (C.3) we readily see
that

T =
1

2
amn(q)q̇mq̇n =

1

2

(
ds

dt

)2

I(q, q̇) =

∫
Tdt =

∫
Tds√

2T
=

1√
2

∫ √
Tds

=
1√
2

∫ √
E − Uds =

∫
dσ,

(C.17)

therefore this two ways of finding the correct paths of motion are completely equivalent.
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