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1. Introduction  
This article follows-on from our earlier publication [1], “Deep Learning for Consumer Devices 
and Services: Pushing the limits for machine learning, artificial intelligence, and computer 
vision”. In that earlier work we discussed the emerging importance of deep learning (DL) 
techniques for the next generation of consumer electronic devices and services.  
Our vision at that time was that new embedded hardware solutions would enable advanced new 
devices and services that would incorporate convolutional neural network (CNN) based 
artificial intelligence across a broad range of new CE devices and services. This article 



introduced many of the basics of deep learning and the supporting tools and methodologies and 
we referred to the growth of new device categories, relying on cloud-based AI, such as smart-
speakers and mobile voice assistants.  
Since that time the explosive growth in new AI research has continued and there has been a 
growing interest and investment by industry into moving  key element of the AI away from the 
cloud towards the sensors and the embedded devices themselves. I originally wrote about this 
new trend in editorials for two special issues of CE Magazine [2], [3] towards the end of 2016. 
At that time industry was focussed on OpenFog, an initiative to define a new generation of 
low-latency services for the Internet of Things. But more recently we have seen the reach of 
AI moving onto the device itself with many companies and researchers focussing on 
developing FPGA based solutions [4] and most recently embedded AI hardware accelerators 
[5], [6].   

1.1. AI Moves to the Edge 
Most of the large semiconductor manufacturers are currently working on a new generation of 
AI accelerator chipsets so it is only a matter of time before we begin to see widespread 
deployments of neural networks in the device itself, independent of any network connection or 
services. In fact such technology is already incorporated into the latest generation of mobile 
devices, high-end television panels, professional digital cameras and many new automotive 
subsystems.  
I like to refer to this embedding of AI into the device itself as Edge-AI, and distinguish it from 
edge AI services provided over a local network link, such as envisaged by the proponents of 
Fog Computing solutions. There is a role for both networked based and device based AI, but it 
is the recent emergence of AI implementations on-device that I find most exciting as a CE 
engineer.  

 
Figure 1: A system-on-chip solution can incorporate dedicated CNN accelerator circuitry to 
enable low-power AI in a consumer device. (license info at: 
https://commons.wikimedia.org/wiki/File:Intel_8742_153056995.jpg ) 

 
Improvements in the energy efficiency of dedicated AI accelerators over today’s GPU based 
solutions will provide significant improvements in the energy required to power Edge-AI, and 
this in turn makes it an ideal solution for the challenging data-processing problems introduced 



by a new generation of lightweight, battery-powered wearable and internet-of-things (IoT) 
devices.   
In this article we take a look at some of the progress that we have seen in Edge-AI over the past 
two years and describe some examples of practical problems that have been tackled with deep 
neural networks (DNNs) over that time. Some of these are contributions made within our 
research team, other are drawn from the literature, but each of them illustrates how DNNs are 
being used today and how DNN-based Edge-AI will be at the core of many new devices, 
systems and services that emerge over the next decade. We will also take a look at some of the 
challenges posed by this migration of AI onto the device itself and comment on several of the 
new research challenges we anticipate over the next 4-5 years.   

2. Example CE Use Cases and DL Solutions 
A good starting point for our discussion is how can DL solutions be used beneficially in 
consumer devices? Where can edge-AI improve performance and operational efficiency to a 
point where the benefits outweigh the costs of incorporating an inference engine or platform 
into the system.  
Looking at the research literature and the evolution of consumer electronics products over the 
past decade once clear area where DL can add value is for computer vision applications, in 
particular for wireless, internet-of-things (IoT) devices. The cost of a complete VGA camera 
module has dropped below $1.00 and the cost of a CMOS image sensor is almost negligible in 
today’s devices. Thus many interesting uses of DL inference at the edge will focus on providing 
advanced image analysis capabilities to low-cost CMOS sensors. Let us begin by considering 
some examples of new CE applications that Edge-AI can enable.  

 
Figure 2: CMOS based camera modules are now so inexpensive that embedded devices often 
include multiple units. (licence info at: 
https://commons.wikimedia.org/wiki/File:NC393_multisensor_camera_kit,_for_developers.jpeg) 
 

2.1. Eye-Gaze Systems  
Eye tracking has begun to find uses in a variety of consumer applications. A range of works 
based on the use of gaze information for consumer platforms like automotive (for driver 
monitoring), augmented and virtual reality (for foveated rendering and immersive 
experiences), smartphones and TV (for gaze based menu selection and navigation) have been 
described in a recent review [7]. Recent works in this field include [8] where gaze duration and 



patterns are used to assess how easily users can navigate an interface of a connected self-
injection system. Gaze data is used as an indicator to study the usability, efficiency and ease of 
use of the drug delivery device. Similarly, the design effectiveness of observation charts in a 
hospital is evaluated in [9] by comparing viewing patterns of users derived from eye tracking 
data. Eye movements and pupillary response are used as indicators of cognitive load while 
users answered mathematical questions in [10] and for studying cognitive processes and 
learning aspects in [11]. In [12], the influence of emotions on the visual acuity of users was 
studied which showed that eye movements like fixations and saccades clearly respond to levels 
of stress. 
Eye gaze estimation is a “must have” feature for the latest driver monitoring systems and is 
crucial for the functioning of AR/VR systems. For these applications, deep learning can either 
be applied as an end-to-end solution [13] or as a component of a more traditional gaze 
estimation pipeline, such as iris segmentation [14] , [15].  
 

  

  
 



Figure 3: State of art Driver Monitoring System – screenshots courtesy of Xperi, Inc. 
 
End-to-end approaches to eye gaze estimation are state of the art for uncontrolled environments 
where the camera is at a distance, and such methods are closing the gap in AR/VR settings 
[16].  Real world Edge-AI must balance accuracy requirements with power availability and 
speed. Typical Edge products have strict limits on the number of MAC operations per second, 
and these limits often preclude the use of the largest and most popular networks without 
significant optimization. Similar approaches can have vastly different performance. Many 
papers report performance on GPUs but it is important to consider their speed on the low cost 
commodity processors that are typical of Edge Devices.  
 
For example, one published gaze estimation solution operates at approximately 120 FPS on a 
modern GPU, but 0.0043 FPS on an ARM processor (approximately one frame every 4 
minutes) while another network with similar accuracy runs at 92.59 FPS on the same ARM 
processor, or for a ~1.5% increase in accuracy, at 19 FPS [13]. 
 

2.2. Biometrics and Device Authentication 
Biometrics have a huge potential to solve many pressing problems related to security and 
privacy for today’s CE devices [17]. This potential has been realized to some extent on today’s 
mobile devices, but the real breakthrough will come when biometric technology can be 
incorporated into lower power devices such as wearables and internet-of-things (IoT) 
peripherals.  
A key aspect here is that biometric acquisition and processing should occur on the device or 
peripheral in order to secure the privacy of the biometric [18]–[20]. Realistically this can only 
be achieved through leveraging Edge-AI to enable more accurate and verifiable acquisition and 
more energy-efficient authentication of the biometric.  
Let us next consider a few examples of emerging use cases for biometrics.  
Automotive biometrics offer a use case where Edge-AI offers a practical solution. Our cars 
already have cameras to monitor the driver and detect drowsiness so it is quite straightforward 
to incorporate technology to verify the identity of the driver once they sit into the vehicle. 
External cameras, typically used to detect pedestrians or replace physical mirrors can be 
repurposed to provide an initial authentication based on facial recognition and supplement 
today’s keyless entry systems.  
A key challenge here is acquiring the biometric in unconstrained conditions  which can be 
challenging [21], [22]. While facial biometrics offer a reasonable level of security and 
verifiability they are prone to a range of attacks [23]–[25] and even iris biometrics can be 
challenged [26], [27].  
Incorporating all the elements of a biometric authentication chain – unconstrained acquisition, 
liveness verification and, finally, authentication of the registered biometric – requires 
significant computational resources and energy if we rely on conventional processing 
approaches. But each of these elements can be tackled independently, and in parallel, by neural 
network based solutions. As examples, large pose 3D facial segmentation [28], facial 
segmentation and alignment [29] and iris segmentation [14] can all be tackled with CNNs; 
liveness detection is also receiving much attention from researchers [30]–[33].  
Biometrics are also important for wearable devices. Consider the emerging category of 
augmented and mixed reality (AR/MR) headsets where there is no keyboard, yet these devices 



will inevitably be connected to an online account. So how can the device authenticate the user 
in a frictionless manner?  
Fortunately these AR/MR headsets need to track the user’s eye-gaze in order to accurately 
render objects onto the real-world scene. In order to track eye-gaze a user-facing camera is 
required to analyse the eye-region, which also includes monitoring and segmenting the eye-iris 
and pupil to determine the direction of gaze. It now becomes a simple task to authenticate the 
segmented iris region [34].  

 
Figure 4: User-Facing Cameras for a Mixed Reality Headset – courtesy of pupil-labs.com  
[35](Check with Viktor about use agreement from pupil-labs).  

    
Figure 5: Off-axis iris regions; accurate, per-pixel, segmentation is essential for practical user 
authentication. [15] 



2.3. Immersive Audio for Mixed Reality Headsets 
As we’ve mentioned, the emerging category of augmented and mixed reality (AR/MR) 
headsets has become a driver of new innovation. This is another interesting area for deep 
networks research. Mixed reality implies adding a mixture of new visual elements onto the 
visual field of view, but it also implies adding non-visual immersive elements and audio can 
provide even more compelling immersion than visual cues. If you doubt that, then consider the 
music score of a horror movie which creates and maintains the underlying atmosphere of 
impending doom, and then leads you cleverly into those ‘big scares’ that are the cornerstone 
of the genre.   
But adding audio to the perceived environment, particularly when you are seeking to maintain 
an illusion of the real-world, is quite challenging. Each of us has a unique ear canal and our 
brains process and perceive audio in a highly personalized way. And our audio senses are also 
attuned to visual cues in our environment,  so that we anticipate changes in the environmental 
acoustics. Thus if you move into a large cathedral you expect that your footsteps and voice will 
echo more. In a room with carpets and soft furnishings the acoustics are more muffled.  
This presents an interesting challenge in that acoustic cues should be adapted to match the 
surroundings of the wearer of a headset, or the illusion of immersion is lost. But analysing and 
evaluating the perceived environment with conventional image processing would not be 
possible on a wearable headset where energy usage is even more critical than on a smartphone. 
And thus another excellent CE use-case for advanced neural networks presents itself – scene 
analysis [36], [37] and materials recognition [38] combined with depth [39], [40] can help build 
a detailed analysis of the surrounding acoustic environment.  
And importantly, with a state-of-art Edge-AI neural accelerator we can run multiple neural 
networks in parallel at a fraction of the power budget of a GPU based computational unit. Some 
exciting new developments in immersive multimedia experiences are to be expected, in the 
near future.    

 
Figure 6: Multimedia, Mixed Reality Headset early Magic Leap Prototype 
https://www.flickr.com/photos/egoant/40067827415 (Peter to try get permission & hi-res 
version from Magic Leap) 

 



 
Figure 6 (alternative image): Multimedia, Mixed Reality Headset 

https://commons.wikimedia.org/wiki/File:Ar-vs-vr.jpg 
 

 

 
Figure 6 (alternative): Mixed Reality with a VR Headset, [courtesy of Pierre Faure  

(https://commons.wikimedia.org/wiki/File:Mixed_Reality_with_a_Virtual_Reality_Headset.png ) ] 
 

2.4. Image Signal Processing Pipeline in a Camera 
Processing the raw Bayer data from an image sensor is a classic example where camera 
engineers and photographic experts have devoted hundreds of man-years of effort to create a 
highly specialized image processing pipeline. Bryce Bayer’s original patent [41] filed in 1976 
is a classic example of an engineering compromise that has stood the test of time. It employs a 
color filter array with twice as many green pixels as red or blue pixels to match the color 
sensitivity of the human visual system (HVS). And it works so well that it have become the 
basis of modern digital imaging.  
Now as computer rendered images use an equal number of red, green and blue pixels it becomes 
necessary to convert the HVS-compatible sensor data to RGB images which is where the 
camera pipeline comes in. But given that image sensing can occur in many different lighting 
conditions and is subject to other environmental conditions it is actually a very complex process 
to achieve a high-quality final RGB image from the raw sensor data.  
Until recently this ‘magic’ happened within a complex set of image analysis and processing 
algorithms known as the image processing pipeline (IPP) [42]. In fact many consumer imaging 
devices feature a dedicated image signal processor (ISP) – a dedicated hardware component – 
to handle this conversion process.  



 
Figure 7: Detailed view inside the Image Processing Pipeline (IPP) of a typical Digital 
Camera. 
(From my chapter in ref [42]) 

 
But now, thanks to the magic of deep learning methodologies and the potential to implement 
the corresponding CNNs in hardware it has become possible to consider replacing the IPP in 
an imaging system. This work began with studying the replacement of the de-mosaicking step 
of image conversion [43], [44] quickly followed by the idea to replace the two key steps of de-
noising and de-mosaicking from the IPP with a single CNN network [45]–[47].  
Other authors have further extended this idea to completely replace the traditional IPP [48] or 
alternatively to learn the detailed camera model embodied in an existing IPP [49], [50] which 
has potential both to identify the source of processed images, but could also lead to 
reprogrammable IPPs based on a CNN hardware accelerator. Imagine that you can completely 
reprogram how your camera captures & develops raw images ‘on the fly’. Well this approach 
is beginning to make its way into actual products so expect to see some exciting new features 
in higher-end digital cameras over the next couple of years!  
And once you start to think about replacing the IPP with a convolutional network new ideas 
will emerge such as adapting the camera to facilitate “Learning to see in the Dark” [51]. In this 
particular example researchers have used a CNN to solve a key challenge for today’s 
smartphone cameras – that of capturing images in low-illumination conditions.  

 

3. Challenges for AI deployments in Consumer Electronics?  
There has been a lot of very rapid progress with AI technologies since our last article, but there 
remain many challenges that are specific to Edge-AI and the implementation of solutions in 



consumer devices. Our recent work on a number of quite typical example of CE-device 
problems have highlighted these challenges. .. 

3.1. The Problem-Specific Nature of AI Solutions 
Every practical problem that we solve with Edge-AI is typically a part of a larger problem set. 
Focussing on a specific problem typically allows the research engineer to accurately define the 
data characteristics and the criteria required to solve that particular problem. Let’s consider the 
task of iris authentication where there is a processing pipeline as shown in Figure 8. 

 
Figure 8: Iris Authentication processing pipeline. [15] 
Note that in this sequence of tasks some tasks can employ proven techniques such as iris-
matching which has been deployed and verified for more than 2 decades by the biometrics 
research community. However the adoption of the authentication on mobile and wearable 
devices has now introduced new processing tasks such as the segmentation of unconstrained 
iris regions and the normalization of these to serve as input to established feature extraction 
and matching algorithms.  
These new task represent more recent challenges and it is now well appreciated that iris 
segmentation is the predominant source of errors in mobile and wearable devices [14], [21].  
It is important for the research engineer to appreciate this need to break down problems in this 
way. While deep learning is a powerful tool and can often achieve very impressive levels of 
accuracy it is important to appreciate that neural networks are also susceptible to adversarial 
data and if appropriate training data is not provided they can easily learn the wrong features 
from a poorly designed set of data samples. This is a challenge we’ll return to in some of the 
subsequent discussion and it is a very open-ended challenge.  

3.2. Device-Specific Aspects 
A unique aspect of applying deep learning techniques to Consumer Electronics is the device-
specific nature of consumer data.  
The complexity of the processing pipeline in a digital camera was previously discussed and it 
is well-known by imaging experts that every production camera has unique characteristics. 
Indeed recent research has shown that these characteristics can be learned and images can be 
uniquely associated with a particular image processing pipeline [49], [50]. This observation 
will apply across most sensing capabilities of consumer devices. Thus the collection of data 
from any particular consumer device, but it video, audio, motion or other forms of data 
collection will invariably exhibit some unique characteristics. 
This leads us to the observation that to achieve the more accurate and optimal performance 
from an deep learning solution the network should be trained on device-specific datasets. This 
is, in fact, well-known in the CE industry where more traditional algorithms have always been 
tailored to individual models of production devices. Indeed sometimes the same device, but 
manufactured in a different facility, can perform differently due to variations in the 
manufacturing process, the local environment or the calibration procedures applied.  
Thus, when applying deep learning methodologies to CE problems it is important to bear in 
mind that optimal performance will be achieved by tuning an AI network to device specific 
data. However the corollary to this is that sometime a network that is tuned to a specific device 
may not perform well on other devices. While we have not explored this phenomenon across 



enough different problems cases our current experience suggests that a two-step approach 
makes sense. At stage one a network should be designed and tuned on a generic dataset 
representative of a range of broadly similar data acquisition systems (e.g. data acquired from 
multiple f2.0, 12 MP cameras). Once the performance of this network is tuned to an acceptable 
level then stage two should involve additional tuning of the network on data from a specific 
production stream of camera modules. Our experience shows that additional performance can 
be achieved, but at the expense of a loss of performance for the other streams of camera module.   

3.3. The Data Bottleneck 
This brings us to what is undoubtedly the greatest challenge for Edge-AI – that of obtaining the 
large datasets that are typically needed to achieve convergence of the training process for a 
deep neural network. Data acquisition is time consuming, but more importantly every problem 
also needs a ground truth to train against!  
Taking the iris segmentation problem as an example, every iris image has to be marked-up to 
obtain the ground truth. Even where some form of automated mark-up is possible there should 
be a manual check to detect mark-up failures. This is very time-consuming and the costs can 
quickly mount-up when large datasets are involved.  
This data bottleneck is a problem in general for deep learning researchers, but it is even more 
so for CE engineers who may need to adapt and re-train networks for multiple device models 
or in new use-case geometries such as off-axis iris authentication.  

 
Figure 9: Novel data augmentation strategies can help grow the available training dataset for 
a specific problem; in this example we show how iris data samples can be transformed to solve 
off-axis iris segmentation  [15]. 
There are some approaches that can help here such as data-augmentation where a seed-dataset 
is modified and transformed in particular ways to match the underlying problem as is done in 
the case of iris segmentation in [14], [52]. It has also been shown that we can train a network 
to learn how to make ‘new’ data by combining existing samples in its convolutional layers 
[53]. And another technique that pairs two deep-learning networks in a configuration known 
as a generative adversarial network (GAN) enables researchers to train a data generator that 
learns the key features of an existing dataset and can then make ‘new’ random data samples 
that match these [54].  
Ultimately data is the biggest challenge for Edge-AI and its successful deployment in consumer 
devices. There is a need for improved approaches to build the large datasets that are needed 
and to determine and record the corresponding ground truth associated with each individual 
acquisition. Engineers need improved tools and data management methodologies to increase 
the efficiency and accuracy of dataset acquisition and ground truth estimation. This will, 



without doubt, become a key focus area for future research and I hope to write in more detail 
on this topic in an upcoming special issue of CE Magazine.   

4. What is Next for Edge-AI? 
When we last considered the state-of-art for machine learning, artificial intelligence, and 
computer vision in the context of consumer electronics systems it was clear that new hardware 
accelerators for embedded devices were becoming available and, at that time, the AI-stick from 
Movidius was discussed as a practical example. Since that time this company was acquired by 
Intel and a 2nd generation of the AI-stick is now available.  
But there are now several other AI accelerators from mainstream players such as Nvidia’s 
Jetson family of devices and in mid-2018 Google introduced an “Edge” version of its Tensor 
Processing Unit (TPU) which can integrate with the well-known deep learning platform, 
Tensorflow. Outside of the mainstream players there are many start-ups, spin-outs and in-house 
projects working to deliver new low-power neural network accelerators.  
Over the next 1-2 years it is likely that many of you will be developing systems and products 
on these new AI platforms, if you are not already doing so.  Edge-AI with the promise of 
intelligent devices that have minimal power requirements – some able to run on a coin sized 
battery for months without replacement - allows devices to have full or partial functionality 
that only last year would have required a large, power-hungry GPU or an always-on connection 
to the cloud. 
Our group has had the opportunity to build some interesting prototypes with these hardware 
accelerators and some of you may have attended our “hands-on” workshop at IEEE GEM 2018 
which was a great success – you can view a Twitter “moment” of the conference at 
https://twitter.com/i/moments/1061174127342559232. In our current graduate program lab 
classes we help students build a handheld computer-vision terminal that can implement the 
Yolo one-shot object detector. This runs happily at 30 fps on a Raspberry PI coupled with the 
Intel AI-stick.  
It a fair statement that the age of embedded AI is now a practical reality. The open questions 
are how it will impact on today’s technology and where are the new challenges and 
opportunities that a broader adoption of Edge-AI will bring?  

4.1. Emerging Opportunities for Edge-AI 
One area where Edge-AI will have enormous impact is on personal privacy. It is difficult for 
people to feel comfortable about personal privacy when video data is constantly being uploaded 
and processed in the cloud. By processing data on the device, even within the sensor module 
we can avoid transmitting raw data over networks, or storing data in cloud repositories where 
it offers an attractive target for cyber criminals.  
One example where Edge-AI will have significant impact are driver monitoring systems (DMS) 
which will be mandated by the EU in 2022. These are already deployed in most high-end 
vehicles, and require devices that can instantly and intelligently react in cases where a driver 
is distracted or impaired. They offer a stepping stone to autonomous vehicles, but also pose a 
significant design challenge in the context of the EU’s General Data Protection Regulation 
(GDPR). While 5G technology can arguably perform the advanced processing required by 
DMS this approach also requires moving data off-vehicle with associated data security and 
privacy issues. In contrast Edge-AI enables data processing to occur within the DMS and can 
even be restricted to a secure compute unit within the sensing sub-system. Placing computation 
as close as possible to the sensor allows reduction in latency and cost while increasing privacy 
and usability.  



Other examples of new opportunities lie in new wearable devices and smart-cities. With the 
introduction of a new generation of smart-glasses (e.g. Magic Leap and Hollolens) and a new 
market in wearable audio enhancement devices, known as hearables, we are seeing a wave of 
devices that can directly modify our perception of the surrounding environment. This is known 
as Mixed Reality (MR), and as a concept it has been discussed since the 1960’s but only recently 
have researchers had access to devices that can actually realize MR effects. But the 
computational requirements to achieve real-time perceptual analysis followed by a realistic 
blending of additional visual and acoustic elements into the user experience are beyond the 
capabilities of today’s embedded-GPU solutions. The answer lies, as you might have expected, 
with the new generation of Edge-AI hardware accelerators which can achieve the required real-
time data processing rates with levels of energy efficiency that are orders of magnitude lower. 
In smart-cities we have an urban environment permeated with ubiquitous networks of sensors 
and services, but this poses some significant challenges. How can we authenticate individuals 
in such an environment to validate their access to services and, more importantly, how do we 
guard the privacy of individuals when their every move is tracked by a multitude of cameras 
and sensing technologies?  
Again, Edge-AI can offer new solutions. Biometric processing can be implemented within 
devices so that registered users can be authenticated without a global sharing of their biometric 
data [55]. Once we have authenticated individuals they can be linked with a global-ID that is 
independent of the local device authentication using techniques such as Blockchain or Zero-
Knowledge Proof (ZKP) [56]. And once the individual is globally authenticated, then they can 
be flagged with a ‘do not track’ marker and compliance with regulations such as GDPR can be 
explicitly recorded.      

4.2. Challenges for Edge-AI  
Without a doubt the biggest challenge for Edge-AI is that of data acquisition, annotation and 
curation. The training of deep neural networks requires large datasets and an accurately 
annotated ground truth. There are challenges in acquiring the data in the first instance, as often 
the data is of a personal nature – e.g. facial images. Then the annotation of a large dataset is 
time-consuming and costly. And often an absolute ground truth is not available.  
Beyond these basic challenges there is that of data curation – if data samples are not carefully 
chosen to match the problem at hand then neural networks can easily learn incorrect features 
from the training dataset. These networks are very powerful, but they are only as good as the 
data that is used to train them. For AI applications in CE devices this dependency of the solution 
on the training data is both a challenge and an opportunity.  
In a nutshell, the better aligned the training data is with the original sensor system the more 
robust and accurate the trained network will be. For many large online datasets the training 
data is typically gathered by many devices and images are harvested from various online 
sources. If we consider the variety of video cameras used to create a large collection of youtube 
videos, for example, it is easy to see that networks trained on such datasets won’t be able to 
take account of device-specific characteristics.  
In solving a problem for a CE device we have the potential advantage of training on device-
specific data, or more likely of using transfer learning to map a generic network onto device-
specific data. While this can improve the accuracy and robustness of a particular AI solution 
for that devices, if also requires that we can gather, or generate a large dataset of relevant data 
directed at the unique characteristics of that particular device model with the corresponding 
challenge to annotate and curate this dataset. The flip side of this is that such a solution may 



no longer work if you change the sensor, or the signal processing pipeline for the device and it 
will be necessary to train a new solution for these modifications.  
Thus the biggest challenge for Edge-AI is that of data. We need improved tools and 
methodologies to better support how we acquire, annotate and curate our training dataset. This 
is a fascinating topic and we plan to write a follow-up article to address it in more detail.  

5. Concluding Thoughts  
A lot has happened in the last two years. Our research group has continued to work on a number 
of fascinating problems, leveraging deep learning techniques to achieve state-of-art solutions. 
In parallel many other researchers have been working on and solving a broad range of problems 
in computer-vision, machine learning, signal-processing, data analytics and advanced sensor 
fusion all of which have relevance to new and emerging CE devices and services.  
There has been explosive growth in the use of deep learning and advanced neural network 
methodologies and much of this research can be leveraged into new CE solutions. The 
challenge for CE engineers and researchers is how to pick and chose across this vast array of 
possibilities and deliver practical and useful solutions that can meet the needs of consumers. 
We hope this article has helped to open your eyes to some of the potential of Edge-AI and in 
some follow-up articles we’ll explore some of the associated opportunities and challenges in 
more detail.  
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