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Abstract

A Rosa sequence of order n is a sequence S = (s1, s2, . . . , s2n+1) of 2n + 1 integers

satisfying the conditions: (1) for every k ∈ {1, 2, . . . , n} there are exactly two elements

si, sj ∈ S such that si = sj = k; (2) if si = sj = k, i < j, then j − i = k; and (3)

sn+1 = 0 (sn+1 is called the hook). Two Rosa sequences S and S ′ are disjoint if

si = sj = k = s′t = s′u implies that {i, j} 6= {t, u}, for all k = 1, . . . , n.

In 2014, Linek, Mor, and Shalaby [18] introduced several new constructions for

Skolem, hooked Skolem, and Rosa rectangles.

In this thesis, we gave new constructions for four mutually disjoint hooked Rosa

sequences and we used them to generate cyclic triple systems CTS4(v). We also ob-

tained new constructions for two disjoint m-fold Skolem sequences, two disjoint m-fold

Rosa sequences, and two disjoint indecomposable 2-fold Rosa sequences of order n.

Again, we can use these sequences to construct cyclic 2-fold 3-group divisible design

3-GDD and disjoint cyclically indecomposable CTS4(6n+ 3). Finally, we introduced

exhaustive search algorithms to find all distinct hooked Rosa sequences, as well as

maximal and maximum disjoint subsets of (hooked) Rosa sequences.
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Chapter 1

Introduction

1.1 History of Skolem-type Sequences

A Steiner triple system, denoted as STS(v), is a set of triples formed using v

distinct elements, such that each pair of elements occurs in the same triple ex-

actly once. This type of system was found by Plücker [25], in 1839. For example,

the sets {1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 7}, {5, 6, 1}, {6, 7, 2}, {7, 1, 3} form a Steiner

triple system with v = 7, hence is a STS(7). This Steiner triple system is cyclic, since

for every triple {a, b, c}, {a+ 1, b+ 1, c+ 1} is also a triple. In 1847, Kirkman [16] es-

tablished the existence of a STS(v) for all possible orders; although, he would not be

recognized for this contribution for many years [6]. Whether a Steiner triple system

exists, was a question posed by Steiner in 1853 [38].

There are two difference problems stated by Heffter [14] in 1897, and the

solutions of which are equivalent to the existence of cyclic Steiner triple systems.

The first difference problem he asked was if the set {1, . . . , 3n} can be partitioned

into n ordered triples {ai, bi, ci}, i = 1, . . . , n, with the condition that for each i,

ai + bi ± ci ≡ 0 (mod 6n + 1). For such a partition, the sets {r, ai + r, bi + i + r},
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1 ≤ i ≤ n, 0 ≤ r ≤ 6n form a cyclic STS(6n + 1). For instance, the sets {1, 3, 4}

and {2, 5, 6} provide such a partition for n = 2, so the sets {r, 1 + r, 4 + r}, {r, 2 +

r, 7 + r}, 0 ≤ r ≤ 12, form a STS(13). The second difference problem he proposed

was a partition of the set {1, 2, . . . , 2n, 2n + 2, . . . , 3n + 1} into n ordered triples

{ai, bi, ci}, i = 1, . . . , n, such that for each triple, ai + bi ± ci ≡ 0 (mod 6n + 3).

For such a partition, the sets {r, ai + r, ai + bi + r}, {k, 2n + 1 + k, 4n + 2 + k},

1 ≤ i ≤ n, 0 ≤ r ≤ 6n + 2, 0 ≤ k ≤ 2n form a cyclic STS(6n + 3). For example, a

solution to Heffter’s second difference problem when n = 2 is {1, 3, 4}, {2, 6, 7}, and

the sets {r, 1 + r, 4 + r}, {r, 2 + r, 8 + r}, {k, 5 + k, 10 + k}, 0 ≤ r ≤ 14, 0 ≤ k ≤ 4

form a STS(15). Solutions to Heffter’s first difference problem for all n ≥ 1 and to

Heffter’s second difference problem for all n ≥ 2 were found by Peltesohn [24]. The

existence of a cyclic STS(v) for all v ≡ 1, 3 (mod 6), v 6= 9 was proved and there is

no cyclic STS(9).

While studying Steiner triple systems, Skolem [34] in 1957, considered the fol-

lowing question: “Is it possible to distribute the numbers 1, 2, 3, . . . , 2n in n pairs

(ar, br) such that we have br−ar = r for r = 1, 2, . . . , n?” and this question led to the

study of Skolem sequences. For n = 4, {(1, 2), (4, 6), (5, 8), (3, 7)} is an example of a

solution to Skolem’s problem. The triples (r, ar +n, br +n), r = 1, . . . , n for any solu-

tion {(ar, br)} to Skolem’s problem form a solution to Heffter’s first difference problem.

Skolem proved that such a distribution is possible if and only if n ≡ 0, 1 (mod 4). In

1958, he proved that the existence of this kind of partition of {1, . . . , 2n} implies the

existence of a STS(6n+ 1) [35]. Also Skolem conjectured that a similar partitioning

of {1, . . . , 2n− 1, 2n+ 1} into n pairs (ar, br) with br − ar = r, r = 1, . . . , n would be

possible if and only if n ≡ 2, 3 (mod 4) [35]. In 1961, this conjecture was proved true

by O’Keefe [23].

Rosa [28] proved in 1966 that a partition of {1, . . . , n, n+ 2, . . . , 2n+ 1} into n
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pairs (ar, br) with br−ar = r, r = 1, . . . , n is possible if and only if n ≡ 0, 3 (mod 4).

The triples (r, ar + n, br + n) for such a partition give a solution to Heffter’s second

difference problem, and thus the existence of such a partition implies the existence

of a cyclic STS(6n + 3). He also showed that a similar partition of {1, . . . , n, n +

2, . . . , 2n, 2n+ 2} exists if and only if n ≡ 1, 2 (mod 4), where n ≥ 2 [28].

In 1966, Nickerson [21] was the first to introduce sequential notation for Skolem

sequences. He proposed a problem equivalent to Skolem’s regarding a sequence which

contains each integer 1, 2, . . . , n exactly twice, such that for any integer i, the second

appearance of i occurs exactly i positions after the first. The set of ordered pairs of

positions {(ai, bi)}, 1 ≤ i ≤ n, for such a sequence, forms a solution of Skolem’s parti-

tioning problem; for any set of pairs {(ai, bi)}, 1 ≤ i ≤ n, which comprises a solution

of Skolem’s problem, a sequence is formed in which ai and bi are ordered pairs of po-

sitions i, which is the type described by Nickerson. The sequence (1, 1, 4, 2, 3, 2, 4, 3)

is an example which satisfies the conditions proposed by Nickerson and is equivalent

to the solutions {(1, 2), (4, 6), (5, 8), (3, 7)} to Skolem’s partitioning problem. Such

sequences became known as Skolem sequences. Solutions to the other types of par-

titioning problems described above may similarly be written as sequences known as

hooked Skolem sequences, Rosa sequences, and hooked Rosa sequences.

Mathematicians have found many different methods to construct Skolem se-

quences, and have used similar methods in other applications. Some mathemati-

cians, such as Davies [7], Hanani [13], Anderson [1], Hilton [15], and Stanton and

Goulden [37] have also constructed sequences or partitions to provide constructions

of Steiner triple systems.

In 1993, Baker and Shalaby [4] constructed disjoint (hooked) Skolem sequences.

They applied these sequences to the construction of disjoint cyclic Steiner triple sys-

tems, Mendelsohn triple systems, and disjoint 1-coverings.
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Hill-climbing is a local heuristic search (local improvement algorithm). Tovey

(1985) showed that, even though hill-climbing is very quick to reach the local optima,

it is unlikely to find the global optima [40]. In 1998, Eldin, Shalaby, and Althukair [9]

used a hill-climbing algorithm to generate Skolem sequences for n = 0, 1(mod 4), for

example constructing Skolem sequences of order 84.

A λ-fold triple system of order v, denoted TSλ(v), is a collection B of 3-subsets

(called triples or blocks) from a v-set V , such that any given pair of elements in V

lies in exactly λ triples. A one-fold triple system is called a Steiner triple system,

STS(v). A TSλ(v) is simple if it contains no repeated triples. A TSλ(v) is cyclic, de-

noted CTSλ(v), if its automorphism group contains a v-cycle [26]. In 2005, Grüttmüller,

Rees, and Shalaby [12] investigated exhaustively all CTS2(v) that are constructed by

Skolem-type and Rosa-type sequences up to v ≤ 45 and presented the numbers of

distinct Skolem and Rosa sequences of order n ≤ 13.

In 2014, Linek, Mor, and Shalaby [18] used two types of techniques to construct

(hooked) Skolem and Rosa rectangles. These techniques complement each other, as

the direct constructions fill the gaps of small orders and the asymptotic constructions

provide the only known non-trivial bounds for these rectangles.

Skolem sequences and their generalizations are linked to several combinatorial

designs, e.g., Room squares and perfect one-factorization of complete graphs [29].

The known applications of Skolem sequences and their generalizations in the physical

world include the interference-free missile guidance code [8] and the construction of

binary sequences with controllable complexity [11]. More details may be found in [30].

Wythoff pairs and partitions of sets of numbers were established by Nowakowski

[22], which are connections between generalized Skolem and Langford sequences and

the golden mean [10]. Furthermore, Rosa made a fine art of applying Skolem-type

sequences and their generalizations to combinatorial designs [10].
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1.2 Preliminaries

Skolem sequences were first studied for use in constructing cyclic Steiner triple sys-

tems. Similar sequences have also been studied and used in the construction of certain

combinatorial objects [34]. In this section, we discuss the definitions, the existence,

and some examples for (hooked) Skolem sequences, (hooked) Rosa sequences, m-fold

Skolem sequences, m-fold Rosa sequences, disjoint sequences, Steiner triple systems

STS(v), and group divisible designs GDD.

A Skolem sequence of order n is a sequence S = (s1, s2, . . . , s2n) of 2n integers

satisfying the conditions: (1) for every k ∈ {1, 2, . . . , n} there are exactly two elements

si, sj ∈ S such that si = sj = k; and (2) if si = sj = k, i < j, then j − i = k. A

hooked Skolem sequence of order n is a sequence S = (s1, s2, . . . , s2n+1) of 2n + 1

integers satisfying conditions (1) and (2) as for Skolem sequences, with the added

condition that, (3) s2n = 0. A sequence S = (s1, s2, . . . , s2n+1) of 2n+ 1 integers is a

Rosa sequence of order n satisfying conditions (1) and (2) as for Skolem sequences,

with the added condition that (3) sn+1 = 0. A hooked Rosa sequence of order n is a

sequence S = (s1, s2, . . . , s2n+2) of 2n+ 2 integers satisfying conditions (1) and (2) as

for Skolem sequences, with the added condition that (3) sn+1 = s2n+1 = 0.

A sequence (4, 2, 3, 2, 4, 3, 1, 1) is a Skolem sequence of order 4. The sequence

may also be represented as the set of ordered pairs {(7, 8),(2, 4),(3, 6),(1, 5)}. For

each of these pairs (a, b), a and b are the positions of b − a in the sequence. For

example, (6, 1, 1, 5, 3, 4, 6, 3, 5, 4, 2, 0, 2) is a hooked Skolem sequence of order 6,

(1, 1, 3, 4, 0, 3, 2, 4, 2) is a Rosa sequence of order 4, and (4, 5, 1, 1, 4, 0, 5, 2, 3, 2, 0,

3) is a hooked Rosa sequence of order 5.

The necessary conditions for the existence of (hooked) Skolem, and (hooked)

Rosa sequences will be given by the next theorem.
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Theorem 1.2.1 (1) [34] A Skolem sequence of order n can exist only if n ≡ 0, 1 (mod 4).

(2) [23] A hooked Skolem sequence of order n can exist only if n ≡ 2, 3 (mod 4).

(3) [28] A Rosa sequence of order n can exist only if n ≡ 0, 3 (mod 4).

(4) [28] A hooked Rosa sequence of order n can exist only if n ≡ 1, 2 (mod 4).

Proof: We first consider statement (1):

Consider a set of ordered pairs of positions {(ar, br) : r = 1, 2, . . . , n} for a Skolem

sequence of order n. Since br − ar = r, then

n∑
r=1

br −
n∑
r=1

ar =
n∑
r=1

(br − ar) =
n∑
r=1

r =
n(n+ 1)

2
. (1.1)

However, together these numbers ar and br, r = 1, 2, . . . , n comprise the set {1, 2, . . . , 2n}.

Therefore,

n∑
r=1

br +
n∑
r=1

ar =
n∑
r=1

(br + ar) =
2n∑
r=1

r =
(2n)(2n+ 1)

2
= n(2n+ 1). (1.2)

Adding (1.1) and (1.2) gives:

2
∑n

r=1 br = n(n+1)
2

+ n(2n+ 1) = n(5n+3)
2

.

That is,

∑n
r=1 br = n(5n+3)

4
.

For each r ∈ {1, 2, . . . , n}, br is an integer. Therefore,
∑n

r=1 br must also be an integer.

Therefore, a Skolem sequence can exist only if n ≡ 0 or 1 (mod 4).

The verification of results (2), (3), and (4) are similar to the proof of necessary

conditions for Skolem sequences. �
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A Langford sequence of defect d and length m is a sequence L = (l1, l2, . . . , l2m)

satisfying the conditions: (1) for every k ∈ {d, d+ 1, . . . , d+m− 1} there are exactly

two elements li, lj ∈ L such that li = lj = k; and (2) if li = lj = k, i < j, then

j − i = k. An example of a Langford sequence with defect d = 4 and length m = 7

is (10, 8, 6, 4, 9, 7, 5, 4, 6, 8, 10, 5, 7, 9). A Langford sequence of defect d and length m

exists if and only if m ≥ 2d− 1 and m ≡ 0, 1 (mod 4) for d odd, or m ≡ 0, 3 (mod 4)

for d even [33]. Thus, Skolem sequences are Langford sequences with defect d = 1.

A hooked Langford sequence of defect d and length m is a sequence L =

(l1, l2, . . . , l2m+1) satisfying the conditions (1) and (2) as for Langford sequences, with

the added condition that (3) l2m = 0. For example, (14, 12, 13, 7, 5, 6, 10, 11, 9, 5,

7, 6, 8, 12, 14, 13, 10, 9, 11, 0, 8) is a hooked Langford sequence of defect d = 5 and

length m = 10. A hooked Langford sequence of defect d and length m exists if and

only if m(m+ 1− 2d) + 2 ≥ 0 and m ≡ 2, 3 (mod 4) for d odd, or m ≡ 1, 2 (mod 4)

for d even [33]. Thus, hooked Skolem sequences are hooked Langford sequences with

defect d = 1.

If m and n are integers with m ≤ n, an m-near Skolem sequence of order n and

defect m is an integer sequence S = (s1, s2, . . . , s2n−2) satisfying the conditions: (1)

for every k ∈ {1, 2, . . . ,m− 1,m+ 1, . . . , n} there are exactly two elements si, sj ∈ S

such that si = sj = k; and (2) if si = sj = k, i < j, then j − i = k. A sequence

(6, 1, 1, 5, 3, 4, 6, 3, 5, 4) is a near-Skolem sequence of order 6 and defect 2.

A hooked m-near Skolem sequence of order n and defect m is a sequence S =

(s1, s2, . . . , s2n−1) of 2n− 1 integers satisfying the conditions (1) and (2) as for near-

Skolem sequences, with the added condition that (3) s2n−2 = 0. An example of a

hooked near-Skolem sequence of order 5 and defect 4 is (5, 3, 1, 1, 3, 5, 2, 0, 2).

Theorem 1.2.2 (1) [30] An m-near Skolem sequence of order n exists if and only if

10



n ≡ 0, 1 (mod 4) and m is odd, or n ≡ 2, 3 (mod 4) and m is even.

(2) [30] A hooked m-near Skolem sequence of order n exists if and only if n ≡

0, 1 (mod 4) and m is even, or n ≡ 2, 3 (mod 4) and m is odd.

A near-Rosa sequence of order n and defectm is a sequence S = (s1, s2, . . . , s2n−1)

of 2n− 1 integers satisfying the conditions (1) and (2) as for near-Skolem sequences,

with the added condition that (3) sn = 0. A hooked near-Rosa sequence of order

n and defect m is a sequence S = (s1, s2, . . . , s2n) of 2n integers satisfying the con-

ditions (1) and (2) as for near-Skolem sequences, with the added condition that (3)

sn+1 = s2n−1 = 0. A sequence (2, 5, 2, 4, 0, 3, 5, 4, 3) is a 1-near-Rosa sequence of order

5.

Theorem 1.2.3 (1) [32] An m-near Rosa sequence of order n exists if and only if

n ≡ 0, 3 (mod 4) and m is even, or n ≡ 1, 2 (mod 4) and m is odd, with the excep-

tions (n,m) = (3, 2), (4, 2).

(2) [32] A hooked m-near Rosa sequence of order n exists if and only if n ≡ 0, 3 (mod 4)

and m is even, or n ≡ 1, 2 (mod 4) and m is odd, with the exception (n,m) =

(2, 1), (3, 3).

Two (hooked) Skolem or (hooked) Rosa sequences S and S ′ of order n are

disjoint if si = sj = k = s′t = s′u implies that {i, j} 6= {t, u}, for all k = 1, . . . , n.

That is, the two occurrences of i are not in the same two positions in both se-

quences. For example, (1, 1, 4, 2, 3, 2, 4, 3) and (2, 3, 2, 4, 3, 1, 1, 4) are two disjoint

Skolem sequences of order 4 even though both have a 3 in position 5. The se-

quences (5, 7, 1, 1, 6, 5, 3, 4, 7, 3, 6, 4, 2, 0, 2) and (6, 1, 1, 5, 7, 2, 6, 2, 5, 3, 4, 7, 3, 0, 4) are

two disjoint hooked Skolem sequences of order 7. However, (4, 2, 3, 2, 4, 3, 1, 1) and

(4, 1, 1, 3, 4, 2, 3, 2) are not disjoint since the 4s fall in positions 1 and 5 in both se-

quences.
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A set of m pairwise disjoint hooked Rosa sequences forms a hooked Rosa rect-

angle of strength m [18]. For example, the following two sequences of order 5 form a

hooked Rosa rectangle of strength 2:

(3, 1, 1, 3, 5, 0, 2, 4, 2, 5, 0, 4)

(4, 5, 1, 1, 4, 0, 5, 2, 3, 2, 0, 3).

A sequence mS = (s1, s2, . . . , s2mn) satisfying the following condition: for every

k ∈ {1, 2, . . . , n} there exist m disjoint pairs (i, i+ k), i, i+ k ∈ {1, 2, . . . , 2mn} such

that si = si+k = k is an m-fold Skolem sequence of order n [27]. For example, (2,

3, 2, 2, 3, 2, 1, 1, 3, 1, 1, 3) is a 2-fold Skolem sequence of order 3. An m-fold

Rosa sequence of order n is a sequence mS = (s1, s2, . . . , s2mn+2) with the following

conditions: (1) for every k ∈ {1, 2, . . . , n} there exist m disjoint pairs (i, i+ k), where

i, i+ k ∈ {1, 2, . . . , 2mn+ 2} such that si = si+k = k; and (2) sn+1 = s3n+2 = 0. The

sequence (3, 1, 1, 3, 5, 0, 2, 3, 2, 5, 3, 4, 1, 1, 5, 4, 0, 4, 2, 5, 2, 4) is a 2-fold Rosa sequence

of order 5. It is easy to see that there is no 2-fold Rosa sequence of order 1 [27]. Note

that a 1-fold Skolem-type sequence is a Skolem-type sequence [10].

A (v, k, λ;n)-difference set of order n = k− λ in an abelian group G of order v

is a collection, D1, D2, . . . , Dt, of subsets of G, each of size k, such that each nonzero

element of G occurs as a difference of elements in one of the Di exactly λ times. For

example, the set {1, 3, 4, 5, 9} is an (11, 5, 2; 3)-difference set in the group Z11.

A Steiner triple system of order v, STS(v) is a pair (V,B), where V is a set of

points, |V | = v, and B is a collection of 3-subsets (called triples or blocks) of V such

that every pair of points in V occurs in exactly one triple of B. It is well known that

a STS(v) exists if and only if v ≡ 1, 3 (mod 6).

Theorem 1.2.4 (1) [35] The existence of a Skolem sequence of order n implies the

existence of a cyclic STS(6n+ 1).
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(2) [35] The existence of a hooked Skolem sequence of order n implies the existence

of a cyclic STS(6n+ 1).

(3) [28] The existence of a Rosa sequence of order n implies the existence of a cyclic

STS(6n+ 3).

(4) [28] The existence of a hooked Rosa sequence of order n implies the existence of

a cyclic STS(6n+ 3).

Proof: (1): Suppose there exists a Skolem sequence of order n. Consider the pairs

(ai, bi), where ai and bi are the set of ordered pairs of positions i with ai ≤ bi, 1 ≤ i ≤

n. The sets of differences (mod 6n + 1) of elements in the blocks {0, ai + n, bi + n},

1 ≤ i ≤ n, are :

A = {±[(bi + n)− (ai + n)]} = {±(bi − ai) : 1 ≤ i ≤ n}

B = {±[(ai + n)− 0] : 1 ≤ i ≤ n} = {±(ai + n) : 1 ≤ i ≤ n}

C = {±[(bi + n)− 0] : 1 ≤ i ≤ n} = {±(bi + n) : 1 ≤ i ≤ n}

The set A consists of all differences of the form ±(bi−ai). However, by the definition

of a Skolem sequence, the differences bi − ai for 1 ≤ i ≤ n are exactly 1, . . . , n.

Hence, A = {±1,±2, . . . ,±n}. Now, together ai and bi, 1 ≤ i ≤ n consist of all

the elements 1, . . . , 2n. Therefore, ai + n and bi + n for 1 ≤ i ≤ n are exactly

the elements n + 1, n + 2, . . . , 3n. Thus, B ∪ C = {±(n + 1),±(n + 2), . . . ,±(3n)}.

Therefore, A ∪ B ∪ C = {±1,±2, . . . ,±3n} = Z6n+1 \ {0}, that is, all the non-zero

elements of Z6n+1. Further, each of these elements occurs exactly once. Thus the sets

{0, ai + n, bi + n}, 1 ≤ i ≤ n, form a (6n+ 1, 3, 1) difference set, which gives rise to a

STS(6n+ 1).

The proof of (2), (3), and (4) are similar to the proof (1) and will be omitted.

�

13



For n = 4, S = (1, 1, 3, 4, 2, 3, 2, 4) the pairs (1, 2), (5, 7), (3, 6), and (4, 8) form a

partition of {1, 2, 3, 4, 5, 6, 7, 8}. This partition gives rise to the base blocks {0, r, br +

n}, namely, {0, 1, 6}, {0, 2, 11}, {0, 3, 10}, {0, 4, 12}, which when developed modulo

25 yield a cyclic STS(25).

The following definition may be found in [20]. Let K and G be sets of positive

integers and let λ be a positive integer. A group divisible design of index λ and order

v ((K, λ)-GDD) is a triple (V , G, B), where V is a finite set of cardinality v, G is a

partition of V into parts (groups) whose sizes lie in G, and B is a family of subsets

(blocks) of V which satisfy the properties: (1) if B ∈ B then |B| ∈ K; (2) every pair

of distinct elements of V occurs in exactly λ blocks or one group, but not both; and

(3) |G|>1. If K = {k}, then the (K, λ)-GDD is a (k, λ)-GDD. If λ = 1, the GDD is

a K-GDD. Thus, a ({k}, 1)-GDD is a k-GDD. If v = a1g1 +a2g2 + · · ·+asgs, and if

there are ai groups of size gi, i = 1, 2, . . . , s, then (K, λ)-GDD is of type ga11 g
a2
2 · · · gass .

This is exponential notation for the group type. For example, a (3, 4)-GDD of type

1133 or type [3, 3, 3, 1] (the columns below in bold represent the groups, the other

columns represent the blocks).

1 4 7 10 1 2 3 1 2 3 1 2 3

2 5 8 4 5 6 5 6 4 6 4 5

3 6 9 7 8 9 9 7 8 8 9 7

10 10 10

1.3 Outline and Statement of Contribution

The main objective of this investigation is to use Rosa-type sequences to find maxi-

mum disjoint Rosa sequences and produce new constructions. The idea of this prob-

lem came from Dr.Shalaby as introduced in the paper by Linek, Mor, and Shalaby [18]
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in 2014. This paper gave several constructions for Skolem, hooked Skolem, and Rosa

rectangles for n ≥ 20.

In Chapter 2 we introduce new constructions for hooked Rosa rectangles when

n ≡ 1, 2 (mod 4). We introduce four disjoint hooked Rosa sequences of order n,

which implies the existence of cyclic triple systems TS4(6n + 3). We show that the

existence of two disjoint hooked Rosa sequences of order n implies the existence of

a group divisible design (3, 2)-GDD. This work was completed with the valuable

information from Dr.Shalaby.

Chapter 3 originated with work with Dr.Shalaby. We prove that there exist

two disjoint m-fold Skolem sequences of order n and that the existence of two disjoint

2-fold Skolem sequences of order n implies the existence of a cyclic TS4(6n+ 1). We

show the existence of two disjoint m-fold Rosa sequences of order n. Then we use

this result, to construct a cyclic 2-fold 3-GDD of type 32n+1. At the end of this

chapter we introduce new constructions for two disjoint indecomposable 2-fold Rosa

sequences of order n. This work was completed with the help of a faculty member in

the department during the revision of my thesis.

In Chapter 4, we present algorithms for the distinct hooked Rosa sequences

algorithm, which finds all hooked Rosa sequences of order n. This algorithm searches

exhaustively for all hooked Rosa sequences of order n. The maximal disjoint sequences

algorithm is a modification of the distinct hooked Rosa sequences algorithm that

finds a maximal disjoint subset containing a given hooked Rosa sequence. The final

algorithm modifies the distinct hooked Rosa sequences algorithm to search for a

maximum disjoint subset of hooked Rosa sequences. This work has been completed

with the help of a faculty member in the department of computer science.

Chapter 5 includes the conclusion and possibilities for future work.

Thanks go to all the faculty and staff members of the Mathematics Department

15



for their help and support.
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Chapter 2

Direct Constructions of Hooked

Rosa Rectangles

In this chapter, we introduce (hooked) Skolem and Rosa rectangles and new construc-

tions for mutually disjoint hooked Rosa sequences. Moreover, we use two disjoint

hooked Rosa sequences to construct cyclic triple systems CTS4(v) and a GDD.

2.1 Disjoint Skolem Sequences and Related Dis-

joint Structures

Linek, Mor, and Shalaby [18] in 2014 introduced several constructions for Skolem,

hooked Skolem, and Rosa rectangles for n ≥ 20, in the following theorems:

Theorem 2.1.1 [18] For n ≡ 0, 1 (mod 4)and n ≥ 20 there exist six mutually

disjoint Skolem sequences (i.e., a 6× n Skolem rectangle) of order n.

Theorem 2.1.2 [18] For n ≡ 2, 3 (mod 4)and n ≥ 20 there exist five mutually

disjoint hooked Skolem sequences (i.e., a 5× n hooked Skolem rectangle) of order n.
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Theorem 2.1.3 [18] For n ≡ 0, 3 (mod 4)and n ≥ 20 there exist four mutually

disjoint Rosa sequences (i.e., a 4× n Rosa rectangle) of order n.

In Theorem 2.1.4 below from [4] the authors find the maximum number of mutually

disjoint (hooked) Skolem and (hooked) Rosa sequences of order n. Here we will sketch

the proof of (1) for illustration.

Theorem 2.1.4 [4] (1) The maximum number of mutually disjoint Skolem sequences

of order n is n.

(2) The maximum number of mutually disjoint hooked Skolem sequences of order n is

n− 1.

(3) The maximum number of mutually disjoint (hooked) Rosa sequences of order n is

n− 1.

Proof: To prove (1): Assume there are r disjoint Skolem sequences of order n. Let

n be in the first position in the first sequence, so n will also be in position (n+ 1) in

the first sequence. Thus, there are (2n− 2) positions left to place n in the remaining

sequences. Now, let n be in the second position in the second sequence, so n will also

be in position (n+ 2) in the second sequence. Therefore, there are (2n− 4) positions

left to place n in the remaining sequences. Continue this procedure until n is placed

in position n and also in position 2n. This means that there are 2n−2n = 0 positions

left to place n. Clearly, the maximum number of disjoint Skolem sequences of order

n is n.

The proof of (2), and (3) are similar to (1). �
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2.2 Hooked Rosa Rectangles

In 1970, Hilton [15] gave a construction for hooked Rosa sequences when n ≡ 1,

2 (mod 4), and used hooked Rosa sequences of order n to construct Steiner triple

systems of order 6n+ 3. Here we introduce new direct constructions of four mutually

disjoint hooked Rosa sequences for n ≡ 1, 2 (mod 4).

Lemma 2.2.1 For n ≡ 1 (mod 4) there exist four mutually disjoint hooked Rosa

sequences (i.e., a 4× n hooked Rosa rectangle).

Proof: Let n = 4s+ 1. For small order s = 1 and n = 5 the four mutually disjoint

hooked Rosa sequences are:

3, 1, 1, 3, 5, 0, 2, 4, 2, 5, 0, 4,

4, 5, 1, 1, 4, 0, 5, 2, 3, 2, 0, 3,

1, 1, 5, 3, 4, 0, 3, 5, 4, 2, 0, 2,

and

2, 3, 2, 4, 3, 0, 5, 4, 1, 1, 0, 5.

For s ≥ 2 the required constructions of the four mutually disjoint hooked Rosa

sequences are given in Tables 2.1, 2.2, 2.3, and 2.4.
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R1 i ai bi r ∈

(1) 4s+ 1− 2r r 4s+ 1− r [1, 2s− 1]

(2) 4s 2s 6s

(3) 4s+ 1 2s+ 1 6s+ 2

(4) 2s 4s+ 1 6s+ 1

(5) 4s− 2r 4s+ 2 + r 8s+ 2− r [1, s− 1]

(6) 2s− 2r 5s+ 1 + r 7s+ 1− r [1, s− 2]

(7) 1 7s+ 1 7s+ 2

(8) 2 8s+ 2 8s+ 4

Table 2.1: Construction of R1 for n ≡ 1 (mod 4) and s ≥ 2.

R2 i ai bi r ∈

(1) 4s− 2r r 4s− r [1, s− 1]

(2) 1 s s+ 1

(3) 2s 2s 4s

(4) 2s− 2r s+ 1 + r 3s+ 1− r [1, s− 2]

(5) 4s− 1 2s+ 1 6s

(6) 4s 2s+ 2 6s+ 2

(7) 4s+ 1 4s+ 1 8s+ 2

(8) 4s− 1− 2r 4s+ 2 + r 8s+ 1− r [1, 2s− 3]

(9) 2 6s+ 1 6s+ 3

(10) 3 8s+ 1 8s+ 4

Table 2.2: Construction of R2 for n ≡ 1 (mod 4) and s ≥ 2.

20



R3 i ai bi r ∈

(1) 4s+ 2− 2r r 4s+ 2− r [1, s]

(2) 4s+ 1 s+ 1 5s+ 2

(3) 2s+ 1− 2r s+ 1 + r 3s+ 2− r [1, s]

(4) 4s+ 1− 2r 4s+ 2 + r 8s+ 3− r [1, s− 1]

(5) 2s+ 2− 2r 5s+ 2 + r 7s+ 4− r [1, s]

(6) 2s+ 1 6s+ 3 8s+ 4

Table 2.3: Construction of R3 for n ≡ 1 (mod 4) and s ≥ 2.

R4 i ai bi r ∈

(1) 2 1 3

(2) 4s+ 1 2 4s+ 3

(3) 4s− 3− 2r 4 + r 4s+ 1− r [0, 2s− 3]

(4) 4s− 1 2s+ 2 6s+ 1

(5) 4s 2s+ 3 6s+ 3

(6) 4s− 2r 4s+ 3 + r 8s+ 3− r [1, s− 2]

(7) 2s+ 2− 2r 5s+ 1 + r 7s+ 3− r [1, s− 1]

(8) 2s+ 2 6s+ 2 8s+ 4

(9) 1 7s+ 3 7s+ 4

Table 2.4: Construction of R4 for n ≡ 1 (mod 4) and s ≥ 2.

To prove the first constructionR1 in Table 2.1 produces a hooked Rosa sequence,

it needs to be shown that each such element of {1, 2, . . . , 2n + 2} appears in a

pair (ai, bi) exactly once and that the differences bi − ai are exactly the elements

1, 2, . . . , n and the hooks are in positions n + 1 and 2n + 1. There are n = 4s + 1

pairs (ai, bi), and exactly 2n = 8s + 2 elements ai and bi. If every element of
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{1, 2, . . . , 2n} = {1, 2, . . . , 8s+ 2} occurs in one of these pairs, each of these elements

must occur exactly once. The elements 1, 2, . . . , 2s−1 occur in the pairs (r, 4s+1−r)

for 1 ≤ r ≤ 2s − 1 in row (1), where 2s in row (4) appear in (4s + 1, 6s + 1). The

elements 2s and 2s+1 occur in the pairs (2s, 6s) in row (2) and (2s+1, 6s+2) in row

(3), respectively. While 2s + 2, 2s + 3, . . . , 4s are given by (r, 4s + 1− r) in row (1).

Then 4s+ 1 appears in row (4). The pairs (4s+ 2 + r, 8s+ 2− r) for 1 ≤ r ≤ s− 1 in

row (5) give the elements 4s+ 3, 4s+ 4, . . . , 5s+ 1. For 1 ≤ r ≤ s− 2 in row (6) the

elements 5s+2, 5s+3, . . . , 6s−1 occur in the pairs (5s+1+r, 7s+1−r). The elements

6s, 6s+1, 6s+2 appear in (2s, 6s), (4s+1, 6s+1), and (2s+1, 6s+2) in row (2), (4),

and (3). The elements 6s+ 3, 6s+ 4, . . . , 7s are present in (5s+ 1 + r, 7s+ 1− r) for

1 ≤ r ≤ s− 2 in row (6). Both 7s+ 1 and 7s+ 2 are given by the pair (7s+ 1, 7s+ 2)

in row (7). Also, 7s+3, 7s+4, . . . , 8s+1 are given by the pairs (4s+2+r, 8s+2− r)

for 1 ≤ r ≤ s− 1 in row (5), 8s+ 2 and 8s+ 4 are given by the pair (8s+ 2, 8s+ 4) in

row (8), with 8s + 3 = 2n + 1 omitted. Therefore, all elements of {1, 2, . . . , 4s + 2,

. . . , 8s+ 3, 8s+ 4} occur in the pairs (ai, bi), and each such elements occurs exactly

once as either ai or bi for some i and the hooks are in n+ 1 and 2n+ 1.

Secondly, it must be verified that the differences bi − ai give all values {1, 2,

. . . , 4s + 1} exactly once. There are n = 4s + 1 such differences, it must only be

shown that each element occurs exactly once. The numbers 1, and 2 are given by

(7s + 2) − (7s + 1) and (8s + 4) − (8s + 2) from row (7) and (8). The differences

(4s + 1 − r) − r = 4s + 1 − 2r for 1 ≤ r ≤ 2s − 1 in row (1). The remaining odd

element of {1, 2, . . . , 4s+ 1} occurs as the difference (6s+ 2)− (2s+ 1) = 4s+ 1 from

row (3). The numbers 2s and 4s are given by (6s+ 1)− (4s+ 1) and (6s)− 2s in row

(4) and (2). The differences (7s + 1− r)− (5s + 1 + r) = 2s− 2r for 1 ≤ r ≤ s− 2

from row (6). The remaining even elements 2s + 2, 2s + 3, . . . , 4s − 2 are given by

(8s + 2 − r) − (4s + 2 + r) = 4s − 2r for 1 ≤ r ≤ s − 1 in row (5). Therefore, the
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sequences that are formed from the construction R1 are hooked Rosa sequences.

In a similar way, we can prove that R2, R3, and R4 are hooked Rosa sequences.

We now show that construction R1 and R2 are disjoint which implies that

in both constructions the two occurrences of i are not in the same two positions.

The numbers 1 in row (7), and 2 in row (8) for R1 occur in (7s + 1, 7s + 2), and

(8s + 2, 8s + 4), respectively, while 1 in row (2), and 2 in row (9) for R2 occur

in (s, s + 1), and (6s + 1, 6s + 3) respectively. The elements 2s and 4s occur in

(4s + 1, 6s + 1), and (2s, 6s) in row (4), and (2) for R1, but they occur in (2s, 4s),

and (2s+ 2, 6s+ 2) for R2 in row (3), and (6). In row (3) for R1, the element 4s+ 1

appears in (2s + 1, 6s + 2), and it appears in (4s + 1, 8s + 2) in row (7) for R2. For

1 ≤ r ≤ s− 1, the numbers 4s− 2r occur in (4s+ 2 + r, 8s+ 2− r) in row (5) for R1

and in (r, 4s− r) in row (1) for R2. The elements 2s− 2r for 1 ≤ r ≤ s− 2 occur in

(5s + 1 + r, 7s + 1 − r) in row (6) for R1 and they appear in (s + 1 + r, 3s + 1 − r)

in row (4) for R2. The odd numbers 4s + 1 − 2r in R1 occur in (r, 4s + 1 − r) for

1 ≤ r ≤ 2s− 1 in row (1), while the odd numbers in R2, 4s− r appears in (2s+ 1, 6s)

in row (5), the number 3 appears in (8s + 1, 8s + 4) in row (10), and the elements

4s− 1− 2r occur in (4s+ 2 + r, 8s+ 1− r) for 1 ≤ r ≤ 2s− 3 in row (8). Therefore,

the construction R1 and R2 are disjoint hooked Rosa sequences.

In a similar way, we can show that each pair of constructions, Ri, Rj, 1 ≤ i,j ≤

4, is disjoint. �

Lemma 2.2.2 For n ≡ 2 (mod 4) there exist four mutually disjoint hooked Rosa

sequences (i.e., a 4× n hooked Rosa rectangle).

Proof: Let n = 4s+ 2. For small order s = 1 and n = 6 the four mutually disjoint

hooked Rosa sequences are:
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4, 2, 5, 2, 4, 6, 0, 5, 1, 1, 3, 6, 0, 3,

5, 3, 6, 4, 3, 5, 0, 4, 6, 1, 1, 2, 0, 2,

3, 1, 1, 3, 4, 5, 0, 6, 4, 2, 5, 2, 0, 6,

and

2, 4, 2, 6, 3, 4, 0, 3, 5, 6, 1, 1, 0, 5.

And for s = 2, n = 10 the four mutually disjoint hooked Rosa sequences are:

9, 7, 5, 3, 10, 6, 3, 5, 7, 9, 0, 6, 4, 8, 10, 2, 4, 2, 1, 1, 0, 8,

8, 6, 4, 2, 9, 2, 4, 6, 8, 5, 0, 10, 7, 9, 5, 3, 1, 1, 3, 7, 0, 10,

6, 4, 2, 8, 2, 4, 6, 9, 7, 10, 0, 8, 5, 1, 1, 7, 9, 5, 3, 10, 0, 3,

and

7, 5, 3, 1, 1, 3, 5, 7, 10, 8, 0, 4, 9, 6, 2, 4, 2, 8, 10, 6, 0, 9.

For s ≥ 3 the required constructions of the four mutually disjoint hooked Rosa

sequences are given in Tables 2.5, 2.6, 2.7, and 2.8.
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R1 i ai bi r ∈

(1) 2s+ 1 1 2s+ 2

(2) 4s+ 2− 2r r + 1 4s+ 3− r [1, s]

(3) 4s+ 1 s+ 2 5s+ 3

(4) 2s+ 1− 2r s+ 2 + r 3s+ 3− r [1, s− 1]

(5) 4s+ 2 2s+ 3 6s+ 5

(6) 4s+ 1− 2r 4s+ 3 + r 8s+ 4− r [1, s− 1]

(7) 2s+ 2− 2r 5s+ 3 + r 7s+ 5− r [1, s− 1]

(8) 1 6s+ 3 6s+ 4

(9) 2 8s+ 4 8s+ 6

Table 2.5: Construction of R1 for n ≡ 2 (mod 4) and s ≥ 3.

R2 i ai bi r ∈

(1) 1 1 2

(2) 4s+ 1− 2r 2 + r 4s+ 3− r [1, s− 1]

(3) 4s+ 2 s+ 2 5s+ 4

(4) 2s+ 2− 2r s+ 2 + r 3s+ 4− r [1, s]

(5) 4s+ 1 2s+ 3 6s+ 4

(6) 4s+ 2− 2r 4s+ 3 + r 8s+ 5− r [1, s]

(7) 2s+ 1− 2r 5s+ 4 + r 7s+ 5− r [1, s− 1]

(8) 2s+ 1 6s+ 5 8s+ 6

Table 2.6: Construction of R2 for n ≡ 2 (mod 4) and s ≥ 3.
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R3 i ai bi r ∈

(1) 4s+ 3− 2r r 4s+ 3− r [1, s+ 1]

(2) 2s− 2r s+ 1 + r 3s+ 1− r [1, s− 1]

(3) 4s 2s+ 1 6s+ 1

(4) 4s+ 2 3s+ 1 7s+ 3

(5) 4s− 2r 4s+ 3 + r 8s+ 3− r [1, s− 1]

(6) 2s+ 1− 2r 5s+ 2 + r 7s+ 3− r [1, s− 2]

(7) 1 6s+ 2 6s+ 3

(8) 2s 6s+ 4 8s+ 4

(9) 3 8s+ 3 8s+ 6

Table 2.7: Construction of R3 for n ≡ 2 (mod 4) and s ≥ 3.

R4 i ai bi r ∈

(1) 4s+ 2− 2r r 4s+ 2− r [1, s]

(2) 2s+ 1− 2r s+ r 3s+ 1− r [1, s− 1]

(3) 4s+ 1 2s 6s+ 1

(4) 4s− 1 2s+ 1 6s

(5) 2s+ 1 3s+ 1 5s+ 2

(6) 4s+ 2 4s+ 2 8s+ 4

(7) 4s− 1− 2r 4s+ 3 + r 8s+ 2− r [1, s− 2]

(8) 2s− 2r 5s+ 2 + r 7s+ 2− r [1, s− 3]

(9) 2 6s+ 2 6s+ 4

(10) 2s 6s+ 3 8s+ 3

(11) 1 7s+ 2 7s+ 3

(12) 4 8s+ 2 8s+ 6
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Table 2.8: Construction of R4 for n ≡ 2 (mod 4) and s ≥ 3.

To verify the constructions of R1, R2, R3, and R4 above, one can proceed as shown in

the proof of Lemma 2.2.1. Finally, checking that the constructions are disjoint also

follows as in the proof of Lemma 2.2.1. �

From Lemma 2.2.1 and 2.2.2 we then have this theorem.

Theorem 2.2.3 For n ≡ 1, 2 (mod 4) there exist four mutually disjoint hooked Rosa

sequences (i.e., a 4× n hooked Rosa rectangle).

2.3 Applications for Disjoint Hooked Rosa Sequences

In this section, we prove that two disjoint hooked Rosa sequences give cyclic triple

systems CTS2 for v ≡ 3 (mod 6) and a (3, 2)-GDD.

Theorem 2.3.1 For v ≡ 3 (mod 6) there exist cyclic triple systems CTS2(v).

Proof: We construct a CTS2(v), v ≡ 3 (mod 6), as follows. Suppose there exist

two disjoint hooked Rosa sequences of order n. For 1 ≤ i,j ≤ n, let the pairs (ai, bi)

and (aj, bj) be the two disjoint subscripts of i and j in the two disjoint sequences,

with ai ≤ bi and aj ≤ bj. Consider the sets {0, ai + n, bi + n} from the first sequence,

and {0, aj + n, bj + n} from the second disjoint sequence, with the following sets of

differences (mod 6n+ 3):

A = {±[(bi + n)− (ai + n)]} = {±(bi − ai)},

B = {±[(ai + n)− 0]} = {±(ai + n)},

C = {±[(bi + n)− 0]} = {±(bi + n)},

A′ = {±[(bj + n)− (aj + n)]} = {±(bj − aj)},

B′ = {±[(aj + n)− 0]} = {±(aj + n)}, and C ′ = {±[(bj + n)− 0]} = {±(bj + n)}.
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By the definition of a hooked Rosa sequence, A consists of exactly the num-

bers ±1, ±2, . . . , ±n. Since ai and bi make up the numbers 1, 2, . . . , n, n + 2, n +

3, . . . , 2n, 2n+2, together B and C consist of exactly the numbers ±(n+1), ±(n+2),

. . . , ±2n, ±(2n + 2), . . . , 3n, ±(3n + 2). Similarly, for sets A′, B′, and C ′ from the

second disjoint sequence. Thus, all elements of Z6n+3\{0} occur as differences exactly

twice, except for 2n + 1 and its inverse 4n + 2, so the translates of these blocks give

all pairs of elements except for those which differ by 2n+ 1.

Adding the short-orbit base block {0, 2n+1, 4n+2} with its translates {j′, (2n)+

j′, (4n)+j′}, where 0 ≤ j′ ≤ 2n, gives the remaining pairs, which yields a cyclic triple

system, CTS2(v). �

For example, two disjoint hooked Rosa sequences of order 5:

S5 = (1, 1, 2, 5, 2, 0, 3, 4, 5, 3, 0, 4),

and

S ′5 = (3, 1, 1, 3, 4, 0, 5, 2, 4, 2, 0, 5)

give the cyclic TS(33)

B1 = {{0, 6, 7}, {0, 8, 10}, {0, 12, 15}, {0, 13, 17}, {0, 9, 14}(mod 33)}, from S5, and

B′1 = {{0, 7, 8}, {0, 13, 15}, {0, 6, 9}, {0, 10, 14}, {0, 12, 17}(mod 33)}, from S ′5.

Adding the short-orbit base block {0, 11, 22} with its translates {i, (2n+ 1) + i, (4n+

1) + i}, where 0 ≤ i ≤ 2n, gives the remaining pairs, which yield cyclic triple systems

CTS4(33).

Theorem 2.3.2 The existence of two disjoint hooked Rosa sequences of order n im-

plies the existence of a (3, 2)-GDD of type 32n+1.

Proof: Suppose there exist two disjoint hooked Rosa sequences of order n. For

1 ≤ i,j ≤ n, let the pairs (ai, bi) and (aj, bj) be the two disjoint sets of ordered pairs
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of positions i and j in the two disjoint sequences, with ai ≤ bi and aj ≤ bj. Consider

the sets {0, i, bi+n} from the first sequence and {0, j, bj +n} from the second disjoint

sequence, with the following sets of differences (mod 6n+ 3):

A = {±[(bi + n)− (i)]} = {±(bi + n− i)},

B = {±[(bi + n)− 0]} = {±(bi + n)},

C = {±[(i)− 0]} = {±(i)},

A′ = {±[(bj + n)− (j)]} = {±(bj + n− j)},

B′ = {±[(bj + n)− 0]} = {±(bj + n)} and C ′ = {±(j)− 0]} = {±(j)}.

Thus, all elements of Z6n+3 \ {0} occur as differences exactly twice except for

2n+1 and its inverse 4n+2. Therefore, the translates of these blocks give all pairs of

elements except for those which differ by 2n + 1. Adding the short-orbit base block

{0, 2n+ 1, 4n+ 2} with its translates {i′, (2n) + i′, (4n) + i′}, where 0 ≤ i′ ≤ 2n, gives

2n+ 1 subsets.

0 1 2 . . . 2n

2n+ 1 2n+ 2 2n+ 3 . . . 4n+ 1

4n+ 2 4n+ 3 4n+ 4 . . . 6n+ 2

︸ ︷︷ ︸
2n+1 subsets are the columns called groups

Each block will intersect with 3 different groups. Adding the short-orbit base block

{0, 2n + 1, 4n + 2} from the second disjoint sequence with its translates {j′, (2n) +

j, (4n) + j′}, where 0 ≤ j′ ≤ 2n, gives 2n+ 1 subsets.

Similarly, each block will intersect with 3 different groups. Therefore, two

disjoint hooked Rosa sequences give (3, 2)-GDD. �

For instance, let (3, 1, 1, 3, 5, 0, 2, 4, 2, 5, 0, 4) and (4, 5, 1, 1, 4, 0, 5, 2, 3, 2, 0, 3) be two

disjoint hooked Rosa sequences of order 5. The pairs from the first sequence (2, 3),
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(7, 9), (1, 4), (8, 12), (5, 10) and (3, 4), (8, 10), (9, 12), (1, 5), (2, 7) from the second

disjoint sequence. Consider the sets {0, i, bi+n} from the first sequence and {0, j, bj+

n} from the second disjoint sequence, with the following sets of differences (mod 6n+

3):

{0, 1, 8}, {0, 2, 14}, {0, 3, 9}, {0, 4, 17}, {0, 5, 15} and

{0, 1, 9}, {0, 2, 15}, {0, 3, 17}, {0, 4, 10}, {0, 5, 12}.

Thus, all elements of Z6n+3 \ {0} occur as differences exactly twice except for

2n+1 and its inverse 4n+2. Therefore, the translates of these blocks give all pairs of

elements except for those which differ by 2n + 1. Adding the short-orbit base block

{0, 2n+ 1, 4n+ 2} with its translates {i′, (2n) + i′, (4n) + i′}, where 0 ≤ i′ ≤ 2n, gives

2n+ 1 subsets.

0 1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20 21

22 23 24 25 26 27 28 29 30 31 32

︸ ︷︷ ︸
11 subsets are the columns called groups

Each block will intersect with 3 different groups. Adding the short-orbit base block

{0, 2n + 1, 4n + 2} from the second disjoint sequence with its translates {j′, (2n) +

j′, (4n) + j′}, where 0 ≤ j′ ≤ 2n, gives 2n+ 1 subsets.

Similarly, each block will intersect with 3 different groups. Therefore, two dis-

joint hooked Rosa sequences give (3, 2)-GDD.
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Chapter 3

Building Disjoint m-fold Sequences

In this chapter, we give necessary conditions for the existence of m-fold Skolem and

Rosa sequences. We then introduce new constructions for two disjoint m-fold Skolem

sequences and two disjoint m-fold Rosa sequences of order n. We present the concept

of indecomposable Skolem and Rosa sequences and construct two disjoint indecom-

posable 2-fold Rosa sequences of order n. In addition, we show that the existence of

two disjoint 2-fold Rosa sequences of order n implies the existence of a cyclic 2-fold

3-GDD.

3.1 Disjoint m-fold Skolem and Rosa Sequences

We indicated in Chapter 1 that a sequencemS = (s1, s2, . . . , s2mn) is anm-fold Skolem

sequence of order n with the following condition: (1) for every k ∈ {1, 2, . . . , n}

there exist m disjoint pairs (i, i + k), with i, i + k ∈ {1, 2, . . . , 2mn} such that si =

si+k = k. An m-fold extended Skolem sequence of order n is a sequence mS =

(s1, s2, . . . , s2mn+1) with the same condition (1), and (2) there exists exactly one

si = 0, 1 ≤ i ≤ 2mn + 1. If s2mn = 0, the extended sequence is called an m-fold
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hooked Skolem sequence. The necessary conditions are sufficient for the existence of

m-fold (hooked extended) Skolem sequences and it was shown in [2, 3].

Theorem 3.1.1 [3] An m-fold Skolem sequence of order n exists if and only if

(1) n ≡ 0, 1(mod 4), or

(2) n ≡ 2, 3(mod 4) and m even,

and a hooked m-fold Skolem sequence of order n exists if and only if n ≡ 2, 3(mod 4)

and m is odd.

Theorem 3.1.2 [2] Let m, n, k be positive integers. There exists an extended m-fold

Skolem sequence of order n with sk = 0 if and only if one of the following conditions:

(1) n ≡ 0, 1(mod 4), and k is odd,

(2) n ≡ 2, 3(mod 4), m is even and k is odd,

(3) n ≡ 2, 3(mod 4), m is odd and k is even.

For instance, 3, 1, 1, 3, 1, 1, 2, 3, 2, 2, 3, 2 is a 2-fold Skolem sequence of order 3

and 1, 1, 1, 1, 1, 1, 2, 0, 2, 2, 2, 2, 2 is a 3-fold extended Skolem sequence of order 2. Also,

it was shown in [27] that there exists a 2-fold Rosa sequence of order n for every n ≥ 2.

Theorem 3.1.3 [27] There exists a 2-fold Rosa sequence of order n if and only if

n ≥ 2.

As shown in [2, 3], the necessary conditions are sufficient for the existence of m-fold

(hooked extended) Skolem sequences. We can show the necessary conditions in the

following results:

Lemma 3.1.4 (1) An m-fold Skolem sequence of order n exists only if:

n ≡ 0, 1(mod 4), or
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n ≡ 2, 3(mod 4), m is even.

(2) An m-fold Rosa sequence of order n exists only if:

n ≡ 0, 3(mod 4), or

n ≡ 1, 2(mod 4), m is even.

Proof: (1) Suppose that (s1, s2, . . . , s2mn) is an m-fold Skolem sequence of order n.

Consider the set of subscripts {(ai, bi) : i = 1, 2, . . . , n}, since bi − ai = i. Then

n∑
i=1

(bi − ai) = m
n∑
i=1

i =
mn(n+ 1)

2
(3.1)

However, together these numbers ai, bi, i = 1, 2, . . . , n comprise the set {1, 2, . . . , 2mn}.

Therefore,
n∑
i=1

(ai + bi) =
2mn(2mn+ 1)

2
(3.2)

Adding (3.1) and (3.2) gives:

2
∑n

i=1 bi = mn(n+1)
2

+ 2mn(2mn+1)
2

That is,

∑n
i=1 bi = mn(4mn+n+3)

4

For each i ∈ {1, 2, . . . , n}, bi is an integer. Therefore, either n ≡ 0, 1(mod 4) or m

must be even.

If n ≡ 0(mod 4), let n = 4s. Then mn(4mn+n+3)
4

= ms(16ms + 4s + 3). If

n ≡ 1(mod 4), let n = 4s+1. Then mn(4mn+n+3)
4

= m(16ms2+4s2+8ms+5s+m+1).

If n ≡ 2(mod 4), let n = 4s + 2. Then mn(4mn+n+3)
4

= m(32ms2+8s2+32ms+14s+8m+5)
2

.
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If n ≡ 3(mod 4), let n = 4s + 3. Then mn(4mn+n+3)
4

= m(32ms2+8s2+48ms+18s+18m+9)
2

.

Thus, if n ≡ 2, 3(mod 4) and m is even, then
∑n

i=1 bi is an integer.

The proof of (2) is similar to the proof of (1). �

The following theorems will introduce new constructions to find two disjoint m-fold

Skolem and Rosa sequences of order n.

Theorem 3.1.5 There exist two disjoint m-fold Skolem sequences of order n when-

ever:

(1) n ≡ 0, 1(mod 4), or

(2) n ≡ 2, 3(mod 4) and m even,

Proof: Case 1: n ≡ 0, 1(mod 4).

By Theorem 2.1.1 there exist six mutually disjoint Skolem sequences of order n.

We can take any two sequences from these constructions S = (s1, s2, . . . , s2n) and

S ′ = (s′1, s
′
2, . . . , s

′
2n), each with pairs that are not in the same two positions in both

sequences. Thus, we can construct a 2-fold Skolem sequence by using two copies of

S and S ′ which are

2S = (s1, s2, . . . , s2n, s1, s2, . . . , s2n)

and

2S ′ = (s′1, s
′
2, . . . , s

′
2n, s

′
1, s
′
2, . . . , s

′
2n).

Therefore, 2S and 2S ′ are disjoint. Appending more copies of S and S ′ will give

two disjoint m-fold Skolem sequences. Then, there exist two disjoint m-fold Skolem

sequences of order n ≡ 0, 1(mod 4).

Case 2: n ≡ 2, 3(mod 4) and m is even.

By Theorem 2.1.2 there exist five mutually disjoint hooked Skolem sequences of order
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n. We can take any two sequences from these constructions S = (s1, s2, . . . , s2n+1)

and S ′ = (s′1, s
′
2, . . . , s

′
2n+1). Thus, we can construct two disjoint 2-fold Skolem se-

quences by using S and S ′ and their reverse and starting the reverse from the hook

position. Then, 2S = (s1, s2, . . . , s2n−1, s2n+1, s2n+1, . . . , s2, s1) is a 2-fold Skolem se-

quence of order n. Also, 2S ′ = (s′1, s
′
2, . . . , s

′
2n−1, s

′
2n+1, s

′
2n+1, . . . , s

′
2, s
′
1) is a 2-fold

Skolem sequence of order n. Therefore, 2S and 2S ′ are disjoint. Appending (m− 2)

more copies of S and S ′ will give two disjoint m-fold Skolem sequences and in this

case m always be even. Then, there exist two disjoint m-fold Skolem sequences of

order n ≡ 2, 3(mod 4). �

For example,

2S = (4, 2, 3, 2, 4, 3, 1, 1, 4, 2, 3, 2, 4, 3, 1, 1)

and

2S ′ = (1, 1, 4, 2, 3, 2, 4, 3, 1, 1, 4, 2, 3, 2, 4, 3)

are two disjoint 2-fold Skolem sequences of order 4. And,

2S = (3, 1, 1, 3, 6, 4, 2, 5, 2, 4, 6, 5, 5, 6, 4, 2, 5, 2, 4, 6, 3, 1, 1, 3)

and

2S ′ = (6, 4, 5, 1, 1, 4, 6, 5, 2, 3, 2, 3, 3, 2, 3, 2, 5, 6, 4, 1, 1, 5, 4, 6)

are two disjoint 2-fold Skolem sequences of order 6.

Now we will construct two disjoint m-fold Rosa sequences.

Theorem 3.1.6 There exist two disjoint m-fold Rosa sequences of order n whenever:

(1) n ≡ 0, 3(mod 4) or,

(2) n ≡ 1, 2(mod 4) and m is even.
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Proof: Case 1: n ≡ 0, 3(mod 4).

By Theorem 2.1.3 there exist four mutually disjoint Rosa sequences of order n. So

we can take any two sequences from these constructions S = (s1, s2, . . . , s2n+1) and

S ′ = (s′1, s
′
2, . . . , s

′
2n+1). Thus, we can construct a 2-fold Rosa sequence by using two

copies of S and S ′ which are

2S = (s1, s2, . . . , s2n+1, s1, s2, . . . , s2n+1)

and

2S ′ = (s′1, s
′
2, . . . , s

′
2n+1, s

′
1, s
′
2, . . . , s

′
2n+1).

Therefore, 2S and 2S ′ are disjoint. Appending (m− 2) more copies of S and S ′ will

give two disjoint m-fold Rosa sequences. Then, there exist two disjoint m-fold Rosa

sequences of order n ≡ 0, 3(mod 4).

Case 2: n ≡ 1, 2(mod 4) and m is even.

By Theorem 2.2.3 there exist four mutually disjoint hooked Rosa sequences of order n.

So we can take any two sequences from these constructions S = (s1, s2, . . . , s2n+2) and

S ′ = (s′1, s
′
2, . . . , s

′
2n+2). Thus, we can construct two disjoint 2-fold Rosa sequences

by using S and S ′ and their reverse and starting the reverse from the second hook

position. Then, 2S = (s1, s2, . . . , s2n+2, s2n+2, . . . , s2, s1) is a 2-fold Rosa sequence of

order n. Also, 2S ′ = (s′1, s
′
2, . . . , s

′
2n+2, s

′
2n+2, . . . , s

′
2, s
′
1) is a 2-fold Rosa sequence of

order n. Therefore, 2S and 2S ′ are disjoint. Appending (m − 2) more copies of 2S

and 2S ′ will give two disjoint m-fold Rosa sequences and in this case m always be

even. Then, there exist two disjoint m-fold Rosa sequences of order n ≡ 1, 2(mod 4).

�

For example,

2S = (2, 4, 2, 3, 0, 4, 3, 1, 1, 2, 4, 2, 3, 0, 4, 3, 1, 1)
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and

2S ′ = (1, 1, 3, 4, 0, 3, 2, 4, 2, 1, 1, 3, 4, 0, 3, 2, 4, 2)

are two disjoint 2-fold Rosa sequences of order 4.

As we indicated in Chapter 1 a λ-fold triple system of order v, denoted TSλ(v),

is a collection B of 3-subsets (called triples or blocks) from a v-set V , such that any

given pair of elements in V lies in exactly λ triples [26].

One can conclude that the existence of two disjoint 2-fold Rosa sequences

of order n implies the existence of a cyclic 2-fold 3-GDD and TS4(6n + 3). Let

2S = (s1, s2, . . . , s4n+2), and 2S ′ = (s′1, s
′
2, . . . , s

′
4n+2) be two disjoint 2-fold Rosa se-

quences of order n. For each i, j ∈ {1, 2, . . . , n} the pairs of positions i and j in 2S

are (ai, bi), (aj, bj), and (a′i, b
′
i), (a

′
j, b
′
j) are the pairs of positions i and j in 2S ′. In

particular, sn+1 = s3n+2 = 0. The set of triples {{0, i, bi + n}, {0, j, bj + n}, {0, i′, b′i +

n}, {0, j′, b′j +n}} form the base blocks for disjoint cyclic 2-fold 3-GDD of type 32n+1

(the groups of which are given by {0, 2n+1, 4n+2}(mod 6n+3)) which in turn gives

rise to a TS4(6n+ 3).

3.2 Disjoint Indecomposable 2-fold Rosa sequences

A t-indecomposable m-fold (hooked) Skolem sequence of order n is an m-fold (hooked)

Skolem sequence of order n such that for all subscripts i, j, 1 ≤ i<j ≤ 2mn (i, j, 1 ≤

i<j ≤ 2mn + 1), the proper subsequence (si, si+1, . . . , sj) is not a t-fold (hooked)

Skolem sequence of order r where 1<r ≤ n. If an m-fold (hooked) Skolem sequence

of order n is t-indecomposable for all t<m, then it is called indecomposable [27].

For example, 1, 1, 2, 2, 2, 2, 1, 1 is an indecomposable 2-fold Skolem sequence of order

2. For more details on indecompoasable (hooked) Skolem sequences see [26, 27]. A

TSλ(v) is called indecomposable if its block set B cannot be partitioned into sets B1,
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B2 of blocks to form TSλ1(v) and TSλ2(v), where λ1 + λ2 = λ.

A CTSλ(v) is called cyclically indecomposable if its block set B cannot be

partitioned into setsB1, B2 of blocks to form CTSλ1(v) and CTSλ2(v), where λ1+λ2 =

λ, λ1, λ2 ≥ 1. We focus our attention on two disjoint indecomposable 2-fold Rosa

sequences of order n and construct disjoint indecomposable 2-fold triple systems for

all admissible orders. There is a totally indecomposable 2-fold Rosa sequence of order

n, which is a 2-fold Rosa sequence that does not contain a proper Rosa subsequence

when n ≡ 0, 3(mod 4) or a proper hooked Rosa subsequence when n ≡ 1, 2(mod 4).

Theorem 3.2.1 [27] For every n ≥ 2 there is a totally indecomposable 2-fold Rosa

sequence of order n.

Now, the new results can be shown.

Lemma 3.2.2 There exist two disjoint indecomposable 2-fold Rosa sequences of order

n ≡ 0 (mod 4).

Proof: Let n = 4s. For small order when s = 1, n = 4 the two disjoint indecom-

posable 2-fold Rosa sequences are

3, 1, 1, 3, 0, 4, 2, 4, 2, 4, 2, 4, 2, 0, 3, 1, 1, 3

and

2, 4, 2, 3, 0, 4, 3, 3, 1, 1, 3, 4, 2, 0, 2, 4, 1, 1.

For n > 4 the required constructions of two disjoint indecomposable 2-fold Rosa

sequences are given in Tables 3.1, 3.2, 3.3, and 3.4.
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R1i i ai bi r ∈

(1) 4s− 2r r 4s− r [1, 2s− 1]

(2) 4s 2s 6s

(3) 4s− 1− 2r 4s+ 1 + r 8s− r [1, 2s− 2]

(4) 1 9s+ 2 9s+ 3

(5) 4s− 1 10s+ 2 14s+ 1

Table 3.1: Construction of R1i for n ≡ 0 (mod 4) and s ≥ 2.

R1j j aj bj r ∈

(1) 4s 4s 8s

(2) 2s+ 1 6s+ 1 8s+ 2

(3) 2 8s+ 1 8s+ 3

(4) 4s− 1− 2r 8s+ 3 + r 12s+ 2− r [1, s− 2]

(5) 1 11s+ 2 11s+ 3

(6) 4s− 1 10s+ 3 14s+ 2

(7) 2s− 1− 2r 9s+ 3 + r 11s+ 2− r [1, s− 2]

(8) 4s− 2r 12s+ 2 + r 16s+ 2− r [1, 2s− 2]

(9) 2s− 1 14s+ 3 16s+ 2

Table 3.2: Construction of R1j for n ≡ 0 (mod 4) and s ≥ 2.

R2i i ai bi r ∈

(1) 4s+ 1− 2r r 4s+ 1− r [1, 2s]

(2) 4s+ 2− 2r 4s+ 1 + r 8s+ 3− r [1, 2s]

Table 3.3: Construction of R2i for n ≡ 0 (mod 4) and s ≥ 2.
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R2j j aj bj r ∈

(1) 4s 6s+ 2 10s+ 2

(2) 4s− 2r 8s+ 2 + r 12s+ 2− r [1, 2s− 1]

(3) 4s+ 1− 2r 12s+ 2 + r 16s+ 3− r [1, 2s]

Table 3.4: Construction of R2j for n ≡ 0 (mod 4) and s ≥ 2.

To prove these constructions are disjoint it is similar to the proof of disjoint hooked

Rosa sequences as shown in Chapter 2. Our constructions here are indecomposable

as there is no Rosa subsequence or hooked Rosa subsequence as stated below.

For instance, from constructions R1i, and R1j for n = 8, we obtain the following

sequence

6, 4, 2, 8, 2, 4, 6, 8, 0, 5, 3, 8, 5, 3, 5, 8, 2, 5, 2, 1, 1, 7, 7, 1, 1, 0, 6, 4, 7, 7, 3, 4, 6, 3.

In this case 1, 1 is not in the first and second positions:

0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0.

It is easy to see that there is no Rosa subsequence or hooked Rosa subsequence. Hence,

constructions R1i, and R1j for s ≥ 2 give indecomposable 2-fold Rosa sequences of

order n ≡ 0 (mod 4).

Also, from constructions R2i and R2j for n = 8, we obtain the following sequence

7, 5, 3, 1, 1, 3, 5, 7, 0, 8, 6, 4, 2, 8, 2, 4, 6, 8, 6, 4, 2, 8, 2, 4, 6, 0, 7, 5, 3, 1, 1, 3, 5, 7.

In this case 1, 1 is not in the first and second positions:

0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0.

Again, it is easy to see that there is no Rosa subsequence or hooked Rosa subsequence.
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Thus, constructions R2i and R2j for s ≥ 2 give indecomposable 2-fold Rosa

sequences of order n ≡ 0 (mod 4).

Therefore,

6, 4, 2, 8, 2, 4, 6, 8, 0, 5, 3, 8, 5, 3, 5, 8, 2, 5, 2, 1, 1, 7, 7, 1, 1, 0, 6, 4, 7, 7, 3, 4, 6, 3

and

7, 5, 3, 1, 1, 3, 5, 7, 0, 8, 6, 4, 2, 8, 2, 4, 6, 8, 6, 4, 2, 8, 2, 4, 6, 0, 7, 5, 3, 1, 1, 3, 5, 7

are two disjoint indecomposable 2-fold Rosa sequences of order 8. Hence, there exist

two disjoint indecomposable 2-fold Rosa sequences of order n ≡ 0 (mod 4). �

Lemma 3.2.3 There exist two disjoint indecomposable 2-fold Rosa sequences of order

n ≡ 1 (mod 4).

Proof: Let n = 4s + 1. For small order when s = 1, n = 5 the two disjoint

indecomposable 2-fold Rosa sequences are

4, 2, 5, 2, 4, 0, 5, 5, 4, 1, 1, 5, 4, 2, 3, 2, 0, 3, 3, 1, 1, 3

and

3, 1, 1, 3, 3, 0, 2, 3, 2, 4, 5, 1, 1, 4, 5, 5, 0, 4, 2, 5, 2, 4.

For n > 5 the required constructions of two disjoint indecomposable 2-fold Rosa

sequences are given in Tables 3.5, 3.6, 3.7, and 3.8.

R1i i ai bi r ∈

(1) 4s+ 2− 2r r 4s+ 2− r [1, 2s]

(2) 4s+ 1 2s+ 1 6s+ 2

(3) 4s+ 1− 2r 4s+ 3 + r 8s+ 4− r [1, 2s− 2]

(4) 1 12s 12s+ 1

(5) 3 12s+ 3 12s+ 6
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Table 3.5: Construction of R1i for n ≡ 1 (mod 4) and s ≥ 2.

R1j j aj bj r ∈

(1) 4s+ 1 4s+ 3 8s+ 4

(2) 4s+ 2− 2r 6s+ 2 + r 10s+ 4− r [1, 3]

(3) 4s− 4− 2r 8s+ 4 + r 12s− r [1, 2s− 4]

(4) 2 12s+ 2 12s+ 4

(5) 4s+ 1− 2r 12s+ 6 + r 16s+ 7− r [1, 2s]

Table 3.6: Construction of R1j for n ≡ 1 (mod 4) and s ≥ 2.

R2i i ai bi r ∈

(1) 4s+ 1− 2r r 4s+ 1− r [1, 2s]

(2) 2 4s+ 3 4s+ 5

(3) 4s+ 2− 2r 6s+ 3 + r 10s+ 5− r [1, 3]

(4) 4s− 4− 2r 4s+ 7 + r 8s+ 3− r [1, 2s− 4]

(5) 4s+ 1 10s+ 5 14s+ 6

Table 3.7: Construction of R2i for n ≡ 1 (mod 4) and s ≥ 2.

R2j j aj bj r ∈

(1) 3 4s+ 1 4s+ 4

(2) 1 4s+ 6 4s+ 7

(3) 4s+ 3− 2r 8s+ 2 + r 12s+ 5− r [1, 2s− 1]

(4) 4s+ 2− 2r 12s+ 5 + r 16s+ 7− r [1, 2s]

Table 3.8: Construction of R2j for n ≡ 1 (mod 4) and s ≥ 2.

In a similar way, we can prove that R1i, R1j, R2i, and R2j are two disjoint
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indecomposable 2-fold Rosa sequences of order n ≡ 1 (mod 4) as in the proof of

Lemma 3.2.2. �

Lemma 3.2.4 There exist two disjoint indecomposable 2-fold Rosa sequences of order

n ≡ 2 (mod 4).

Proof: Let n = 4s + 2. For small order when s = 1, n = 6 the two disjoint

indecomposable 2-fold Rosa sequences are

5, 3, 6, 4, 3, 5, 0, 4, 6, 1, 1, 3, 1, 1, 3, 5, 2, 6, 2, 0, 5, 4, 2, 6, 2, 4

and

2, 6, 2, 2, 5, 2, 0, 6, 4, 5, 6, 4, 4, 5, 3, 4, 6, 3, 5, 0, 3, 1, 1, 3, 1, 1.

For n > 6 the required constructions of two disjoint indecomposable 2-fold Rosa

sequences are given in Tables 3.9, 3.10, 3.11, and 3.12.

R1i i ai bi r ∈

(1) 4s+ 3− 2r r 4s+ 3− r [1, 2s]

(2) 4s+ 2 2s+ 1 6s+ 3

(3) 4s 2s+ 2 6s+ 2

(4) 1 6s+ 4 6s+ 5

(5) 4s− 2r 8s+ 8 + r 12s+ 8− r [1, 2s− 1]

Table 3.9: Construction of R1i for n ≡ 2 (mod 4) and s ≥ 2.
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R1j j aj bj r ∈

(1) 3 8s+ 4 8s+ 7

(2) 1 8s+ 5 8s+ 6

(3) 4s+ 1− 2r 4s+ 3 + r 8s+ 4− r [1, 2s− 2]

(4) 4s+ 1 8s+ 8 12s+ 9

(5) 4s+ 2 10s+ 8 14s+ 10

(6) 4s+ 2− 2r 12s+ 9 + r 16s+ 11− r [1, 2s]

Table 3.10: Construction of R1j for n ≡ 2 (mod 4) and s ≥ 2.

R2i i ai bi r ∈

(1) 4s− 2r 3 + r 4s+ 3− r [1, 2s− 1]

(2) 4s+ 2 6s+ 5 10s+ 7

(3) 4s 6s+ 6 10s+ 6

(4) 4s+ 3− 2r 8s+ 5 + r 12s+ 8− r [1, 2s]

(5) 1 16s+ 9 16s+ 10

Table 3.11: Construction of R2i for n ≡ 2 (mod 4) and s ≥ 2.

R2j j aj bj r ∈

(1) 2 1 3

(2) 4s+ 2 2 4s+ 4

(3) 4s+ 1 2s+ 3 6s+ 4

(4) 4s+ 2− 2r 4s+ 4 + r 8s+ 6− r [1, 2s− 1]

(5) 4s+ 1− 2r 12s+ 8 + r 16s+ 9− r [1, 2s]

Table 3.12: Construction of R2j for n ≡ 2 (mod 4) and s ≥ 2.

�
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Lemma 3.2.5 There exist two disjoint indecomposable 2-fold Rosa sequences of order

n ≡ 3 (mod 4).

Proof: Let n = 4s+ 3. The required constructions for two disjoint indecomposable

2-fold Rosa sequences are given in Tables 3.13, 3.14, 3.15, and 3.16.

R1i i ai bi r ∈

(1) 4s+ 4− 2r r 4s+ 4− r [1, 2s+ 1]

(2) 4s+ 3 2s+ 2 6s+ 5

(3) 4s+ 3− 2r 4s+ 4 + r 8s+ 7− r [1, 2s]

(4) 1 12s+ 8 12s+ 9

Table 3.13: Construction of R1i for n ≡ 3 (mod 4).

R1j j aj bj r ∈

(1) 4s+ 1 6s+ 6 10s+ 7

(2) 4s+ 2− 2r 8s+ 6 + r 12s+ 8− r [1, 2s]

(3) 4s+ 3 12s+ 10 16s+ 13

(4) 4s+ 2 12s+ 12 16s+ 14

(5) 4s+ 1− 2r 12s+ 12 + r 16s+ 13− r [1, 2s]

Table 3.14: Construction of R1j for n ≡ 3 (mod 4).
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R2i i ai bi r ∈

(1) 2 1 3

(2) 4s+ 3 2 4s+ 5

(3) 4s+ 1− 2r 3 + r 4s+ 4− r [1, 2s]

(4) 4s+ 2 6s+ 7 10s+ 9

(5) 4s+ 2− 2r 8s+ 9 + r 12s+ 11− r [1, 2s− 1]

(6) 4s+ 1 10s+ 11 14s+ 12

Table 3.15: Construction of R2i for n ≡ 3 (mod 4).

R2j j aj bj r ∈

(1) 4s+ 5− 2r 4s+ 5 + r 8s+ 10− r [1, 2s+ 1]

(2) 4s+ 2 6s+ 8 10s+ 10

(3) 4s+ 2− 2r 12s+ 11 + r 16s+ 13− r [1, 2s]

(4) 1 16s+ 13 16s+ 14

Table 3.16: Construction of R2j for n ≡ 3 (mod 4).

�

From Lemma 3.2.2 - 3.2.5 we have the following theorem.

Theorem 3.2.6 There exist two disjoint indecomposable 2-fold Rosa sequences of

order n.

We will use the following results and our constructions to produce disjoint indecom-

posable CTS4(6n+ 3):

Construction (Rees, Shalaby, Sharary, [27]) Let 2T = (t1, t2, . . . , t4n+2) be a 2-

fold Rosa sequence of order n. In particular, tn+1 = t3n+2 = 0. The set of triples
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{{0, r, br + n}, {0, r, dr + n}, : r = 1, 2, . . . , n} form the base blocks for a cyclic 2-fold

3-GDD of type 32n+1 (the groups of which are given by {0, 2n+1, 4n+2}(mod 6n+3))

which in turn gives rise to a CTS2(6n+ 3).

Lemma 3.2.7 (Rees, Shalaby, [26]) If 2T = (t1, t2, . . . , t4n+2) is a 2-fold Rosa se-

quence of order n and the pairs (ar, br), (cr, dr) contain among them a pair (xr, yr)

where xr + yr = 4n + 3 then the corresponding CTS2(6n + 3) (arising out of Con-

struction [27]) is indecomposable.

By our constructions for two disjoint indecomposable 2-fold Rosa sequences we can

produce disjoint cyclically indecomposable CTS4(6n+ 3). For example,

6, 4, 2, 7, 2, 4, 6, 0, 5, 3, 7, 5, 3, 5, 4, 2, 5, 2, 4, 1, 1, 7, 0, 6, 3, 1, 1, 3, 7, 6

and

2, 7, 2, 3, 1, 1, 3, 0, 7, 7, 5, 3, 6, 6, 3, 5, 7, 4, 6, 6, 5, 4, 0, 4, 2, 5, 2, 4, 1, 1

are two disjoint indecomposable 2-fold Rosa sequences of order 7.

The pairs from the first sequence are (ai, bi): (20, 21), (3, 5), (10, 13), (2, 6),

(9, 14), (1, 7), (4, 11) and (aj, bj) where i = j = 1, 2, 3, 4, 5, 6, 7: (26, 27), (16, 18),

(25, 28), (15, 19), (12, 17), (24, 30), (22, 29). The set of triples {0, i, bi+n} : {0, 1, 28},

{0, 2, 12}, {0, 3, 20}, {0, 4, 13}, {0, 5, 21}, {0, 6, 14}, {0, 7, 18} and {0, j, bj + n} :

{0, 1, 34}, {0, 2, 25}, {0, 3, 35}, {0, 4, 26}, {0, 5, 24}, {0, 6, 37}, {0, 7, 36}, and adding

the short-orbit base block {0, 15, 30}, yield a cyclically indecomposable 2-fold cyclic

triple system CTS2(6n+ 3).

The pairs from the second sequence are (a′i, b
′
i): (5, 6), (1, 3), (4, 7), (18, 22),

(21, 26), (13, 19), (2, 9) and (a′j, b
′
j) where i = j = 1, 2, 3, 4, 5, 6, 7: (29, 30), (25, 27),

(12, 15), (24, 28), (11, 16), (14, 20), (10, 17). The set of triples {0, i, b′i+n} : {0, 1, 13},

{0, 2, 10}, {0, 3, 14}, {0, 4, 29}, {0, 5, 33}, {0, 6, 26}, {0, 7, 16} and {0, j, b′j + n} :
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{0, 1, 37}, {0, 2, 34}, {0, 3, 22}, {0, 4, 35}, {0, 5, 23}, {0, 6, 27}, {0, 7, 24}, and adding

the short-orbit base block {0, 15, 30}, yield a cyclically indecomposable 2-fold cyclic

triple system CTS2(6n+ 3).

Hence, the two disjoint indecomposable 2-fold Rosa sequences of order 7 give

disjoint cyclically indecomposable CTS4(6n+ 3).
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Chapter 4

Algorithms and Computational

Results

In this chapter, we find the number of distinct Skolem, Rosa, (2-fold) Skolem and

Rosa sequences of small orders. We present algorithms to find the number of distinct

hooked Rosa sequences of order n <11, and a maximal disjoint set of (hooked) Rosa

sequences containing a given (hooked) Rosa sequence as well as maximum disjoint

(hooked) Rosa sequences for small orders 2 ≤ n ≤ 21.

We can find all or most of the possible solutions to a computational problem

by backtracking algorithms. In 2005, Grüttmüller, Rees, and Shalaby [12] investi-

gated exhaustively and constructed cyclically indecomposable 2-fold triple systems

CTS2(v) for all admissible orders by using Skolem-type and Rosa-type sequences.

They obtained the results shown in Table 4.1 and Table 4.2.
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Order 1 2 3 4 5 6 7 8 9 10 11 12 13

Number of Skolem sequences 1 0 0 6 10 0 0 504 2656 0 0 455936 3040560

Number of Rosa sequences 0 0 2 2 0 0 44 260 0 0 33104 203712 0

Table 4.1: Number of Skolem and Rosa sequences of order n ≤ 13

Order 1 2 3 4 5 6 7 8 9

Number of 2-fold Skolem sequences 1 3 12 186 3212 79238 2770026 127860956 >5000000000

Number of 2-fold Rosa sequences 0 1 8 50 912 22286 782374 36649766

Table 4.2: Number of 2-fold Skolem and 2-fold Rosa sequences of order n ≤ 9

In 2009, Larsen [17] used the inclusion-exclusion principle to count the number

of Skolem sequences where the principle of inclusion-exclusion comes from set theory.

They produce the results in Tables 4.3 and 4.4 [17].

Order 15 16 17 18

Number of hooked Skolem sequences 168870048 0 0 113071735648

Table 4.3: Number of hooked Skolem sequences of order 15 ≤ n ≤ 18

Order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Number of Rosa sequences 0 0 2 2 0 0 44 260 0 0 33104 203712 0 0 75499696 621309008 0 0

Table 4.4: The number of distinct Rosa sequences of order n ≤ 18

Skolem sequences are used to construct other kinds of systems, but the algo-

rithm from [17] does not generate Skolem sequences, and does not help in those areas.

There is no other way than checking all 2n! permutations to actually generate all the

possible Skolem sequences of a given order [17].
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In 2013, Burrill and Yen [5] used a different strategy which is arc diagrams, or

arc annotated. These sequences are structures that encode a variety of combinatorial

classes. This algorithm exhaustively constructs all Skolem sequences of order n by

building a generating tree to generate all of the sequences up to size 7, and some of

size 8. The importance of this method was to reduce the search space significantly [5].

As we indicated in Chapter 2, the maximum number of mutually disjoint

(hooked) Rosa sequences of order n is n−1. We will consider the following problems:

1. For n ≡ 1, 2(mod 4), find all distinct hooked Rosa Sequences of order n.

2. Given a (hooked) Rosa sequence R of order n, find a maximal set of disjoint

(hooked) Rosa sequences containing R.

3. For n ≡ 1, 2(mod 4), find a set of mutually disjoint (hooked) Rosa sequences of

order n of maximum cardinality.

We give algorithms to solve these problems. These algorithms perform exhaus-

tive searches. An exhaustive search is an algorithm that systematically examines all

values in the search space. We chose to use an exhaustive search because such al-

gorithms are easy to formulate and are guaranteed to provide a solution. Algorithm

1 enumerates all distinct hooked Rosa sequences of a given order n. This algorithm

is effective for n<11. Algorithm 2 adapts Algorithm 1 to find a maximal disjoint

subset of hooked Rosa sequences. We have run this algorithm successfully for n ≤ 14.

Algorithm 3 also adapts Algorithm 1, and searches for a maximum disjoint subset of

hooked Rosa sequences. We have run Algorithm 3 successfully for n ≤ 21.

The following sections describe the algorithms to solve these problems.
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4.1 Distinct Hooked Rosa Sequences

input : n /* order of the hooked Rosa Sequences n ≡ 1, 2(mod 4) */

output: list of valid hooked Rosa sequences; total number of sequences

Function place(i, S):

feasiblePos = {(k, k + i)|S[k] = S[k + i] = 0, 1 ≤ k, k + i ≤ length (S)}

if feasiblePos = {} then
return

end

if i = n then

/* feasiblePos has one element, (k, k + i) */

S[k] = S[k + i] = i

numSeqs = numSeqs+ 1

else

foreach (k, k + i) in feasiblePos do

S[k] = S[k + i] = i

Call place(i+ 1, S)

S[k] = S[k + i] = 0

end

end

Initialization begin

R = [0, . . . , 0] /* an array of 2n+2 zeros */

R[n+ 1] = R[2n+ 1] = “∗′′

numSeqs = 0

end

Program begin

Call place(1, R)

Output numSeqs

end

Algorithm 1: Number of Hooked Rosa Sequences of order n <11
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Now we will explain how this algorithm works. Create an array sequence of

length 2n+2 with all elements other than the hooks set to blank. Place 1, 1 in the far

left of the empty sequence. Then, starting from the left, find the first two blank spots

in the sequence that are two elements apart. Place a 2 in each spot. Then place a 3

in the first two blank spots that are three elements apart, and so on. If you reach a

number i that does not fit into either of the two blank spots in the sequence that are i

elements apart, backtrack by removing the pair of i−1’s from the sequence and place

i− 1 in the next two blank spots in the sequences that are i− 1 spaces apart. Then

try to place i in the sequence and proceed. If i−1 has been tried in all the spots that

can fit it, remove i − 2 from the sequence, and so on. Following this procedure you

will occasionally manage to place all n numbers into the sequence. In this case you

have discovered a hooked Rosa sequence. Add the sequence to the list of hooked Rosa

sequences for order n, backtrack by removing n− 1 from the sequence and continue

the above process. Eventually you will have tried 1, 1 in every possible position (and

the rest of the numbers in all feasible positions). At this point the program ends and

outputs the total number of hooked Rosa sequences discovered.

How do we know that the above algorithm is correct? Firstly, it will not falsely

report a non-hooked Rosa sequence as a hooked Rosa sequence. Considering the three

conditions listed in the definition of hooked Rosa sequence condition (3) is satisfied

during the creation of the empty sequence. The algorithm starts with i = 1 and

moves toward i = n, incrementing i by 1, each time the previous pair has been placed

successfully. Thus, it does not place any pair more than once. Algorithm 1 also does

not skip any numbers: if the pair i . . . i cannot be placed successfully, the algorithm

decrements i by 1, and tries new spots for i− 1. As a result, each pair i . . . i is placed

exactly once for each i ∈ {1, . . . , n}, satisfying condition (1). Finally, condition (2) is

honoured because each pair i . . . i is placed i spaces apart.
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Next, we need to show that Algorithm 1 always terminates. The search de-

scribed above is conducted by recursively calling a procedure place. This procedure

takes as input a partially completed hooked Rosa sequence and an integer i. It then

generates a list of all pairs of blank positions in the sequence that are i spaces apart.

It places the pair i . . . i in the first of these positions and calls place with the updated

sequence and the integer i+1. When this sub-call returns, the procedure removes the

pair i . . . i from the first available position and places it in the next available position,

calling place again, and so on, through each position in the list. When it is finished,

the procedure returns control to the procedure that called it initially. When place is

called with i = n and there are two blank spaces left n places apart in the partially

completed sequence, the procedure place returns. From here we can see by induction

that place eventually returns for any integer 1≤ i ≤ n.

To prove that the algorithm finds all hooked Rosa sequences of order n, let R

be an arbitrary hooked Rosa sequence of order n. The pair 1 1 occurs somewhere in

R. Since the algorithm considers placing the pair 1 1 at all possible feasible positions

in turn, and is known to terminate, it must at some point consider the sequence

fragment with all spaces blank except for the pair 1 1 found in the position in which

it occurs in R. At this point it starts to consider placing pairs of twos, until it places

them in the position in which they are found in R. It proceeds through the integers

up to n, at which point it has found R. We have now shown that the algorithm finds

all hooked Rosa sequences of order n, and does not falsely report non-hooked Rosa

sequences.

What is the computational complexity of this algorithm? When searching for

hooked Rosa sequences, there are initially 2n empty places in the sequence. The first

one in the pair can be placed in 2n − 3 of these places, but since we are searching

for an upper bound, we can assume that all 2n places are valid. For each potential
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spot to place a pair of ones, the algorithm tries to place a pair of twos into empty

spaces. Since the pair of ones takes up two spaces, there are at least two fewer spaces

in which to place a pair of twos; i.e. no more than 2n − 2 possible places. For each

possible place for a pair of twos, there are at most 2n − 4 possible spaces for a pair

of threes. Continuing this way, we see that the algorithm is completed in less than

2n · (2n− 2) · (2n− 4) · . . . · 4 · 2 = 2nn! steps.

Here we present the result for the number of distinct hooked Rosa sequences is

found by our algorithm of order n <11.

Order 1 2 3 4 5 6 7 8 9 10

Number of hooked Rosa sequences 0 1 0 0 8 18 0 0 1208 6332

Table 4.5: Number of Hooked Rosa Sequences of order n<11
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4.2 Maximal Disjoint Hooked Rosa Sequences

input : A Rosa sequence givenR

output: A maximal disjoint subset containing givenR

Initialization begin

if givenR is a hooked Rosa sequence then

R = [0, . . . , 0] /* an array of 2n+2 zeros */

R[n+ 1] = R[2n+ 1] = “∗′′

else

R = [0, . . . , 0] /* an array of 2n+1 zeros */

R[n+ 1] = “∗′′

end

infeasiblePos = {}

currentSet = {givenR}

end

Program begin

Call AddInfeasiblePositions(givenR)

Call Place(1, R)

end

Function AddInfeasiblePosition(S):

/* This function add all pair positions in S to infeasiblePos

*/

begin

infeasiblePos = infeasiblePos ∪ {(i, i+ k)|S[i] = S[i+ k] = i}

end
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Function place(i, S):

/* Whether a sequence was found and added to currentSet */

begin

feasiblePos = {(k, k + i)|(k, k + i) /∈ infeasiblePos, S[k] = S[k + i] = 0,

1 ≤ k, k + i ≤ length (S)}

if feasiblePos = {} then
return False

end

if i = n then

/* feasiblePos has one element, (k, k + i) */

S[k] = S[k + i] = i

currentSet = currentSet ∪ {S}

Call AddInfeasiblePositions(S)

Output S

return True

else

foreach (k, k + i) in feasiblePos do

S[k] = S[k + i] = i

FoundSequence? = Place(i+ 1, S)

S[k] = S[k + i] = 0

end

if FoundSequence? = True and i > 1 then

Return True

end

end

return False

end

Algorithm 2: Maximal Disjoint Hooked Rosa Sequences
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How we can describe this algorithm? Initialize a set D of disjoint sequences,

initially containing just S. Run the Distinct Hooked Rosa Sequences (Algorithm

1), with one change. When considering feasible positions for the number i, exclude

any pair of positions for that number that is used by a sequence already in D. At

the conclusion of the algorithm, D contains a maximal subset of disjoint hooked

Rosa sequences of order n. (i.e. any hooked Rosa sequence not in D is not disjoint

with at least one hooked Rosa sequence in D). As we have shown that the previous

algorithm terminates, we can make the same assertion about this algorithm, since it

follows the same procedure, but considers fewer positions to place pairs of numbers.

The algorithm discovers a subset of the set of all hooked Rosa sequences of order n

such that all excluded sequences contain pairs in positions already used by a hooked

Rosa sequence in D. Thus all hooked Rosa sequences that could potentially be placed

in D have been considered. As a result, we can state that D is a maximal subset

of disjoint hooked Rosa sequences. Since it considers fewer positions than the above

algorithm, this algorithm also completes in O(2nn!) steps.

We list the number of maximal disjoint hooked Rosa sequences for a given

hooked Rosa sequence. Note that there may be a larger maximal set of disjoint Rosa

sequences that includes R:
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R n = 5, (2, 3, 2, 4, 3, 0, 5, 4, 1, 1, 0, 5)

Nmaximal R 3

R n = 6, (1, 1, 5, 2, 6, 2, 0, 5, 3, 4, 6, 3, 0, 4)

Nmaximal R 4

R n = 9, (3, 7, 8, 3, 2, 9, 2, 4, 7, 0, 8, 4, 5, 6, 9, 1, 1, 5, 0, 6)

Nmaximal R 6

R n = 10, (5, 8, 6, 9, 3, 5, 10, 3, 6, 8, 0, 7, 9, 4, 1, 1, 10, 4, 7, 2, 0, 2)

Nmaximal R 7

R n = 13, (11, 9, 7, 5, 3, 12, 13, 3, 5, 7, 9, 11, 6, 0, 10, 8, 4, 12, 6, 13, 4, 1, 1, 8, 10, 2, 0, 2)

Nmaximal R 11

R n = 14, (7, 12, 10, 8, 13, 5, 3, 7, 14, 3, 5, 8, 10, 12, 0, 11, 9, 13, 6, 4, 1, 1, 14, 4, 6, 9, 11, 2, 0, 2)

Nmaximal R 12

Table 4.6: Maximal Disjoint Hooked Rosa Sequences
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4.3 Maximum Disjoint (Hooked) Rosa Sequences

input : n/* Order of the Rosa Sequences */

output: A maximum disjoint subset of Rosa Sequences of order n

Function initialSet():

begin

if n = 1 or n = 2(mod4) then

R = [0, . . . , 0] /* an array of 2n+2 zeros */

R[n+ 1] = R[2n+ 1] = “∗′′

else

R = [0, . . . , 0] /* an array of 2n+1 zeros */

R[n+ 1] = “∗′′

end

end

return R

Initialization begin

R = initialSet()

currentSet = {}

end

Program begin

Call Place({}, n,R, {})

end
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Function place(infeasiblePos, i, S, triedSeqs):

/* infeasiblePos: Set of pair positions occupied by pairs in sequences in currentSet

*/

/* S: sequence under construction */

/* i: value of pair to be placed in S */

/* triedSeqs: set of sequences tried and rejected by parent invocation of place */

/* Return value: Set of sequences found and rejected by place */

begin

feasiblePos = {(k, k + i)|(k, k + i) /∈ infeasiblePos, S[k] = S[k + i] = 0, 1 ≤ k, k + i ≤ length

(S)}

if feasiblePos = {} then
return {}

end

if i = 1 then

/* feasiblePos has one element, (k, k + i) */

S[k] = S[k + i] = i

if S ∈ triedSeqs then

return {}

end

currentSet = currentSet ∪ {S}

if length(currentSet) = n− 1 then

Output currentSet

End Program

else

Call place(infeasiblePos ∪ {(i, i+ k)|S[i] = S[i+ k] = i}, n, initialSet(), triedSeqs)

end

currentSet = currentSet/{S}

return {S}

end

else

foreach (k, k + i) in feasiblePos do

S[k] = S[k + i] = i

triedSeqs = triedSeqs ∪ place(infeasiblePos, i− 1, S, triedSeqs)

S[k] = S[k + i] = 0

end

end

return triedSeqs

end

Algorithm 3: Maximum Disjoint (Hooked) Rosa Sequences of orders 2 ≤

n ≤ 21
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The details for this algorithm are given below.

Initialize a set D of disjoint sequences to empty. Run the Distinct Sequences

algorithm (Algorithm 1), with the following change: when considering feasible posi-

tions for a number, exclude any pair of positions for that number that is used by a

sequence already in D. When a hooked Rosa sequence is found, place it in D. The

algorithm will reach a point where no further hooked Rosa sequences can be found.

At this point, D contains a maximal subset of disjoint hooked Rosa sequences of order

n. If this subset is a maximum disjoint subset, output it and end. Otherwise, remove

the last sequence placed in D, and continue executing the modified Algorithm 1 de-

scribed above to find new hooked Rosa sequences. Continue in this way: whenever

a new hooked Rosa sequence is found, add it to D; whenever the algorithm cannot

find a new hooked Rosa sequence disjoint from all sequences in D, remove the last

sequence placed in D. When D contains a maximum disjoint subset, output it and

end the program.

By backtracking whenever it cannot find a hooked Rosa sequence, Algorithm 3

will eventually enumerate all possible maximum subsets of mutually disjoint hooked

Rosa sequences. However, as presented, it will create some subsets more than once.

Suppose, for instance, that S1, S2, and S3 are the first three mutually disjoint hooked

Rosa sequences created by Algorithm 3. Algorithm 3 first places S1 inD, then S2, then

S3. After searching for a maximum disjoint subset containing these three sequences,

Algorithm 3 backtracks by removing S3 and searching for maximum disjoint subsets

containing S1 and S2 without S3, then backtracks by removing S2 from D, at which

point D contains only S1. As it continues to search for maximum subsets containing

S1, at some point Algorithm 3 will place S3 into D and search for maximum disjoint

subsets containing S1 and S3. As S2 is disjoint from both S1 and S3, it will find S2

in the course of its search, place S2 in D and start searching anew for a maximum
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disjoint subset containing S1, S2, and S3.

Each time we add a hooked Rosa sequence S to D, the algorithm’s procedure

is, in effect, to find all hooked Rosa sequences that are mutually disjoint with all

the sequences in D, performing a recursive subsearch with each one as it is found.

To avoid duplicate subsearches, we maintain a set of sequences that we have already

performed subsearches with, and skip these sequences when they are discovered in

future subsearches. When backtracking by removing S from D, we discard this set of

sequences, because one of them may be able to form a maximum disjoint subset in

combination with a different set of sequences in D.

To express the time complexity of this algorithm, we must make some worst-

case assumptions. In our analysis of Algorithm 1, we showed that there are at most

R = 2nn! Rosa sequences of order n, and concluded that Algorithm 1 terminates in

O(R) time. Since Algorithm 3 uses Algorithm 1 to search for hooked Rosa sequences,

we assume that Algorithm 3 requires R steps to find a hooked Rosa sequence. We

also assume that there exist R distinct hooked Rosa sequences of order n. We know

that there exists a maximum disjoint subset of cardinality n− 1 for n ≥ 5. Assuming

that Algorithm 3 examines all
(
R
n−2

)
possible subsets of n− 2 hooked Rosa sequences

before finding a maximum disjoint subset, and that it takes R steps to find each

hooked Rosa sequence each time, it takes O[
(
R
n−2

)
R(n− 2)] steps to find a maximum

disjoint subset. We have used this algorithm effectively to find maximum disjoint

subsets of (hooked) Rosa sequences for small orders 2 ≤ n ≤ 21.

The results from this algorithm are found in the Appendix (6.1).
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Chapter 5

Conclusion

This thesis uses Rosa-type sequences to find maximum disjoint Rosa sequences and

produce new constructions. We also use Rosa-type sequences to construct a cyclic

2-fold 3-GDD of type 32n+1 as well as constructions cyclically indecomposable triple

systems.

Chapter 2 introduces a direct method for finding 4×n hooked Rosa rectangles of

order n = 1, 2(mod 4) and we construct cyclic triple systems CTS4(v) and a GDD by

using two disjoint hooked Rosa sequences. In 2014, Linek, Mor, and Shalaby [18] show

asymptotic constructions for Skolem sequences, hooked Skolem sequences, and Rosa

sequences that provide the only known non-trivial bounds; we are interested in the

future to find asymptotic constructions for hooked Rosa sequences, and in whether or

not our direct constructions for hooked Rosa rectangles can be generalized to produce

all disjoint hooked Rosa sequences of order n = 1, 2(mod 4).

Chapter 3 establishes new constructions for two disjoint m-fold Skolem, m-

fold Rosa, and indecomposable 2-fold Rosa sequences of order n. We may find more

disjoint m-fold Skolem and Rosa sequences and use these to construct λ-fold triple

system of order v in the future. We use two disjoint indecomposable 2-fold Rosa
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sequences of order n to construct disjoint cyclically indecomposable CTS4(6n+ 3).

Chapter 4 gives exhaustive algorithms to find all distinct hooked Rosa sequences

of order n, as well as finding a maximum disjoint subset of hooked Rosa sequences for

small orders n ≤ 21. In 1998, Eldin, Shalaby, and Althukair [9] used a hill-climbing

algorithm to generate Skolem sequences, for example constructing Skolem sequences

of order 84. In future work we are interested in using a hill-climbing algorithm to find

a maximum disjoint subset of (hooked) Skolem and Rosa sequences for all admissible

orders.
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Chapter 6

Appendix

6.1 List of Maximum Disjoint (Hooked) Rosa Se-

quences

Maximum disjoint (hooked) Rosa sequences for small orders 2 ≤ n ≤ 21

n = 5

1, 1, 5, 3, 4, 0, 3, 5, 4, 2, 0, 2

2, 3, 2, 4, 3, 0, 5, 4, 1, 1, 0, 5

3, 1, 1, 3, 5, 0, 2, 4, 2, 5, 0, 4

4, 5, 1, 1, 4, 0, 5, 2, 3, 2, 0, 3

n = 7

1, 1, 6, 3, 7, 5, 3, 0, 6, 4, 5, 7, 2, 4, 2

2, 4, 2, 7, 5, 4, 6, 0, 3, 5, 7, 3, 6, 1, 1

3, 1, 1, 3, 4, 6, 7, 0, 4, 5, 2, 6, 2, 7, 5
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4, 5, 1, 1, 4, 7, 5, 0, 6, 2, 3, 2, 7, 3, 6

5, 7, 2, 6, 2, 5, 4, 0, 7, 6, 4, 3, 1, 1, 3

6, 3, 7, 2, 3, 2, 6, 0, 5, 7, 4, 1, 1, 5, 4

n = 8

1, 1, 5, 7, 2, 8, 2, 5, 0, 6, 7, 3, 4, 8, 3, 6, 4

2, 4, 2, 6, 8, 4, 5, 7, 0, 6, 3, 5, 8, 3, 7, 1, 1

3, 5, 2, 3, 2, 6, 5, 8, 0, 7, 4, 6, 1, 1, 4, 8, 7

4, 1, 1, 8, 4, 7, 3, 6, 0, 3, 5, 8, 7, 6, 2, 5, 2

5, 3, 7, 4, 3, 5, 8, 4, 0, 7, 6, 1, 1, 2, 8, 2, 6

6, 2, 8, 2, 7, 4, 6, 5, 0, 4, 8, 7, 5, 3, 1, 1, 3

7, 8, 4, 2, 6, 2, 4, 7, 0, 8, 6, 5, 3, 1, 1, 3, 5

n = 9

1, 1, 2, 3, 2, 7, 3, 8, 9, 0, 4, 5, 7, 6, 4, 8, 5, 9, 0, 6

2, 4, 2, 5, 9, 4, 8, 3, 5, 0, 3, 6, 7, 9, 8, 1, 1, 6, 0, 7

3, 1, 1, 3, 6, 9, 7, 5, 8, 0, 6, 4, 5, 7, 9, 4, 8, 2, 0, 2

4, 5, 3, 8, 4, 3, 5, 6, 7, 0, 9, 8, 2, 6, 2, 7, 1, 1, 0, 9

5, 3, 6, 4, 3, 5, 9, 4, 6, 0, 7, 8, 1, 1, 2, 9, 2, 7, 0, 8

6, 7, 8, 9, 1, 1, 6, 4, 7, 0, 8, 4, 9, 3, 5, 2, 3, 2, 0, 5

7, 2, 9, 2, 8, 1, 1, 7, 5, 0, 6, 9, 8, 5, 3, 4, 6, 3, 0, 4

8, 9, 5, 2, 7, 2, 6, 5, 8, 0, 9, 7, 6, 4, 1, 1, 3, 4, 0, 3

n = 10

1, 1, 2, 4, 2, 9, 10, 4, 3, 8, 0, 3, 7, 5, 9, 6, 10, 8, 5, 7, 0, 6

2, 5, 2, 8, 1, 1, 5, 6, 9, 10, 0, 8, 4, 6, 7, 3, 4, 9, 3, 10, 0, 7

3, 1, 1, 3, 4, 10, 6, 9, 4, 5, 0, 7, 6, 8, 5, 10, 9, 2, 7, 2, 0, 8

4, 6, 1, 1, 4, 7, 8, 6, 5, 9, 0, 10, 7, 5, 8, 2, 3, 2, 9, 3, 0, 10

5, 3, 4, 6, 3, 5, 4, 10, 7, 6, 0, 8, 9, 1, 1, 7, 2, 10, 2, 8, 0, 9
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6, 7, 3, 9, 10, 3, 6, 8, 7, 2, 0, 2, 9, 4, 10, 8, 5, 4, 1, 1, 0, 5

7, 8, 9, 10, 2, 3, 2, 7, 3, 8, 0, 9, 6, 10, 5, 1, 1, 4, 6, 5, 0, 4

8, 4, 10, 3, 9, 4, 3, 7, 8, 6, 0, 5, 10, 9, 7, 6, 5, 1, 1, 2, 0, 2

9, 10, 5, 2, 8, 2, 7, 5, 6, 9, 0, 10, 8, 7, 6, 4, 1, 1, 3, 4, 0, 3

n = 11

1, 1, 3, 6, 8, 3, 10, 7, 9, 6, 11, 0, 8, 5, 7, 4, 10, 9, 5, 4, 2, 11, 2

2, 5, 2, 7, 1, 1, 5, 9, 10, 11, 7, 0, 3, 6, 8, 3, 9, 4, 10, 6, 11, 4, 8

3, 1, 1, 3, 4, 10, 11, 5, 4, 7, 8, 0, 5, 9, 6, 10, 7, 11, 8, 2, 6, 2, 9

4, 2, 6, 2, 4, 8, 3, 11, 6, 3, 9, 0, 10, 8, 7, 5, 1, 1, 11, 9, 5, 7, 10

5, 6, 1, 1, 2, 5, 2, 6, 11, 9, 10, 0, 4, 8, 3, 7, 4, 3, 9, 11, 10, 8, 7

6, 3, 8, 9, 3, 11, 6, 10, 7, 4, 8, 0, 9, 4, 5, 7, 11, 10, 2, 5, 2, 1, 1

7, 8, 4, 10, 11, 9, 4, 7, 2, 8, 2, 0, 5, 10, 9, 11, 6, 5, 3, 1, 1, 3, 6

8, 9, 10, 11, 3, 1, 1, 3, 8, 6, 9, 0, 10, 7, 11, 6, 5, 2, 4, 2, 7, 5, 4

9, 7, 11, 2, 10, 2, 4, 8, 7, 9, 4, 0, 6, 11, 10, 8, 3, 5, 6, 3, 1, 1, 5

10, 11, 7, 5, 9, 2, 8, 2, 5, 7, 10, 0, 11, 9, 8, 6, 4, 1, 1, 3, 4, 6, 3

n = 12

1, 1, 3, 4, 2, 3, 2, 4, 9, 10, 12, 7, 0, 11, 6, 8, 5, 9, 7, 10, 6, 5, 12, 8, 11

2, 4, 2, 6, 7, 4, 11, 12, 10, 6, 3, 7, 0, 3, 9, 5, 8, 11, 10, 12, 5, 1, 1, 9, 8

3, 6, 2, 3, 2, 8, 10, 6, 12, 9, 11, 4, 0, 8, 5, 4, 10, 7, 9, 5, 12, 11, 1, 1, 7

4, 1, 1, 8, 4, 11, 12, 10, 5, 6, 9, 8, 0, 5, 7, 6, 11, 10, 12, 9, 3, 7, 2, 3, 2

5, 7, 4, 1, 1, 5, 4, 8, 7, 11, 6, 12, 0, 9, 10, 8, 6, 2, 3, 2, 11, 3, 9, 12, 10

6, 3, 9, 10, 3, 12, 6, 11, 1, 1, 5, 9, 0, 10, 8, 5, 7, 12, 11, 2, 4, 2, 8, 7, 4

7, 2, 6, 2, 1, 1, 8, 7, 6, 12, 10, 11, 0, 4, 8, 9, 3, 4, 5, 3, 10, 12, 11, 5, 9

8, 9, 7, 11, 12, 10, 5, 6, 8, 7, 9, 5, 0, 6, 11, 10, 12, 4, 2, 3, 2, 4, 3, 1, 1

9, 10, 11, 12, 4, 1, 1, 7, 4, 9, 8, 10, 0, 11, 7, 12, 6, 3, 8, 5, 3, 2, 6, 2, 5

10, 8, 12, 2, 11, 2, 7, 9, 3, 8, 10, 3, 0, 7, 12, 11, 9, 5, 6, 4, 1, 1, 5, 4, 6
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11, 12, 8, 5, 10, 2, 9, 2, 5, 7, 8, 11, 0, 12, 10, 9, 7, 6, 4, 1, 1, 3, 4, 6, 3

n = 13

1, 1, 10, 11, 6, 13, 5, 12, 9, 7, 6, 5, 10, 0, 11, 8, 7, 9, 13, 12, 2, 4, 2, 8, 3, 4, 0, 3

2, 3, 2, 8, 3, 10, 1, 1, 12, 5, 13, 8, 9, 0, 5, 10, 11, 7, 4, 6, 12, 9, 4, 13, 7, 6, 0, 11

3, 8, 2, 3, 2, 12, 13, 11, 4, 8, 5, 10, 4, 0, 9, 5, 6, 12, 11, 13, 7, 10, 6, 9, 1, 1, 0, 7

4, 5, 6, 2, 4, 2, 5, 9, 6, 11, 7, 8, 13, 0, 10, 12, 9, 7, 3, 8, 11, 3, 1, 1, 10, 13, 0, 12

5, 7, 1, 1, 10, 5, 12, 13, 7, 3, 11, 4, 3, 0, 10, 4, 9, 6, 12, 8, 13, 11, 2, 6, 2, 9, 0, 8

6, 4, 5, 1, 1, 4, 6, 5, 7, 13, 9, 12, 8, 0, 11, 7, 2, 10, 2, 9, 8, 3, 13, 12, 3, 11, 0, 10

7, 2, 3, 2, 5, 3, 11, 7, 13, 5, 12, 1, 1, 0, 6, 10, 8, 11, 9, 4, 6, 13, 12, 4, 8, 10, 0, 9

8, 1, 1, 4, 2, 6, 2, 4, 8, 12, 10, 6, 11, 0, 13, 9, 3, 5, 7, 3, 10, 12, 5, 11, 9, 7, 0, 13

9, 10, 8, 12, 13, 11, 2, 7, 2, 9, 8, 10, 6, 0, 7, 12, 11, 13, 6, 5, 1, 1, 3, 4, 5, 3, 0, 4

10, 11, 12, 13, 4, 2, 9, 2, 4, 8, 10, 7, 11, 0, 12, 9, 13, 8, 7, 3, 5, 6, 3, 1, 1, 5, 0, 6

11, 9, 13, 6, 12, 3, 8, 10, 3, 6, 9, 11, 7, 0, 8, 13, 12, 10, 5, 7, 4, 1, 1, 5, 4, 2, 0, 2

12, 13, 9, 7, 11, 4, 10, 1, 1, 4, 7, 9, 12, 0, 13, 11, 10, 8, 6, 2, 3, 2, 5, 3, 6, 8, 0, 5

n = 14

1, 1, 6, 2, 3, 2, 5, 3, 6, 12, 10, 5, 13, 11, 0, 14, 7, 9, 4, 8, 10, 12, 4, 7, 11, 13, 9, 8, 0, 14

2, 6, 2, 9, 7, 11, 12, 6, 14, 4, 13, 7, 9, 4, 0, 10, 11, 3, 12, 5, 3, 8, 14, 13, 5, 10, 1, 1, 0, 8

3, 7, 5, 3, 1, 1, 4, 5, 7, 10, 4, 13, 11, 14, 0, 6, 9, 12, 8, 10, 2, 6, 2, 11, 13, 9, 8, 14, 0, 12

4, 1, 1, 3, 4, 10, 3, 5, 13, 14, 12, 7, 5, 6, 0, 10, 11, 8, 7, 6, 9, 13, 12, 14, 2, 8, 2, 11, 0, 9

5, 2, 8, 2, 9, 5, 13, 14, 12, 7, 8, 4, 10, 9, 0, 4, 7, 6, 11, 13, 12, 14, 10, 6, 3, 1, 1, 3, 0, 11

6, 3, 1, 1, 3, 2, 6, 2, 8, 13, 14, 12, 5, 7, 0, 11, 8, 5, 9, 10, 7, 4, 13, 12, 14, 4, 11, 9, 0, 10

7, 8, 3, 5, 2, 3, 2, 7, 5, 8, 11, 9, 14, 12, 0, 4, 13, 10, 6, 4, 9, 11, 1, 1, 6, 12, 14, 10, 0, 13

8, 9, 7, 10, 11, 13, 14, 12, 8, 7, 9, 6, 4, 10, 0, 11, 4, 6, 13, 12, 14, 5, 3, 1, 1, 3, 5, 2, 0, 2

9, 5, 11, 12, 6, 14, 5, 13, 10, 9, 6, 1, 1, 11, 0, 12, 8, 4, 10, 14, 13, 4, 7, 3, 8, 2, 3, 2, 0, 7

10, 11, 9, 13, 14, 12, 3, 8, 5, 3, 10, 9, 11, 5, 0, 8, 13, 12, 14, 2, 7, 2, 4, 6, 1, 1, 4, 7, 0, 6

11, 12, 13, 14, 8, 3, 10, 2, 3, 2, 9, 11, 8, 12, 0, 13, 10, 14, 7, 9, 6, 1, 1, 4, 5, 7, 6, 4, 0, 5
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12, 10, 14, 7, 13, 8, 9, 11, 1, 1, 7, 10, 12, 8, 0, 9, 14, 13, 11, 6, 4, 2, 5, 2, 4, 6, 3, 5, 0, 3

13, 14, 10, 8, 12, 5, 11, 1, 1, 9, 5, 8, 10, 13, 0, 14, 12, 11, 9, 7, 3, 6, 2, 3, 2, 4, 7, 6, 0, 4

n = 15

1, 1, 7, 4, 8, 11, 13, 4, 15, 7, 14, 3, 8, 12, 3, 0, 11, 5, 10, 13, 6, 9, 5, 15, 14, 12, 6, 2, 10, 2, 9

2, 9, 2, 6, 10, 12, 14, 15, 13, 6, 9, 5, 7, 11, 10, 0, 5, 12, 8, 7, 14, 13, 15, 4, 11, 3, 8, 4, 3, 1, 1

3, 7, 5, 3, 1, 1, 4, 5, 7, 13, 4, 15, 6, 14, 10, 0, 9, 12, 6, 11, 8, 2, 13, 2, 10, 9, 15, 14, 8, 12, 11

4, 5, 1, 1, 4, 6, 5, 7, 12, 8, 11, 6, 13, 15, 7, 0, 14, 8, 9, 10, 12, 11, 2, 3, 2, 13, 3, 9, 15, 10, 14

5, 1, 1, 3, 7, 5, 3, 11, 14, 15, 13, 7, 4, 8, 12, 0, 4, 10, 11, 6, 9, 8, 14, 13, 15, 6, 12, 10, 2, 9, 2

6, 2, 9, 2, 3, 8, 6, 3, 10, 11, 12, 9, 14, 8, 15, 0, 7, 13, 10, 5, 11, 4, 12, 7, 5, 4, 14, 1, 1, 15, 13

7, 4, 6, 10, 5, 4, 8, 7, 6, 5, 9, 14, 15, 10, 8, 0, 13, 11, 12, 9, 3, 1, 1, 3, 2, 14, 2, 15, 11, 13, 12

8, 6, 3, 9, 2, 3, 2, 6, 8, 14, 15, 13, 9, 1, 1, 0, 12, 4, 11, 7, 10, 4, 5, 14, 13, 15, 7, 5, 12, 11, 10

9, 10, 8, 11, 12, 14, 15, 13, 4, 9, 8, 10, 4, 5, 11, 0, 12, 6, 5, 14, 13, 15, 7, 6, 1, 1, 2, 3, 2, 7, 3

10, 3, 12, 13, 3, 15, 6, 14, 11, 9, 10, 2, 6, 2, 12, 0, 13, 7, 9, 11, 15, 14, 8, 5, 7, 4, 1, 1, 5, 4, 8

11, 12, 10, 14, 15, 13, 2, 9, 2, 1, 1, 11, 10, 12, 8, 0, 9, 14, 13, 15, 5, 6, 8, 7, 4, 5, 3, 6, 4, 3, 7

12, 13, 14, 15, 9, 2, 11, 2, 1, 1, 10, 8, 12, 9, 13, 0, 14, 11, 15, 8, 10, 7, 4, 6, 3, 5, 4, 3, 7, 6, 5

13, 11, 15, 8, 14, 4, 10, 12, 2, 4, 2, 8, 11, 13, 9, 0, 10, 15, 14, 12, 7, 5, 3, 9, 6, 3, 5, 7, 1, 1, 6

14, 15, 11, 7, 13, 3, 12, 5, 3, 10, 7, 9, 5, 11, 14, 0, 15, 13, 12, 10, 9, 8, 6, 1, 1, 2, 4, 2, 6, 8, 4

n = 16

1, 1, 8, 3, 4, 9, 3, 11, 4, 6, 8, 15, 16, 14, 9, 6, 0, 13, 11, 5, 12, 10, 7, 2, 5, 2, 15, 14, 16, 7, 13, 10, 12

2, 3, 2, 4, 3, 8, 6, 4, 9, 15, 16, 14, 6, 8, 13, 7, 0, 9, 5, 12, 10, 11, 7, 5, 15, 14, 16, 13, 1, 1, 10, 12, 11

3, 6, 10, 3, 7, 12, 14, 6, 16, 13, 15, 7, 10, 8, 9, 4, 0, 12, 11, 4, 14, 8, 13, 9, 16, 15, 5, 1, 1, 11, 2, 5, 2

4, 10, 7, 11, 4, 13, 15, 16, 14, 7, 3, 10, 12, 3, 11, 5, 0, 8, 13, 9, 5, 15, 14, 16, 12, 8, 6, 2, 9, 2, 1, 1, 6

5, 2, 9, 2, 11, 5, 8, 12, 15, 16, 14, 9, 6, 13, 8, 11, 0, 3, 6, 12, 3, 7, 10, 15, 14, 16, 13, 4, 7, 1, 1, 4, 10

6, 4, 5, 1, 1, 4, 6, 5, 13, 14, 12, 16, 8, 15, 10, 3, 0, 9, 3, 11, 8, 13, 12, 14, 10, 7, 9, 16, 15, 2, 11, 2, 7

7, 8, 4, 5, 1, 1, 4, 7, 5, 8, 9, 13, 10, 12, 15, 16, 0, 11, 14, 9, 6, 2, 10, 2, 13, 12, 6, 3, 11, 15, 3, 16, 14

8, 5, 1, 1, 6, 2, 5, 2, 8, 12, 6, 11, 14, 7, 16, 9, 0, 15, 13, 10, 7, 12, 11, 4, 9, 3, 14, 4, 3, 10, 16, 13, 15
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9, 7, 2, 8, 2, 5, 1, 1, 7, 9, 5, 8, 15, 16, 14, 10, 0, 6, 12, 13, 11, 3, 4, 6, 3, 10, 4, 15, 14, 16, 12, 11, 13

10, 11, 6, 12, 13, 15, 16, 14, 6, 9, 10, 8, 11, 1, 1, 12, 0, 13, 9, 8, 15, 14, 16, 5, 7, 2, 4, 2, 5, 3, 4, 7, 3

11, 9, 13, 14, 8, 16, 7, 15, 12, 10, 9, 11, 8, 7, 4, 13, 0, 14, 4, 10, 12, 16, 15, 6, 3, 5, 2, 3, 2, 6, 5, 1, 1

12, 13, 11, 15, 16, 14, 4, 10, 7, 2, 4, 2, 12, 11, 13, 7, 0, 10, 15, 14, 16, 6, 8, 9, 5, 1, 1, 6, 3, 5, 8, 3, 9

13, 14, 15, 16, 10, 6, 12, 5, 1, 1, 11, 6, 5, 13, 10, 14, 0, 15, 12, 16, 7, 11, 9, 3, 8, 4, 3, 7, 2, 4, 2, 9, 8

14, 12, 16, 9, 15, 10, 11, 13, 3, 1, 1, 3, 9, 12, 14, 10, 0, 11, 16, 15, 13, 8, 5, 7, 2, 6, 2, 5, 4, 8, 7, 6, 4

15, 16, 12, 10, 14, 7, 13, 4, 2, 11, 2, 4, 7, 10, 12, 15, 0, 16, 14, 13, 11, 9, 6, 8, 1, 1, 3, 5, 6, 3, 9, 8, 5

n = 17

1, 1, 3, 4, 12, 3, 9, 4, 5, 16, 17, 15, 7, 5, 14, 9, 12, 0, 6, 7, 11, 8, 13, 10, 6, 16, 15, 17, 14, 8, 2, 11, 2, 10, 0, 13

2, 6, 2, 5, 1, 1, 8, 6, 5, 7, 14, 16, 17, 15, 8, 4, 7, 0, 13, 4, 12, 9, 11, 3, 14, 10, 3, 16, 15, 17, 9, 13, 12, 11, 0, 10

3, 9, 6, 3, 8, 2, 7, 2, 6, 13, 9, 14, 8, 7, 17, 11, 16, 0, 10, 5, 15, 12, 13, 4, 5, 14, 11, 4, 10, 1, 1, 17, 16, 12, 0, 15

4, 1, 1, 3, 4, 10, 3, 13, 14, 15, 11, 17, 6, 16, 2, 10, 2, 0, 6, 12, 13, 11, 14, 7, 15, 8, 9, 5, 17, 16, 7, 12, 5, 8, 0, 9

5, 7, 4, 6, 10, 5, 4, 12, 7, 6, 8, 11, 16, 17, 10, 9, 15, 0, 8, 12, 13, 14, 11, 2, 9, 2, 1, 1, 16, 3, 17, 15, 3, 13, 0, 14

6, 4, 2, 8, 2, 4, 6, 5, 16, 17, 15, 8, 5, 14, 7, 13, 3, 0, 11, 3, 10, 7, 9, 12, 16, 15, 17, 14, 13, 11, 10, 9, 1, 1, 0, 12

7, 3, 9, 10, 3, 13, 15, 7, 17, 14, 16, 9, 8, 10, 5, 12, 6, 0, 13, 5, 8, 15, 6, 14, 11, 17, 16, 12, 2, 4, 2, 1, 1, 4, 0, 11

8, 2, 5, 2, 6, 4, 10, 5, 8, 4, 6, 12, 15, 13, 16, 7, 10, 0, 17, 14, 9, 11, 7, 12, 1, 1, 13, 15, 3, 9, 16, 3, 11, 14, 0, 17

9, 11, 8, 2, 4, 2, 1, 1, 4, 9, 8, 13, 11, 7, 12, 17, 14, 0, 15, 16, 7, 10, 5, 6, 13, 3, 12, 5, 3, 6, 14, 10, 17, 15, 0, 16

10, 8, 11, 12, 7, 14, 16, 17, 15, 8, 10, 7, 13, 11, 6, 12, 5, 0, 9, 14, 6, 5, 16, 15, 17, 13, 4, 9, 1, 1, 4, 2, 3, 2, 0, 3

11, 12, 10, 13, 14, 16, 17, 15, 7, 5, 9, 11, 10, 12, 5, 7, 13, 0, 14, 9, 8, 16, 15, 17, 3, 4, 6, 3, 8, 4, 1, 1, 6, 2, 0, 2

12, 10, 14, 15, 9, 17, 4, 16, 13, 11, 4, 10, 12, 9, 1, 1, 14, 0, 15, 6, 11, 13, 17, 16, 8, 6, 5, 2, 7, 2, 3, 5, 8, 3, 0, 7

13, 14, 12, 16, 17, 15, 3, 11, 4, 3, 1, 1, 4, 13, 12, 14, 9, 0, 11, 16, 15, 17, 10, 5, 6, 9, 7, 8, 5, 2, 6, 2, 10, 7, 0, 8

14, 15, 16, 17, 11, 7, 13, 6, 1, 1, 12, 10, 7, 6, 14, 11, 15, 0, 16, 13, 17, 10, 12, 8, 9, 2, 3, 2, 4, 3, 5, 8, 4, 9, 0, 5

15, 13, 17, 9, 16, 11, 12, 14, 3, 1, 1, 3, 9, 10, 13, 15, 11, 0, 12, 17, 16, 14, 8, 10, 5, 7, 2, 6, 2, 5, 8, 4, 7, 6, 0, 4

16, 17, 13, 11, 15, 8, 14, 4, 2, 12, 2, 4, 10, 8, 11, 13, 16, 0, 17, 15, 14, 12, 10, 9, 7, 1, 1, 3, 5, 6, 3, 7, 9, 5, 0, 6

n = 18

1, 1, 8, 5, 9, 2, 3, 2, 5, 3, 8, 10, 13, 9, 14, 15, 18, 12, 0, 16, 17, 10, 11, 4, 7, 13, 6, 4, 14, 12, 15, 7, 6, 11, 18, 16, 0, 17
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2, 3, 2, 7, 3, 4, 9, 13, 11, 4, 7, 15, 17, 18, 16, 9, 1, 1, 0, 11, 13, 6, 12, 14, 8, 10, 15, 6, 5, 17, 16, 18, 8, 5, 12, 10, 0, 14

3, 10, 11, 3, 13, 14, 16, 7, 18, 15, 17, 10, 8, 11, 7, 6, 12, 13, 0, 14, 8, 6, 16, 9, 15, 5, 18, 17, 12, 2, 5, 2, 9, 4, 1, 1, 0, 4

4, 6, 1, 1, 4, 11, 8, 6, 15, 17, 18, 16, 9, 7, 8, 14, 11, 13, 0, 5, 7, 9, 10, 15, 5, 12, 17, 16, 18, 14, 13, 3, 10, 2, 3, 2, 0, 12

5, 7, 4, 1, 1, 5, 4, 8, 7, 16, 14, 18, 15, 17, 3, 8, 6, 3, 0, 9, 13, 10, 6, 12, 14, 16, 11, 15, 9, 18, 17, 10, 2, 13, 2, 12, 0, 11

6, 4, 12, 9, 11, 4, 6, 14, 17, 18, 16, 5, 9, 15, 12, 11, 5, 2, 0, 2, 10, 14, 7, 8, 13, 17, 16, 18, 15, 7, 10, 8, 3, 1, 1, 3, 0, 13

7, 8, 6, 3, 1, 1, 3, 7, 6, 8, 15, 17, 18, 16, 2, 4, 2, 14, 0, 4, 12, 5, 13, 11, 9, 15, 5, 10, 17, 16, 18, 14, 12, 9, 11, 13, 0, 10

8, 9, 10, 6, 3, 1, 1, 3, 8, 6, 9, 13, 10, 12, 15, 17, 7, 16, 0, 18, 11, 14, 5, 7, 13, 12, 2, 5, 2, 15, 4, 11, 17, 16, 4, 14, 0, 18

9, 1, 1, 4, 8, 6, 2, 4, 2, 9, 12, 6, 8, 14, 11, 18, 10, 17, 0, 13, 15, 16, 12, 7, 5, 11, 10, 14, 3, 5, 7, 3, 13, 18, 17, 15, 0, 16

10, 2, 3, 2, 4, 3, 5, 6, 4, 14, 10, 5, 16, 6, 18, 12, 17, 8, 0, 7, 9, 13, 15, 14, 11, 8, 7, 12, 16, 9, 1, 1, 18, 17, 13, 11, 0, 15

11, 12, 7, 13, 10, 15, 17, 18, 16, 7, 5, 11, 14, 12, 10, 5, 13, 4, 0, 8, 15, 4, 9, 17, 16, 18, 14, 8, 2, 6, 2, 9, 1, 1, 3, 6, 0, 3

12, 13, 9, 14, 15, 17, 18, 16, 8, 11, 3, 9, 12, 3, 13, 10, 8, 14, 0, 15, 11, 7, 17, 16, 18, 10, 4, 6, 7, 5, 4, 1, 1, 6, 5, 2, 0, 2

13, 11, 15, 16, 6, 18, 10, 17, 14, 12, 6, 9, 11, 13, 1, 1, 10, 15, 0, 16, 9, 12, 14, 18, 17, 4, 8, 3, 7, 4, 3, 2, 5, 2, 8, 7, 0, 5

14, 15, 13, 17, 18, 16, 11, 12, 4, 1, 1, 2, 4, 2, 14, 13, 15, 11, 0, 12, 17, 16, 18, 6, 10, 7, 5, 8, 9, 6, 3, 5, 7, 3, 10, 8, 0, 9

15, 16, 17, 18, 12, 9, 14, 1, 1, 2, 13, 2, 10, 11, 9, 15, 12, 16, 0, 17, 14, 18, 10, 13, 11, 8, 3, 5, 6, 3, 7, 4, 5, 8, 6, 4, 0, 7

16, 14, 18, 11, 17, 12, 13, 15, 5, 3, 1, 1, 3, 5, 11, 14, 16, 12, 0, 13, 18, 17, 15, 10, 4, 6, 9, 7, 4, 8, 2, 6, 2, 10, 7, 9, 0, 8

17, 18, 14, 12, 16, 8, 15, 4, 2, 13, 2, 4, 11, 8, 10, 12, 14, 17, 0, 18, 16, 15, 13, 11, 10, 9, 7, 1, 1, 3, 5, 6, 3, 7, 9, 5, 0, 6

n = 19

1, 1, 3, 8, 5, 3, 7, 11, 12, 5, 15, 8, 17, 7, 19, 16, 18, 4, 11, 0, 12, 4, 13, 9, 14, 15, 2, 10, 2, 17, 6, 16, 9, 19, 18, 13, 6, 10, 14

2, 7, 2, 10, 6, 4, 1, 1, 7, 4, 6, 9, 14, 10, 16, 12, 15, 18, 19, 0, 9, 17, 11, 13, 8, 3, 14, 12, 3, 5, 16, 15, 8, 11, 5, 18, 13, 19, 17

3, 8, 5, 3, 1, 1, 4, 5, 6, 8, 4, 13, 9, 15, 6, 18, 19, 14, 12, 0, 17, 9, 16, 11, 13, 7, 10, 2, 15, 2, 12, 14, 7, 18, 11, 19, 10, 17, 16

4, 1, 1, 9, 4, 11, 8, 15, 18, 19, 17, 14, 9, 16, 8, 6, 11, 7, 13, 0, 12, 6, 15, 10, 7, 14, 18, 17, 19, 16, 5, 13, 12, 10, 3, 5, 2, 3, 2

5, 9, 1, 1, 2, 5, 2, 10, 13, 17, 9, 19, 16, 18, 15, 8, 6, 10, 7, 0, 14, 13, 6, 8, 12, 7, 17, 11, 16, 15, 19, 18, 3, 4, 14, 3, 12, 4, 11

6, 2, 11, 2, 8, 12, 6, 14, 16, 18, 19, 17, 8, 11, 4, 15, 7, 12, 4, 0, 13, 14, 10, 7, 16, 9, 5, 18, 17, 19, 15, 5, 10, 13, 9, 3, 1, 1, 3

7, 11, 2, 3, 2, 5, 3, 7, 1, 1, 5, 15, 11, 14, 8, 17, 13, 19, 10, 0, 18, 16, 8, 12, 9, 6, 15, 14, 10, 13, 4, 6, 17, 9, 4, 12, 19, 16, 18

8, 6, 4, 2, 10, 2, 4, 6, 8, 15, 16, 18, 19, 17, 10, 5, 1, 1, 9, 0, 5, 11, 12, 14, 15, 13, 16, 9, 7, 18, 17, 19, 11, 3, 12, 7, 3, 14, 13

9, 3, 8, 5, 3, 2, 11, 2, 5, 9, 8, 16, 18, 19, 17, 10, 4, 11, 15, 0, 4, 7, 14, 6, 13, 10, 12, 16, 7, 6, 18, 17, 19, 15, 1, 1, 14, 13, 12

72



10, 5, 9, 6, 3, 7, 5, 3, 14, 6, 10, 9, 7, 13, 18, 19, 17, 1, 1, 0, 16, 8, 14, 15, 11, 12, 13, 4, 2, 8, 2, 4, 18, 17, 19, 11, 16, 12, 15

11, 13, 7, 14, 12, 16, 18, 19, 17, 7, 10, 11, 15, 9, 13, 3, 12, 14, 3, 0, 10, 16, 9, 5, 18, 17, 19, 15, 5, 4, 8, 6, 2, 4, 2, 1, 1, 6, 8

12, 10, 13, 11, 14, 15, 17, 9, 19, 16, 18, 10, 12, 8, 11, 13, 9, 5, 14, 0, 15, 8, 5, 17, 6, 16, 3, 19, 18, 3, 6, 7, 4, 1, 1, 2, 4, 2, 7

13, 14, 12, 15, 16, 18, 19, 17, 8, 2, 11, 2, 10, 13, 12, 14, 8, 9, 15, 0, 16, 11, 10, 18, 17, 19, 9, 7, 4, 6, 3, 5, 4, 3, 7, 6, 5, 1, 1

14, 12, 16, 17, 11, 19, 10, 18, 15, 13, 7, 1, 1, 12, 14, 11, 10, 7, 16, 0, 17, 6, 13, 15, 19, 18, 4, 6, 8, 9, 4, 3, 5, 2, 3, 2, 8, 5, 9

15, 16, 14, 18, 19, 17, 12, 13, 3, 4, 2, 3, 2, 4, 11, 15, 14, 16, 12, 0, 13, 18, 17, 19, 10, 11, 6, 8, 9, 7, 1, 1, 6, 5, 10, 8, 7, 9, 5

16, 17, 18, 19, 13, 9, 15, 6, 7, 3, 14, 12, 3, 6, 9, 7, 16, 13, 17, 0, 18, 15, 19, 12, 14, 8, 11, 5, 10, 1, 1, 4, 5, 8, 2, 4, 2, 11, 10

17, 15, 19, 12, 18, 13, 14, 16, 4, 1, 1, 3, 4, 11, 3, 12, 15, 17, 13, 0, 14, 19, 18, 16, 11, 10, 8, 9, 5, 2, 7, 2, 6, 5, 8, 10, 9, 7, 6

18, 19, 15, 13, 17, 10, 16, 7, 5, 14, 1, 1, 12, 5, 7, 10, 13, 15, 18, 0, 19, 17, 16, 14, 12, 11, 9, 6, 3, 8, 2, 3, 2, 6, 4, 9, 11, 8, 4

n = 20

1, 1, 9, 2, 4, 2, 10, 3, 4, 8, 3, 9, 15, 13, 17, 14, 10, 8, 20, 18, 0, 19, 11, 16, 12, 7, 13, 15, 6, 14, 5, 17, 7, 11, 6, 5, 12, 18, 20, 16, 19

2, 8, 2, 7, 1, 1, 6, 11, 13, 8, 7, 14, 6, 9, 16, 18, 12, 20, 11, 19, 0, 13, 9, 17, 15, 14, 10, 4, 12, 5, 16, 4, 3, 18, 5, 3, 10, 20, 19, 15, 17

3, 4, 10, 3, 11, 4, 12, 16, 19, 20, 18, 15, 10, 17, 8, 11, 9, 7, 12, 13, 0, 14, 8, 16, 7, 9, 15, 19, 18, 20, 17, 6, 13, 5, 2, 14, 2, 6, 5, 1, 1

4, 2, 5, 2, 4, 8, 3, 5, 15, 3, 7, 16, 18, 8, 20, 17, 19, 7, 6, 10, 0, 12, 9, 15, 6, 13, 14, 16, 11, 10, 18, 9, 17, 12, 20, 19, 1, 1, 13, 11, 14

5, 6, 4, 12, 10, 5, 4, 6, 14, 16, 17, 19, 20, 18, 10, 12, 7, 9, 3, 15, 0, 3, 14, 7, 13, 16, 9, 17, 8, 11, 19, 18, 20, 2, 15, 2, 8, 13, 1, 1, 11

6, 1, 1, 10, 13, 7, 6, 15, 17, 19, 20, 18, 7, 10, 4, 16, 5, 13, 4, 14, 0, 5, 15, 9, 11, 17, 8, 12, 19, 18, 20, 16, 9, 14, 8, 11, 2, 3, 2, 12, 3

7, 5, 2, 11, 2, 3, 5, 7, 3, 18, 16, 20, 17, 19, 11, 4, 8, 6, 15, 4, 0, 13, 14, 6, 8, 10, 16, 18, 12, 17, 9, 20, 19, 15, 13, 10, 14, 1, 1, 9, 12

8, 11, 1, 1, 5, 10, 4, 7, 8, 5, 4, 12, 11, 15, 7, 10, 13, 19, 17, 20, 0, 16, 18, 12, 14, 9, 6, 3, 15, 13, 3, 2, 6, 2, 9, 17, 19, 16, 14, 20, 18

9, 10, 8, 1, 1, 13, 7, 12, 6, 9, 8, 10, 14, 7, 6, 19, 20, 18, 13, 12, 0, 11, 17, 15, 16, 5, 14, 2, 3, 2, 5, 3, 11, 4, 19, 18, 20, 4, 15, 17, 16

10, 3, 7, 4, 3, 1, 1, 4, 9, 7, 10, 17, 19, 20, 18, 8, 6, 9, 16, 11, 0, 15, 6, 8, 5, 14, 12, 13, 17, 5, 11, 19, 18, 20, 16, 2, 15, 2, 12, 14, 13

11, 12, 14, 9, 15, 16, 18, 10, 20, 17, 19, 11, 9, 12, 13, 7, 14, 10, 5, 15, 0, 16, 7, 5, 18, 8, 17, 13, 20, 19, 6, 1, 1, 8, 3, 4, 6, 3, 2, 4, 2

12, 7, 3, 6, 2, 3, 2, 4, 7, 6, 14, 4, 12, 16, 19, 20, 18, 11, 9, 17, 0, 10, 1, 1, 14, 15, 13, 9, 11, 16, 8, 10, 5, 19, 18, 20, 17, 5, 8, 13, 15

13, 14, 12, 15, 7, 17, 19, 20, 18, 10, 11, 7, 16, 13, 12, 14, 1, 1, 15, 10, 0, 11, 17, 6, 9, 19, 18, 20, 16, 6, 4, 5, 8, 9, 4, 3, 5, 2, 3, 2, 8

14, 15, 13, 16, 17, 19, 20, 18, 10, 2, 12, 2, 11, 4, 14, 13, 15, 4, 10, 16, 0, 17, 12, 11, 19, 18, 20, 8, 1, 1, 7, 9, 6, 3, 5, 8, 3, 7, 6, 5, 9

15, 13, 17, 18, 12, 20, 11, 19, 16, 14, 8, 2, 10, 2, 13, 15, 12, 11, 8, 17, 0, 18, 10, 14, 16, 20, 19, 5, 9, 6, 1, 1, 5, 7, 4, 6, 3, 9, 4, 3, 7

16, 17, 15, 19, 20, 18, 13, 14, 3, 6, 4, 3, 1, 1, 4, 6, 16, 15, 17, 13, 0, 14, 19, 18, 20, 12, 9, 11, 5, 7, 10, 8, 2, 5, 2, 9, 7, 12, 11, 8, 10
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17, 18, 19, 20, 14, 9, 16, 6, 8, 3, 15, 13, 3, 6, 9, 12, 8, 17, 14, 18, 0, 19, 16, 20, 13, 15, 11, 12, 2, 10, 2, 7, 4, 1, 1, 5, 4, 11, 7, 10, 5

18, 16, 20, 13, 19, 14, 15, 17, 2, 5, 2, 1, 1, 12, 5, 11, 13, 16, 18, 14, 0, 15, 20, 19, 17, 12, 11, 9, 10, 8, 3, 4, 7, 3, 6, 4, 9, 8, 10, 7, 6

19, 20, 16, 14, 18, 11, 17, 8, 5, 15, 1, 1, 13, 5, 12, 8, 11, 14, 16, 19, 0, 20, 18, 17, 15, 13, 12, 10, 7, 9, 2, 3, 2, 6, 3, 7, 4, 10, 9, 6, 4

n = 21

1, 1, 3, 10, 8, 3, 4, 11, 12, 14, 4, 5, 8, 10, 17, 19, 5, 21, 11, 20, 12, 0, 13, 14, 16, 18, 15, 6, 9, 7, 2, 17, 2, 6, 19, 13, 7, 9, 21, 20, 16, 15, 0, 18

2, 8, 2, 7, 4, 1, 1, 12, 4, 8, 7, 17, 19, 16, 21, 18, 20, 9, 6, 12, 3, 0, 15, 3, 6, 13, 9, 14, 17, 16, 10, 19, 11, 18, 5, 21, 20, 15, 13, 5, 10, 14, 0, 11

3, 7, 12, 3, 5, 8, 1, 1, 7, 5, 15, 4, 16, 8, 12, 4, 17, 20, 21, 13, 10, 0, 9, 18, 19, 15, 14, 11, 16, 6, 10, 9, 13, 17, 2, 6, 2, 20, 11, 21, 14, 18, 0, 19

4, 10, 1, 1, 4, 5, 2, 8, 2, 3, 5, 10, 3, 15, 16, 8, 18, 12, 13, 21, 17, 0, 19, 20, 11, 14, 7, 9, 15, 12, 16, 13, 6, 7, 18, 11, 9, 17, 6, 14, 21, 19, 0, 20

5, 13, 11, 9, 14, 5, 10, 16, 18, 20, 21, 19, 9, 11, 13, 17, 10, 8, 14, 3, 7, 0, 3, 16, 12, 8, 18, 7, 15, 20, 19, 21, 17, 2, 6, 2, 12, 4, 1, 1, 6, 4, 0, 15

6, 3, 10, 13, 3, 14, 6, 17, 20, 21, 19, 16, 10, 18, 9, 5, 13, 15, 8, 14, 5, 0, 12, 9, 17, 11, 8, 16, 20, 19, 21, 18, 15, 7, 12, 4, 11, 1, 1, 4, 7, 2, 0, 2

7, 5, 2, 11, 2, 13, 5, 7, 16, 19, 17, 21, 18, 20, 11, 10, 4, 6, 13, 15, 4, 0, 14, 6, 16, 10, 9, 17, 19, 8, 18, 12, 21, 20, 15, 9, 14, 8, 3, 1, 1, 3, 0, 12

8, 1, 1, 4, 10, 11, 9, 4, 8, 17, 18, 20, 21, 19, 10, 9, 11, 7, 16, 6, 15, 0, 5, 14, 7, 6, 17, 5, 18, 12, 13, 20, 19, 21, 16, 15, 3, 14, 2, 3, 2, 12, 0, 13

9, 6, 4, 2, 11, 2, 4, 6, 15, 9, 7, 18, 20, 21, 19, 11, 3, 7, 17, 3, 5, 0, 8, 15, 14, 5, 13, 16, 12, 18, 8, 10, 20, 19, 21, 17, 1, 1, 14, 13, 12, 10, 0, 16

10, 2, 5, 2, 7, 9, 3, 5, 4, 3, 10, 7, 4, 12, 9, 14, 15, 13, 18, 19, 20, 0, 21, 16, 17, 12, 11, 8, 6, 14, 13, 15, 1, 1, 6, 8, 18, 11, 19, 16, 20, 17, 0, 21

11, 12, 8, 3, 1, 1, 3, 7, 14, 10, 8, 11, 6, 12, 7, 20, 21, 19, 6, 10, 18, 0, 14, 9, 15, 16, 17, 13, 5, 2, 4, 2, 9, 5, 4, 20, 19, 21, 18, 15, 13, 16, 0, 17

12, 4, 7, 1, 1, 4, 11, 3, 10, 7, 3, 9, 12, 17, 20, 21, 19, 11, 10, 18, 9, 0, 16, 8, 2, 15, 2, 5, 13, 14, 17, 8, 5, 6, 20, 19, 21, 18, 16, 6, 15, 13, 0, 14

13, 11, 15, 12, 16, 17, 19, 9, 21, 18, 20, 8, 11, 13, 14, 12, 9, 15, 5, 8, 16, 0, 17, 5, 7, 19, 6, 18, 14, 21, 20, 7, 6, 10, 4, 1, 1, 3, 4, 2, 3, 2, 0, 10

14, 15, 13, 16, 9, 18, 20, 21, 19, 11, 12, 6, 17, 9, 14, 13, 15, 6, 7, 16, 11, 0, 12, 18, 10, 7, 20, 19, 21, 17, 3, 8, 4, 3, 10, 2, 4, 2, 5, 8, 1, 1, 0, 5

15, 16, 14, 17, 18, 20, 21, 19, 11, 2, 13, 2, 12, 1, 1, 15, 14, 16, 10, 11, 17, 0, 18, 13, 12, 20, 19, 21, 10, 9, 5, 6, 8, 3, 7, 5, 3, 6, 9, 4, 8, 7, 0, 4

16, 14, 18, 19, 13, 21, 12, 20, 17, 15, 4, 2, 11, 2, 4, 14, 16, 13, 12, 10, 18, 0, 19, 11, 15, 17, 21, 20, 8, 10, 9, 7, 5, 1, 1, 6, 8, 5, 7, 9, 3, 6, 0, 3

17, 18, 16, 20, 21, 19, 14, 15, 7, 4, 2, 3, 2, 4, 3, 7, 13, 17, 16, 18, 14, 0, 15, 20, 19, 21, 12, 10, 11, 13, 6, 1, 1, 8, 9, 5, 6, 10, 12, 11, 5, 8, 0, 9

18, 19, 20, 21, 15, 12, 17, 2, 6, 2, 16, 14, 1, 1, 6, 13, 11, 12, 18, 15, 19, 0, 20, 17, 21, 14, 16, 11, 13, 10, 7, 3, 9, 5, 3, 8, 4, 7, 5, 10, 4, 9, 0, 8

19, 17, 21, 14, 20, 15, 16, 18, 8, 6, 1, 1, 2, 13, 2, 6, 8, 14, 17, 19, 15, 0, 16, 21, 20, 18, 13, 12, 10, 5, 11, 9, 3, 4, 5, 3, 7, 4, 10, 12, 9, 11, 0, 7

20, 21, 17, 15, 19, 10, 18, 4, 9, 16, 3, 4, 14, 3, 13, 10, 12, 9, 15, 17, 20, 0, 21, 19, 18, 16, 14, 13, 12, 11, 8, 2, 7, 2, 1, 1, 5, 6, 8, 7, 11, 5, 0, 6
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