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Abstract  

Vapor chambers can offer a passive heat spreading solution for thermal management in 

electronics applications ranging from mobile devices to high-power servers. The steady-state 

operation and performance of vapor chambers has been extensively explored. However, most 

electronic devices have inherently transient operational modes. For such applications, it is critical 

to understand the transient thermal response of vapor chamber heat spreaders and to benchmark 

their transient performance relative to the known behavior of metal heat spreaders. This study 

uses a low-cost, 3D, transient semi-analytical transport model to explore the transient thermal 

behavior of thin vapor chambers. We identify the three key mechanisms that govern the transient 

thermal response: (1) the total thermal capacity of the vapor chamber governs the rate of increase 

of the volume-averaged mean temperature; (2) the effective in-plane diffusivity governs the time 

required for the spatial temperature profile to initially develop; and (3) the effective in-plane 

conductance of the vapor core governs the range of the spatial temperature variation, and by 

extension, the steady-state performance. An experiment is conducted using a commercial vapor 

chamber sample to confirm the governing mechanisms revealed by the transport model; the 

model accurately predicts the experimental measurements. Lastly, the transient performance of a 
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vapor chamber relative to a copper heat spreader of the same external dimensions is explored as 

a function of the heat spreader thickness and input power. The mechanisms governing the 

transient behavior of vapor chambers are used to explain the appearance of key performance 

thresholds beyond which performance is superior to the copper heat spreader. This work provides 

a foundation for understanding the benefits and limitations of vapor chambers relative to metal 

heat spreaders in transient operation and may inform the design of vapor chambers for improved 

transient performance. 

 

Keywords: transient, vapor chamber, heat pipe, heat spreader, transport mechanisms 

 

Nomenclature 

A, B1, B2, C1, C2 temperature measurement locations 

Cp specific heat capacity [J kg-1 K-1] 

h convection coefficient [W m-2 K-1] 

hfg specific enthalpy of vaporization [J kg-1] 

K permeability [m2] 

k thermal conductivity [W m-1 K-1] 

MVC-Cu transient performance of a vapor chamber relative to a copper spreader 

m  mass flux rate [kg m-2 s-1] 

P pressure [Pa] 

Q input power [W] 

R specific gas constant [J kg-1 K-1] 
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T temperature [K] 

Tsat saturation temperature [K] 

T ambient temperature [K] 

t time [s] 

u x-component of velocity [m s-1] 

V  velocity vector [m s-1] 

v y-component of velocity [m s-1] 

w z-component of velocity [m s-1] 

x x-coordinate (length) direction [m] 

y y-coordinate (width) direction [m] 

z z-coordinate (thickness) direction [m] 

Greek  

vap vapor-core thickness [m] 

 temperature relative to the ambient (T-T) [K] 

µ viscosity [Pa s] 

 density [kg m-3] 

 accommodation coefficient [-] 

 porosity [-] 

Subscript  

A thermocouple location A 

B-C difference in values between thermocouple locations B and C 

Cu copper spreader 
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avg average surface based on the 5 thermocouple location measurements 

eff effective wick property 

int wick–vapor interface 

l liquid phase 

m volume-averaged 

p evaporator maximum 

p-m difference in value between evaporator maximum and volume-averaged 

VC vapor chamber 

vap vapor core 
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1. Introduction  

A vapor chamber is a phase-change-driven passive heat spreading device. A typical design 

consists of a hollow chamber with a liquid-saturated porous wick lining its inner surface 

enclosing a central vapor core. The operation of a vapor chamber is illustrated in Figure 1. A 

localized heat input on the outer surface of the chamber is conducted through the wall causing 

evaporation at the wick-vapor interface. Localized vapor generation causes vapor to flow away 

from the heat input and into the vapor core. The vapor condenses onto the opposing (colder) 

wick-vapor interface, and the heat is rejected from the condenser surface. Capillary forces in the 

porous wick draw the condensed liquid back towards the heat input region, enabling continuous 

passive operation. 

Heat spreading provides a critical function in the thermal management of electronic devices 

that has, in part, allowed engineers to develop systems operating at ever higher heat loads and 

densities. Vapor chambers have been extensively studied for this purpose, with potential 

applications ranging from the low powers (< 10 W) in mobile electronic devices, to the high 

fluxes (> 500 W/cm2) in radar power amplifiers and high-performance computing systems [1]. 

Tight space constraints and the need for spreading of transient heat loads are common in these 

applications. For example, mobile electronic devices experience low heat loads during idle 

operation with intermittent high-power bursts to execute functions such as video recording; the 

internal thickness allotted for thermal management and heat spreading is less than a millimeter.  

Previous work in the design of vapor chambers has focused on improving their steady-state 

thermal performance [2–10]. Many studies have identified the important transport mechanisms in 

a vapor chamber operating at steady state and accordingly proposed designs to improve 

performance under these conditions. Prasher et al. [11] developed a resistance-network-based 
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model for heat pipes, in which the transport processes in the different sections of the wall, wick, 

and vapor core are assigned thermal resistances. This model reveals that the resistance across the 

evaporator wick is most significant for vapor chambers subjected to localized, high-heat-flux 

inputs. Hence, considerable design efforts [5–10, 12–19] have been targeted at achieving a low 

resistance during evaporation or capillary-fed boiling in this region of the wick. Recent work by 

Yadavalli et al. [20] revealed the performance-governing mechanisms for thin vapor chambers 

operating at low powers; at extremely low thicknesses, the thermal resistance in the vapor core 

was shown to limit the vapor chamber performance relative to metal heat spreader. This 

understanding was used in our previous studies for designing the condenser-side wick [4] and 

selecting the working fluid [21] in ultra-thin vapor chambers, for low-power, hand-held 

applications. 

Several studies have considered the transient behavior of heat pipes and vapor chambers. El-

Genk and Lianmin [22] experimentally studied the heat-up and cool-down of a heat pipe under a 

range of evaporator-side input powers and condenser-side coolant flow rates, concluding that the 

transient vapor temperature profiles could be locally represented by an exponential function in 

the cases investigated. Tournier and El-Genk [23] developed a finite-volume-based model to 

simulate the mass, momentum and thermal transport in the vapor chamber wick to predict 

pooling of the liquid phase at the condenser. Zhu and Vafai [24] developed a model for heat 

spreading from a central heater in disk-shaped and rectangular vapor chambers. The analytical 

model solved for 1D transient conduction in the vapor chamber wall and wick while the quasi-

steady vapor hydrodynamics was modeled using an assumed spatial velocity profile. The model 

was used to simulate the startup process of a vapor chamber in terms of the transient temperature 

and velocity fields. Harmand et al. [25] developed a finite-volume-based transport model to 
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predict the transient behavior of rectangular vapor chambers. The model was validated against 

experiments, and the model capabilities were then demonstrated under several different heating 

configurations (spatial and temporal). These transient analyses of vapor chambers and others in 

the literature ([26–30]) do not attempt to identify the key transport mechanisms that govern the 

transient response of the vapor chamber. The goal of the current study is to extract an 

understanding of these transient governing mechanisms in vapor chambers relative to transient 

conduction in solid metal heat spreaders, so as to facilitate rational design of vapor chambers for 

improved relative transient performance. 

In this work, our time-stepping analytical model for vapor chamber transport [31] is used to 

simulate the transient behavior of a vapor chamber and a solid copper heat spreader. Comparison 

of the temporal temperature fields in the two devices is used to identify and understand the key 

mechanisms that govern the transient behavior and performance of vapor chambers. Experiments 

are conducted with a commercial vapor chamber and compared to predictions from the model to 

demonstrate the key governing mechanisms identified. Lastly, the transient performance of a 

vapor chamber relative to a copper heat spreader of the same external dimensions is explored as 

a function of two key parameters, namely the heat spreader thickness and input power. 

Thresholds are identified beyond which the vapor chamber offers improved performance relative 

to the copper heat spreader. The relationship between the key governing mechanisms and the 

transient performance thresholds is established. 

 

2. Time-stepping analytical model for vapor chamber transport 

The time-stepping analytical model we previously developed [31] is used for simulating 

vapor chamber transient behavior. This 3D transient transport model can be used for simulating 
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rectangular geometries of the vapor chamber wall, wick, and vapor core, in a configuration 

where the wick lines the inner surface of the wall and encloses the vapor core as shown in Figure 

1. The model allows arbitrarily shaped and located time-varying heat inputs to be specified on 

the faces. The mass, momentum, and energy transport are solved in the wall, wick, and vapor 

core of the vapor chamber. The phase change process is simulated at the wick-vapor interface. 

The model outputs are 3D transient fields of temperature, pressure and velocity. 

The governing equations for the mass, momentum and energy transport, before 

simplification, are given below. 

 0
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 (3) 

In the vapor core, the porosity   is 1 and the permeability K is ∞. For the wick, effk is the 

effective conductivity of the porous medium, while in the wall and vapor core, effk  corresponds 

to the respective material thermal conductivity. For the wick and the vapor core, ( )P l
C is the 

fluid volumetric heat capacity, while for the wall, ( )P l
C is set to zero; ( )P eff

C is the effective 

volumetric heat capacity of the three regions, given by: 
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for the wick, ( ) ( ) ( )( )1P P Peff l s
C C C    = + − , 

for the wall, ( ) ( )P Peff wall
C C = , and 

for the vapor core, ( ) ( )P Peff vap
C C = , 

where ( )P s
C  is the volumetric heat capacity of the solid material of the porous wick. 

The mass flux rate due to phase change at the wick–vapor interface is evaluated using the 

difference between the local interface temperature and the local vapor-core saturation 

temperature [32] as: 

 ( )
0.5

1.5

2 1

2 2

fg vap

int sat

vap

h
m T T

RT



 

 
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−  
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The value of σ is chosen to be 0.03 [33]. The saturation temperature in the vapor core is 

computed using the Clausius-Clapeyron equation 

 
2

vap fg vap

sat sat

dP h P

dT RT
= . (5) 

The model simplifies the governing equations using scaling analysis and assumed 

temperature profiles along the thickness to allow solution at low computational cost [31]. The 

errors introduced by these simplifications, in terms of the temperature and pressure fields, were 

estimated to be low for cases ranging from low- to high-power applications. The final set of 

differential equations (see [31]) are solved analytically in space and numerically in time. This 

time-stepping analytical model was validated against a finite-volume-based numerical model for 

cases at low and high powers. The computational cost was shown to be 3-4 orders of magnitude 

lower than the finite-volume based model, without significant loss of generality and accuracy. 



10 

 

This time-stepping analytical model is chosen for the current study as it allows a large 

number of cases to be evaluated over a wide range of parameters at a tractable computational 

cost. Simulations are run using a custom script that implements the model in the commercial 

software MATLAB [34]. 

 

3. Mechanisms governing vapor chamber transient behavior 

3.1 Numerical simulation case details 

A vapor chamber and a copper spreader of identical external geometry are simulated to 

observe their transient response to a step heat input. A comparison of these two cases is used to 

obtain insight into the mechanisms governing the behavior of the vapor chamber. 

Heat spreading in a vapor chamber can occur through vapor spreading in the vapor core, heat 

diffusion in the wick, and heat diffusion in the solid walls. The heat diffusion in the wick is 

negligible compared to the other processes and hence is neglected in the model [31]. In this 

demonstration, the vapor chamber has walls of negligible thickness. Taking a case where the wall 

thickness is negligible allows heat spreading in the vapor core, the mechanism specific to vapor 

chambers, to be isolated. This creates a stark contrast between the vapor chamber and the copper 

spreader behavior, which helps in distinguishing the unique mechanisms governing the transient 

response of the vapor chamber from the commonly understood mechanism of thermal diffusion 

in solids. 

The geometry and boundary conditions of the simulated vapor chamber and copper spreader 

are shown in Figure 2. The heat spreaders have a rectangular footprint with a length of 80 mm 

and a width of 60 mm; the total thickness is 100 μm. In the vapor chamber, the vapor core has a 

thickness of 40 µm, and the two wicks (evaporator-side and condenser-side) have thicknesses of 
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30 µm each, and span the entire footprint area. The vapor chamber has a sintered copper wick. 

Water is used as the working fluid. The properties of water are obtained from the commercial 

fluid database software REFPROP [35]. The relevant properties of the wick and copper are in 

Table 1. 

The heat spreader (vapor chamber or copper) is subjected to a heat input Q of 4 W, over a 10 

mm × 10 mm square at the center of the evaporator-side face, starting at t = 0 s. The rest of this 

evaporator-side face is insulated. The opposite condenser-side face has a convective boundary 

condition with a convection coefficient h of 30 W/m2K and an ambient temperature T of 300 K. 

The heat spreader is initially (t = 0 s) at a temperature of 300 K. A time step of 0.2 s is used for 

the time-marching. 

 

3.2 Analysis of the transient thermal response 

Figure 3a shows the temperature response at the center of the evaporator face relative to the 

ambient, for the vapor chamber and the copper spreader. This peak temperature θp in the domain 

characterizes the effective overall transient thermal resistance of the heat spreader. For the 

copper spreader, the peak temperature starts at θp = 0 K at t = 0 s and increases gradually toward 

a steady state (θp = 54.2 K at t = 50 s). For the vapor chamber, the temperature increases more 

sharply from θp = 0 K, reaches a peak at t = 1.8 s, and gradually reduces toward a steady state (θp 

= 39.7 K at t = 50 s). To understand the mechanisms underlying this non-intuitive behavior of the 

vapor chamber, the peak temperature response can be decomposed into the mean (volume-

averaged) temperature θm, and the difference between the peak and mean temperatures, Δθp-m = 

θp - θm (i.e., peak-to-mean difference). 
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The mean temperatures θm of the vapor chamber and the copper spreader, plotted in Figure 

3b, both gradually increase from θm = 0 K at t = 0 s toward a steady state. Note that at steady 

state, given that an equal amount of power is rejected from the condenser to the ambient in the 

case of both heat spreaders via identical convective coefficients, the area-averaged condenser-

surface temperature is the same for both. Also, due to the minimal temperature variation across 

the thickness, the mean temperature θm of both heat spreaders becomes nearly equal at steady 

state. The rate of increase of this mean temperature θm is governed by the mechanism identified 

as the total thermal capacity of the heat spreader; the vapor chamber temperature increases faster 

and reaches a steady state sooner than for the copper spreader. This reflects the lower total 

thermal capacity of the vapor chamber compared to the copper spreader. The total thermal 

capacity of the vapor chamber is a volume-weighted sum of the thermal capacities of the wick 

and vapor core. The volumetric thermal capacity of the wick is similar to that of pure copper 

(4.17×106 J/m3K for water and 3.42×106 J/m3K for copper) while the thermal capacity of the 

vapor is negligibly small. Hence, the volume occupied by the vapor core reduces the total 

thermal capacity of the vapor chamber compared to a copper spreader, and the volume-averaged 

mean temperature θm of the vapor chamber increases faster than that of the copper spreader. 

The peak-to-mean temperature difference (Δθp-m) is plotted as a function of time in Figure 3c 

for both heat spreaders. For the copper spreader, this temperature difference increases up to a 

constant value of Δθp-m = 27 K within a short time period of t < 4.4 s, relative to the time to 

steady state for the evaporator peak temperature of ~50s (Figure 3a). During the initial period 

before t = 4.4 s, the spatial temperature distribution within the copper spreader is developing via 

heat diffusion from the heater location in the outward direction. This can be observed in Figure 

4a, which shows the profile of the local temperature difference from the mean (θ - θm) along a 
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line on the evaporator-side surface of the copper spreader (dashed line in Figure 2) at different 

times. At t = 0.4 s, the initial rise in the temperature is limited to a region near the evaporator and 

the profile is flat (near the initial temperature) outside this region. At a later time of t = 3.2 s, the 

temperature over the entire length of the surface changes from the initial value. After t = 3.2 s, 

the temperature profile θ - θm is invariant in time. The time required for θ - θm to develop to this 

steady profile is governed by the mechanism identified as the effective in-plane diffusivity in the 

copper spreader, while the constant value of Δθp-m = 27 K (Figure 3c) after the initial period is 

governed by its effective in-plane conductance. For the copper spreader, the effective in-plane 

diffusivity is simply the thermal diffusivity of copper and the effective in-plane conductance is 

proportional to the thermal conductivity of copper and the thickness of the spreader. 

The peak-to-mean temperature difference Δθp-m of the vapor chamber (Figure 3c) also goes 

through an initial period (t < 1.8 s) where it rapidly increases. After this period, unlike for the 

copper spreader, Δθp-m gradually reduces with time for the vapor chamber, reaching a steady-

state value at a time similar to that for the volume-averaged temperature (Figure 3b).  

Investigating the profile of the temperature θ - θm on the evaporator-side of the vapor chamber in 

Figure 4b, at time t = 0.4 s within the initial period, the rise in the temperature is limited to a 

region near the evaporator and the profile is flat (near the initial temperature) outside this region, 

as in the case of the copper spreader. At time t = 3.2 s, the temperature over the entire evaporator 

length has changed from the initial value. The time required for θ - θm to develop to such a 

profile is governed by the effective in-plane diffusivity of the vapor chamber. In the case of the 

vapor chamber, this effective-in plane diffusivity is like the ratio of the effective in-plane thermal 

conductivity of the vapor core and the volumetric capacity of the wick. The similarity in time 

taken for the development of the θ - θm profile for the copper spreader and the vapor chamber 



14 

 

indicates that they have a similar effective in-plane diffusivity for this case. However, at later 

times after t = 3.2 s, the θ - θm  profile (Figure 4b) flattens with increasing time, indicating that 

the effective in-plane conductance increases with time for the vapor chamber, unlike the constant 

value for the copper spreader. For the vapor chamber, the effective in-plane thermal conductance 

goes as the product of the effective in-plane thermal conductivity and the thickness of the vapor 

core. The effective in-plane conductivity of the vapor core is governed by the saturation pressure 

gradient in the vapor core due to vapor flow; the temperature dependence of the fluid properties 

causes the saturation pressure/temperature gradient to decrease as the mean temperature θm 

increases with time. 

In summary, the above inspection of the transient temperature profiles reveals three key 

mechanisms governing the transient thermal behavior of a vapor chamber: 

1) the total thermal capacity of the vapor chamber governs the rate of increase of the 

volume-averaged mean temperature, θm; 

2) the effective in-plane diffusivity governs the time required for the spatial temperature 

profile, θ - θm, to initially develop; 

3) the effective in-plane conductance of the vapor core governs the magnitude of the spatial 

variation of temperature Δθp-m, and by extension, the steady-state performance. 

 

4. Experimental demonstration and comparison with the model 

4.1 Experimental facility and procedure 

A transient heat spreading experiment is conducted with a thin, commercial vapor chamber. 

The transient temperature field is characterized in response to a step heat input to demonstrate 
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and confirm the key mechanisms identified in Section 3.2. A photograph of the 150 mm-long, 8.5 

mm-wide, and 1.8 mm-thick vapor chamber (Novark Technologies) is shown in Figure 5a. 

Figure 5c illustrates the experimental test setup, which is designed to isolate the vapor 

chamber from any object having a significant thermal capacity that would affect the transient 

heat transport behavior. This approach enables a direct comparison against the model without the 

confounding effects of external thermal masses. 

The vapor chamber is suspended from posts using thin (0.2 mm diameter) steel wires looped 

around each end. The posts are spaced 130 mm apart in the direction along the heat spreader 

length and 95 mm apart in the transverse direction. The vapor chamber is suspended 130 mm 

above an optical breadboard. A central 8.5 mm length of the vapor chamber is wrapped tightly 

with a sheathed nichrome wire (90% Ni, 10% Cr; 5 ohm); thermal grease (Tgrease880, Laird 

Technologies) is applied between the heat spreader surface and the heater wire.  A 30 V, 3 A 

power supply (GPS-2303, Gw Instek) is attached to the nichrome heater using lead wires. The 

vapor chamber rejects heat to the ambient via natural convection. The setup is isolated from 

ambient air currents using a 300 mm-long, 200 mm-wide, and 320 mm-tall rectangular enclosure 

which is open at the top.  

Temperatures on the surface of the vapor chamber are measured using T-type thermocouples. 

The locations of these temperature measurements are shown in Figure 5b. Location A is in the 

center of the heated region, locations B1 and B2 are 15 mm from the ends of the heated region, 

and C1 and C2 are 40 mm from the ends of the heated region. The temperature at the heater 

(location A) is measured by inserting the thermocouple bead between the wrapped nichrome wire 

and the heat spreader. All other temperatures are measured by pressing the thermocouple beads 

into contact with the surface using a small piece of copper foil adhesive tape, taking care to avoid 
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any stress on the wire. The thermocouples are wired to a reference junction maintained at 0 °C 

(CL122, Omega). The ambient temperature and the reference temperature are measured using 

RTDs. The current through the nichrome heater is measured using a shunt resistance (0.01 ohm) 

placed in series; the potential difference across the heater is measured directly. Data are collected 

and recorded via National Instruments (NI) LabVIEW software at a rate of 3 Hz using a data 

acquisition chassis (NI cDAQ-9178) outfitted with modules for thermocouple (NI 9214), voltage 

(NI 9219), and RTD (NI 9217) measurement inputs. 

The thermocouples are all simultaneously calibrated over a temperature range of 30 °C to 100 

°C in steps of 10 °C using a dry block calibrator (Jupiter 4852, Isotech). The calibration 

temperature is measured using an RTD. A linear offset from the NIST ITS-90 standard is fitted to 

the calibration data for each thermocouple. The thermocouple temperature measurements have 

an uncertainty of ± 0.3K after this calibration procedure [36]. 

Initially, the vapor chamber temperature (at all 5 thermocouple locations) is at the ambient 

value. At t = 0, a heat input of 3 W is imposed by turning on the power supply through the 

control panel. The temperature measurements are recorded till the temperature at location A 

reaches a steady state. 

4.2 Replication of the experimental conditions in the model 

A comparison between the experiment and the time-stepping analytical model is established 

by simulating a vapor chamber of the same length and width as the sample tested in the 

experiments (150 mm length and 8.5 mm width). The vapor chamber wall has a thickness of 200 

µm to match that of the sample tested. The layout of the wick in the vapor chamber tested does 

not match with that in the model, i.e. the wick in the vapor chamber tested does not line the inner 

surface of the wall. Also, the fluid charge volume in the vapor chamber is unknown. Hence, the 
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thicknesses of the wicks and the vapor core are estimated inputs to the model to create an 

equivalent case as the tested sample. The wick, which lines the inner surface of the top and 

bottom walls of the simulated case, has thickness set to 250 µm each, such that the volume of the 

wick matches that in the physical sample. The wick primarily contributes to the total thermal 

capacity of the vapor chamber, which drives this method for setting the wick thicknesses. The 

vapor core thickness is set to 150 µm to match the experimental and simulated maximum 

transient value of the difference between the temperatures at locations B and C. This assumption 

is justified because the vapor core thickness primarily governs the in-plane temperature 

variations in the vapor chamber. The wall material is copper. A sintered copper wick is used with 

an assumed value of 0.6 for the porosity. Water is used as the working fluid as in the vapor 

chamber sample. Step heat inputs of 1.5 W each are applied at the center of the top and bottom 

faces of the heat spreaders, totaling to a 3 W input, over a square heated region of 8.5 mm × 8.5 

mm. The remaining areas of the two faces reject heat to the ambient using a natural convection 

condition. The convection coefficient is computed based on the local wall temperature using 

empirical correlations [37]. The empirical correlations are defined for heated plates exposed only 

on one side. Hence the computed convection coefficient is multiplied by a constant factor to 

account for the different boundary conditions in the experiment. The factor is calibrated such that 

the average surface temperature (Tavg), at steady state, matches between the experiment and the 

simulation. The average surface temperature (Tavg) is computed by fitting lines between 

neighboring thermocouple location temperature measurements (C1–B1, B1–A, A–B2, B2–C2) 

and taking a constant value from the C locations to the length-wise ends of the heat spreader, 

equal to the corresponding C location temperature measurement. The ambient temperature is an 
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input to the model from the experiments, and the heat spreader is initialized at a uniform 

temperature equal to the ambient temperature. 

4.3 Comparison of experiments and simulations 

The step input power supply in the experiment is turned on at t = 0 s; the power increases 

from 0 to 3.0 W in 1.33 s. The transient temperatures θ, measured at the thermocouple locations, 

are plotted in Figure 6 for the vapor chamber. The ambient temperature is 24.3 °C. The 

temperatures gradually increase from the ambient temperature to steady-state values.  

Figure 7 and Figure 8 compare the results from the experiment with results from the 

simulation. The data presented in these figures follow the layouts of Figure 3 and Figure 4, 

respectively, and are used to confirm the governing mechanisms identified in Section 3.2.  

Figure 7a plots the transient variation of the temperature at location A relative to the ambient 

(A), indicative of the evaporator temperature. There is a good match between the experiment 

and simulation for this common metric of vapor chamber performance. Figure 7b plots the 

transient variation of the average surface temperature of the vapor chamber (defined in Section 

4.2) relative to the ambient temperature (avg = Tavg - T). The match between the experiment and 

simulation indicates that the simulation accurately models the total thermal capacity of the vapor 

chamber, which governs the transient variation of avg as discussed in Section 3.2. Figure 7c plots 

the transient variation of the length-wise temperature variation in the vapor chamber. The length-

wise temperature variation is represented by the average difference between the temperatures at 

locations B and C (  – 2–B1 C1 B2 C2B-C    + = ). As was identified for the transient spatial 

temperature variation in Figure 3c, the value of B-C in Figure 7c increases sharply, and then 

gradually reduces towards a steady state, for both the experiment and the simulation. The time 

required for the value of B-C to peak, governed by the effective in-plane diffusivity of the vapor 
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chamber, is on the same order between the experiment and the simulation. Also, the transient 

profile of B-C after the peak, governed by the effective in-plane conductance of the vapor core, 

matches well between the experiment and the simulation, all the way till a steady state is 

attained. Note that the peak value of this transient profile is used to calibrate the vapor-core 

thickness in the simulation, as discussed in Section 4.2.  

Figure 8a and b show, for the experiment and the simulation respectively, the temperature 

difference from the surface average ( - avg) at the 5 thermocouple locations at different times. 

Similar to the trends in the transient temperature profile observed in Figure 4b, the temperature 

first increases in the near-heater region, followed by the outer region, for an initial period of time 

(t = 1–4 s in Figure 8). At later times (t = 4–30 s in Figure 8), the profile of  - avg gradually 

flattens with time. A video showing the transient variation of  - avg at the 5 thermocouple 

locations in the experiment, plotted along with the simulated  profile of  - m along the length of 

the vapor chamber, is included in the supplementary material. The match of these trends between 

the experiment and simulation further verifies that the effective in-plane diffusivity and effective 

in-plane conductance govern the development of the spatial temperature profile. 

5. Transient vapor chamber performance relative to a copper spreader 

5.1 Dependence of relative transient performance on time scale 

In this section, the performance of a vapor chamber is benchmarked against a copper 

spreader of the same external geometry. The performance is strongly dependent on time scale, 

with multiple crossovers in the peak temperature between the two spreaders for the chosen case. 

The reasons for this complex comparative behavior are discussed based on the relative 

magnitudes of the governing mechanisms underlying the transient thermal behavior. This 
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discussion serves as a basis for description to follow of the effects of parameters on the relative 

performance between the two spreaders (to be discussed in Section 5.2). 

The case details for these simulations are the same as considered in Section 3.1, and have a 

zero wall thickness, with the only difference being that the vapor core thickness is increased 

from 40 µm to 200 µm. Time step sizes of 0.02 s and 0.1 s are used respectively for t < 2 s and t 

> 2 s. 

Figure 9a shows the peak temperature p as a function of time for the vapor chamber and the 

copper spreader. The plot indicates multiple crossovers between the temperatures. Figure 9b 

shows the corresponding mean temperature m, and Figure 9c the peak-to-mean temperature 

difference p-m. In Figure 9b the mean temperature m is seen to increase faster for the vapor 

chamber than the copper spreader, owing to its lower total thermal capacity. Figure 9c indicates 

that for time t > 0.16 s, p-m is much lower for the vapor chamber than the copper spreader, 

reflecting a higher effective in-plane conductance for the vapor chamber. The higher effective in-

plane conductance and lower total thermal capacity implies that the vapor chamber has a higher 

effective in-plane diffusivity. As a result, p-m increases faster in the vapor chamber in its initial 

diffusion period (t < 0.1 s), as seen in Figure 9c. The lower effective in-plane conductance of the 

copper spreader, on the other hand, results in p-m increasing to a higher value after its initial 

diffusion period. This causes a crossover in p-m at t = 0.2 s, and a corresponding crossover in 

the p profile as well. Because the vapor chamber m increases faster than that of the copper 

spreader, another crossover in p occurs at 4.9 s. At steady state (not seen in Figure 9), the value 

of m eventually becomes almost the same for both spreaders and hence the value of p is 

governed only by p-m. Given the higher value of p-m at steady state for the copper spreader, 
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its p value also is higher than the vapor chamber. This behavior leads to the third crossover at t 

= 29.4 s. 

The existence of these crossovers between the copper spreader and vapor chamber peak 

evaporator temperature p indicates that the choice of heat spreaders is highly dependent on the 

time scale of interest. The existence of the multiple crossovers, versus the single crossover in 

Figure 3, merits the parametric study that follows. 

5.2 Effects of key parameters on the transient performance  

This section investigates the dependence of vapor chamber performance, relative to a copper 

spreader of equal external dimensions, on the vapor core thickness and input power. The 

governing mechanisms are sensitive to these two key parameters.  

Generally, the total thermal capacity of the vapor chamber is lower than the copper spreader, 

due to the very low thermal capacity of the vapor core; this contrast increases with increasing 

vapor core thickness. The effective in-plane conductance of the vapor core increases 

polynomially with thickness, as has been identified in our previous work [21], versus a linear 

increase with thickness for the copper spreader. These trends imply that the effective in-plane 

diffusivity of the vapor chamber (which can be understood as the ratio of the effective in-plane 

conductivity of the vapor core and the volumetric capacity of the wick as identified in Section 

3.2) relative to the copper spreader also increases with vapor-core thickness. The vapor core 

effective in-plane conductance also increases with increasing mean temperature due to the 

temperature-dependence of the vapor properties; hence, as the mean temperature increases with 

time, so does the effective in-plane conductance. Note that the mean temperature of the vapor 

chamber in the transient regime is always higher due to its lower total thermal capacity compared 

to the copper spreader. 
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Figure 10a (with details at short time-scales shown in Figure 10b) maps the relative transient 

performance for a range of vapor-core thicknesses as a function of time. The case details for 

these simulations are the same as described in Section 3.1, except for the vapor core thickness. 

The evaporator is subjected to a heat input of 4 W. A time step of 0.1 s is used for the time 

marching. 

The relative performance is presented using a metric defined as 
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where p,VC and p,Cu correspond to the peak evaporator temperatures of the vapor chamber and 

the copper spreader, respectively. A value of zero for MVC-Cu corresponds to equal performance 

for both heat spreaders; this performance threshold is shown in white on the contour scale in 

Figure 10a and Figure 10b. A positive value, shown in blue, indicates the vapor chamber 

performs better while a negative value, shown in red, indicates the copper spreader performs 

better. 

Regions on the contour maps in Figure 10a and Figure 10b are identified by numbers 1 to 6 

and the governing mechanisms responsible for relative performance in these regions are 

explained here. In region 1 the vapor-core thickness is small enough that its effective in-plane 

conductance at all times through steady-state is less than that of the copper spreader, causing a 

high p-m. Given that the vapor chamber also always has a higher m than the copper spreader, 

the vapor chamber performs worse in this region. This trend was previously identified in the 

steady-state analysis conducted by Yadavalli et al. [20]. Region 2 also exists due to this lower 

effective in-plane conductance. However, it extends to higher thicknesses, because at shorter 

times, low temperatures lead to lower values of effective in-plane conductance for the vapor 
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chamber. Region 3 corresponds to the initial diffusion period; the vapor chamber performs worse 

because the higher effective in-plane diffusivity of the vapor chamber leads to a faster effective 

in-plane diffusion process and hence a faster initial increase in temperature. The vapor chamber 

performs better than the copper spreader in region 4 due to its high effective in-plane 

conductance due to the vapor core. At these early times, the mean temperatures of the vapor 

chamber and copper spreader have not yet risen much above ambient, and the differences in 

performance are instead attributed to the peak-to-mean temperature difference p-m, which is 

governed by the vapor core effective in-plane conductance. In region 5, the vapor chamber mean 

temperature m increases faster than that of the copper spreader due to its relatively low total 

thermal capacity, causing worse relative performance. With increasing vapor core thickness, the 

total thermal capacity of the copper spreader increases, which heats up slower, and the right-side 

border of region 5 extends to a higher time. At the later times in region 6 (extending to steady 

state), the values of m are similar for both spreaders. However, the vapor chamber has a higher 

effective in-plane conductance than the copper spreader, leading to a lower p-m and hence 

better performance. 

Contour maps of the performance of the vapor chamber relative to the copper spreader are 

plotted in supplementary materials (Appendix A) for two more conditions; the first accounts for 

the effects of including the vapor chamber walls, and the second accounts for a high heat input of 

100 W.  Adding a wall primarily dampens the contrast between the performance of the vapor 

chamber and the copper spreader. In the second case, region 4 disappears. 

In Figure 10c and Figure 10d, the effects of input power on the relative transient performance  

are explored for a range of vapor core thicknesses; the contour shading is omitted from the maps 

and instead the threshold lines (MVC-Cu = 0) are drawn as solid lines for each power level. 
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Increasing the input power increases the entire temporal profile of the mean temperature m, and 

hence the vapor core effective in-plane conductance. This is the primary cause behind the 

changes in the relative performance thresholds with increasing power, which generally expand 

the size of the operating regions in which the vapor chamber performance is better than copper. 

Identification of these mechanistic performance thresholds is critical for understanding the 

use conditions under which vapor chambers are favorable relative to copper spreaders. For 

steady-state design, there is a single threshold value at some vapor-core thickness at which this 

distinction is possible, as had been previously identified from steady-state analysis [20]. In the 

transient regime, however, we reveal that the time scale of operation is critical in determining the 

non-trivial and unintuitive trends in relative performance. For example, for the case investigated 

in Figure 10a and Figure 10b, for vapor core thicknesses in the range of 50-100 µm, the use of a 

vapor chamber is favorable only for time-scales that are much longer than 5 s. For vapor-core 

thicknesses in the range of 200-300 µm use of vapor chambers is favorable for time scales less 

than 2-4 s or greater than 30-50 s, but not in between. These results demonstrate that the existing 

design norms regarding the relative advantage of vapor chambers over metal spreaders, 

developed on the premise of steady operation and associated analyses, are insufficient. A more 

complex set of design criteria emerges from these transient thresholds that must be considered in 

the implementation of vapor chamber heat spreaders for thermal management in applications 

having transient power variations. 

 

6. Conclusions 

The mechanisms governing the transient thermal response of a vapor chamber are identified 

using a low-cost, 3D, and transient vapor chamber transport model. Conclusions from this 
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analysis are corroborated with experiments conducted using a commercial vapor chamber. The 

vapor chamber transport model is used to compare the transient thermal response of a vapor 

chamber with that of a solid copper spreader. The performance of both heat spreader types is 

analyzed based on the peak evaporator temperature. The decomposition of this temperature into 

its key components, namely the volume-averaged mean temperature and the peak-to-mean 

temperature difference, leads to the identification of three key mechanisms that govern the 

transient thermal response of vapor chambers: (1) the total thermal capacity of the vapor 

chamber governs the rate of increase of the volume-averaged mean temperature θm, (2) the 

effective in-plane diffusivity governs the time required for the initial development of the spatial 

temperature profile θ - θm, and (3) the effective in-plane conductance of the vapor core governs 

the magnitude of the spatial variation of temperature Δθp-m, and by extension, its steady-state 

performance.  

The vapor chamber transport model is also used to benchmark the transient performance of a 

vapor chamber against a solid copper spreader for a range of vapor-core thicknesses and input 

powers. The relative performance of a vapor chamber strongly depends on the operating 

parameters and the time scale of operation. Relative performance is mapped over the parameter–

time space and regions are identified in which the vapor chamber performs better (or worse) than 

the copper spreader; reasons for the existence of these regions are explained based on the 

governing mechanisms. 

This work serves as a foundation in understanding the benefits and limitations of using vapor 

chambers for thermal management under transient conditions and for designing vapor chambers 

for improved transient performance. 
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Table 1. Copper and wick properties. 

 

Property Value 

Wick effective thermal conductivity (keff) 40 W/mK 

Copper volumetric thermal capacity 

( )P s
C  

3.42×106 J/m3K 

Wick porosity ( ) 0.6 

Copper thermal conductivity (k) 387.6 W/mK 

 

  



32 

 

 

Figure 1. Illustration of the typical geometry, internal layout, and operation of a vapor chamber. 
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Figure 2. Geometry (not to scale) and boundary conditions for the transient heat spreading 

simulations showing (a) a section view for the copper spreader case, (b) a section view for the 

vapor chamber case, and (c) a bottom view of the evaporator-side that is common to both cases. 
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Figure 3. Comparison between the vapor chamber and the copper spreader simulation results 

(vap = 40 µm) showing the temporal variation of the (a) peak temperature θp, (b) volume-

averaged mean temperature θm, and (c) difference between the peak and mean temperatures Δθp-m 

= θp - θm. 
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Figure 4. The profile of local temperature difference from the mean (θ - θm) along a line on 

the evaporator-side surface of the heat spreader (dashed line in Figure 2c) at different times, for 

(a) the copper spreader and (b) the vapor chamber. Note the different scales of the vertical axis 

for (a) and (b). 

  

 



36 

 

 

Figure 5. (a) Photograph of the vapor chamber sample in top view, (b) diagram of the locations 

of the thermocouple beads and heated length, and (c) illustration of the experimental test setup. 
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Figure 6. Experimental measurements of the temperature θ at the five thermocouple locations as 

a function of time. 

  

 



38 

 

 
Figure 7. Comparison of the experiment and simulation: (a) temperature at thermocouple 

location A (A), (b) average surface temperature relative to the ambient temperature (avg), and 

(c) the average difference between the temperatures at B and C (B-C). 
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Figure 8. Vapor chamber local surface temperatures difference from the average surface 

temperature ( -avg) at the thermocouple locations at different times from (a) the experiment and 

(b) the simulation.  
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Figure 9. Comparison between the vapor chamber and the copper spreader simulation results 

(vap = 200 µm) showing the temporal evolution of (a) peak temperature θp, (b) volume-averaged 

mean temperature θm, and (c) difference between the peak and mean temperatures Δθp-m = θp - 

θm. 
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Figure 10. Contour plot of the metric for the thermal performance of a vapor chamber relative to 

a copper spreader (MVC-Cu), for a range of vapor core thicknesses, and as a function of time for 

(a) t < 100 s and (b) a zoomed-in view for t < 5 s. Threshold lines (MVC-Cu = 0) for the thermal 

performance of a vapor chamber relative to that of a copper spreader as a function of time for a 

range of vapor core thicknesses at different input powers in the range (c) t < 100 s and (d) a 

zoomed-in view for t < 5 s. 
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