UNIVERSITI TEKNOLOGI MARA

DERIVATION OF RADIATIVE TRANSFER PARAMETERS USING IMAGE-BASED TECHNIQUE

WAN NONI AFIDA BT AB MANAN

Thesis submitted in fulfilment of the requirements for the degree of Master of Science

Faculty of Applied Sciences

September 2014

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It was original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of student	: Wan Noni Afida bt Ab Manan
Student I.D. No	: 2010202724
Programme	: Master of Science (AS780)
Faculty	: Applied Sciences
Thesis title	: Derivation of Radiative Transfer Parameters Using Image- Based Technique

list Signature of student :...

Date

: September 2014

ABSTRACT

The correction of atmospheric effects is very essential because visible bands of shorter wavelengths are highly affected by atmospheric scattering especially of Rayleigh scattering. In this processes, the most important parameters need to be known is the optical characteristics of the atmosphere. The most challenge is to obtain accurate values for those parameters and limited availability of the atmospheric correction parameters in the analyses. In available atmospheric correction algorithms, lack of study has found in emphasizing the appropriate chosen of atmospheric models with specific atmospheric condition. Thus, the question was set in this study are which criteria can be used to justify which atmospheric models is suitable to be applied. This study is attempting to answer whether selection of atmospheric models is based on regional atmospheric condition or geographic location. To prove this, it will require the information from aerosol optical parameters. Therefore, in determining the appropriate atmospheric model for different urban types; the atmospheric parameters (visibility and aerosol loading) need to be estimated. The proposed method is a combination of the radiative transfer equation and dark target subtraction technique. Two important atmospheric parameters in the radiative transfer equation which are visibility and aerosol loading are estimated from the image itself to be as an input in atmospheric modelling. ATCOR-2 was used to perform different atmospheric models (maritime and urban) which can represent regional climatic condition in Kuala Lumpur and Penang Island. Dark pixel target in the scene was subtracted from visible (blue band) and near-infrared (NIR) band of Landsat image to optimize the aerosol loading retrieved from scattering and absorption factor. By relating the determined aerosol optical thickness with visibility values, urban model at the visible (blue band) on image 2005 for both sites, showed a high correlation coefficient, $r^2 = 0.8720$ for Kuala Lumpur and $r^2 = 0.8896$ for Penang Island. The results showed an agreement pattern with Forster's aerosol optical thickness versus visibility and from Tanré's model. However, maritime model and NIR band shows the opposite pattern of the established model. Thus, urban model in visible (blue band) has been chosen for both sites. Results presented in this study had demonstrated that determination of suitable atmospheric model can be outlined on four different types of urban which based on the regional climate condition. It has been shown that determined the aerosol for both sites is highly correlated to the visibility range from 10 to 50 km. Study also found that optical satellite remotely sensed image data (Landsat TM blue band) can be used to determine the visibility value through the darkest pixel atmospheric correction algorithms.

TABLE OF CONTENTS

	Page
AUTHOR'S DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGEMENTS	iv
TABLE OF CONTENTS	v
LIST OF TABLES	ix
LIST OF FIGURES	xi
LIST OF ABBREVIATIONS	xiv

CHAPTER ONE: INTRODUCTION

1.1	Background of study	1
1.2	Statement of problem	3
1.3	Aim and Objectives of Study	5
1.4	Significance of Study	5
1.5	Scope of study	5

CHAPTER TWO: LITERATURE REVIEW

2.1	Introdu	iction	7
2.2	Atmospheric Effects		
2.3	Urban	Characterization	10
2.4	Microc	limate Parameters	12
	2.4.1	Temperature	13
	2.4.2	Rainfall	14
	2.4.3	Wind	14
	2.4.4	Solar Radiation	16
	2.4.5	Land Cover	16
	2.4.6	Building Material	17

2.5	Urban Related Issues		17
	2.5.1	Urban Heat Island	18
	2.5.2	Land use/ land cover (LULC) changes	19
	2.5.3	Visibility Impairment	19
	2.5.4	Air Pollution	21
2.6	Aeros	ol as a Functions of Regional Atmospheric Changes	22
	2.6.1	Aerosol Characteristic	22
	2.6.2	Types of Aerosol and Its Formation	24
	2.6.3	The Role of Aerosol in Microclimate	25
	2.6.4	Aerosol Studies in Remote Sensing Context	26
	2.6.5	Relationship between Atmospheric Aerosol and Visibility	28
	2.6.6	Water Vapor	30
2.7	Atmospheric Model		31
	2.7.1	Radiative Transfer Algorithm	31
	2.7.2	Atmospheric Correction Algorithm	33
	2.7.3	Atmospheric Model Types	35
		2.7.3.1 Rural Model	35
		2.7.3.2 Urban Model	36
		2.7.3.3 Maritime Model	36
		2.7.3.4 Desert Model	37
	2.7.4	Dark Target Subtraction	37

CHAPTER THREE: RESEARCH METHODOLOGY

3.1	Introduction		39
3.2	Study S	ites	39
	3.2.1	Kuala Lumpur	39
	3.2.2	Penang Island	39
3.3	Data Acquisition		42
	3.3.1	Imaging Data	42
	3.3.2	Software	49
3.4	Methodo	ology	49