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Abstract 

 

Using Context-Sensitive Criteria to Evaluate Local and Regional 

Transportation Policy: A Case Study on Cordon Pricing 

 

Amy Zhang Fong, M.S.E. 

The University of Texas at Austin, 2019 

 

Supervisor:  Charles Michael Walton 

 

As traffic congestion grows but existing roadway capacity remains fixed or limited, 

downtown congestion pricing offers potential as a tool to manage the transportation system. 

Though the idea is not new, congestion pricing has received a resurgence of attention in 

the United States in recent years because it could offer both congestion relief and 

transportation revenue. However, in order for a modern congestion pricing proposal to be 

politically feasible and publicly acceptable today it must be designed to offer more, such 

as equitable or progressive distribution of impacts, greenhouse gas emissions, and 

encouragement or support for alternate modes, including new mobility services. 

In Seattle, serious consideration of the implementation of congestion pricing by 

2021 is underway, and numerous policy questions remain open. One which many 

anticipate, particularly the public, is the question of where congestion pricing revenue 

would be spent. It is likely that at least some of the revenue will be allocated for transit, 

but where should service improvements be targeted, both geographically and 

demographically, so that mobility and access are not impaired, particularly for the already 
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transportation-disadvantaged, and so that multimodal travel is not just possible but 

preferable to driving? Could a regional partnership between transit agencies like Sound 

Transit and King County Metro and the City of Seattle secure transportation outcomes that 

align with both transit agencies’ ambitious service expansion goals and Seattle’s core 

equity, multimodal mobility, and climate goals?  

This thesis seeks to answer these questions by using a mix of statistical models of 

transportation system level of service and individual-level mode choice. These models are 

used to predict how travelers across the region would change their travel behavior in 

response to cordon pricing in Center City Seattle under two investment scenarios. It is 

projected that investing in transit broadly across the region by decreasing transit service 

times produces transportation system outcomes that advance both local and regional 

strategic goals more than concentrated investment on downtown Seattle roadways and 

transit could advance Seattle’s goals alone. Regional transit investment would decrease 

congestion more in Center City Seattle by improving transit access from outside Seattle 

into Center City, especially among neighborhoods with the lowest housing and 

transportation affordability, highest automobility, and highest transportation-related 

greenhouse gas emissions. Therefore, the findings strongly motivate that congestion 

pricing revenue in Seattle be spent on regional transit service improvement and expansion. 

Furthermore, the findings suggest that even regional transit investments that may not be 

directly linked to Center City will help to produce a mix of better transportation outcomes 

in Center City than concentrated investment would.  
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Chapter 1: Introduction 

LOCAL AND REGIONAL TRANSPORTATION CONTEXT 

Transportation and mobility issues are the subject of constant attention in the 

Greater Seattle region. Seattle is known for some of the worst traffic congestion in the 

country – commuters spend the 6th most hours in traffic annually (INRIX, 2019). 

Circumstantial conditions only worsen matters. First, the Seattle economy is growing 

rapidly: a 2018 ranking named Seattle as the third-fastest growing large American city 

(McCann, 2018). Second, Seattle’s downtown core, also known as the Center City, is about 

to meet the convergence of billions of dollars’ worth of road and real estate construction, 

which will close many already-congested lanes. Meanwhile, light rail improvements which 

could provide relief will not arrive until 2021. City officials are doing what they can to 

notify the public of this so-called “Seattle Squeeze” from 2019 to 2024 by initiating public 

campaigns, outreach efforts, and traffic management measures to manage the anticipated 

congestion (Seattle Traffic, 2019). Because of the Seattle Squeeze and anticipated steady 

population and employment growth, 2017-elected Mayor Jenny Durkan and Seattle 

Department of Transportation (SDOT) anticipate Seattle Center City traffic to worsen over 

the next few years before planned improvements can provide congestion relief (Lindblom, 

2018). This poses a major challenge for the city, as even when lanes reopen and light rail 

service begins, it must identify strategies to move people and goods through Center City 

more efficiently and reliably. 

The City of Seattle also faces numerous transportation equity concerns and is 

committed to addressing them. Seattle has prioritized race and social justice citywide 

through the implementation of various municipal programs and policies over the last 

decade. One such program is Seattle’s Transportation Equity Program, “created to provide 
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safe, environmentally sustainable, accessible, and affordable transportation options that 

support communities of color, low-income communities, immigrant and refugee 

communities, people with disabilities, people experiencing homelessness or housing 

insecurity, LGTBQ people, women and girls, youth, and seniors to thrive in place in vibrant 

and healthy communities, and eliminate or mitigate racial disparities and the effects of 

displacement” by Seattle City Council Resolution 31773. Early outreach efforts by SDOT 

through this program have identified a mix of physical and digital barriers to transportation 

access, ranging from missing sidewalks, distant transit stops, and gaps in mobility-impaired 

accessibility to lacking access to online information about new projects, construction 

delays, transit options, and low-income program options. Transportation affordability or 

lack thereof is another barrier to transportation access in Seattle and the region; some have 

proposed strategies such as low-income transit passes but a major barrier is the lack of 

adequate funding to support such programs (Cohen, 2018). Furthermore, transportation 

affordability is linked to the region’s housing affordability crisis. Home prices have risen 

almost 60 percent in the last decade, which is three times the national growth rate. Nearly 

40 percent of middle-income households report they are cost-burdened by housing 

(Challenge Seattle, 2019). Affordable transportation options could enable more people to 

live where they wish to more comfortably.  

Seattle also has a history of climate action. In 2011, the Mayor and City Council 

adopted a goal for the city to become carbon neutral by 2050 and published its first Climate 

Action Plan in 2013. In 2018, the city published a new Climate Action Plan reaffirming 

their commitment to a zero emissions future, and the first under Mayor Durkan. 

Transportation sector emissions reductions will play a major role in whether or not the city 

will achieve its goals; a recent greenhouse gas inventory found that 66 percent of Seattle's 

core emissions came from road transportation. Half of emissions were from passenger 
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vehicles and the other half from freight. One strategy that Seattle hopes will help reduce 

transportation sector emissions is encouraging multimodal and active transportation 

choices over single occupancy vehicle trips through transit investment and improvements 

(City of Seattle, 2018). Additionally, the city published their New Mobility Playbook in 

2017, outlining a vision for the transportation system that incorporates shared mobility and 

ridesourcing equitably and sustainably by advancing multimodal travel behavior (Seattle 

DOT, 2017). 

These and other transportation issues underlie the five core values outlined in 

Seattle's current strategic transportation plan: safety, interconnectivity, vibrancy, 

affordability, and innovation. Some of the goals the strategic plan identifies to uphold these 

values include: reducing the percent of Seattle residents who drive alone to work in order 

to reduce congestion and greenhouse gas emissions; increasing the percentage of 

households within a 10-minute walk of a frequent transit route running every 10 minutes 

or better; and expanding multimodal travel options for low-income residents (Seattle DOT, 

2015). 

Beyond Seattle, a major regional transportation goal is transit service expansion. 

Sound Transit and King County Metro are two major transit providers in the Greater Seattle 

region (primarily light rail and various bus routes), each with visions of system expansion. 

Sound Transit is in its third phase of voter-approved capital investments called Sound 

Transit 3 (ST3), with goals to expand its existing system five-fold to realize a 116-mile 

light rail network with more than 80 stations serving 16 cities (Sound Transit, 2017). 

However, these ambitious plans are subject to a suite of financial risks. Tax revenue 

provides for the majority of Sound Transit's anticipated revenue over the next 40 years, and 

will be instrumental in financing the significant planned system expansions. However, a 

reduction in local tax revenues due to stagnant economic growth or revenue growth that 
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falls short of the current forecast could threaten not only Sound Transit's ability to finance 

various projects but also their credit and ability to sell and finance long-term debt. As a 

result, a diverse and robust portfolio of funding sources for Sound Transit can reduce their 

financial risk and help them achieve their expansion goals. 

King County Metro has also committed to system expansion in the coming decades, 

and it is one of the eight strategic goals named in their most recent strategic plan. They 

plan to "address the growing need for transportation services and facilities through the 

county" by expanding services and coordinating and developing services and facilities with 

other providers. In their most recent long-range transportation plan, Metro Connects, they 

specify some of the investments they plan to make, including frequent service for 73 

percent of King County residents, a growing network of express buses, more local service, 

and coordination with other agencies and cities to create an interconnected transit system 

(King County Metro, 2015). 

There is a long history of partnership between Seattle Department of Transportation 

and regional actors like Sound Transit and King County Metro to coordinate planning 

decisions in Center City Seattle. The 2016 One Center City plan included the three 

aforementioned agencies, the non-profit Downtown Seattle Association, and an executive 

steering committee. A planner from Seattle Department of Transportation that worked on 

this initiative provided some key insights from her experience. The plan aimed to integrate 

disparate modal master plans (bicycle, freight, pedestrian, and transit) and allocate 

downtown street space to respective modes so that properties and businesses could 

anticipate how the area’s infrastructure and traffic patterns would develop. Ultimately, each 

partner contributed $10 million towards a $30 million portfolio of transit-related 

investments in Center City. Each partner agency had to address their own set of institutional 

barriers in the planning process. Each agency had its own decision-making process; SDOT 
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could authorize transportation projects on Seattle streets without Mayoral or City Council 

approval, King County Metro decisions required approval from a council of elected 

officials, and Sound Transit decisions required approval from its board. Having different 

timelines and constraints slowed the agencies’ ability to build consensus around a plan for 

Center City (Shepard, 2019). Nonetheless, the existing relationships between each of the 

three agencies remain strong. Each maintains willingness to return to the negotiating table, 

especially under high-priority issues that concern Center City; they continue to partner on 

numerous projects and efforts. 

CONGESTION PRICING POLICY CONTEXT 

Congestion pricing is a strategy that uses tolls to manage roadway or highway 

congestion. Cordon pricing is a specific type of congestion pricing. It is most commonly 

used to manage congestion on downtown streets. Internationally, cordon pricing has proven 

effective at managing congestion, reducing greenhouse gas emissions, and increasing 

transit ridership. As a result, cordon pricing is being considered in Seattle as a strategy to 

meet the city’s congestion, emissions, and transit growth goals. Other American cities 

facing similar challenges today are also considering cordon pricing.  

Historically, the challenge of traffic congestion has often been met with road 

expansions or additional roadway capacity. However, transportation practitioners today are 

more wary to introduce more roadway capacity because of space limitations and the 

potential to induce additional traffic demand. Instead, Seattle political leaders are currently 

considering some form of congestion pricing as an alternative transportation system 

management strategy. In general, forms of congestion pricing are considered road 

management strategies that require little additional infrastructure. Congestion pricing 

works by charging drivers a fee or toll to access a certain segment of roadway or a certain 
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area in a city. By increasing the cost of driving on certain routes or in certain areas, fewer 

people choose to drive there, and traffic congestion and travel time reliability usually 

improve.  

Cordon pricing is a specific form of congestion pricing. It works by charging 

drivers either variable or fixed tolls or charges to drive into a certain zone or cordon in a 

city. In international cities where it has been implemented, the cordon typically 

encompasses the central business district, where road space is most limited and subject to 

the most severe congestion. Seattle’s downtown traffic issues are particularly being 

exacerbated by an unprecedented convergence of road closures and growing congestion. 

Therefore, cordon pricing is the congestion pricing variant best suited to manage existing 

roadway capacity on streets in Center City Seattle.  

The charge to drive into a cordon zone can vary by time of day or level or 

congestion. This provides the flexibility to charging drivers according to traffic demand. 

At peak travel times when demand is highest, raising the cordon charge can smooth traffic 

demand so that drivers either avoid the most congestion region or choose to travel when it 

is less congested.  

Cordon pricing can be implemented as an application or extension of existing 

electronic tolling systems, such as the system that operates on several Washington State 

highways today called Good to Go. Good to Go, like E-Z Pass in the Eastern United States 

and FasTrak in California, works by either scanning a mounted Good to Go pass or license 

plate when it passes through a tolling gantry. The system is all-electronic, so vehicles do 

not slow down as they pass through the gantry. The toll can be set to vary throughout the 

day or for different types of vehicles, and can be collected in one or both crossing directions 

(Washington State Department of Transportation, 2019). 
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Advocates for downtown congestion pricing in its various forms often cite 

international examples of its efficacy. Cordon pricing has already been implemented in 

London, Stockholm, and Milan. Each city implemented it between 2003 and 2007, and 

continue to operate some form of it today. Each city observed around 20 percent in vehicle 

traffic reductions and greenhouse gas emissions within their cordons after the 

implementation of cordon pricing. Transit ridership where available also increased. During 

implementation in these European cities, a serious effort to implement congestion pricing 

in New York City also took place, led by then-mayor Michael Bloomberg. In 2007, the city 

included congestion pricing as a transportation initiative in a citywide plan. However, in 

2008 the State Assembly failed to vote to authorize Bloomberg's congestion pricing 

proposal, even though it had passed in the New York City Council (Confessore, 2008). It 

did not rise to the forefront of the policy agenda in the city for another ten years. 

Because several American cities are grappling with similar congestion challenges 

as Seattle, policymakers around the country have opened or re-opened dialogue around the 

potential use of congestion or cordon pricing in their cities. No North American city has 

yet implemented cordon pricing in a zone of their city. New York City will likely be the 

first American city to do so. In 2017, the New York governor crafted a new congestion 

pricing proposal and instituted a task force to study the issue. Two years of debate, mixed 

opinions, and growing public acceptance in New York City followed. In March 2019 the 

New York State legislature passed a 2019 state budget that included congestion pricing and 

approved New York City to advance congestion pricing for the first time (Hu, 2019).  

Los Angeles Metro’s board of directors and the San Francisco County 

Transportation Authority have also each authorized new feasibility studies for congestion 

pricing in early 2019.  
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In 2017, the Seattle City Council authorized a study on road pricing in downtown 

Seattle. In 2018, Mayor Jenny Durkan allocated $1 million within the citywide budget and 

a portion of a $2.5 million Bloomberg Philanthropies grant to be used to study congestion 

pricing with the potential to implement by 2021 (Downtown Seattle Association, 2018; 

Robertson, 2018).  

Congestion or cordon pricing will be a political issue in Seattle because it must be 

approved by a public vote before its implementation. Furthermore, various interest groups 

in the region have competing goals.  

Under RCW 36.73.065, Washington state law allows cities to form Transportation 

Benefit Districts, which can levy transportation tolls on city and county roads. These tolls 

cannot be imposed by a district until a majority of voters in the district approve it in a 

general or special election. The City of Seattle has already been a Transportation Benefit 

District since the Seattle City Council passed Ordinance 12339 in 2010. Therefore, Seattle 

would first need to hold a public vote before implementing cordon pricing on its city and 

county roads (Washington State Legislature, 2019). 

 Transportation network companies (TNCs) that operate in the greater Seattle 

region such as Uber and Lyft have already their position on cordon pricing clear. In October 

2018, Uber stated that they would lobby for congestion pricing in Seattle, because they 

"believe that one of the most effective ways to manage vehicle congestion is through road 

pricing" and that they plan to "bring attention to the benefits of comprehensive congestion 

pricing from both an emissions and traffic reduction standpoint." Lyft also publicly 

commented that they would support congestion pricing in Seattle (Lloyd, 2018). Both 

companies are advocating for congestion pricing as an alternative to a surcharge or tax that 

is levied only on ridesourcing trips, which has also been under consideration in Seattle 

since Fall 2018 (Beekman, 2019). 
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A member of Lyft’s transportation policy team shared the company’s policy 

position and perspective. Lyft supports universal congestion pricing in Seattle and in other 

metropolitan areas when it is designed under certain principles. First, to meaningfully 

address congestion issues any policy needs to both target all vehicles and incentivize a shift 

to higher occupancy and shared rides – these are goals that a ridesource-only surcharge 

would not only fail to meet but potentially hinder. TNCs indeed contribute to traffic 

congestion, as do all vehicles on the road. However, congestion has been an issue far longer 

than their existence and TNCs still make up only a fraction of total vehicle trips; thus, 

charging only TNCs as a congestion relief strategy would likely be ineffective. 

Furthermore, Lyft supports a fee structure that incentivizes shared rides and low-carbon 

vehicles. This could be achieved by reducing fees on high occupancy vehicles and electric 

vehicles that enter the cordon. Finally, the revenue collected from congestion pricing 

should be reinvested in the transportation network to help provide alternative options and 

improve infrastructure, rather than used to fill budget shortfalls elsewhere in the city. By 

improving the transportation system using the revenue generated from drivers in Center 

City, the quality of all mobility services and modes (including those that Lyft offers, such 

as ridesourcing, bikesharing, and scootering, and exposing nearby transit options) will 

improve; when this happens, people’s perception of viable means of transportation expand, 

which can lead to the multimodal future that Seattle envisions (Schrimmer, 2019). Many 

of Lyft’s goals seem to be complementary with many of those held by the regional and 

local transportation agencies in Greater Seattle. 

Although the most recent and visible discussions around congestion pricing have 

centered around the City of Seattle, the Seattle Department of Transportation, and the 

Seattle City Council, congestion pricing has previously provided fodder for regional 

discourse. In 2015, King County convened a Bridges and Roads Task Force to discuss an 
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anticipated funding gap of $250 million to $400 million a year towards maintaining 

transportation infrastructure in the county. Furthermore, King County Metro's 2019-2020 

budget lists financial sustainability as a major challenge, citing that "Metro's existing 

revenue structure is heavily reliant on sales tax, which is a highly volatile revenue source" 

and that "Metro's current revenue streams are insufficient to provide the system and 

services outlined in Metro Connects, Metro's long-term vision" (Metro Transit, 2018). One 

of the key recommendations made by the Task Force was that the county should further 

study funding alternatives, naming road pricing and congestion pricing as potential 

strategies (King County, 2016). The Greater Seattle region, like many others in the United 

States, is currently anticipating funding gaps that will stand between them and more a 

connected, sustainable, and equitable transportation system. Furthermore, state and local 

governments’ reliance on federal transportation dollars is threatened by diminishing gas 

tax revenue and Highway Trust Fund insolvency. 

The problems that congestion, emissions, equity, and transportation funding pose 

in the region have elevated cordon pricing as a potential policy solution. The current 

political landscape in Seattle, with its new mayor and her interest in cordon pricing, 

produces a window of opportunity to use evidence-based evaluations of cordon pricing to 

advance the policy-making process.  

PROBLEM STATEMENT 

To meaningfully assess cordon pricing for policymakers in Seattle, we must 

document the potential impacts of cordon pricing. Choosing the criteria by which we 

evaluate impacts is informed by the local context of transportation needs. Based on the 

scan of transportation, social, and climate issues, the four dimensions most relevant to the 
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region’s goals are: congestion, revenue, equity and multimodality, and greenhouse gas 

emissions. 

Transportation is an inherently regional issue. First, transportation system impacts 

on travel behavior reach across jurisdictions. Most travel into Center City is generated by 

people who live outside Seattle. Imposing a fee to enter Center City may reduce vehicle 

miles travelled (VMT) within its bounds and within Seattle, but it could merely shift trips 

outside of the city and thus increase VMT or emissions elsewhere. Or, it could be effective 

in incentivizing Seattle residents to take alternate modes within Center City, but without 

viable drive alone alternatives for those who reside outside Seattle the fee could be less 

effective than is expected. Second, how cordon pricing revenue should be allocated both 

towards different programs and within different geographies belongs within a regional 

scope of discussion because of the first point. The drivers that pay the cordon price will 

hail from across and outside of the region; meanwhile, those who choose to take transit 

may produce positive externalities throughout the region via reduced congestion and 

emissions. Moreover, it is possible that much of the revenue collected will come from the 

highest-income or lowest-need travelers, or those who have cars and can afford to pay to 

access Center City by car. Given the complex mix of strategic goals and funding challenges 

that the transportation system faces, jurisdictions and agencies beyond Seattle and iSODT 

stand to gain or lose from Center City cordon pricing.  

The unique convergence of problems, policy solutions, and political interest in 

cordon pricing motivates the exploration of how it can be a regional strategy that advances 

multiple agencies’ goals and meets multiple types of peoples’ needs simultaneously.  
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RESEARCH QUESTION 

This thesis seeks to understand two major policy questions about cordon pricing in 

Center City Seattle. First, will cordon pricing be effective at managing congestion and 

emissions, and should Seattle implement it? Second, how will different investment 

portfolios using cordon pricing revenue produce different outcomes for the regional 

transportation system, and what are the implications for various regional partners? 

THESIS SUMMARY 

In order to present the results of these questions in terms meaningful to 

policymakers across the region, I synthesize metrics from strategic and long-range plans 

published by the City of Seattle, King County Metro, and Sound Transit. Next, statistical 

models provide data-driven tools for projecting the impacts of cordon pricing in terms of 

these key metrics. Finally, my findings are used to discuss cordon pricing from both a 

transportation system management perspective and a policy perspective.  

Chapter 2 presents a literature review on the impacts that shared mobility and 

ridesourcing have had on the transportation system, how travel behavior models can be 

adapted to incorporate these are other new modes, and on the impacts, outcomes, and best 

practices of existing and emerging congestion pricing initiatives. Chapter 3 presents 

statistical models for estimating ridesourcing level of service variables to supplya travel 

mode choice model. Chapter 4 presents mode choice models for work and non-work trip 

types in the Greater Seattle region that incorporate drive alone, shared ride, ridesource, 

transit, walk, and bike modes. Chapter 5 applies these mode choice models to three settings 

in the Greater Seattle region – current conditions, cordon pricing with Seattle-centric 

investment, and cordon pricing with regional transit investment – to assess congestion, 

emissions, equity, and multimodality outcomes. Chapter 6 synthesizes analytical findings 
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with local and regional strategic goals and funding needs to motivate a strategy for regional 

coordination around cordon pricing, and raise existing questions around policy, 

programming, and implementation that require future research. 
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Chapter 2:  Literature Review 

This chapter scans the states of research and practice of both congestion pricing and 

ridesourcing. Modern cities today face numerous challenges, ranging from longstanding 

ones such as traffic congestion and road safety to new ones like the introduction of unseen 

shared mobility services such as ridesourcing. As a result, to meaningfully assess 

congestion pricing within the context of a modern transportation system, we must consider 

the impacts that ridesourcing may have on congestion and how ridesourcing trips may 

uniquely respond to congestion pricing.   

Numerous disciplines have contributed their perspectives on how to evaluate and 

assess the impacts associated with ridesourcing services and congestion pricing, including 

economics, transportation engineering, urban planning, geography, and public policy. 

Although the research methods used across these disciplines can vary, they are often 

applied with similar motivations or research questions. This literature review will reach 

across disciplines and methods in order to synthesize early findings on the most common 

and relevant research questions pertaining to both topics, including: understanding the 

demographics and geography of its users; the interactions ridesourcing has on travelers’ 

mode choice, the impacts that the adoption of ridesourcing has had on urban traffic 

congestion and what policy interventions experts have recommended to mitigate such 

impacts; the use and effectiveness of congestion pricing as a tool for managing urban 

congestion; and the feasibility and guiding principles for modern congestion pricing 

implementation.  

CONGESTION PRICING TERMINOLOGY 

High occupancy toll (HOT) lanes and cordon or area pricing are two emerging 

forms of road pricing in the United States. HOT lanes operate as carpool lanes that single 
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occupancy vehicles can enter for a fee. Revenue from HOT lanes is typically used to fund 

the highway expansion associated with creating that lane. HOT lanes are typically 

implemented to improve and manage traffic flow. On the other hand, cordon pricing and 

area pricing charge a fee when a vehicle enters or exists a defined area or zone, or when 

vehicles circulate within a zone, respectively. These forms of pricing can currently be 

found in the downtowns of a few European and Asian cities, such as London, Stockholm, 

Singapore, and Milan. 

Other terms commonly used when discussing road pricing include: dynamic or 

variable pricing, in which rates or tolls vary with demand; distance-based charging, in 

which vehicles are charged based on distance traveled; congestion point charging, in which 

vehicles pay a charge when crossing key points; and managed lanes, which are similar to 

HOT lanes in that those who pay a toll in addition to those in high-occupancy vehicles can 

access it (TransForm, 2019). 

This thesis will use the term congestion pricing to refer to the general concept of 

road pricing on downtown roads (as opposed to on freeway or highway lanes), and cordon 

pricing to refer to the zone-based implementation of congestion pricing. 

CONGESTION PRICING IN THE U.S. AND ABROAD 

European cities have been first to implement congestion pricing, including London, 

Stockholm, Malta, Rome, and Milan. Singapore also uses congestion pricing; they take a 

more comprehensive approach of pricing highways and major arterials with twenty-eight 

control points across the city. 

London implemented congestion pricing in central London in 2003. The charge is 

eight pounds during daytime travel hours on weekdays. The city has observed a 15 percent 
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reduction in traffic and a 30 percent reduction in delays, with most former car users 

switching the public transportation. 

Stockholm implemented cordon pricing in its central business district in 2006. They 

experienced a 20 to 25 percent reduction in traffic volumes on the most congested roads, 

and a 14 percent reduction in exhaust emissions. The initial 2006 trial won the support of 

many voters and in 2007 they moved to institute cordon pricing permanently (FHWA, 

2008). 

Milan instituted cordon pricing in 2007 to reduce vehicle emissions. In 2012 Milan 

began prioritizing traffic reduction as well. First, Milan implemented fees that scale 

according how the emissions factor of the vehicle, then in 2012 replaced that with a more 

comprehensive charge. Milan observed that traffic reduction between 2015 and 2011 was 

29.2 percent and that the scheme reduced particulate matter emissions by 15% (Croci & 

Ravazzi, 2015). 

Although these European examples mostly predate the emergence of TNCs and 

ridesourcing, recent increases in traffic congestion and declining transit ridership in North 

America have generated the political impetus to re-investigate the feasibility of congestion 

pricing. As transportation practitioners and policymakers anticipate the introduction of 

automated vehicles and the potential increase in VMT associated with that transition, 

congestion pricing is being proposed as the cornerstone of a policy package that addresses 

a multitude of emerging urban issues (Hirsh, Higashi, Mason, and Catts, 2019). 

In the United States, congestion pricing discussions have advanced most in New 

York City (NYC). New York Governor Cuomo formed the Fix NYC Advisory Panel in 

late 2017 to develop recommendations to address severe traffic congestion in Manhattan's 

central business district (CBD) and identify subway revenue sources. The panel 

recommended a phased approach, ultimately implementing congestion pricing in the city; 
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furthermore, cordon pricing as a solution would uniquely be able to charge ridesourcing 

vehicles. They prioritized zone or cordon pricing over managed lanes and increased vehicle 

registration fees due to implementation ease and inequitable impacts, respectively. In the 

proposed first phase, the city would install zone or cordon pricing infrastructure so that 

trips that cross into the CBD would be charged a fee during certain times of the day or 

week. In the second phase, all for-hire vehicles (both taxis and TNCs) would be charged a 

Congestion Surcharge in the CBD, with the potential for variable rates based on time and 

day of week, and lower rates for pooled rides. All revenue would be used for transit 

improvements. In the third phase, zone or cordon pricing would be imposed on all vehicles 

that enter the CBD, including both trucks and passenger vehicles (HNTB, 2018). 

Ultimately the proposed plan would charge cars $11.52 during peak hours, trucks $25.34, 

and taxis and ridesource vehicles $2 to $5, generating $1.5 billion yearly. 

The response to the proposed congestion charge in NYC has been mixed. Policy 

scholars are generally in favor of congestion pricing because it is efficient, charging drivers 

for the negative externalities that their behavior generates (Short, 2018). TNCs themselves 

have also begun to embrace the policy, likely in recognition that congestion pricing will 

serve as a fairer policy that is enforced on all vehicles. Uber's Head of Transportation 

Policy and Research formally shared the company's stance on congestion pricing in 2017, 

stating that "the cost of driving ultimately needs to reflect its cost to our cities” (Morris, 

2017). In March 2019, the New York State legislature passed a state budget that would 

allow New York City to implement congestion pricing on all vehicles by 2021. 80 percent 

of revenue would be spent on subways and buses and 10 percent respectively to Long 

Island Rail Road and the Metro-North Railroad (McKinley & Wang, 2019). 

Transportation professionals have also been prominent voices in the congestion 

pricing debate in NYC. Bruce Schaller, an expert on for-hire vehicle-related issues, has 
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authored numerous reports on congestion and ridesourcing in NYC. His reports evidence 

that TNCs have contributed to congestion in the city and have suggested congestion 

charging as a tool for mitigating those impacts on multiple occasions. However, although 

he does state congestion pricing and TNC fees would be effective congestion mitigation 

strategies, he anticipates they will be politically infeasible. Based on his analysis, a fee on 

TNCS must be as high as $50 per hour in Midtown Manhattan to disincentivize cruising 

on streets without riders and to reduce the associated VMT. In anticipation of potential 

political barriers to aggressive pricing policies, Schaller instead suggests strongly limiting 

the parking supply in NYC; it would be more politically feasible to adopt than congestion 

pricing, while still likely reducing the number of people who choose to drive into the CBD. 

Another solution proposed is limiting or banning low-occupancy vehicles from certain 

streets at designated times of the day in the CBD (Schaller, 2018). Although a divergent 

congestion pricing proposal in NYC is now in development, the principles and 

recommendations Schaller put forth may transfer well to other American cities with similar 

challenges. 

Despite the aforementioned political barriers, other cities in the U.S. and Canada 

have also considered implementing some form of congestion pricing. Vancouver 

conducted a study on "decongestion charging" in 2018, motivated by the region’s traffic 

congestion. It discusses the need for new forms of coordination and policy to manage 

emerging transportation technologies like electrification, automation, and sharing. The 

study found that regional congestion point charges would reduce congestion by 20 to 25 

percent and raise $1 to $1.5 billion per year, while multi-zone distance-based charges 

would reduce congestion by 20 to 25% and raise $1 to $1.6 billion per year. The study also 

named four principles to guide the design of a mobility pricing policy: congestion, fairness, 

supporting investment, and other matters like economic benefit, privacy, and regional 
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growth. The report recommends that "a decongestion charge should be coordinated with 

all the other ways we pay for mobility in Metro Vancouver - including new and emerging 

mobility services - to achieve regional mobility goals." On funding, the report recommends 

that "the design of a decongestion charge should seek alignment of charges with access to 

transit. This can be supported by targeted transit improvements” (Mobility Pricing 

Independent Commission, 2018). 

In 2010, the San Francisco County Transportation Authority (SFCTA) conducted a 

feasibility study on congestion pricing in San Francisco concerning transportation, 

economic, environmental, social, and financial conditions. It also discussed how transit and 

active modes could be improved by using the revenues generated through pricing. The 

report found that congestion pricing would be technically feasible and would advance the 

city's goals relating to transportation system management, greenhouse gas emissions 

reductions, and sustainable economic growth. A cordon fee in Northeast San Francisco was 

projected to decrease vehicle trips to and from that area by more than 15 percent. The report 

also proposed that a program would fund faster and more frequent transit services and 

coordinate to deliver additional transit services prior to the introduction of the congestion 

charge. The report found that given a $3 cordon charge, annual revenue would be around 

$450 million, though discount programs for low-income and otherwise disadvantaged 

travelers would reduce revenue by about $90 million. The report also named the 

importance of regional agreements that would be necessary to implement cordon pricing 

in San Francisco, including with the Metropolitan Transportation Commission/Bay Area 

Toll Authority, San Francisco Municipal Transportation Agency, and California Highway 

Patrol (SFCTA, 2010). In February 2019, SFCTA authorized a new $500,000 study to re-

examine congestion pricing in downtown San Francisco (SFCTA, 2019). 
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Transit agency Los Angeles Metro announced that they would recommend 

pursuing congestion pricing in January 2019. In March 2019, the Metro board voted 

unanimously to move forward on congestion pricing and ridesourcing fee feasibility 

studies. In Los Angeles, this initiative is motivated by both present recurring congestion 

and anticipated 2028 Olympics congestion (CBS Los Angeles, 2019). Separate from LA 

Metro, the Southern California Association of Governments (SCAG) conducted the 

Mobility Go Zone and Pricing Feasibility Study, exploring how the use of decongestion 

fees could have impacts on VMT and VHT. SCAG chose the Westside area in the Cities 

of Los Angeles and Santa Monica as a proof-of-concept area because of its high congestion 

and high jobs-to-housing ratio. The report found that a cordon zone would reduce VMT 

within its boundaries by 22 percent during the AM peak and 21 percent during the PM 

peak. The report also found that driving mode choice would decrease by 19 percent during 

peak periods, while transit and active mode shares would increase by 9 and 7 percent 

respectively. The report suggests future research on the impacts on low-income households 

with vehicles as well the potential for a low-income or carpool discount. The report also 

suggests additional analysis to assess the impacts to traffic congestion if TNCs are subject 

to differential pricing or an hourly rate instead of a flat fee (SCAG, 2019). 

CONGESTION PRICING POLICY STRATEGIES 

In addition to the previously reviewed studies, which examine the feasibility of 

congestion pricing within specific urban areas, some literature provides broader 

implementation and planning recommendations and principles. This work contains of mix 

of studies with both predate and follow the emergence of TNCs and the popularization 

other new mobility services. 
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In 2008, the Federal Highway Administration published a series of primers on 

congestion pricing, included road pricing, parking pricing, and mileage-based user fees. 

These primers synthesized lessons learned from numerous U.S. and international cases to 

produce recommendations and best practices. The primer series had several goals. The first 

was to motivate policymakers to consider congestion pricing as part of a bundle of 

complementary strategies that would be acceptable to a range of stakeholders; 

policymakers could find allies among decisionmakers and local leaders and engage 

businesses to build broad-based support for a congestion pricing program. The second was 

to link congestion pricing to regional goals and objectives, with ongoing monitoring and 

evaluation. The third was to find interagency collaboration opportunities and partnerships 

that clearly identify regional roles and responsibilities, sometimes with the help of political 

leadership. The fourth was to analyze regional traffic, economic, and social impacts of 

congestion pricing to inform the planning process. The fifth and final recommendation was 

to establish a supportive policy framework for implementing regional pricing programs 

and establishing conditions for revenue use (FHWA, 2008). 

One of the primers FHWA produced in this series focused on congestion pricing 

and its effect on public transportation. An international scan found that the effect of 

congestion pricing on public transportation depends on the type of pricing strategy that is 

implemented. HOT lanes do not generate a shift to public transportation even though some 

revenues from the lanes are occasionally dedicated to public transportation. FHWA noted 

that in London, a core part of the congestion charge strategy had been to implement the 

charge alongside enhanced public transportation services: 300 new buses were introduced 

several months before London implemented the congestion charge. FHWA noted that in 

London, ridership into the zone increased by up to 38 percent, due both to the congestion 

charge and transit service improvements. One institutional solution that made this 
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coordination possible was that Transport for London was granted final authority for both 

transit and road projects in London, which made it easier to integrate transit investment 

with the congestion charge. FHWA found that enhanced public transportation made zone-

based pricing successful in Europe, which suggests that contemporary efforts in the United 

States should also include transit investment a core strategy within a congestion pricing 

proposal (FHWA, 2009). 

FHWA also published a primer on the income-based equity impacts of congestion 

pricing, raising equity issues associated with road pricing. For instance, most forms of 

transportation finance, such as fuel taxes, sale taxes, and tolls have been found to be 

regressive relative to income. Furthermore, congestion pricing could disproportionately 

burden low-income workers by making it difficult to reach their jobs, especially if adequate 

transit is lacking. Finally, there may be barriers for households that do not have access to 

lines of credit or bank accounts. They found that high-income individuals are more likely 

to incur congestion charges, while low-income individuals benefit the most from pricing 

schemes when revenues are used for public transportation. The primer put forth several 

strategies for addressing equity concerns. One consideration is how congestion pricing 

revenue will be used - whether revenue is used for financing highway improvements or 

transit service shifts the distribution of costs and benefits. Another consideration is toll 

exemptions or toll rebates for low-income or otherwise disadvantaged drivers. The primer 

also found that this was an issue that mattered specifically in Seattle, based on a survey 

conducted in 2007: hypothetical tolling was much more likely to garner public approval 

when its revenue would be used to fund transit and bicycling investments, demonstrating 

that Seattleites value equity over avoiding or lowering tolls. Ultimately, the primer 

suggested either toll-financed transit improvements and low-income exemptions or rebates 
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would best compensate for otherwise disproportionate burdens on low-income travelers 

(FHWA, 2008). 

More recent work has discussed strategies for designing a road pricing that benefits 

all road users, especially vulnerable communities. Non-profit TransForm published an 

equity toolkit in 2019 designed to guide decision-makers at each step of the planning 

process of a road pricing proposal. TransForm's toolkit recommends five steps. The first 

step is to identify the populations that would require attention from the equity perspective, 

the type of road pricing under consideration, and the geographic reach of the study area. 

Some vulnerable communities that they suggest include low-income communities, 

minority populations, seniors, persons with disabilities, immigrants and refugees, and local 

small businesses. The second step is to define equity outcome and performance indicators. 

These indicators could fall under either process equity, which could be measured by full 

public participation, or outcome equity, which could be measured by affordability, access 

to opportunity, and community health. They also recommend a comparative analysis of 

impacts to vulnerable communities and the general population under "no toll" and "with 

toll" scenarios. The third step is to determine the benefits and burdens of proposed 

alternatives. They suggest that technical models can be useful for projecting likely 

reactions to changes in the transportation system, but planners need to know the limits of 

the models and their interpretations. The fourth step is to choose strategies to advance 

transportation equity. They recommend generating a portfolio of strategies within a broader 

equity program, and assessing each for their potential impacts. The fifth and final step 

concerns post-implementation, and it is to provide accountable feedback and evaluation. 

They recommend monitoring and evaluating important impacts and translating findings to 

decision-makers and affected communities. Ultimately, TransForm stresses that the 

process they outline is iterative and dynamic, because congestion pricing itself needs to be 
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considered a dynamic process; downtown congestion pricing will need to be evaluated and 

adjusted periodically, which will require continuous evaluation and community 

engagement (TransForm, 2019). 

RIDESOURCING TERMINOLOGY 

The introduction of ridesourcing services to the urban mobility landscape in the 

early 2010s has inspired a growing body of academic and applied research. Though the 

services have been referred to by many names, including “real-time ridesharing,” 

“parataxis,” “ridematching,” “on-demand rides,” “app-based rides,” “ridehailing,” and 

“ridesourcing,” (Rayle et al., 2014) this thesis refers to the service as ridesourcing because 

the SAE Shared and Digital Mobility Committee considers this the standard term (SAE 

International, 2018). It will also refer to the providers of the service as Transportation 

Network Companies (TNCs). Though ridesourcing services are privately provided, its 

adoption has certain impacts on public issues including congestion, transportation sector 

emissions, and social equity; therefore, understanding the demographics, geography, 

operational impacts, and impacts of policy interventions (such as congestion pricing) 

around ridesourcing are fundamental to public agencies’ missions.  

RIDESOURCING AND TRAVEL BEHAVIOR 

Household travel surveys are typically collected every several years, so many 

traditional sources of travel behavior information have been too infrequently collected to 

supply complete insight into who uses ridesourcing services, when and where they travel, 

and for what trip purposes. For instance, the last two years in which the National Household 

Travel Survey was collected were 2009 and 2017 (FHWA, 2017). In the eight years 

between those two waves of the survey, the mobility landscape evolved significantly. The 



` 25 

2017 wave was the first opportunity to survey participants on their ridesourcing travel 

behavior, a full six years after Uber launched in San Francisco (Huet, 2014). Furthermore, 

TNCs themselves have been reluctant to public share data about their operations and riders 

in order to protect what they consider to be proprietary business information (Marshall, 

2018). As a result, transportation researchers have mostly turned to administering their own 

surveys to understand early ridesourcing adopters and how its use interacts with transit 

ridership and vehicle ownership, while more subsequent studies have been able to utilize 

household travel surveys and other larger data sources. 

One of the earliest surveys was conducted in San Francisco in 2014. It found that 

respondents who made ridesourcing trips were younger and had more education than the 

average population. The study compared TNC trips with taxi trips; it found that 

ridesourcing served a similar market as taxis because many surveyed said they would 

otherwise use a taxi for the same trip. However, the survey also noted that there was not 

complete overlap of the two markets, as some respondents indicated that they chose 

ridesourcing to save time compared to a similar transit trip (Rayle et al., 2016). Findings 

from this survey foretold what would become an important research question: whether or 

when TNCs competed with or complemented public transit service. 

The Pew Research Center incorporated questions about ridesourcing use in the 

December 2015 wave of its American Trends Panel, which is nationally representative of 

all U.S. households. At the time, they found that 15% of American adults had experience 

using ridesourcing applications, while one-third had never even heard of the services. 

Among those who did use it, more than half were infrequent users, using it less than once 

a month. They also found that young adults, college graduates, high-income individuals, 

and urbanites were most likely to have used ridesourcing. The survey found that frequent 

ridesourcing users are less likely to own a car and more likely to use other modes such as 
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walking, biking, transit, bike-sharing, and car-sharing (Smith, 2016). This survey 

motivated later examinations of ridesource and its interactions with transit service, 

multimodal behavior, and vehicle ownership. In 2018, Pew provided updates to their first 

survey. They found that the percent of people surveyed who used ridesourcing increased 

from 15 percent in 2015 to 36 percent in 2018. They also found that 18 to 29-year-olds, 

college graduates, and people with incomes about $75,000 a year were still more likely 

than other demographic groups to use ridesourcing. They also found that the share of 

people who used ridesourcing frequently had not changed, which could suggest that 

although more people were aware of ridesourcing or have tried it, it had not dramatically 

altered habitual travel choices (Jiang, 2019). 

The Transit Cooperative Research Program (TCRP) sponsored a survey on shared 

mobility and its impacts in 2015. They covered seven American metropolitans, including 

the Seattle-Tacoma-Bellevue metropolitan area. They examined ridesourcing services, 

bike-sharing, and car-sharing. They surveyed shared mobility users, local transportation 

officials and practitioners, compared representative travel times by various shared modes, 

and discussed practical opportunities such as paratransit provision and other models for 

public-private partnership. They found that shared mobility users were more likely to also 

use transit, own fewer vehicles, and spend less on transportation. The survey found that 

ridesourcing trips are more commonly taken for recreation and social purposes, late at 

night, and in situations where travelers will be drinking alcohol. They also found evidence 

that shared modes both competed with and complemented transit services, though 

ridesource trips were most popular at times when transit is typically unavailable. However, 

the most commonly reported substituted mode for ridesource trips was driving alone or 

with another person, not transit. Because of these findings, the study recommended that 

public entities seek opportunities to partner with private shared mobility providers 
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(National Academics of Sciences, Engineering, and Medicine, 2016). The evidence in this 

report highlights the importance of distinguishing between different trip purposes when 

considering the implications of policies, fees, and regulations on ridesource travel 

behavior. 

FiveThirtyEight also examined ridesource user demographics and travel behavior 

in 2015 in one of a series of analyses using New York City Taxi & Limousine Commission 

data. They found that TNC and taxi passengers are highly concentrated in wealthier areas 

of New York City, which contrasts with Rayle’s finding in San Francisco in which there 

was not a significant gap between ridesource users’ salaries that those of the general 

population. This could be because in New York City middle-class residents are actually 

more likely than wealthy residents to own vehicles due to the abundance of transit service 

in wealthy NYC neighborhoods. They hypothesized that areas where ridesourcing is 

popular coincides with areas that transit is popular because the two services complement 

each other, while in areas where transit service is poor travelers are accustomed to using 

personal vehicles (Silver & Fischer-Baum, 2015). This analysis suggests how the context 

of a city’s demographics and infrastructure can influence the relationships between 

ridesourcing and travel behavior. 

Researchers at the University of California, Davis Institute of Transportation 

Studies also conducted a multi-city survey. They surveyed participants in seven U.S. cities, 

including Seattle, in both 2014 and 2016. They found that parking availability, or a lack 

thereof, was an influential factor in the decision to choose ridehailing over driving. They 

also found that situations involving alcohol motivated the use of ridesourcing over personal 

vehicle use. Their observations about the demographics of ridesourcing users also 

concurred with previous and simultaneous efforts, with evidence that those aged 18 to 29, 

with college education, affluent, and urban residents were more likely to use ridesourcing. 
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They also found ridesourcing users to have higher personal vehicle ownership rates than 

people who only use transit. The ultimate direction of the impact ridesourcing use has on 

vehicle ownership is likely complicated and context-specific: for some users, ridesourcing 

is a substitute for vehicle ownership, while for others it is a facet of a generally automobile-

oriented lifestyle. The survey found evidence that ridesourcing competes with bus and light 

rail, but complements commuter rail. Finally, the survey found that ridesourcing was 

perceived to be mostly distinct from other modes including walking, biking, and transit, 

which led them to hypothesize that ridesourcing use will likely contribute to growth in 

VMT (Clewlow & Gouri Shankar, 2017)   

A Toronto 2016 travel survey found evidence that wealthier, younger people are 

more likely to use ridesourcing. The study also found evidence to suggest that the 

introduction of ridesourcing has likely reduced driving while intoxicated (Young & Farber, 

2019). In addition to examining demographics most associated with ridesourcing use, the 

study presented a use case for ridesourcing that would be socially beneficial, which 

suggests that policies around ridesourcing will need to balance the benefits and drawbacks 

of the mode; for instance, how can a policy or fee discourage the use of ridesourcing as a 

substitute for transit and active modes, while not disincentivizing ridesourcing as a 

substitute for late-night drunk driving? 

More recent studies of ridesourcing behavior have begun to use individual-level 

statistical methods to examine ridesourcing adoption and frequency. Circella et al. (2016) 

surveyed shared mobility service users in California, include car-sharing, ridesourcing and 

bike-sharing modes. They used a binary logit adoption model and found that millennials 

(ages 25 to 34 in 2015), the highly educated, residents of urban locations with greater land-

use mix, and those with technology-embracing, pro-environment, and variety-seeking 

attitudes are more likely to use ridesourcing. They used an ordered probit model to show 
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that individuals without vehicles, long-distance (by plane) travelers, residents of high land-

use mix and activity-dense areas, and users of smartphone apps for travel information are 

likely to have higher frequencies of ridesourcing use. Finally, respondents reported that 

ridesourcing reduced their use of personal vehicles and that ridesourcing did reduce their 

use of transit and travel by active modes. 

Lavieri and Bhat (2018) used a web-based survey in the Dallas-Fort Worth region 

and applied a generalized heterogenous data model that uses psychological constructs as 

latent factors. They found that non-Hispanic whites are less likely to use pooled 

ridesourcing due to a heightened sensitivity to privacy, whereas elderly and low-income 

travelers are less likely to use pooled ridesourcing due to lack of technology awareness. 

These findings are useful for supporting other works that demonstrate that travelers have 

varied reasons for using ridesourcing. A policy framework must consider how different 

travelers will respond to services changes in order to accurately assess its impact. 

Dias et al. (2017) used a bivariate ordered probit model to understand both the 

frequency of use of ridesourcing and car-sharing services. The study was conducted using 

Puget Sound Regional Council (PSRC) household travel survey data from 2014 and 2015. 

They found that users of both services tend to be young, highly-educated, higher-income, 

employed, and from higher-density areas.  

The recent release of the 2017 National Household Travel Survey beget a number 

of studies. This survey, due to its national scope and consistent administration, has inspired 

researchers to examine trends that emerged between 2009 (the second-most previous 

survey wave) and 2017. One analysis found that since 2009, for-hire ride services 

(including both TNCs and taxis) have experienced an increase of riders due to a 

disproportionate growth in use from upper-middle class households and lower-middle class 

households (Securing America’s Future Energy, 2018). This could imply that although 
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early findings typically suggested that wealthier individuals were more likely to use 

ridesourcing, the service has transitioned to a broader customer base in recent years. King, 

Salon, & Conway (2018) compared data from the 2009 and 2017 NHTS waves and found 

that in 2017, transit users were more likely to also be ridesourcing users. They interpreted 

this to mean that ridesourcing and transit were mostly complementary. However, they 

noted that vehicle ownership could be a crucial mediating factor, as those who forgo car 

ownership might generally increase transit ridership, while those who do not would use 

ridesource as a substitute for private vehicle use instead. This has been noted in previous 

studies, which highlight the complicated nature of the relationships between ridesourcing 

and other travel behavior decisions such as mode choice and vehicle ownership.  

The research area on ridehailing, demographics, and travel behavior has evolved 

since the earliest studies from around 2014. As ridesourcing questions have been 

incorporated into larger household travel surveys, researchers have been able to leverage 

more powerful statistical methods to uncover associations between user demographics, trip 

characteristics, and the adoption and frequency of ridesource use. This body of work has 

raised important policy debates, supported guiding principles, and beget future research 

efforts, the most common of which concern: recommendations for public entities for 

partnering meaningfully with private mobility providers and assessing and addressing the 

impact that ridesourcing has on vehicle miles traveled (often through road pricing and 

regulations). 

RIDESOURCING AND SERVICE EQUITY 

Another research area regards the fairness of TNC service quality. Because early 

research found that ridesource users are more likely to be younger, wealthier, better 



` 31 

education, and more urban, evaluating the equity of ridesource services from a variety of 

dimensions has become an important pursuit.  

Smart et al. (2015) conducted an experiment in low-income Los Angeles 

neighborhoods, comparing the wait time and trip cost of ridesourcing and traditional taxis. 

This study was funded by Uber and performed by researchers at the University of 

California, Los Angeles and the BOTEC Analysis Corporation. The experiment instructed 

participants to call for a taxi and an Uber ride at the same time to compare the wait times 

and total trip cost of various trips. They found that Uber rides consistently were less 

expensive and had shorter wait times for pick-up than taxis in the low-income 

neighborhoods where the experiment was conducted. However, the study did not compare 

ridesource level-of-service in low-income neighborhoods with level-of-service in other 

neighborhoods in the region, so no conclusions could drawn about whether ridesource 

service is equitably provided throughout greater Los Angeles. 

Hughes & MacKenzie (2016) estimated wait times for UberX vehicles throughout 

Uber's service area within the greater Seattle region using the Uber developer application 

programming interface (API) in 2015. They estimated a regression model of wait time and 

found that high population, high employment density, and midday timing are associated 

with shorter wait times, while higher average income in an originating census tract was 

associated with longer wait times. The study defined access to TNC services based on the 

expected wait time, and found that access was not restricted to wealthier parts of the city. 

They also found that the percentage of minority residents in an analysis zone was not 

associated with wait times, which led the researchers to conclude that there was no 

evidence of racial discrimination. However, the expected wait time given by the API is not 

necessarily a true wait time, which means it is still possible that drivers discriminate against 

certain types of riders.  
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Thebault-Spieker, Terveen, & Hecht (2017) used a similar methodology in late 

2014. This study also used observations from the Uber wait time API in order to model 

expected wait times, but in Cook County, Illinois in the Chicago area. They too found that 

population density and average wait time were inversely related. However, unlike the study 

undertaken in Seattle, they observed that as neighboring tracts' average income increased 

or the percentage of white residents increased, wait times decreased. The study authors 

concluded that there was evidence of structural racial and ethnic biases in the sharing 

economy, and pointed out that the issue was intersectional, as low-income communities 

also tend to contain a higher percentage of ethnic minority residents.   

Wang and Mu (2018) used a similar methodology in Atlanta. They used the Uber 

API to collected estimated wait times for both UberX and UberBLACK service models. 

Their unit of analysis was the neighborhood level. Using spatial regression, they found that 

population density, road network density, lower vehicle ownership rates, and higher 

numbers of public transport stops were all associated with lower UberX wait times, while 

higher mean travel times to work are linked to increases in average UberX wait times. They 

did not find evidence that median house value or minority rate were statistically associated 

with UberX wait times. The value of comparing these three similar studies is limited 

because they were conducted in different parts of the U.S.; unobserved factors unique to 

each region could be driving the differing conclusions. Nevertheless, the juxtaposition of 

these three studies motivates further research on whether there are systemic biases that lead 

to differing levels of ridesource service for different types of riders. 

Ge, Knittel, MacKenzie, & Zoepf (2016) further examined this issue using a 

randomized experiment in Boston, MA and Seattle, WA. Similar to the one deployed in 

Los Angeles, the experiment used participants of varying racial backgrounds and each used 

two names to request ridesource rides, one a "white-sounding" name and the other a 
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"distinctively black" name. In this study, there was evidence of racial discrimination by 

wait time, with black riders experiencing 29% to 35% longer wait times for a ride, primarily 

due to a longer time spent waiting to be accepted by a nearby driver to provide a ride. They 

also found that black riders were more than twice as likely to experience cancelled trips 

than white riders, particularly black male riders. This study evidenced that discrimination 

and inequity through ridesourcing services could occur through a variety of mechanisms 

and cannot necessarily be captured by aggregate or zonal level of service. 

Finally, Brown (2018) also sought to understand what geographic features are 

associated with ridesource access and search for evidence of racial or gender discrimination 

through ridesource and taxi services. The study was focused on Los Angeles County. The 

author found strong associations between ridesource use and low household vehicle 

ownership, suggesting that ridesourcing can provide automobility to those that may 

otherwise lack access to vehicles. The author found that black riders were more likely to 

experience cancelled taxi trips and longer wait times than white riders, but not for 

ridesourcing trips. However, there may still be barriers to ridesource access that exist for 

numerous other populations: un-banked or under-banked populations and those who do not 

own smartphones, who are thus unable to access and pay for ridesource services; riders 

(particularly women) who fear harassment from drivers or other passengers in a shared 

ride; seniors who are less comfortable using newer internet-based services; and individuals 

with physical disabilities, who often face longer waiting times due to the lesser availability 

of disability-accessible ridesource vehicles.  

RIDESOURCING, VEHICLE MILES TRAVELED, AND CONGESTION 

Another key research question is whether ridesourcing increases vehicle miles 

traveled (VMT) or otherwise contributes to traffic congestion. This question has links to 
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that of ridesourcing competition with transit services; because mass transit is more space-

efficient than private vehicles, losing transit riders to ridesourcing is one of several 

potential ways in which ridesourcing could increase traffic congestion. Additional time and 

fuel spent due to traffic congestion has negative economic impacts. In 2015 the Texas 

A&M Transportation Institute estimated in their Urban Mobility Scorecard that travel 

delays due to congestion wasted 3 billion additional gallons of fuel and 7 billion additional 

hours spent in traffic, with a national economic cost of $160 billion (Schrank, Eisele, 

Lomax, & Bak, 2015). Therefore, understanding causes of and strategies to reduce traffic 

congestion is a worthy goal, and uncovering potential impacts from ridesourcing is critical 

to that goal. 

Bialik, Flowers, Fischer-Baum, and Mehta (2015) of FiveThirtyEight produced one 

of the first data-driven analyses of the issue. They compared taxi service with TNC service 

in NYC, discovering a geographic concentration of TNC trips in NYC’s CBD. Using data 

from 93 million Uber and taxi trips taken between April 2014 and September 2014, they 

noted that both Uber's and taxis’ Manhattan pickups were concentrated in Downtown 

Manhattan, which has both the best level of subway service and the most traffic congestion. 

A subsequent analysis by Fischer-Baum and Bialik (2015) also found evidence that Uber 

had added more congestion to Manhattan’s CBD than had other for-hire vehicles such as 

taxis. Although between 2014 and 2015 Uber’s market share had eroded the taxi market 

share in the CBD, the net number of for-hire vehicle passenger pickups (taxis and 

ridesource vehicles combined) had remained nearly constant.  

Meanwhile, a controversial 2015 New York City Council initiative proposed 

capping the number of vehicles Uber could operate in the city, primarily motivated by 

concerns that ridesourcing was increasing congestion in Manhattan. Ultimately, the mayor 

announced the city would first conduct a study evaluating the traffic impacts of 
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ridesourcing in the city before regulatory action. The For-Hire Vehicle Transportation 

study was published in early 2016. It used the city's travel demand model (called the Best 

Practice Model) projections, New York City Taxi and Limousine Commission data, and e-

dispatch trip records. The study concluded that the observed reduction of vehicle speeds in 

the Manhattan CBD were primarily due to increased freight movement, construction 

activity, and population growth. It posited that ridesourcing had minor contributions to 

congestion in the CBD, but that the future growth of the ridesourcing industry could 

contribute to future increases in congestion. The study noted that regulatory intervention 

of ridesourcing would be eventually necessary if it continued to take over the taxi mode 

share, because the yield from taxi surcharges and accessibility fees that fund transit would 

decrease (City of New York, 2016). 

A 2017 analysis examined trends in trips, passengers, and mileage from TNCs and 

other for-hire vehicles in NYC between 2013 and 2016. It used electronic trip logs, for-

hire vehicle (FHV) trip volumes, transit ridership, and total personal travel by all modes. 

They found between 2013 and 2016 FHVs added 52 million additional passengers, mostly 

due to the growth of TNCs. It also found that TNC growth increased VMT by 600 million 

miles from 2013 and 2016, even after the introduction of pooled or shared ride options. 

The report noted that it matters who is riding TNCs: if ridesourcing attracts ridership from 

taxi riders into pooled rides, or private vehicle drivers, then it could reduce overall travel 

in the city. However, if it attracts transit riders, it will increase travel. This is consistent 

with themes that other authors have discussed. It also matters where trips are added: the 

study found that TNC trip growth added a significant number of trips in already-congested 

neighborhoods, like the Manhattan CBD (Schaller, 2017).   

In August 2018, NYC’s city council voted to become the first major American city 

to cap the number of for-hire vehicle licenses granted for a year. The mayor cited  increased 
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congestion due to TNCs for the action, although other political factors such as increasing 

suicide rates within the yellow cab industry also contributed. TNCs and their supporters 

have argued that under a cap, demand will outpace driver supply, leading to higher prices 

and longer wait times. Uber advocated instead for congestion pricing, which would toll all 

drivers in Manhattan. An legislation also stipulated that the city re-study the congestion 

impact of ridesourcing, so the continuing debate in NYC could inform how other American 

cities regulate the ridesource industry (Fitzsimmons, 2018). 

Researchers have studied ridesourcing’s impact on congestion in metropolitan 

areas outside of New York City as well. Li, Hong, and Zhang (2016) used a panel data 

approach to estimate the impact that Uber entry in a metropolitan market had on urban 

congestion. The dependent variable was Texas A&M Transportation Institute’s Travel 

Time Index. They also estimated a similar regression using the Commuter Stress Index as 

a dependent variable, which is an index that measures peak hour traffic congestion. These 

indices have been calculated several times between 1982 and 2014 for 101 urban areas in 

the U.S. The researchers found that Uber availability is associated with lower traffic 

congestion. The study posited that some explanations for this finding could include: a net 

reduction in vehicles on the road; a reduction of vehicles particularly during peak travel 

times; and a higher vehicle capacity utilization from shared rides. This is one of the few 

studies that presents evidence that congestion has decreased since the advent of 

ridesourcing and that studies multiple American metropolitans within the same framework. 

Alexander and González (2015) used call detail records from cell phone traces to 

derive trip origin-destinations in the Boston metropolitan in 2015. They estimated the mode 

shares of drive alone or taxi, carpool, and non-driving modes, which inferred ridesourcing 

mode share. They used traffic assignment to estimate the travel times within the 

transportation network. They used the network model to assess the impact of ridesourcing 
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during peak weekday evening hours. They concluded that it mattered who used 

ridesourcing: if people who would otherwise drive used ridesourcing, particularly pooled 

ridesourcing, then there would be a reduction in total vehicles on the road. On the other 

hand, if more non-drivers adopted ridesourcing, then the number of vehicles on the road 

would increase.  

A recent study led by SFCTA used a unique data source, created by combining data 

mined by Northwestern researchers from the Uber and Lyft APIs and data from INRIX. 

The SFCTA estimated that daily VMT in San Francisco had increased by 630,000 miles 

between 2010 and 2016, with TNCs accounting for 40 percent of the daytime increase and 

60 percent of the evening increase. The analysis also found that TNCs most contributed to 

increased congestion in the densest parts of the city. This study firmly concluded that TNCs 

increased congestion in San Francisco. This study has had a direct influence on TNC policy 

in San Francisco: in August 2018 the city began taxing Uber and Lyft 3.25 percent of their 

net revenue from single-occupancy rides and 1.5 percent of their net revenue from shared 

rides (CBS SF BayArea, 2018).  

Schaller (2018) assessed the impact of ridesourcing on congestion in 20 urban 

areas, including Seattle. Schaller found a positive correlation between cities with high 

transit commute shares and TNC use. The study concluded that TNCs compete with public 

transportation, walking, and biking. Tt estimated that TNCs add 5.7 billion miles of driving 

the 9 largest metropolitan areas, including Seattle. It was estimated that TNCs added 94 

million additional miles traveled in 2017 in Seattle. Therefore, the study concluded that 

increasing TNC trip volumes contributed to the observed increase in congestion 

nationwide. 

There is a growing body of literature on whether or not TNCs contribute to 

congestion, and if so, when and where they add the most VMT. There is general consensus 
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that it matters who is using ridesourcing services, as the impact of a single occupancy 

vehicle driver switching to ridesourcing is different than that of a transit rider switching to 

ridesourcing.  

SHARED MOBILITY POLICY STRATEGIES 

Ridesourcing has had measurable impacts on numerous facets of traveler behavior. 

This has implications for existing infrastructure systems, transit demand, traffic 

congestion, and the needs and expectations of the modern traveler. Researchers and 

practitioners have taken steps to develop best practices and guiding principles for public 

agencies to integrate existing systems with new mobility services. 

The American Planning Association published the guidebook Planning for Shared 

Mobility. Cohen and Shaheen (2016) scan the interactions between shared mobility 

services and urban planning goals and outputs, including: travel behavior, land use, urban 

design, housing, economic development, environmental stewardship, and climate action. 

The guidebook scans policy levers that have impacts on shared mobility’s growth and 

adoption. Ot notes that “at the municipal level, the most common ways local and regional 

planning and policies influence shared mobility are through the allocation of public rights-

of-ways (e.g., parking, curb space), developer and zoning regulations, insurance and for-

hire vehicle ordinances (e.g., licensing), and taxation.” The authors acknowledge that 

taxation has the most critical impact on ridehailing out of all shared mobility modes, and 

by increasing service costs policymaker could adversely affect adoption of shared mobility 

services. The authors acknowledge that “tax issues affecting on-demand ride services, such 

as Lyft and Uber, are more complex. Whether drivers or on-demand ride services should 

pay sales taxes remains an unresolved issue.” This underscores the continued need for 

policy analysts to weigh various trade-offs when deciding how to regulate TNCs or charge 
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all vehicles to use roads – for instance, taxing them could reduce their accessibility by 

increasing fares or wait times for pickup, yet without any intervention the negative 

externalities they produce from additional VMT could go unmitigated. 

FHWA prepared a white paper on the integration of shared mobility from the 

regional planning or MPO level. Kevin, James, Glynn, and Lyons (2018) interviewed 13 

metropolitan areas, including Seattle, to synthesize current practices and future 

recommendations in shared mobility. Some of the key challenges spanned safety, equity, 

congestion, pollution, land use impacts, and identifying sustainable revenue models. The 

authors argue that MPOs are well-positioned to lead their regions in shared mobility 

planning activities because they can facilitate collaborative regional decision-making. For 

instance, one of the roles that an MPO takes in the regional planning process include 

coordinating planning interventions, such as: regional policy; regulation coordination; 

partnerships with shared mobility providers; communication forums; and development of 

incentives. MPOs can coordinate cities’ regulation of the use of the public right-of-way, 

preventing a patchwork of local regulations. Failure to do so could unnecessarily increase 

private mobility service providers’ compliance costs or produce unintended distortive 

economic effects. The white paper recommended MPOs integrate shared mobility into their 

travel demand modeling activities.  

The adoption of Shared Mobility Principles for Livable Cities (2017) illustrated the 

willingness for global collaboration. Their mission statement is that "Sustainable, 

inclusive, prosperous, and resilient cities depend on transportation that facilitates the safe, 

efficient, and pollution-free flow of people and goods, while also providing affordable, 

healthy, and integrated mobility for all people." These principles were produced by a 

working group of international NGOs. There are 10 principles in total, including: 

prioritizing the movement of people over vehicles, open data, and seamless connectivity 
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between modes. One principle calls for fair user fees across all modes, suggesting that 

"every vehicle and mode should pay their fair share for road use, congestion, pollution, and 

use of curb space." These principles align with themes raised in the U.S.-centric documents 

previously discussed, such as motivating multi-sector coordination, efficient regulation and 

taxation, and setting multi-modal objectives. Numerous governments, not-for-profits, and 

private mobility service providers (including Uber and Lyft) have joined as signatories, 

representing countries and cities all over the world. 

Another example of shared mobility guiding principles comes from the local level. 

The Seattle Department of Transportation developed a New Mobility Playbook in order to 

provide guidelines to new mobility service providers on using the public right-of-way, and 

provide recommendations for their operations so that they align with greater transportation 

system goals. The New Mobility Playbook outlined strategies and initiatives for integrating 

ridehailing into a comprehensive Seattle transportation system. For instance, barriers 

experienced by unbanked riders could be mitigated by: educating residents about existing 

and new payment options, partnering with web-based third-party payment methods that 

accept cash, or adding operational requirements for app-enabled mobility services for 

alternative payment methods. To ensure new mobility services are Americans with 

Disabilities Act (ADA) accessible across the region, the playbook suggested setting 

maximum wait times by geography and time of day and educating TNC drivers about the 

varying needs the mobility-impaired. The playbook suggested: implementing guaranteed 

ride home partnerships with TNCs; subsidizing shared mobility services for transit 

passengers; and testing the use of transit only lanes by non-transit high occupancy vehicles 

like shared ridesource trips. The playbook also recommended collaborating with local and 

statewide partners to develop umbrella regulatory frameworks for new mobility services in 

recognition that partnership with other agencies will aid in aligning regulatory and 
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operational goals. The playbook suggested variable fee mechanisms for TNCs could 

increase vehicle occupancy and manage congested corridors.  

As researchers and practitioners aggregate best practices, some themes emerge. An 

immediate step that local agencies have taken is to regulate TNCs’ use of public right-of-

way, such as the use of curb space for passenger drop-off and pickup, and parking pricing. 

However, cities and regions are also considering taxation and fees, which motivates careful 

consideration of how these policies might shape the demand for shared mobility services, 

such as ridesourcing. Another recommendation is to consider congestion pricing to manage 

traffic that might be produced by all private vehicles on the road, included ridesourcing 

vehicles. 

RIDESOURCING FEES AND TAXES 

There is a growing interest in taxing new mobility services. Additionally, cities 

around the world are considering implementing congestion pricing. These discussions have 

begun to dovetail, as consensus builds around the contribution TNCs have to traffic 

congestion. 

In 2018, the Eno Center for Transportation performed a scan of existing fees and 

taxes on TNC trips. At the time of publication, seven major cities and 12 states had 

implemented some type of fee or tax on TNC trips. Seattle charges a flat fee on rides that 

originate in the city. Kim and Puentes (2018) caution that policymakers should consider 

the impacts that taxes will have on transportation behavior. They identify four major 

motivators for implementing fees: offsetting the negative effects of urban congestion; 

funding infrastructure and public transit investment; producing fairness in regulation of 

TNCs are compared to traditional taxi services; and creating funding streams for regulatory 

costs such as improved wheel-chair accessibility services in for-hire vehicles. The authors 



` 42 

suggest that an alternative to targeted TNC fees could be: charging fees on all SOVs like a 

congestion charge; providing exemptions or lower prices for shared rides; or some 

combination of policy levers that might be less distortive. These suggestions motivate 

research that simultaneously assesses the behavioral implications of various policies and 

practical considerations like the potential to use revenue to fund transit and accessibility-

related initiatives. 

The debate around ridesource charges and taxes has evolved rapidly. Charges on 

ridesourcing in the U.S. include excise taxes, surcharges, and sales taxes. Lawmakers 

weighing taxation of TNCs did not initially anticipate that ridesourcing would be a 

significant source of tax revenue (Quinton, 2015). Instead, regulatory issues focused on 

permitting and public safety-related regulations, such as background checks, 

fingerprinting, and insurance coverage. This is changing as more lawmakers implement 

fees. Meanwhile, TNCs have spoken against the implementation of fees and charges on 

ridesourcing around the country. They argue a surcharge on ridesourcing vehicles would 

unfairly target consumers and reduce the quality of service. However, sales taxes have 

already typically been extended to include services, and ridesourcing is considered a 

service. Therefore, precedence exists for ridesource taxes. (Farmer, 2018). 
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Chapter 3:  Predicting Ridesource Level-of-Service Variables 

FUSING METHODS AND DATA SOURCES 

This thesis estimates the impacts congestion pricing will have on mode choice, 

vehicle miles traveled (VMT), and other transportation system outcomes. Chapter 4 uses 

two multinomial logit mode choice models to achieve this: one each for work and non-

work trips. However, both models require information about trips that are typically not 

collected in household travel surveys. For instance, if a person in the survey is observed to 

take a single occupancy vehicle trip, the level-of-service that the traveler would have 

experienced for a carpooled trip, transit trip, walking or bicycling trip, or ridesource trip is 

usually not collected, but is a necessary model input to estimate a conditional or 

multinomial logit model. Therefore, it is necessary to use alternate data sources for these 

unobserved trips where possible, or estimate what level-of-service variables would have 

been for unobserved modes. Because estimating those variables for ridesourcing is 

particularly difficult due to the lack of TNC-provided data and gaps in existing travel 

surveys, this chapter estimates ridesource-specific level-of-service variables. The two 

variables of particular interest are ridesource pick-up wait time and trip fare.  

As discussed in Chapter 2, there is a small body of literature that is related to 

ridesource trip wait times. One of these studies even focuses on the Seattle-Tacoma region. 

These use spatial regression techniques. The strength of these techniques is their 

interpretability when attempting to uncover geographic or demographic trends at a zonal 

level. The method can account for spatial correlations, such as when a zone surrounded by 

other zones with low wait times is more likely to also have lower wait times. The method 

can also uncover statistical associations, such as how neighborhoods with higher 

population densities or higher average incomes tend to experience lower wait times. Such 
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results are useful for high-level views of the geography of ridesource service and 

availability, particularly for uncovering where ridesource coverage is weaker or service is 

relatively poor. However, the predictive power of these methods is weak because their 

objective is to provide an average wait time for an entire zone conditional on zone-wide 

characteristics, not to predict the wait time of a particular trip based on trip-specific 

characteristics like trip distance or time of day. In other words, the goal of regression is to 

explain trends, not to predict. Therefore, the use of regression methods is less-than-ideal 

for the application at hand, where an accurate point estimate of a level of service variable 

in a multinomial logit model is critical. To overcome the limitations of statistical methods 

like spatial regression for the objective of prediction, this approach uses machine learning 

algorithms.  

DATA 

I collected region-specific data on ridesource wait times and trip fares in order to 

build a robust predictive model. The collection process was undertaken in late November 

2018 and early December 2018. It used the publicly-accessible Uber and Lyft APIs because 

these are the two most popular TNCs that operate in the greater Seattle region.  

Between November 18th, 2018 and December 8th, 2018, a Python script was 

deployed to collect 27,788 observations from the Uber Ride Request API and the Lyft Ride 

Request API. Both APIs require authentication to access, but anybody can request such a 

token or ID. Both APIs provide estimated wait times and fares for different services given 

trip origin and destination coordinates. Therefore, the trip cost and wait time of an 

UberPool or Lyft Line (the respective shared ride offerings) are distinct from the classic 

private ridesource product (Uber Technologies, 2019; Lyft, 2018). The script only 

collected UberX and Lyft estimates (the private option) because they serve as a midpoint 
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between the pooled trips and SUV or luxury offers which are typically costlier and less 

available. Because the mode choice analysis is limited to ridesourcing as an overall mode 

rather than distinguishing between shared and private ridesource trips, it is reasonable to 

use UberX and Lyft estimates, because these are the most popular service offerings of each 

company. Both APIs provide a range of trip fares, specifying a minimum and maximum 

value. These fare estimates were averaged to produce a final estimated trip fare. 

Furthermore, the Lyft API produced an estimated time of arrival (ETA) in seconds, 

whereas the Uber API produced a more general trip duration estimate. Upon comparing 

the magnitudes of these values, it was concluded that the Uber API trip duration estimate 

was that of the entire trip time, including wait time and travel. As a result, only the Lyft 

wait time was used to estimate an expected trip wait time for each observation.  

In order to maximize coverage of the Seattle region, the collection process 

randomized the origin and destination traffic analysis zone (TAZ) for each observation. 

These were randomly sampled from a list of TAZs in which a ridesourcing trip was 

observed in the PSRC 2017 household travel survey. Some descriptive summaries of the 

collected dataset are presented below to illustrate its breadth. 
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Variable Count % 
Day of Week    
Monday 3308 11.9 
Tuesday 6005 21.6 
Wednesday 4414 15.9 
Thursday 2780 10.0 
Friday 4234 15.2 
Saturday 4467 16.1 
Sunday 2580 9.3 

Time of Day   
12 AM – 3 AM 3930 14.1 
3 AM – 6 AM 3146 11.3 
6 AM – 9 AM 3053 11.0 
9 AM – 12 PM 3229 11.6 
12 PM – 3 PM 3452 12.4 
3 PM – 6 PM 3417 12.2 
6 PM – 9 PM 3734 13.4 
9 PM – 12 AM 3827 13.8 

Trip Origin TAZ    
In Seattle 18080 65.1 
At Airport 92 0.3 

Trip Destination TAZ   
In Seattle 13246 47.7 
To Airport 77 0.3 

Table 1: Trip Variables in Ridesource Level-of-Service 

There is a roughly equal distribution of observations collected on each day of the 

week and across different times of day. More than half of all ride requests are made in 

TAZs that are within Seattle city limits, and nearly half of all ride requests are made for 

trips that end within Seattle. Continuous variables recorded in the dataset include trip 

distance in miles, average estimated fare, and estimated wait time. 
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Figure 1: Observed Distribution of Ride Request Trip Distance 

 

Figure 2: Observed Distribution of Ride Request Estimated Fare 
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Figure 3: Observed Distribution of Ride Request Estimated Wait Time 

The distributions of trip distances, estimated fares, and estimated wait times are 

skewed right, likely due to the data collection methodology which collects trips 

concentrated where ridesource trips are most frequent. Because those trips are observed in 

higher frequency in or near the city of Seattle, most of the sampled trips either begin, end, 

or are contained within the city limits and are thus shorter in length. However there are still 

some ride requests in excess of 80 miles or in more remote TAZs where wait times may be 

significantly longer than they are near downtown Seattle. 

Finally, this dataset is joined with land use data provided by PSRC. From the land 

use data set, the household density (households per square foot), employment density (total 

employees per square foot) and university student density (total university students per 

square foot) can be derived for each ride request observation based on the origin and 

destination TAZs. 
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There are a number of limitations resulting from the design of the data collection 

process. First, only a few observations exist in the TAZs that house the Seattle-Tacoma 

International Airport. This could be improved in future studies by sampling more 

frequently from those TAZs as ridesource trips from the airport may exhibit patterns in 

wait times and surge pricing that differ from those in other parts of the study area. Second, 

the methodology only collects ride request data from the 1,242 TAZs where a ridesource 

trip is observed to begin in the PSRC household travel survey and the 1,721 TAZs where 

a ridesource trip is observed to terminate in the survey. The data set would offer more 

coverage if it sampled from all 3,600 TAZs in the PSRC region. Third, because origin and 

destination TAZs for ride requests were generated independently, many trips observed are 

much longer than the average ridesource trips observed in the PSRC household travel 

survey. Because the objective of this analysis is to predict ridesource trips’ wait times and 

costs, and many of such trips are relatively shorter in length compared to personal 

automobile trips, it may be more useful to bias data collection towards trips of lengths 

typical of those observed in the travel survey. Fourth, the data was collected in Fall 2018, 

but it will be used to infer level-of-service variables for hypothetical trips in Spring 2017. 

There could be differences in level-of-service due to seasonality or change in service 

popularity as a result of the temporal mismatch between the ride request dataset and the 

PSRC household travel survey. Nonetheless, the dataset collected is rich and contains 

general insights about how various spatial, temporal, and geographic characteristics of a 

trip relate to ridesource level-of-service. 

METHODS 

Choosing a data analysis method or approach depends on the data available and the 

analysis objective. After choosing a broader approach, statistical or algorithmic, a specific 
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model form must be selected. This can be done empirically by comparing multiple models 

using some measure of model performance or accuracy. Finally, once a specific model 

framework has been selected, building a final model that can be used for the prediction of 

level-of-service variables requires specifying predictor variables and other model 

parameters to optimize model performance. 

Modeling Approach 

Given the goal of predicting the outcomes of two continuous variables, ridesource 

wait time and fare, there are two distinct strategies: statistical models and algorithmic 

models.  

The statistical model is the traditional approach. One of the most common statistical 

models is ordinary least squares regression; others include forms of penalized regression, 

Bayesian regression, and semiparametric models. These models are applicable when the 

goal is to identify a relevant and interpretable population parameter. For instance, the 

estimated parameters of an ordinary least squares approach enable interpretation of the 

isolated effect or association of various regressors on a response variable. 

The second approach is algorithmic, or machine learning-based. Instead of seeking 

to identify statistical parameters, the algorithmic approach allows for more flexibility. For 

instance, while ordinary least squares regression assumes that the response variable can be 

modeled by a linear combination of certain regressors, an algorithmic approach does not 

typically isolate the effect of a single variable. Some models of this family are random 

forests, bagged and boosted tree ensembles, support vector machines, and neural networks. 

The second approach is algorithmic, or machine learning-based. Instead of seeking to 

identify statistical parameters, the algorithmic approach allows for more flexibility. For 

instance, while ordinary least squares regression assumes that the response variable can be 
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modeled by a linear combination of certain regressors, an algorithmic approach does not 

typically isolate the effect of a single variable. Some models of this family are random 

forests, bagged and boosted tree ensembles, support vector machines, and neural networks. 

These models are strong in pattern recognition, which necessitates a large quantity of data. 

Ultimately, statistical models are appropriate if the goal is to: isolate effects of a 

small number of variables; the analyst wants to understand the uncertainty of a prediction 

or the effect of a predictor; additivity of multiple predictors is significant; the sample size 

is small to moderate; and the model needs to be interpretable. On the other hand, machine 

learning is appropriate if: prediction over interpretability is the goal; it is not as important 

to estimate the uncertainty of a prediction; the sample size is huge; and there is no need to 

isolate the effect of a specific variable such as a treatment effect (Harrell, 2018). 

Given the respective strengths of the two approaches, the algorithmic or machine 

learning approach is more appropriate for the application of predicting ridesource level-of-

service. Uncertainty in prediction does matter, but because a point estimate will be used as 

an input for a subsequent model, being able to estimate the variance of the prediction is not 

critical. Furthermore, because the aim is not to understand how different types of 

neighborhoods might experience different ridesource service quality or availability, 

isolating the impacts of specific predictors is not critical to the overall goal of prediction. 

Therefore, there is a theoretical basis for selecting a machine learning approach. 

Preliminary Model Selection 

Performing an empirical comparison of both statistical and algorithmic models can 

build support for the theoretical basis of using machine learning for ridesource level-of-

service prediction.  
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Multiple models can be compared at a high level using resampling methods. This 

can be done using R, which has a package caret that can compare 237 different models. 

First, several models for comparison are selected, including a mix of statistical models and 

machine learning models. The statistical models chosen are linear regression (ordinary 

least squares) and lasso generalized linear models (regularized). The machine learning 

models are k-nearest neighbors, radial support vector machines, random forest, and 

gradient boosted machines.  

A brief overview of each type of model under consideration illustrates the 

distinctions between different modeling approaches and individual models. Ordinary least 

squares models are estimated by minimizing the sum of squared errors. Lasso is a 

regularization technique applied to linear regression that modifies the objective function. 

Whereas in ordinary least squares the goal is to minimize the squared errors, lasso 

minimizes the sum of squared errors plus a penalty equal to the absolute value of the 

magnitude of the estimated coefficients. The result of this additional penalty is resulting 

coefficient estimates that are biased to be small, and have fewer nonzero estimators or 

predictors, resulting in a reduced model. When there is high collinearity among predictors, 

this approach can outperform ordinary least squares (MathWorks, 2019). 

The k-nearest neighbors (KNN) algorithm is a nonparametric method, unlike 

regression which assumes a linear-in-parameters functional form. KNN is one of the best-

known non-parametric methods because it is straightforward. In order to predict the value 

of a response variable, it combines continuous predictions based on the average observed 

values of the k observations closest to the predictor. When using multiple predictors, it 

interpolates, averages, or performs a local linear regression to arrive at a single point 

estimate of the response variable. KNN has a number of drawbacks, such as sensitivity to 

outliers and lower performance under high dimensionality, but it is simple and requires few 
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assumptions (Béjar, 2012). Support Vector Machine (SVM) is a class of algorithms that 

minimizes error akin to traditional regression. The twist is that there is a margin of tolerance 

for error, so the sum of squared errors cannot exceed some margin. Because it may be 

infeasible to find a line whose sum of squared errors does not exceed the maximum margin, 

soft margins are introduced which allow some errors to exist.  The advantage of SVM over 

linear regression is that it can deal with overfitting and nonlinearity (MathWorks, 2019). 

A random forest is an ensemble of bagged decision trees. A decision tree breaks down a 

sample into subsets based on the values of predictors (or features) to improve prediction 

accuracy at a given observation. Bagging trees is done by creating multiple decision trees 

on bootstrapped subsamples of the dataset, then averaging their predicted responses to 

provide a single response. The random forest algorithm selects a random subset of 

predictors that make up each individual tree in the ensemble. By adding such additional 

randomness, it prevents overfitting and can be used to identify the features with the highest 

importance or predictive power (Donges, 2018). Gradient boosting machines (GBM), like 

random forests, are ensemble models where the average of multiple models produces the 

ultimate prediction. Under boosting, an ensemble is constructed sequentially by 

intentionally selecting data points to be included in the next subsample that were previously 

poorly predicted.  Gradient is in the name of this algorithm because it uses gradient descent 

to minimize the mean squared error. An advantage is its reputation for high predictive 

accuracy and flexible function fit, but it can be prone to overfitting due to its approach of 

addressing errors that may be caused by outliers (Boehmke, 2018). 

The caret package enables the analyst to rapidly train various models. Resampling 

is used to evaluate the effect of model tuning hyperparameters on performance. A model 

hyperparameter is a configuration that is external to the model and is often specified by the 

analyst. To "tune" a machine learning algorithm is to seek the hyperparameters of a model 
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that result in the best model performance (Brownlee, 2017). The hyperparameters that must 

be tuned are specific to a model.  For instance, in a lasso regression a hyperparameter which 

must be tuned is the shrinkage factor, or lambda, which controls the magnitude of the 

penalty term that regularizes estimated regression parameters. In random forest, 

hyperparameters are the number of decision trees that make up the ensemble and the 

number of features used to split a node.  

Tuning complicated models such as random forest and gradient boosting machines 

can become a lengthy process, requiring the estimation and evaluation of numerous 

iterations of a model. Selecting a 5,000-observation subset of the full 27,000-observation 

dataset speeds the training process of multiple models. The tradeoff between using the full 

dataset and training speed leans in favor of the former because this initial step aims to 

achieve a high-level comparison of model performance rather than maximizing the 

performance of a single model. There are various approaches to evaluating the performance 

or accuracy of a model. Repeated cross validation generates a more robust estimate of 

model accuracy compared to standard k-fold cross validation or using a single testing and 

training dataset split. The procedure of k-fold cross validation is as follows: split the dataset 

into k groups, and for each unique group hold it as a testing data set while the remaining 

groups are used to train the model. The observed evaluation metric, typically root mean 

square error or r-squared, is then reserved. Under k-fold cross validation each data 

observation is used in a test dataset once, and k evaluation metrics are observed. Under 

repeated cross validation the standard procedure of k-fold cross validation is repeated, but 

the dataset is shuffled before the dataset is split into k groups (Brownlee, 2018). This 

analysis uses 10-fold cross validation with 3 repeats, so 30 resamples and evaluation 

metrics are collected for each of the six models. The results of each model where wait time 

and trip fare are the predicted variables are summarized below. 
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 Minimum 
25th 

Percentile 
Median Mean 

75th 
Percentile 

Maximum 

OLS 0.110 0.138 0.160 0.161 0.178 0.257 

Lasso 0.113 0.139 0.160 0.162 0.178 0.260 

KNN 0.058 0.092 0.102 0.104 0.115 0.173 

SVM 
(Radial) 

0.091 0.129 0.146 0.146 0.156 0.217 

Random 
Forest 

0.376 0.427 0.447 0.449 0.479 0.541 

Gradient 
Boosting 

0.316 0.381 0.410 0.400 0.425 0.460 

Table 2: Summary of R-squared from 30 Resamples of Wait Time Models 

 

 Minimum 
25th 

Percentile 
Median Mean 

75th 
Percentile 

Maximum 

OLS 0.251 0.269 0.296 0.298 0.319 0.265 

Lasso 0.252 0.269 0.296 0.298 0.319 0.365 

KNN 0.257 0.308 0.332 0.335 0.362 0.414 

SVM 
(Radial) 

0.272 0.325 0.353 0.346 0.367 0.386 

Random 
Forest 

0.440 0.495 0.532 0.522 0.559 0.592 

Gradient 
Boosting 

0.355 0.410 0.433 0.436 0.467 0.518 

Table 3: Summary of R-squared from 30 Resamples of Trip Fare Models 

 Across six different models to predict ride pick-up wait time, the ensemble models 

perform the best on an unseen test set with the highest r-squared values. Statistical, 

regression-based models (OLS and lasso) actually outperform the less complicated 

machine learning approaches (KNN and SVM). Across six different models to predict trip 
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fares, ensemble models achieve the best predictions. In this case, KNN and SVM 

outperform OLS and lasso. Finally, random forest appears to outperform gradient boosting 

machines for both prediction of wait time and trip fare. The general conclusions drawn 

from this analysis are not particularly surprising: ensembled-based methods are the most 

flexible of all models considered. Based on the success of random forest in this initial 

model assessment, the final production model that will be trained on the entire data will 

use that modeling approach to make predictions for use in estimating level-of-service 

variables as inputs of the ultimate mode choice model. 

 This section presents theoretical justification for using machine learning, and 

presents the empirical evidence in support of using random forest for this specific 

prediction problem. Next, a final random forest model is tuned and evaluated. 

Final Model 

This section describes the tuning of hyperparameters of two random forest models, 

one for ridesource wait time and one for estimated fare. Three hyperparameters are tuned. 

The first is the depth of the trees in the forest, or leaf size (LS): the number of observations 

per leaf tend to impact whether a single regression tree overfits or underfits data. A 

"shallow" tree is one which does not achieve high training accuracy because it is a weaker 

model. Smaller minimum leaf sizes result in deeper trees. The second hyperparameter is 

the number of predictors to sample at each node (PTS). This parameter determines how 

many predictors are randomly sampled from the full set of predictors when introducing a 

new split in a decision tree. The "random" part of the random forest is that one of these 

randomly selected predictors will be selected as the best predictor to make a split in the 

tree. The third and final hyperparameter to tune is the number of regression trees in the 
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forest (NT). Typically, random forests containing many trees are more accurate because 

ensembles that have more trees are more accurate. 

Tuning three hyperparameters can be framed as a constrained optimization 

function. The method seeks to find the combination of these three hyperparameters that 

maximizes the random forest model performance, which can be quantified by a number of 

metrics. This analysis uses a variation of the out-of-bag error, which is the mean squared 

error for predictions made on observations not included in the model training data. In the 

case of the random forest, because there is an ensemble of trees, each of which uses 

different training and testing values, the analysis uses the scalar, cumulative out-of-bag 

error. This is the error of predicting a point using all of the trees which were not trained 

using that point (MathWorks, 2019).  

Bayesian optimization is an optimization method that is commonly used to tune 

machine learning model hyperparameters. It is most appropriate for optimization problems 

where the objective function is continuous, but computationally expensive to evaluate. This 

is true in the case of hyperparameter tuning where each evaluation of the f function requires 

re-estimating an entire random forest model. The approach also applies when the objective 

function is a "black box" or has no known special structure like concavity or linearity, and 

we cannot observe first- or second- order derivatives which could be levered in methods 

like gradient descent or Newton's method. Again, this is true in the case of optimizing the 

performance of a random forest model with respect to its hyperparameters. In addition to 

specifying an objective function, in this case evaluated as the cumulative out-of-bag error 

for a given random forest model, we must choose an acquisition function. This function is 

used to project what the new value of the objective function would be at a new point based 

on a current posterior distribution of f based on previous iterations of the optimization 

process. The most common acquisition function is called expected improvement, which is 
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an algorithm that identifies the point with the largest expected improvement based on the 

expectation of the posterior distribution (Frazier, 2018). 

There are numerous software packages which have already implemented Bayesian 

optimization routines. This analysis uses a MATLAB version, and defines bounds on the 

hyperparameters in order to contain the solution to the Bayesian optimization problem at 

hand. The minimum leaf size can be between 1 and 60, to balance the tradeoff between 

over- and under-fitting. The maximum number of parameters to sample is one fewer than 

the total number of input parameters, which is a logical bound. Finally, number of trees in 

the ensemble can be between 1 and 600 for tractability. This optimization routine is used 

twice, once where the objective function is the cumulative out-of-bag error on predicted 

wait time, and once where the objective function is the cumulative out-of-bag error on 

predicted trip fare. The resulting optimal hyperparameters of these two separate 

optimization routines are summarized below. 

 

 
Model 

Wait Time Trip Fare 

Minimum Leaf Size 13 1 

Parameters to Sample 18 18 

Number of Trees 596 520 

Table 4: Tuned Hyperparameters for Random Forest Models 

The above hyperparameters are next used to build full random forest models for 

pick-up wait time and trip fare. 
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MODEL FINDINGS 

There are a few metrics that can be used to summarize a random forest model. The 

section presents the distribution of r-squared values achieved on test data using the same 

method of separating training and testing data when selecting an initial model: 3 repeats of 

10-fold cross validation. This metric was chosen for consistency with the earlier section, 

but it should be noted that it was the mean-squared error, not the the r-squared value that 

was used to optimize the hyperparameters. Other metrics that are commonly used to 

summarize a machine learning model include the mean absolute error, the mean squared 

error, and the root mean squared error. 

 

 Minimum 
25th 

Percentile 
Median Mean 

75th 
Percentile 

Maximum 

Wait Time 0.4011 0.4150 0.4198 0.4192 0.4247 0.4297 

Trip Fare 0.9540 0.9573 0.9393 0.9597 0.9624 0.9665 

Table 5: Summary of R-squared from 3 Repeated 10-fold Cross Validations of Final 
Level-of-Service Random Forest Models 

The wait time model results are comparable to those of the preliminary models, 

while the trip fare model performs better. However, it is not possible to directly compare 

the results of these models with the previous ones because these were built using the full 

sample size whereas preliminary models used for model down-selection were built using 

only 5,000 randomly sampled observations. Nevertheless, these models still clearly 

achieve better prediction of unseen data than purely statistical or regression-based models, 

which would have likely produced r-squared values around 0.20.  

It is not possible to isolate the individual effect of various predictors used in a 

random forest model. However, there are methods to quantify the relative importance of 
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predictors in a random forest. The out-of-bag predictor importance estimates by 

permutation serve as one method of measuring the influence of predictor variables in 

predicting the response. The process to estimate the predictor importance values uses 

permutation of actual observations in the training data. After randomly permuting 

observations of a specific predictor variable, the out-of-bag model errors before and after 

permutation are compared. For all of these changes in observed prediction errors, the out-

of-bag predictor importance is the mean of all errors divided by the standard deviation of 

all errors (MathWorks, 2019).  

 

 

Figure 4: Estimated Predictor Importance for Wait Time Prediction 

As Figure 4 evidences, the two most important predictors of wait time are the 

employment density and household density at the origin TAZ. The time of day and trips 

being in Seattle city limits are also relatively influential predictors of wait time. This is a 
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very similar result to earlier findings which used spatial regression to estimate zonal-level 

characteristics’ individual effects on ridesource pick-up wait time. 

 

 

Figure 5: Estimated Predictor Importance for Trip Fare Prediction 

As Figure 5 evidences, the single most important predictor of trip fare is the trip 

distance. This is not surprising as both services use a fare structure with a base fare and a 

fare based on the time and distance of the trip. The next four most important predictors of 

trip fare are employment density at the destination, household density at the destination, 

and trips with Seattle destinations, and trips that are between 6PM and 8PM.  
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Chapter 4:  Modern Mode Choice Models for Greater Seattle 

TRAVEL BEHAVIOR MODELS AND RIDESOURCING 

Most of the literature on ridesourcing and its impact on travel behavior employs 

survey methods. Such approaches present interpretable and succinct findings. For instance, 

examining what mode various travelers would have taken had they not used ridesourcing 

sheds light on when transit and new mobility compete and complement one another. 

Similarly, asking travelers if they would have taken a trip at all had ridesourcing not been 

available can provide suggestive evidence on whether ridesourcing has increased travel 

demand, especially vehicle miles traveled (VMT). These methods are useful because they 

illuminate general trends and associations, which can motivate subsequent research 

questions that aim to concretize the complex relationships between travel choices.  

Mode choice models or regional travel demand models that integrate ridesourcing 

as a distinct mode from taxis or private automobile travel are an emerging research 

opportunity. Research in this area only first emerged around 2017 for several reasons. First, 

shared mobility and related technologies are evolving rapidly, which is challenging for 

traditional, long-range travel demand modeling paradigms to capture. Metropolitan 

planning organizations (MPOs) are required per federal regulations to develop long-range 

transportation plans that project demand for transportation services over 20 years (FHWA 

& FTA, 2007). To perform the technical analyses that underpin these plans, MPOs 

typically conduct periodic household travel surveys and use them to maintain a travel 

demand model. Given that these plans are typically updated every four years (and at least 

every four years), and household travel surveys are conducted sometimes even less 

frequently, it is no surprise that cities and regions have been slow to incorporate shared 

mobility modes into the formal planning process. Second, despite the attention ridesourcing 
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receives in the press and in urban planning discourse for its potential congestion impacts, 

it still makes up only a small proportion of all mode share. For instance, in 2018 

transportation scholar Don Mackenzie estimated that ridesourcing makes up roughly 4.5% 

of total VMT in Seattle (Gutman, 2018). Thus, even when ridesourcing is separated as a 

unique travel mode in travel surveys, as PSRC began doing in 2014, there are few observed 

instances of travelers choosing ridesourcing to support statistical inference through discrete 

choice models. Finally, regional governance operating models do not particularly 

incentivize MPOs to meaningfully incorporate ridesourcing into travel demand modeling 

efforts. For an MPO to elevate a capital project or investment onto an implementation-

oriented, shorter-term transportation improvement program, it often must appear on an 

MPO’s long-range plan. As a result, modeling efforts are oriented towards identifying 

infrastructure investments that can provide congestion relief, emissions reductions, and 

safety improvements. Therefore, although ridesourcing’s impacts on travel behavior may 

have secondary impacts on congestion and equity that have regional scope, because most 

infrastructure-based solutions do not directly mitigate adverse impacts from ridesourcing 

there is not a strong motivation for an MPO to consider how their proposed investments 

could impact ridesource-related travel behavior. Furthermore, ridesourcing has remained a 

mostly urban issue, whereas MPOs’ jurisdiction typically span multiple counties with large 

and small cities and rural areas that may not immediately benefit from any efforts spent 

modeling new mobility services.   

Despite the data availability limitations, the transportation practice should begin 

incorporating shared mobility services in rigorous travel behavior models. Cities around 

the world, including numerous in the United States, are investigating the potential 

implications of both fees and taxes on TNCs as well as broader congestion pricing schemes 

that would target most private automobiles. The City of Seattle has indicated strong interest 
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in congestion pricing as a strategy to mitigate congestion, and as of 2019 is conducting a 

study on the issue (Robertson, 2018). Any scheme implemented in Seattle will alter the 

cost of travel for Seattle residents, but the impacts will reach a much broader population. 

Any sort of congestion pricing in Seattle would likely alter regional travel behavior; 

depending on the pricing scheme, some potential impacts are changes in regional access to 

transportation, destination choice, vehicle miles travelled, and multimodal behavior. 

Therefore, although congestion pricing initiatives in the United States are currently 

primarily city-led, it is crucial that its impacts are examined from a broader, regional lens.  

This chapter addresses the need for integrating ridesourcing into regional travel 

behavior models by estimating two discrete choice models. Trip types are separated into 

work-related and non-work-related and separate mode choice models are estimated for 

each. These serve as an step towards using travel behavior modeling methods to understand 

existing ridesource-related travel behavior and towards assessing the impacts of various 

pricing schemes on both ridesource-related and system-level travel behavior. 

DATA 

The aforementioned discrete choice models are data-intensive. Although household 

travel surveys that observe specific individual and their travel decisions are an incredibly 

rich data source, most alone still are not sufficient for estimating complex travel behavior 

models. Consider the data required to estimate a mode choice model, where the objective 

is to estimate a specific individual’s probability of selecting a certain travel mode to make 

an assumed trip: in order to identify why a certain person was observed to choose a certain 

mode over another, the analyst must know level-of-service characteristics of all considered 

trips, not just the actual trip taken. Chapter 3 tackled this issue specifically with regards to 

unobserved ridesource level-of-service characteristics, but this section will also discuss my 
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approach for estimating equivalent characteristics for other travel modes as well. 

Additionally, land use and mode choice are linked independent of travel time and travel 

costs (Zhang, 2007). The PSRC zonal-level land use data was mapped to individual trips 

in the household travel survey. Finally, the PSRC maintains traffic network models that 

model expected travel times from zone-to-zone for various modes at various times in the 

day. This data was used to estimate the level-of-service attributes for carpooling relative to 

single occupancy vehicle trips, which was necessary due to the prevalence of high 

occupancy vehicle lanes on highways in and around Seattle.  

Household Travel Survey Data 

The 2017 Puget Sound Regional Travel Study was conducted as part of a six-year 

effort with 5 survey waves planned between 2014 and 2021. One of the goals for capturing 

survey waves in short succession was to employ cutting edge data collection methods in 

order to identify and understand emerging travel behaviors and transportation issues. The 

study area covered the four counties under PSRC purview: King, Kitsap, Pierce, and 

Snohomish, which encompasses 82 cities and towns with a population over four million 

people. Amongst surveyed households, 80% participated in a one-day household travel 

diary and 20% participated in a seven-day smartphone GPS diary. The survey was 

administered between April and June 2017 using address-based sampling so that all 

households in a certain zone had equal chance of selection. The survey collected data on 

household, person, and vehicle information such as vehicle ownership, age, employment, 

education, home location, and household income. Trip data included number of travelers, 

trip purpose, mode, costs, and trip start and end times and locations (RSG, 2018). 

The full trip diary data contains 52,492 trip observations, which was reduced to 

meet the scope of the analysis.  
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Because ridesourcing is likely not available or a reasonable mode choice in the 

more rural or remote areas of the region, which include regional and state parks, the 

analysis was limited to trips that either began or ended in zip codes where at least one 

ridesource trip was observed.  

The data was bifurcated into two sets: work trips and non-work trips. The two are 

distinguished by the trip purpose field. Work trips were those with either destination trip 

purposes: “went to primary workplace,” “went to work-related place (e.g., meeting, second 

job, delivery),” “went to other work-related activity,” or those with the aforementioned 

origin purposes and a “return to home” destination purpose. Non-work trips were those 

with either destination trip purposes: “dropped off/picked up someone (e.g., son at a 

friend's house, spouse at bus stop),” “went grocery shopping,” “went to other shopping 

(e.g., mall, pet store),” “conducted personal business (e.g., bank, post office),” “went to 

medical appointment (e.g., doctor, dentist),” “went to restaurant to eat/get take-out,” “went 

to exercise (e.g., gym, walk, jog, bike ride).” “attended social event (e.g., visit with friends, 

family, co-workers),” “attended recreational event (e.g., movies, sporting event),” “went 

to religious/community/volunteer activity,” “went to a family activity (e.g., child's softball 

game),” “transferred to another mode of transportation (e.g., change from ferry to bus),” 

“other appointment/errands,” “other social/leisure,” or those with the aforementioned 

origin purposes and a “return to home” destination purpose.  

It is important to note that separating only by work and non-work trip types in this 

policy analysis is a major simplification and limitation. Such a simplification could imply 

priority for understanding work trips over other trip types that may be just as important. 

Non-work trips can equally or further contribute to an individual’s quality of life. This 

simplification is performed to reduce the complexity of the mode choice modeling exercise, 
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and it is recommended in subsequent studies to give deeper consideration to more distinct 

trip types, such as recreation, shopping, family visits, medical care, and education. 

The analysis also limits trips to those taken using modes that could be classified as 

personal auto (drive alone), personal auto (shared), walk, bicycle, transit, or ridesourcing. 

This left out certain modes such as rental car, carshare, vanpool, school bus, paratransit, 

airplane, ferry, taxi, and motorcycle. These modes were infrequently observed in the 

survey; removing those modes from the analysis only reduced the dataset by 104 

observations.  

The final datasets were still sizeable, despite filtering by multiple dimensions. 

Ultimately, 6,721 work trips and 21,481 non-work trips were included in the analysis. 

Land Use Data 

The trip data includes trip origins and destinations at the travel analysis zone (TAZ) 

level, of which there are 3,600 in the four-county PSRC region. The 2014 land use data for 

each TAZ is used in the generation of their base year model, and they maintain a separate 

land use forecasting model to project land use scenarios for long-range planning. This 

analysis used the 2014 base data.  

Land use features included: total employment, number of households, number of 

university students, average price of public off-street parking spaces on a parcel with per-

hour pricing, and square footage. From these fields, we can derive employment density, 

household density, and university student density, three characteristics that would likely 

serve as reasonable proxies for the “5Ds” of land use: density, diversity, design, destination 

accessibility, and distance to transit (Ewing & Cervero, 2010). These land use factors were 

joined to the trip table based both on trip origins and destinations in order to distinguish 

between the impacts that such variables would have unique to each trip end. 
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Google Maps Directions API 

As previously discussed, a mode choice model requires not only information about 

travel time and cost of the observed mode choice but those of unobserved, unchosen modes 

in the choice set. In order to estimate those counterfactual level-of-service variables, this 

analysis used a limited-availability data source from the Google Maps Platform. 

The Google Maps platform provides the Directions API as a service that calculates 

directions between locations. After specifying origin and destination coordinates, time of 

day, and mode, the API returns the most efficient travel route by optimizing travel time. 

The travel time is based on a proprietary traffic model that is Google's best estimate of 

travel time given historical traffic conditions and live traffic; they provide few insights to 

their prediction methodology. The different travel modes that can be requested include 

driving, walking, bicycling, and transit (Google Developers, 2019). One limitation is that 

one cannot use the API to distinguish differences between single occupancy vehicle and 

high occupancy vehicle travel times that may occur due to the availability of high 

occupancy vehicle lanes on highways. The following section describes how this issue was 

addressed using PSRC travel model data. Another limitation is that one cannot distinguish 

between different modes of transit, such as local bus or rail. This is unideal, but not a major 

issue because the mode choice analysis was simplified by grouping all transit modes in a 

single category even though there are likely distinct behaviors associated with various 

forms of transit. Another limitation is that one cannot request historic travel times from the 

API, only future travel times. Therefore, collecting travel time data from the API in late 

2018 creates a mismatch in time and season.  
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PSRC Travel Model Skims  

PSRC maintains a network traffic assignment model. They provided its skim data, 

or the traffic assignment model outputs, which provide estimates of network travel time 

from TAZ to TAZ by mode and by time of day (Bowman, 2014). For each private 

automobile trip in the observed trip dataset, the proportional change in travel time from 

single occupancy vehicles and high occupancy vehicles was estimated using the network 

skims. Then, Google Maps Directions API data was scaled to generate estimated private 

shared automobile travel times under the assumption that the Google Maps data was 

estimated on the basis of a single occupancy vehicle.  

Historic Gas Price Data 

Finally, to estimate the cost of travel, which was not collected by PSRC’s survey, 

historic gas price data from the US Energy Information Administration was used (US 

Energy Information Administration, 2019). They report weekly retail gasoline prices per 

gallon for the Seattle region, so an average regional cost per gallon was mapped to each 

automobile trip based on the week of travel. This analysis assumed an average fleet fuel 

economy of 22 miles per gallon based on the Bureau of Transportation Statistics’ Average 

Fuel Efficiency of Light Duty Vehicles data in 2016. Then, based on automobile trip length, 

the cost of gasoline was used to estimate the total cost of travel. If the ride was shared by 

multiple people, the total cost was divided by the number of total travelers. This analysis 

did not consider the cost of insurance or the vehicle itself.  

DISCRETE CHOICE MODELS 

Previous literature has found that trips made with ridesourcing are more likely be 

made for recreational and social purposes than for work purposes. Various personal and 

trip level-of-service factors that influence a person’s decision to choose to ridesource likely 
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have different impacts given a particular trip’s purpose. For instance, a person who is 

considering using ridesource to get to work may be more influenced by the expected travel 

time than a person who is considering using ridesource to reach a social activity, as the 

commute trip may have a higher penalty for showing up to work late. The trip mode choice 

decision-making process between work and non-work trips is likely distinct enough to 

demand separate model functional forms in order to best isolate the impacts on travel mode 

choice by various regressors (Handy, 1996). 

Because of the assumption of a shorter time scale, these models are most suitable 

for evaluating a policy’s impact for a time scale of months, rather than years. These models 

are likely inappropriate for estimating the impact of a pricing policy on travel behavior 

over longer time periods, as in that time an individual may make long-term choices that 

influence their travel behavior, such as residential location, destination choice, 

employment location, and vehicle ownership. The models did not consider time of day of 

travel, residential location, destination choice, workplace location, vehicle ownership, or 

other commonly modeled choice dimensions, and thus cannot evaluate whether policies 

influence when people choose to travel, where people choose to live or work, or how many 

vehicles a person chooses to own, even if these choices are ultimately interrelated.   

This analysis applied McFadden’s choice model to estimate both mode choice 

models. This is a generalization of the conditional logit model which can allow for two 

types of independent variables, alternative-specific and case-specific. Given a choice 

model with numerous possible choices, alternative-specific variables vary across 

alternatives such as travel cost and travel time. Case-specific variables vary only for 

individuals such as household income or vehicle ownership (McFadden, 1973). 

The mathematical structure of the alternative specific conditional logit estimates 

the probability that an individual will choose each alternative in their choice set, or set of 
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individual-specific alternatives. Not all individuals in the data set must have the same 

choice set. This analysis makes assumptions about individuals' choice sets. First, it 

assumed that people who reside in zero-vehicle households did not have driving alone in 

their choice set. Second, it assumed people that had never used ridesourcing did not have 

ridesourcing in their choice set. Third, it assumed that trips where the Google Maps 

Direction API showed no results for transit, walking, or biking did not have the 

corresponding mode in their choice set. 

Koppelman and Bhat delivered A Self Instruction Course in Mode Choice 

Modeling: Multinomial and Nested Logit Models to the Federal Transit Administration. 

Their presentation of the methods and applications of disaggregate models for modeling 

decision making in a travel behavior context have been invaluable, and the following 

discussion of relevant methods is largely a summary of their work.  

The probability of choosing an alternative i from a set of J alternatives is calculated 

based on the following expression: 

𝑃(𝑖) =
exp(𝑉௜)

∑ exp (𝑉௝)௃
 

Here, 𝑉௜ is the utility of alternative i, which is a linear combination of the 

aforementioned alternative-specific and case-specific independent variables. To illustrate, 

a small example of a set of utility functions within a three-choice model of drive alone 

(DA), shared (SR), and transit (TR) follows. These utilities include a deterministic portion 

of utility, 𝑉௜, and a probabilistic portion, 𝜀௜. 

𝑈஽஺ = 𝑉஽஺ + 𝜀஽஺ = 𝛽௧௥௔௩௘௟௧௜௠௘ ∗ 𝑇𝑇஽஺ + 𝛽௜௡௖௢௠௘,஽஺ ∗ 𝑖𝑛𝑐𝑜𝑚𝑒 + 𝜀஽஺ 

𝑈ௌோ = 𝑉ௌோ + 𝜀ௌோ = 𝛽௧௥௔௩௘௟௧௜௠௘ ∗ 𝑇𝑇ௌோ + 𝛽௜௡௖௢௠௘,ௌோ ∗ 𝑖𝑛𝑐𝑜𝑚𝑒 + 𝜀ௌோ 

𝑈்ோ = 𝑉 ோ + 𝜀்ோ = 𝛽௧௥௔௩௘௟௧௜௠௘ ∗ 𝑇𝑇்ோ + 𝛽௜௡௖௢௠௘,்ோ ∗ 𝑖𝑛𝑐 + β௪௔௜௧௧௜௠௘,்ோ ∗ 𝑤𝑎𝑖𝑡 +  𝜀்ோ 
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There are two features of the above utility functions worth noting. First, the 

coefficient for travel time is the same for all modal utility functions. This is a default model 

specification for alternative-specific variables such as modal travel time, but it is 

technically feasible to estimate mode-specific coefficients here as well. Second, the 

coefficient for case-specific variables such as income and transit wait time is unique to 

each utility function.  

There are three critical assumptions which we must accept in order to estimate the 

coefficients of the utility functions. The first is that the error terms follow an extreme value 

distribution. The second is that the errors are identically and independently distributed 

among alternatives. The third is that the error components are identically and independently 

distributed across individuals. Under these assumptions, we can use maximum likelihood 

estimation methods to estimate the parameters which make up the utility functions 

(Koppelman & Bhat, 2006).  

A tool for interpreting these types of models is a measure of the response in choice 

probabilities due to a change in isolated variables. Especially in the case of a multinomial 

logit, a raw coefficient is not that informative about how a variable impacts the probabilities 

of each choice. A marginal effect of a variable is the expected change in percentage of 

probability of a choice in response to a unit increase in a variable. The marginal effect is 

useful for making predictions. In interpretation of alternative specific conditional logit 

models, we may wish to evaluate the impact of changing the attributes of only one of 

multiple alternatives. In that case, marginal effects as a result of this isolated change can 

be calculated for both the probability of the changed alternative and all other alternatives. 

For instance, if only driving alone is made more expensive (perhaps through congestion 

pricing), we would be able to predict how the mode share of each alternative changes in 

response. These marginal effects for continuous variables can be estimated using the first 
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derivative of the probability. For the direct marginal effect of a change of a specific 

alternative on that alternative, the direct derivative is: 
𝜕𝑃௜

𝜕𝑋௜௞
= ൬

𝜕𝑉௜

𝜕𝑋௜௞
൰ (1 − 𝑃௜)(𝑃௜) = 𝛽௞(1 − 𝑃௜)(𝑃௜) 

where 𝑃௜ is the probability of alternative i given some specific value for each attribute, 𝑉௜ 

is the alternative-specific utility function, 𝛽௞ is the estimated coefficient on the attribute, 

and 𝑋௜௞ is the kth attribute of alternative i.  

The cross-derivative estimates the effect of a change in one alternative’s attributes 

on the probability of other alternatives: 
𝜕𝑃௝

𝜕𝑋௜௞
= −𝛽௞(1 − 𝑃௜)(𝑃௝) 

where 𝑃௝ is the probability of alternative j given some specific value for each attribute.  

 Marginal effects can also be estimated for discrete variables such as logical ones 

that only take either zero or one. In that case the marginal effects are: 
∆𝑃௜

∆𝑋௜௞
= 𝑃(𝑌௜ = 1|𝑋௞ = 1) − 𝑃(𝑌௜ = 1|𝑋௞ = 0) 

∆𝑃௝

∆𝑋௜௞
= 𝑃൫𝑌௝ = 1ห𝑋௞ = 1൯ − 𝑃൫𝑌௝ = 1ห𝑋௞ = 0൯ 

Most notable about the marginal effects of variables in a logit model is that the 

effect depends on what values for each attribute are under consideration. Commonly the 

sample mean or median is used to summarize marginal effects, but the analyst can actually 

use any value. The policy analysis in Chapter 5 demonstrates how the marginal effect of 

travel cost is experienced by travelers of different population segments by varying attribute 

values for the same policy change. This analysis used the Stata software package to perform 

both the model estimation and marginal effects estimation. 
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Work Travel Mode Choice Model 

There are 6,721 work trips made that start or begin in zip codes where ridesource 

trips are observed. The data set only includes home-based work trips, eliminating trips 

which are technically to or from a place of work but distinct from habitual commute trips, 

such as walking to a restaurant for lunch. Characteristics of these trips are summarized in 

the following table, including those of the individual making the trip, the household to 

which that individual belongs, and the trip itself.  

 
Variable Count % 
Age    
Under 5 years old 23 0.34 
5-11 years 17 0.25 
12-15 years 12 0.18 
16-17 years 7 0.10 
18-24 years 474 7.05 
25-34 years 3100 46.12 
35-44 years 1603 23.85 
45-54 years 774 11.52 
55-64 years 557 8.29 
65-74 years 136 2.02 
75-84 years 18 0.27 

Income per Household Member    
Under 28,000 947 14.09 
$28,000 - $56,000 2145 31.91 
$56,000 - $84,000 1728 25.71 
$84,000 - $112,000 853 12.69 
$112,000 - $140,000 822 12.23 
$140,000 or more 226 3.37 

Household Vehicle Count    
Zero 929 13.82 
One 3559 52.95 
Two 1905 28.34 
Three or more 328 4.88 

Number of Household Adults   
One 2067 30.75 
Two 4318 64.25 
Three 239 3.56 
Four or more 97 1.44 

Number of Household Children   
Zero 5617 83.57 
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One 660 9.82 
Two or More 444 6.61 

Household Density at Trip Origin   
Under 7,300 households/sqmi 3872 57.61 
7,300 – 14,600 households/sqmi 1498 22.29 
14,600 – 21,900 households/sqmi 652 9.70 
21,900 households/sqmi or more 689 10.41 

Employment Density at Trip Destination   
Under 10,000 jobs/sqmi 3077 45.85 
10,000 – 20,000 jobs /sqmi 991 14.77 
20,000 – 30,000 jobs /sqmi 619 9.22 
30,000 – 40,000 jobs /sqmi 500 7.45 
40,000 – 50,000 jobs /sqmi 265 3.95 
50,000 – 60,000 jobs /sqmi 209 3.11 
60,000 jobs /sqmi or more 1050 15.65 

Average Off-Street Parking Cost at Destination   
$0 5050 75.14 
Under $10/hr 171 2.54 
$10-$20/hr 377 5.61 
$20-$50/hr 468 6.96 
$50-$100/hr 655 9.75 
$100/hr or more   

Time of Day   
5AM to 9AM 2723 40.51 
9AM to 3PM 1415 21.05 
3PM to 7PM 2042 30.38 
7PM to 2AM 479 7.13 
2AM to 5AM 62 0.92 

Trip Ends   
Into Seattle 422 6.28 
Out of Seattle 858 12.77 
Within Seattle 4036 60.05 
Outside Seattle 1405 20.90 

Table 6: Summary of Individual and Trip-Level Characteristics of Work Trip Data 

Most travelers in this data set are between 25 and 44 years of age and come from 

households with $28,000 to $84,000 of income per household member, at least one vehicle, 

two adults, and no children. Most trips originate from low household density areas and end 

in areas where average off-street parking costs are low. 
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Mode Count % 

Drive Alone 2896 43.09 

Shared Ride 478 7.11 

Ridesource 98 1.46 

Transit 1917 28.52 

Walk 943 14.03 

Bike 389 5.79 

Table 7: Observed Work Mode Choice 

Of the six modes of interest, the most common work trip mode choice was driving 

alone, followed by transit. This data set was used to estimate the utility function parameters 

of the following alternative specific conditional logit model of work mode choice.  
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Variables  

Work Trip Mode  
(base: Shared Ride) 

Drive Alone Ridesource Transit Walk Bike 

Coeff. t-stat Coeff. t-stat Coeff. t-stat Coeff. t-stat Coeff. t-stat 
Level of Service            
Distance (walk) -- -- -- -- -- -- -0.686 -14.47 -0.046 -2.11 
Cost -0.116 -6.67 -0.116 -6.67 -0.116 -6.67 -0.116 -6.67 -0.116 -6.67 
Travel Time -0.013 -7.35 -0.013 -7.35 -0.013 -7.35 -0.013 -7.35 -0.013 -7.35 

Socio-demographics           
Age 0.326 7.79 0.340 3.33 0.272 5.90 0.218 4.10 0.256 4.51 
Income per Person 3.6*10-6 2.33 6.8*10-6 2.52 3.0*10-6 1.90 6.2*10-6 3.64 1.2*10-5 5.89 
Household            
No. Adults -0.467 -5.17 -- -- -- -- -- -- 0.349 3.01 
No. Children    -0.378 -5.37 -- -- -0.550 -6.11 -0.649 -4.96 0.392 4.17 
No. Workers -0.568 -7.01 -- -- -- -- -- -- -- -- 
Vehicle Count 0.570 7.28 -0.877 -5.06 -0.700 -8.99 -0.799 -8.21 -0.634 -5.66 

Land Use           
HH Density (Origin)  -- -- -- -- 1.8*10-5 5.43 1.8*10-5 4.48 -- -- 
Emp. Density (Dest.) -2.2*10-6 -4.19 -- -- 1.0*10-6 3.08 -- -- -- -- 
Parking Cost 
(Origin) -0.003 -2.22 0.004 2.81 0.005 4.44 0.004 3.35 0.003 2.39 
Parking Cost (Dest.) -0.003 -2.98 -- -- 0.002 2.54 0.002 2.82 -- -- 

Trip Attributes           
Into Seattle 0.467 2.05 1.336 1.57 2.210 8.67 1.729 2.36 0.231 0.29 
Out of Seattle 0.722 4.19 2.770 4.62 2.226 10.17 3.416 6.10 0.967 1.94 
Within Seattle 0.358 2.98 2.044 4.83 1.937 12.10 1.021 6.35 2.633 10.77 
9AM to 3PM 0.288 3.03 -- -- -0.281 -2.57 -- -- -0.375 -2.34 
3PM to 7PM -- -- -- -- -- -- 0.213 1.98 -- -- 
7PM to 2AM -- -- 1.477 5.69 -- -- -- -- -0.666 -2.41 
2AM to 5AM 1.766 4.18 1.774 2.24 -- -- -- -- -- -- 

Constant 0.424 1.31 -3.312 -4.30 -0.800 -2.34 1.096 2.81 -4.077 -7.92 

Table 8: Work Trip Model Choice Estimation Results 

Higher income is associated with using ridesource for work trips rather than shared 

rides, or carpooling. Having more household vehicles is associated with a lower probability 

of using ridesource. A higher parking cost at the trip origin is also associated with a higher 

likelihood of using ridesourcing rather than carpooling. Trips out of Seattle and within 

Seattle are more likely to use ridesourcing rather than carpooling. Finally, trips between 

7PM and 5AM are more likely use ridesourcing than carpooling. The direction of these 

findings are reasonable, as previous studies have found through surveys that people who 
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are more likely to use ridesourcing are higher income, live in denser areas and own fewer 

vehicles, often cite the cost of parking as a reason to avoid driving themselves to a 

destination, and take trips at night.  

The coefficients of multinomial logit and related models can be tricky to interpret 

directly. With a simpler model, like a linear regression or a binary logit, the sign of an 

estimated coefficient is always the same sign as the marginal effect of that variable. For 

instance, in a binary logit model if the coefficient on cost is negative, then we know that a 

unit increase in cost is associated with a decrease in the probability of the alternative in 

question. However, in the case of a multinomial logit model, it is possible that the sign of 

a coefficient could be opposite of that of the marginal effect. Therefore, it is informative to 

summarize the marginal effects of multinomial logit models alongside the estimated 

coefficients. The following summarizes the own- and cross-elasticities of the probability 

of each choice relative to a unit increase in cost for vehicle-based modes (drive alone, 

shared ride, and ridesource).  

 

Alternatives  

Marginal Effect of Cost (at Means) 
Drive Alone Shared Ride Ridehail 

𝜕𝑃/𝜕𝑋 z-stat 𝜕𝑃/𝜕𝑋 z-stat 𝜕𝑃/𝜕𝑋 z-stat 

Drive Alone -0.0261 -6.60 0.0121 5.99 0.0004 2.43 
Shared Ride 0.0121 5.99 -0.0155 -6.09 0.0001 2.37 
Ridesource 0.0004 2.43 0.0001 2.37 -0.0006 -2.43 
Transit 0.0116 5.79 0.0028 5.19 0.0001 2.35 
Walk 0.0006 4.10 0.0001 3.85 4.5*10-6 2.17 
Bike  0.0014 3.73 0.0003 3.55 1.1*10-5 2.12 

Table 9: Marginal Effects of Travel Costs on Work Trip Mode Choice Probabilities 

The marginal effects evaluated at the mean of all attributes suggests how changing 

travel cost could impact mode choice. This summary could be tailored for different trip 
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types and traveler demographics. Here we can see that if the cost of driving alone was 

increased by one dollar for all trips in the analysis region, 2% of people who had previously 

driven alone would choose other modes. The model predicts that 46% of those who switch 

would next choose a shared ride or carpool, 44% would next choose transit, and the 

remaining 10% shared between bicycling, walking, and ridesourcing. This could suggest 

that a congestion fee on single occupancy vehicles may primarily encourage mode shifts 

towards carpooling and transit, although this analysis has not yet refined the scope to only 

include the marginal effect of cost on trips into and within Seattle, where a congestion fee 

would most likely be implemented.  

For a one dollar increase in the cost of the average ridesourcing trip, the model 

predicts that just 0.06% of trips would switch to other modes. This may suggest that 

ridesourcing work trips are significantly less price-sensitive than driving by personal 

vehicle, either alone or in a carpool. We also observe that 66% of those shifted trips would 

move to driving alone, while 16% would switch to shared rides, 15% to transit, and the 

remaining 3% to either walk or bicycling. The first implication of this is that a fee on TNC 

trips is unlikely to curtail congestion caused by ridesourcing, as these trips seem to be 

relatively price-inelastic. However, we also need to consider where and when these trips 

are taking place; for instance, if TNC trips during peak hours in Seattle are much more 

price-elastic, and people are likely to switch to mass or non-motorized modes, then perhaps 

a TNC fee alone could offer congestion reduction benefits. Also, it seems that ridesourcing 

trips are not competing heavily with transit, at least over work trips. If there was more 

competition between the two modes, we might expect to see that increase in ridesource 

cost might lead to many people switching to transit as a next best option. Again, this 

marginal effect could be different for different segments of the population, and Chapter 5 

examines some of the variations in response within the population.  
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Non-work Travel Mode Choice Model 

There are 13,279 home-based non-work trips used in the following estimation of a 

non-work mode choice model. Distributions of relevant traveler and trip attributes in this 

data set are summarized. 

 
Variable Count % 
Age    
Under 5 years 745 5.61 
5-11 years 526 3.96 
12-15 years 133 1.00 
16-17 years 40 0.30 
18-24 years 687 5.17 
25-34 years 4433 33.38 
35-44 years 2892 21.78 
45-54 years 1586 11.94 
55-64 years 1089 8.20 
65-74 years 840 6.33 
75-84 years 275 2.07 
Over 84 years  33 0.25 

Income per Household Member   
Under 28,000 2260 17.02 
$28,000 - $56,000 4769 35.91 
$56,000 - $84,000 3293 24.80 
$84,000 - $112,000 1366 10.29 
$112,000 - $140,000 1248 9.40 
$140,000 or more 343 2.58 

Household Vehicle Count   
Zero 1693 12.75 
One 6364 47.93 
Two 4513 33.99 
Three or more 709 5.34 

Number of Household Adults  
One 3604 27.14 
Two 9258 69.72 
Three 298 2.24 
Four or more 119 0.90 

Number of Household Children  
Zero 8949 67.39 
One 2232 14.14 
Two or More 1998 15.81 

Household Density at Trip Origin   
Under 7,300 households/sqmi 7977 60.07 
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7,300 – 14,600 households/sqmi 2911 21.92 
14,600 – 21,900 households/sqmi 1163 8.76 
21,900 households/sqmi or more 1228 9.25 

Employment Density at Trip Destination   
Under 10,000 jobs/sqmi 7967 60.09 
10,000 – 20,000 jobs /sqmi 2008 15.15 
20,000 – 30,000 jobs /sqmi 868 6.55 
30,000 – 40,000 jobs /sqmi 887 6.69 
40,000 – 50,000 jobs /sqmi 507 3.82 
50,000 – 60,000 jobs /sqmi 284 2.14 
60,000 jobs /sqmi or more 737 5.56 

Average Off-Street Parking Cost at Destination   
$0 11443 86.17 
Under $10/hr 474 3.57 
$10-$20/hr 295 2.22 
$20-$50/hr 401 3.02 
$50-$100/hr 341 2.57 
$100/hr or more 325 2.45 

Time of Day   
5AM to 9AM 1387 10.45 
9AM to 3PM 4131 31.11 
3PM to 7PM 4754 35.80 
7PM to 2AM 2974 22.40 
2AM to 5AM 33 0.25 

Day of Week   
Weekday 10070 75.83 
Weekend 3209 24.17 

Trip Ends   
Into Seattle 304 2.29 
Out of Seattle 616 4.64 
Within Seattle 8666 65.26 
Outside Seattle 3693 27.81 

Trip Purpose   
Social/Recreational 5431 40.90 
Maintenance/Shopping 7848 59.10 

Table 10: Summary of Individual and Trip-Level Characteristics of Non-Work Trip 
Data 

 Most travelers in this non-work trip data set are between the ages of 25 and 54, 

and come from households where the income per household member is between $28,000 

and $84,000 a year, there is at least one household vehicle, two household adults, and no 

household children. Most trips in this data set originate in TAZs with fewer than 7,300 
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households per square mile, end in TAZs with fewer than 10,000 jobs per square mile 

and have no off-street parking cost, take place between 9AM and 7PM, on weekdays, 

within Seattle, and for maintenance or shopping purposes. 

Mode Count % 

Drive Alone 3764 28.35 

Shared Ride 4981 37.51 

Ridesource 221 1.66 

Transit 772 5.81 

Walk 3291 24.78 

Bike 249 1.88 

Table 11: Observed Non-Work Mode Choice 

There are differences in mode split between work trips and non-work trips, 

supporting the decision to model these trips separately. Relatively more work trips are 

taken using transit (28% as compared to 6%), driving alone (43% as compared to 28%) 

and bicycling (6% as compared to 2%). Relatively more non-work trips are taken using 

shared rides (38% as compared to 7%) and walking (25% as compared to 14%). Ridesource 

mode split is roughly equivalent for both trip types, at either just above or below 1.5% of 

total mode share. 
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Variables  

Non-Work Trip Mode  
(base: Shared Ride) 

Drive Alone Ridesource Transit Walk Bike 

Coeff. t-stat Coeff. t-stat Coeff. t-stat Coeff. t-stat Coeff. t-stat 
Level of Service            
Distance (walk) -- -- -- -- -- -- -3.020 -38.84 -- -- 
Distance (bike) -- -- -- -- -- -- -- -- -0.934 -17.39 
Cost -0.198 -7.70 -0.198 -7.70 -0.198 -7.70 -0.198 -7.70 -0.198 -7.70 
Travel Time -0.013 -46.76 -0.013 -46.76 -0.013 -46.76 -0.013 -46.76 -0.013 -46.76 

Socio-demographics           
Young (<25 years) -0.419 -7.49 -- -- -0.834 -4.42 -0.214 -2.44 -0.449 -2.66 
Elderly (>65 years) -0.668 -4.27 -- -- -- -- -- -- -1.274 -1.71 
Income per Person 2.1*10-6 2.91 5.3*10-6 2.96 -9.7*10-6 -4.37 1.6*10-6 1.66 -- -- 
Household            
No. Adults -1.273 -21.99 -- -- -- -- -- -- -- -- 
No. Children    -1.079 -27.18 -1.285 -6.07 -0.905 -5.37 -0.394 -7.33 -- -- 
No. Workers -- -- -- -- -0.527 -4.25 -0.219 -3.78 -0.391 -3.67 
Vehicle Count 0.410 9.81 -1.618 -11.53 -0.846 -6.80 -0.431 -7.67 -- -- 

Land Use           
HH Density (Origin)  -5.4*10-6 -1.91 -- -- 3.1*10-5 4.57 7.0*10-6 1.82 -- -- 
HH Density (Dest.) -- -- 1.2*10-5 1.85 2.8*10-5 4.29 1.3*10-5 3.26 -- -- 
Emp. Density (Origin.) -- -- 1.9*10-6 3.30 1.4*10-6 3.62 -- -- -- -- 
Emp. Density (Dest.) -1.2*10-6 -2.72 3.4*10-6 6.84 -- -- -- -- -- -- 
Parking Cost (Origin) -- -- 0.003 1.73 -- -- -0.004 -4.97 -0.013 -3.54 
Parking Cost (Dest.) -- -- -0.005 -2.00 0.008 7.53 -- -- -- -- 

Trip Attributes           
Into Seattle -- -- 2.318 4.14 -5.031 -4.60 -- -- -- -- 
Out of Seattle -- -- -- -- -2.776 -3.02 2.432 3.26 -- -- 
Within Seattle 0.133 2.61 1.514 4.84 0.712 1.82 0.218 2.44 0.834 3.94 
9AM to 3PM 0.609 9.89 2.221 2.77 -- -- -- -- -- -- 
3PM to 7PM 0.143 2.42 1.995 2.49 0.710 3.86 -- -- -- -- 
7PM to 2AM -- -- 2.849 3.59 -1.139 -4.70 -0.427 -4.60 -0.583 -3.09 
2AM to 5AM 1.138 2.25 5.449 5.31 -- -- -- -- -- -- 
Weekend -0.794 -13.00 -0.457 -2.62 -0.909 -4.05 -0.336 -3.62 -0.527 -2.76 
Social Purpose -0.303 -5.97 1.418 7.22 -0.700 -4.19 -- -- -- -- 

Constant 2.080 15.40 -4.170 -4.65 -2.438 -5.33 2.131 12.87 -2.765 -11.11 

Table 12: Non-Work Trip Model Choice Estimation Results 

Ridesource trips are more likely to be made by higher income travelers relative to 

shared rides, and by travelers who have fewer household children and vehicles. Ridesource 

trips are more likely than shared ride trips to begin and end in high density areas, measured 

by both household density and employment density. Additionally, ridesource trips are more 

likely to occur relative to shared ride trips at every time of day except during morning hours 
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from 5AM to 9AM. Finally, ridesource trips are more likely to occur on weekdays and for 

social purposes rather than maintenance purposes relative to shared ride trips. Again, it is 

important to be cautious when interpreting the coefficients of multinomial logit models 

because the sign on a coefficient is not necessarily in the same as the elasticity or marginal 

effect that the associated attribute has on choice probability. 

 

Alternatives  

Marginal Effects (at Means) 
Drive Alone Shared Ride Ridehail 

𝜕𝑃/𝜕𝑋 z-stat 𝜕𝑃/𝜕𝑋 z-stat 𝜕𝑃/𝜕𝑋 z-stat 

Drive Alone -0.0488 -7.69 0.0476 7.67 1.3*10-5 1.16 
Shared Ride 0.0476 7.67 -0.0486 -7.69 1.0*10-5 1.16 
Ridesource 1.3*10-5 1.16 1.0*10-5 1.16 -2.3*10-5 -1.16 
Transit 0.0009 2.39 0.0007 2.37 1.9*10-7 1.05 
Walk 4.2*10-5 4.08 3.2*10-5 3.93 8.9*10-9 1.12 
Bike  0.0003 3.84 0.0002 3.72 5.4*10-8 1.12 

Table 13: Marginal Effects of Travel Costs on Non-Work Trip Mode Choice 
Probabilities 

Based on these marginal effects, for every dollar increase in cost of driving alone, 

those that shift away from drive alone would mostly likely next choose a shared ride or 

carpool. Those that shift away from shared ride due to a cost increase of shared ride trips 

would most likely choose driving alone. Those that shift away from ridesource due to a 

cost increase of ridesource trips would most likely split between driving alone and a shared 

ride. This suggests that those who choose private motorized modes today (driving alone, 

shared rides, or ridesourcing) for non-work trips are not likely to switch to mass transit or 

active modes if the cost of travel is increased. This could imply that fees or road pricing be 

imposed might only produce mimor VMT reductions if people choose higher-occupancy, 

but still private vehicle-based modes. 



` 85 

MODEL FINDINGS 

This chapter presents two mode choice models estimated under an alternative 

specific conditional logit model. The analysis segmented the trip data set into work trips 

and non-work trips because these two types of trips are subject to fundamentally different 

decision-making processes.  This is confirmed by the distinctions between both the 

magnitude and significance of estimated utility function parameters and the marginal 

effects of work and non-work trips. 

Non-work drive alone and shared ride trips are more sensitive to cost than work 

trips are (4% as compared to 2% and 4% as compared to 1%-point decrease in choice 

probability for every dollar increase, respectively), while non-work ridesource trips are less 

sensitive to cost than work trips (0.002% as compared to 0.06%-point decrease in choice 

probability). If a flat TNC fee was enacted, work trip modes would likely experience 

greater shifts than non-work trip modes, whereas under congestion pricing of all private 

automobiles, non-work trip modes would experience greater shifts than work trip modes. 

Increasing the cost of work travel is more likely to produce multimodal behavior 

than an equivalent increase in the cost of non-work travel. Across all private, motorized 

modes (drive alone, shared ride, and ridesourcing) between 16% to 50% of travelers that 

shift from one of these modes for a work trip would choose to take transit instead. However, 

of non-work trips made by private, motorized modes, only 1% of shifted travelers would 

switch to transit in lieu of their original mode choice. This suggests that ridesourcing 

competes with transit more for work trips than it does for either social or recreational non-

work trips in the Seattle-Tacoma region. This may be because transit mode share is higher 

for work trips than it is for other types of trips, and therefore most transit trips are likely 

made by people traveling for work or commuting purposes. As a result, the entrance of a 

competitive mode (ridesourcing) is likely to shift more work travel away from transit than 
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it is non-work travel simply by virtue of the relative frequencies of each trip type. Also, 

work travelers that use transit may either not own cars or work in areas where it would not 

be convenient to park a personal vehicle during their working hours. Thus, ridesourcing is 

competitive for those who are seeking a mode to work faster than transit but would enable 

them to forgo driving themselves. It is also possible that those who choose ridesourcing for 

social trips or chores have distinct motivations from those who choose transit for social or 

chores-related purposes. For instance, someone who uses ridesourcing for chores may do 

so because it requires them to transport items with them, and so transit could be less likely 

to be an alternative mode than other private vehicle-based modes like driving alone and 

shared rides. On the other hand, someone who is using transit for chores or socializing is 

more likely a captive transit rider than someone who uses transit for commuting, and may 

be less likely to be able to afford habitual or frequent ridesource trips. Under such 

conditions, those who are observed to use ridesource for social and chore-related purposes 

would not be likely to choose transit in place of ridesourcing, and those who originally 

chose transit may not be able to replace transit with ridesourcing; neither of these 

hypothetical types of travelers would be comparing ridesourcing and transit directly. 
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Chapter 5:  Cordon Pricing Policy Analysis 

This chapter examines the following research questions: how would cordon pricing 

impact congestion, equity, multimodality, and emissions in the Greater Seattle region, and 

how should its associated revenue be spent?  I hypothesize that differences in where cordon 

pricing revenue is spent both programmatically and geographically will vary transportation 

system outcomes due to regional travel behavior impacts. The following analysis evaluates 

whether spending across the region and across modes advance Seattle’s local equity, 

congestion relief, and emissions reductions goals more than if investments were 

concentrated in Seattle. This could provide justification for allocating some or all of the 

cordon pricing revenue for transit service improvement and expansion by Sound Transit 

and King County Metro, as this would simultaneously advance local and regional goals.  

First, we establish current conditions based on the aforementioned metrics and 

compare the impact of each scenario relative to current conditions. Then, the relative merits 

and trade-offs of each scenario are discussed. These findings are used to assess whether 

cordon pricing in Center City in general deserves further consideration, and whether a 

particular revenue investment scenario is superior. 

CURRENT CONDITIONS 

King County is selected as the study area because it contains nearly all trips likely 

to be impacted by cordon pricing in Center City Seattle, all of King County Metro’s transit 

service, and the majority of Sound Transit’s transit service. Even though cordon pricing 

would likely be limited to Center City Seattle, it attracts trips from all over the Seattle-

Tacoma region, including King County and the rest of Seattle.  
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Figure 6: Policy Analysis Study Area within PSRC Region 

King

Pierce

Snohomish

Kitsap

Pierce

Open Water

PSRC TAZs

Seattle

Study Area

PSRC Counties

Outside PSRC Region

¯ 0 10 205 Miles



` 89 

The study area contains 2,145 of the 3,700 traffic analysis zones (TAZs) in the 

PSRC region. King County is home to 2.2 million residents, 850,000 households, and 1.3 

million employees. It covers approximately 1,290 square miles. 

The following tables summarize estimated present-day traffic demands and mode 

shares throughout the study region, segmented by geography, time of day, individual-level 

demographics such as household income and vehicle ownership, and zonal-level 

demographics such as housing and transportation affordability and average household 

greenhouse gas emissions. Segmentation enables the evaluation of cordon pricing schemes 

against Seattle’s strategic goals in equity, congestion management, expanded 

transportation options, and greenhouse gas emissions reduction as well as regional strategic 

goals for expanding transit system service.  

 The 2014 Puget Sound Regional Council origin-destination trip tables generated by 

their 4-step traffic model provide estimates of traffic demand within Center City, Outer 

Seattle, and King County by time of day. PSRC provide trip tables by mode, trip type (work 

or non-work), and time of day between each of the 3,600 TAZs in the region. These 

estimate daily trip counts based on trip generation and trip distribution models, which use 

a mix of land use and demographic data to model the number of trips attracted to each 

TAZ, the number of trips produced by each TAZ, and the resulting number of trips between 

TAZs. Trips are aggregated by geography, time of day, and mode to produce a baseline 

measure of traffic demand.  
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    Time of Day  

 
 

 Non-peak AM Peak 
(6AM – 9AM) 

PM Peak 
(3PM – 6PM) 

L
oc

at
io

n W
or

k 
Center City (Seattle) 3,816 8,014 8,644 

Outer Seattle 11,969 22,776 28,929 

King County 34,542 66,321 84,709 

N
on

-W
or

k Center City (Seattle) 20,254 45,633 43,596 

Outer Seattle 64,570 124,982 153,769 

King County 228,018 437,838 560,060 

Table 14: Estimated Vehicular Trips per Hour by Time of Day and Location 

For each geography there are more work trips per hour during peak travel hours 

relative to non-peak travel hours. Center City experiences the most dramatic increase in 

trips per hour from non-peak travel times to peak travel times, likely because many jobs 

are located in the area and is thus a major trip attractor during peak commute times. 

There are more vehicular non-work trips than work trips for every geography and 

time of day, which could be because the region has roughly twice as many total inhabitants 

as it does employees. Furthermore, non-work trips are typically shorter and more frequent 

than work trips. Interestingly, even non-work trips occur more frequently during peak 

travel times than non-peak travel times, even though these trips are likely more flexible 

than work trips and could potentially be shifted to different times of the day to avoid 

recurring traffic congestion during commute hours. 

Based on the PSRC trip tables, there are approximately 750,000 daily vehicular 

trips into, within, or out of Center City, with 660,000 originating from outside of Center 

City or towards a destination outside of Center City.  
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Transportation equity has several interpretations, many built upon the concepts of 

transportation need or ability. The twin concepts of vertical and horizontal equity are 

commonly used: horizontal equity describes the equal allocation to resources to individuals 

of equal transportation need, while vertical equity describes the special consideration given 

to those who demonstrate the highest transportation need (Litman, 2019). This analysis 

prioritizes the fulfilment of vertical equity, so we prefer policy solutions which provide the 

most benefit to the members of the population with the highest need for quality public 

transportation or lowest ability to access transportation. Because transportation need 

cannot be measured directly, grouping the population by relative need requires choosing 

reasonable proxies. Two individual-level characteristics that are strongly associated with 

need and access to transportation are vehicle ownership and income; those with fewer 

vehicles or lower incomes are more likely to have reduced access to transportation, either 

because they have reduced automobility or have reduced ability to pay for transportation 

services. Therefore, the study area population is segmented according to transportation 

need using vehicle ownership and household income. 
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   Vehicle Ownership 
   No Vehicles Vehicle-Constrained Vehicle-Abundant 

   Auto TNC Transit Auto TNC Transit Auto TNC Transit 

In
co

m
e 

P
er

ce
nt

ile
 

W
or

k 

< 25th  6.7 3.9 29.7 42.0 1.1 15.4 63.9 0.8 10.9 

< 50th  3.7 2.4 33.5 51.4 1.5 14.1 58.9 0.9 10.7 

< 75th  3.0 3.2 45.8 37.4 1.7 15.5 62.3 0.8 9.2 

≥ 75th  5.0 3.4 28.7 35.3 2.0 14.4 64.3 0.9 7.9 

N
on

-W
or

k < 25th  3.2 1.7 33.1 58.5 1.6 13.3 75.7 0.4 5.5 

< 50th  5.3 2.8 26.3 56.6 2.1 11.3 66.5 0.8 8.3 

< 75th  5.9 4.2 19.7 55.1 2.0 6.5 75.1 0.7 3.9 

≥ 75th  3.9 5.4 22.0 53.5 2.3 8.2 77.7 0.9 3.4 

Table 15: TNC, Personal Automobile, and Transit Mode Shares (%) by Income 
Percentile and Vehicle Ownership 

From lowest vehicle ownership levels (no vehicles) to highest vehicle ownership 

levels (vehicle-abundant households where vehicles are equal to or outnumber driver’s 

license holders), automobility (as measured by automobile mode choice) increases and 

transit ridership decreases. The relationship between automobility and income is more 

complex; automobility generally decreases with income for zero-vehicle or vehicle-

constrained (fewer vehicles than there are drivers) households and generally increases with 

income for vehicle-abundant households. This could be explained by household residence 

or travel preferences, as those who live in denser areas may also choose to have fewer 

vehicles due to better quality transit service and pedestrian networks, or those who prefer 

to own fewer vehicles also prefer to drive less. TNC use decreases as household vehicles 

increase, but is constant with respect to income among zero-vehicle and vehicle-abundant 

travelers while increasing with income among vehicle-constrained travelers. Finally, 

transit ridership to work generally decreases with respect to vehicle ownership levels and 

with respect to income.  
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For non-work trips, similar trends arise. Automobility increases with vehicle 

ownership and with income for zero-vehicle and vehicle-abundant households, and 

decreases with income for vehicle-constrained households. TNC use decreases with 

vehicle ownership but increases with income. Transit use decreases with vehicle ownership 

and income.  

Another measure of transportation need that can be used to assess the equity of 

policy outcomes is combined housing and transportation affordability. Measuring their 

affordability together accounts for the possibility that lower living costs are associated with 

higher transportation costs or vice versa. Given Seattle’s housing affordability crisis, with 

residents being forced to choose between residential location and travel options, this 

provides a more comprehensive measure of transportation need than transportation 

affordability alone. Those who reside in neighborhoods of low housing and transportation 

affordability are considered to display the highest need for access to affordable 

transportation, particularly multimodal options. The Center for Neighborhood Technology 

(CNT, 2017) developed a measure that combines average housing costs, average 

transportation costs, and average household incomes to assess the combined proportion of 

income that households spend on housing and transportation.  
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Figure 7: Average Percent of Income Spent on Housing and Transportation Combined by 
Census Tract 

 
 Figure 7 depicts the variation in housing and transportation affordability across 

the study area. Generally, areas where residents spend the least on household and 

transportation proportional to their income are located in Seattle. East of Seattle, such as 

in Bellevue and Redmond, housing and transportation affordability decreases. Even 

further east in Greater King County, housing and transportation affordability is the 
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lowest, as residents of these census tracts on average spend the highest proportion of their 

incomes on housing and transportation.  

 

Table 16: Travel Mode Shares (%) by Housing and Transportation Costs as Percent of 
Income for the Average Census Tract Household 

As housing and transportation affordability increases, automobile mode share 

decreases and TNC, transit, and active mode shares increase. This may be because 

locations with quality transit services and denser, more walkable neighborhoods are 

becoming increasingly attractive within the real estate market and attracting higher-income 

residents. Because these neighborhoods’ residents are also higher income, they are more 

likely to experience higher levels of housing and transportation affordability relative to 

their income. Those who spend the most of their income on housing and transportation are 

also more car-dependent. This could motivate the expansion of transit services in those 

neighborhoods. Automobile use is usually more expensive than transit ridership, so 

improving transit access and service could alleviate affordability issues for those with the 

most constrained budgets. However, it is unclear whether it is by choice or by necessity 

that these lower income households live in areas with low transit access; it is possible that 

   Mode Share 
   Auto TNC Transit Active 

Population-weighted 
Percentile of Housing + 

Transportation 
Affordability 

(<25th is least affordable) 

W
or

k 

< 25th  71.9 0.7 20.5 6.9 

< 50th  62.3 0.8 26.4 10.5 

< 75th  56.5 1.1 27.1 15.3 

≥ 75th  35.6 1.9 35.6 26.9 
N

on
-W

or
k < 25th  91.7 0.5 4.3 3.5 

< 50th  85.8 1.0 5.1 8.2 

< 75th  77.5 1.2 7.3 14.0 

≥ 75th  55.3 2.8 10.5 31.5 
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they are automobile-oriented by choice and transit improvements in their area would not 

inspire them to change modes.  

CNT also estimates annual average household greenhouse gas emissions from 

automobile use in metric tons. Segmenting based on transportation emissions in their 

neighborhood reveals the travel behaviors of those who emit the most and the least. This 

implies where transportation improvements may be most effective at reducing automobile 

use, therefore advancing climate goals. This analysis prioritizes policy solutions which 

encourage mode shift away from automobile use in high-emitting neighborhoods. 

 

 

Figure 8: Annual Greenhouse Gas Emissions due to Automobile Use by Census Tract 
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The census tracts in the study area which emit the least are concentrated within 

Seattle, Redmond, and Bellevue, while census tracts which emit the most are primarily in 

eastern King County. This is likely highly correlated with where transit service is available 

in the region, where dense urban forms encourage walking and bicycling for shorter trips, 

and where higher income residents can afford to live closer to their places of employment 

if they so choose. 
 

Table 17: Travel Mode Shares (%) by Annual Greenhouse Gas Emissions for Average 
Census Tract Household 

Automobile mode shares are highest and TNC, transit, and active mode shares 

lowest in the highest-emitting neighborhoods. This corroborates that significant 

transportation greenhouse gas reductions in the region can be achieved by reducing the 

automobile use of households that reside in the highest-emitting neighborhoods. Lower-

emitting neighborhoods are also associated with higher TNC use. This aligns with the 

various studies that have suggested that TNCs occupy similar markets as transit. Here it is 

unclear whether the popularity of ridesourcing in these areas is a consequence of or enables 

reduced automobile dependency and more environmentally sustainable lifestyles. 

   Mode Share 

   Auto TNC Transit Active 

Population-weighted 
Percentile of Annual 

Greenhouse Gas 
Emissions  

(<25th percentile is least 
emitting) 

W
or

k 

< 25th  25.3 2.4 36.8 35.5 

< 50th  45.5 1.7 37.5 15.3 

< 75th  55.4 1.1 31.6 11.9 

≥ 75th  70.3 0.6 22.5 6.6 

N
on

-W
or

k < 25th  36.8 3.1 10.7 49.4 

< 50th  63.5 1.2 10.1 25.2 

< 75th  65.5 0.7 7.9 25.9 

≥ 75th  85.5 0.3 4.4 9.9 
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Current conditions in the Greater Seattle region do not currently meet policy goals 

in congestion management, equity, climate action, and multimodal system expansion. 

Center City in Seattle, Outer Seattle, and greater King County all exhibit tremendous peaks 

in automobile travel demand during commute hours, which contributes to the severe traffic 

congestion for which the region is known. Transportation-disadvantaged individuals who 

are either lower-income, lack private car access, or both have low automobility are the most 

likely groups to use ridesourcing and transit for both work and non-work travel, which 

suggests a divide in access and mobility in the region based on one’s access to a vehicle. 

Neighborhoods where housing and transportation affordability is the lowest display the 

highest level of automobile use, implying that high transportation costs may be driven by 

lack of available transit options, an outcome that is especially concerning for low-income 

residents. Finally, the average greenhouse gas emissions by neighborhood varies 

dramatically throughout the region, with households located near Seattle emitting the least 

but households outside Seattle emitting four times as much.  

ALTERNATIVES ANALYSIS 

To determine whether cordon pricing in Center City Seattle can help achieve local 

and regional strategic goals, and if so, which implementation scenario does so best, we 

consider two cordon pricing alternatives relative to current conditions. Both scenarios 

assume a $5 cordon fee to enter Center City by all private automobile and ridesource trips.  

In the first scenario, revenue from cordon pricing is used to invest primarily in 

congestion mitigation in the Center City, which leads to reduced congestion and increased 

travel speeds for both automobiles and transit in Center City and increased travel speeds in 

Outer Seattle. This alternative would be realized if Seattle used the revenue from the cordon 

pricing to improve transit services and to implement a full suite of congestion mitigation 
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measures such as investments in incident management, work zone management, planned 

special events traffic management, improved traveler information, and advanced adaptive 

signal systems within Seattle city limits. 

In the second scenario, revenue from cordon pricing in Center City is invested 

throughout King County, emphasizing transit service expansion throughout King County 

and Outer Seattle. This alternative is possible if significant revenue is spent on Sound 

Transit and King County Metro service improvements and expansions so that 

neighborhoods previously lacking transit service or neighborhoods with low frequency 

service experience increased spatial and temporal transit supply or access. 

Both of these scenarios can be modeled within the mode choice modeling 

framework by altering travel costs and travel times for specific trips and specific modes. I 

make normative assumptions about how cordon pricing, congestion relief strategies, and 

transit investments may alter travel times in different locations and at different times of 

day. These are informed by observed travel speed reductions in previous implementations 

of cordon pricing in London, Stockholm, and Singapore. For reference, in London cordon 

pricing led to a 30 percent increase in average travel speed, in Stockholm traffic delays 

reduced between 30 to 50 percent, and in downtown Singapore vehicle speed increased by 

30 percent (Tri-State Transportation Council, 2018). In the summary table of each 

alternative below, “auto” applies to the drive alone, shared ride, and ridesource modes. 
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Table 18: Summary of Model Level-of-Service Adjustments 

It is implicit that both scenarios will reduce travel times relative to current 

conditions based on previous cordon pricing traffic impacts in London, Stockholm, and 

Singapore. Scenario 1: Seattle-Centric Investment provides higher travel time savings for 

private automobile modes within Center City relative to Scenario 2: Regional Transit 

Expansion. However, Scenario 2 provides higher travel time savings for transit across the 

region relative to Scenario 1. 

Applying adjustments in level-of-service variables relative to current conditions 

within the mode choice model produces new mode share estimates. The following sections 

present the percent change in trips or mode shares relative to current conditions for each 

scenario. 

  Alternatives 

 
 

Scenario 1:  
Seattle-Centric 

Investment 

Scenario 2:  
Regional Transit 

Expansion 

Level-of-
Service 

Adjustments 
Relative to 

Current 
Conditions 

Auto Travel Cost +$5 +$5 
Auto Travel Time in Center City (peak) −30% −15% 

Transit Travel Time in Center City (peak) −30% −45% 
Auto Travel Time in Center City (non-peak) −5% −5% 

Transit Travel Time in Center City (non-peak) −5% −25% 
Auto Travel Time in Seattle (peak) −5% -  

Transit Travel Time in Seattle (peak) −5% −45% 
Auto Travel Time in Seattle (non-peak) −5% -  

Transit Travel Time in Seattle (non-peak) −5% −25% 
Auto Travel Time in King County (peak) -  -  

Transit Travel Time in King County (peak) -  −45% 
Car Travel Time in King County (non-peak) -  -  

Transit Travel Time in King County (non-peak) -  −25% 
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Scenario 1: Seattle-Centric Investment 

The first strategic goal under consideration is congestion mitigation, for which 

impact is measured by the change in automobile trips at various locations and times of day. 

The change in trip volumes is estimated by the percent change in aggregate drive alone, 

shared ride, and ridesource mode share. 

 
    Time of Day  

 
 

 Non-peak AM Peak 
(6AM – 9AM) 

PM Peak 
(3PM – 6PM) 

L
oc

at
io

n W
or

k 

Center City (Seattle) -24.0 -28.9 -28.4 

Outer Seattle -8.1 -11.2 -12.9 

King County 5.4 -3.6 -4.0 

N
on

-W
or

k Center City (Seattle) -9.8 -6.2 -6.9 

Outer Seattle -0.8 -0.4 -0.4 

King County -1.7 0.1 0.2 

Table 19: Percent Change in Daily Automobile Trips by Time of Day and Location 

The models predict that peak hour work trips will be more sensitive to the cordon 

price than non-peak hour work trips in Center City and Outer Seattle, while the reverse is 

true in King County. Automobile work trips may increase in King County because travel 

times improve for driving modes but not for transit; therefore, the cordon price may 

actually slightly worsen regional congestion under this scenario. Non-work trips are less 

sensitive than work-trips to the price increase, and non-peak non-work trips are less 

sensitive to the cordon price than peak hour trips. 

The model predicts a 12% trip reduction, or 84,000 trips. The model predicts that 

there will be 667,000 daily automobile trips into Center City. Based on the PSRC trip 

tables, 88% of trips in the cordon zone are generated from outside the cordon zone itself, 
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so we expect that 88% of the 667,000 trips will pay the $5 fee. It is estimated that the 

cordon fee will generate $1,071,202,000 in revenue per year. 

The second and third strategic goals, expanded multimodal options and equity, are 

evaluated simultaneously by estimating how travelers’ mode choices change at different 

income and vehicle ownership levels.   

 
   Vehicle Ownership 
   No Vehicles Vehicle-Constrained Vehicle-Abundant 

   Auto TNC Transit Auto TNC Transit Auto TNC Transit 

In
co

m
e 

P
er

ce
nt

ile
 

W
or

k 

< 25th  -20.9 -22.3 0.2 -15.2 -26.2 7.5 -7.0 -16.2 5.6 

< 50th  -32.5 -36.7 0.0 -5.4 -14.7 4.9 -9.9 -21.6 7.6 

< 75th  -28.6 -35.6 0.7 -15.6 -28.4 4.8 -8.7 -24.0 7.4 

≥ 75th  -16.7 -35.1 0.4 -16.0 -26.7 3.7 -8.5 -24.1 6.7 

N
on

-W
or

k < 25th  -20.0 -30.6 0.4 -7.2 -13.3 6.7 -1.1 -5.3 2.9 

< 50th  -16.1 -17.9 0.7 -3.1 -4.0 2.0 -2.2 -7.8 1.3 

< 75th  -12.5 -23.9 0.9 -4.7 -8.9 9.0 -1.7 -5.0 2.1 

≥ 75th  -14.4 -32.0 -0.1 -4.1 -14.8 1.8 -1.2 -7.0 0.3 

Table 20: Percent Change in TNC, Personal Automobile, and Transit Mode Shares 
(%) by Income Percentile and Vehicle Ownership 

Scenario 1 reduces the use of car-based modes, but with only modest increases in 

transit use. This may be because people who shift are more likely to shift to active modes 

like walking and biking in the absence of transit improvement. The model predicts that 

transit use increases the most among those from vehicle-constrained and vehicle-abundant 

households, likely because travelers from zero-vehicle households already have high levels 

of transit use. Additionally, the model predicts that higher income travelers increase their 

use of transit less than lower income travelers. This is likely because the cordon price is 

more cost-prohibitive for lower-income travelers. Scenario 1 increases transit use most 
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among those with already high transportation need, but by making driving even less 

affordable rather than by making transit more accessible. TNC use decreases the most for 

those in zero- and low-vehicle households, and the most for higher-income travelers. 

Therefore, the shared mobility equity impacts of Scenario 1 are mixed, as those who are 

already disadvantaged by lack of vehicle access reduce their TNC use the most, whereas 

those who are disadvantaged in terms of low income are expected to reduce their TNC use 

the least. 

Segmenting populations by varying housing and transportation affordability also 

provides a look into both multimodal behavior and equity. 
 

Table 21: Percent Change in Travel Mode Shares (%) by Housing and Transportation 
Costs as Percent of Income for the Average Census Tract Household 

Those who reside in the least affordable neighborhoods reduce their automobile use 

and TNC use the least. Those from the least affordable neighborhoods increase their transit 

use and active travel for work trips, but reduce their transit use and active travel for non-

work trips. This is because those in the least affordable neighborhoods have high 

automobile mode share and low transit mode share, so reductions in automobile use imply 

small percent changes and increases in transit mode share imply high percent changes 

   Mode Share 

   Auto TNC Transit Active 

Population-weighted 
Percentile of Housing + 

Transportation 
Affordability 

(<25th is least affordable) 

W
or

k 

< 25th  -5.1 -17.2 16.9 4.8 

< 50th  -8.5 -22.4 17.9 6.9 

< 75th  -7.4 -22.1 14.3 3.8 

≥ 75th  -14.4 -30.9 12.6 4.5 

N
on

-W
or

k < 25th  0.0 0.5 -0.1 -0.3 

< 50th  -0.1 -1.5 -0.2 1.3 

< 75th  -0.6 -7.3 0.6 3.7 

≥ 75th  -3.5 -13.7 1.9 6.7 
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respectively. Scenario 1 increases multimodality, particularly for work trips and towards 

transit use, but it reduces TNC and shared mobility use, especially among those who 

currently use it the most. 

The final strategic goal under consideration, greenhouse gas emissions reduction, 

can be evaluated using mode share impacts for different segments of average census tract 

emissions. 
 

Table 22: Percent Change in Travel Mode Shares (%) by Annual Greenhouse Gas 
Emissions for Average Census Tract Household 

Scenario 1 generally reduces automobile use and increases transit use, especially 

for work trips, but the most dramatic improvements occur amongst travelers who reside in 

the parts of the region that are already the lowest-emitting. This is likely because these 

areas already have robust transit service, so these travelers are most likely to be willing to 

shift trips to transit under the implementation of a cordon price. Therefore, this scenario 

does reduce transportation sector greenhouse gas emissions relative to current conditions, 

but these reductions are concentrated in neighborhoods which are already relatively low 

carbon. 

   Mode Share 

   Auto TNC Transit Active 

Population-weighted 
Percentile of Annual 

Greenhouse Gas 
Emissions  

(<25th percentile is least 
emitting) 

W
or

k 

< 25th  -19.6 -33.1 11.5 4.3 

< 50th  -11.2 -19.4 12.4 5.0 

< 75th  -6.4 -12.2 10.4 3.3 

≥ 75th  -5.0 -15.3 14.8 4.2 

N
on

-W
or

k < 25th  -7.9 -21.5 2.5 6.7 

< 50th  -1.3 -4.2 1.1 3.0 

< 75th  -0.6 -2.8 0.9 1.3 

≥ 75th  0.1 0.1 -1.2 0.0 
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Scenario 2: Regional Transit Expansion 

Scenario 2 is evaluated relative to current conditions under the same framework as 

Scenario 1. The first strategic goal under consideration is traffic congestion mitigation, for 

which improvement is measured by the percent change in automobile trip volumes. 
 

    Time of Day  

 
 

 Non-peak AM Peak 
(6AM – 9AM) 

PM Peak 
(3PM – 6PM) 

L
oc

at
io

n W
or

k 

Center City (Seattle) -26.2 -32.1 -31.6 

Outer Seattle -10.0 -16.0 -17.6 

King County 4.9 -7.5 -7.4 

N
on

-W
or

k Center City (Seattle) -9.9 -8.4 -10.2 

Outer Seattle -0.9 -0.7 -0.8 

King County -1.7 0.0 0.0 

Table 23: Percent Change in Daily Automobile Trips by Time of Day and Location 

Trips in Center City are predicted to decrease significantly, particularly during the 

AM and PM peaks. Automobile trips in Outer Seattle and King County generally decrease, 

except in King County during the non-peak period. The reduction in automobile work trips 

in Outer Seattle and King County is likely driven by improved transit service that enables 

travelers throughout the region to shift away from driving modes. 

Scenario 2 is expected to reduce vehicle traffic in Center City by 13%, which 

similar to the reduction predicted under Scenario 1. This is achieved even though travel 

speeds in Center City improve less, because more of the traffic reduction is due to mode 

shifts by travelers outside Seattle. This suggests higher VMT reductions in Scenario 2 

relative to Scenario 1 because the eliminated driving trips are longer under Scenario 2. 
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With an expected 656,000 daily trips into or within the cordon zone, Scenario 2 will 

generate $1,053,536,000 in annual revenue. 

The second and third strategic goals, expanded multimodal options and equity, are 

evaluated simultaneously by examining how travelers’ mode choices change by different 

income and vehicle ownership levels.   

 
   Vehicle Ownership 
   No Vehicles Vehicle-Constrained Vehicle-Abundant 

   Auto TNC Transit Auto TNC Transit Auto TNC Transit 

In
co

m
e 

P
er

ce
nt

ile
 

W
or

k 

< 25th  -24.4 -24.2 5.9 -17.9 -28.6 17.7 -9.6 -17.8 25.7 

< 50th  -36.8 -39.7 5.6 -9.5 -21.5 17.0 -13.0 -24.7 26.5 

< 75th  -33.4 -37.9 6.1 -19.8 -31.5 18.5 -11.4 -26.6 27.1 

≥ 75th  -21.4 -38.1 5.6 -19.8 -29.7 18.5 -10.8 -26.6 28.3 

N
on

-W
or

k < 25th  -23.8 -32.7 0.8 -7.6 -14.2 8.2 -1.4 -5.8 5.1 

< 50th  -18.4 -20.1 1.3 -3.3 -4.3 2.7 -2.6 -9.1 4.0 

< 75th  -15.1 -28.3 1.8 -5.2 -9.5 11.0 -2.0 -7.2 5.2 

≥ 75th  -19.8 -34.4 0.9 -4.8 -16.0 4.8 -1.4 -8.9 4.2 

Table 24: Percent Change in TNC, Personal Automobile, and Transit Mode Shares 
(%) by Income Percentile and Vehicle Ownership 

Transit use increases the most for travelers from vehicle-abundant households, 

while TNC use decreases the most for travelers from vehicle-constrained households. All 

households reduce their automobile use. For travelers from vehicle-abundant and vehicle-

constrained households, those from lower income households experience lower shifts away 

from automobile use than those from higher income households. This has positive equity 

implications for both dimensions of transportation need, vehicle access and income 

because there is less evidence that low-income or high-need travelers are 

disproportionately shifted away from driving due to the cordon fee. For multimodality it 
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means that choice riders are experiencing service improvements that incentivize them to 

use transit more. 

Population segments of varying housing and transportation affordability can also 

reveal the interplay between multimodal behavior and equity. 
 

Table 25: Percent Change in Travel Mode Shares (%) by Housing and Transportation 
Costs as Percent of Income for the Average Census Tract Household 

Those who live in the least affordable areas increase their transit use the most and 

decrease their TNC use the least. Where affordability is highest and transit use is already 

high, automobile use decreases the most proportionally. Therefore, the model predicts that 

the regional transit expansion under Scenario 2 will provide benefit to both people of 

highest and lowest multimodal transportation need, but especially those with high need.  

The final strategic goal under consideration, greenhouse gas emissions reduction, 

can be evaluated using mode share impacts for different spatial segments of average census 

tract emissions. 
  

   Mode Share 

   Auto TNC Transit Active 

Population-weighted 
Percentile of Housing + 

Transportation 
Affordability 

(<25th is least affordable) 

W
or

k 
< 25th  -7.1 -19.9 24.4 3.2 

< 50th  -11.0 -25.6 24.9 4.6 

< 75th  -9.9 -25.0 20.3 2.4 

≥ 75th  -22.0 -33.7 17.3 3.1 

N
on

-W
or

k < 25th  -0.2 0.2 3.4 0.3 

< 50th  -0.3 -4.3 2.2 1.1 

< 75th  -1.1 -14.8 2.6 2.5 

≥ 75th  -9.5 -19.7 3.7 6.2 
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Table 26: Percent Change in Travel Mode Shares (%) by Annual Greenhouse Gas 
Emissions for Average Census Tract Household 

The model predicts that transit use of households from the highest emitting 

neighborhoods will increase more than that of households from lower emitting 

neighborhoods, while reductions in automobile use and TNC use will still be concentrated 

amongst travelers from already low-emitting neighborhoods. Scenario 2, as compared to 

current conditions and Scenario 1, is expected to produce the greatest reductions in 

greenhouse gas emissions regionally because it induces the most significant mode shifts to 

transit and active modes. 

EVALUATING TRADE-OFFS 

Summarizing the outcomes of each alternative relative to current conditions by 

strategic goal enables us to compare the relative merits and trade-offs between different 

implementations of cordon pricing. The strategic goals are also organized by local (Seattle) 

strategic goals and regional (King County and Sound Transit) strategic goals.  

First, the project outcomes of both scenarios suggest that cordon pricing will be 

effective at reducing congestion and emissions in Center City. Yet this finding alone is not 

   Mode Share 

   Auto TNC Transit Active 

Population-weighted 
Percentile of Annual 

Greenhouse Gas 
Emissions  

(<25th percentile is least 
emitting) 

W
or

k 

< 25th  -23.2 -36.3 15.5 3.3 

< 50th  -16.3 -27.8 20.4 3.3 

< 75th  -9.9 -19.9 19.2 1.7 

≥ 75th  -7.5 -22.3 25.3 2.4 

N
on

-W
or

k < 25th  -8.9 -23.7 4.3 7.1 

< 50th  -1.7 -6.2 2.9 3.3 

< 75th  -0.8 -3.8 2.6 1.3 

≥ 75th  0.0 0.0 1.0 -0.1 



` 109 

sufficient to motivate its implementation, as it is accompanied by other community 

concerns such as equity and access. Therefore, we look to impacts along other strategic 

goals in order to determine whether cordon pricing in Center City Seattle is in alignment 

with the entire suite of programmatic objectives earlier defined. 
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Table 27: Summary of Cordon Pricing Alternatives Compared to Current Conditions 

Although the models predict similar overall automobile trip reductions in Center 

City under both Scenario 1 and Scenario 2, equity implications vary. Under Scenario 1, in 

   Alternatives 

 
 

 Current Conditions 
Scenario 1:  

Seattle-Centric 
Investment 

Scenario 2:  
Regional Transit 

Expansion 

Strategic 
Goal 

L
oc

al
 

Congestion 
Relief 

750,000 daily 
vehicular trips in/to 

Center City 

12% vehicular trip 
reduction in Center 

City 

13% vehicular trip 
reduction in Center 

City 

Equity and 
Multimodality 

Low-income and 
zero-vehicle 

travelers exhibit 
highest transit 

ridership, while 
low-affordability 

areas exhibit 
automobile 
dependence 

Low-income 
travelers increase 
transit use due to 

relative cost 
increase of driving. 

Shared 
mobility/TNC use 

decreases, 
especially for those 
who already lack 

vehicle access 

Both choice riders 
and captive riders 

increase transit use: 
those from low 

affordability 
neighborhoods 

increase transit use 
the most. TNC use 
decreases the most 

amongst choice 
transit riders 

Emissions 
Reductions 

25% of residents 
reside in tracts with 
low-carbon travel 
behaviors like low 
automobile mode 

share and high 
transit and active 

mode share 

5% Greenhouse gas 
emissions 

reductions due to 
mode shifts from 

driving in highest-
emitting 

neighborhoods 

7.5% Greenhouse 
gas emissions 

reductions due to 
mode shifts from 

driving in highest-
emitting 

neighborhoods 

R
eg

io
na

l 

Transit Access 
and Expansion 

Transit mode share 
in Greater King 

County ranges from 
22% for work trips 
to 4% for non-work 

trips 

Transit mode share 
in Greater King 

County increases 
14% for work trips 
but decreases 1% 
for non-work trips 

Transit mode share 
in Greater King 

County increases 
25% for work trips 
and increases 1% 
for non-work trips 



` 111 

absence of regional transit expansion but significantly improved mobility within Seattle, 

mode shifts away from driving are largely induced by the relative unaffordability of driving 

once a cordon fee has been imposed. This is evidenced by a disproportional shift to transit 

exhibited by low-income travelers and travelers without personal vehicle access, two 

groups that are most likely to have highest need for multimodal transportation access. 

Therefore, even though multimodality increases under this scenario it is largely driven by 

cost disincentives, which does not truly imply enhanced multimodal travel options relative 

to current conditions. However, under Scenario 2 both choice and captive riders increase 

their transit use, which implies that regional transit expansion could induce vehicular trip 

reductions that are more fairly distributed along populations of varying transportation 

advantage. This implies that Scenario 2 enhances both equity goals and multimodal travel 

options more than Scenario 1 does, as well as relative to current conditions. 

For both alternatives, greenhouse gas emissions reductions are induced by the 

introduction of cordon pricing across the region due to mode shift away from automobile-

based modes including driving alone, shared ride, and ridesourcing. However, reductions 

associated with either alternative are concentrated in households that already reside in low-

emitting areas, likely due to the availability of transit options and dense, walkable 

environments. Still, Scenario 2 produces more mode shifts away from automobile in the 

neighborhoods where emissions reductions have the highest impact and trips are the 

longest than Scenario 1 does - 7.5 percent as compared to 5 percent reduction in greenhouse 

gas emissions due to automobile travel. Therefore, although both scenarios advance 

greenhouse gas emissions reductions strategic goals, Scenario 2 is more effective than 

Scenario 1. 

Finally, regional transit access is bolstered by increases in regional transit ridership. 

Although transit ridership in and into Seattle is high, there are still service gaps and low 
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ridership areas in Greater King County. Both scenarios increase transit mode share for 

work trips as compared to current conditions, but Scenario 1 actually decreases transit 

ridership for non-work trips while Scenario 2 increases transit ridership for non-work trips. 

This is likely because without investment in regional transit service in Scenario 1, the 

improved traffic congestion in Center City Seattle and Outer Seattle actually attract more 

vehicle trips even though there is a new fee on such trips. Conversely, Scenario 2 increases 

transit ridership. Therefore, increased transit investment in the region best improves transit 

access and increases transit mode share. 

SUMMARY 

Both Scenario 1: Seattle-Center Investment and Scenario 2: Regional Transit 

Expansion offer congestion mitigation and greenhouse gas emissions reductions, but 

Scenario 2 best advances strategic goals related to transportation equity, multimodal travel 

options and expanded regional transit supply. Cordon pricing will mitigate several of the 

transportation and social challenges in Seattle, and can raise over $1 billion in revenue 

annually. Investment of that revenue in regional transit service produces outcomes that 

advance congestion relief, equity, multimodal travel options and climate goals in Seattle as 

well as outcomes that enhance regional transit service for Sound Transit and King County 

Metro. Cordon pricing can be an instrument for charging drivers for the negative 

externalities they produce and the resulting revenue can be redistributed to enhance 

transportation equity in the region. Ultimately, the revenue will provide benefits to both 

those who pay (reduced travel times in Center City) and those who are disadvantaged 

(improve transit access and service). Based on my findings, diverse populations and policy 

goals are best served when revenue is invested in transit service expansion throughout the 

region. 
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Chapter 6: Conclusion 

CHALLENGES AND OPPORTUNITIES 

Economic and social trends drive the confluence of transportation issues in the 

Greater Seattle region. At the same time, worsening traffic congestion both on highways 

and city streets stifle economic growth and threatening quality of life. Transportation 

funding is becoming increasingly scarce as the revenue from the gas tax declines. A 

housing affordability crisis prevents many people from living near work, recreation, and 

other opportunities that make their lives meaningful. Finally, transportation sector 

greenhouse gas emissions are the single largest factor standing between Seattle and its zero-

emissions goals.  

State, regional, and local agencies have adopted various strategies and plans in 

order to lay the groundwork towards overcoming these issues, but gaps remain. 

Washington State Department of Transportation (WSDOT) has begun operating managed 

lanes or dynamically-priced high occupancy toll lanes on several miles of highway 

throughout the region to improve traffic speed and travel time reliability. However, cities 

in the Seattle region continue to climb in the nationwide ranks for cities with the worst 

traffic congestion. Furthermore, with the coming “Seattle Squeeze,” Center City Seattle 

anticipates perhaps the worst traffic congestion its history in the next 5 years due to 

numerous planned lane closures.  

The Washington state legislature approved gas tax increases of roughly 7 and 4 

cents per gallon in 2015 and 2016, respectively, while electric vehicle drivers must pay 

$150 a year for vehicle registration, nearly $100 more than owners of conventional vehicles 

do. The state also concluded a Road Usage Charge pilot in January 2019 to investigate 

whether a road usage charge could serve as a viable long-term funding source in lieu of the 
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gas tax. These initiatives demonstrate that policymakers in the state are searching for new 

sustainable transportation funding sources, but it is unclear how these statewide funding 

streams might translate to implications for transportation funding regionally and locally.  

The Seattle area spends more per capita on transit than any other region in the 

country, and the area is one of few American metropolitans where transit ridership is 

increasing. King County Metro has published a long-range plan with ambitious expansion 

goals. In 2016, voters passed Sound Transit 3, a $53.8 billion ballot measure to add 62 

additional miles of light rail throughout the region (Gutman, 2017). However, King County 

still calls out significant anticipated funding gaps in their plans, with a $4 billion shortfall 

by 2025 and a $7.8 billion shortfall by 2040. Other multimodal initiatives acknowledge the 

importance of incorporating emerging transportation modes and services; Seattle 

Department of Transportation (SDOT) published a New Mobility Playbook that outlines 

strategies for public-private collaboration. However, numerous city-proposed legislation 

to regulate TNCs in the last year have been met with strong opposition by those companies.  

Seattle has a strong commitment to social and racial justice, and instituted a 

Transportation Equity Program in 2017 that is funded by the Seattle Transportation Benefit 

District. The program has enabled SDOT, the Seattle Housing Authority, and King County 

Metro to provide unlimited ORCA cards to 1,500 low-income Seattle residents and other 

equity-oriented programs (Chiachiere, 2019). However, the tax package that created the 

Transportation Benefit District is due to expire in 2020, and the last time King County 

attempted to pass a similar Transportation Benefit District the measure failed at the ballot 

box (Johnson, 2019). The aforementioned transit and equity programs are critical 

components of Seattle’s, King County’s and Sound Transit’s strategic visions, but their 

successes hinge upon uncertain funding conditions. 
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To address greenhouse gas emissions, Seattle renewed commitment to its climate 

action plan in 2018. In it, the first near-term climate action priority for the transportation 

sector is congestion pricing. It announces that Seattle “will develop and release a strategy 

to address congestion and transportation emissions through pricing, coupled with 

investments in expanded transit and electrification in underserved communities” (City of 

Seattle, 2018).  

Cordon pricing is receiving attention in numerous U.S. cities, and none have yet 

found an approach that survived legislative or referendum processes. The transportation 

sector needs to prove to statewide, regional, and local policymakers and constituents that 

congestion pricing would be worth the dramatic shift in how people pay for and perceive 

transportation options. Furthermore, policymakers and the transportation sector will need 

to iron out details like revenue allocation and exemptions and pricing structures that 

balance a variety of sometimes contradictory strategic goals. Despite the complex process, 

the convergence of priority problems, viable policy solutions, and political interest presents 

a rare window of opportunity to translate policy ideas into action. Therefore, Seattle should 

evaluate whether congestion pricing with a geographically and programmatically targeted 

allocation of revenue can gain traction in for the city and the region. Policymakers desire 

a cordon pricing strategy that can generate positive impacts beyond congestion and 

emissions; with the right strategies in place, this could be an opportunity for Seattle to 

address longstanding equity challenges and for regional transit providers to secure 

sustainable new funding sources. This thesis seeks to provide an empirical argument for 

cordon pricing and the use of its revenue. 
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DEVELOPING THE CASE FOR CORDON PRICING IN SEATTLE 

Many challenges accompany the task of composing a policy that is unified across 

numerous strategic goals. Seattle’s early interest in congestion pricing has sparked a lively 

public discourse. Many opinions have already weighed in on the prospect of downtown 

congestion pricing, with a mix of usual and unexpected voices. A Washington state 

legislator introduced a new bill in early 2019 that would prevent local jurisdictions from 

implementing congestion pricing (Robertson, 2019). On the other hand, both TNCs and 

transportation advocates have spoken in favor of the idea, though perhaps with differing 

motivations. TNCs prefer congestion pricing as an alternative to proposals to levy 

surcharges only on TNC trips (Nickelsburg, 2019). In general, transportation advocates 

support the further investigation of congestion pricing because it leverages economic 

principles that demonstrate to drivers the true cost of their choice, including the external 

costs of congestion, pollution, and crashes. 

A complex and nuanced policy debate is sure to come if the city continues to pursue 

cordon pricing as a policy solution. The PSRC’s 2010 tolling study identified barriers that 

Seattle and the region will have to address in order to make the case for congestion pricing. 

Fairness and how the revenue is spent will be prominent issue. However, evaluating 

fairness is complicated because travelers have varying preferences and attributes and 

because measuring transportation need and equity is nuanced. Distributing road pricing 

revenue could require an adjustment or overhaul of the entire regional transportation 

funding landscape, which would spark further equity discussions. Finally, the current 

alternative options to driving are limited, so some people may have no choice but to pay 

the tolls or congestion prices. 

These thorny revenue questions around congestion pricing present both a challenge 

and an opportunity when we elevate the discussion to a regionwide perspective. Currently, 
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Sound Transit and King County Metro source 66% and 52% of their revenue from sales 

taxes, respectively (Sound Transit, 2018; Metro Transit, 2018). The sales tax is a common 

fundraising mechanism for local transit programs across the country because of its political 

feasibility and ability to generate large amounts of revenue, but from a tax policy 

perspective it has drawbacks. The sales tax is generally considered regressive because 

people with the lowest incomes pay the highest proportion of their income in sales taxes, 

even when exemptions are in place for essential goods. This is a serious concern because 

Washington state is has the most regressive tax structure in the nation and Seattle has the 

most regressive tax structure in the state (Institute of Taxation and Economic Policy, 2018; 

Caruchet, 2018). The sales tax is in not transparent when used to fund transit, because there 

is only weak tax-benefit linkage between those who pay the sales tax and the benefits 

received from transit. The sales tax is also difficult for taxpayers to account for, which 

obscures the true cost of funding transit programs from taxpayers. One advantage of the 

sales tax is that it collects revenue from people who travel from outside of the jurisdiction; 

traffic congestion and its negative externalities are mostly produced by drivers who come 

into or pass through the region, and the sales tax can recoup some of the cost of hosting 

these visitors in a way that a property tax cannot. Yet, a cordon toll achieves this effect as 

well, by charging every person who drives into Center City regardless of where they live 

or came from. And while the cordon toll is arguably regressive as well, with relatively 

higher cost to low-income than high-income travelers, it is more straightforward and 

transparent to build in exemptions or reduced fees that can ameliorate its regressivity. 

DEMONSTRATING THE BENEFITS 

Whether or not cordon pricing will be possible in Seattle depends up several 

political factors. The state can play a large role in either advancing or blocking cordon 
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pricing proposals, and the 2019 legislative session will produce an early indication of the 

statewide political appetite for cordon pricing. Seattle voters will need to decide whether 

or not cordon pricing in Center City is right for them as well. Transportation advocacy 

groups, city and regional agencies, and elected officials can communicate the impacts and 

benefits that all the different types of travelers might experience, from drivers who will 

experience faster or more reliable travel times to transit users who will experience better 

quality or more accessible trips. This thesis evaluates the extent to which both the regional 

transportation system and individual travelers can benefit under the right congestion 

pricing formulation. These findings can motivate regional partners to join together to 

unlock the benefits of coordination.  

First, my findings suggest that cordon pricing in Center City will reduce traffic 

congestion within the cordon, with an average of 12 to 13 percent reduction in trips into, 

out of, and through Center City, and with even higher reductions during peak hours. Cordon 

pricing will generate around $1 billion in annual total revenue. King County Metro and 

Sound Transit each bring in between $1.7 to $2 billion in annual revenue through existing 

funding mechanisms; the comparative revenue potential of cordon pricing could go a long 

way in reducing these agencies’ reliance on sales tax revenue and towards financing transit 

system expansions.  

Second, two scenarios of revenue use are compared: one in which most revenue is 

concentrated on transit and roadway improvements in Seattle and one in which revenue is 

spread across the region to expand transit service. My findings suggest that the investment 

scenario that emphasizes regional transit investment produces better outcomes across 

multiple City of Seattle and regional strategic goals. For instance, under the Seattle-centric 

scenario most of the mode shift to transit is by low-income and low-vehicle travelers, likely 

only reducing the quality of their trips, whereas under the regional transit expansion 
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scenario the distribution of those who shift to transit is much more evenly dispersed, 

implying that better quality transit drives the shifts. This is telling for both strategic goals 

towards equity and increased multimodal travel options. Both strategies increase 

multimodal behavior, but one does so by imposing a high cost on driving without 

improving transit, so only those who cannot afford to drive do not. The other expands 

multimodal options for many more travelers, so though the cost of driving increases, the 

benefit and attractiveness of transit does too. The evidence also suggests that regional 

transit investment would induce more greenhouse gas emissions reductions than Seattle-

centric investment, particularly amongst households that are currently the highest emitting. 

This is primarily because households that emit the most are those that are located in areas 

with little to no transit service and which tend to travel the most due to sprawling urban 

forms. By introducing expanded transit services into these neighborhoods, even small 

mode shifts from driving to transit add up.  

Based on the suite of policy criteria that I selected based on the regional policy 

context, there is strong justification for Seattle, King County Metro, and Sound Transit to 

coordinate a congestion pricing proposal, campaign, and implementation. Together they 

can devise a plan for how revenue will be spent that will be appealing to voters and drum 

up unilateral support from elected leadership within Seattle and the region. 

IMPLICATIONS FOR FUTURE RESEARCH AND POLICY DEBATE 

My research leads into several new policy and research questions for the Greater 

Seattle region. The first emerging research opportunity concerns the specific programs that 

revenue from cordon pricing could fund to best advance equity, multimodal, and climate 

goals. The second emerging research opportunity concerns the suite of discounts, caps, and 
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exemptions that could be built into a cordon pricing scheme to best advance equity, 

multimodal, and climate goals.  

If Seattle region invests cordon pricing revenue towards transit system expansion 

and improvement, decision makers should analyze the comparative benefits of transit-

related programs and services. There are opportunities to fund the capital and operating 

costs associated with increased bus or light rail service along existing routes or strategically 

selected new ones, express transit routes, and commuter routes. The revenue could also be 

used to expand the zero-emission bus fleet and advance equity. In 2017, King County 

identified which areas in the county faced the greatest exposure to transportation sector 

emissions, poor air quality, and social exclusion, and identified where zero-emission bus 

routes would create the most positive equity impacts (Metro Transit, 2017). Other equity-

related programs could be funded by the revenue, such as subsidized or free transit passes 

or student transit passes. Other programs to be funded could be those that advance shared 

mobility and increase emerging multimodal travel options. For instance, Pierce County to 

the south of King County is piloting a partnership with Lyft to provide first and last mile 

connectivity to those who typically have no or limited access to transit (Pierce Transit, 

2019). Some revenue could even be spent on expanding public-private bikeshare or 

carshare programs, which could provide increased options to communities which currently 

have low access to shared mobility due to unfavorable markets for shared mobility 

providers. Future research could contribute to understanding the benefits and drawbacks of 

funding each of these types of programs using new cordon pricing revenue. A structured 

approach that uses empirical methods to compare these different programs would be 

instrumental in the ultimate policy design. These details that can make or break a cordon 

pricing proposal, so more research can provide an evidence-based case for a particular 

portfolio of investments using cordon pricing revenue. 



` 121 

The details of cordon pricing implementation also present some new research 

questions. For instance, Seattle may want to consider providing discounts to certain types 

of travelers, such as low-income travelers, disabled travelers, small business owners or 

employees, high-occupancy vehicles, or alternative fuel vehicle drivers. When the region's 

Transportation Futures Task Force conducted roundtable discussions to gather feedback 

about how transportation funding mechanisms might affect target populations, there was 

broad consensus that any funding mechanism, including congestion pricing, should provide 

fee reductions or complete exemptions for people with low incomes (Futures Task Force, 

2015). Analysis that accounts for the different travel behaviors of these different 

populations in determining the congestion, emissions, and equity outcomes under various 

fee structures will be instrumental in enabling policymakers to craft a data-driven and 

equitable strategy. 

Finally, we need to understand how cordon pricing will shape long-term regional 

outcomes. Key drivers of transportation behavior such as residential location, employment 

location, and vehicle ownership could change in response to cordon pricing in Center City 

Seattle, which in turn could moderate the long-term impact that the policy would have on 

congestion, emissions, and transportation revenue. Research also needs to address how 

cordon pricing will interact with land use, housing, and regional growth. This too could 

alter the expected congestion, emissions, and revenue outcomes of a cordon pricing scheme 

if economic development and real estate development shifts throughout the region as a 

result of cordon pricing. Policymakers and planners will be concerned with how these 

patterns might impact the landscape of housing and transportation affordability in the 

region and may wish to deploy tools such as transit-oriented development and affordable 

housing initiatives to shape sustainable and equitable development patterns. 
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This thesis begins the work of building a case for a cordon pricing proposal in 

Seattle that aligns the strategic goals of the City of Seattle and regional partners King 

County Metro and Sound Transit. The empirical findings can inform the early principles 

behind a proposal, such as which investment strategies benefit the most people at once. 

Agencies and policymakers can use these initial findings to guide budget negotiations and 

programmatic investments and build consensus around policy and proposal details that 

deliver outcomes that advance diverse goals and serve diverse needs.  
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