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A novel concept of self-propelled, radioactively driven colloids is introduced. The focus of this paper is on assessing
the impact of alpha emissions on colloidal kinematics. Using Langevin dynamics and a random walk model, a theory
has been developed to describe this motion. This theory shows a special case of anomalous diffusion. Numerical
simulations have substantiated the theory. It is shown that alpha-particle emission can significantly affect the motion of
colloidal particles, although a very short-lived radioisotope is required.

I. INTRODUCTION

In the summer of 1827, the botanist and microscopist
Robert Brown observed the peculiar “rapid oscillatory mo-
tion" of pollen grains and proved that the particles were
not animated by repeating his experiments with inorganic
materials1. This new-found “Brownian motion" was passive,
and did not require any special circumstances to occur. In
recent decades, active forms of Brownian motion have been
investigated. Particles have been constructed such that when
exposed to a gradient electric, temperature, or concentration
field, particle motion is induced2,3. Just like air- and wa-
tercraft require a medium to propel themselves, so too do
these phoretic particles. A microscopic analog to spacecraft
that exhibits self-propulsion with or without the presence of a
medium is a radiation emitting micro/nanoparticle. In this pa-
per, alpha-particle emission is considered, but the analysis can
be easily applied to any type of radiation. The work described
here is motivated by the lack of a fundamental understanding
about radiation-induced movement of colloidal particles.

Although the use of alpha-particle ejection has been consid-
ered for the propulsion of macroscopic objects4,5, and the ef-
fect of electromagnetic radiation on hydrodynamics has been
studied6,7, the effect of radiation emission by a colloidal par-
ticle on colloid dynamics has not been considered. This does
not mean, however, that radioactive particles are currently un-
used. For instance, nanoparticles with radioactive constituents
that decay via alpha-particle ejection have been developed for
use in targeted alpha-particle therapy, which shows promise as
a cancer treatment8–10. It is important to understand the role
radiation emission plays in the movement of colloidal parti-
cles to ensure the proper use of alpha-emitting particles in can-
cer treatments, and to explore possibilities such as extending
the settling time of suspensions or enhancing the diffusivity of
colloids.

An effective way to quantify the motion of a particle is its
mean square displacement (MSD). In his seminal 1905 pa-
per on Brownian motion, Einstein showed that the MSD of
a colloidal particle within a dilute dispersion has a linear re-
lationship with time11. Since then, more detailed derivations
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have been completed, including those taking into account an
additional force term and having short-time accuracy12. Fur-
thermore, a phenomenon known as anomalous diffusion was
discovered in 1926, where due to non-Brownian factors such
as turbulence the MSD is a non-linear function of time13. For
analyzing active motion of colloidal particles, various models
have been developed in literature14,15. These existing models
take into account transport processes such as, negative mo-
bility and chemotactics16–18. Another such factor is momen-
tum imparted to a radioactive colloidal particle by discharge
of radiation. This study presents the kinematics of colloidal
particles due to alpha emissions and shows that the resulting
motion is a special case of anomalous diffusion.

The rest of the paper is organized as follows. In Section II
the concept of radioactive decay propelling a colloidal particle
is discussed. Section III provides the methods, analytical and
numerical, of determining the MSD of a radioactive colloidal
particle. The results of both methods are compared in Section
IV and the numerical results are analyzed in Section V. Final
remarks and conclusions are made in Section VI.

II. CONCEPT

When a radioisotope undergoes alpha decay, it emits an
alpha particle, and the resulting daughter isotope moves in
the other direction in accordance with the conservation of
momentum. A colloidal particle composed of radioisotopes
moves via a momentum transfer from the daughter isotope
when one of its constituent nuclei decays. Since the colloidal
particle has a much greater mass than the daughter isotope,
the movement is smaller in magnitude than that of an uncon-
strained nucleus. This is illustrated in Fig. 1, where the dowel
pin symbol is the center of mass of the colloidal particle. Vis-
cous drag causes the movement to be finite. A radioactive
colloidal particle is comprised of many radioactive atoms, re-
sulting in a center of mass motion due to ejection of alpha
particles, as represented in Fig. 2.

Neither Fig. 1 nor Fig. 2 exhibit Brownian motion. The
alpha-induced motion shown in these two figures would be in
addition to Brownian motion. The exponential decay of the
conglomeration of radionuclides within the colloidal particle
has an ever-changing effect on the motion of the colloidal par-
ticle, resulting in a special case of anomalous diffusion.
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FIG. 1. [Color online] The motion of a colloidal particle due to the
ejection of a single alpha particle.

FIG. 2. [Color online] The motion of a colloidal particle due to the
ejection of many alpha particles.

Using conservation of momentum, the initial velocity of the
colloidal particle due to the emission of an alpha particle is on
the order of 10−5 m/s for the cases considered herein. This
results in a Reynolds number on the order of 10−5; therefore,
it is valid to analyze the problem as a Stokes flow.

III. THEORY

In Langevin dynamics, particle motion is described with

m
d2x

dt2 + γ
dx
dt

= f (t) , (1)

where m is the mass of the particle, t is time, x is the center-
of-mass position vector, γ is the drag coefficient, and due to
the equipartition theorem f (t) is a Gaussian white noise fluc-
tuating force such that

〈 fi (t)〉= 0, (2)
〈 fi (t) f j (t + τ)〉= 2γkBT δi jδ (τ) , (3)

where kB is the Boltzmann constant and T is the
temperature19. For a liquid, the effective mass of the par-

ticle is m = mp + (1/2)m f where mp is the actual mass of
the particle and m f is the mass of the displaced fluid20. The
drag coefficient is γ = 6πµa where µ is the dynamic viscos-
ity of the fluid and a is the particle radius, assuming spherical
particles19.

Rewriting the Langevin equation (Eq. 1) as a stochastic dif-
ferential equation and including the effect of gravity results in
an Ornstein-Uhlenbeck process21,22

dut =−β (ut −µ)dt +σdWt , (4)

where ut is the particle velocity, β = γ/m, |µ| = |2g(ρ f −
ρp)a2/(9µ)| is the Stokes velocity of a particle with density
ρp in a fluid with density ρ f , σ =

√
2γkBT/m, and Wt is the

Wiener process19,23.
Including the effect of alpha-particle emission in Eq. 4 re-

sults in a modified Ornstein-Uhlenbeck process

dut =−β (ut −µ)dt +
Ft

m
dt +σdWt . (5)

The product Ftdt is the momentum change of (i.e. lin-
ear impulse applied to) the colloidal particle due to radiation
emission. The magnitude of the momentum change due to the
ejection of an alpha particle is

M0 = |∆p|=
√

E2 +2Emα c2

c2 , (6)

where E is the kinetic energy of the alpha particle, mα is the
rest mass of an alpha particle, and c is the speed of light24.

The colloidal particle here is treated as a point particle so
that rotational motion due to Brownian forces and the angular
impulse from the ejection of alpha particles can be neglected,
as can energy loss of the alpha particle as it travels out of the
colloidal particle. The escape of recoiling daughter isotopes
from the colloidal particle is ignored as well.

A. Analytical Methods

Integrating Eq. 4 for velocity results into Eq. 7

ut = u0e−β t +µ
(

1− e−β t
)
+σe−β t

∫ t

0
eβ sdWs. (7)

And the integral
∫ t

0 eβ sdWs can also be represented as Weiner
process 1√

2β
W
(
e2β t −1

)
(for more details, see reference23).

This results into the solution for velocity as

ut = u0e−β t +µ
(

1− e−β t
)
+

σ√
2β

e−β tW
(

e2β t −1
)
.

(8)
Substituting the definition of ut =

dxt
dt , and integrating with

respect to time yields12,23
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xt = x0 +
u0

β

(
1− e−β t

)
+
µ

β

(
β t−1+ e−β t

)
+W

(
σ2

2β 3

(
−3+4e−β t − e−2β t +2β t

))
, (9)

where x0 and u0 are the initial position and velocity of the
particle, respectively. Eq. 9 describes only the Brownian com-
ponent of motion.

The movement of a colloidal particle due solely to the dis-
charge of radiation can be approximated as a random walk
on a three-dimensional lattice. The step length is ε = M0/γ ,
or the finite distance traveled by a sphere propelled by an
impulse19. Successive steps occur at a frequency equal to
the activity of the radioisotope 1/δ t = A = λN0e−λ t , where
λ = ln(2)/T1/2 is the decay constant of the radionuclide, T1/2
is the half-life of the radionuclide, N0 = mpNA/A is the num-
ber of radioactive nuclei in the colloidal particle at t = 0,
NA is Avogadro’s number, and A is the atomic mass of the
radioisotope24.

Define PN(m,n,o) as the probability to find the random
walker colloidal particle at position (x,y,z) = (mε,nε,oε) at
time t = Nδ t, where (m,n,o) are integers. Considering an
equal probability of motion in all directions, we have

PN+1(m,n,o) = 1
6 PN(m−1,n,o)+ 1

6 PN(m+1,n,o)

+ 1
6 PN(m,n−1,o)+ 1

6 PN(m,n+1,o) (10)

+ 1
6 PN(m,n,o−1)+ 1

6 PN(m,n,o+1).

In the limit of large N and small ε

δ t
∂P
∂ t

=
ε2

6

(
∂ 2P
∂x2 +

∂ 2P
∂y2 +

∂ 2P
∂ z2

)
. (11)

Thus as the step size approaches zero and the frequency
approaches infinity, a random walk converges to the diffusion
equation

∂ f
∂ t

= D∇
2 f , D =

ε2

6δ t
, (12)

where D is the diffusion coefficient and f is the time-
dependent probability of the particle’s location25. Since
Eq. 12 results in a normal distribution for f , the MSD of the
particle is given by 〈(r (t)−r0)

2〉= 6Dt. A random walk may
then be described by the Wiener process W

(
ε2t/(3δ t)

)
, the

variance in one dimension being one third of the total vari-
ance.

In the case of a radioactively driven colloid, the diffu-
sion coefficient is dependent on time and thus the diffusion
equation is solved with respect to t ′ instead of t, where t ′ =∫ t

0 e−λ sds =
(
1− e−λ t

)
/λ . The modified MSD is then given

by 6D′radt ′ = N0(M0/γ)2
(
1− e−λ t

)
and the diffusion coeffi-

cient is Drad = N0(M0/γ)2
(
1− e−λ t

)
/(6t). Thus the stochas-

tic process describing the position of the radioactive colloidal
particle is

xt = x0 +
u0

β

(
1− e−β t

)
+
µ

β

(
β t−1+ e−β t

)
+W

(
σ2

2β 3

(
−3+4e−β t − e−2β t +2β t

)
+

N0

3

(
M0

γ

)2(
1− e−λ t

))
(13)

Letting t approach infinity results in xt = µt +(σ/β )Wt ,
from which it can be seen that D0 = kBT/γ , the Stokes-
Einstein equation.

This is a special case of anomalous diffusion, where the
MSD is essentially only a non-linear function of time from
the initialization of the system until a timescale similar to that
of the half-life. This aging process is unique in that it does
not exhibit a traditional sub- or super-diffusive behavior, but
rather transitions from anomalous diffusion to normal diffu-
sion. This exponentially decaying behavior is reminiscent of
the transient terms in the Brownian MSD, but with a much
greater magnitude and duration.

Due to the central limit theorem and the random walk ap-
proximation, Eq. 13 may not be converged to the true colloidal
particle position at very short times because not enough steps
will have been taken. Furthermore, the discharge of radiation
was approximated to occur on a three-dimensional lattice in-
stead of isotropically. These shortcomings suggest that a more
detailed model is required.

B. Numerical Methods

In order to verify the accuracy of the stochastic process de-
scribing particle position (Eq. 13), and to provide a more ac-
curate model for short times, the physics of individual alpha-
particles were simulated to compute the Ftdt term in the
Langevin model of Eq. 5. The velocity of the particle was
found with Euler-Maruyama (EM) integration, and then the
position was found via trapezoidal integration26. For stability
of the solution, the time step size was chosen such that for a
pure Ornstein-Uhlenbeck process the EM approximate solu-
tion would be stable in distribution (∆t < 1/β )27.

To apply a numerical method to Eq. 5, the interval of sim-
ulation is discretized with time steps ∆t j. Let τ j = ∑

j
n=1 ∆tn.

The numerical approximation to u(τ j) is denoted u j. The EM
method takes the form
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u j = u j−1−β
(
u j−1−µ

)
∆t j +

∆p j

m
+σ

(
W (τ j)−W

(
τ j−1

))
. (14)

The escape of recoiling daughter isotopes from the colloidal
particle is still neglected, and the colloidal particle is still con-
sidered a point particle for rotational purposes, but not for
interactions of alpha particles with matter. The ∆p j term in
Eq. 14 is obtained via the following simulation steps:

1. Randomly choose the location r of the alpha decay with
a uniform distribution for location within the colloidal
particle28.

2. Randomly choose the radiation emission direction Ω
with a uniform distribution for direction over 4π

steradians29.

3. Calculate the distance ∆x the alpha particle travels from
the decay location until the point where it exits the col-
loidal particle.

FIG. 3. An example geometry for a simulated alpha decay.

4. Calculate the energy of the alpha particle as it exits the
colloidal particle with

Eexit = Eα −
dE
dx

∣∣∣
tot

∆x, (15)

where Eα is the initial energy of the alpha particle and
−dE/dx|tot is the stopping power of the colloidal parti-
cle. Since only a fraction of the alpha particle’s energy
would be lost if it traveled through the entire diameter
of the colloidal particle, the stopping power is taken to
be constant.

5. Use Eexit in Eq. 6 to determine the momentum imparted
to the colloidal particle in the direction opposite of the
radiation discharge.

6. The net momentum change from all alpha particles
emitted in a time step is ∆p j.

The particles simulated had a radius of 0.5 µm and were
suspended in water at 20◦C (see Ref.30 and Ref.31 for the cor-
relations used for the density and viscosity of water, respec-
tively). Particles composed of the four materials listed in Ta-
ble I were simulated. To understand the effect of radiation
discharge, “particle pairs" were simulated such that both par-
ticles in a pair had the same random Brownian component of
motion, but only one took into account the effect of alpha-
particle emission. Example trajectories from one particle pair
are plotted in Fig. 4. For accurate statistics 10,000 particle
pairs were simulated for each scenario.

2
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FIG. 4. The trajectories of a particle pair.

TABLE I. Alpha-decaying radioisotopes used in the
simulations32–36.

Case 1 2(a) 2(b) 3
Isotope 222Ra 225Pa 222Th 218Ac
ρ (g/cm3) 5.0 15.37 11.72 10.07
T1/2 (s) 36.2 1.7 2.24×10−3 1.1×10−6

Eα (MeV) 6.556 7.22 7.98 9.20
A (g/mol) 222 225 222 218
− dE

dx

∣∣∣
tot

(MeV/mm) 101.8 296.5 214.4 176.5

In order to determine whether different computational
timescales of alpha-particle ejection and Brownian motion
would change the computed position of the colloidal particle,
simulations of two different time step types were conducted.
The first time step was set to the value of 5×10−7 seconds for
222Th and 225Pa and 1× 10−7 seconds for 222Ra and 218Ac.
Both time step values were near the stability limit for each par-
ticle to reduce computational expense. In this case the num-
ber of nuclei that decayed in each time step was determined
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as a Poisson random variable with a mean of
∫ t+∆t

t A(s)ds =
N0e−λ t

(
1− e−λ∆t

)
. The second time step was adaptive such

that on average there would be one decay per time step. The
decay constant is defined as λ ≡ lim∆t→0(∆N/N)/∆t, so the
time step was set to ∆t = 1/λN(t), where N(t) is the number
of undecayed nuclei24. In this case the number of nuclei that
decayed in each time step was determined as a Poisson ran-
dom variable with a mean of 1. Once the adaptive time steps
grew larger than the time step size from the former case, the
set time step size and corresponding mean number of decays
from the former case were implemented.

IV. RESULTS

For the following plots, the MSD was computed about the
displacement due to gravity (from theµ term in Eq. 13) so that
the variance of the Wiener process is more readily observable.
The theoretical MSD, 〈(r (t)−r0)

2〉theor, the MSD computed
from the numerical simulations, 〈(r (t)−r0)

2〉, and the 1σ

error band about the numerical MSD, 〈(r (t)−r0)
2〉±σ , are

all plotted with and without the effect of radioactivity.
In Case 1, there is no significant difference in the motion

of a colloidal particle with and without the effect of alpha-
particle emission. Case 2 highlights the difference in motion
between a radioactive and non-radioactive colloidal particle.
In Case 3, the adaptive and set time step simulations give dif-
ferent results.

For Case 1, the MSDs for 222Ra are plotted in Fig. 5, with
the numerical MSD from the adaptive time step case. The
MSD considering the effect of alpha-particle emission is only
slightly larger than the MSD without the effect because the
half-life of 222Ra is relatively long. Both the Brownian and ra-
dioactive parts of the numerical simulations show good agree-
ment with Eq. 13. The numerical MSD from the set time step
case was virtually identical to that from the adaptive case.

t (s)
0 10 20 30 40 50 60 70 80 90 100

〈(
r
(t
)
−
r 0
)2
〉
(m

2
)

×10
-10

0

0.5

1

1.5

2

2.5

3

〈(r (t)− r0)
2〉rad,theor

〈(r (t)− r0)
2〉rad

〈(r (t)− r0)
2〉rad ± σrad

〈(r (t)− r0)
2〉theor

〈(r (t)− r0)
2〉

〈(r (t)− r0)
2〉± σ

FIG. 5. [Color online] The MSDs for 222Ra.

For Case 2(a), the MSDs for 225Pa are plotted in Fig. 6,
with the numerical MSD from the adaptive time step case.

The anomalous diffusion is of an order of magnitude com-
parable to the regular diffusion. Both the Brownian and ra-
dioactive parts of the numerical simulations are in agreement
with Eq. 13. At very short times, the MSDs behave as shown
in Fig. 7. There is an offset between the theoretical and nu-
merical MSDs when radiation is considered as allowed by the
central limit theorem and the random walk approximation as
discussed earlier. The Brownian theory and simulation results
are still in accord. For the radioactive case, the numerical
MSD converges fairly quickly to the theoretical MSD, as seen
in Fig. 8.

t (s)
0 1 2 3 4 5 6 7 8 9 10

〈(
r
(t
)
−
r 0
)2
〉
(m

2
)

×10
-11

0

0.5

1

1.5

2

2.5

3

〈(r (t)− r0)
2〉rad,theor

〈(r (t)− r0)
2〉rad

〈(r (t)− r0)
2〉rad ± σrad

〈(r (t)− r0)
2〉theor

〈(r (t)− r0)
2〉

〈(r (t)− r0)
2〉± σ

FIG. 6. [Color online] The MSDs for 225Pa.

t (s)
×10
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0 1 2 3 4 5 6 7 8

〈(
r
(t
)
−
r 0
)2
〉
(m

2
)

×10
-17

0
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2
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〈(r (t)− r0)
2〉rad,theor

〈(r (t)− r0)
2〉rad

〈(r (t)− r0)
2〉rad ± σrad

〈(r (t)− r0)
2〉theor

〈(r (t)− r0)
2〉

〈(r (t)− r0)
2〉± σ

FIG. 7. [Color online] The MSDs for 225Pa at very short times.

For Case 2(b), the MSDs for 222Th are plotted in Fig. 9,
with the numerical MSD from the adaptive time step case.
Anomalous diffusion is apparent in this case because of the
short half-life of 222Th. The Brownian and radioactive theory
and simulation results are congruous. For both isotopes in
Case 2, the numerical MSDs from the adaptive and set time
step cases were practically equal.
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t (s)
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×10
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FIG. 8. [Color online] The MSDs for 225Pa at short times.
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FIG. 9. [Color online] The MSDs for 222Th.

For Case 3, the MSDs for 218Ac are plotted in Fig. 10 for
the case when radiation emission is considered, with the set
time step size for the numerical MSD. The theoretical and nu-
merical MSDs never match.

In Fig. 11 the MSDs are plotted for the case when radiation
emission is considered, with the adaptive time step size for the
numerical MSD. The theoretical and numerical MSDs are not
in accord at first, but the simulation results do eventually con-
verge to theory. With such a short half-life, the computational
time step size does play a role: the limiting simulation value
for the adaptive case shows good agreement with theory, but
the limiting simulation value for the set case does not. The
offset at earlier times for both cases is allowed by the central
limit theorem and is so pronounced for this isotope as com-
pared to the others because of the short half-life. Anomalous
diffusion is quite prominent because of the short half-life as
well.

As shown in Fig. 12, the Brownian theory and simulation
results still match.
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FIG. 10. [Color online] The set time step MSDs for 218Ac for the
radioactive case.
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FIG. 11. [Color online] The adaptive time step MSDs for 218Ac for
the radioactive case.

V. ANALYSIS

To ensure effective random number generation within the
numerical simulations, the autocorrelation function of veloc-
ity data and the excess kurtosis of the colloidal particle posi-
tion were both computed. The autocorrelation functions for
both the non-radioactive and radioactive adaptive time step
cases with 225Pa are plotted in Fig. 13 and Fig. 14, respec-
tively. Values larger in magnitude than the solid/dashed lines
mean that the null hypothesis that there is no autocorrelation
at and beyond a given lag is rejected at a significance level of
95/99%. Thus, from the figures, the velocity is random with
and without consideration of alpha-particle ejection.

The sample kurtosis b2 of the three-dimensional colloidal
particle position was calculated as in Ref.37. The three-
dimensional kurtosis of a Gaussian population is β2 = 15 and
the three-dimensional excess kurtosis of a Gaussian popula-
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FIG. 12. [Color online] The adaptive time step MSDs for 218Ac for
the non-radioactive case.
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FIG. 13. [Color online] The autocorrelation function of the u velocity
data from the non-radioactive, adaptive time step case for 225Pa.

tion is γ2 = 0; therefore, the excess sample kurtosis of the
three-dimensional colloidal particle position is g2 = b2− 15.
In Fig. 15, the excess sample kurtosis of the three-dimensional
colloidal particle position about the displacement due to grav-
ity for the adaptive time step case with 225Pa is plotted. From
the figure it can be seen that the particles are approximately
normally distributed, as is expected from a Wiener process.

VI. CONCLUSIONS

A new concept for the propulsion of colloidal particles is
presented due to the emission of radiation. Langevin equa-
tion based model is devised and the results presented in this
study exhibit a special case of anomalous diffusion. It was
shown that the effect of alpha-particle ejection on the motion
of a colloidal particle can be consequential, is most readily
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FIG. 14. [Color online] The autocorrelation function of the u velocity
data from the radioactive, adaptive time step case for 225Pa.
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FIG. 15. Excess sample kurtosis of the colloidal particle position
about the displacement due to gravity for the adaptive time step case
with 225Pa.

observable on timescales similar to that of the half-life, and
will only be significant for short half-lives.

Results from numerical simulations have corroborated the
theory. It was shown that computational time steps need to
be on the order of the time between radioactive decays. Since
the time between alpha decays within the colloidal particle
is very short, further study with a numerical method such as
molecular dynamics should be performed to understand the
effect of the inertia of the fluid, transient hydrodynamic inter-
actions between the fluid and the colloidal particle, and fluid
compressibility on the motion of the colloidal particle.
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