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ARTICLE

High-order coherent communications using mode-
locked dark-pulse Kerr combs from
microresonators
Attila Fülöp1, Mikael Mazur1, Abel Lorences-Riesgo 1,4, Óskar B. Helgason1, Pei-Hsun Wang2, Yi Xuan2,3,

Dan E. Leaird2, Minghao Qi2,3, Peter A. Andrekson1, Andrew M. Weiner2,3 & Victor Torres-Company 1

Microresonator frequency combs harness the nonlinear Kerr effect in an integrated optical

cavity to generate a multitude of phase-locked frequency lines. The line spacing can reach

values in the order of 100 GHz, making it an attractive multi-wavelength light source for

applications in fiber-optic communications. Depending on the dispersion of the micro-

resonator, different physical dynamics have been observed. A recently discovered comb state

corresponds to the formation of mode-locked dark pulses in a normal-dispersion microcavity.

Such dark-pulse combs are particularly compelling for advanced coherent communications

since they display unusually high power-conversion efficiency. Here, we report the first

coherent-transmission experiments using 64-quadrature amplitude modulation encoded onto

the frequency lines of a dark-pulse comb. The high conversion efficiency of the comb enables

transmitted optical signal-to-noise ratios above 33 dB, while maintaining a laser pump power

level compatible with state-of-the-art hybrid silicon lasers.
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Replacing a large number of lasers in wavelength-division-
multiplexed (WDM) optical communication systems with
an optical frequency comb has always been an attractive

idea. Until recently, demonstrations focused on broadened mode-
locked lasers1,2 and electro-optic frequency combs3 made using a
cascade of phase and intensity modulators4. Electro-optic comb
generators can use a single high-quality laser as a seed and
replicate its properties to several channels. Increasing the band-
width further is possible by using nonlinear broadening5–7,
allowing for lighting more WDM channels. Optical frequency
combs have an intrinsically stable frequency spacing that enables
transmission-performance enhancements beyond what is possible
with free-running lasers. Recent demonstrations include multi-
channel nonlinear pre-compensation8, as well as the possibility to
decrease the inter-channel guard bands for an increased total
spectral efficiency9,10. Another exciting prospect for using a fre-
quency comb as a multi-carrier light source in WDM systems is
the possibility to relax the resource requirements at the receiver
by implementing joint impairment compensation and tracking
for multiple data channels11,12. This aspect exploits the broad-
band phase coherence of the frequency comb and is therefore
impossible to carry out using a multi-wavelength laser array.

In order to implement practical WDM transmitters while
minimizing the number of discrete components, photonic inte-
gration will be needed. It is however challenging to attain broad
bandwidth and high-powered chip-scale frequency combs with
similar levels of performance as in the demonstrations above.
Initial attempts have included silicon–organic hybrid mod-
ulators13, quantum-dash mode-locked lasers14, and gain-switched
laser diodes15. A CMOS-compatible platform that shows great
promise in this direction is the microresonator frequency comb
implemented in silicon nitride technology16. Microresonator
frequency combs (or Kerr combs) use the Kerr effect in an
integrated microcavity to convert light from a continuous-wave
pump laser to evenly spaced lines across a wide bandwidth17–20.
The first data-transmission demonstrations were performed using
on–off keying21,22. It was however soon recognized that the
performance of microresonator combs is sufficiently high to cope
with the requirements in terms of frequency stability, signal-to-
noise ratio (SNR), and linewidth of modern coherent commu-
nication systems23–26. Recent demonstrations have therefore
included advanced modulation formats23,24 and long-haul com-
munication systems26. The discovery of dissipative Kerr solitons
in microresonators27 and associated stabilization schemes28–30

has opened a path forward to control the bandwidth and number
of comb lines with great precision. One of the most recent
experiments has achieved impressive aggregate data rates using
two SiN microresonator combs spanning the lightwave commu-
nication of C and L bands31. Using thermal control, tuning of the
central frequency of the combs has allowed the use of a matched
comb at the receiver as a multi-wavelength local oscillator31.

Microresonator frequency combs are however complex systems
that permit several different regimes of low-noise operation. The
coherent communication demonstrations thus far have mainly
focused on combs operating in the bright soliton25,28 and
coherent modulation instability26,32 regimes. Recent experiments
have revealed a mode-locked state when the cavity exhibits nor-
mal dispersion. This comb state corresponds to circulating dark
pulses33,34 in the cavity, and it might be of significant interest for
coherent data transmission in WDM systems. These dark-pulse
combs have experimentally measured power-conversion effi-
ciencies between the pump and the generated comb lines above
the 30% mark35 for combs spanning the C band, i.e., significantly
higher than what can be fundamentally obtained with bright-
soliton combs36. If these powers could be harnessed, such dark-
pulse combs could either decrease the pump power requirements

or enable WDM transmitters with higher SNRs. This is a relevant
matter as modern communication systems move toward even
more advanced, higher-order modulation formats. These formats
contain increasing amounts of encoded data per transmitted
symbol, which results in increased requirements in the received
SNR37.

In this work, we show what we believe is the first coherent
WDM transmission experiment conducted with a dark-pulse
Kerr comb. We use a SiN-based microresonator that produces
comb lines satisfying the optical signal-to-noise ratio (OSNR)
requirements for modern coherent communication formats. The
high OSNR per channel is enabled by the high internal conver-
sion efficiency of the comb, which reaches above 20%–in line with
previous observations38. Using off-chip pump powers below 400
mW, we demonstrate 80-km data transmission with 20 channels.
Each channel contains data encoded using 20-GBd 64-quadrature
amplitude modulation (QAM), resulting in an aggregate data rate
of 4.4 Tb/s (assuming a 9% error-correction overhead). This
demonstration corresponds to the highest-order modulation
format shown with any integrated comb technology to date.

Results
Microresonator-based frequency comb generation. A silicon
nitride-based microresonator is used for the comb generation.
The resonator’s 100-µm radius results in a free spectral range of
about 230 GHz. The ring waveguide features a designed width
and thickness of 2 µm and 600 nm, yielding normal dispersion in
the C band32. Fabrication details are described in ref. 39. The
intrinsic Q-factor is measured to be around 1.6 million. For the
comb generation, the microresonator is pumped by a tunable
external-cavity laser with less than 10 kHz of specified linewidth.
Before reaching the microresonator, the laser light is amplified
and filtered, ensuring an off-chip continuous-wave pump of 25.6
dBm. Figure 1a shows a sketch of the setup used for the comb
generation. The fiber-to-chip coupling losses at high pumping
powers are estimated to be 5 dB per facet. The microresonator is
equipped with both a through and a drop port, with the latter
being used for assessing the intracavity waveform. As the cou-
pling between the resonator and the through port is stronger, the
comb obtained at the through port is used for the communication
experiments (see Methods).

The comb is initialized by tuning the pump laser wavelength
into a resonance located at 1540 nm from the thermally stable
blue side40. To monitor the running comb state, a photodiode is
placed after an optical band-pass filter centered at a newly
generated comb line around 1536 nm, see Fig. 1a. By using the
photodiode output as feedback to the laser wavelength setting, it
is possible to start the comb by placing the laser close to
resonance and simply initializing the lock. This way, the pump
will stop sweeping at the moment the comb is in the desired state.
Although locking is not necessary to keep the comb running over
several hours, the feedback loop ensures that laboratory
environmental changes do not cause the spectrum to change
significantly over this time38. The spectrum of the generated
comb at the through port, displayed in Fig. 1b, shows the
characteristic envelope of dark pulses33,34,41. To verify that the
intracavity comb state corresponds to a circulating dark pulse,
two separate time-domain measurements are taken at the device’s
weakly coupled drop port. A direct measurement performed
using a 500-GHz bandwidth optical sampling oscilloscope results
in the waveform shown in Fig. 1c, indicating square-like pulses.
An effectively higher bandwidth, but indirect measurement, is
also taken by measuring the comb lines’ spectral phase, after
which the time-domain picture is reconstructed33,42 as shown in
Fig. 1d. The Methods section contains a more detailed description
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of the measurement and reconstruction procedure. In addition,
the comb line spacing stability was measured using electro-optic
downconversion43. The beat note (see Fig. 1e) displays a clear
peak > 50 dB above the noise floor (with a Gaussian fit FWHM<
30 kHz), indicating stable mode-locking operation beyond what is
required in state-of-the-art dense WDM demonstrations44.

Optical data modulation. The microresonator comb described in
the previous section is now shown to support data transmission
with advanced modulation formats. To ensure maximum comb-
line powers for the data-transmission experiment, we used the
dark-pulse comb at the through port as a light source for the

transmitter. At this port, the total fiber-coupled comb power is
roughly 28 mW (out of which about 8.6 mW is in the newly
generated comb lines), leading to an on-chip comb power-
conversion efficiency above 20% and a flattened net conversion
efficiency of 1.5%, see the Methods section for calculation details.
Following the chip itself, a 200-GHz notch filter centered at the
pump wavelength attenuates the central comb line, allowing for
an efficient operation of the following optical amplifier. For the
80-km single-span WDM experiment, the transmitter's schematic
is shown in Fig. 2a with the initially filtered and amplified comb
spectrum visible in Fig. 2b. Following amplification, the power in
the comb lines is split into two arms (marked as odd and even in
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the setup), using a commercially available wavelength-selective
switch (WSS). This keeps the number of lines going into each
modulator at ten. The WSS is also used to equalize the powers
among the comb lines in each arm separately. Each modulator is
driven by signals generated in an arbitrary waveform generator
(AWG). The AWG is programmed to generate two independent
random 64-QAM signals using square pulses, each carrying 6 bits
per symbol at a rate of 20 GBd. The random symbol sequence has
a length of 216 symbols and an oversampling of three since the
AWG is operated at 60 GS/s. To mitigate non-idealities in the
digital-to-analog converters (DACs) as well as the modulators,
digital pre-compensation is applied on the signal in the AWG.
Following the modulators, a split-and-delay polarization-
multiplexing stage, using a ≥1-m long arm corresponding to
≥100 data symbols, is used to emulate a polarization-multiplexed
transmitter. By using both polarizations, the system capacity is
effectively doubled. Both arms are then recombined and flattened
using a second WSS before being sent to the link. The second
flattening step will translate the power differences in the two arms
(caused by the comb envelope and the initial flattening step) into
the slightly varying noise floor seen in Fig. 2c.

Transmission results. After the 80-km-long standard single-
mode fiber link (with about 16 dB of propagation loss), there is a
polarization-diverse single-channel coherent receiver, see Fig. 3a.
A tunable external-cavity laser (with linewidth below 100 kHz) is
used as a local oscillator, allowing for the reception of one data
channel at a time, using a 23-GHz bandwidth real-time oscillo-
scope operating at a sampling rate of 50 GS/s. Standard digital
signal-processing (DSP) algorithms are subsequently run offline
and are described in more detail in the Methods section. A
representative example of a received constellation is presented in
Fig. 3b. To ensure optimal signal power in the fiber, data are
recorded for multiple launch powers. The results in Fig. 3c cor-
respond to the optimum case, with a launched signal power of 3
dBm per channel. Higher power levels incur nonlinear distortion,
whereas lower powers lead to a system performance limited by
noise. The resulting BERs are calculated by comparing the
decoded bit stream with the transmitted one. All comb lines
provide sufficient BER margin for transmission over an 80-km
fiber. The resulting BER values allow the application of a hard-

decision staircase forward error correcting (FEC) code45 with an
overhead of 9.1% to reach a final post-FEC BER below 10−15,
yielding an aggregate data rate of 4.4 Tb/s.

The final experiment corresponds to a configuration where
there is no transmission fiber (“back-to-back”). This experiment
serves two purposes. First, it allows quantifying the performance
of the transmitter/receiver with respect to an idealized situation
where only additive white Gaussian noise is considered (theory).
Second, it allows for distinguishing penalties coming from the
comb source and from the transceiver subsystems by comparing
the results with a similar measurement performed using a stand-
alone laser. The measurement is performed on a channel-by-
channel basis by measuring the received BER for varying OSNR.
The setup and measurement details are described in the Methods
section. As shown in Fig. 3d, at the chosen BER threshold of 7 ×
10−3, the comb lines require a slightly higher received OSNR
(between 0 and 0.5 dB) compared with the free-running laser
system. Both the comb lines and reference lasers show that an
increase in OSNR by 3 dB with respect to the theoretical
prediction is required to reach the same target BER value (this
is often referred to as implementation penalty). Such a deviation
from the theoretical case is expected for advanced modulation
formats with high symbol rates, where the limited effective
number of bits in both the transmitter and the receiver electronics
impairs the transmitted signal46,47. These results indicate that the
microresonator comb source does not significantly impair the
transmission link performance and is therefore a suitable light
source for higher-order coherent optical communication systems.

Discussion
In summary, we have presented the first demonstration of coherent
WDM communications using dark-pulse microresonator combs.
We have shown the highest-order modulation format demon-
strated using any integrated comb source. An important aspect of
this study is that it illustrates that the favorable power-conversion
efficiency of dark-pulse combs can be used in practice to reach
channel OSNRs >33 dB, while maintaining an on-chip pump
power in the order of a few hundred mW.

While in this exploratory study the setup complexity was
extensive and the spectral efficiency was relatively low (about
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0.95 b/s/Hz), these are not fundamental limits of the capabilities
of microresonator comb-based transmission systems. In this
section, we analyze the fundamentally achievable OSNRs per
wavelength channel for optimized dark-pulse combs. We
demonstrate that the achievable OSNR levels are compatible with
state-of-the-art hybrid silicon tunable lasers, which feature optical
linewidths of 15 kHz and power levels in the order of 100 mW48.
The resulting OSNRs are sufficiently high to encode higher-order
modulation formats while leaving sufficient margin to allow for
losses when the comb is co-integrated with other active compo-
nents in a transmitter system23,49.

For data-transmission purposes, the weakest line power in the
comb will fundamentally dictate the minimum achievable OSNR
per line at the transmitter31. The line’s power level can be max-
imized by jointly optimizing the group velocity dispersion coef-
ficient and coupling rate of the microresonator. We ran an
optimization process (see Methods) of a dark-pulse comb span-
ning the C band by sweeping these two parameters while keeping
the microresonator losses, pump power, line spacing, and non-
linear parameters fixed. The pump power was fixed to 100 mW,
and a line spacing of 100 GHz was selected that is more com-
patible with WDM standards. Assuming that challenges involving
propagation loss and multimode behavior can be handled, a
larger resonator with lower FSR could in principle result in a
dark-pulse comb covering the C band with a line spacing closer to
100 GHz. Recent demonstrations50 indicate that this is indeed
possible. The result of the optimization process is shown in
Fig. 4a and it shows that an optimum state can be found for a
moderate amount of normal dispersion and a strongly coupled
microresonator. The fabrication feasibility of these parameters is
discussed and verified in Supplementary Note 1. The weakest line
power within the C band appears at the −10-dBm level and the
resulting comb is shown in Fig. 4b. The comb lines have a power
level varying between 51 and 71 dB above the quantum noise
limit (corresponding to around −61 dBm for a single polarization

and 0.1-nm bandwidth). Supplementary Note 2 contains results
using the same optimization process for combs with 50 GHz of
line spacing, as well as combs covering both C and L bands.

Receiver OSNR requirements for advanced modulation formats
and symbol rates are displayed in Fig. 4c. For example, 50-GBd PM-
64QAM would require an OSNR at the receiver side of 26 dB.
Assuming that the WDM transmitter is amplified with an EDFA
with a noise figure of 4 dB and considering 5 dB of implementation
penalty due to the limited effective number of bits at the transmitter
and receiver yields a margin of 16 dB for the weakest comb line. If
the same microresonator were used as a source for signals in both
polarizations, a further 3 dB should be deducted. The remaining 13-
dB margin is to be split between optical losses at the integrated
transmitter (containing multiplexers and modulators) and the
effects of the following link (owing to added noise by further
amplification as well as nonlinear effects51). Given the high available
power in the central lines, these can carry data using even higher-
order modulation formats, potentially targeting PM-256QAM. A
transmitter scheme where the power in the stronger lines can be
exploited in this manner is discussed in Supplementary Note 3. We
envision that further device optimizations (i.e., larger resonators
with optimal coupling and chromatic dispersion values) together
with advances in integrated photonic circuits49, will allow
approaching a more complete integrated transmitter. By addition-
ally restricting the system requirements to around 100mW of pump
power, the co-integration of a pump laser would become feasible.
We also anticipate the expected channel symbol rates to keep
increasing in the near future, making a 100-GHz spaced comb as
the final target. As described in this work, an optimized dark-pulse
microresonator comb has the potential to empower such a system.

Methods
Indirect time-domain measurements. The indirect time-domain measurement
was done by sending the frequency comb through a WSS and an EDFA to a non-
colinear optical intensity autocorrelator33,42. By selecting three lines at a time in the
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WSS and adjusting their phases incrementally to achieve minimum pulse width in
the autocorrelation measurement, we could extract the relative phases across all
comb lines within the bandwidth of the EDFA and the pulse shaper. The mea-
surements were performed using both the drop and the through ports of the
microresonator, with the resulting phases overlapping for all measured lines except
for the pump line. Using a known mode-locked laser delivering transform-limited
pulses as a reference, the dispersive effects of the fibers in the EDFA, the WSS, and
the fiber connections were measured and compensated for. While most of the
power in the comb was within the bandwidth of the EDFA and the pulse shaper,
the spectral phases of the lines outside were estimated using linear extrapolation.

Line spacing stability measurements. As the frequency difference between the
comb lines was too large for our photodiodes’ bandwidth, a direct measurement
was not possible. Instead, the spectrum between the lines was filled using electro-
optic (EO) modulation43. We selected two central comb lines with a 2-nm optical
band-pass filter (at 1539.8 and 1541.6 nm) and generated EO-modulated lines
between them using an RF oscillator operating at 25.1 GHz. The beat note between
the two resulting EO-comb lines at 1540.8 nm (one originating from each original
dark-pulse comb line) was then filtered out using a 0.25-nm filter and recorded
using a real-time oscilloscope. From 1ms of recorded data, we could thereby
retrieve the spectral stability of the comb-line spacing with 1-kHz resolution by
standard Fourier processing.

Microresonator operation. The chip containing the microresonator was kept on a
piezo-controlled positioning stage stabilized using a standard laser temperature con-
troller at 18 °C with <0.01 °C variation. Light was then coupled into the bus waveguide
using a lensed fiber. On the chip, the coupling between the bus waveguide and the ring
was set by their 300-nm wide gap. As the drop-port gap (at 1000 nm) was much
larger, the power coupling to that port is estimated to be more than 10 times weaker
(see Supplementary Note 1). The round-trip losses owing to light getting coupled out
of the resonator are therefore expected to be dominated by the through port.

As the comb-generation process strongly depends on the presence of modal
coupling52, the spectral envelope is sensitive to slight fabrication variations. Out of
three similar devices, two produce dark-pulse combs using a 1540-nm pump. The
tolerances (and thereby the device yield) are however expected to be improved,
using techniques enabling post-fabrication tuning, for example, using controllable
mode interactions as described in ref. 53.

Comb power-conversion efficiency calculation. To estimate the power-
conversion efficiency of the comb-generation process, both the comb state and the
reference off-resonant state have to be compared under identical pump power and
polarization conditions. The conversion efficiency is calculated by comparing the
sum of the power in the generated comb lines in the on state with the power of the
pump line in the off state26.

To estimate the useful net conversion efficiency, one can perform a similar
calculation. Instead of summing the power of all the newly generated comb lines,
one should instead take the power in the weakest line within the bandwidth of
interest (the C band in this case) and multiply that with the number of lines present
within the same bandwidth (20). Comparing this power with pump line power in
the off state will yield the effective flattened on-chip conversion efficiency.

Digital signal-processing algorithms. To decode data from the recorded complex
waveforms, receiver non-idealities, link effects, and transmitter non-idealities have
to be handled, in that order. The following steps describe the DSP operations:

1. Receiver impairments were handled by first compensating for relative delays
owing to differences in the RF cable lengths in the I and the Q arm of the
coherent receiver. This was followed by an IQ imbalance compensation using
Gram–Schmidt orthogonalization54. After this, the waveform was resampled
to twice the symbol rate. All these steps were performed independently for
each polarization.

2. In the case of the 80-km-long transmission, chromatic dispersion of the
single-mode fiber link was removed using a static filter implemented in the
frequency domain individually for each polarization.

3. A decision-directed least-mean-square equalizer was used for signal equal-
ization and polarization demultiplexing. This step also included an FFT-based
frequency offset estimator55 and a blind-phase search component to
compensate for relative phase drifts between the signal carrier and the local
oscillator56. The equalizer contained 25 taps and was trained by letting it run
over the waveform four times with decreasing step length.

4. A second Gram–Schmidt orthogonalization was performed individually on
each polarization to compensate for small modulator bias errors.

5. Finally, the BER was calculated by comparing the bit sequence decoded from the
received symbols with the originally transmitted one. The total received
sequence from which the BER was calculated contained more than 9 million bits.

Noise-loading measurements. The noise-loading measurements allow comparing
the performance of single channels with theory to extract quantitative penalties

accrued owing to the system implementation (occurring for example due to the
limited resolution in the transmitter digital-to-analog converters and receiver
analog-to-digital converters). To isolate these penalties from those coming from the
comb source, separate measurements were taken with individual comb lines as well
as a reference laser. For the evaluation of our transmitter and receiver system, a
single tunable external-cavity laser was therefore used. The reference laser corre-
sponded to a standard (below 100 kHz of linewidth) communication laser with
above 15 dBm output power, nominally identical to the local oscillator. The
reference laser was connected directly to the modulator in one of the arms in
Fig. 2a. Following the polarization-multiplexing stage, the channel was loaded with
noise by successive attenuation and amplification. Finally, the channel was then
received, resulting in the BER vs. OSNR plots in Fig. 3d, yielding a ≤2.5-dB system
penalty with respect to theory at BER= 7 × 10−3. To make an equivalent mea-
surement with the comb source meant selecting single comb lines and amplifying
them to the same 15-dBm power level before performing data modulation.

Dark-pulse comb simulations. The comb-state simulations were performed using
the Ikeda map57–59. This method allows for including the pump noise in every
round trip and to quantify the resulting OSNR per spectral line. The method
involves simulating the coupling between the bus waveguide and the ring separately
from the light propagation inside the ring cavity. The coupling region was simu-
lated as a lossless directional coupler60, whereas the propagation in the ring was
implemented with the nonlinear Schrödinger equation. In the coupling step, a
continuous-wave pump laser (with 100 mW of fixed power) was coupled together
with quantum noise equivalent to one photon per spectral bin58. The power-
coupling coefficient θ was swept to produce the map in Fig. 4a. In addition, to
account for the detuning, δ0, between the pump laser wavelength and the resonance
center, a corresponding phase shift was applied to the current intracavity field. The
propagation simulation was performed using a split-step nonlinear Schrödinger
equation solver, where the linear step (with fixed power loss parameter α= 0.1 dB/
cm, corresponding to an intrinsic quality factor of 1.8 million, and swept group
velocity dispersion coefficient, β2) and the nonlinear step (with fixed nonlinear
parameter γ= 2W/m) were performed iteratively in 16 steps along the ring.

To ensure that the comb state converged to a dark-pulse comb, the intracavity
field was initialized with a square wave whose upper and lower power values
correspond to the continuous-wave bistability solutions33. Once the field inside the
microresonator had converged to a steady state, the result was analyzed. For each
combination of β2 and θ, the detuning parameter and the initial square pulse width
giving the best comb state were chosen. Although there are several metrics by
which combs can be evaluated, in this work, we optimized the parameters for
maximum power in the weakest line within the C band31.

Data availability. The code (including the DSP scripts) and raw data necessary to
reproduce the plots in this work can be accessed at https://doi.org/10.5281/
zenodo.1206122.
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