Purdue University Purdue e-Pubs

Publications of the Ray W. Herrick Laboratories

School of Mechanical Engineering

9-2019

Sound Quality Evaluation of Refrigerated Truck Noise

Weonchan Sung Purdue University, sung26@purdue.edu

Patricia Davies *Purdue University*

J Stuart Bolton *Purdue University*, bolton@purdue.edu

Follow this and additional works at: https://docs.lib.purdue.edu/herrick

Sung, Weonchan; Davies, Patricia; and Bolton, J Stuart, "Sound Quality Evaluation of Refrigerated Truck Noise" (2019). *Publications of the Ray W. Herrick Laboratories*. Paper 212. https://docs.lib.purdue.edu/herrick/212

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

Sound Quality Evaluation of Refrigerated Truck Noise

<u>Weonchan Sung</u>, Patricia Davies, J. Stuart Bolton Ray W. Herrick Laboratories, School of Mechanical Engineering, West Lafayette, Indiana, Purdue University

Outline

- Goal and Motivation
- Research Overview and Findings
- Test 3 Overview
- Test 3 Results and Models
- Preliminary Model Validation
- Conclusions

Goal and Motivation

<u>Goal</u>

To develop models to evaluate sounds from HVAC&R equipment that can be used in product design optimization

Motivation

Current methods of evaluation need improvement

Background Literature (Metrics for HVAC&R/Engine Noise)

HVAC&R systems

- A-weighted SPL is related to an annoyance of the sound (Seybert *et al.,* 1973; Bradley, 1993)
- Loudness of the sound affects the preference/annoyance (Susini *et al.,* 2004; Sato *et al.,* 2006)
- Glasberg and Moore Loudness model (Glasberg and Moore, 2002)
- Sound Quality Indicator tone corrected loudness (ANSI/AHRI 1140, 2014)

• Fans

- Zwicker Loudness and annoyance highly correlated
- Tonalness of fan noise (Yamaguchi *et al.,* 2014)

Compressors

- Loudness and Sharpness affect annoyance (Wang, 1994; Cho et al., 2000; Park et al., 2012)
- Time varying sound pressure level affects annoyance (Wang, 1994)

Diesel Engine

- Loudness, roughness, and sharpness (Ingham *et al.*, 1999)
- Narrow band modulation analysis (Bodden and Heinrichs, 2005)
- Integrated Satisfaction Index (ISI) (Liu et al., 2015)

Generally, metrics related to the level were found, mostly A- weighted SPL and loudness used, sometimes with tone corrections A few impulsiveness related models, adapted to specific applications

Research Overview

- Discover how people describe HVAC&R sounds
 (Test 1 and 1A) – Ref. W. Sung, P. Davies, J.S. Bolton, Proceedings of Noise-Con 2017
- 2) How many independent attributes are present and how do they affect annoyance

(Test 2) – Ref. W. Sung, P. Davies, J.S. Bolton, Proceedings of INTER-NOISE 2017

- 3) Develop/validate residential unit models to predict annoyance (Test 3) – Ref. W. Sung, P. Davies, J.S. Bolton, Proceedings of INTER-NOISE 2018
- 4) Develop refrigerated truck unit models to predict annoyance (Test 3)
- 5) Validate refrigerated truck unit model performance

Research Overview

• Examined refrigerated truck and residential unit noise

Refrigerated Truck

Residential

Compressors, fans, diesel engine, motors,...

Compressors, fans, motors,...

Test 3 Procedure, Sounds, Subjects

Test 3 Procedure

- Overview of the test
- Consent form (Purdue IRB # 1507016324) & Questionnaire
- Hearing Test
- Listen to sounds for familiarization
- Read Test Scenario
- Practice Test
- MAIN TEST
- Comments
- Repeat Hearing Test

QUIET ROOM

- Payment

'While you are listening, it may be helpful to imagine yourself in your garden, at any time during the day or evening, hearing these sounds continuously'

Test 3 Sounds

Part A (Quieter Test, 50 sounds)

- Mostly residential + quieter refrigerated truck, recordings + modified sounds
- Familiarization (10 sounds) and Practice (2 sounds)

Part B (Louder Test, 50 sounds)

- Mostly refrigerated truck + louder residential, recordings + modified sounds (Loud)

Part B

Loudness [sone]

Part A

(Quiet)

50 45

35

25

15

- Familiarization (10 sounds) and Practice (2 sounds)

Part C (Wider Loudness Range Test, 50 sounds)

- Refrigerated truck + residential, recordings + modified sounds
- Familiarization (10 sounds) and Practice (2 sounds)

½ of subjects take Part A first and ½ of subjects take Part B first ## Group of 15 signals common to Part A, B, and C ## Total 120 sounds

Test 3 Sounds and Subjects

Test	Part	Sounds	Subjects			
Test 3	Part A (Quieter)	 50 Sounds 28 original, 22 modified 36 residential, 14 refrigerated truck 	60 Subjects (18 – 62) - Ave. age: 28.4 - Median age: 26.1 - 30 males, 30 females - 32 U.S., 25 Asia, 1 South			
	Part B (Louder)	 50 Sounds - 30 original, 20 modified - 11 residential, 39 refrigerated truck 				
	Part C (Wider Range)	 50 Sounds 19 original, 31 modified 24 residential, 26 refrigerated truck 	America, 2 Africa			
120 unique sounds, 15 sounds common to 3 parts						

Group 1: A(Quieter) \rightarrow B(Louder) \rightarrow C(Wider Range)

Group 2: B(Louder) \rightarrow A(Quieter) \rightarrow C(Wider Range)

Test 3 Results and Models

Test 3 Results : Average Annoyance Ratings

- Responses were affected by the order of the parts in the experiment
- Group 1 subjects tended to rate the louder sounds (Part B) slightly higher
- Group 2 subjects tended to rate the quieter sounds (Part A) slightly lower
- Both groups rated sounds in Part C similarly

Test 3 : Modeling the Average Annoyance Response

- Linear regression models
 - \rightarrow Examined 1, 2, and 3 metric models

- In Test 1, subject described sounds using words like 'hum', 'high frequency' and 'heavy tone', but sharpness and tonality metric models did not perform well
 - \rightarrow looked at thresholding metrics

 Test 3 models estimated using 79 refrigerated truck sounds from Parts A, B and C of test

Test 3 : Metric Modification / Thresholding

 Assume that sound quality metric value above certain level is significant in annoyance prediction

→ Sharpness Threshold = 2.5 acum, Tonality Threshold = 0.25 tu

Example Metric Adjustment

S _{A5}	S _{A5} – 2.5	S _{A5adj}
3.20	0.70	0.70
2.20	-0.30	0.00

Examined Metrics

Metric	Abbrevia -tion	Sound Characteristics	
Zwicker Loudness exceeded 5% of the time	N ₅	Level	
A/C weighted Sound Pressure Level	dBA, dBC		
Sound Quality Indicator	SQI*	Level, Tonalness	
DIN Tonality exceeded 5% of the time	T ₅ , T _{5adj}		
Tone-to-Noise Ratio	TNR	Tonalness	
Prominence Ratio	PR		
Aures' Tonality	AT		
von Bismark Sharpness exceeded 5% of the time	S _{VB5}		
Aures' Sharpness exceeded 5% of the time	S _{A5} , S _{A5adj}	Spectral Balance	
Heaviness (dBC – dBA)	Н		
Fluctuation Strength exceeded 5% of the time	FS_5	Fluctuations	
Roughness exceeded 5% of the time	R_5		
Kurtosis	K	Sharpness of the Peak	
Rate of change of the Loudness exceeded 2% of the time	RCL	Impulsiveness	

Test 3 : Annoyance Models' Predictions (Refrigerated Truck)

Test 3 : Annoyance Models' Predictions (Refrigerated Truck)

Models generated using responses in Parts A, B and C

Preliminary Validation of Model

Validation : Test 3 Refrigerated Truck Models Predicting Average Ratings of Residential Unit Sounds

- Part A
- × Part B
- △ Part C

RCL (rate of change of the loudness) is not significant in residential unit sound prediction

Validation : Test 3 Refrigerated Truck Best Model Predicting Average Ratings of Test 1 and Test 2 Refrigerated Truck Sounds

Annoyance ratings from Test 1 and Test 2 were predicted quite well

Conclusions

- Zwicker Loudness exceeded 5% of the time (N_5) performs very well in the models
- Adding a Sharpness metric with a threshold (S_{A5adj}) improved the accuracy
- Small but significant improvements were made by including a rate change of the loudness (*RCL*) metric
- Analysis shows that there is a need for separate models for residential and refrigerated truck units
 - RES. Model: loudness, sharpness, tonality, and roughness
 - REF. Model: loudness, sharpness, rate of change of the loudness
- Thresholding of sharpness and tonality metrics led to significant improvements
- Annoyance predictions of two previous tests' sounds using the three-metrics refrigerated truck model were reasonably accurate

School of Mechanical Engineering Purdue University

Thank you!!

