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André and Quillen introduced a (co)homology theory for augmented commutative

rings. Strickland [31] initially proposed some issues with the analogue of the abelianization

functor in the equivariant setting. These were resolved by Hill [15] who further gave the

notion of a genuine derivation and a module of Kähler differentials. We build on this endeavor

by expanding to incomplete Tambara functors, introducing the cotangent complex and its

various properties, and producing an analogue of the fundamental spectral sequence.
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Chapter 1

Introduction and Beginning Terminology

In order to introduce this subject, we will draw parallels between classical homotopy

theory and equivariant homotopy theory. Equivariant stable homotopy theory was first

created by Segal [30] and has evolved by the contributions of many mathematicians since.

One good source of notes for context is [2]. Let G be a finite group (in many instances one can

take a compact Lie group, but for simplicity we restrict to a finite group). Suppose instead

of the category of topological spaces, our interest is on the category GTop of topological

spaces along with a symmetry by G, also known as G-spaces. Then GTop has as objects the

compactly generated weak Hausdorff topological spaces with aG-action. The homomorphism

sets are the continuous maps that are equivariant, that is f(g ·x) = g ·f(x) for all g ∈ G and

x ∈ X. There are appropriate notions of a homotopy of maps and homotopy equivalences.

Additionally, there is a based version of this category GTop∗. The theory of equivariant

stable homotopy theory is the application of stable homotopy theory in this realm, which

we summarize briefly. Upon doing so, we realize the correct analogues of abelian groups

and commutative rings are Mackey functors and Tambara functors. One can then ask what

commutative algebra looks like on these new objects. André-Quillen cohomology is one such

commutative algebra construction, which is the purpose of this thesis.

A natural first question for GTop is: what are the appropriate generalizations of CW-

complexes? CW-complexes are ubiquitous as test objects and in constructions. The correct

answer is to allow attaching cells of the form (G/H ×Dn+1, G/H × Sn). That is, a G-CW

complex is a sequential colimit of spaces Xn where Xn+1 is the pushout of the following
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diagram: ∐
G/H × Sn

��

// Xn

��∐
G/H ×Dn+1 // Xn+1

Then a natural second question is: what are the appropriate generalizations for homotopy

groups of a G-space? From the definition of G-CW complexes the definition must be

πHn (X) := [G/H × Sn, X] ∼= [Sn, XH ].

So homotopy groups are indexed by subgroups of G, as well as by the natural numbers. The

following generalization of the Whitehead theorem gives us good justification that we have

the right definitions.

Proposition 1.0.1. Let f : X → Y be a map between G-spaces that induces an isomorphism

on πHn for all H ⊂ G, n ∈ N. Then f is a homotopy equivalence.

Homotopy groups have more structure. Suppose f : G/H → G/K. The map is

determined by eH 7→ gK for some g ∈ G. This requires that gHg−1 ⊂ K. This induces

f ∗ : XK → XH by the map x 7→ gx, which induces a map πKn (X)→ πHn (X). Suppose n ≥ 2.

Let OG the orbit category, the full subcategory of GTop with objects the orbits G/H. Then

π∗n : Oop
G → Ab for n ≥ 2. Any contravariant functor Oop

G → Ab is called a coefficient system.

Homotopy groups describe the coefficients of cohomology theories. Most obviously,

the obstruction classes of obstruction theory take values in homotopy groups of the tar-

get. But most directly, for a coefficient system M there is an Eilenberg-Mac Lane G-space

K(M,n) which has homotopy groups 0 except at degree n for which the homotopy groups

are M . Then a cohomology theory, the Bredon cohomology, is H̃n
G(X;M) := [X,K(M,n)]G

which was first introduced in [8]. While resembling the ordinary non-equivariant cohomology

theory, this cohomology theory is significantly more difficult to compute.

Naturally, we should be considering the generalization of spectra, as these objects

represent generalized cohomology theories. The concept of a genuine G-spectra is due to

[13]. To summarize the key point, non-equivariant prespectra are given by a sequence of
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spaces Xn with suspension maps that we write as Sm ∧ Xn → Xm+n. But equivariantly,

this construction seems a bit naive, as the sphere could include a G-action itself. Hence,

this would be a naive G-prespectrum, and a naive G-spectrum would be one satisfying the

necessary equivalence involving the loop space operator.

Let V be any G-representation. Then we could take SV , the one point compacti-

fication of V . Then we could define a genuine G-prespectrum to be a G-space X(V ) for

every finite-dimensional representation of V with maps SW ∧X(V )→ X(V ⊕W ). The ap-

propriate cohomology theory we get, instead of being Z-graded will be RO(G)-graded. For

the purposes of this introduction, we will not delve into the definitions of an RO(G)-graded

cohomology theory, a correct point-set model (symmetric or orthogonal spectra) for spectra

in order for the sphere spectrum to be commutative, or any discussion about universes in

order to interpolate between naive and genuine spectra.

However, in the category of spectra, our category of orbits has more maps. Suppose

H/K embeds into V. Then by the Pontryagin-Thom construction [33], there is a sequence

of maps

SV → T (ν)→ H/K ∧ SV

which by induction gives a map

G/H ∧ SV → G/K ∧ SV .

There is no map G/H → G/K in GTop but these maps do exist between the suspension

spectra. As a result, we must replace the orbit category with another suitable category, which

we describe in the next section, the Burnside category. Additive maps from the Burnside

category to abelian groups are called Mackey functors, and they generalize abelian groups

because the homotopy groups of genuine G-spectra are Mackey functors.

Finally, we must consider ring structures on G-spectra. Non-equivariantly, we have a

notion of E∞-operads which describes the associative and commutative relations in spectra,

and an algebra over these operads are called E∞-ring spectra. In this setting, all the E∞-

operads are homotopy equivalent, giving equivalent definitions of E∞-ring spectra. In the

equivariant setting, there are N∞-operads which give rise to N∞ ring G-spectra. N∞ operads
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are not all homotopy equivalent, but the homotopy classes are given by indexing systems

O. Just as the homotopy groups of E∞ ring spectra are commutative rings, the homotopy

groups of N∞ ring G-spectra are O-Tambara functors. N∞-opeards were first introduced

in [6] and followed up in [5]. Tambara functors were first introduced by [32], generalizing

the Even’s norm [11] in group cohomology before seeing use in equivariant stable homotopy

theory leading to [17] which resolved the Kervaire invariant 1 conjecture.

Now that we have Mackey functors and incomplete Tambara functors, our general-

izations of abelian groups and commutative rings, a natural question is how much of com-

mutative algebra can we extend to this equivariant regime? This thesis aims to do one such

construction, the André-Quillen cohomology of augmented rings.

In the 1960’s both André and Quillen [1] [27] introduced a (co)homology theory for

maps of commutative rings. These determine the obstruction theory for deformations of

rings. Many of the properties of (co)homology theories from topology have analogues in

André-Quillen (co)homology.

Since then there have been many generalizations of this (co)homology theory. One

of note is that Basterra [3] produced the theory of Topological André-Quillen homology on

commutative ring spectra and went on to show with Mandell [4] that this homology theory

is the only homology theory on commutative ring spectra.

This path was first started out by Strickland [31], who proposed some issues, partic-

ularly that the square zero extension from modules to the abelian group objects of algebras

was not essentially surjective. This issue was resolved by Hill [15] by creating the Mackey

functor objects in the appropriate algebra category. We discuss these in a later chapter. Hill

additionally created the definition of a derivation and the module of Kähler differentials.

We continue this train of thought by incorporating incomplete Tambara functors, introduc-

ing the cotangent complex and its various properties, and producing an analogue of the

fundamental spectral sequence.

1.1 Mackey Functors, (Incomplete) Tambara functors

We discuss the objects of interest in terms of polynomial categories, as in [5].
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Definition 1.1.1. Let C be a locally Cartesian closed category. Call PC the category with

objects the same as C and morphisms PC(X, Y ) the isomorphism classes of polynomials

X Soo // T // Y.

Two polynomials are isomorphic if there are isomorphisms S
∼=→ S ′ and T

∼=→ T ′ that make

the following diagram commute

S

yy

//

∼=

��

T

%%∼=

��

X Y

S ′

ee

// T ′

99

We will typically consider C to be SetG, the finite G-sets with equivariant maps.

In that case we suppress the superscript and write P. To describe the compositions of

polynomials, we give various double coset rules (pullback diagrams) and Tambara reciprocity

relations (exponential diagrams).

Definition 1.1.2. If f ∈ C(S, T ) then we give the following morphisms of PC names

Rf = [T
f← S

1→ S
1→ S]

Nf = [S
1← S

f→ T
1→ T ]

Tf = [S
1← S

1→ S
f→ T ]

which are respectively called the restriction, transfer, and norm of f .

Any homomorphism in PC can be written in the form of Th ◦ Ng ◦ Rf for some

equivariant maps f, g, h, which we call TNR-form. Composition of polynomials can be

computed by describing commutation relations that put any composition (Th ◦ Ng ◦ Rf ) ◦
(Th′ ◦Ng′ ◦Rf ′) into TNR-form. [31] is one of many good sources for these relations:

Proposition 1.1.1.

Th ◦ T ′h = Th◦h′

Ng ◦Ng′ = Tg◦g′

Rf ◦Rf ′ = Rf ′◦f

5



Proposition 1.1.2. If we have the following pullback diagram

Y ′ ×
Y
X

g′ //

f ′

��

X

f

��
Y ′

g // Y

then

Rf ◦Ng = Ng′ ◦Rf ′

Rf ◦ Tg = Tg′ ◦Rf ′ .

These are also called the double coset formulas.

Proposition 1.1.3. Suppose A
h→ X

g→ Y are maps in SetG. Then define∏
g

A :=
{

(y, s : g−1(y)→ A) | y ∈ Y, h ◦ s = Idg−1(y)

}
.

This gives rise to the following pullback diagram

X

g

��

A
h

oo X ×
Y

∏
g Af ′

oo

g′

��
Y

∏
g Ah′

oo

called an exponential diagram, where

h′ : (y, s) 7→ y,

f ′ : (x, y, s) 7→ s(x),

g′ : (x, y, s) 7→ (y, s).

We can rewrite

X ×
Y

∏
g

A ∼=
{

(x, s : g−1(g(y))→ A) |x ∈ X, h ◦ s = Idg−1(g(x))

}
.

Then

Ng ◦ Th = Rf ′ ◦Ng′ ◦ Th′

which we call the Tambara relation.

6



In general, Πf can be replaced for the right adjoint of f ∗, the pullback functor C/Y →
C/X.

Now we consider the subcategories of PC given by restricting the exponents. We use

the following proposition of [5]:

Definition 1.1.3. A a subcategory D of C is pullback stable if given the pullback diagram

Y ′ ×
Y
X //

f ′

��

X

f

��
Y ′ // Y

and f ∈ D(X, Y ), then f ′ ∈ D(Y ′ ×
Y
X, Y ′).

Proposition 1.1.4. Let D be a wide, pullback stable, finite coproduct complete subcategory

of C. Then the subgraph of PC of morphisms ThNgRf where g ∈ D is a subcategory called

the category of polynomials with exponents restricted to D and is denoted PD.

As described in [5], there is a bijection between the wide, pullback stable, coproduct

complete categories and indexing systems. We recite the key definitions and results now:

Definition 1.1.4. Let Set : OrbopG → Sym be the functor that sends every orbit G/H to the

category of finite H-sets. The monoidal product is disjoint union of H-sets. An indexing

system O is a subfunctor of Set that

1. contains all trivial sets,

2. is closed under finite limits, and

3. is closed under self-induction: if H/K ∈ O(G/H), T ∈ O(G/K), then H ×
K
T ∈

O(G/H).

Theorem 1.1.5. Given an indexing system O, let SetGO be the subgraph of SetG where f :

S → T is a morphism in SetGO if and only if for all s ∈ S,

Gf(s)/Gs ∈ O(Gf(s)).

7



This is a wide, pullback stable, finite coproduct complete subcategory of SetG. This map from

the poset of indexing systems and the poset of wide, pullback stable, finite coproduct complete

subcategories of SetG is an isomorphism.

Definition 1.1.5. For an indexing system, the category of O-Tambara functors is the cat-

egory of functors from PD to abelian groups, where D is the category given by O and the

bijection in the preceding theorem.

We can define Mackey functors using this terminology: let Isom be the category

of isomorphisms of SetG. Then [5] shows that functors PIsom → Ab are Mackey functors,

denoted as the category Mac. The more standard way of defining Mackey functors is functors

BG → Ab, where BG is the Burnside category (polynomials where the norm map is the

identity). It is often easier to define Mackey functors using the orbit categories, as in [25],

which we repeat.

Definition 1.1.6. A Mackey functor M consists of a collection of abelian groups M(G/H)

with transfer maps TGK : M(G/K) → M(G/H) and restriction maps RH
K : M(G/H) →

M(G/K) for all subgroups K < H ≤ G such that

1. If K ′ < K < H then THK′ = THK T
K
K′ and RH

K′ = RK
K′R

H
K .

2. if K < H ≤ G, there is an action of NH(K)/K on M(G/K) such that if γ ∈
NH(K)/K, then THK (γ · (−)) = THK (−) and γ ·RH

K(−) = RH
K(−).

3. If K,K ′ are subgroups of H, we have the double coset formula

RH
K′T

H
K (x) =

∑
γ∈NH(K′)/K′

γ · TK′K′∩K(x).

We can similarly make a definition of incomplete Tambara functors:

Definition 1.1.7. An O-Tambara functor S consists of a collection of commutative rings

S(G/H) with transfer maps TGK : S(G/K)→ S(G/H) and restriction maps RH
K : S(G/H)→

S(G/K) for all subgroups K < H ≤ G, as well as norm maps NH
K : S(G/K) → S(G/H)

when D contains the map G/K → G/H. The transfer and restriction maps have all the

8



properties that make S a Mackey functor. The restriction is a map of commutative monoids.

We have the additional properties regarding norms:

1. If K,K ′ are subgroups of H, we have the double coset formula

RH
K′N

H
K (x) =

∑
γ∈NH(K′)/K′

γ ·NK′

K′∩K(x).

2. The norm maps commute with transfers by the Tambara reciprocity relation.

Mackey functors have a symmetric moniodal product, originally described by Day in

[10], given by the coend

M �N(X) =

∫ (Y,Z)∈BG×BG
M(Y )⊗N(Z)⊗BG(X, Y × Z)

sometimes called the box product or tensor product if the meaning is clear. The Burnside

Mackey functor A := HomBopG
(−, G/G) is the unit. A(G/H) is the Grothendieck group

of finite H-sets with coproduct acting as the symmetric monoidal product. The transfer

and restriction are induction and restriction. [31] shows that a commutative monoid in the

category of Mackey functors is a Green functor, or an incomplete Tambara functor with the

trivial indexing system. In this case D contains all the maps f : U → V such that f(u)

has the same isotropy group as u. We have the following theorem from [5] categorizing

incomplete Tambara functors.

Theorem 1.1.6. For an indexing system O, an O-Tambara functor is a commutative Green

functor R together with norm maps of multiplicative monoids NK
H : R(G/H)→ R(G/K) for

each G/H → G/K ∈ OrbO that satisfy the double coset and Tambara relations.

[31] has the following useful description of elements in M �N .

Proposition 1.1.7. Fix M,N Mackey functors for a finite G-set X. Let E be the set of

quadruples (U, p,m, n) where p : U → X, (m,n) ∈ M(U) × N(U). Let ∼ be the smallest

equivalence relation on E such that

9



1. For U ′
r→ U

q→ X, (m′, n) ∈M(U ′)×N(U) then

(U ′, qr,m′, Rr(n)) ∼ (V, q, Tr(m
′), n)

2. For U ′
r→ U

q→ X, (m,n′) ∈M(U)×N(U ′) then

(U ′, qr, Rr(m), n′) ∼ (V, q,m, Tr(n
′)).

Define the map E→ (M �N)(X) by (U, p,m, n) 7→ Tp(m⊗n). Then E/ ∼
∼=−→ (M �N)(X)

is a bijection.

Lastly, the arguments of [31] show that the box product of two incomplete Tam-

bara functors is an incomplete Tambara functor, and the box product is the coproduct in

incomplete Tambara functors. The fibered box product (−) �
A

(−) is the fibered coprod-

uct, which has the same description as the above proposition along with the congruences

(am⊗ n) ∼ (m⊗ an) for a ∈ A(U), m ∈M(U), n ∈ N(U).

10



Chapter 2

Homological Algebra

In this section, we include some properties that are basic to the field of homological

algebra but use the appropriate categories from equivariant stable homotopy theory. We con-

sider Mackey functors, O-Tambara functors, and modules over O-Tambara functors rather

than abelian groups, commutative rings, and modules over commutative rings respectively.

We show that the category of modules is an abelian category satisfying the necessary prop-

erties to perform homological algebra. Additionally, we will discuss free, projective, and flat

modules and give some examples.

2.1 Closed Symmetric Monoidal Category

Much of this information is a synthesized version of [21] and [36]. Given Mackey

functors M and N , we have a tensor product M � N . To reiterate, if M,N are functors

from BG to Ab then

M �N(X) =

∫ (Y,Z)∈BG×BG

M(Y )⊗N(Z)⊗ BG(X, Y × Z).

Day [10] showed that this symmetric monoidal product makes Mackey functors a closed

monoidal category. The unit is the Burnside ring A = BG(−, G/G). The internal hom is the

right adjoint

Mac(A�B,C) ∼= Mac(A, [B,C]Day)

and is given by the end

[M,N ]Day(X) =

∫
(Y,Z)∈BG×BG

Hom(BG(Z,X × Y )⊗M(Y ), N(Z)).

11



We will mostly denote [−,−]Day by Hom[−,−]. Let us review the adjunction as relayed in

[36] from [21]:

Mac(A,Hom[B,C]) ∼=
∫
X

Hom[A(X),

∫
(Y,Z)∈BG×BG

Hom(BG(Z,X × Y )⊗B(Y ), C(Z))]

∼=
∫
X

∫
(Y,Z)∈BG×BG

Hom[BG(Z,X × Y )⊗ A(X)⊗B(Y ), C(Z)]

∼=
∫
Z

Hom[

∫ (X,Y )∈BG×BG

BG(Z,X × Y )⊗ A(X)⊗B(Y ), C(Z)]

∼= Mac(A�B,C).

Because ∫
Z

Hom[BG(Z,X × Y ), N(Z)] ∼= N(X × Y )

and dually ∫ Y

BG(Z,X × Y )⊗M(Y ) ∼= M(X × Z)

we get that

Hom(M,N)(X) ∼= Hom(M,NX) ∼= Hom(MX , N)

where NX is defined by

NX(Z) := N(Z ×X).

In particular, we also have the isomorphisms

BG(X,−) � A ∼= A(X ×−)

∼= Hom(BG(X,−), A)

BG(X,−) � BG(Y,−) ∼= BG(X × Y,−)

∼= Hom(BG(X,−),BG(Y,−)).

One can also compute using the adjunction directly

Hom(M,N)(X) = Mac(BG(X,−), [M,N ]Day)

= Mac(BG(X,−) �M,N)

The box product gives rise to the following definition of Green functors and R-modules

from [31]:

12



Definition 2.1.1. A Green functor is a commutative monoid in (Mac,�, A).

As [5] shows, all incomplete O-Tambara functors are Green functors.

13



2.2 Modules

Definition 2.2.1. If M is a Mackey functor and S is an incomplete Tambara functor, then

an S-module structure on M is a map ν : S �M → M such that the diagrams involving

η : M → S �M and µ : S � S → S commute

S � S �M

1�η

��

µ�1 // S �M

η

��

M
η�1oo

1

||
S �M

η //M

An equivalent definition, also shown in [31], is givingM(X) an S(X)-module structure

such that for all f : X → Y,

1. for all sy ∈ S(Y ) and my ∈M(Y ), Rf (sy ·my) = Rf (sy) ·Rf (my);

2. for all sy ∈ S(Y ) and mx ∈M(X), sy · Tf (mx) = Tf (Rf (sy) ·mx); and

3. for all sx ∈ S(X) and my ∈M(Y ), Tf (sx) ·my = Tf (sx ·Rf (my)).

Now suppose that M is also an R-module and N is an (R, S)-bimodule, and C is an

S-module. Let M �
R
N be the coequalizer of the two maps R multiplication maps

M �R�N ////M �N //M �
R
N.

This operation is the tensor product that makes RMod a closed symmetric monoidal category.

The adjoint is the equalizer

HomS[B,C] // Hom[B,C] //// Hom[B � S,C] ∼= Hom[B,Hom[S,C]].

where the two maps are given by the maps B � S → B and C → Hom(S,C) the adjoint of

the multiplication of C. We cite the following properties from [21].

Proposition 2.2.1. Suppose M,N,L are R-modules. Then we have the following natural

isomorphisms and properties:

1. MX �
R
RY
∼= RY �

R
MX

∼= MX×Y
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2. HomR(RX ,MY ) ∼= MX×Y

3. MX �
R
NY
∼= (M �

R
N)X×Y

4. If R, S, T are O-Tambara functors and B,C,D are respectively S − R,R − T , S − T

bimodules respectively, then HomS−T (B �
R
C,D) ∼= HomS−R(B,HomT (C,D)).

5. M�
R
N and HomR(M,N) are R-modules satisfying the adjunction HomR(M�

R
N,L) ∼=

HomR(M,HomR(N,L)), making RMod a symmetric monoidal closed category.

Proposition 2.2.2. The category of Mackey functors is an abelian category satisfying the

AB5 condition. R � (−) and Hom(R,−) are respectively left and right adjoints for the

forgetful functor from RMod to Mac. Limits and colimits in RMod are obtained from taking

limits and colimits in Mac. RMod is an abelian category satisfying AB5.

2.2.1 Free Modules

We now define what it means to be a basis. The following structure is modeled after

the algebra notes of [12].

Definition 2.1. A G indexed set S is a collection of sets {SX} for all X ∈ SetG. There

is no other necessary structure. A homomorphism S → T of G indexed sets is a collection of

maps {SX → TX}. This makes G indexed sets a category GIndexedSet. There is a forgetful

functor U : Mac→ GIndexedSet which forgets all the transfer and restriction maps.

Definition 2.2. Let S be a G-indexed set. A free R-module M on generators S is an

R-module M and a G indexed set map i : S → UM such that, for any R-module, any G-

indexed set map f : S → UN there is a unique R-module homomorphism f̃ : M → N such

that Uf̃ ◦ i = f. The elements i(S) are an R-basis for M

Definition 2.3. Suppose E = {ei ∈ M(Xi)} is a collection of elements of M . Then E is

a basis for M if every G indexed set map from E → UN , where N is another R-module,

gives a unique R-module map from M → N . In other words, there is an isomorphism

GIndexedSet(E,U(N)) ∼= RMod(M,N).
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Proposition 2.2.3. If a free R-module on generators S exists, it is unique up to unique

isomorphism.

Proof. This is identical to the classical proof. By the defining property, the identity is the

unique map F : M → M that fixes S. If there is another free module M ′ with i′ : S → M ′

then there unique maps between M and M ′ that commute with the inclusion of S. These

are mutual inverses so M is isomorphic to M ′. There is no other map between them that

respects the inclusion so this isomorphism is unique.

Proposition 2.2.4. A free R-module M is generated by i(S), in that the smallest submodule

including i(S) is M .

Proof. Let N be the submodule of M that is the intersection of all submodules including

i(S). Consider f : S → M/N , by f(s) = 0 for all s ∈ S. Both the quotient and the zero

map from M to M/N satisfy the property of commuting with f , so they must be equal.

Corollary 2.2.5. Every element of M is of the form
∑

i∈I Tpi(ri ·Rqi(mi)), where mi is the

image of the generators of S, where I goes over the generators S, and all but finitely many

of these terms must be 0.

Proof. This is a submodule: using the Frobenius reciprocity relations, one can see it is closed

with respect to multiplication by R, transfers, and restrictions. It is the smallest submodule

including all the mi, so we have this corollary.

Definition 2.4. Let mi ∈M(Xi) be a finite set of elements of M indexed by I in the G-set

Xi. If the relation ∑
i∈I

Tpi(ri ·Rqi(mi)) = 0

with qi : Ui → Xi, pi : Ui → Y and ri ∈ R(Ui) implies

Tpi(ri ·Rqi(1)) ∈ R(Y )

is 0 for all i ∈ I, then we say the elements mi are linearly independent.
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This is the best we can say about the uniqueness of the elements above, because R is

naturally a A-module, and multiplication by R can include the composition of restrictions

and transfers.

Proposition 2.2.6. Let M be a free R-module on generators i : S → UM. Then the elements

i(S) are linearly independent.

Proof. Suppose ∑
i∈I

Tpi(ri ·Rqi(si)) = 0.

To show that every Tpi(ri · Rqi(1)) = 0, fix sk ∈ S(Uk) and map f : S → R by the map

that sends si to 1 and every other element to 0. Let f̃ be the associated map R-module

homomorphism M → R. Then

f̃

(∑
i∈I

Tpi(ri ·Rqi(si))

)
= Tpk(rk ·Rqk(1)) = f̃(0) = 0.

This holds for every k.

In the classical case, there is an isomorphism between free modules generated by sets

S and T if and only if |S| = |T |. That is, the cardinality of the generating set determines

the free module up to isomorphism. The equivariant case is similar but a bit more subtle.

For example, an R-module generated by a single element at the G-set X q Y is isomorphic

to the R-module generated by two elements, one at X and one at Y . Therefore, every free

R-module can be described by the number of generators at each orbit.

Proposition 2.2.7. Let M be a free R-module generated by i : S → M . Then M is

also the free module generated by the inclusion of the elements resj(i(S)) where if i(S) ∈

M(
∐

j G/Hj) then resj restricts to one of the orbits G/Hj.

Proof. Because N(
∐

j G/Hj) =
∏

j N(G/Hj), we have an isomorphism between

GIndexedSet(S, UN) ∼= GIndexedSet(res(S), UN).

The image of every element of S is exactly the same data of where every restriction maps.
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2.2.2 Construction

Proposition 2.2.8. Let Y [xH ] = BG(G/H,−), that is, the Mackey functor represented by

G/H. Consider the Mackey functor F [xH ] = R�Y [xH ]. This is the free R-module generated

by the single element at the orbit G/H, with the inclusion mapping to 1⊗ Id.

Proof. This is trivially an R-module. There is a map R � (R � Y [xH ])→ R � Y [xH ] using

the multiplication R � R→ R, and an inclusion (R � Y [xH ])→ R � (R � Y [xH ]) given by

sending an element Tp(rx ⊗ yx) to 1⊗ Tp(rx ⊗ yx). The R-module structure explicitly is

ry · Tp(rx ⊗ yx) = Tp((Rp(ry) · rx)⊗ yx).

We now prove that F [xH ] is the free module described. Let M be an R-module.

Then the image of identity span must be an element of M(G/H). The element completely

determines the map F [xH ] → M . An element of F is of the form Tp(rx ⊗ Rh) by [31] 3.14,

and in order for the map to a be a map of R-modules, if (1⊗ TIdRId) 7→ mG/H ∈M(G/H),

then Tp(rx ⊗Rh) must map to Tp(rx ·Rh(mG/H)). The only remaining piece is to show that

for all mG/H , the map

Tp(rx ⊗Rh) 7→ Tp(rx ·Rh(mG/H))

defines a map of R-modules. It is clearly a map of Mackey functors. For the multiplication

by R we see:

ry · Tp(rx ⊗Rh) = Tp(Rp(ry)rx ⊗Rh) 7→ Tp(Rp(ry)rx ·Rh(mG/H)) = ry · Tp(rx ·Rh(mG/H))

showing the map respects the R-module structure.

Proposition 2.2.9. Suppose Fi is a family of free R-modules generated by Si. Then the

direct sum ⊕iFi is the free R-module generated by
∐

i Si.

Proof. This can be proven directly from the universal properties:

Rmod(⊕iFi,M) ∼=
∏
i

(Rmod(Fi,M))

∼=
∏
i

(GIndexedSet(Si,M))

∼= GIndexedSet(
∐
i

Si,M).
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The two propositions above combine to make a freeR-module for any set of generators.

2.2.3 Examples

Here we present as Lewis diagrams the most basic free modules that do not appear

in the classical case. Let G = C2, let Oc be the complete indexing system, and Otriv be the

trivial indexing system. The Burnside ring AOc for C2 is

G/G : Z[t]/(t2 − 2t)

RGe

++G/e : Z
TGe

ll
NG
e

gg

We have

RG
e (t) = 2, TGe (1) = t, NG

e (a) = a2

and the Burnside ring AOtriv for C2 is

G/G : Z[t]/(t2 − 2t)

RGe

++G/e : Z
TGe

ll

with

RG
e (t) = 2, TGe (1) = t.

We only state some parts of the maps RG
e , T

G
e , N

G
e since the rest of the map is determined.

In both cases, there are two identical free modules,

AOc{xG} ∼= AOtriv{xG} ∼= Mac(G/G,−)

G/G : Z[t]/(t2 − 2t){x}
RGe
**

G/e : Z{r}
TGe

kk

AOc{xe} ∼= AOtriv{xe} ∼= Mac(G/e,−)

G/G : Z{tx}
RGe
))

G/e : Z{x, x}
TGe

ll
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where x means the Weyl conjugate. TGe (x) = TGe (x) = tx and RG
e (tx) = x+ x.

For some more interesting examples, we will consider modules over some of the pos-

sible singly generated free Tambara functors over the Burnside ring:

AOc [xG]

Z[t]/(t2 − 2t)[x, n]/t(n− x2)

RGe
** Z[r]

TGe

jj
NG
e

gg

AOtriv [xG]

Z[t]/(t2 − 2t)[x]

RGe
** Z[r]

TGe

kk

Here, RG
e (x) = r, TGe (·) is multiplication by t, NG

e (r) = n. Each one of these Tambara

functors has two free modules of rank 1.

We now write down some of the free modules over these Tambara functors:

AOc [xG]{yG}

G/G : Z[t]/(t2 − 2t)[x, n]/t(n− x2){y}
RGe((

G/e : Z[rx]{ry}
TGe

jj

AOtriv [xG]{yG}

G/G : Z[t]/(t2 − 2t)[x]{y}
RGe((

G/e : Z[rx]{ry}
TGe

jj
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The restriction in these two cases is clear given the underlying Tambara functor. The transfer

of p(x) · ry is TGe (p(x)) · y which follows from the module condition. Note that we only give

these examples because when we take the generators at G/e, the Weyl action on the generator

complicates the formulas. The reader is invited to see the computations in [7].

2.2.4 Projective Modules

We should note a few warnings before we continue. In the classical case, Z[X], the

free ring generated by a set X, when we forget the multiplication and consider Z[X] as an

abelian group, it is a free Z-module with countably many generators 1, x, x2, . . . This is not

true in the equivariant setting as shown by [5]. The free Tambara functor AO[xi], when

we forget the norms to make it an A-module, or a Mackey functor, is not typically a free

A-module.

Secondly, [22] shows the box product of projective objects is not necessarily projective

in some module categories of equivariant stable homotopy theory, but they are for RMod,

which we address. The discussion is, again, very similar to the classical case.

Proposition 2.2.10. Free R-modules are projective: Suppose M is a free R-module on

generators S, a surjective map of R-modules from N0 → N1 and a map M → N1. Then

there exists a lifting P →M0 that commutes with these maps.

Proof. The proof is trivial. The inclusion i : S → M gives a map S → N1 by composition.

Since N0 → N1 is surjective, there is a map S → N0 such that the composition with N0 → N1

gives the composition S → M → N1. This map induces a map of R-modules M → N0.

Because the diagram commutes on the inclusion of S → M , the diagram commutes by the

universal property of being free.

Proposition 2.2.11. The following are equivalent for an R-module P :

1. P is projective.

2. Any short exact sequence 0→M → N → P → 0 splits.

3. P is a direct summand of a free R-module.
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Proof. Same proof as you might find in [20]. For (1) implies (2), P being projective gives a

lift P → N . For (2) implies (3), any module is the image of a free R-module, so then we

have 0 → P ′ → F → P → 0. This splits so P is a summand of F . For (3) implies (1),

we have a map into a free module F , which is projective. Composition with the lifting map

from F makes P projective.

Proposition 2.2.12. If M,N are projective R-modules, then M �
R
N is projective.

Proof. Suppose M,N are summands of free modules S, T respectively. Then M �
R
N is a

direct summand of S �
R
T , a free module.

2.2.5 Flat Modules

We will address the alarming discussion of [22], and that in many contexts in equivari-

ant stable homotopy theory, basic properties of projective modules do not hold. In particular,

projective modules are not always flat and box products of projective modules are not always

projective.

We explicitly stated our assumption that G is a finite group. We also implicitly state

that with regard to the underlying Mackey functor, the G-universe is complete (for every

projection G/H → G/K, there is a corresponding transfer map). With these assumptions,

the category of Mackey functors, and similarly RMod, has the property that projective mod-

ules are flat and products of projective modules are projective. The same is not true for

when G is compact Lie or when the G-universe is incomplete. In this context, we can still

define the André-Quillen (co)homology Mackey functors. But there is no reason to believe

that many of properties that rely on the above conditions to be true. In particular, the

Jacobi-Zariski sequence or the convergence of the fundamental spectral sequence need not

be true.

Proposition 2.2.13. Projective R-modules are flat.

Proof. [21] shows that AG/H is flat for all subgroups H of G. Therefore, all free R-modules

are flat. (R � AG/H) �
R

(−) ∼= AG/H � (−), so the right being exact means the left is exact.
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Direct sums of flat modules are flat, so all free R-modules are flat. Direct summands of flat

modules must also be flat, proving the proposition.
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2.3 Ext and Tor Functors

As shown earlier, for A an R-module, B an (R, S)-bimodule, C an S-module, then

SMod(A�
R
B,C) ∼= RMod(A,HomS(B,C)).

Being adjoints, (−) �
R
B is right exact and HomS(B,−) is left exact. These give rise to

derived functors

TorRn (A,B) := Ln(−�
R
B)(A)

and

ExtnS(B,C) := Rn(HomS(B,−))(C).
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Chapter 3

André-Quillen (co)homology

3.1 Square zero extension and augmentation ideal functors are
inverse equivalences

The following is a equivariant retelling of [27]. André-Quillen cohomology is a coho-

mology theory for augmented commutative rings, that is maps of commutative rings A→ B.

Quillen introduced a model structure on the category of simplicial commutative rings. He

then defined the cotangent complex as the left derived functor of abelianization, and the

(co)homology as the (co)homology of this cotangent complex. The cotangent complex can

be computed explicitly, via free resolutions in the category of simplicial commutative al-

gebras. The André-Quillen cohomology and cotangent complex is closely related to the

deformation theory of commutative rings.

Let G be a finite group and O be an indexing system. Let A be an O-Tambara functor

and let A−CAlg := A/(O−Tamb) be the under category. This is the natural generalization of

a commutative algebra of a ring. A morphism is a map of O-Tambara functors that preserves

the inclusion of the base O-Tambara functors A.

In the non-equivariant setting, the category of abelian objects of the over category

A−CAlg/B is equivalent to the category of B-modules. Let us go through this well known

fact to highlight the difference in the equivariant case. There is an augmentation ideal

functor from (A−Alg/B)ab to B−Mod that assigns to R→ B the kernel of that map. Being

the kernel of a map, it is naturally an ideal. R, being an abelian group object, has a map

from B → R, making R a B-module. Because all of these are maps of rings, this extends to

a B-module structure on the kernel from R to B.

The inverse is the square-zero extension B n (−) : B−Mod→ (A−CAlg/B)ab. As an

abelian group, BnM is isomorphic to B⊕M . By the name, we assert that the products on
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the second term are zero, so M2 = 0 inside B nM . Additionally, the product of an element

of B and an element of R must reflect the B-module structure. Together with distributivity,

this implies that (b,m) · (b′,m′) = (bb′, bm′ + b′m). There is the inclusion map B → B nM

that serves as the identity and the map

(B nM)×
B

(B nM)→ (B nM)

given by

((b,m), (b,m′)) 7→ (b,m+m′)

is a map of rings. The inverse map is given by (b,m) 7→ (b,−m). These all satisfy the

associativity, commutativity, left-right identity, left-right inverse properties, so this indeed

is an abelian group object.

We now prove that these are inverse equivalences. One direction is clear: given a B-

module, the augmentation ideal of the associated abelian group object is isomorphic to the

original module. In the reverse direction, suppose we have R → B an abelian group object

of (A−CAlg/B). We want to show that B n ker(R → B) is isomorphic to R as elements of

(A−CAlg/B). The map from left to right is addition (b,m) 7→ b+m where the map from B

to R is suppressed in this notation. R has a map σ : R×
B
R→ R. If m0,m1 ∈ ker(R→ B),

let n0 = (m0, 0) and n1 = (0,m1) ∈ R ×
B
R. We see that σ(ni) = mi and because σ is a

map of rings, m0m1 = 0. So the map B n ker(R → B)→ R is a map of rings. The inverse

map is r 7→ (ε(r), r − ε(r)) where ε is the map from R → B. So the above is isomorphic as

commutative rings and it is easy to see that these maps preserve the maps from A and to B

showing that these are isomorphic as elements in (A−CAlg/B). This was relayed in [31].

Let us now move into the equivariant setting, as in [31]. For the exact same reason as

in the non-equivariant setting, taking the augmentation ideal of an abelian group object of

A−CAlg/B is a B-module. To generalize the square-zero extension, we let B n R = B ⊕ R

as Mackey functors. The only additional element to describe is the norm maps. We assert

that for any O-admissible G map f : X → Y such that f−1(y) has at least 2 elements (which

we then call f a 2-surjective map), Nf ((0,m)) = 0 for all m ∈ M(X). This is the natural

generalization of the square-zero extension in the following senses: it both includes the
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standard squares given by f : X
∐
X → X and fully determines the O-Tambara structure

of B nM : Nf (b,m) = Nf ((b, 0) + (0,m)), which if we rewrite in TNR-form we produce the

following exponential diagram:

X

f

��

X qX∇oo X ×
Y

Πf (X qX)evoo

π2

��
Y Πf (X qX)q
oo

Now using the fact that M is killed by 2-surjective maps, we reduce to the case that

X

f

��

X qX∇oo X q (X ×
Y
X)evoo

π2

��
Y Y q (Y ×

Y
X)q

oo

where the first part of the coproduct represents the maps X → X qX that map completely

to the left side, and the second part of the coproduct represents the maps X → X qX that

map a single element to the right side. The term that picks up the m in X×
Y
X is the diagonal

∆(X). Let f : X → Y be an admissible map of G-sets and let π1, π2 : X ×
Y
X −∆(X)→ X

be the projections. Thus we showed

Nf (b,m) = (Nf (b), Tf (Nπ1Rπ2(b) ·m)).

[31] 14.9 shows that this is an element of (A−CAlg/B)ab for the complete case, and the

incomplete case is identical.

Any B-module has a square-zero extension in A−CAlg/B and by the same argument

as in the non-equivariant setting, it is an abelian group object. The issue is that being

an abelian group object is insufficient to be isomorphic to the square-zero extension of an

augmentation ideal. An extra condition is needed, as shown in the next proposition.

Proposition 3.1.1. Let D be the full subcategory of (A−CAlg/B)ab such that the kernel of

the map to B has vanishing norms for all 2-surjective admissible norms. Then D is equivalent

to the category of B-modules. The two maps are the equivariant square-zero extension and

the augmentation ideal.
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Note that products are still trivial in the augmentation ideal for any element of

(A−CAlg/B)ab. So in the case of the trivial indexing system, we have the classical equivalence

of abelian group objects and modules.

Proof. The augmentation ideal of a square-zero extension gives a module isomorphic to the

original module. In the reverse direction, suppose we have R → B an abelian group object

of (A−CAlg/B) where the augmentation ideal has vanishing norms. We want to show that

Bnker(R→ B) is isomorphic to R as elements of (A−CAlg/B). The map from left to right

is addition (b,m) 7→ b + m at each G-set. This is evidently a map of Mackey functors. We

now need to show that the map preserves norms. It is sufficient to prove that it preserves

norms of the form f : G/K → G/H where f is admissible, as the products case reduces

to the classical statement. We know that Nf (b) = (Nf (b), 0) and Nf ((0,m)) = 0. We can

rewrite Nf (b+m) in TNR-form using the exponential diagram:

G/K

f

��

G/K qG/K∇oo G/K ×
G/H

Πf (G/K qG/K)evoo

π2

��
G/H Πf (G/K qG/K)q

oo

Again, we can restrict to the case where the sections have at most one element in the right

set of the coproduct. So we get the following diagram:

G/K

f

��

G/K qG/K∇oo G/K q [(G/K ×
G/H

G/K −∆(G/K))qG/K]evoo

fq(π2
∐

Id)

��
G/H G/H qG/Kq

oo

where ev on the first term maps by the identity to the left term, and maps (G/K ×
G/H

G/K−

∆(G/K)) by π1 to the left element of the coproduct and G/K maps by the identity to

the right most element. One can see the correspondences between these sets and the sets

involving sections: the G/K and G/H in the left of the coproduct correspond to sections all

mapping to the left most set of G/K q G/K and the (G/K ×
G/H

G/K − ∆(G/K)) q G/K

are the sections with exactly one element mapping to the G/K on the right. (G/K ×
G/H
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G/K −∆(G/K)) corresponds to section-element pairs where the element does not map by

the section to the right set, and the remaining G/K corresponds to when the element does

map to the section. We realized the equation Nf (b+m) = Nf (b) + Tf (Nπ1Rπ2(b) ·m) from

the above diagram. Therefore, the map B n ker(R → B) is a map of O-Tambara functors.

The map also respects the maps from A and to B, so this is a map in A−CAlg/B. The

inverse map is r 7→ (ε(r), r − ε(r)) where ε : R → B at every G-set X. This is readily seen

to be a map of Mackey functors (as it is a Tambara functor or difference of Tambara functor

maps on each summand). This is sufficient to show it is a O-Tambara functor map, as it is

a Mackey functor isomorphism where the inverse respects norms. We have shown that the

two maps are essentially surjective. The maps being fully faithful are clear.

Proposition 3.1.2. In general, it is not true that D is equivalent to (A−CAlg/B)ab. The

following example was given in [31]. Let G = C2 and let A = B = S be the fixed point

Tambara functor on Z, and T be the following:

S T

G/G : Z

RGe

��

Z[α]/α2

RGe

��
G/e : Z

TGe

ZZ

NG
e

gg

Z[β, γ]/(β2, βγ, γ2, 2γ)

NG
e

dd

TGe

XX

where T (G/G) has trivial C2 action with the following on maps:

RG
e (i+ jβ + kγ) = i+ 2jα

TGe (i+ jα) = 2i+ jβ

NG
e (i+ jα) = i2 + ijβ + j2γ.
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There is an inclusion map S → T and an augmentation map T → S by just taking the

constant terms. Then T ×
S
T is

T ×
S
T

Z{1, α0, α1}/ ∼

RGe

��
Z{1, β0, β1} ⊕ (Z/2){γ0, γ1}/ ∼

NG
e

dd

TGe

XX

and there is a map of Tambara functors from T ×
S
T → T which adds all the non-constant

terms, just as in the non-equivariant setting. It is easy to check that this map is commutative,

associative, and unital, so T is an abelian group object in A−CAlg/B. But the norms on the

augmentation ideal are non-vanishing: the norm of α in T is γ. Therefore, this abelian group

object is not isomorphic as elements of A−CAlg/B to the square-zero extension.

In comparison to the above example, when the indexing system is trivial, the abelian

objects is D. In general D is the O-commutative monoid objects. Much of this material is

from [15] and [16] in the complete setting. The reader is invited to read [16] for the definition

and context of O-commutative monoid objects.

Firstly, O-Tambara functors form a symmetric monoidal coefficient system. The

direct sum, the categorical product, of two O-Tambara functors is an O-Tambara functor.

As described in [5] Section 6, induction gives a map between polynomials with restricted

exponents

↑GH : PH
i∗HO ↪→ PG

O

which gives a restriction map on Tambara functors

i∗H : O− TambG → (i∗HO)− TambH .
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Note that this restriction map is functorial in the sense that i∗Ki
∗
H
∼= i∗K , and the restric-

tion map commutes with symmetric monoidal product, so this forms a symmetric monoidal

coefficient system. Given an H-set, we define the internal product T M := M(T × (−)),

which by Corollary 6.7 of [5], is a O-Tambara functor. This gives O-Tambara functors the

structure of a G-symmetric monoidal coefficient system.

Now let us consider the category of A − CAlg = A/(O−Tamb). The direct sum

still makes A − CAlg a symmetric monoidal category. This is additionally true for the

category i∗HA/(i
∗
HO−Tamb) and i∗H respects the symmetric monoidal structure, making

G/H 7→ i∗HA/(i
∗
HO−Tamb) a symmetric monoidal coefficient system. There is a natural

map of O-Tambara functors R→ RT := R(T × (−)). Therefore, setting T M := MT makes

A− CAlg a O-symmetric monoidal category.

Finally, let us consider the category at hand, A−CAlg/B. Direct sum does not make

this category a symmetric monoidal category: given R → B and R′ → B, then there is not

a natural map of O-Tambara functors R⊕R′ → B. However the pullback

R⊕
B
R′ //

��

R

��
R′ // B

does make A−CAlg/B a symmetric monoidal category, with B being the unit. This also

makes i∗HA−CAlg/i∗HB a symmetric monoidal category and the restriction respects addition:

i∗H(B ⊕
R
B′) = i∗HB ⊕

i∗HR
i∗HB

′. We see that G/H 7→ i∗HA−CAlg/i∗HB is a symmetric monoidal

coefficient system. Note that one way of describing the exponentiation R 7→ R ⊕
B
R can be

expressed in the following pullback

R⊕
B
R //

��

R⊕R

��
B // B ⊕B

so we can extend this to a G-symmetric monoidal coefficient system (even though A and B

are only O-Tambara functors, not necessarily complete Tambara functors) by defining T R
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to be the pullback

T R //

��

R(T × (−))

��
B // B(T × (−))

This definition generalizes the standard exponentiation and because

T R(T ′ × (−)) //

��

R(T × (T ′ ×−))

��
B(T ′ × (−)) // B(T × (T ′ ×−))

is also a pullback diagram then we have the diagram

T ′ (T R) //

��

(T R)(T ′ × (−))

��

// R(T × (T ′ ×−))

��
B // B(T ′ × (−)) // B(T × (T ′ ×−))

where both boxes are pullbacks, implying that T ′ (T R) ∼= (T ′×T ) R. Now that we have

a G-symmetric monoidal structure, we can ask what the O-commutative monoids are.

Suppose R is a commutative monoid, which means that as a Mackey functor it is of

the form B ⊕ I(R). Now suppose all O-admissible 2-surjective norms vanish on I(R). Let

T ∈ O(G/G). We have a map of Mackey functors given by the transfer: B ⊕ I(R)(T ×

(−)) → B ⊕ I(R). Because T ∈ O(G/G), if X → Y is a map in O(G/G), then T × X →

T × Y is a map in O(G/G). So because all O-norms vanish on I(R), the same is true for

I(R)(T×(−)). Lastly, I(R)(T×(−)) is a R-module via the restriction map R→ R(T×(−)).

By [31] 14.2, I(R)(T × (−)) → I(R) is a map of R-modules. From the above discussion,

B ⊕ I(R)(T × (−))→ B ⊕ I(R) is in fact a map of O-Tambara functors, showing that R is

in fact an O-commutative monoid.

Now let R be an O-commutative monoid, so R is necessarily an abelian group object,

implying that as a Mackey functor R ∼= B ⊕ I(R) where I(R) is the kernel of the map

R → B. We would like to show that all O-admissible 2-surjective norms from O vanish on
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I(R). By the standard argument in commutative rings, products are trivial, so we only need

to prove it for norms of the form G/H → G/K. Note that this norm is given by the norm

of i∗KI(R) from K/H → K/K. So it suffices to show that the norm G/H → G/G vanishes.

In this case we see that

G/H R ∼= B ⊕ I(R)(G/H × (−)).

By the definition, we have a map

B ⊕ I(R)(G/H × (−))→ B ⊕ I(R)

of O-Tambara functors. Note that because O is an indexing system and is closed under

products, B ⊕ I(R)(G/H × (−)) is also an O-commutative monoid. In particular, products

vanish on I(R)(G/H × (−)) and the norm from G/H → G/G is isomorphic to a |G|/|H|

fold product, up to an action by G. So the norm vanishes on I(R)(G/H × (−)). We need

only show that the map is surjective on the augmentation ideals. Then the norm on I(R)

will vanish because the map is a map of O-Tambara functors.

Inspecting the map I(R)(G/H × (−))→ I(R)(−), we see that this implies that I(R)

is a O-commutative monoid in Mackey functors. This map is unique, which is the content

of [15] 3.20. We are interested in what the map

I(R)(G×
H

(−))→ I(R)

is. The point is for Mackey functors (not coefficient systems), G ×
H

(−) gives both left and

right adjoints to the restriction map. Rewriting this, we are interested in the map

CoIndGH i
∗
HI(R)

f]→ R

which has an adjoint

i∗HI(R)
f[→ i∗HI(R)

which is equal to

i∗HI(R)
ηi∗
H
I(R)

−→ i∗H CoIndGH i
∗
HI(R)

i∗Hf
]

−→ i∗HI(R).
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First we note that i∗HI(R) is itself an abelian group object, and i∗Hf
] must be the abelian

group structure (so a sum of the elements in I(R)), so

i∗Hf
] : i∗H CoIndGH i

∗
HI(R) ∼= I(R)(G×

H
(G×

H
(−)))

∼= I(R)(i∗H(G/H)× (G×
H

(−)))→ I(R)(G×
H

(−)).

The unit of the adjunction comes from the inclusion of H/H → i∗H(G/H) and is the inclusion

of I(R)(G (
H

−))→ I(R)(i∗H(G/H)× (G×
H

(−))). The composition is the identity. The adjoint

of the identity map is the transfer. So the map I(R)(G/H × G/H) → I(R)(G/H) is

surjective. Thus we have proved the essential surjectivity of the following statement. The

fully-faithfulness is trivial.

Proposition 3.1.3. Let G be a finite group, O be an indexing system and A and B be

O-Tambara functors. Then the full subcategory of abelian objects of A−CAlg/B with all

2-surjective O-admissible norms vanishing on the augmentation ideal is equal to the full

subcategory of O-commutative monoid objects of A−CAlg/B.

An immediate corollary is

Corollary 3.1.4. There is an equivalence of categories between B-modules and

O-commutative monoids of A−CAlg/B. The map from left to right is B n (−) and the map

from right to left is the augmentation ideal.

3.2 Derivations

The above equivalence leads us naturally to derivations. In the classical setting,

a map from S → B n M in A−CAlg/B is a map of abelian groups and decomposes to

s 7→ (ε(s), d(s)). The map ε must be a map of rings. We see that A→ B nM maps to 0 in

the M component, so the map A → S → B nM → M is 0. Finally, if it is a map of rings

then

(ε(s1s2), d(s1s2)) = (ε(s1), d(s1)) · (ε(s1), d(s1))

= (ε(s1)ε(s2), ε(s1)d(s2) + ε(s2)d(s1))
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That is, d : S → M is an A-derivation, where M is considered an S-module via S → B. If

d : S →M is an A-derivation, then the map s 7→ (ε(s), d(s)) is a map of rings and therefore

a map in A−CAlg/B.

Following [15], we define O-genuine derivations so as to maintain the same property.

Definition 3.2.1. Let A be an O-Tambara functor, S be an element of A−CAlg, and M be

an S-module. Then a map d : S →M is a O-genuine A-derivation if

1. It is a map of Mackey functors.

2. A→ S →M is the zero map.

3. The map turns all admissible norms and products into transfers and sums in the fol-

lowing way: Let f : X → Y be an admissible norm map in O, including products.

Let

π1, π2 : X ×
Y
X −∆(X)→ X

be the projections. Then for s ∈ S(X), we require

d(Nf (s)) = Tf (Nπ2Rπ1(s) · d(s)).

We may sometimes refer to these as derivations, O-derivations, or A-derivations when the

meaning is clear.

The following propositions of [15] Section 4 now go through with almost no change

from the complete to incomplete case:

Proposition 3.2.1. If d : S →M is a O-genuine A-derivation then:

• If i : R→ S is a map of O-Tambara functors, then d ◦ i is a O-genuine A-derivation.

• If f : M →M ′ is a map of S-modules, then f ◦ d is a O-genuine A-derivation.

• The kernel ker(d) is a sub-O-Tambara functor of S.
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If B is an O-Tambara functor, M is an B-module, S
ε→ B is an element of A−CAlg/B and

d : S →M is a map of Mackey functors, then the map

εn d : S → B nM

is a map in A−CAlg/B if and only if d is a O-genuine A-derivation. In particular,

HomA−CAlg/B(S,B nM) ∼= DerA,O(S,M).

Note that the last line justifies our definition. By the same argument as in the classical

case, we have the following equivalence:

Proposition 3.2.2. A map d : B → W is an A-derivation if and only if the map d is a

map of A-modules and satisfies

d(Nf (b)) = Tf (Nπ1Rπ2(b) · d(b)).
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3.3 Kahler Differentials

Let A be an O-Tambara functor and let B be an A-algebra. Consider the natural

homomorphism

µ : B �
A
B → B

given by the pushout of the two identity maps B
Id→ B. This maps Tf (b ⊗ b′) 7→ Tf (b · b′)

for f : X → Y and b ∈ B(X). The kernel of this map is an O-Tambara ideal I. I gives

rise to two other families of ideals. First, we have I2, the image of I � I → I, and likewise

I3, I4, . . . Second, we have the ideal I>1 which is the smallest ideal of B containing every

element Nf (i), where i ∈ I(X) and f : X → Y is a 2-surjective O-admissible map. This is

the same definition as appears in [15] for the complete case. Similarly I>2 is defined likewise

except f must be 3-surjective, meaning f−1(y) has cardinality at least 3 for all y ∈ Y , and

so on. We might also refer to these ideals as I≥2, I≥3, . . . for easier to read formulas. We

define ΩA|B := I/I>1 and call it the module of Kähler differentials.

There is a Mackey functor map B → I given by 1 ⊗ b − b ⊗ 1. This gives rise to

a natural A-derivation δ : B → ΩA|B given by b 7→ 1⊗ b− b⊗ 1. Note that just in the

classical case, while I has two B-module structures, one on the left and one on the right,

when passing to the quotient of any module including I2 they give the same structure.

Lemma 3.3.1. I is generated by the image of δ(B) as an ideal of B �
A
B. Therefore, ΩA|B

is generated by δ(B) as a B-module.

Proof. Let Tf (b⊗ b′) be an element of B �
A
B such that Tf (bb

′) = 0. Then

Tf (b⊗ b′) = Tf (b⊗ b′)− Tf (bb′)⊗ 1

= Tf (b⊗ b′)− Tf (bb′ ⊗Rf (1))

= Tf (b⊗ b′ − bb′ ⊗ 1)

= Tf ((b⊗ 1) · (1⊗ b′ − b′ ⊗ 1)).
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Proposition 3.3.2. If W is a B module, then given an element h ∈ HomB(ΩA|B,W ), the

composition h ◦ δ is a A-derivation. Furthermore, all derivations are of this form: the map

HomB(ΩA|B,W )→ DerA(B,W )

is an isomorphism.

We will denote DerA(B,W ) := HomB(ΩA|B,W ), the internal hom object. This is a

B-module that includes the genuine derivations DerA(B,W )(G/G) = DerA(B,W ).

Proof. Proposition 3.2.1 shows that the map is well defined. Suppose h ◦ δ is the zero map.

Because δ(B) generates ΩB|A, h must be 0. Therefore, the map is injective.

Suppose we have a derivation d : B → W . We will show there is a map h such that

d = h ◦ δ. Firstly, we define h : I → W by

h(Tq(b⊗ b′)) = Tq(b · d(b′)).

We will show that this sends I>1 to 0. Once that is shown, the proposition is clear, as

h ◦ δ(b) = h(1⊗ b− b⊗ 1) = d(b)− bd(1) = d(b).

Suppose g : X → Y is 2-surjective and Y decomposes into orbits
∐n

i Yi. Then we get

maps gi : Xi → Yi that are 2-surjective. Therefore, Ng(1⊗ (s1, . . . , sn)− (s1, . . . , sn)⊗ 1) =

(Ng1(1⊗s1−s1⊗1), . . . , Ngn(1⊗sn−sn⊗1)). In particular, this shows that I>1 is generated

by Ng(1 ⊗ s − s ⊗ 1) where g maps to an orbit. Additionally, every map onto an orbit

g :
∐n

j G/Hj → G/H is the composition of
∐n

j G/Hj
hj→
∐n

j G/H
∇→ G/H. If any of the hi

are 2-surjective, then the fact that I>1 is an ideal means we can multiply by any element of

I and stay in I>1. Thus Nhj(ij) in the generating set implies Nf (i) is in the ideal. If no hi

are 2-surjective, then they are the identity, and our element must be N∇(i) for the map to

be 2-surjective. In summary, I>1 is generated by Ng(1 ⊗ s − s ⊗ 1) where g is 2-surjective

and is either an orbit mapping to an orbit G/K → G/H or a fold map.
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With the fold map ∇ : G/H qG/H → G/H, the fact that f(N∇(1⊗ s− s⊗ 1)) = 0

is classical:

N∇((1⊗ s1 − s1 ⊗ 1, 1⊗ s2 − s2 ⊗ 1)) = (1⊗ s1 − s1 ⊗ 1)(1⊗ s2 − s2 ⊗ 1)

= 1⊗ s1s2 − s1 ⊗ s2 − s2 ⊗ s1 + s1s2 ⊗ 1

giving

f(N∇((1⊗ s1 − s1 ⊗ 1, 1⊗ s2 − s2 ⊗ 1))) = d(s1s2)− s1d(s2)− s2d(s1)

= 0.

Lastly, we need to show for g : G/K → G/H, f(Ng(1 ⊗ s − s ⊗ 1)) = 0. Let us for

a moment consider when H = G and change our variables so that we are considering K-

Tambara functors and the map f : K/H → K/K. We rewrite Nf (1⊗s−s⊗1) in TNR-form

again:

K/H

��

K/H
∐
K/Hoo {kH, s : K/H → {0, 1}}

��

oo

? {s : K/H → {0, 1}}oo

We break up the 2 rightmost sets into the cardinality of s−1(1) indexed by the dummy

variable i, and the top rightmost set into where kH maps.

K/H

��

K/H
∐
K/Hoo

∐|K/H|
i=0 ({kH, s|s−1(1) = i, s(kH) = 0}
q{kH, s|s−1(1) = i, s(kH) = 1})

��

oo

?
∐|K/H|

i=0 {s : K/H → {0, 1}|s−1(1) = i}oo

The key observation is that the map

{kH, s|s−1(1) = i, s(kH) = 1} → {s|s−1(1) = i}

39



is precisely i-to-1. When we evaluate Nf (s⊗ 1 + (1⊗ s− s⊗ 1)) we get

1⊗Nf (s)

= Nf [s⊗ 1 + (1⊗ s− s⊗ 1)]

= c0 + c1 + c2 + . . .+ c|K/H|−1 + c|K/H|

= Nf (s)⊗ 1 + Tp(N
f
π2
Rf
π1
s · (1⊗ s− s⊗ 1)) + c2 + . . .+ c|K/H|−1 +Nf (1⊗ s− s⊗ 1).

Here we break up Nf [1⊗ s+ (1⊗ s− s⊗ 1)] by the i-index on the right two sets. c0, c|H/K|

can readily be seen to be the terms above 1⊗Nf (s) and Nf (1⊗ s− s⊗ 1) respectively. c1

being Tp(N
f
π2
Rf
π1
s · (1 ⊗ s − s ⊗ 1)) is done in [15] and not repeated here. Lastly, ci for all

other i is a multiple Ng(R∇(1⊗ s− s⊗ 1)) for where R∇ is the restriction of some fold map,

perhaps the identity, and g an exactly i-to-1 map.

One observation is because G×
K

(−) respects exponential diagrams, we get the diagram

G/H

f

��

G/H
∐
G/Hoo

∐|K/H|
i=0 ({gH, s|s−1(1) = i, s(gH) = 0}
q{gH, s|s−1(1) = i, s(gH) = 1})

��

oo

G/K
∐|K/H|

i=0 {gK, s : f−1(gK)→ {0, 1}|s−1(1) = i}oo

giving again

1⊗Nf (s)

= Nf [s⊗ 1 + (1⊗ s− s⊗ 1)]

= c0 + c1 + c2 + . . .+ c|K/H|−1 + c|K/H|

= Nf (s)⊗ 1 + Tp(N
f
π2
Rf
π1
s · (1⊗ s− s⊗ 1)) + c2 + . . .+ c|K/H|−1 +Nf (1⊗ s− s⊗ 1).

with ci for all other i is a multiple Ng(R∇(1⊗ s− s⊗ 1)).

We can now prove that I>1 is mapped to 0 by induction. The hypothesis, as a function

of the ith step in the induction, is that Nf (1 ⊗ s − s ⊗ 1) is mapped to 0 for all f when f

is j-to-1 for 1 < j < i + 1. For the first step, we have no hypothesis. The second step, we
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suppose the Nf (1⊗ s− s⊗ 1) maps to 0 for all f 2-to-1 maps. The third step, all 2-to-1 and

3-to-1 maps, etc.

Suppose h(Nf (1⊗ s− s⊗ 1)) = 0 for all f when f is j-to-1 for 1 < j < i+ 1. Now we

consider G/H → G/K when f is (i+1)-to-1. Then c2, . . . , c|K/H|−1 are all 0 by the induction

hypothesis. Therefore,

h[1⊗Nf (s)] = h[Nf (s)⊗ 1 + Tp(N
f
π2
Rf
π1
s · (1⊗ s− s⊗ 1)) +Nf (1⊗ s− s⊗ 1)].

Rearranging to

h[Nf (1⊗ s− s⊗ 1)] = h[1⊗Nf (s)]− h[Nf (s)⊗ 1]− h[Tp(N
f
π2
Rf
π1
s · (1⊗ s− s⊗ 1))]

= 0

and then h(Nf (1⊗ s− s⊗ 1)) = 0. Therefore, Nf (1⊗ s− s⊗ 1) is mapped to kernel for all

f (i+ 1)-to-1. By induction, Nf (1⊗ s− s⊗ 1) is mapped to 0 for all f : G/H → G/K and

f the fold map. This completes the proof that I>1 is mapped to 0.

Suppose M is a B-module. Then we have the following isomorphisms:

HomA−CAlg/B(R,B nM) ∼= DerA,O(R,M)

∼= HomR−Mod(ΩR/A,M)

∼= HomB−Mod(ΩR/A �
R
B,M)

Therefore there is a Mackeyization functor (this term is meant to emulate abelianization)

between

A−CAlg/B → (A−CAlg/B)O−CommMon
∼= BMod

where (A−CAlg/B)O−CommMon are the O-commutative monoid objects. The map takes

R 7→ Ω1,G,O
R/A �

R
B.

Using the equivalence of categories between B-mod and the O-commutative monoids of

A−CAlg/B, this is left adjoint to the inclusion functor of

(A−CAlg/B)O−CommMon → A−CAlg/B.
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First we prove some functoriality properties of genuine derivations and Kähler differ-

entials.

Proposition 3.3.3. Suppose we have a commutative diagram of O-Tambara functors

A′ //

α

��

B′

β

��
A // B

and a map ω : W ′ → W of B′-modules, with the B′-module structure of W coming from a

B-module structure. Then there are natural B′-module maps

DerA(B,W ′)→ DerA′(B
′,W )

ΩA′|B′ �
B′
W ′ → ΩA|B �

B
W.

Proof. There is the following commutative diagram

I ′

��

// I

��
B′ �

A′
B′

β⊗β //

µ′

��

B �
A
B

µ

��
B′

β // B′

and similarly I ′>1 → I>1 inducing a map ΩA′|B′ → ΩA|B which is a map of B′-modules, as

the map β ⊗ β is a map of B′-modules (on the left). Therefore we get the series of maps

ΩA′|B′ �
B′
W ′ → ΩA|B �

B′
W ′

→ ΩA|B �
B′
W

∼= ΩA|B �
B
W.

Let f ∈ DerA(B,W ′)(X). Then ωX ◦ f ◦ β ∈ DerA′(B
′,W )(X).

Proposition 3.3.4. Suppose {Wk} is a set of B-modules. Then there are natural isomor-

phisms

ΩA|B �
B

(⊕
k

Wk

)
∼=
⊕
k

ΩA|B �
B
Wk
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DerA

(
B,
∏
k

Wk

)
∼=
∏
k

DerA(B,Wk)

Proof. The first is simply a property of the box product with respect to direct sums. The

second follows from Proposition 3.2.1 and the fact that maps into a product is the product

of maps.

Proposition 3.3.5. Suppose C an A-algebra is a W an B �
A
C-module. Then there are

natural isomorphisms

ΩA|B �
B
W

∼=→ ΩC|B�
A
C �
B�
A
C
W

DerC(B �
A
C,W )

∼=→ DerA(B,W )

Proof. Given the pushout diagram

A

��

// B

��
C // B �

A
C

we have natural maps in the statement given by Proposition 3.3.3. To show the second is

an isomorphism, consider the isomorphism

HomC−Mod(B �
A
C,W ) ∼= HomA−Mod(B,W ).

Suppose f ∈ HomC−Mod(B�
A
C,W ) is additionally in DerC(B�

A
C,W ). Then f takes norms

to the appropriate transfers. We show that the isomorphism extends to these subsets.

If the composition B → B �
A
C → W is 0, then the map B �

A
C → W is 0 because

Tq(c ⊗ b) 7→ Tq(c · 0) = 0. Thus the map on derivations is injective. Similarly if g ∈

HomA−Mod(B,W ) takes norms to transfers, then the induced map in HomC−Mod(B�
A
C,W ),

that is Tq(c⊗ b) 7→ Tq(c · g(b)), takes norms to transfers by the laborious calculation in the

next lemma. For the first isomorphism, we use the second isomorphism and the universal
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property of the module of Kähler differentials:

DerC(B �
A
C,W ) ∼= DerA(B,W )

HomB�
A
C(ΩC|B�

A
C ,W ) ∼= HomB(ΩA|B,W )

∼= HomB�
A
C(ΩA|B �

A
C,W )

ΩC|B�
A
C
∼= ΩA|B �

A
C

ΩA|B �
B
W ∼= ΩC|B�

A
C �
B�
A
C
W

Lemma 3.3.6. Suppose d ∈ DerA(B,W ) and let d̃ : C �
A
B → W be the induced map from

d,

d̃ : Tp(c⊗ b) 7→ Tp(c · d(b)).

Then d̃ is a genuine derivation for the O-Tambara functor map C→C �
A
B.

Proof. This is a map of Mackey functors: it is clear it commutes with transfers and the fact

that d commutes with restrictions implies d̃ commutes with restrictions: Let RpTq = TaRb,

d̃ (RpTq(c⊗ b)) = d̃ (TaRb(c⊗ b))

= Ta(Rbc · d(Rbb))

= TaRb(c · d(b))

= RpTq(c · d(b))

= Rpd̃[Tq(c⊗ b)].

For the C-action, compute

d̃ (c′ · Tq(c⊗ b)) = d̃ (Tq(Rq(c
′) · c⊗ b))

= Tq(Rq(c
′) · c · d(b))

= c′ · Tq(c · d(b))

= c′ · d̃ (Tq(c⊗ b)) .
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Additionally, C maps to 0, since d(1) = 0. We simply need to show the multiplicative

property. We want to show that (equations we want to show and are not yet evident are

labeled by ‘WTS’):

d̃(Nf (Tp(c⊗ b)))
WTS
= Tf (N

f
π2
Rf
π1

(Tp(c⊗ b)) · d̃(Tp(c⊗ b)))

= Tf (N
f
π2
Rf
π1

(Tp(c · b)) · Tp(c · d(b))).

To evaluate the left side, we need to put NfTp in TNR form. Let NfTp = TaNbRc, then we

want to show that

d̃(Nf (Tp(c⊗ b))) = d̃(TaNbRc(c⊗ b))

= d̃(Ta(NbRcc⊗NbRcb))

= Ta(NbRcc · d(NbRcb))

= Ta(NbRcc · Tb(N b
π2
Rb
π1
Rcb · d(Rcb)))

= TaTb(N
b
π2
Rb
π1

(Rcc⊗Rcb) ·Rcc · d(Rcb))

WTS
= Tf (N

f
π2
Rf
π1
Tp(c⊗ b) · Tp(c · d(b))).

The author believes the only method is to convert Tf (N
f
π2
Rf
π1

(Tp(c · b)) · Tp(c · d(b))) into

TNR-form. In the following diagrams, all the squares are pull backs, and all the diagrams

with 2 arrows on top and 1 on bottom are exponential diagrams.
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Tf (N
f
π2
Rf
π1
Tp(c⊗ b) · Tp(c · d(b)))

= TfN∇[N f
π2
Rf
π1
TpN∇(c⊗ 1, 1⊗ b), TpN∇(c, d(b))]

= TfN∇[N f
π2
Tp̃Rπ̃1(c⊗ b), Tp(c · d(b))] via Diagram 1

= TfN∇[Ta′Nb′Rc′Rπ̃1(c⊗ b), Tp(c · d(b))] via Diagram 2

= TfTa′′N∇[Rc′′0
Nb′Rc′Rπ̃1(c⊗ b), Rc(c · d(b))] via Diagram 3

= TfTa′′N∇[Nb′′Rc′′′Rc′Rπ̃1(c⊗ b), Rc(c · d(b))] via Diagram 4

= TfTa′′N∇[N b
π2
Rb
π1
Rc(c⊗ b), Rc(c · d(b))] via Diagram 5,6

= TaTb[N
b
π2
Rb
π1
Rc(c⊗ b) ·Rc(c · d(b))].

Along with the complementary diagrams below, this completes the proof that this is a

genuine derivation.

Exponential Diagram 0:

Y

f

��

Xp
oo {(y, s : f−1(f(y))→ X)}c

oo

b
��

Z {(z, f−1(z)→ X)}a
oo

Diagram 1:

X ×
Z
Y − p(X)

:= {(x, y)|f(p(x)) = f(y), p(x) 6= y}

p̃ //

π̃1
��

Y ×
Z
Y − Y

:= {(y, y′)|f(y) = f(y′), y 6= y′}
π1
��

X
p // Y
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Diagram 2:

Y ×
Z
Y − Y

π2

��

X ×
Z
Y − p(X)

p̃
oo {(y, y′, s : f−1(f(y′)) \ {y′} → X)|

y 6= y′, f(y) = f(y′)}c′
oo

b′

��
Y {(y′, s : f−1(f(y′)) \ {y′} → X)}

a′
oo

Diagram 3:

Y
∐
Y

∇
��

{(y, s : f−1(f(y))− {y} → X)} qX
(a′,p)
oo {(y, s : f−1(f(y))→ X)}

q{(y, s : f−1(f(y))→ X)}(c′′0 ,c)
oo

∇��
Y {(y, s : f−1(f(y))→ X)}

a′′
oo

Diagram 4:

{(y, y′, s : f−1(f(y′))→ X)|y 6= y′, f(y) = f(y′)} b′′=π2 //

c′′′
��

{(y′, s : f−1(f(y′))→ X)}
c′′0��

{(y, y′, s : f−1(f(y′))− y → X)|y 6= y′, f(y) = f(y′)} b′ // {(y′, s : f−1(f(y′))− y′ → X)}

Diagram 5:

{(y, y′, s : f−1(f(y′))→ X)|y 6= y′, f(y) = f(y′)} π1 // {(y′, s : f−1(f(y′))→ X)} c // X

Diagram 6:

{(y, y′, s : f−1(f(y))→ X)|
y 6= y′, f(y) = f(y′)}

π1 **π2=b′′tt
{(y, s : f−1(f(y))→ X)} {(y′, s : f−1(f(y′))→ X)}
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Lemma 3.3.7. There are natural isomorphisms

ΩA|B ⊕ ΩA|C ∼= ΩA|B�
A
C

DerA(B,W )⊕DerA(C,W ) ∼= DerA(B �
A
C,W ).

Proof. We only show the property for Der, as the property for Ω follows by the universal

property again. If d is a derivation from B �
A
C → W , then

d(Tp(b⊗ c)) = Tp((b⊗ 1) · d(1⊗ c) + (1⊗ c) · d(b⊗ 1))

so the map of the lemma is injective. It is surjective by using Lemma 3.3.6 and by adding

the two respective derivations to get a derivation from B�
A
C, as the sum of two derivations

is a derivation.
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3.3.1 Kahler differentials for Free Tambara functors

The canonical example to compute in the classical setting is the module of Kähler

differentials for the inclusion of R→ R[x]. In this case, the module of Kähler differentials is

the free R[x]-module R[x] · {dx}. We want to model R[x]. Maps from Z[x] to another ring

R are canonically isomorphic to elements of R, given by the image of x. In the equivariant

setting, we have rings for every subgroup H so we expect to have a family of free Tambara

functors, indexed by H. Indeed, this definition is introduced in [5].

Definition 3.1. For H ⊂ G, let

AO[xH ] = PG
O (G/H,−)

be the O-Tambara functor represented by G/H. By the Yoneda lemma,

O − Tamb(AO[xH ], R) ∼= R(G/H).

Classically R[x] = R ⊗ Z[x] and R-derivations from R[x] → M correspond with

elements of M , the image of dx. This extends to the equivariant case.

Proposition 3.3.8. Let φ : R → R � AO[xH ] be the inclusion r 7→ r ⊗ 1. Then there is an

isomorphism

Derφ(R� AO[xH ],M)
∼=−→M(G/H).

The map is d 7→ d(1⊗ Id), where Id = TIdNIdRId is the identity polynomial.

Proof. The image of d(1⊗Id) completely determines the derivation d, because every element

of R � AO[xH ] is of the form Tp(r ⊗ NbRc) by [31] Prop 3.14. We necessarily have (using

d(r ⊗ 1) = 0):

d(Tp(r ⊗NbRc)) = Tp(d((r ⊗ 1) ·NbRc(1⊗ Id)))

= Tp((r ⊗ 1) · d(NbRc(1⊗ Id)))

= Tp((r ⊗ 1) · Tb(N b
π2
Rb
π1
Rc(1⊗ Id) ·Rcd(1⊗ Id))).

This shows that the above map is injective. To show a bijection, we must show that the

equation above does define a derivation for any element that we defined d(1 ⊗ Id) to be in

M(G/H).
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From the definition, the R in R� AO[xH ] is mapped to 0:

d(r ⊗N∅R∅ Id) = (r ⊗ 1) · T∅(N∅π2R
∅
π2
R∅(1⊗ Id) ·Rd(1⊗ Id))

= 0

because T∅ maps every element to 0. Transfers trivially commute with d. To show that

restrictions commute with d, and that taking the norm of an element respects the mul-

tiplicative condition, requires we rearrange polynomials into TNR-form using exponential

diagrams and pullbacks. Both these proofs are laborious but straightforward.

First we show the commutativity with restrictions. We need to show that (maps

defined by diagrams below)

Rfd(Ta(r ⊗NbRc)) = d(RfTa(r ⊗NbRc)).

Let RfTa = TãRf̃ and Rf̃Nb = Nb̃Rg. Then the right hand side is

d(RfTa(r ⊗NbRc)) = d(TãRf̃ (r ⊗NbRc))

= d(Tã(Rf̃r ⊗Rf̃NbRc))

= d(Tã(Rf̃r ⊗Nb̃RgRc))

= d(Tã(Rf̃r ⊗Nb̃RgRc))

= Tã((Rf̃r ⊗ 1) · Tb̃(N
b̃
π2
Rb̃
π1
RgRc ·RgRcd(Id)))

Rfd(Ta(r ⊗NbRc)) = RfTa((r ⊗ 1) · Tb(N b
π2
Rb
π1
Rc ·Rcd(Id)))

= Tã(Rf̃ (r ⊗ 1) · Tb̃Rg(N
b
π2
Rb
π1
Rc ·Rcd(Id)))

= Tã(Rf̃ (r ⊗ 1) · Tb̃(RgN
b
π2
Rb
π1
Rc ·Rcd(Id)))

It remains to show that N b̃
π2
Rb̃
π1
Rg = RgN

b
π2
Rb
π1
. We have the following diagrams:

Diagram 1

X ×
Z
Y

g

��

b̃ // Y

f̃

��
X

b // Z
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Diagram 2

(X ×
Z
Y )×

Y
(X ×

Z
Y )−∆(X ×

Z
Y )

Rb̃π1uu N b̃
π2 ))

X ×
Z
Y

Rg|| **

X ×
Z
Y

ttX X

Diagram 3

(X ×
Z
Y )×

Y
(X ×

Z
Y )−∆(X ×

Z
Y )

tt ))
X ×

Z
X −∆(X)

Rbπ1xx

Nb
π2

++

X ×
Z
Y

Rg
ttX X

In the third diagram, the square is a pullback. The pullback would be two distinct

elements of X and an element of Y , all mapping to the same element in Z, which is precisely

what (X×
Z
Y )×

Y
(X×

Z
Y )−∆(X×

Z
Y ) is. Tracing through the maps, we see that N b̃

π2
Rb̃
π1
Rg =

RgN
b
π2
Rb
π1
.

Now we have to show the derivation respects norms. We want to calculate (maps
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defined by diagrams below)

d(NγTβ(r ⊗NαRk))

= d(Tα′Nβ′Rγ′(r ⊗NαRk))

= d(Tα′Nβ′(Rγ′r ⊗Rγ′NαRk))

= d(Tα′Nβ′(Rγ′r ⊗Nα̃Rγ̃′Rk))

= d(Tα′(Nβ′Rγ′r ⊗Nβ′Nα̃Rγ̃′Rk))

= Tα′((Nβ′Rγ′r ⊗ Id) · Tβ′◦α̃((1⊗Nβ′◦α̃
π2

Rβ′◦α̃
π1

Rγ̃′Rk) ·Rγ̃′Rkd(1⊗ Id)))

= Tα′Tβ′◦α̃((Rβ′◦α̃Nβ′Rγ′r ⊗Nβ′◦α̃
π2

Rβ′◦α̃
π1

Rγ̃′Rk) ·Rγ̃′Rkd(1⊗ Id))

WTS
= Tγ(N

γ
π2
Rγ
π1
Tβ(r ⊗NαRk) · Tβ((r ⊗ Id) · Tα((1⊗Nα

π2
Rα
π1
Rk) ·Rkd(1⊗ Id))))

If the above equations are equal, then d satisfies the multiplicative property. We rearrange

the last expression in TNR-form:

Tγ(N
γ
π2
Rγ
π1
Tβ(r ⊗NαRk) · Tβ((r ⊗ Id) · Tα((1⊗Nα

π2
Rα
π1
Rk) ·Rkd(1⊗ Id))))

= Tγ(N
γ
π2
Tβ̃Rλ(r ⊗NαRk) · Tβ((r ⊗ Id) · Tα((1⊗Nα

π2
Rα
π1
Rk) ·Rkd(1⊗ Id))))

= Tγ(Tα′′Nβ′′Rγ′′Rλ(r ⊗NαRk) · Tβ((r ⊗ Id) · Tα((1⊗Nα
π2
Rα
π1
Rk) ·Rkd(1⊗ Id))))

= Tγ(Tα′′Nβ′′Rγ′′Rλ(r ⊗NαRk) · TβTα((Rα(r)⊗Nα
π2
Rα
π1
Rk) ·Rkd(1⊗ Id)))

= TγTα′′′N∇Rγ′′′([Nβ′′Rγ′′Rλ(r ⊗NαRk)], [((Rα(r)⊗Nα
π2
Rα
π1
Rk) ·Rkd(1⊗ Id))])

= TγTα′′′N∇([Rγ′′′0
Nβ′′Rγ′′Rλ(r ⊗NαRk)], [Rγ′′′1

(Rα(r)⊗Nα
π2
Rα
π1
Rk) ·Rγ′′′1

Rkd(1⊗ Id)])

= TγTα′′′((Rγ′′′0
Nβ′′Rγ′′Rλr ⊗Rγ′′′0

Nβ′′Rγ′′RλNαRk)

·(Rγ′′′1
Rα(r)⊗Rγ′′′1

Nα
π2
Rα
π1
Rk) ·Rγ′′′1

Rkd(1⊗ Id))

= TγTα′′′([(Rγ′′′0
Nβ′′Rγ′′Rλ(r) ·Rγ′′′1

Rα(r))⊗ (Rγ′′′0
Nβ′′Rγ′′RλNαRk

·Rγ′′′1
Nα
π2
Rα
π1
Rk)] ·Rγ′′′1

Rkd(1⊗ Id))

= TγTα′′′([(Rγ′′′0
Nβ′′Rγ′′Rλ(r) ·Rγ′′′1

Rα(r))⊗ (NεRδRk ·NφRγ̃′′′1
Rα
π1
Rk)] ·Rγ′′′1

Rkd(1⊗ Id))
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Tγ(N
γ
π2
Rγ
π1
TβNαRk · TβTα(Nα

π2
Rα
π1
Rk ·Rkd(Id)))

= Tγ(N
γ
π2
Tβ̃RλNαRk · TβTα(Nα

π2
Rα
π1
Rk ·Rkd(Id)))

= Tγ(Tα′′Nβ′′Rγ′′RλNαRk · TβTα(Nα
π2
Rα
π1
Rk ·Rkd(Id)))

= TγTα′′′N∇Rγ′′′(Nβ′′Rγ′′RλNαRk, N
α
π2
Rα
π1
Rk ·Rkd(Id))

= TγTα′′′N∇(Rγ′′′0
Nβ′′Rγ′′RλNαRk, Rγ′′′1

Nα
π2
Rα
π1
Rk ·Rγ′′′1

Rkd(Id))

= TγTα′′′((NεRδRk ·NφRγ̃′′′1
Rα
π1
Rk) ·Rγ′′′1

Rkd(Id))

The following diagrams validate the above rearrangement:

Diagram 1

A Bkoo α // C
β // D

γ // E

Diagram 2

D

γ

��

C
β
oo {(d, s : γ−1(γ(d)))→ C)}

β′

��

γ′
oo

E {(e, s : γ−1(e)→ C)}
α′

oo

Diagram 3

D ×
E
D −∆(D)

πγ1xx
πγ2 &&

D D

Diagram 4

B ×
C
B −∆(B)

πα1
yy

πα2
&&

B B
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Diagram 5

{(b, d, s : γ−1(γ(d))→ C)|α(b) = s(d)}
γ̃′

��

α̃ // (d, s : γ−1(γ(d))→ C)

γ′

��
B

α // C

Diagram 6

{(b, d, s : γ−1(γ(d))→ C)|α(b) = s(d)} β
′◦α̃ // {(e, s : γ−1(e)→ C)}

Diagram 7

{(b, b′, d, d′, s)|α(b) = s(d), α(b′) = s(d′),
γ(d) = γ(d′), d 6= d′ OR b 6= b′}

πβ
′◦α̃

1

��

πβ
′◦α̃

2

++
{(b, d, s : γ−1(γ(d))→ C)|α(b) = s(d)} {(b′, d′, s : γ−1(γ(d))→ C)|α(b) = s(d)}

Diagram 8

{(c, d′)|β(c) 6= d′, γβ(c) = γ(d′)}

λ

��

β̃ // D ×
E
D −∆(D)

πγ1
��

C
β // D

Diagram 9

D ×
E
D −∆(D)

πγ2

��

{(c, d′)|β(c) 6= d′,
γβ(c) = γ(d′)}β̃

oo {(d, d′, s : γ−1(γ(d′)) \ d′ → C)|
d 6= d′, γ(d) = γ(d′)}γ′′

oo

β′′
��

D {(d′, s : γ−1(γ(d′)) \ d′ → C)}
α′′

oo
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Diagram 10

D qD

∇
��

{(d′, s : γ−1(γ(d)) \ d′ → C)} qB(α′′,β◦α)oo 2 · {(b, d′, s : γ−1(γ(d′)) \ d′ → C)|
βα(b) = d′}(γ′′′0 γ

′′′
1 )

oo

∇��

D {(b, d′, s : γ−1(γ(d′)) \ d′ → C)|
βα(b) = d′}α′′′

oo

Diagram 11

{(b, b′, d′, s : γ−1(γ(d′)) \ d′ → C)|βα(b) = d′,
b 6= b′, α(b) = α(b′)}

γ̃′′′1 //

φ
��

B ×
C
B −∆B

πα2
��

{(b, d′, s : γ−1(γ(d′)) \ d′ → C)|βα(b) = d′}
γ′′′1 // B

Diagram 12

B

α

��

{(b, d, d′, s)|
d 6= d′, γ(d) = γ(d′), α(b) = s(d)}

oo

��

{(b0, b1, d, d
′, s)|d 6= d′,

γ(d) = γ(d′), α(b0) = s(d), βα(b1) = d′}
oo

��

δ

xx

ε

uu

C {(d, d′, s)|
d 6= d′, γ(d) = γ(d′)}λ ◦ γ′′

oo

β′′

��

{(b, d, d′, s)|
d 6= d′, γ(d) = γ(d′), βα(b) = d′}

oo

��

{(d′, s : γ−1(γ(d′)) \ d′ → C)} {(b, d′, s : γ−1(γ(d′)) \ d′ → C)|
βα(b) = d′}γ′′′0

oo
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We can show the desired equality by showing the following:

Tα′Tβ′◦α̃ = TγTα′′′

Rγ̃′ = Rγ′′′1

Nβ′◦α̃
π2

Rβ′◦α̃
π1

Rγ̃′Rk = NεRδRk ·NφRγ̃′′′1
Rα
π1
Rk

Rγ′′′0
Nβ′′Rγ′′Rλ(r) ·Rγ′′′1

Rα(r) = Rβ′◦α̃Nβ′Rγ′(r).

The first one is true because the following sets are isomorphic:

{(b, d, s : γ−1(γ(d))→ C)|α(b) = s(d)} ∼= {(b, d, s : γ−1(γ(d)) \ d→ C)|βα(b) = d}

because the rightmost set has selected an element to map s(d) to, the element α(b).

The second one is true for an identical reason. The third one is true because the set

{(b0, b1, d, d
′, s : γ−1(γ(d′)) \ d′ → C)|d 6= d′, γ(d) = γ(d′), α(b0) = s(d), βα(b1) = d′}∐
{(b, b′, d′, s : γ−1(γ(d′)) \ d′ → C)|βα(b) = d′, b 6= b′, α(b) = α(b′)}

is isomorphic to

{(b, b′, d, d′, s : γ−1(γ(d))→ C)|α(b) = s(d), α(b′) = s(d′), γ(d) = γ(d′), d 6= d′ OR b 6= b′}

by essentially the same argument as the first equation. The first set in the disjoint union is

the case d 6= d′, then second is the case d = d′. The fourth is true for an almost identical

reason. Therefore, we have shown that the above defines a genuine derivation, and we have

the isomorphism.

Corollary 3.3.9. The module of Kähler differentials for R → S = R � AO[xH ] is the free

S-module generated by a single element at G/H.

Corollary 3.3.10. The module of Kähler differentials for R → S = R � (�
i
AO[xHi ]) is the

free S-module generated by an element at every G/Hi when i is finite.

Proof. This follows from Lemma 3.3.7.
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3.4 Cotangent Complex, (co)homology

Using the Mackeyization functor, we will now describe the cotangent complex, the qth

André-Quillen (co)homology Mackey functors of the A-Tambara functor B with coefficients

in the B module M , denoted Dq(B|A;M) and Dq(B|A;M).

Given any simplicial object in an abelian category (a contravariant functor from

∆op → C our abelian category), we have the homology in the qth dimension Hq(X), the

qth homology of the chain complex with d =
∑

i(−1)idi. Via the map in the Dold-Kan

correspondence, this is the same as the homology of the normalized subcomplex, or phrased

differently, the qth homotopy group. The homology and cohomology will be built via cofi-

brant replacement, so we briefly discuss the simplicial model structure on the category of

simplicial A-algebras over B, following [14], which is nearly identical to the classical case.

Chain complexes of modules over an incomplete Tambara functor A has a model

category structure:

Proposition 3.4.1. The category Ch∗A has the structure of a model category where f :

M∗ → N∗ is

• a weak equivalence if H∗f is an isomorphism,

• a fibration if Mn → Nn is surjective for n ≥ 1, and

• a cofibration if for n ≥ 0, the map Mn → Nn is an injection with projective cokernel.

Proof. This is similar to [14] Theorem 1.5. We will show only the instances where the proofs

differ from the classical case described in this source. The axioms of limits and colimits,

retracts, 2-out-of-3, and lifting to an acyclic fibration are all identical.

Now we show the acyclic-cofibration to a fibration axiom. The difference here is

the presence of more than one n-disc. Let D(n,H) for n ≥ 1 be the chain complex with

D(n,H)k = 0 for k 6= n, n − 1 and the free A-module with one generator at G/H other-

wise. The only relevant differential is the identity. Then there is a natural isomorphism

Ch∗A(D(n,H), N∗)
∼= Nn(H). Therefore, q : Q∗ → N∗ is a fibration if and only if q has the

right lifting property with respected to 0→ D(n,H) for all n > 0, H < G.
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If N∗ is any chain complex, define a new chain complex P (N∗) and an evaluation

map ε : P (N∗)→ N∗ by

P (N∗) =
⊕

n>0,H<G

⊕
x∈Nn(G/H)

D(n,H)→ N∗.

The map is clearly a fibration, but more so for any M∗ → N∗, we can factor this map by

M∗ →M∗ ⊕ P (N∗)→ N∗

where the first map is an acyclic cofibration, completing one half of the factorization axioms.

The rest of the proof is identical as in [14].

Note from the proof above that chain complexes are cofibrantly generated. The set

that generates the acyclic cofibrations are the maps 0→ D(n,H). The set that generates the

cofibrations are maps of the form 0→ D(n,H), S(n− 1, H)→ D(n,H), and 0→ S(0, H),

where S(n,H) is the chain complex that has a single non-zero module at dimension n, and

is the free module generated by a single element at G/H.

Proposition 3.4.2. Ch∗A is a cofibrantly generated model category, with the generating sets

for cofibrations and acyclic cofibrations as described above.

Proof. Firstly, any bounded chain complex of finitely generated A-modules is small for the

set of all morphisms. The map colimC(A,Xn) → C(A, colimXn) is always injective: if we

have two maps in colimC(A,Xn), then there exists some n such that we can realize both

maps in C(A,Xn). If they are unequal as maps, they give unequal maps in the colimit. The

map is surjective because if the module is bounded and finitely generated, then for every

map in C(A, colimXn) we can realize this map as a map in C(A,Xn) for a specific n.

The property that a map is an acyclic fibration if has the RLP with respect to the

generating cofibrations, and similarly for the fibrations and generating acyclic cofibrations,

follows from Proposition 3.4.1.
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Via the Dold-Kan correspondence, which can be taken to be an inverse equivalence,

we can lift a model structure to sModA, the simplicial modules over A. The two items

to check are (1) the normalization functor N commutes with sequential colimits and (2)

any cofibration in sModA (maps which have the left lifting property with respect to acyclic

fibrations) that has the left lifting property with respect to all fibrations is a weak equivalence.

Any equivalence of categories satisfies both these conditions. So by [14] Theorem 3.6, we

have

Proposition 3.4.3. The category sModA has the structure of a model category where a

morphism f : X → Y is

• a weak equivalence if π∗X → π∗Y is an isomorphism; and

• a fibration if NXn → NY n is onto for n ≥ 1.

The cofibrations are generated by Γ[0→ D(n,H)] and Γ[S(n− 1, H)→ D(n,H)] where Γ is

the inverse to the normalization functor in the Dold-Kan correspondence.

We now want to build a model category structure on sA−CAlg. This can be done

again by lifting a model category structure via the adjunction

SA : sModA ↔ sA−CAlg : U

where SA is the symmetric algebra functor on each dimension, creating the free A-algebra

generated by the elements of the A-module, subject to the A-module relations. This is the

standard free-forget adjunction. The proof follows as in [14] Theorem 4.17. It is clear the

forgetful functor commutes with sequential colimits, as the colimit in both is given by the

colimit as simplicial sets. Now we need to appeal to [14] Theorem 3.8. All elements of

sA−CAlg are fibrant, and there is a natural path object for every element B ∈ sA−CAlg
given by B∆1

, which exists because it is a simplicial category. Therefore, we get the following

model category structure:

Proposition 3.4.4. The category sA−CAlg has the structure of a model category where a

morphism f : X → Y is
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• a weak equivalence if π∗X → π∗Y is an isomorphism; and

• a fibration if NXn → NY n is onto for n ≥ 1, where we consider Xn, Y n as simplicial

modules.

The cofibrations are generated by SΓ[0 → D(n,H)] and SΓ[S(n − 1, H) → D(n,H)] where

Γ is the inverse to the normalization functor in the Dold-Kan correspondence and S is the

free symmetric algebra functor.

Again we can classify cofibrations in a more direct way. We call a map R· → S·

in sA−CAlg free if there exists GIndexedSets C∗, which when η is a surjective map from

[p] → [q] we have η∗Cq ⊂ Cp such that Sq is a free Rq-algebra generated by Cq. Quillen

shows (in the non-equivariant setting though the equivariant setting goes through just as

formally) in [29] that any free map is a cofibration, any map in sA−CAlg can be factored in

to a free map followed by an acyclic fibration, and that a map is a cofibration if and only if

it is a retract of a free map.

This immediately gives us a model category structure on the over category

sA−CAlg/B. Just as in the classical case, we define the Quillen homology to be the total left

derived functor of Mackeyization. Namely, there are constant simplicial algebras cA and cB.

Given an element R ∈ A−CAlg/B, we can take the cofibrant replacement of the cA → cB

to yield cA→ P → cB. Applying the Mackeyization functor dimension-wise yields

P n 7→ Ω1,G,O
Pn/A

�
R
B

which we call the cotangent complex LB/A or Lφ if φ : A → B. Note that by standard

arguments of the cofibrant replacement, the cotangent complex is well defined up to chain

homotopy equivalence. We can also always assume that P is built out of free O-Tambara

functors. Then we can define the André-Quillen homology and cohomology Mackey

Functors as:

Dq(B|A;M) = πq(LB|A �
B
M) ∼= Hq(NLB/A �M)
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Dq(B|A;M) = Hq(HomB(NLB|A,M)).

If M = B, we write Dq(B|A), Dq(B|A).
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3.4.1 Properties

Let us now state some elementary properties of the homology and cohomology. A

reader who is interested in categories similar to RMod where projective modules act more

strangely (box products not preserving projectivity, projective not being flat, etc.) should

take particular care in this section. The properties are generalizations of properties from

[14],[19], and [27].

To begin, when B is a free A-algebra, then the identity map is a cofibrant replacement,

because the map cA → cB is a free map. In this case, all the non-zero homology and

cohomology vanishes, and at degree 0:

D0(B|A;M) ∼= HomR−Mod(ΩB/A,M) ∼= DerA,O(B,M)

D0(B|A;M) ∼= ΩB/A �
B
M.

Definition 3.4.1. A simplicial module X∗ over a simplicial Tambara-functor A∗ is a free

simplicial module over A∗ if there are G indexed subsets Cq ⊂ Xq such that η∗Cq ⊂ Cp

if η : [p]→ [q] is a surjective monotone map, and Xq is the free Aq module generated by the

elements Cq. A projective simplicial module is a direct summand of a free simplicial

module.

Suppose P ∗ is a free A algebra resolution of B with generators C∗ at each level. Then

ΩB/A�
P
B is generated as a free simplicial module by {dx⊗ 1|x an element of Cq}. If Q∗ is a

projective resolution of B, then it is a retract of a free simplicial resolution. Therefore, the

cotangent complex is a summand of a free simplicial module, and therefore is a projective

simplicial module.

From this fact, we can construct two Künneth spectral sequences. Suppose we have

an B-module M . We can take a cofibrant replacement of cM in sBMod, call it Q∗. By [14]

4.4 and 4.5, Q
p

is a projective B-module for all p ≥ 0 and has the same homotopy groups

as cM . Then Q∗ � LB|A forms a bisimplicial object in the category of BMod. Using the

Eilenberg-Zilber theorem, we get two convergent first quadrant spectral sequences

E1
pq = πvq (Qp

� (LB|A)∗), E2
pq = πhpπ

v
q (Q∗ � (LB|A)∗) =⇒ πp+q(Q∗ � (LB|A)∗)
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E1
pq = πhq (Q∗ � (LB|A)p), E2

pq = πvpπ
h
q (Q∗ � (LB|A)∗) =⇒ πp+q(Q∗ � (LB|A)∗)

Because LB|A projective and therefore flat, the second spectral sequence has E2
pq =

πvpπ
h
q (Q∗� (LB|A)∗) = πvp(M � (LB|A)∗) if q = 0 and otherwise is zero. The spectral sequence

collapses at the second page, and converges to πp+q(M � LB|A) = Dp+q(B|A,M).

Because the terms Q∗ are flat, the E2
pq terms of the first spectral sequences are

E2
pq = πhpπ

v
q (Q∗ � (LB|A)∗) = πhp (Q∗ � Dq(B|A)) = TorBp (Dq(B|A),M). This, and its dual

cohomological version with Ext, gives the following proposition.

Proposition 3.4.5. We have two convergent spectral sequences

E2
pq = TorBp (Dq(B|A),M) =⇒ Dp+q(B|A,M).

Epq
2 = ExtpB(Dq(B|A),M) =⇒ Dp+q(B|A,M).

Note that D0(B|A) = ΩB|A since the Mackey functor objectivization is a left adjoint.

By the two spectral sequences above in the 0th term, which is determined by the second

page, we have isomorphisms ΩB|A�
B
M ∼= D0(B|A,M) and D0(B|A;M) ∼= HomB(ΩB|A,M) ∼=

Der(B|A,M).

We can define what an A-algebra extension of B by M . We mean a short exact

sequence

0→MY
i→ X

u→ B → 0

where Y is a G-set, u is a map of A algebras such that ker(u) is killed by admissible norms

of all 2-surjective maps, and M ∼= keru as B-modules, with the kernel having a B-module

structure via u(x)·y := x·y, which is well defined since (keru)2 = 0. Let Exalcomm(B|A;M)

be the G Indexed set of isomorphism classes of extensions, indexed by Y .

Proposition 3.4.6. D1(B|A;M) ∼= Exalcomm(B|A;M)
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Proof. Let P ∗ be a free A-algebra resolution of B. Given an extension 0 → MY
i→ X

u→

B → 0, we can construct a map in A−CAlg/B from θ : P 0 → X by specifying where the

generators map. This gives a map θ◦(d0−d1) : P 1 → X, a Mackey functor map which sends

A to 0 and maps to the kernel of u. Therefore, it induces a map i−1(θ◦ (d0−d1)) : P 1 →MY

of Mackey functors such that A maps to 0. We now show that this is a derivation.

Suppose f is a fold map, we show that the products turn to sums:

(θ ◦ (d0 − d1))(xy) = θd0x · θd0y − θd1x · θd1y

= (θd0y)(θd0x− θd1x) + (θd1x)(θd0y − θd1y)

= y · (θd0x− θd1x) + x · (θd0y − θd1y).

with the last line using the P 1-module structure on keru.

If it is an equivariant map f : G/H → G/K, then we can use the same computation

as in Proposition 3.3.2:

θd0(Nf (x)) = Nf (θd0(x))

= Nf [θd1(x) + (θd0(x)− θd1(x))]

= Nf [θd1(x)] + Tf [(Nπ2Rπ1θd1x) · (θd0(x)− θd1(x))]

= Nf [θd1(x)] + Tf [(Nπ2Rπ1x) · (θd0(x)− θd1(x))].

The third equation uses the fact that the kernel is 0 under any 2-surjective map, so there

are no higher order terms involving the norm of an element of the kernel. The last line again

uses the P 1-module structure on the kernel. Therefore, we obtain:

θ(d0 − d1)(Nf (x)) = Tf [(Nπ2Rπ1x) · (θ(d0 − d1)x)]

verifying that it is a derivation. Note from the construction that the map from P1 → MY

induces the 0 map P2 →M via the composition with d0−d1 +d2. Additionally, if we change

the map θ to θ′, we change the derivation obtained, but only up to a derivation induced
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from P 0 → MY . By the exact same computation as above, θ − θ′ gives a derivation from

P 0 →MY , which induces the map (θ− θ′)(d0−d1) : P 1 →MY . To sum up, we have defined

a map Φ : Exalcomm(B|A;M)→ D1(B|A;M).

We now construct an inverse. Suppose we have a derivation D : P 1 →M. Let

X := coker{P 1

(d0−d1,D)−→ P 0 nMY }

taken in the category of A-algebras, which comes with a canonical projection p : P 0nMY →

X. We naturally have a map P 0nMY → B from the map P 0 → B that surjects and induces

a map X → B. The kernel of this map is precisely MY → P0 nMY , which gives a sequence

0 → MY → X → B → 0, where all that remains to show is that MY → X is injective. If

(d0 − d1)(p1) = 0, then it is in the image of an element (d0 − d1 + d2)(p2), so then Dp1 = 0

via the cocycle condition of the derivation. Suppose we change D to D+(d0−d1)◦D′ where

D′ : P 0 →M is a derivation. Then we can construct isomorphisms between the cokernels

X0 := coker{P 1

(d0−d1,D) // P 0 nMY }

X1 := coker{P 1

(d0−d1,D+(d0−d1)◦D′) // P 0 nMY }

via maps P 0 n MY → P 0 n MY such that (p0,m) 7→ (p0,m + D′(p0)) and (p0,m) 7→

(p0,m−D′(p0)). This is a well defined map Φ−1 : D1(B|A;M)→ Exalcomm(B|A;M).

To show that these are mutual inverses, we see that if we have a derivation D : P1 →

MY and construct X as the cokernel above, there is naturally a map P0
(Id,0)→ P 0nMY → X.

The map induces P1
(d0−d1)→ P0

(Id,0)→ P 0 nMY → X which by the property of the cokernel is

the same as the map P1
(0,D)→ P 0nMY , so we have that Φ◦Φ−1 is the identity on D1(B|A;M)

Suppose we have an extension

0 //MY
// X // B // 0

and we take θ : P 0 → X, the induced derivation D : P 1 → MY , and the extension con-
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structed by the cokernel X ′.

0 //MY
// X ′ // B // 0

0 //MY
// X // B // 0

Let P 0 nMY → X be the map (p,m) 7→ θ(p) + i(m). This map is a map of Mackey

functors and by the same computation as Proposition 3.3.2, one can show it commutes

with norms. Therefore, it is a map of A-algebras. Composing this map with the map

P 1 → P 0 nMY is θ ◦ (d0 − d1)p1 + i(D(p1)) = 0 by the construction of D. So it induces a

map X ′ → X. The map commutes with the identity maps between MY and B so we get

the commutative diagram between extensions

0 //

��

MY
//

��

X ′ //

��

B //

��

0

��
0 //MY

// X // B // 0

which is all that is necessary to show that X ′ and X are isomorphic as extensions. This

shows that Φ−1 ◦ Φ is the identity on Exalcomm(B|A;M) completing the proof.

Proposition 3.4.7. Suppose A → B is a surjection of O-Tambara functors. The kernel I

is an ideal of A. Then D0(B|A) = 0 and D1(B|A) = I/I>1.

Proof. D0(B|A) = ΩB|A = 0. From the second spectral sequence of Proposition 3.4.5, and

the fact that D0(B|A) = 0, the five term exact sequence gives an isomorphism between

HomB(D1(B|A),M) ∼= D1(B|A,M)

which is by the the above proposition Exalcomm(B|A;M).

The isomorphism class 0 → I/I>1 → A/I>1 → B → 0 defines an element of ξ ∈

Exalcomm(B|A, I/I>1). Functoriality of Exalcomm in the module coordinate gives a map ξ∗ :
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HomB(I/I>1,M)→ Exalcomm(B|A;M). If we have an extension 0→MY → X → B → 0,

then we have a map A → X since X is an A-algebra. This induces a map I/I>1 → MY ,

which is an inverse to ξ∗. So HomB(D1(B|A),M) ∼= HomB(I/I>1,M) which by the enriched

Yoneda Lemma gives D1(B|A) ∼= I/I>1.

We have a functoriality property in the coefficients. In particular, if we have a map

of S-modules M →M ′, then for φ : R→ S we have an induced map of Lφ�
S
M → Lφ�

S
M ′

which, when taking the homology and cohomology, is functorial. Additionally, because

Lφ �
S

(−) is exact, since Lφ is projective as a simplicial S-module, given an exact sequence

of

0 //M ′ //M //M ′′ // 0

we have an exact sequence of simplicial modules

0 // Lφ �
S
M ′ // Lφ �

S
M // Lφ �

S
M ′′ // 0

which taking the (co)homology gives two exact sequences:

0 // D0(S|R;M ′) // D0(S|R;M) // D0(S|R;M ′′) // D1(S|R;M ′) // · · ·

· · · // D1(S|R;M ′′) // D0(S|R;M ′) // D0(S|R;M) // D0(S|R;M ′′) // 0

Now suppose that we have two maps of O-Tambara functors that fit together into the

following commutative diagram

R′ //

��

S ′

��
R // S

that give us the cotangent complexes LS|R and LS′|R′ which are respectively S and S ′-

modules. We might suspect that a map on on the relative sets of Tambara functors induces

a map on their homology, which it does:

67



Proposition 3.4.8. Suppose we have a commutative diagram as above. Then we get a

morphism of the form R�
R′
LS′|R′ → LS|R which is a map of R′ �

R
S-modules.

Proof. Suppose we take the cofibrant replacement A′ of S ′ as a simplicial R′-algebra. We

can assume that A′∗ is free as an R′-algebra. Since A′ �
R′
R is the pushout of the diagram

made by A′, R′, R, we get a map of R-algebras

A′ �
R′
R→ S ′ �

R′
R.

Since A′ is a free resolution of R′, A′�
R′
R is free over R and so is a cofibration in R-algebras.

Let A be the cofibrant replacement of S as an R-algebra. A → S is an acyclic fibration in

R-algebras so the commutative diagram

R //

��

A

��
R�

R′
A′ // S

gives a lift, unique up to homotopy, of R�
R′
A′ → A. There is a natural map R→ R�

R′
A′ → A,

inducing the map

ΩR�
R′
A′|R �

R�
R′
A′
A→ ΩA|R.

Applying (−) �
A
S gives a map

ΩR�
R′
A′|R �

R�
R′
A′
S → ΩA|R �

A
S ∼= LS|R.

Now

LS′|R′ �
R′
R = (ΩA′|R′ �

A′
S ′) �

R′
R

∼= (ΩA′|R′ �
A′
R) �

R′�
R′
R

(S ′ �
R′
R)

∼= [ΩA′|R′ �
A′

(A′ �
R′
R)] �

R′�
R′
R

(S ′ �
R′
R)

∼= (ΩA′�
R′
R|R) �

R′�
R′
R

(S ′ �
R′
R).
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The second line and third lines are formal. The last line, or that

[ΩA′|R′ �
A′

(A′ �
R′
R)] ∼= ΩA′�

R′
R|R

follows because A′ is a free R′-algebra, so derivations are determined by the generators in

both cases. Therefore the modules are isomorphic, modulo a change of units from A′ to

A′ �
R′
R. The canonical map S ′ �

R′
R→ S gives us the map LS′|R′ �

R′
R→ LS|R.

A related property is the base change. In the previous proof, if S = S ′ �
R′
R, then the

map

LS′|R′ �
R′
R ∼= (ΩA′�

R′
R|R) �

R′�
R′
R

(S ′ �
R′
R)→ ΩR�

R′
A′|R �

R�
R′
A′
S

is an isomorphism.

Suppose that TorR
′

n (S ′, R) = 0 for n ≥ 1. The calculation for Tor is the homotopy

groups of A′ �
R′
R. If those are all 0 for n ≥ 1, then the map A′ �

R′
R → cS is a weak

equivalence. So A′ �
R′
R is a cofibrant replacement for R → S. By the uniqueness of the

cofibrant replacement up to homotopy, A′ �
R′
R is homotopy equivalent to A, implying that

LS′|R′ �
R′
R is homotopy equivalent to LS|R via the natural map above.

Next we state a property analogous to the property of (co)homology in topology, that

the homology takes finite coproducts to their sums under certain conditions.

Proposition 3.4.9. If S ′ = S �
R
R′ and TorR

′

n (S ′, R) = 0 for n ≥ 1. Then

LS′|R ∼= LS|R �
R
R′ ⊕ LR′|R �

R
S.

Proof. By the same argument we found in the base change proposition, if R→ Q→ R′ and

R → P → S are cofibrant replacements, then R → P �
R
Q→ S ′ is a cofibrant replacement.
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Therefore,

LS′|R ∼= ΩP�
R
Q|R �

P�
R
Q
S ′

∼= (ΩP |R �
R
Q⊕ ΩQ|R �

R
P ) �

P�
R
Q
S ′

∼= (ΩP |R �
P
S) �

R
R′ ⊕ (ΩQ|R �

Q
R′) �

R
S

∼= LS|R �
R
R′ ⊕ LR′|R �

R
S.

The property given on (co)-homology is as follows:

Proposition 3.4.10. If S ′ = S�
R
R′ and TorR

′

n (S ′, R) = 0 for n ≥ 1. Then for an S ′-module

N :

Dq(S ′|S;N) ∼= Dq(R|R′;N)

Dq(S ′|R;N) ∼= Dq(S|R;N)⊕Dq(R′|R;N)

and the identical is true for the homology.

The next result shows that the homology extends the Jacobi-Zariski sequence. Sup-

pose that we have a short exact 0 → X ′ → X → X ′′ → 0 of simplicial modules. Formally,

this induces a long exact sequence on the homotopy groups of X ′, X,X ′′, which will be an

extension to the left of the Jacobi-Zariski.

Proposition 3.4.11. Let R
u→ S

v→ T be a map of O-Tambara functors. Then

LS|R � T → LT |R → LT |S →

is an exact triangle in the derived category of T -modules. Tensoring with an T -module M

and taking the homotopy, we get a long exact sequence

· · · // D1(T |R;M) // D1(T |S;M) // D0(S|R;M) // D0(T |R;M) // D0(T |S;M) // 0

or

· · · // D1(T |R;M) // D1(T |S;M) //M �
S

ΩS|R //M �
T

ΩT |R //M �
T

ΩT |S // 0.
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while taking Hom to a module and taking the homotopy gives the following

0 // D0(T |S;M) // D0(T |R;M) // D0(S|R;M) // D1(T |S;M) // D1(T |R;M) // · · ·

or

0 // Der(T |S;M) // Der(T |R;M) // Der(S|R;M) // D1(T |S;M) // D1(T |R;M) // · · ·

A clean resulting statement is that LS|R � T → LT |R → LT |S → Σ(LS|R � T ) is

a cofiber in the homotopy category of T -modules. The proof of the proposition is due to

Quillen [28].

Proof. Let X be the cofibrant replacement of R→ S, and let Y be the cofibrant replacement

of X → T , and take X and Y to be free. So we have a map of rings R→ X → Y , giving a

map (the Jacobi-Zariski map)

Y �
X

ΩX|R // ΩY |R // ΩY |X // 0

which, because T �
Y

(−) is a right exact functor, gives the exact sequence

T �
X

ΩX|R // T �
Y

ΩY |R // T �
Y

ΩY |X // 0

which is in fact a short exact sequence

0 // T �
X

ΩX|R // T �
Y

ΩY |R // T �
Y

ΩY |X // 0.

This is because the induced map Der(Y |R,M) → Der(X|R,M) is surjective, because Y is

free over X. Now we need to relate the last term to LT |S.

A pushout of a cofibration is a cofibration, so S → S�
X
Y is a cofibration. Additionally,

pushout of a weak equivalence between cofibrant objects (which X and Y are) along a

cofibration is a weak equivalence, see [18] chapter 13. So Y → S �
X
Y is a weak equivalence,

so by the 2-out-of-3 axiom S �
X
Y → T is a weak equivalence. It is surjective, because

Y → T is, so it is a fibration. Taken together, we have that S → S �
X
Y → T is a cofibrant
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replacement, an LT |S = T �
S�
X
Y

ΩS�
X
Y |S. Finally, T �

S�
X
Y

ΩS�
X
Y |S ∼= T �

Y
ΩY |X because Y is a free

X-algebra, so derivations are given by where the generators map, giving the isomorphism

modulo change of units. Therefore we have the exact sequence

0 // T �
X

ΩX|R // T �
Y

ΩY |R // T �
S�
X
Y

ΩS�
X
Y |S // 0

which gives the desired cofiber sequence.
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Chapter 4

Fundamental Spectral Sequence

4.1 Creating the Spectral Sequence

Quillen [27] created a spectral sequence for computing the André-Quillen cohomology

groups in the non-equivariant case. The E2 page involves homology of algebras generated by

the cotangent complex, and it converges something more easily computable, Tor which does

not need free resolutions of algebras but rather just resolutions of modules. The spectral

sequence is therefore useful for trying to compute the cohomology groups by going backwards.

First we make a reduction to the case where B is a quotient of A, just as Quillen did in the

non-equivariant setting.

Note that for any A → B, we can express B as a quotient of a free algebra P over

A, so we have maps A → P → B and B ∼= P/I, for some ideal I. Since P is free over

A,Dq(P |A;M) = 0, Dq(P |A;M) = 0 for q > 0. Therefore, given the transitivity exact

sequence applied to A → P → B, we get Dq(B|P ;M) ∼= Dq(B|A;M) when q > 1 (and

identically for cohomology). In terms of calculating the higher cohomology groups, we can

consider the case where B is a quotient, or B ∼= A/I. In addition to the above isomorphisms,

in the low degree case we have the following sections of a long exact sequence

0 // D1(B|A;M) // D1(B|P ;M) //M �
P

ΩP |A //M �
B

ΩB|A //M �
B

ΩB|P = 0.

Der(B|P ;M) = 0 // Der(B|A;M) // Der(P |A;M)

tt
D1(B|P ;M) // D1(B|A;M) // D1(P |A;M) = 0.

Also, because D1(B|P ) = I/I>1, the Künneth spectral sequence gives that D1(B|P ;M) =

I/I>1 �
B
M.
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If P is a free simplicial A-algebra resolution of B, then applying (−) �
A
B to A →

P → B yields

B → P �
A
B → B �

A
B → B

with the last arrow being the A-algebra structure of B. If P is free over A, then P �
A
B is

free over B. Considering the sequence B → P �
A
B → B and applying the above argument

dimension-wise, realizing that Di(B|B) = 0 and similarly for the cohomology, we get the

isomorphisms

D1(B|P ∗ �
A
B) ∼= B �

P ∗�
A
B

ΩP ∗�
A
B|B.

Which, again by the above, if J is the kernel of P �
A
B → B then

(J/J>1)∗ ∼= B �
P ∗�

A
B

ΩP ∗�
A
B|B

in each dimension, so

J/J>1 ∼= B �
P�
A
B

ΩP�
A
B|B ∼= B �

P
ΩP |A ∼= LB|A

which is another way to calculate the cotangent complex.

Now, we have the filtration

Q = P �
A
B ⊃ J ⊃ J>1 ⊃ J>2 ⊃ · · ·

of simplicial ideals of P �
A
B. The filtration, after taking the normalization, naturally gives

a spectral sequence with

E0
pq = (NJ>−p−1)p+q/(NJ

>−p)p+q, E1
pq = Hp+q(J

>−p−1/J>−p)

where J>0 = J and J>−1 = Q and is 0 otherwise. Note that the filtration is clearly exhaustive

and bounded above.

Now we must relate the other terms to the cotangent complex. J is the ideal generated

by the indeterminants in Q. Another way of constructing this would be to take the Mackey

functor freely generated overB by the same elements, and then consider taking the symmetric

algebra functor over B. This functor assigns norms to all elements and agrees with the norm
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maps on B. The Mackey functor generated by the same elements is J/J>1. So we have an

identification J ∼= ΣB(J/J>1), and we see that

(ΣB
q (J/J>1)) := (ΣB

>q(J/J
>1))/(ΣB

>q+1(J/J>1)) ∼= J>q/J>q+1

where ΣB
>q ⊂ ΣB is the sub-algebra containing all the elements coming from a norm > q.

Combining all of the above, we have the following theorem:

Proposition 4.1.1. If B�
A
B ∼= B (for example A surjects onto B), then there is a spectral

sequence

E1
pq = Hp+q(Σ

B
−p−1(LB|A)) =⇒ TorAp+q(B,B).

Note that we can call the E1 page the E2 page, and reindex everything to make the

differentials correct, so that the terms that 0 given by the lemma are in the second quadrant:

Proposition 4.1.2. If B �
A
B ∼= B, then there is a spectral sequence

E2
pq = Hp+q(Σ

B
q (LB|A)) =⇒ TorAp+q(B,B).

In the classical case, the spectral sequence above was a first quadrant spectral se-

quence, proving the convergence. This is no longer necessarily true, as we will see non-trivial

terms in the second quadrant.
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4.2 Convergence

Much of the argument here about convergence is similar to that given by André in

[1] for the classical case. The overall structure is the same, but the presence of non-trivial

norms provides non-trivial hurdles. In particular, for the classical case I ⊗ I → I2 is a

surjection, whereas in the equivariant case the image of I � I → I>1 does not necessarily

contain monomials with just one nontrivial norm of order 2. To fix this issue, we must

consider the numbers that exhibit sharing for |G|.

A much larger issue is that free O-Tambara functors are not necessarily free, pro-

jective, or even flat as Mackey functors. In order to deal with flatness issues, we consider

only finite groups G and indexing system for which the free Tambara functor AO[xH ] are flat

as Mackey functors. We call this condition on O being free-flat. The condition of being

free-flat is very restrictive, and we do not have an example outside of G being the trivial

group for which this holds. Even for Cp, the computations of [7] section 3 show that for

both the trivial indexing system or complete indexing system, the free-flat condition does

not hold by inspection.

In personal communication with Mike Hill, it was relayed to the author that the free-

flat condition could be sidestepped by considering operadic algebras in simplicial Mackey

functors. The author hopes in the future to resolve this issue and show convergence of these

spectral sequences completely in a later joint paper:

Conjecture 4.2.1. For any finite group G and indexing system O, the fundamental spectral

sequence of the pervious section converges. In particular, Corollary 4.2.10 holds without the

flat-free condition on O.

Here, we include this proof with this very restrictive hypothesis to show the difficulty

in showing convergence and as a basis for future work.

Lemma 4.2.2. Suppose O is free-flat. Then for any O-Tambara functor B, any free B-

algebra is flat as a B-module.

Proof. Box products of flat-modules are free, so any free AO-algebra on finitely many gener-

ators is free. For infinitely many generators, the direct limit of flat modules are flat, so any
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free AO-algebra is flat as an AO-module. Lastly, (B � AO[xG/Hi]) �
B

(−) ∼= AO[xG/Hi] � (−)

and the right side is exact, so we have the lemma.

Next we have to resolve the I ⊗ I → I2 discrepancy, which we do with the following

notion.

Definition 4.2.1. Let n be a positive integer. Suppose there is a positive integer m such

that for every positive integer k, every partition of k ·m into divisors of n is the union of k

many partitions of m. Then we say that m exhibits sharing for n. If any such m exists

for n then we say that n is a sharing number.

To get a handle on the definition, the following are true, most of them trivially:

• 1 is a sharing number and any m exhibits sharing for 1.

• 2 is a sharing number and any even m exhibits sharing for 2.

• Moreover, pn is a sharing number for any prime p, with pn exhibiting sharing for pn.

• pn · q is a sharing number for any primes p and q, with pn · q exhibiting sharing for

pn · q.

• 36 exhibits sharing for 36.

• 30 does not exhibit sharing for 30. The partition (15, 10, 10, 6, 6, 6, 6, 1) is a partition

of 60 that is not the union of two partitions of 30. It is the first number which does

not exhibit sharing for itself. 60 exhibits sharing for 30.

Lemma 4.2.3. Let n be a positive integer. If d is a proper divisor of n, let f(d) be the

smallest multiple of d that is also a divisor of n. Let m be the first multiple of n that is

bigger than ∑
d|n,d 6=n

f(d)− d.

Then m exhibits sharing for n. In particular, all positive integers are sharing numbers.
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Proof. Suppose we are given a partition p of k ·m for the above m into divisors of n. Suppose

that for the partition p of k ·m, that a particular divisor d appears f(d)/d times. Let p′ be

the partition which is the same as p, except f(d)/d many instances of d are replaced by a

single instance of f(d). If p′ can be split into k equally valued partitions, then trivially so

can p. Doing this replacement arbitrarily many times, we can assume our partition has, for

a proper divisor d of n, at most f(d)/d− 1 instances of d. Because of the inequality

m >
∑

d|n,d 6=n

f(d)− d

then the number of instances of n must sum up to more than (k − 1) · m, as the sum

(
∑

d|n,d 6=n f(d) − d) with the instance of n must equal k · m. But if in our partition, the

instances of n add up to more than (k − 1) ·m, then the partition is trivially a union of k

many such partitions of m.

For all of the following we will assume that m is an integer that exhibits sharing

for |G|. Before getting to the convergence, we must show various lemmas. The convergence

proof involves computing the homology of various box products that relate to the homology

of interest by various exact sequences, so the following lemma will be critical.

Lemma 4.2.4. Suppose we have 2 simplicial A-modules E ′∗ and E ′′∗ such that homology for

E ′∗ vanishes up to and including degree m and likewise for E ′′∗ up to and including degree n.

Then the homology of E ′∗ �
A
E ′′∗ vanishes up to degree m+ n+ 1 if one of the modules E ′∗ or

E ′′∗ is projective.

Proof. First we must construct a few additionally simplicial modules: consider first

0→ F ′∗ → Γ′∗ → E ′∗ → 0

where Γ′n = E ′n+1 and for an element x ∈ Γ′n(X), we let εin(x) = εi+1
n+1(x) for x ∈ E ′n+1(X)

and σin(x) = σi+1
n+1(x), where ε and σ represent face and degeneracy maps respectively. The

map γ′ : Γ′∗ → E ′∗ sends x to ε0n+1(x). It is an easy check that this map γ is a map of

simplicial modules and that γ is surjective as σ0
n(x) provides a pre-image. We now show

various properties of this sequence.
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Firstly, the non-zero homotopy Mackey functors of Γ∗ are all zero: consider x ∈

En+1(X) with εin+1(x) = 0 and 1 ≤ i ≤ n + 1. So one would need to find an element

y ∈ En+1(X) such that εin+2(y) = 0 for 1 ≤ i ≤ n + 1 and εn+2
n+2(y) = x. This necessarily

exists because of the Kan condition on E∗ because E∗ is an abelian group object.

Secondly, because Γn = En, if En is projective then so is Γn. F , being the quotient

of a map between projective objects is also projective.

Next, when H0[E ′∗]
∼= 0, we consider

0→ G′∗ → ∆′∗ → E ′∗ → 0.

∆∗ is a submodule of Γ∗. The modules ∆n are formed by elements of En+1 such that

(ε11 ◦ ε22 ◦ · · · ◦ εn+1
n+1)(x) = 0.

One can check, using the simplicial identities, that ∆∗ is a simplicial module. Additionally,

because H0[E ′∗] is 0, for every element x ∈ E ′n(X), there is an element τ ∈ E ′1(X) such

that ε01(τ) = 0 and ε11(τ) = (ε11 ◦ · · · ◦ εn+1
n+1 ◦ σ0

n)(x). Consider y ∈ E ′n+1 defined by y =

σ0
n(x) − (σnn ◦ · · · ◦1

1)(τ). Using the simplicial identities, we see that γ(y) = x and that y is

an element of ∆n(X), so δn : ∆n → E ′n is a surjection.

The positive homotopy Mackey functors of ∆′n also vanish by the same reason as Γ′∗.

The zeroth homotopy Mackey functor is also 0: consider x ∈ E ′1 with ε11(x) = 0. Then again

by the Kan condition there exists y ∈ E ′2 such that ε12(y) = 0 and ε22(y) = x, so in particular

(ε11 ◦ ε22)(y) = 0. For every element x ∈ ∆0, there is an element y ∈ ∆1 such that ε01(y) = 0

and ε11(y) = x.

Lastly, because of the exact sequence

0→ ∆′n → Γ′n → E ′0 → 0,

if E ′∗ is projective, then so are ∆′n and G′∗.

On to the proof of the lemma. We go by induction on s = m + n. We can assume

that one of the entries, say m ≥ 0. For every element x′ of E ′0(X ′), there exists an element
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y′ in E ′1(X) with ε01(y′) = 0 and ε11(y′) = x′ and for every element x′′ of E ′′0(X), there exists

an element Y ′′ of E ′′1(X) such that ε01(y′′) = x′′ and ε11(y′′) = x′′. The equations

ε01(y′ ⊗ y′′) = 0

and

ε11(y′ ⊗ y′′) = x′ ⊗ x′′

shows that the H0[E ′∗�
A
E ′′∗]
∼= 0, so the lemma is shown for s = −1. It now remains to show

that given Hm+n+1[E ′∗ �
A
E ′′∗] using the induction hypothesis.

From the inductive hypothesis on Hp[∆
′
∗]
∼= 0 for p ≤ s and Hq[F

′′
∗]
∼= 0 for q ≤ −1,

we have that Hs[∆
′
∗ �
A
F ′′∗]
∼= 0. Note that this is true because at least one of them is flat.

Similarly, since Hp[G
′
∗]
∼= 0 for p ≤ m− 1 and Hq[E

′′
∗]
∼= 0 for q ≤ n gives Hs[G

′
∗ �
A
E ′′∗]
∼= 0.

We have the following short exact sequence of simplicial A-modules

0→ ∆′∗ �
A
F ′′∗ → ∆′∗ �

A
Γ′′∗ → ∆′∗ �

A
E ′′∗ → 0

which gives the following part of the long exact sequence:

Hs+1[∆′∗ �
A

Γ′′∗]→ Hs+1[∆′∗ �
A
E ′′∗]→ Hs[∆

′
∗ �
A
F ′′∗].

The projectivity of either ∆′∗ or E ′′∗ insures the exactness. Because the third term is 0, the

first homomorphism is surjective. In the same vein, we have

0→ G′∗ �
A
E ′′∗ → ∆′∗ �

A
E ′′∗ → E ′∗ �

A
E ′′∗ → 0

which gives the following part of the long exact sequence:

Hs+1[∆′∗ �
A
E ′′∗]→ Hs+1[E ′∗ �

A
E ′′∗]→ Hs[G

′
∗ �
A
F ′′∗]

with the first map being surjective. Therefore, the composites

Hs+1[∆′∗ �
A

Γ′′∗]→ Hs+1[E ′∗ �
A
E ′′∗]

and

Hs+1[Γ′∗ �
A

Γ′′∗]→ Hs+1[E ′∗ �
A
E ′′∗]

80



are surjective. But we can consider the exact sequence

0→ F ∗ → Γ∗ = Γ′∗ �
A

Γ′′∗ → E∗ = E ′∗ �
A
E ′′∗ → 0.

The surjective homomorphism

Hs+1[Γ′∗ �
A

Γ′′∗]→ Hs+1[E ′∗ �
A
E ′′∗]

has domain zero since s+ 1 is non-zero, which shows that the homology is 0 as desired.

Lemma 4.2.5. Let A be a free B-algebra, with the projection map A→ B having kernel K.

Then for p 6= 0, the map

TorAp (A/K≥m, A/(K≥m)n)→ TorAp (A/K≥m, A/(K≥m)n−1)

induced from the short exact sequence

0→ (K≥m)n−1/(K≥m)n → A/(K≥m)n → A/(K≥m)n−1 → 0

is the zero map.

Proof. Let the projective resolution

· · · → P 2 → P 1 → P 0 → B

be the resolution given by the free-forgetful adjunction where P 0 = A. That is P 1 = A[K0]

the free A-module generated by K, K treated as a G-indexed set, and P n = A[Kn−1] where

Kn−1 is the kernel of P n−1 → P n−2 again treated as a G indexed set. An element of P 1(X)

is of the form Tf1(a1 · Rg1 [k]) where f1 : Y → X, g1 : Y → Z, a1 ∈ A(Y ) and k is a formal

element of the G-indexed set K (if X, Y, Z are not orbits, then the formal elements are

always tuples of formal elements from orbits). An element of P n is of the form

Tfn(an ·Rgn [Tfn−1(an−1 ·Rgn−1 [· · ·Tf1(a1 ·Rg1 [k]) · · · ])])

with the condition that if we remove the first set of formal brackets in

Tfk(ak ·Rgk [Tfk−1
(ak−1 ·Rgk−1

[· · ·Tf1(a1 ·Rg1 [k]) · · · ])])
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it yields

Tfk(ak ·RgkTfk−1
(ak−1 ·Rgk−1

[· · ·Tf1(a1 ·Rg1 [k]) · · · ])) = 0

the zero element of P k−1 for all k 6= n.

Suppose we have an element of TorAp (A/K≥m, A/(K≥m)n). This can be represented

by an element of P n �
A

(A/K≥m)n which appears of the form

Tfn(an ·Rgn [Tfn−1(an−1 ·Rgn−1 [· · ·Tf1(a1 ·Rg1 [k]) · · · ])])

such that an (and an alone, not all ai) is an element of A/(K≥m)n with the property that

Tfn(an ·RgnTfn−1(an−1 ·Rgn−1 [· · ·Tf1(a1 ·Rg1 [k]) · · · ])) = 0

is 0 in P n−1 �
A
A/(K≥m)n. Therefore,

Tfn(an ·RgnTfn−1(an−1 ·Rgn−1 [· · ·Tf1(a1 ·Rg1 [k]) · · · ])) = Tf (c ·Rg([kn−1]))

as elements in P n−1 for pn−1 ∈ Kn−1 and c ∈ (K≥m)n. The element c can be written as

Th(c1cn−1) by the sharing property, where c1 ∈ (K≥m) and cn−1 ∈ (K≥m)n. So the elements

can be rearranged into TNR form for

Tf (c ·Rg([kn−1])) = TfTh((c1cn−1) ·RhRg([kn−1]))

Therefore, the element

[Tfn(an ·Rgn [Tfn−1(an−1 ·Rgn−1 [· · ·Tf1(a1 ·Rg1 [k]) · · · ])])− TfTh(cn−1 · [c1 ·RhRg([kn−1]))]]

is in P n+1 �
A

(A/K≥m)n as

Tfn(an ·Rgn [Tfn−1(an−1 ·Rgn−1 [· · ·Tf1(a1 ·Rg1 [k]) · · · ])])− TfTh(cn−1 · [c1 ·RhRg([kn−1]))]

is an element of Kn. Additionally, in P n �
A

(A/K≥m)n−1, the image is

Tfn(an ·Rgn [Tfn−1(an−1 ·Rgn−1 [· · ·Tf1(a1 ·Rg1 [k]) · · · ])])

because the second term is zero in P n �
A

(A/K≥m)n−1. Being the image of an element of

P n+1 �
A

(A/K≥m)n−1, the homology class in P n �
A

(A/K≥m)n−1 is the 0 class in

TorAp (A/K≥m, A/(K≥m)n−1). Therefore the map on Tor is 0.
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Corollary 4.2.6. Let A be a free B-algebra, with the projection map A→ B having kernel

K. Then for p 6= 0, there exists a short exact sequence

0 // TorAp+1(A/K≥m, A/(K≥m)n−1) //

TorAp (A/K≥m, (K≥m)n−1/(K≥m)n) // TorAp (A/K≥m, A/(K≥m)n) // 0

coming from the derived long exact sequence for Tor.

Lemma 4.2.7. Let A∗ → A be a surjective map of simplicial A-algebras, where An is a free

A-algebra for all n and A is considered as the trivial simplicial A-algebra. Let K∗ be the

kernel of this map, and suppose K0 = 0. Assume O has the flat-free condition. Then

Hk[TorA∗q (A∗/K
≥m
∗ , A∗/(K

≥m
∗ )n)] ∼= 0

for k < n and q 6= 0.

First, we give a warning/definition of TorA∗q (M∗,W ∗) where A∗ is a simplicial O-

Tambara functor and M∗,W ∗ are simplicial A∗ modules. It is incorrect to resolve M∗ by

some sequence of modules P ∗ that looks like the following diagram:

· · · // P 2
//

��

P 1
//

��

P 0

��
· · · //M2

//M1
//M0

where P 0 is suitable A0-module and so on. This is only one part of the construction. The

correct method is to get a resolution of M∗ by projective A∗-modules:

· · · // P 2
∗

//

��

P 1
∗

//

��

P 0
∗

��
· · · //M∗

//M∗
//M∗
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where every arrow is a simplicial map before the usual tensoring with W ∗

· · · // P 2
∗ �
A∗
W ∗

//

��

P 1
∗ �
A∗
W ∗

//

��

P 0
∗ �
A∗
W ∗

��
· · · //M∗

//M∗
//M∗

expanding out in the bottom coordinate gives the complicated but still somewhat illuminat-

ing diagram:

P 0
2 �
A2

W 2

{{

��

P 1
2 �
A2

W 2

{{

oo

��

P 2
2 �
A2

W 2

{{

oo

��

P 0
1 �
A1

W 1

{{

;;

��

P 1
1 �
A1

W 1

{{

oo

;;

��

P 2
1 �
A1

W 1

{{

oo

;;

��

P 0
0 �
A0

W 0

;;

��

P 1
0 �
A0

W 0
oo

;;

��

P 2
0 �
A0

W 0
oo

;;

��

M2

ww

M2

ww

oo M2

ww

oo

M1

ww

77

M1

ww

oo

77

M1

ww

oo

77

M0

77

M0
oo

77

M0
oo

77

Now one would take the homology along the top coordinate in order to get Tor:

Tor
A2
0 (M2,W 2)

tt

Tor
A1
0 (M1,W 1)

tt

44

Tor
A1
1 (M1,W 1)

tt

Tor
A0
0 (M0,W 0)

44

Tor
A0
1 (M0,W 0)

44

to realize Tor as A∗-module. We can take the homology again in the final direction

H2[Tor
A∗
0 (M∗,W ∗)]

H1[Tor
A∗
0 (M∗,W ∗)] H1[Tor

A∗
1 (M∗,W ∗)]

H0[Tor
A∗
0 (M∗,W ∗)] H0[Tor

A∗
1 (M∗,W ∗)]

to get the objects of the lemma.

Proof. The proof goes by induction on k. As a base case, when k = 0, because

TorA0
q (A0/K

≥m
0 , A0/(K

≥m
0 )n) ∼= TorA0

q (A0, A0) ∼= 0
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implying the zeroth homology must be zero. Now assume the statement is true for k − 1.

The short exact sequence of Corollary 4.2.6 shows that we have a short exact sequence

of simplicial modules

0→ Tor
A∗
p+1(A∗/K

≥m
∗ , A∗/(K

≥m
∗ )n−1)→ TorA∗p (A∗/K

≥m
∗ , (K≥m∗ )n−1/(K≥m∗ )n)

→ TorA∗p (A∗/K
≥m
∗ , A∗/(K

≥m
∗ )n)→ 0

which gives rise to the long exact sequence in homology

· · · → Hk[TorA∗p (A∗/K
≥m
∗ , (K≥m∗ )n−1/(K≥m∗ )n)]

→ Hk[TorA∗p (A∗/K
≥m
∗ , A∗/(K

≥m
∗ )n)]

→ Hk−1[Tor
A∗
p+1(A∗/K

≥m
∗ , A∗/(K

≥m
∗ )n−1)]→ · · ·

the third term is zero by the induction hypothesis assuming k < n. So it remains to show

that

Hi[TorA∗q (A∗/K
≥m
∗ , (K≥m∗ )n−1/(K≥m∗ )n)] ∼= 0.

(K≥m∗ )n−1/(K≥m∗ )n is a flat A∗/K∗-module by the flat-free condition. Then

TorA∗q (A∗/K
≥m
∗ , (K≥m∗ )n−1/(K≥m∗ )n)

∼= TorA∗q [A∗/K
≥m
∗ , (A∗/K∗) �

A∗
(A∗ �

A∗/K∗

(K≥m∗ )n−1/(K≥m∗ )n)]

∼= TorA∗q [A∗/K
≥m
∗ , (A∗/K∗)] �

A∗
(A∗ �

A∗/K∗

(K≥m∗ )n−1/(K≥m∗ )n)

∼= TorA∗q [A∗/K
≥m
∗ , (A∗/K∗)] �

A∗/K∗

(K≥m∗ )n−1/(K≥m∗ )n.

From the short exact sequence

0→ (K≥m∗ )→ A∗ → A∗/(K
≥m
∗ )→ 0

and the functor (−) �
A∗
A∗/(K

≥m
∗ )n−1, we obtain the isomorphism

Hj[(K
≥m
∗ )n−1/(K≥m∗ )n] ∼= Hj[Tor

A∗
1 (A∗/(K

≥m
∗ ), A∗/(K

≥m
∗ )n)] ∼= 0

for j ≤ k − 1 by the induction hypothesis. Additionally,

H0[TorA∗q [A∗/K
≥m
∗ , (A∗/K∗)]]

∼= 0

85



for the same reason as the base case:

TorA0
q [A0/K

≥m
0 , (A0/K0)] ∼= TorA0

q [A0, A0] ∼= 0.

Then Lemma 4.2.4 shows that

Hj[TorA∗q (A∗/K
≥m
∗ , (K≥m∗ )n−1/(K≥m∗ )n)] ∼= 0

for j ≤ k which completes the proof.

We now give the main convergence theorem.

Theorem 4.2.8. Let A∗ a free A-algebra, with a surjective map onto the trivial simplicial

A-algebra A. Let K∗ be the kernel. Assume that K0 = 0 and O has the flat-free condition.

Then

Hk(K
≥nm
∗ ) ∼= 0

if k < n.

Proof. The proof goes by induction on n. Suppose n = 1, then the zeroth homology vanishes

because K0 = 0. Now we assume the statement is true for n to prove for n + 1. Given the

short exact sequence of simplicial A-modules

0→ K≥m∗ → A∗ → A∗/K
≥m
∗ → 0

consider the functor (−) �
A∗

(K≥m∗ )n. Because m is a sharing number for n, the image of

K≥m∗ �
A∗

(K≥m∗ )n is (K≥m(n+1)
∗ ) so we get the short exact sequence which is part of the long

exact sequence for Tor:

0→ Tor
A∗
1 (A∗/K

≥m
∗ , (K≥m∗ )n)→ (K≥m∗ ) �

A∗
(K≥m∗ )n → (K≥m(n+1)

∗ )→ 0.

This gives rise to the following part of the long exact sequence in homology:

Hk((K
≥m
∗ ) �

A∗
(K≥m∗ )n)→ Hk((K

≥m
∗ )n+1)→ Hk−1(Tor

A∗
1 (A∗/K

≥m
∗ , (K≥m∗ )n)).

The third element is zero because from the short exact sequence

0→ (K≥m∗ )n)→ A∗ → A∗/(K
≥m
∗ )n → 0
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we get an isomorphism

Tor
A∗
1 (A∗/K

≥m
∗ , (K≥m∗ )n) ∼= Tor

A∗
2 (A∗/K

≥m
∗ , A∗/(K

≥m
∗ )n)

and

Hk−1(Tor
A∗
2 (A∗/K

≥m
∗ , A∗/(K

≥m
∗ )n)) ∼= 0

for k ≤ n by Lemma 4.2.7. All that remains to show is that Hk((K
≥m
∗ ) �

A∗
(K≥m∗ )n) ∼= 0 for

k ≤ n.

Consider the homomorphisms of simplicial A∗/K∗ modules:

dj : K≥m∗ �
A∗/K∗

(
j

�
A∗/K∗

K∗) �
A∗/K∗

(K≥m∗ )n → K≥m∗ �
A∗/K∗

(
j−1

�
A∗/K∗

K∗) �
A∗/K∗

(K≥m∗ )n

with

dj(Tp(k1 ⊗ · · · ⊗ kj+1)) =

j∑
i=0

Tp(k1 ⊗ · · · ⊗ kiki+1 ⊗ · · · ⊗ kj+1)

on the first component and the identity on the second component. This makes a chain

complex L. Let Qj

∗ be the image of this map and P j
∗ be the kernel. Then the above describes

a chain complex of simplicial modules.

Lemma 4.2.9. The homology of this complex computes TorA∗q (K≥m∗ , (K≥m∗ )n).

Proof. The first homology H0[L] is the quotient of K≥m∗ �
A∗/K∗

(K≥m∗ )n by the elements of the

form x0 ⊗ x1x2 − x0x1 ⊗ x2 where x1 is an element of K∗. This is precisely K≥m∗ �
A∗

(K≥m∗ )n.

We now need to show that every other homology Mackey functor vanishes. First let

us consider a similar chain complex, S∗

dj : K≥m∗ �
A∗/K∗

(
j

�
A∗/K∗

K∗) �
A∗/K∗

A∗ → K≥m∗ �
A∗/K∗

(
j−1

�
A∗/K∗

K∗) �
A∗/K∗

A∗

define sn(x0⊗· · ·⊗xn⊗xn+1) 7→ x0⊗· · ·⊗xn+1⊗1 if xn+1 is in K∗ and is 0 if xn+1 is in A∗/K∗.

This defines a map from Sk → Sk+1 and has the property that sn−1◦dn−dn+1◦sn = (−1)n Id .

Now applying the functor (−)�
A∗

(K≥m∗ )n to this projective complex gives the desired lemma.
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We have the short exact sequence

0→ Q1

∗ → K≥m∗ �
A∗/K∗

(K≥m∗ )n → K≥m∗ �
A∗

(K≥m∗ )n → 0

So the homology of the second term is 0 using Lemma 4.2.4 up to n + 1 and the inductive

hypothesis. So now it remains to show that Hi−1(Q1

∗)
∼= 0 for i ≤ n.

We have the short exact sequence:

0→ Qq+1

∗ → P q
∗ → TorA∗q (K≥m∗ , (K≥m∗ )n)→ 0

which gives rise to the homology long exact sequence

Hk[Q
q+1

∗ ]→ Hk[P
q
∗]→ Hk[TorA∗q (K≥m∗ , (K≥m∗ )n)]

Now again by the short exact sequence

0→ (K≥m∗ )→ A∗ → A∗/(K
≥m
∗ )→ 0

we see that

TorA∗q (K≥m∗ , (K≥m∗ )n) ∼= Tor
A∗
q+1(A∗/K

≥m
∗ , (K≥m∗ )n) ∼= Tor

A∗
q+2(A∗/K

≥m
∗ , A∗/(K

≥m
∗ )n)

so the third term in the homology long exact sequence is 0 for k < n by Lemma 4.2.7, which

shows that Hk[Q
q+1

∗ ]→ Hk[P
q
∗] is surjective.

We have another short exact sequence:

0→ P q
∗ → K≥m∗ �

A∗/K∗

(
q

�
A∗/K∗

K∗) �
A∗/K∗

(K≥m∗ )n → Qq

∗ → 0

which gives rise to the homology long exact sequence

Hk+1[K≥m∗ �
A∗/K∗

(
q

�
A∗/K∗

K∗) �
A∗/K∗

(K≥m∗ )n]→ Hk+1[Qq

∗]→ Hk[P
q
∗]

the first term is 0 for k < n+1, again by repeated use Lemma 4.2.4, implying thatHk+1[Qq

∗]→
Hk[P

q
∗] is injective.

Putting the two statements together, that Hk[Q
q+1

∗ ] → Hk[P
q
∗] is surjective and

Hk+1[Qq

∗] → Hk[P
q
∗] is injective, if Hk[Q

q+1

∗ ] ∼= 0 then Hk+1[Qq

∗]
∼= 0. Since H0[Qi

∗]
∼= 0

for all i, we get the desired result.
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Corollary 4.2.10. Suppose we have a simplicial resolution B∗ of the A-algebra B with

B0
∼= A and O has the flat-free condition. Then the kernel J∗ of the map

B∗ �
A
B → B

has the property Hk[J
≥mn
∗ �

B
W ] ∼= 0 for k < m and any B-module W.

Proof. Bn �
A
B is a free B-algebra, and J0 = 0, so Hk[J

≥mn
∗ ] ∼= 0 for k ≤ n. We proceed by

induction. The statement is clearly true for k = 0 because J0 = 0. Now Hk−1[J≥nm∗ �
B

(−)]

is exact on the left (because it is always 0). Because J≥mn is a free simplicial B-algebra, we

have the corollary by the next lemma.

Lemma 4.2.11. Let L∗ be a complex of projective A-modules, and let W be a A-module.

Then there exists an isomorphism of A-modules

Hn[L∗] �
A
W ∼= Hn[L∗ �

A
W ]

if the functor Hn−1[L∗ �
A

(−)] is exact on the left.

Proof. Given a short exact sequence of A-modules:

0→ W ′ → W → W ′′ → 0

we get a exact sequence of simplicial A-modules, using L∗ is projective

0→ L∗ �
A
W ′ → L∗ �

A
W → L∗ �

A
W ′′ → 0

which gives the long exact sequence in homology

Hn[L∗ �
A
W ]→ Hn[L∗ �

A
W ′′]→ Hn−1[L∗ �

A
W ′]→ Hn−1[L∗ �

A
W ]

so Hn−1[L∗ �
A

(−)] being exact on the left is the same as Hn[L∗ �
A

(−)] being exact on the

right.

There is always a map

Hn[L∗] �
A
W → Hn[L∗ �

A
W ].
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This is an isomorphism if W is a free A-module. But every W is a quotient of 2 free modules:

F ′ → F → W → 0

which gives the following commutative diagram, and upon using the 5-lemma realizes the

desired isomorphism.

Hn[L∗] �
A
F ′ //

∼=

��

Hn[L∗] �
A
F //

∼=

��

Hn[L∗] �
A
W //

��

0

∼=

��
Hn[L∗ �

A
F ′] // Hn[L∗ �

A
F ] // Hn[L∗ �

A
W ] // 0

4.3 Computations

As an example of the spectral sequence in action, we compute TorA[xG](A,A) in two

ways.

First we do TorA[xG](A,A) via projective resolution. The free resolution of modules

terminates. Take

0→ A[xG]{bG}
bG 7→tq // A[xG]{pG, qe}

pG 7→tm
qe 7→ne−ne

// A[xG]{me, ne} me 7→we−we

ne 7→rwe−R(wG) // · · ·

A[xG]{wG, we}
we 7→rR(zG)−R(uG)

wG 7→nzG−xuG // A[xG]{zG, uG} uG 7→nyG
zG 7→xyG // A[xG]{yG}

yG 7→1 // A

changing the units to A gives

0→ A{bG}
bG 7→tq // A{pG, qe}

pG 7→tm
qe 7→ne−ne

// A{me, ne} me 7→we−we

ne 7→−R(wG) // · · ·

A{wG, we}
we 7→−R(uG)

wG 7→0 // A{zG, uG} uG 7→0

zG 7→0 // A{yG}
yG 7→1 // A
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which upon taking the homology gives

deg ≥ 3 deg 2 deg 1 deg 0

0

RGe

��

Z{wG}

RGe

��

Z[t]/(t2 − 2t){zG} ⊕ Z{uG}

RGe

��

Z[t]/(t2 − 2t){yG}

RGe

��
0

TGe

ZZ

0

TGe

YY

Z{R(zG)} ⊕ 0

TGe

YY

Z{R(yG)}

TGe

YY

Now we do the resolution in algebras. The free resolution is in fact ‘generated’ by a single

element, in that all the other generators are degenerate:

· · · //////

//
(A[xG])[z0

G, z
1
G] // //// (A[xG])[zG]

zG 7→0
//

zG 7→x // A[xG]
xG 7→0 // A

restricting to the different degrees and taking the homology fills out the following second

page of the spectral sequence:

0 0 K 0 0 · · ·

0 K 0 0 · · ·

0 A 0 · · ·

A 0 · · ·

where A is the burnside Mackey functor and K is the Mackey functor

Z

RGe

��
0

TGe

[[
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[33] René Thom. Espaces fibreś en sphéres et carrés de steenrod. Ann. Sci. Ecole Norm.

Sup., 69, 01 1952.

[34] John Ullman. Tambara functors and commutative ring spectra. arXiv preprint

arXiv:1304.4912, 2013.

[35] Charles A Weibel. An introduction to homological algebra. Cambridge university press,

1995.

[36] Mingcong Zeng. Equivariant Eilenberg-Mac lane spectra in cyclic p-groups. arXiv

preprint arXiv:1710.01769, 2017.

94


