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White dwarf stars are the remnant products of the vast majority of

Galactic stellar evolution. They are compact objects that serve as remote

laboratories for studying high energy/density physics. The outer regions of

hydrogen-atmosphere (DA) white dwarfs become convective and able to drive

global, nonradial, gravity-mode pulsations below roughly 12,500 K. The pul-

sations propagate through and are affected by the interior structures of these

stars. The oscillations cause a pulsating star to exhibit brightness variations

at its characteristic frequencies as a physical system. These frequencies can

be measured through Fourier analysis of time series photometric observations.

I have focused my studies on new pulsational phenomena near the cool

and low-mass edges of the DA white dwarf instability strip, using extensive

space-based data from the Kepler spacecraft and the K2 mission, as well

as high-speed ground-based photometry from the 2.1-meter Otto Struve Tele-

scope at McDonald Observatory (where I have personally observed 225 nights).
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The extensive short-cadence (1-min exposures) light curve of the first

DAV (DA variable) identified within the original Kepler field of view provided

one of the most complete and sensitive records of white dwarf pulsations ever.

The light curve also revealed a new, completely unexpected outburst-like phe-

nomenon. I detected 178 instances of significant brightness enhancement in 20

months of observations of the cool DAV KIC 4552982. Recurring with a quasi-

period of 2.7 days, the outbursts last 4–25 hours and increase the stellar flux

by up to 17%. I estimate the energy of each outburst to be of-order 1033 ergs.
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roughly every 80 days. This allowed us to increase the number of DAVs with

extensive space-based photometry, and we quickly discovered a second, more

dramatic example of this new outburst behavior in PG 1149+057 (Hermes et

al. 2015b). I have led the efforts to characterize the outbursts in DAVs ever

since and have detected these events in eight DAVs through K2 Campaign

10. Notably, spectroscopic effective temperature constraints place all known

members of this new outbursting class of DAV near the cool (red) edge of

the instability strip. With a growing outbursting class of DAV, we begin to

study their ensemble outburst properties to inform a theory of their physical

mechanism.

Much of my work from McDonald Observatory has continued in the

recent tradition of discovering and characterizing new pulsating extremely

low-mass (ELM) white dwarfs. After identifying candidate ELM variables
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(ELMVs) from the ELM Survey catalog and parameters from model fits to

the Sloan Digital Sky Survey spectroscopic data, I obtained time series pho-

tometric observations on the 2.1-meter Otto Struve telescope. I published

SDSS J1618+3854 as the sixth member of this new class of variable star. How-

ever, most of the variability that I measured for this project was inconsistent

with expectations for cooling track ELM white dwarfs. This includes long

pulsation periods, high pulsation amplitudes, long eclipse timescales, and an

overabundance of photometric variables that are not in confirmed short-period

binaries from time series radial velocity measurements. Either the surface

gravities of another class of star are being systematically overestimated from

model fits to hydrogen line profiles in stellar spectra, or these observations are

revealing an unexpectedly large population of recently formed pre-ELM white

dwarfs. In total, I have discovered and characterized the variability of nine

new pulsating stars in the spectroscopic parameter space of ELM white dwarfs,

and I also developed an improved framework for interpreting measurements of

tidally induced ellipsoidal variations in photometric binaries.

Beyond these main results of my thesis on extreme pulsating white

dwarfs, I have also explored the limits of the detectability of stellar pulsa-

tions in extreme photometric data sets. I analyze long-cadence (30-minute)

K2 observations of two fairly typical DAVs in one such study, where the pul-

sations are severely undersampled. While accurate frequency determinations

are nontrivial in such cases, I am able to recover the super-Nyquist frequencies

of some pulsation modes with full K2 precision with the help of a few hours
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of ground-based observations. The space-based data, in turn, enables me to

select the intrinsic frequency from the complex alias structure of multi-night

ground-based data, providing a practical demonstration of the importance of

carefully considering the spectral window. I apply what I have learned about

undersampled data to anticipate upcoming pulsating star science in the next

generation of synoptic time domain photometric surveys such as the Zwicky

Transient Facility and the Large Synoptic Survey Telescope.
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Chapter 1

Overview

The incremental advance of science is gradual, spanning generations.

The work described in this thesis builds upon an existing narrative that was

developed largely through the PhD theses of previous students of the white

dwarf group of the University of Texas Department of Astronomy. This chapter

serves to describe the state of the field of ZZ Ceti asteroseismology as I began

my work, particularly in those areas that my work most directly advances. I

end this chapter by describing how my major observational projects fit into

this larger context and I preview my main results.

The story of white dwarf stars has been reviewed elsewhere and in

more detail. Althaus et al. (2010) and Koester (2013) provide excellent gen-

eral overviews of white dwarfs, while Winget & Kepler (2008) and Fontaine

& Brassard (2008) focus mainly on their pulsational properties. My academic

grandfather1, Hugh Van Horn, recently authored a very accessible histori-

cal account of the field called “Unlocking the Secrets of White Dwarf Stars”

(2015).

1http://academictree.org/astronomy/tree.php?pid=727357&pnodecount=6

1

http://academictree.org/astronomy/tree.php?pid=727357&pnodecount=6


1.1 White Dwarfs

White dwarf stars are important objects to both physics and astronomy.

The typical white dwarf has a mass of 0.6 solar masses, but a radius of only ∼ 1

Earth radius, corresponding to a surface gravity of log g ≈ 8 (in c.g.s. units).

This implies that the average white dwarf density is a factor of one million

higher than that of the Sun, so white dwarfs serve as remote laboratories for

the observational study of extreme physics beyond the domain accessible to

terrestrial labs. Their internal temperatures can reach upward of 100 million

Kelvin, and the temperatures of their atmospheres can exceed 100 thousand

Kelvin.

White dwarfs are supported against gravitational collapse by electron

degeneracy pressure. They have reached the limit of how tightly electrons

can be packed together, governed by the Pauli exclusion and Heisenberg un-

certainty principles. A counterintuitive consequence of their structures be-

ing governed by quantum mechanical effects is their mass-radius relationship:

more massive white dwarfs occupy a smaller volume than less massive white

dwarfs, and accretion of matter onto a white dwarf causes shrinking. There

is an extreme limit to this at around 1.4M� (exact value dependent on com-

position) where the radius of the star approaches zero (Chandrasekhar 1931).

This mass is usually referred to as the Chandrasekhar limit, and white dwarfs

that accrete matter to this limit are expected to explode as Type Ia super-

novae. Since these explosions happen at a uniform mass (neglecting magnetic

fields and rotation), Type Ia supernovae are expected to reach fairly uniform

2



peak luminosities, meaning that we can determine their distances by mea-

suring their apparent peak brightnesses. These “standard candles” become

billions of times more luminous than the Sun and are used to measure the

farthest extragalactic distance scales in the Universe. It was the comparison

of the peak brightnesses of exploding white dwarfs in Type Ia supernovae with

the redshifts of their host galaxies that revealed the existence of dark energy

(Riess et al. 1998; Perlmutter et al. 1999), the still-mysterious dominant con-

stituent of the Universe in terms of mass-energy (69%; Planck Collaboration

2016) that is accelerating the expansion of the Universe.

Nearly 98% of all stars in the Milky Way (those with initial masses . 6–

9.5M�; Williams et al. 2009) will conclude their evolution as white dwarfs.

This means that white dwarfs provide important observational boundary con-

ditions for the theory of stellar evolution—we can understand the complicated

processes of the later stages of nuclear burning and mass loss by investigating

their remnant products. The Sun will become a white dwarf in another 5 bil-

lion years, and our studies of white dwarfs help us to understand the ultimate

fate of our own Solar System and the planets it contains.

Once they are formed, white dwarf evolution is dominated by cooling.

Through our understanding of the timescales of various cooling processes, we

can determine the age of a white dwarf from its current temperature or lu-

minosity. Since the Milky Way has a finite age, the oldest white dwarfs still

have not cooled completely. Winget et al. (1987) realized that the age of the

Galaxy could be constrained independently by measuring the white dwarf lu-
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minosity function, publishing a new age for the Galactic disk of 9.3± 2.0 Gyr.

This method of white dwarf cosmochronology can be used to constrain the

age of any coevol stellar population. The shape of the white dwarf luminosity

function also reveals important information about the physical processes rele-

vant to white dwarf cooling, including neutrino losses (dominant in the hottest

white dwarfs), crystallization (which releases latent heat), and the presence of

theoretical particles (such as axions). Lamb & van Horn (1975) explored the

physical sources of deviations from the simple, yet incredibly instructive, ra-

diative cooling model of Mestel (1952, well summarized by van Horn 1971).

Garćıa-Berro & Oswalt (2016) provide a recent review of the white dwarf lu-

minosity function.

1.2 DA White Dwarfs

Roughly 85% of white dwarfs spectroscopically display atmospheres

dominated by hydrogen (Kleinman et al. 2013), which are classified as DA

white dwarfs. The majority of the other white dwarfs have atmospheres domi-

nated by helium (DB), with a few more rare types dominated by carbon (DQ),

metals (DZ), etc. White dwarfs that exhibit spectral features of multiple el-

ements simultaneously are labeled with a combination of letters, the most

common being DAZ stars: white dwarfs with weak metal lines in addition to

strong Balmer absorption.

The high gravities of white dwarfs causes chemical stratification

(Schatzman 1945), with the heaviest elements sinking deeper into the
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interior. Even though hydrogen—the dominant chemical constituent of the

Universe—makes up only . 0.01% of DA white dwarfs by mass, this layer

is still optically thick. DB white dwarfs are understood to be devoid of

hydrogen, with helium constituting their outermost layers. Since metals

should rapidly sink below the photospheres of white dwarf stars (e.g., Koester

& Wilken 2006), the metals observed in the spectra of DAZs must be

constantly replenished, most likely from the debris of planetary systems that

had orbited the white dwarf progenitor (see recent review chapter by Di

Stefano 2011).

The physical properties of DA white dwarfs are commonly determined

from spectroscopy, where the measured profiles of the Balmer lines (at optical

wavelengths) are compared with stellar atmosphere models to yield surface

gravity (log g) and effective temperature (Teff) values. These are then com-

monly compared to stellar evolutionary models to yield measurements of the

white dwarf mass, radius, bolometric luminosity, age, etc. Balmer lines reach

their maximum strength near Teff = 13,500 K at log g = 8. The selection be-

tween degenerate hot and cool spectroscopic solutions on either side of this

boundary is typically guided by broadband photometry (e.g., Bergeron et al.

1995), but this is complicated by interstellar extinction.

As the sample size of spectroscopically observed DA white dwarfs grew,

particularly with the Sloan Digital Sky Survey, it became apparent that typ-

ical log g values measured from spectroscopic model fits showed an empirical

rise with decreasing Teff below roughly 12,500 K. This was not expected from
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theory, nor could it be understood. Independent mass constraints from grav-

itational redshifts of white dwarf spectral lines did not corroborate this log g

upturn (Falcon et al. 2010). Considering potential resolutions to this unphys-

ical spectroscopic discrepancy, Koester et al. (2009a) identified an insufficient

treatment of convection as the most likely culprit. This has largely been sup-

ported by the results of 3D hydrodynamic convection simulations (Tremblay

et al. 2011b), which infer lower log g values for convective DA white dwarfs.

It has become customary to apply 3D correction factors to the results of 1D

spectroscopic model fits (Tremblay et al. 2013; 2015 for extremely low-mass

white dwarfs).

1.3 The DA White Dwarf Instability Strip

DA white dwarfs are observed as photometrically variable pulsating

stars as they cool through the range 12,500 & Teff & 10,800 K (near the av-

erage surface gravity log g ≈ 8.0; this range is dependent on surface gravity,

as described in Section 1.4). It is no coincidence that this corresponds to the

former log g upturn problem described above. Below about 13,000 K, electrons

begin to recombine with the hydrogen in the outermost atmospheric layer of a

DA, establishing a partial ionization zone with increased opacity. Convective

energy transport via bulk fluid motions begins as radiation gets dammed up

in this region, heating matter and making it buoyant. The depth and total en-

ergy content of the convection zone is extremely temperature dependent (e.g.,

Montgomery 2005). As the convection zone responds to local fluid variations,
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it can drive global stellar oscillations (Brickhill 1991; Goldreich & Wu 1999a).

The pulsating DA white dwarfs are commonly referred to as both DAVs (DA

Variables) and ZZ Ceti stars (after their prototype). I use these terms nearly

interchangeably in this manuscript.

DAVs oscillate with nonradial gravity mode pulsations. In contrast to

isotropic radial modes, nonradial pulsations have the angular geometries of

spherical harmonics, resulting from the spherically symmetric stellar gravita-

tional potential. These can be defined by two quantum numbers: the degree

` equals the number of nodal lines at the surface; and the azimuthal order

m equals the number of these that pass through the polar axis, with values

between −` and +`, depending on the direction that the waves travel. The

additional quantum number k (some authors use n) describes the number of

nodes in the radial direction, or the radial overtone number.

The restoring force for gravity modes (g modes) is buoyancy, as opposed

to acoustic waves that are restored by pressure (p modes). The gas displace-

ment associated with g modes is primarily horizontal, while p modes are mostly

vertical. The g modes typically have longer periods than p modes—usually 3–

20 minutes in white dwarfs. The comparison of pulsation observations through

different filters supports that the flux variations are primarily from temper-

ature changes rather than geometric distortions (Robinson et al. 1982), as is

expected for g modes.

A white dwarf only sustains pulsations at frequencies that correspond to

possible standing waves given its specific structure. In physics, these standing
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waves are called “eigenfunctions,” and they oscillate at the observed frequen-

cies of photometric variability. The analysis of normal vibrational modes is

a fundamental technique of physics—the same concept underlies the study of

atomic and molecular spectral lines. The pulsations are global; they propa-

gate through the star, probing the interior conditions with frequencies that

are tuned by the specific stellar structure. By comparing measured pulsation

frequencies against theoretical models, we can constrain the interior condi-

tions of white dwarfs that are otherwise obscured below the photospheres of

non-pulsating stars. The more pulsation frequencies that we detect, the more

observational constraints we have on a system. In analogy to how geologists

use waves from earthquakes to sound the interior of the Earth, we refer to

the study of pulsating stars as asteroseismology. Aerts et al. (2010) provide a

practical recent treatment of the tools and results of asteroseismology, while

Unno et al. (1989) is the definitive classic text on pulsation physics.

Although it has not been definitively demonstrated, the near ubiquity

of stellar pulsations observed within the DAV instability strip supports that it

is “pure” (Castanheira et al. 2007); i.e., all DA white dwarfs are expected to

pulsate as they cool through this narrow temperature range. This means that

the asteroseismic constraints that we place on the contents of pulsating DAVs

can be generalized to the larger population of DA white dwarfs as a whole.

Pulsations cause temperature variations at the photosphere, which

modulates the disk-integrated flux. We measure this in pulsating white dwarf

stars by obtaining time series photometry. This is essentially the same as
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recording time lapse movies of a stars that change in brightness. We measure

the flux from the target star in each image relative to other stars in the

field of view, allowing us to correct for the effects of transparency variations

during the image sequence. The record of stellar brightness variations over

time is called a light curve. We typically measure the characteristics of

stellar pulsations by computing the Fourier transform of light curves, which

mathematically determines the amplitudes and significance of variability over

a range of frequencies. I explore the subtleties of how the data acquisition

details can complicate these measurements in Section 8.3.

1.4 The Extremes of the DA White Dwarf Instability
Strip

The parameter space of the DAV instability strip is typically mapped to

the spectroscopically determined log g and Teff values. Previous observational

work, most notably from other University of Texas theses, have uncovered

important relationships between the pulsation properties of DAVs and these

spectroscopic parameters.

1.4.1 Dependence of DAV Pulsations on Teff

Mukadam et al. (2006) measured the pulsation properties of 46 ZZ

Cetis and explored their dependence on effective temperature. This is the

most comprehensive study of its type to date, but similar trends were explored

previously by, e.g., Clemens (1993) and Kanaan et al. (2002). In their work,
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Mukadam et al. were careful that their comparisons made use of spectroscopic

parameters that were obtained in a uniform way, since differences in instru-

ments and analyses are known to introduce systematic errors to the fits (e.g.,

Fuchs et al. 2017). As ZZ Cetis cool across the instability strip, their typical

pulsation periods are observed to increase (as Mukadam et al. characterized

by the amplitude-weighted mean period). This is expected theoretically since

the thermal timescale of the convection zone increases as it deepens across the

ZZ Ceti instability strip, making it more efficient at driving pulsation modes

with longer periods (Winget 1982). The total observed pulsational power of

ZZ Cetis is observed to gradually rise below the hot (blue) edge of the insta-

bility strip, before sharply decreasing at the cool (red) edge. Mukadam et al.

(2006) also found that ZZ Cetis near the red edge tend to be “richer” pulsators,

exhibiting more independent pulsation modes (one, on average) compared to

red edge pulsators.

There are also striking changes to the stability of pulsation mode prop-

erties as ZZ Cetis cool across the strip. Several of the hot ZZ Cetis show

exceedingly steady pulsations; in fact, the 215 second mode in G117+B15A is

the most stable known optical clock, to the extent that we can even measure the

rate of period change due to white dwarf cooling Ṗ = (3.57±0.82)×10−15 s s−1

(Kepler et al. 2005). Mullally et al. (2008) constrained the possible orbits and

masses of exoplanets around hot ZZ Cetis by searching for periodic phase mod-

ulations of the pulsation signatures caused by stellar reflex motion. As of the

most recent update by Winget et al. (2015), this method has not yet identified
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any specific planet candidates.

ZZ Cetis near the cool edge of the instability strip behave very dif-

ferently. Observations from different seasons on the cool ZZ Cetis GD 154

(Pfeiffer et al. 1996), G29–38 (Kleinman et al. 1998), and HL Tau 76 (Dolez et

al. 2006), for example, reveal dramatic changes in pulsation amplitude. From

year to year, the dominant pulsation mode can change completely, and the

same set of mode frequencies is often not detected. Cool ZZ Ceti pulsations

are not particularly stable in phase, frequency, or amplitude.

1.4.2 Dependence of DAV Pulsations on log g

The pulsation properties of DAVs also change with the surface grav-

ity, log g. At the temperatures of DAVs, log g is essentially a proxy for white

dwarf mass. The DA mass distribution is sharply peaked around a value of

0.624M� (Kepler et al. 2017), though it is non-Gaussian, with sub-populations

clustered at both higher and lower masses (Kleinman et al. 2013). The clump-

ing of these extreme populations suggests that they contain white dwarfs that

formed through alternative pathways to single-star evolution, namely white

dwarf mergers and binary mass transfer evolution, respectively.

Massive white dwarfs that form in isolation would be composed primar-

ily of heavier ions like oxygen, neon, and magnesium if their progenitors under-

went carbon fusion. Those that coalesced from less massive white dwarfs will

contain the lighter byproducts of earlier nucleosynthetic stages only. Stellar

pulsations are sensitive to white dwarf core composition and can be exploited
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to constrain the relative efficiency of these evolutionary pathways. Since the

ions of massive white dwarfs are so densely packed, their Coulomb interactions

are stronger and they will begin to form a crystalline lattice at higher temper-

atures than less massive white dwarfs. The average charge per ion affects the

temperature of crystallization too. Asteroseismology of massive white dwarfs

can constrain their crystallized fraction—an important test of dense matter

physics. There have been many observational efforts to detect massive DAVs,

with the record for most-massive currently held by the 1.20 ± 0.03M� GD

518 (Hermes et al. 2013b). My advisor Mike Montgomery’s thesis addressed

massive white dwarf pulsations and crystallization in great detail (1998).

The lowest mass white dwarfs do not have this same single/double star

formation dichotomy; the main sequence lifetimes of single-star progenitors of

white dwarfs less massive than ≈ 0.3M� would exceed the age of the Galaxy

(Marsh et al. 1995; Kilic et al. 2007), There has only been enough time for

the observed population of extremely low-mass (ELM) white dwarfs to have

formed through post-main-sequence common envelope mass transfer. In this

scenario, the envelope of a star ascending the red giant branch is stripped by a

tight binary companion, leaving behind a degenerate helium core (Nelemans et

al. 2001). This evolutionary picture is supported by the overwhelming fraction

of ELM white dwarfs confirmed as belonging to tight binary systems through

radial velocity variation measurements (Brown et al. 2016). Asteroseismol-

ogy of ELM white dwarfs can illuminate the details of this complicated mass

transfer process by probing the chemical content of the remnant products.
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The discoveries of the first five pulsating ELM white dwarfs were made on

the McDonald Observatory 2.1m telescope near the outset of my PhD work

(Hermes et al. 2012a, 2013a,c). Theoretical work on the pulsation properties

of ELM white dwarfs has been produced by Córsico & Althaus (2014a, 2016a);

Córsico et al. (2016c); Istrate et al. (2016a); Calcaferro et al. (2017).

Finally, there is a log g-dependence on the location of the instability

strip boundaries, which moves to lower Teff at lower log g. Empirically deter-

mined boundaries that account for the latest 3D treatment of convection are

parameterized in Tremblay et al. (2015). The outer layers of more massive

DA white dwarfs have higher densities and are therefore more opaque, causing

them to become convective and able to drive pulsations at higher temperatures

than less massive DA white dwarfs. We also note that since the characteristic

dynamical timescale for stars is ∝ 1/
√
ρ̄, less massive DAVs generally exhibit

longer pulsation periods.

1.5 Pulsational Oddities at the Extremes of the DA
White Dwarf Instability Strip

My thesis work has primarily focused on understanding the pulsational

properties of DA white dwarfs at the cool edge of the ZZ Ceti instability strip,

as well as those in the parameter space of extremely low-mass pulsating white

dwarfs. I preview my main results in this section, and I also introduce the

complementary side projects that make up part of my thesis work.
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1.5.1 A New Outburst Phenomenon Near the Red Edge of the ZZ
Ceti Instability Strip

I joined the white dwarf research group at UT-Austin at an oppor-

tune time. A month after my arrival, the Kepler Spacecraft began acquiring

short cadence (1 min) photometric observations of the first ZZ Ceti variable

known within its field of view, which the senior graduate student of the group,

J. J. Hermes, had recently identified (Hermes et al. 2011). I took on the

analysis of this unprecedented data set for my second-year graduate research

project. Over 1.5 years of nearly uninterrupted space-based precision photom-

etry on this target, KIC 4552982, promised to reveal the most complete record

of pulsations in a ZZ Ceti to date. The most striking feature of the data was,

however, unexpected: we detected 178 brightening events in the Kepler light

curve. These “outbursts” last as long as a day, raise the instantaneous flux

of the star by up to 17%, and recur with a quasi-period of 2.7 days. After

carefully ruling out instrumental or contaminant sources of the outbursts, I

characterized the first observations of this new physical behavior in Bell et

al. (2015c). Model fits to spectroscopic observations of KIC 4552982 indicate

that it is one of the coolest, canonical-mass ZZ Cetis known at 10,860±120 K.

This extensive data set—still the longest, nearly continuous light curve ever ac-

quired for a ZZ Ceti—revealed a more complete record of mode amplitude and

frequency instability than any previous work (see discussion in Section 1.4.1).

The low-frequency modes are “resolved,” and we can determine the underly-

ing eigenfrequencies to higher precision than is possible from short observing
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runs on cool ZZ Cetis. This data set was also the first to suggest a dichotomy

between mode coherence at low and high frequency—an observation that has

led to a new physical appreciation for the interaction between pulsation modes

and convection (Montgomery et al., in prep.). From the Fourier transform of

the light curve, I characterized 20 pulsation periods of this star, identifying a

clear ` = 1 sequence, as well as rotational splitting that enabled me to con-

strain the rotation period of this star to 17.47 ± 0.04 hours. This paper is

reproduced in its entirety as Chapter 2. A more detailed asteroseismic analy-

sis of the published pulsation periods is underway (Alejandra Romero, private

communication).

With the failure of a second reaction wheel in May 2013, Kepler lost

the ability to maintain its pointing on the original mission field. To salvage

the spacecraft, the K2 mission was devised to use pressure from the solar

wind to obtain stable pointing on new fields along the ecliptic for roughly 80

days at a time. While the shorter extent of observations per field limits K2 ‘s

sensitivity to detecting exoplanets via the transit method, the new observing

strategy has greatly increased the number of pulsating white dwarfs that we

have uninterrupted multi-day precision photometry on.

The K2 light curves have overwhelmingly revealed that outbursts are

related to pulsations and are common near the empirical cool edge of the ZZ

Ceti instability strip. The most dramatic example of an outbursting cool ZZ

Ceti was found in K2 Campaign 1; PG 1149+057 exhibits outbursts with peak

flux enhancements of up to 45% and is bright enough that we can track the
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evolution of pulsations through the events (Hermes et al. 2015b). The observed

increase in pulsation amplitudes and frequencies during outbursts proves that

the outbursts originate from the ZZ Ceti and will inform possible models for

the underlying physical mechanism.

In Bell et al. (2016)—which makes up Chapter 3—I analyzed the K2

light curves of 52 white dwarfs observed through Campaign 6 near the ZZ Ceti

instability strip, detecting two additional ZZ Cetis that exhibit recurring out-

bursts. EPIC 211629697 and EPIC 229227292 both have spectroscopic effective

temperatures that place them near the empirical red edge. I also find a single

candidate outburst event in the long cadence light curve of EPIC 211891315—

an interpretation that is slightly supported by the confirmation of stellar pul-

sation in this star from ground-based follow-up photometry.

K2 continues to observe pulsating and outbursting ZZ Cetis in new

fields every ≈ 80 days and is expected to continue through Campaign 16

(ending 2018 Feb). By the time K2 has exhausted its fuel, it will have ob-

served ∼ 100 pulsating white dwarfs (J. J. Hermes, private communication).

We continue to analyze new data releases, especially looking for additional

outbursting ZZ Cetis. So far, through Campaign 10, we have discovered

an additional four: EPIC 229228364, EPIC 220453225, EPIC 220329764, and

EPIC 228952212. The analysis of the first two was previewed in Bell et al.

(2017b). I characterize the spectroscopic, outburst and pulsation properties

of all currently known members of this new outbursting subclass of ZZ Ceti

variable in Chapter 4.
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1.5.2 Asteroseismic Evidence of Spectroscopic Misclassification at
the Extremely Low-mass End of the ZZ Ceti Instability Strip

The second major focus of my thesis work has been on pulsating DA

white dwarfs near the low-mass extreme of the mass distribution. As I began

my observing career, the McDonald Observatory 2.1-meter telescope had just

become the discovery machine for a new pulsating class of extremely low-

mass (ELM; . 0.3M�) white dwarf (Hermes et al. 2012a, 2013a,c; with one

additional pulsating ELM discovered more recently from Gemini by Kilic et

al. 2015a). I described the context of this work in Section 1.4.2.

Appreciating this rich research area, I led the continued campaign to

detect and characterize new pulsating stars in this parameter space. I derived

my target lists through collaboration with the ELM Survey team (Brown et al.

2016, and references therein), which had produced all of the published ELM

variables (ELMVs) so far, as well as from new model fits to Sloan Digital Sky

Survey (SDSS) spectroscopy led by my thesis committee member S. O. Kepler

(2015; 2016). While I did identify several new photometric variables from

my ELMV candidate lists, their properties did not generally conform to our

expectations of ELM white dwarfs, leading me to challenge some of the basic

assumptions of this subfield.

I published the results of my times series photometric survey of nine

candidate ELMVs from the ELM Survey papers VI and VII (Gianninas et

al. 2015; Brown et al. 2016) as Bell et al. (2017a), which I reproduce here in

Chapter 5. Five out the the nine candidates exhibit photometric variability:
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three as pulsating stars, and two as photometric binaries. The new pulsat-

ing stars are, however, all among the few spectroscopically classified ELMs

that were not found to exhibit the radial velocity variability expected given

their theoretical formation from common envelope binaries. Furthermore, the

4.31-hour pulsation period of one of these stars exceeds the physical limit for

surface reflection in a white dwarf (Hansen et al. 1985). Of the photometric

binaries, the ellipsoidal variation and Doppler beaming signals of one system

was consistent with its spectroscopic classification as an ELM white dwarf, but

the eclipse duration of the other put a lower limit on the primary star’s radius

of 0.4R�—too large for a cooling track white dwarf. Taken together, these ob-

servations reveal that another type of star is being systematically mistaken for

ELM white dwarfs from spectral line fitting. Considering that two previously

published ELMVs also do not show radial velocity variations in time series

spectroscopy, I revise the total number of confirmed ELMVs in this work to

the four from Hermes et al. (2012a, 2013a) and Kilic et al. (2015a).

White dwarf model fits to SDSS spectroscopy from Data Releases 10

and 12 (Kepler et al. 2015, 2016) revealed thousands of stars with best fit

parameters in the ELM regime, which were labeled “sdA” stars. I sought to

understand this unexpectedly large number of objects with ELM-like spectra

through time series photometry. I describe my observations of a handful of

sdAs in Chapter 6. I detect clear pulsation signatures in six out of 24 sdA stars

that my collaborators and I observed. While the observed properties support

that most of these new variables are not cooling track white dwarfs, at least
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one appears to be an ELMV.

1.5.3 Tangential Explorations of Photometrically Variable White
Dwarfs

With over 225 nights of observing on the McDonald 2.1-meter Otto

Struve Telescope, as well as my involvement in the quarterly outpouring of

variable white dwarf data from K2, I have had the opportunity to work on a

number of side projects that are only tangentially related to the two main foci

of my thesis described above. Depending on the size of each undertaking, I

have included these in my thesis either as additional chapters or appendices.

For completeness, here is an overview of those components in order of their

appearance.

In Chapter 7, I develop an improved framework for obtaining radius

constraints on ELM white dwarfs from measurements of photometric ellip-

soidal variations. I apply this technique to better constrain the properties of

the new photometric variable SDSS J1054-2121. This chapter was originally

included in an early draft of Bell et al. (2017a), but it distracted from the main

narrative of that paper. This work is a refinement of the general approach de-

veloped in Hermes et al. (2014b). The tools I describe in this chapter are also

useful for predicting ellipsoidal variation amplitudes of photometric binary

candidates in different filters.

Chapter 8 describes a novel combination of data on two ZZ Ceti pul-

sators: long-cadence K2 observations and single-site ground based light curves.
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Significant aliasing renders each of these data sets non-ideal for precision aster-

oseismology. Signals in the K2 observations, while of extremely high precision,

suffer Nyquist aliasing since the white dwarf pulsation periods are shorter than

the 30-minute exposure time. Gaps in the ground based observations intro-

duce aliases to the spectral window from cycle-count ambiguities. Together,

these data sets complement each other, enabling us to recover a subset of

accurate pulsation periods at full K2 precision. Along the way, I discuss the

observational effects that act to confuse frequency solutions and use these data

to demonstrate common analytical pitfalls.

During this work, I have becoming increasingly interested in the

prospect of studying stellar pulsations with data from future large synoptic

photometric surveys, yet I have been so inundated with existing data that I

have made only limited explorations in this area. I have focused on generated

synthetic data to demonstrate which survey design considerations are most

important for capturing the signatures of stellar pulsations. I describe a few

simulations of pulsating white dwarf photometry sparsely sampled in the

time domain in Chapter 9. These are most relevant to the upcoming Large

Synoptic Survey Telescope and the Zwicky Transient Facility projects that

will begin data acquisition in the coming years.

As McDonald Observatory’s most frequent observer of time series pho-

tometry over the past four years, I have been able to contribute important

observations to many interesting side projects. I highlight a few of these data

sets in a gallery of contributed observation in Appendix A, with the permission
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of the primary investigators. These include observations of disintegrating plan-

etesimals around a white dwarf, a double white dwarf binary decaying from

gravitational radiation, and a massive white dwarf with a strong rotational

signature from starspot modulation.

To enable on-the-fly decision making and optimal use of telescope time,

I developed an interactive online data reduction and analysis pipeline for the

ProEM high speed photometry CCD that is in use at McDonald Observatory.

I describe this software in the final Appendix B.
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Chapter 2

Pulsations and a New Outburst Phenomenon

in the Longest Light Curve of a ZZ Ceti:

KIC 4552982 ∗

The Kepler mission (Borucki et al. 2010) was designed to detect the

transit signatures of Earth-like planets around Sun-like stars. It recorded data

for over 150,000 pre-selected targets within a 115 deg2 field near the constella-

tion Cygnus with 30-minute exposures. It could also obtain light curves at a

short 1-minute cadence for 512 targets, sufficiently frequent to measure white

dwarf pulsations with typical periods of 3–20 minutes. Kepler mission ob-

served for four years until the second of four reaction wheels failed, rendering

the spacecraft unable to maintain pointing on its original field.

No ZZ Ceti variables were known within the original Kepler field,

∗This work was previously published as Bell, K. J., Hermes, J. J., Bischoff-Kim, A.,
Moorhead, S., Montgomery, M. H., Østensen, R., Castanheira, B. G. and Winget, D. E.,
2015, KIC 4552982: Outbursts and Asteroseismology from the Longest Pseudo-continuous
Light Curve of a ZZ Ceti, ApJ, 809, 14. I led this work with the help of many collaborators:
J. J. Hermes proposed the observations and contributed important ideas and analytical tests;
A. Bischoff-Kim calculated a grid of asteroseismic models that we compared the observations
to; S. Moorhead computed the mean outburst profile; M. H. Montgomery advised my work
and computed relevant timescales in white dwarf models; R. Østensen gave valuable feedback
on the first draft and produced the “sliding FT” figure; B. G. Castanheira helped me
to interpret the asteroseimic results; and D. E. Winget advised the project, suggesting
important tests to do and contributing ideas about the physical nature of outbursts.
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mainly due to the lack of multi-color survey photometry in this part of the

sky to Kepler ‘s limiting magnitude. Hermes et al. (2011) discovered the first

ZZ Ceti observable by the Kepler mission, and we obtained over 1.5 years of

short-cadence data on KIC 4552982 before the mission abruptly ended. These

observations provide the most complete record of ZZ Ceti pulsations to-date.

The unprecedented extent of the light curve provides precise, high signal-to-

noise detections of pulsation signatures with hardly any gaps. I led the analysis

of these data for my second-year project as a graduate student at UT-Austin.

These data made it possible for me to precisely measure the pulsation proper-

ties of this star for asteroseimic analysis and to resolve their relative incoher-

ence that has not been done from the ground. I asteroseismically measured

the rotation period of KIC 4552982 to be 17.47± 0.04 hr.

Beside this pulsational and asteroseismic analysis that motivated

these observations, these data revealed an unexpected new outburst-like

phenomenon in this star. This new physical behavior became a centerpiece

of my thesis work that I focus on in the next three chapters. KIC 4552982

exhibited 178 quasi-periodic brightening events that increased the stellar

flux by up to 17%, lasted between 4–25 hours, and recur every 2.7 days on

average. The content of this chapter was published as (Bell et al. 2015c).

Through the continued discovery of this behavior in other ZZ Cetis from the

second mission of the Kepler spacecraft, K2, we would come to learn that

this behavior is common near the empirical cool edge of the instability strip.
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2.1 Introduction

As they cool, white dwarfs — the endpoints of more than 97% of stars

in our Galaxy — evolve through instability strips on the H-R Diagram where

they pulsate due to convective driving (Brickhill 1991; Goldreich & Wu 1999a).

ZZ Ceti variables have partially ionized hydrogen atmospheres and pulsate in

the surface temperature range 12,600 K > Teff > 10,800 K near the mean

hydrogen-atmosphere (DA) white dwarf mass of 0.6 M� (Tremblay et al.

2013). The characteristics of the pulsation modes that are excited in stars

are determined by the specifics of their internal structures. The tools of as-

teroseismology enable us to interpret measurements of white dwarf brightness

variations to potentially constrain their masses, radii, compositions, chemi-

cal stratification, equations of state, rotation, crystallized fractions, etc. (see

reviews by Winget & Kepler 2008; Fontaine & Brassard 2008; Althaus et al.

2010). This method allows us to conduct important investigations into the be-

havior of matter under the extreme physical conditions of white dwarf interiors

that are beyond what is accessible for study in terrestrial laboratories.

Asteroseismology of white dwarf stars is conducted primarily through

Fourier analysis of photometric light curves. While ground-based observa-

tions of pulsating white dwarfs have been collected since 1964 (Landolt 1968),

the terrestrial vantage point comes with its disadvantages. Aliasing caused by

daily gaps in the data and breaks due to inclement weather can introduce arti-

facts to Fourier transforms (FTs). Since spectral resolution and signal-to-noise

improve with a longer observational baseline and more complete coverage, ob-
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servations spanning multiple nights are often required to resolve the individual

frequencies of a rich pulsation spectrum. Efforts to surpass these limitations

include extended, global observations with networks of telescopes distributed

in longitude, with the greatest contributions to white dwarf science coming

from the Whole Earth Telescope collaboration (Nather et al. 1990).

More recently, the Kepler space mission has enabled asteroseismic re-

search of unprecedented quality by obtaining extended time series photometry

of a consistent field with a high duty cycle (see, e.g., Gilliland et al. 2010a;

Christensen-Dalsgaard & Thompson 2011). Besides the presently described

work, detailed asteroseismic studies of pulsating white dwarfs enabled by the

original Kepler mission include analysis of a V777 Her star (helium-atmosphere

variable white dwarf; KIC 8626021; Østensen et al. 2011; Bischoff-Kim &

Østensen 2011; Córsico et al. 2012; Bischoff-Kim et al. 2014) and another ZZ

Ceti (KIC 11911480; Greiss et al. 2014). In its present two-wheel configura-

tion, Kepler has also provided asteroseismic data on the ZZ Ceti variable GD

1212 (Hermes et al. 2014b) and a ZZ Ceti with an M dwarf binary companion

(Hermes et al. 2015a). Kepler will observe additional white dwarf pulsators in

upcoming K2 mission fields (Howell et al. 2014).

Hermes et al. (2011) sought and discovered the first ZZ Ceti in the

original Kepler field of view: WD J191643.83+393849.7. They gathered∼21 hr

of time-series photometry on the 2.1-meter Otto Struve telescope at McDonald

Observatory and identified seven frequencies of brightness variability, though

with admittedly large uncertainties. They also obtained four low- to medium-
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resolution spectra for the white dwarf and fit the Balmer line profiles to models

to determine its values of Teff = 11,129 ± 115 K, log g = 8.34 ± 0.06, and

M? = 0.82 ± 0.04 M�. Now equipped with corrective terms that take into

account the effects of 3-dimensional convection (Tremblay et al. 2013), we

revise the spectroscopically derived values to Teff = 10,860 ± 120 K, log g

= 8.16 ± 0.06 in this work, and interpolate the model cooling sequences of

Renedo et al. (2010) to get M? = 0.69± 0.04 M�. These properties place the

white dwarf at the empirical red (cool) edge of the ZZ Ceti instability strip

(Tremblay et al. 2013).

This target at 19h16m43s.83, 39◦38′49.7′′ was assigned Kepler ID KIC

4552982 and was observed by the Kepler spacecraft at short cadence from

Q11 until the second reaction wheel failure during Q17. The resulting data

provide the longest (∼20-month) pseudo-continuous light curve of a ZZ Ceti

ever obtained. Besides resolving a rich pulsation spectrum, the Kepler light

curve revealed a surprising outburst phenomenon unlike any previously studied

white dwarf behavior.

In Section 2.2 we describe the methods used to optimally reduce the

Kepler light curves. In Section 2.3 we characterize and discuss the nature of the

energetic outbursts recorded for the first time in the Kepler photometry. Our

asteroseismic analysis makes up Section 2.4, where we measure the pulsational

properties of the star to constrain the stellar mass, hydrogen layer mass and

stellar rotation rate. We summarize our findings and conclude in Section 2.5.
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Figure 2.1: Representative segments of the Kepler light curve of KIC 4552982
as a function of days since the start of Q14 observations. The top panel
shows the full Q14 light curve. The one-month shaded region in the top
panel is expanded in the middle panel. The one-week shaded region in the
middle panel is expanded in the bottom panel. The solid line is the light
curve smoothed with a 3-hour-wide Epanechnikov (inverted parabola) kernel.
The point-to-point scatter dominates the pulsation amplitudes in the light
curve, so pulsations are not apparent to the eye. The white dotted line marks
the significance criterion for our outburst detection algorithm, and outbursts
determined to be significant are highlighted. We discuss this algorithm and
these outburst events in Section 2.3.

2.2 Kepler Photometry and Data Reduction

Following the discovery by Hermes et al. (2011) that WD J191643.83

+393849.7 (KIC 4552982) pulsates, this target was prioritized by the Ke-
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pler Asteroseismic Science Consortium (KASC) for short-cadence monitoring

by the Kepler spacecraft (58.85 s image−1; Gilliland et al. 2010b). It has a

recorded Kepler magnitude of KP = 17.9. The object was observed from

Quarter 11 (Q11) through Q17 (2011 September 29 to 2013 May 11).

The Kepler data were reduced with the PyKE software package (Still

& Barclay 2012) following the method described by Kinemuchi et al. (2012).

We defined custom apertures for light-curve extraction from the Target Pixel

Files to maximize target signal-to-noise. We then masked out the outburst

events (described in Section 3) from the raw light curves and found that linear

least-squares fits of the top six Cotrending Basis Vectors from each quarter

characterized and allowed us to correct for the systematic instrumental trends

in the light curve. Finally, we excluded points that were flagged for question-

able data quality by the Kepler pipeline, and we manually removed statistical

outliers falling > 5σ from the local, 10-d median, ensuring that no clipped

points were related to astrophysical photometric variations. Our final light

curve contains 746,916 data points and has a 86% duty cycle. The represen-

tative Q14 light curve that we acquired after normalizing and combining each

month of data is provided in Figure 2.1.

2.3 Outbursts in the Kepler Light Curve

With a mean standard deviation from measurement noise of 1.8% dom-

inating the pulsation amplitudes in the Kepler light curve, its visually striking

features are the occasional large brightness enhancements that occur through-
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Figure 2.2: Histogram of delay times between successive outbursts that meet
our detection criteria. The mean recurrence timescale is 2.7 days and the
standard deviation is 1.3 days.

out the 20 months of observations (visible in Figure 2.1). We see no evidence

of a faint, red companion, and argue these observations likely mark the first

detection of a new white dwarf outburst phenomenon.

2.3.1 Outburst Characteristics

We define an automatic detection algorithm to locate significant out-

bursts in the light curve. Each month of data is smoothed with a 3-hour-wide

Epanechnikov (inverted parabola; Epanechnikov 1969) kernel to reduce scat-

ter while retaining the outburst signatures. Outbursts are identified where

the light curve exceeds a significance threshold of 4× the standard deviation

of the smoothed flux for 30 consecutive minutes. We interpret the target to
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be in outburst until the smoothed flux returns to the median value of 1.0.

We iteratively search for outbursts by recalculating the significance threshold

from “quiescent” (outside known outbursts) portions of the light curve until

no additional outbursts are identified. The values that we adopt for this detec-

tion scheme are tuned such that the algorithm identifies all outbursts that are

obvious to the eye without selecting regions that do not stand up to human

scrutiny. Our search yields 178 events of significant (peak 2− 17%) brightness

increases that typically last ≈ 4−25 hours. We display the histogram of delay

times between detected outbursts in Figure 2.2. These outbursts appear to

occur stochastically in time with an average delay of 2.7 days and a standard

deviation of 1.3 days.

These timescale properties are reflected in the autocorrelation of the

light curve, shown in Figure 2.3. The autocorrelation function depicts how

likely it is to measure excesses in flux separated by different lags of time. The

light curve was smoothed in 30-minute bins to average over any correlation

from pulsations. The solid horizontal lines mark the 95% confidence thresh-

olds of ±2/
√
Ne, where Ne is the effective sample size (Chatfield 2004). We

approximate the effective sample size from the number of light curve bins com-

pared at each time lag, multiplied by (1−ACF1)/(1+ACF1), where ACF1 is

the autocorrelation coefficient at the smallest time lag. For a random time

series, 95% of autocorrelation coefficients would be expected to fall within

these bounds. We see positive autocorrelation at < 8-hour time lag as this is

the characteristic duration of an outburst. Beyond an apparent recharge time
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Figure 2.3: Autocorrelation of the Q11-Q17 Kepler light curve of KIC 4552982.
The positive autocorrelation coefficients at short (< 8 hour) time lag sim-
ply demonstrate that outbursts often persist to this duration. The range of
time lags that produce negative autocorrelation coefficients is interesting, as
it shows that an outburst is less likely to happen within 2 days of another.
Beyond this recharge time, outbursts are consistent with being random (the
solid lines are the 95% confidence intervals for random data).

of roughly 2 days, outbursts are consistent with occurring at random. The

outbursts appear to be aperiodic, so we cannot formulate an event ephemeris

to predict the timing of future outburst events.

Figure 2.4 displays regions of the light curve surrounding a few rep-

resentative events in more detail. The top panel shows the most energetic

event found in the light curve, the second panel shows a median-energy event,

the third panel shows a multi-peaked event, and the bottom panel displays

the mean event profile that is representative of these events as a whole. We
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Figure 2.4: Examples of outburst events. Top: most energetic. Second: me-
dian energy. Third: multi-peaked. Bottom: mean profile. The black curves are
smoothed with a 3-hour-wide Epanechnikov kernel. The regions determined
as belonging to the outburst by our algorithm are indicated with darker gray
points.
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Figure 2.5: Histogram of equivalent durations for the 167 outbursts observed
in their entirety.

calculated this mean profile by aligning the moments of peak brightness of all

the detected events and averaging points into 58.85-s time bins.

To quantify the energies of these outbursts in the Kepler bandpass, we

measure their equivalent durations (Gershberg 1972). These are measured in

the same way as spectral line equivalent widths: we integrate the flux above

the local mean for the duration of the event, normalized to the mean flux level.

Assuming that the outbursts originate from the target star, this results in a

value with units of time equaling the duration that the star would shine in

quiescence to output the same amount of energy in the observed bandpass as

the measured excess from the brightening event. A histogram of the measured

equivalent durations of the 167 outbursts that were recorded without inter-
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ruption from gaps in the data is displayed in Figure 2.5 and the continua used

for the example outbursts are included in Figure 2.4. The median equivalent

duration of detected outbursts is 5.5 minutes (the corresponding outburst is

displayed in the second panel of Figure 2.4). Our detection algorithm is tuned

to detect large outbursts and is likely incomplete in identifying the lowest-

energy events.

2.3.2 Discussion of Outbursts

The outburst characteristics that we measure are unlike any previously

studied white dwarf behavior. We argue here that these events originate from

the white dwarf target KIC 4552982 and mark the first detection of a new

astrophysical phenomenon. The data in hand are insufficient for us to identify

the physical mechanism that drives these events. While we suggest possible

connections to the evolutionary state of KIC 4552982, more intensive observa-

tional and theoretical explorations into their nature are left for future work.

Each quarter of Kepler data was separated by rolls of the spacecraft

that positioned the KIC 4552982 stellar image on a repeating sequence of four

different CCD detectors. Since the outbursts are prevalent in all quarters of

Kepler data, they cannot be instrumental artifacts of any one of the detec-

tors. Furthermore, these are not widespread systematic artifacts since they do

not correlate with any of the Kepler -provided Cotrending Basis Vectors that

catalog trends common amongst light curves for many objects. No other short-

cadence targets show this phenomenon. We also find no correlation between
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the outbursts and the short-cadence light curve that we extracted for KIC

4552992 – a star with Kp = 18.934 mag that is separated from KIC 4552982

by 12.5” and fell mostly within the same CCD subregions read out for the

target. We note that this other source is well separated from our target and

did not contribute flux to our custom photometric apertures.

From the discovery paper (Hermes et al. 2011), we have five low- to

medium-resolution spectra of KIC 4552982 that cover a combined wavelength

range from 4500 to 7200 Å. None show evidence of a companion from either

radial velocity variations or spectral features that are not common of a DA

(hydrogen atmosphere) white dwarf in this wavelength regime. Since the dis-

covery paper on KIC 4552982, new 3-dimensional convection simulations have

mapped the parameters determined from 1-dimensional spectroscopic model

fits to values that largely resolve a mass discrepancy in the 1-dimensional

approach (Tremblay et al. 2013). We apply these corrective terms and re-

vise the spectroscopically derived values from Hermes et al. (2011) to Teff

= 10,860±120 K, log g = 8.16±0.06. The white dwarf radius, as interpolated

from the model cooling sequences of Renedo et al. (2010), enables the conver-

sion to M? = 0.69±0.04 M�. These parameters maintain that KIC 4552982 is

one of the coolest known ZZ Ceti pulsators with a mass near or slightly above

the peak of the DA white dwarf mass distribution (e.g., Falcon et al. 2010 find

〈MDA〉 = 0.647+0.013
−0.014 M� from gravitational redshift measurements).

Apparent photometric magnitudes for KIC 4552928 are available from

the Kepler -INT Survey (KIS; Greiss et al. 2014) in U, g, r, and i filters. We
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Table 2.1. Apparent photometric magnitudes of KIC 4552982

Filter Vega magnitude AB magnitude

U 17.362± 0.007 18.15± 0.01
g 17.755± 0.005 17.68± 0.01
r 17.677± 0.007 17.84± 0.01
i 17.565± 0.009 17.94± 0.01
J 17.76± 0.03 18.70± 0.03

include these magnitudes in Table 2.1 along with the J-band magnitude ac-

quired from the UKIRT public archive1. All of these are reported in the Vega

photometric system. To compare these magnitudes in a spectral energy dis-

tribution (SED), we convert from the Vega system to physical AB magnitudes

using the conversion factors calculated by Blanton & Roweis (2007) for the

U, g, r, i filters, and the conversion of Hewett et al. (2006) for the J filter. We

plot the SED of KIC 4552982 against a synthetic spectrum of a Teff = 11,000

K, log g = 8.25 white dwarf (Koester 2010) for reference in Figure 2.6. We

note that the photometry appears consistent with the model out to the in-

frared, demonstrating the absence of any cool main sequence companion that

we might entertain as the possible source of the brightening events in the Ke-

pler data. We did not deredden the magnitudes, which might account for the

slight discrepancy in the U -band.

It is not likely that the outbursts are transient events from some line-

1http://keplerscience.arc.nasa.gov/ToolsUKIRT.shtml
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Figure 2.6: The spectral energy distribution of KIC 4552982 in U, g, r, i from
the KIS survey and a J-band magnitude from the UKIRT J-band Public
Archive. The synthetic spectrum Koester (2010) near the spectroscopically
determined atmospheric parameters is plotted for reference. We see no in-
frared excess, allowing us to rule out a cool dwarf star companion to the white
dwarf as the source of the observed outbursts.

of-sight flare star, rather than intrinsic to the pulsating white dwarf. While

the slightly shorter rise time than decay time of the mean outburst profile in

the bottom panel of Figure 2.4 is qualitatively reminiscent of flares observed

from low-mass main sequence stars, the observed flux increases are not nearly

as rapid as the impulsive phases of classical stellar flares (Moffett 1974; Benz

& Güdel 2010). Extensive studies of flares from early-type M dwarfs (M4 and

earlier; Hawley et al. 2014; Davenport et al. 2014) in the short cadence Kepler

data and from later-type M dwarfs from ground-based photometry (Hilton

2011) do not find such frequent, energetic flares as we detect in our data. The
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durations and pulse shapes of flares from K dwarfs in the Kepler long-cadence

data also do not match our observations (Walkowicz et al. 2011). That the qui-

escent flux of a line-of-sight flare star in the Kepler bandpass must be orders of

magnitude less than the white dwarf target to not be detected in the observed

spectra or SED means that the already improbable energies/peaks/durations

of the outbursts are only extreme lower-limits if they do not originate from

the white dwarf.

To constrain whether the outbursts could be coming from any spatially

offset faint transient source — flare star or otherwise — we searched for correla-

tions between the photometric centroids within the Kepler images (plate scale

≈ 4′′ pixel−1) and the occurrences of outbursts using the approach of Bryson

et al. (2013). Our analysis was inconclusive. Although the photometry shows

significant centroid offsets when comparing the light curve during outbursts

to quiescent moments, the shifts are in inconsistent directions on the sky in

different quarters. When comparing just the higher-flux to lower-flux frames

from quiescent segments of the light curve, an identical centroid analysis again

shows significant shifts of comparable magnitude in identical directions. The

measured centroid shifts of as much as 0.04′′ are likely dominated by variations

in pixel sensitivity rather than the presence of any transient offset by more

than of order 0.1′′.

Some white dwarfs host surface magnetic fields locally as strong as

∼ 1000 MG (e.g., PG 1031+234; Latter et al. 1987). We do not undertake

any attempt to physically model the output of magnetic reconnection flares in
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white dwarfs for this analysis; however, the available spectra of KIC 4552982 do

not show line splitting that would evidence that it is highly magnetic (resolved

Zeeman splitting is expected for B ≥ 106 Gauss; Wickramasinghe & Ferrario

2000). Since this first object to exhibit this behavior is not nearly one of

the more strongly magnetic white dwarfs studied, it is difficult to ascribe the

outbursts to magnetic processes. Since the timescales of dynamic events like

flares should scale roughly with the dynamical timescale (free-fall time), we

do not expect to see flares of multi-hour duration on a white dwarf with a ∼ 1

s dynamical timescale.

We collected 42 hours of follow-up, higher signal-to-noise photometry

with the Argos photometer (Mukadam & Nather 2005) on the McDonald Ob-

servatory 2.1-meter Otto Struve telescope over eight nights through a BG40

filter in 2013 August with hopes of catching the system in outburst. Un-

fortunately we made no such detection. Given the distribution of observing

windows when we were able to get useful data, there was a 47% chance that

we would have caught the peak of an outburst. We also do not detect this

phenomenon when reanalyzing the original discovery data of Hermes et al.

(2011).

De Marco et al. (2015) analyze the Kepler light curve of the central star

of planetary nebula Kn 61, which exhibits brightening events every 2–12 days,

each lasting 1–2 days with amplitudes of 8–14%. These events are similar to

the outbursts on KIC 4552982, at least in that they are also unlike previously

studied behavior. While the authors are unable to conclusively demonstrate
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a mechanism for observed outbursts in Kn 61, they explore accretion as a

possible energy source. Extending this analysis, they equate the energy of a

median outburst on KIC 4552982 to 5 × 10−15 M� of accreted material. We

note with some interest that this is within the range of measured asteroid

masses (Hilton 2002), but there is currently no known dynamical mechanism

to drop circumstellar debris onto a white dwarf with this fairly regular and

relatively rapid recurrence timescale (Jura 2008). Assuming a total asteroid

population mass of order the Solar System asteroid belt mass (1.8 × 1024 g;

Binzel et al. 2000), this rapid accretion would deplete the mass reservoir in

a mere ∼1000 yr. With an outburst frequency far shorter than the calcium

diffusion timescale of ∼40 yr for a Teff = 10,860 K, log g = 8.16 white dwarf

(Koester & Wilken 2006), we would expect such rapid accretion to cause strong

absorption at the calcium H & K doublet. We do not detect this signature in

the available spectra (Hermes et al. 2011).

With Teff = 10,860±120 K, KIC 4552982 is one of the coolest ZZ Cetis

known (Tremblay et al. 2013). The mechanism that shuts down pulsations at

the empirical cool edge of the ZZ Ceti instability strip is not fully understood,

but may be related to the thermal timescale at the base of the convection

zone exceeding some critical value (e.g., Van Grootel et al. 2013). To ex-

plore this timescale in KIC 4552982, we use the Warsaw-New Jersey stellar

envelope code (Pamyatnykh 1999) to calculate a static pure-hydrogen atmo-

sphere model that matches the measured spectroscopic parameters with the

ML2/α = 1.0 mixing-length prescription for convection. We display the run of
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Figure 2.7: Top: the thermal timescale as a function of depth in our model.
The 10-hr average outburst duration timescale and the 2.7-day recurrence
timescale are marked with vertical dotted lines. Bottom: the fractional flux
carried by convection through the static model atmosphere. The relevant out-
burst timescales are of order the thermal timescale at the base of the convection
zone, which is the timescale suspected to be most relevant to the cessation of
pulsations at the cool edge of the instability strip.

the thermal timescale and the convection profile in the outer 10−6 of the star

by mass in Figure 2.7. We note that the thermal timescale at the base of the

convection zone is of the same order as the outburst duration and recurrence

timescales (and much longer than the ∼1 second dynamical timescale). If this

is more than just a numerical coincidence, then it is possible that this outburst
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behavior is a more general property of ZZ Ceti variables as they evolve out of

the instability strip.

While more than 180 ZZ Cetis have been previously discovered and

studied, there has been a slight bias towards the detection of pulsators near

the hot edge of the instability strip. This is because their pulsations are excep-

tionally stable, enabling studies of white dwarf evolutionary cooling (e.g., Ke-

pler et al. 2005) and possible planetary companionship (Mullally et al. 2008).

By virtue of falling within the Kepler field, KIC 4552982 has become the most

extensively observed cool-edge ZZ Ceti. That this outburst behavior has not

been previously detected in other cool-edge pulsators may be due partially to

this selection bias. The routine practice of dividing low-order polynomials from

ground-based light curves to correct for changes in atmospheric extinction may

also have obscured this behavior in previous observations.

2.4 White Dwarf Pulsation Analysis

The 20-month light curve yields one of the richest pulsation spectra ever

resolved for a ZZ Ceti variable. If the energetic outbursts do, in fact, originate

from the white dwarf, they likely affect the stellar pulsations in a measurable

way. We explore the observed variations in pulsation mode properties that

may be related to these outbursts, but unfortunately the signal-to-noise of

the Kepler light curve is insufficient to study these variations on timescales

less than the mean outburst timescale in much detail. We proceed with an

asteroseismic analysis that assumes that the outbursts do not significantly
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Figure 2.8: Fourier transform of the entire Q11-Q17 Kepler light curve of KIC
4552982 in the region of significant pulsational variability (amplitude scale in
mma = 0.1 %).

alter the locations of the peaks in the power spectrum of KIC 4552982 and

reserve comments on the possible interplay between these dynamic processes

for our concluding remarks.

2.4.1 Mode Stability and Frequency Determination

Figure 2.8 shows the Fourier transform (FT) of the entire Q11-Q17 light

curve through the full region of significant pulsational variability. This FT was

computed with the Period04 software (Lenz & Breger 2004). We exclude all

known instrumental artifacts that are harmonics of the long-cadence sampling

rate of 566.41 µHz (Gilliland et al. 2010b) from this analysis. The power at

the low-frequency limit of the FT is introduced primarily by the aperiodic

outbursts and mostly goes away if we remove the outburst events from the

light curve before computing the FT. Since this 1/f noise decays sufficiently

before the low end of the frequency range of pulsations and the FT of the

full light curve (including outbursts) yields an overall lower noise level in the
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Figure 2.9: Sliding FT of a 5-day window over the entire Kepler light curve.
The color bar at the top of the figure gives the amplitude scale in mma (= 0.1
%). The modes in the 700–1300 µHz frequency range (left panel) are observed
to wander in phase (frequency) and amplitude while the mode at 2757.54 µHz
is relatively stable.

spectrum, we do not exclude the outbursts from the light curve for our Fourier

analysis.

The features of the FT of particular asteroseismic significance are the

17 bands of power in the 600–1450 µHz frequency range and the sharp rota-

tional triplet feature surrounding 2765.66 µHz. The broad power bands clearly

do not reflect the sharp, 0.020-µHz-wide spectral window (the signature of a

perfect sine wave sampled identically to the data). This is the result of modu-

lation of the pulsation properties of the observed modes. This modulation in

44



amplitude and frequency is clearly seen in the sliding FT of Figure 2.9. The

sliding FT is computed by sliding a 5-day window over the entire light curve

and computing the FT at 1-day steps. This time-resolved 2-dimensional FT

is shown in color contour, where darker areas indicate greater power in the

FT. We observe that all the pulsations in the 700–1300 µHz range (left panel)

show rapid changes in frequency and amplitude on a timescale of a few days.

The frequency shifts of the main peaks appear to be correlated, demonstrat-

ing that these drifts cannot be ascribed purely to stochastic behavior of the

individual modes. The higher amplitudes in the sliding FT compared to the

full FT in Figure 2.8 demonstrates that the instantaneous mode amplitudes

are larger than the peaks of the widened power bands. These data offer the

most extensive coverage of mode variations that are typical of cool ZZ Cetis

(see, e.g., Pfeiffer et al. 1996; Kleinman et al. 1998; Hermes et al. 2014b). The

variations in mode properties may be related to the outbursts observed in the

light curve (Section 2.3), but we were unable to demonstrate this connection

from the data. Meanwhile, the mode at 2757.54 µHz (right panel) is relatively

stable.

We interpret each band of power to be linked to a single significant

pulsation mode in the star. Since the wide nature of these bands prevents us

from simply selecting and prewhitening the highest peaks in the FT, we instead

adopt a method of fitting each band in the power spectrum (the squared FT)

with a Lorentzian function:

L(ν) =
Pγ2

(ν − ν0)2 + γ2
+ 〈FT (ν)2〉. (2.1)
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Figure 2.10: Top: Lorentzian fits to 17 bands of pulsational power in the 4-µHz
boxcar smoothed FT. The horizontal line at 0.0468 mma is our significance
criterion. The Lorentzians are best fits to the power (amplitude squared)
above the median noise level in hand-selected (black) regions of the light curve.
Bottom: We refine our fit parameters by simultaneously fitting these 17 bands
to the original, unsmoothed FT. The final parameters of these Lorentzians are
listed in Table 2.2.

While Lorentzians are used to fit signatures of the stochastically driven pulsa-

tions in Sun-like stars and red giants, we emphasize that stochastic driving is

unlikely to be efficient in pulsating white dwarfs since the stochastic driving

timescale (∼ 1 second) is much shorter than the observed pulsation periods

(∼ 10 minutes; Saio 2013). We choose to fit Lorentzians as a convenience.
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We use slightly different methods for identifying and fitting Lorentzians to the

significant frequencies in each region of the FT that are adapted to suit the

different feature widths.

For the dense bands of pulsational power in the 600–1450 µHz range,

we first identify which bands are significant from the 4-µHz boxcar-smoothed

FT displayed in the top panel of Figure 2.10. We use a bootstrap method to

calculate a very conservative significance threshold. We randomly rearrange

the light curve points 10,000 times, keeping the same time sampling. We then

calculate the FT in the 600–1450 µHz range, apply the 4 µHz smoothing, and

record the highest value in the smoothed FT for each shuffled light curve. We

set our significance threshold equal to the 99.7 percentile in the distribution

of maximum values in each shuffled, smoothed FT. We find this value at

0.0468 mma (1 mma = 0.1%) in the smoothed FTs. This means there is

only a ∼ 0.3% chance that we would find any peak in the smoothed FT above

0.0468 mma due to noise alone. However, in regions near a pulsational power

band, the wide feature can raise actual noise peaks above this threshold, so

we conservatively fit only unambiguously significant features near larger power

bands. The peaks of the features we select are each marked with a × in the top

panel of Figure 2.10. Our least squares Lorentzian fits use 5 µHz initial guesses

for the HWHM at these locations (selected so that the resulting fits match the

intended features by eye). We fit Lorentzians only to the regions immediately

surrounding the selected features (the black portions of the smoothed FT in

the top panel of Figure 2.10). The resulting Lorentzian fits to these features

47



2755 2760 2765 2770 2775
Frequency (µHz)

0.0

0.2

0.4

0.6

0.8

1.0

A
m

pl
itu

de
 (m

m
a)

Figure 2.11: The rotational triplet surrounding the 2765.66 µHz mode. The
power was fit with the displayed set of Lorentzians. The highest-frequency
component consists of a single point above the noise that is fit to its peak
power by the Lorentzian.

are displayed in the figure.

While the smoothed FT is useful for selecting significant peaks in fre-

quency space, the smoothing can affect the HWHMs of the Lorentzian fits.

Since these HWHMs may have an astrophysical significance, we refine our fit

parameters by fitting to the unsmoothed FT. We refit all of the Lorentzians

concurrently with a common bias-level parameter to fit the average noise level.

The result of this fit is plotted over the unsmoothed FT in the bottom panel

of Figure 2.10. Because these power bands encompass a forest of high- and

low- amplitude peaks, the final Lorentzians fit through the average amplitudes

and do not reach the maximum peaks of the features. The central frequencies,
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Table 2.2. Properties of Lorentzian fits to significant frequencies of
pulsational variability in the FT.

Mode Period Frequency HWHM Lorentzian height
(s) (ν0; µHz) (γ; µHz) (P ; mma2)

f1
a 1498.32 667.42 0.34 0.0062

f2 1362.95 733.70 0.26 0.0056
f3

a 1333.18 750.09 0.46 0.0050
f4

ab 1301.73 768.21 0.97 0.0070
f5

ab 1289.21 775.67 1.38 0.0132
f6

a 1244.73 803.38 4.50 0.0023
f7

a 1200.18 833.21 2.15 0.0018
f8

a 1158.20 863.41 6.59 0.0055
f9 1100.87 908.38 4.51 0.0023
f10 1053.68 949.06 8.61 0.0032
f11 1014.24 985.96 7.13 0.0066
f12 982.23 1018.09 2.21 0.0081
f13

a 950.45 1052.13 4.58 0.0246
f14

a 907.59 1101.82 4.75 0.0189
f15

a 866.11 1154.59 3.68 0.0266
f16

a 828.29 1207.31 4.67 0.0202
f17

a 788.24 1268.65 3.93 0.0029
f18

ab 362.64 2757.54 0.013 0.8743
f19

ab 361.58 2765.66 0.007 0.0260
f20

ab 360.53 2773.71 0.009 0.0260c

aLikely part of the ` = 1 sequence based on alignment with
the mean ` = 1 period spacing or observed rotational splitting.

bLikely rotationally split components of an ` = 1 mode.

cThis fit matches the single peak for this component in the
power spectrum with a height corresponding to peak power.

HWHMs, and heights of the Lorentzian fits are listed with the central mode

periods in Table 2.2. Their relation to Equation 2.1 is also indicated.
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Figure 2.11 shows a higher-frequency region of the original, unsmoothed

FT. Here we observe a triplet of significant variability with near-even frequency

spacing. We calculate a significance threshold of 99.7% confidence at 0.167

mma by a bootstrap approach similar to our calculation for the lower-frequency

power bands. The difference between the 0.167 mma significance threshold

here and the 0.0468 mma threshold for the smoothed FT at lower frequency

results purely from the boxcar smoothing of the latter. While only the two

lowest-frequency components rise above this significance threshold, we relax

our criterion for the third peak because it falls in step with the others as is

expected for rotational splitting (see Section 2.4.4) and is only barely below

our very conservative signifiance threshold. We simultaneously fit the three

features with Lorentzians as we did for the wider power bands using 1 µHz for

the initial guesses for the HWHM and adopting the bias level fit in the previous

region. The third component consists of a single peak above the noise, and

the height of the Lorentzian fits the peak power of that mode. These best-fit

parameters are included in Table 2.2.

We adopt these 20 frequencies as the mean pulsation mode frequencies

of KIC 4552982. Since we used an unconventional method for determining

these mode parameters for pulsating white dwarfs, it is difficult to assign

absolute uncertainties. We advise that researchers wishing to fit their own

asteroseismic models to these frequencies weight their fits by 1/HWHM2 for

each mode. Since we resolve the frequency variations over our extended light

curve, our frequency determinations should be far more accurate than the
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Figure 2.12: The period transform of the full Kepler light curve in the region
of observed pulsational power bands. The locations of the expected ` = 1
modes from the mean period spacing determined in Figure 2.13 are marked
as dotted vertical lines. These lines are drawn darker where they fall within 7
seconds of one of our measured mode periods listed in Table 2.2

HWHM.

2.4.2 Period Spacing

The periods of the nonradial g-mode pulsations characteristic of white

dwarfs of a given degree (`) and sequential radial order (k) reach an even

spacing at the asymptotic limit of high k. Because of geometric cancellation,

we expect the pulsations we detect to be of degree ` = 1 or ` = 2 (Dziembowski

1977). With such a rich pulsation spectrum, we can hope to sample these

sequences sufficiently well to determine the mean period spacing with radial

order of one or both of these sequences.
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Figure 2.13: The period transform of the period transform reveals a significant
mean period spacing at 41.9 seconds and its harmonic. This likely corresponds
to a mean period spacing of ` = 1 modes.

We approach this measurement by taking the period transform of the

period transform of the entire light curve as is described in its application to

the DOV (pulsating hot pre-white dwarf) star PG 1159-035 in Winget et al.

(1991, Section 5.2.1). We emphasize that this approach is independent of the

period determination in Section 2.4.1. We arrive at the period transform by

simply inverting the x-axis of the FT in the region of dense pulsational power

bands (between 500 and 1500 µHz, corresponding to a period range 667–2000

s). This intermediate result is shown in Figure 2.12. If the signals from

pulsations correspond to one or more sequences with evenly spaced periods,

the period transform of this period transform should reveal the spacings. We

show the resulting power spectrum in Figure 2.13 and mark two peaks of
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interest: a significant spacing at 41.9± 0.2 s and its overtone at 20.97± 0.02 s

(uncertainties determined from 100 Monte Carlo simulations with Period04).

This overtone arises from the decidedly non-sinusoidal nature of the periodic

signal in the period transform. Using the phase information we get from least-

squares sinusoidal fits, we mark the locations of expected modes in the even

period-spacing sequence as vertical dotted lines in Figure 2.12 and indicate

those modes that fall within 7 seconds of the measured spacing with darker

dotted lines and with footnotes in Table 2.2.

2.4.3 Comparison with Asteroseismic Models

We consider a grid of more than 14,000 DA white dwarf cooling models

that we calculated from the White Dwarf Evolution Code (WDEC; Lamb &

van Horn 1975; Wood 1990) following the treatment described in Bischoff-

Kim et al. (2008). We vary the following three parameters that most influence

the mean period spacing, with noted resolution: 10,000 K ≤ Teff ≤ 12,000

K (200 K resolution), 0.500 M� ≤ M∗ ≤ 0.800 M� (0.005 M� resolution),

and −6.00 ≤ logMH/M? ≤ −4.00 (in steps of 0.10). This set of models

widely encompasses the spectroscopic M∗, Teff values of KIC 4552982. Each

of these models has a helium layer mass of logMHe/M? = −2.00 (close to the

value calculated for 0.7 M� white dwarfs by Lawlor & MacDonald 2006). The

core profiles have central abundances of 30% carbon and 70% oxygen and are

homogeneous out to 0.5 Mr/M∗ (chosen to be in good agreement with Salaris

et al. 1997).

53



15 20 25 30 35 40 45 50 55
Mean Period Spacing (s)

0

200

400

600

800

1000

1200

1400

1600

M
od

el
s /

 B
in

41.9 s

l=2

l=1

Figure 2.14: Histograms of mean period spacings calculated for ` = 1 and
` = 2 sequences throughout our model grid. The measured spacing for KIC
4552982 of 41.9 seconds fits exclusively within the ` = 1 distribution.

The measured mean period spacing of 41.9± 0.2 s fits well within the

distribution of calculated mean spacings in our models for ` = 1 modes. For

` = 2 modes, the models predict mean spacings nearer to 26 s. These distri-

butions are compared in Figure 2.14 .

We suggest that the modes that fall in step with the measured mean

period spacing are likely part of the ` = 1 sequence with footnotes in Ta-

ble 2.2. Undoubtedly, some ` = 2 modes may by chance fall in line with this

sequence and be misidentified. Mode trapping and the dominance of different

rotationally split components of the modes (see Section 2.4.4) can shift indi-

vidual frequencies significantly from an equal period spacing, so some of the

modes that we do not observe to closely match the mean spacing may also
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Figure 2.15: The locations of models through M∗ – Teff space with mean ` = 1
period spacings equal to the measured spacing of 41.9 seconds. The individual
runs of solutions correspond to logMH/M? values from -4.00 (top track) to
-6.00 (bottom track) in 0.50 resolution. All models that fit the observations
have M∗ > 0.60 M�. The spectroscopically determined parameters are over-
plotted in white, and are in slightly better agreement with models nearer the
high-MH end.

have ` = 1. The dominance of different rotationally split components should

not greatly affect our asteroseismic inferences (Metcalfe 2003).

We display the run of models with mean ` = 1 spacings of 41.9 s

through M∗, Teff space for selected hydrogen layer masses in our model grid

in Figure 2.15. The mean period spacing of g-modes is most sensitive to the

overall mass, and our model comparison demonstrates asteroseimically that

KIC 4552982 is likely more massive than 0.6 M�— in good agreement with

the spectroscopic mass determination.
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The spectroscopic point is plotted with error bars over the logMH/M?

tracks for reference. We observe that while the uncertainty in the spectro-

scopically determined M∗ spans multiple tracks at the resolution of our model

grid, the spectroscopic point agrees best with a logMH/M? value of -4.70 and

generally falls nearer to the maximal logMH/M? extent of our model grid at

-4.00.

2.4.4 Rotational Splitting

At higher frequency than the region of dense pulsational power bands,

we noted three modes split evenly in frequency (Figure 2.11). Even frequency

spacing can result from rotational splitting of a mode into 2`+ 1 components

(Unno et al. 1989). While we emphasize that our absolute uncertainties in the

individual frequencies determined in Section 2.4.1 are smaller than the HWHM

of our Lorentzian fits, we will treat the HWHM here as proxies for uncertainty.

From these values, we calculate a mean frequency splitting of 8.09±0.02 µHz.

With only three components in the rotational multiplet, we are unable

to definitively assign a spherical degree, `, to this mode, so we consider the

three most likely possibilities: these are either all m = −1, 0, 1 components of

a ` = 1 triplet, three consecutive components of a ` = 2 quintuplet, or the

m = −2, 0, 2 components of a ` = 2 quintuplet.

We derive first-order analytical rotation rates under the assumption

that the rotation period is much longer than the period of the split mode

and that the white dwarf rotates as a solid body. We use the relation that
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∆νk`m = (m/Prot) × (1 − Ck`) (Brickhill 1975) for solid body rotation. At

the limit of high k (k & 10), Ck` approaches 1/`(` + 1). If we assume that

this is an ` = 2 mode, we are safely in the asymptotic limit (k ∼ 11 or 12

according to our models). If these are adjacent splittings of a ` = 2 mode

(i.e., m = −2,−1, 0, m = −1, 0, 1 or m = 0, 1, 2), we derive a rotation period

of 28.63 ± 0.07 hours. If these are ` = 2, m = −2, 0, 2 modes, we get twice

that rotation period at Prot = 57.26 ± 0.13 hours. If this is the rotationally

split triplet of a ` = 1 mode, we cannot safely assume that these modes are in

the asymptotic limit. We guide our interpretation for this case by comparing

the mode periods to our asteroseismic model with parameters Teff = 10,800

K and M∗ = 0.700 M� and logMH/M? = −4.70. This model most closely

matches our measured mean ` = 1 period spacing and our spectroscopically

determined atmospheric parameters. The measured 361.58-s period measured

for the central component of the triplet falls between the following two ` = 1

modes in the model: k = 5 at 311.6 s with Ck` = 0.491, and k = 6 at 379.0 s

with Ck` = 0.492. These Ck` values essentially match the asymptotic result,

and we adopt the mean of these values to calculate a rotational period of

17.47 ± 0.04 hours. These periods are all plausible considering the range of

asteroseismically determined rotation periods of other white dwarfs (Kawaler

2004), and they support our assumption that the rotation period is much

longer than the pulsation periods.

Revisiting the region of wide pulsational power bands between 600–

1450 µHz (Figure 2.10), we see suggestions of structure at a similar ≈ 8 µHz
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spacing. This includes a pair of frequencies that passed our significance criteria

and are indicated with a footnote in Table 2.2: f4, f5. Since these bands fall in

line with the ` = 1 mean period spacing pattern from our analysis in Section

2.4.2, we prefer the ` = 1 rotation period of 17.47± 0.04 hours for this star.

2.5 Conclusions and Future Work

The Kepler light curve for KIC 4552982 exhibits two features of great

interest: clear outburst phenomena and a rich spectrum of pulsations with

frequency and amplitude modulations. We argue that these outbursts likely

originate from the pulsating white dwarf and are the first observations of a new

astrophysical phenomenon. Such energetic events likely affect the pulsations in

a measurable way. Owing to the low signal-to-noise of the Kepler photometry

of this faint target, we are unable to study changes in the pulsation spectrum

strictly before and after the observed outburst events.

The most compelling evidence for the outbursts affecting the pulsations

is the relative sharpness of the triplet of high-frequency modes surrounding

2765.66 µHz compared to the wide bands of power at lower frequency. If these

modes are all of the same degree, `, the lower-frequency, higher-k modes are

more sensitive to regions nearer the surface of the star. We demonstrate that

most of the modes we observe are likely part of a ` = 1 sequence. The detected

relative unsteadiness of the lower-frequency modes may then be an indication

that the outbursts are a surface phenomenon (a similar argument is made

for solar-type pulsators by Karoff 2014). However, variations in the pulsation
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frequencies and amplitudes are commonly observed in cool ZZ Cetis, so this

is not the only viable interpretation. If outbursts of the type we see in KIC

4552982 turn out to be common of cool ZZ Cetis, they may be related to the

frequency modulations observed in these other stars.

We updated the spectroscopic parameters of Hermes et al. (2011) with

corrections from 3D convective simulations to get Teff = 10,860± 120 K, log g

= 8.16±0.06, and M? = 0.69±0.04 M�. These parameters place KIC 4552982

at the extreme cool edge of the ZZ Ceti instability strip where pulsations are

just shutting down. We demonstrate that the average duration (≈ 10 hours)

and recurrence (≈ 2.7 days) timescales observed for the outbursts are of order

the thermal timescale at the base of the convection zone and suggest that these

outbursts could be a feature common to all white dwarfs with this convection

zone depth, and therefore temperature.

We identify 20 independent pulsation frequencies including rotationally

split components as characterized in Table 2.2. Comparing the measured mean

period spacing of the nearly sequential k-overtones of likely l = 1 modes to

our models, the asteroseismology supports the spectroscopic finding for the

white dwarf mass: M∗ > 0.6 M�. These spectroscopic parameters match our

asteroseismic models with 41.9 ± 0.2 s mean period spacings slightly better

closer to the thick outer hydrogen layer end of our grid (logMH/M? = −4.00)

rather than the thin limit of our models (logMH/M? = −6.00). We also derive

a likely rotation period of 17.47±0.04 hours if the observed modes surrounding

2765.66 µHz are a rotationally split ` = 1 triplet.

59



The sheer extent of this nearly continuous 20-month light curve has

provided an unparalleled look at dynamic white dwarf processes. Contin-

ued asteroseismic interpretation of the identified pulsation frequencies and

outburst characteristics will hopefully lead to additional constraints on the

internal structure of KIC 4552982.
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Chapter 3

Outbursts in Two New Cool Pulsating DA

White Dwarfs ∗

Following the failure of a second reaction wheel aboard the Kepler

spacecraft, it was no long able to maintain pointing on the original mission

field. In order to salvage the spacecraft, a clever scheme was devised that

utilizes solar wind pressure for stability, enabling observations of new fields

roughly every 80 days along the ecliptic (Howell et al. 2014). While the shorter

baseline of observations of each field is not ideal for exoplanet studies, white

dwarf asteroseismology has benefited greatly from the increase in the number

of pulsators in the larger survey footprint of this K2 mission.

Following the discovery of a new outburst phenomenon in the Kepler

observations of the cool ZZ Ceti star KIC 4552982 (Bell et al. 2015c, and Chap-

ter 2), K2 quickly revealed another example of this behavior in the brighter

ZZ Ceti PG 1149+057 (Hermes et al. 2015b). These data clearly showed that

∗This work was previously published as Bell, K. J., Hermes, J. J., Montgomery, M. H.,
Gentile Fusillo, N. P., Raddi, R., Gänsicke, B. T., Winget, D. E., Dennihy, E., Gianninas, A.,
Tremblay, P.-E., Chote, P. and Winget, K. I., 2016, Outbursts in Two New Cool Pulsating
DA White Dwarfs, ApJ, 829, 82. I led the photometric analysis in this work. The co-authors
helped to identify the discussed stars as white dwarfs for K2 observations, to extract the
K2 light curves, to obtain and interpret spectroscopy, and to collect follow-up observations
from McDonald Observatory.
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pulsation frequencies and amplitudes both increase during outbursts, proving

that this effect is in the white dwarf. The flux enhancement from the com-

bined outburst and increased pulsation amplitudes reached as high as 45% in

the most energetic outburst.

As K2 continued to observe new fields, we kept finding new examples of

outbursting ZZ Cetis. The content of this chapter has been published as Bell

et al. (2016). We present two new outbursting ZZ Cetis through Campaign 6,

and constrain the absence of outbursts from other white dwarfs that had been

observed by Kepler and K2 at that time. We demonstrate that this behavior

is common near the cool edge of the ZZ Ceti instability strip and that only

pulsating white dwarfs exhibit outbursts. Chapter 4 brings this observational

effort up to date through the most recently released Campaign 10 data.

3.1 Introduction

White dwarf stars are the remnant products of 97% of Galactic stellar

evolution. About 80% of white dwarfs spectroscopically display atmospheres

dominated by hydrogen (DA; Tremblay & Bergeron 2008). Convective driv-

ing (Brickhill 1991; Goldreich & Wu 1999a) of nonradial gravity-mode pulsa-

tions (Robinson et al. 1982) in DA white dwarfs between 12,500 K > Teff >

10,600 K (for typical log g ≈ 8.0; Tremblay et al. 2015) causes these objects

to appear photometrically variable. The frequencies of photometric variability

are eigenfrequencies of these stars as physical systems, providing a powerful

tool for studying their interior structures (see reviews by Winget & Kepler
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2008; Fontaine & Brassard 2008; Althaus et al. 2010).

The Kepler spacecraft has provided unrivaled monitoring of pulsat-

ing white dwarfs, both in its original mission and during the two-reaction-

wheel mission, K2 (Howell et al. 2014). The first and longest-observed pul-

sating DA white dwarf (DAV) known to lie within the original mission field

is KIC 4552982 (WD J191643.83+393849.7; Hermes et al. 2011). This target

was observed nearly continuously every minute for more than 1.5 yr. Unex-

pectedly, these data revealed at least 178 brightness increases that recurred

stochastically on an average timescale of 2.7 d. The events increased the total

flux output of the star by 2− 17% and lasted 4− 25 hr (Bell et al. 2015c).

Hermes et al. (2015b) described a second DAV to display similar out-

burst behavior: PG 1149+057, observed in K2 Campaign 1. These outbursts

caused the mean flux level to increase by up to 14%, which would correspond

to a nearly 750 K global increase in the stellar effective temperature, with a

recurrence timescale of roughly 8 d and a median duration of 15 hr. Mean

pulsation frequencies and amplitudes were both observed to increase in this

star during outbursts, and the combined flux enhancement from outbursts and

high amplitude pulsations reached as high as 45%. The outbursts affect the

pulsation properties of PG 1149+057, and Hermes et al. (2015b) unambigu-

ously ruled out a close companion or a line-of-sight contaminant as the source

of this phenomenon.

Spectroscopic effective temperatures place both of these white dwarfs

very near to the empirical cool edge of the DAV instability strip—the boundary
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below which pulsations have not been detected in white dwarfs. While nona-

diabatic pulsation codes successfully reproduce the observed hot edge of the

DAV instability strip, they typically predict a cool edge thousands of Kelvin

below what is observed (e.g., Van Grootel et al. 2012). The discovery of a new

astrophysical phenomenon that operates precisely where our models are dis-

crepant with observations suggests that the continued discovery and study of

cool outbursting DAVs may inform fundamental improvements to the theory

of stellar pulsations.

In this paper we present the identification of two new outbursting

DAVs that were observed by K2 along with one candidate outburster. EPIC

211629697 was observed at short cadence in K2 Campaign 5 and EPIC

229227292 in Campaign 6. Both stars are qualitatively similar in outburst

and pulsational properties to the two previously published objects. We

characterize these stars in Sections 3.2 and 3.3, respectively. Additionally,

we inspect the light curves of the hundreds of other white dwarfs already

observed by K2 in Section 3.4, and describe a candidate single outburst in the

long-cadence data of EPIC 211891315. We summarize the current members of

the outbursting class of DAV and discuss possible physical mechanisms and

outburst selection effects in Section 3.5.

3.2 The Third Outburster: EPIC 211629697

We targeted the DA white dwarf EPIC 211629697 (Kp = 18.4 mag,

SDSSJ 084054.14+145709.0) for short-cadence (58.8 s) monitoring as part
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of our K2 Guest Observer program searching for candidate pulsating white

dwarfs (GO5043). The effective temperature from an automated fit to a

spectrum from the Sloan Digital Sky Survey (SDSS; Kleinman et al. 2013)

put this white dwarf within the empirical DAV instability strip, although it

was not previously known to pulsate. We have updated the one-dimensional

atmospheric parameters from the SDSS spectrum by refitting these data with

the latest atmosphere models described in Tremblay & Bergeron (2009),

which use the ML2/α = 0.8 prescription of the mixing-length theory, and

corrected the values to compensate for the three-dimensional dependence

of convection (Tremblay et al. 2013). We find this white dwarf has Teff =

10,780± 140 K and log g = 7.94± 0.08, corresponding to a mass of 0.57± 0.04

M�.

The light curve was obtained at short cadence in K2 Campaign 5,

spanning 2015 April 27 02:25:19 UT to 2015 July 10 22:36:12 UT. The raw

pixel-level data were extracted and detrended using the pipeline described

in Armstrong et al. (2015), which corrects for attitude readjustments of the

spacecraft on multiples of every 5.9 hr. Our extraction uses a fixed pattern of

4 pixels centered on the target. Despite the large Kepler pixels, there is no

contamination from nearby stars in our extraction.

Subsequently, we clip the light curve of 77 outliers that lie >4σ below

or >6σ above the local median flux (calculated for 30 m bins along the light

curve, where σ is the standard deviation of flux measurements), leaving 107,682

observations over 74.84 d. We then subtract out a 6th-order polynomial fit to
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Figure 3.1: Left: The K2 Campaign 5 light curve of EPIC 211629697. The
short-cadence data are displayed in black (during quiescence) and gray (during
the 15 detected outbursts). The long-cadence data are shown in red. Right:
A detailed view of the outburst of median energy (see text). The units on the
x-axes are the same in both panels. The scales of the y-axes are identical, with
greater apparent scatter in the left panel due only to the overlap of points.

the full light curve to mitigate some of the long-term instrumental systematics.

In addition to this short-cadence light curve, we also analyze the pre-

search data conditioned long-cadence light curve produced by the Kepler Guest

Observer office (Twicken et al. 2010).

The reduced short- and long-cadence K2 light curves of EPIC

211629697 are presented in Figure 3.1. We display the Fourier transform (FT)

of the entire short-cadence light curve (including outbursts) in Figure 3.2.

3.2.1 Outbursts

We detect a total of 15 outbursts that cause significant brightness en-

hancements in the K2 observations of EPIC 211629697. These outbursts are

identified by an automatic algorithm wherever two consecutive points in the

long-cadence light curve exceed 3 times the overall standard deviation mea-
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sured in the light curve. We define the start and end times of each outburst

as where the long-cadence light curve first crosses the median measured flux

level immediately before and after these significantly high flux excursions. We

mask out these regions of the light curve and recompute the overall standard

deviation, repeating the candidate outburst search until no new features are

flagged. For EPIC 211629697, this process yields 16 candidate outburst detec-

tions. We scrutinize these candidate events in both the long- and short-cadence

light curves, determining one candidate to be a spurious detection that is not

present in the short-cadence data. The remaining 15 outbursts are highlighted

in the left panel of Figure 3.1.

The outbursts increase the mean stellar brightness by between 6−15%

(defined as the greatest median value of any 6 consecutive points in the short-

cadence light curve during each outburst), and the mean time between con-

secutive outbursts is roughly 5.0 d. The median measured outburst duration

is 16.3 hr.

We characterize the excess energy of the outbursts in the Kepler band-

pass by calculating their equivalent durations (integrated excess flux in the

short-cadence light curve, similar to a spectroscopic equivalent width), as de-

scribed in Bell et al. (2015c). Equivalent durations equal the amount of time

that the white dwarf would have to shine in quiescence to output as much

flux in the Kepler bandpass as the flux excess measured during these out-

bursts. The median equivalent duration that we measure for an outburst in

EPIC 211629697 is 21 min (this outburst, the third, is displayed in better detail
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in the right panel of Figure 3.1). The maximum measured equivalent duration

is 35 min.

These equivalent durations can be converted to approximate outburst

energies by making a few simplifying assumptions: that the flux enhance-

ment from an outburst is the same at all wavelengths, and that outbursts are

isotropic. We calculate the bolometric luminosity of EPIC 211629697 using

the StefanBoltzmann law and the parameters of the model that yielded the

best fit to the SDSS spectrum (Tremblay & Bergeron 2009; Fontaine et al.

2001). This value of Lbol = 8.36 × 1030 erg s−1 is the scaling factor between

equivalent duration and outburst energy, yielding a median outburst energy

of 1.1× 1034 erg, and a maximum energy of 1.8× 1034 erg.

We note that our ability to detect outbursts is limited by the signal-to-

noise of the light curve. EPIC 211629697 is relatively faint, at Kp = 18.4 mag,

and the final threshold for two consecutive points in the long cadence light

curve to flag an outburst in our detection scheme is set to 2.39%. It is possible

that this star undergoes smaller-amplitude outbursts that we are unable to

detect in this data set. The summary characterization of outbursts given

above represents the detected outbursts and may not be directly comparable

to outbursts from other DAVs that were observed with different photometric

precision.
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Figure 3.2: Fourier transform of the entire K2 light curve of EPIC 211629697,
including outbursts. The dashed line gives the 0.1% False Alarm Probability
(FAP) significance threshold for a single peak determined from bootstrap-
ping (see text). The peak at 2053.514µHz (486.97 s) and 3 frequencies in
the range 764–913µHz (1095–1309 s) reach amplitudes that exceed this sig-
nificance threshold. We discard all low-frequency peaks below 100µHz (see
text).

3.2.2 Pulsations

We detect significant but low-amplitude pulsations in EPIC 211629697,

and show the FT in Figure 3.2. Asteroseismic analysis is beyond the scope of

this paper and will be addressed in future publications, but we do characterize

the pulsation frequencies generally in this observationally-focused work. All

FTs in this paper are oversampled by a factor of 20.

We use a bootstrap method to identify statistically significant signals in

the FT. After prewhitening the light curve of known instrumental artifacts that

are harmonics of the long-cadence sampling rate (Gilliland et al. 2010b), we
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shuffle the points in the light curve and recalculate the FT 10,000 times (Bell

et al. 2015c). This shuffling preserves the exact time sampling of the original

light curve, but destroys the coherence of any underlying signals. We treat the

FTs of the shuffled light curves as proxies for the underlying noise spectrum,

though this yields a conservative estimate for the typical noise level because

the photometric scatter is inflated by the mixed-in signal. For this reason, we

understate our true confidence in signal that exceeds our significance criterion.

When we consider the full set of 10,000 noise simulations, we find that

the peak value anywhere in the FT—out to the Nyquist frequency—exceeds

a value of 0.0853% in fewer than 1/1000 runs. We indicate this value with a

dashed line in Figure 3.2 as the 0.1% false alarm probability (FAP) threshold

for any individual peak in the FT.

Besides the noise at low-frequency (below 100µHz) that results from

both the presence of outbursts in the light curve and residual systematics of

the K2 photometry, including the ∼ 5.9 hr thruster firing timescale, there

are numerous signals resulting from stellar pulsations that exceed this signifi-

cance threshold in the FT. The highest peak is the sharp signal at 2053.514±

0.007µHz that reaches an amplitude of 0.161± 0.014% (formal analytical un-

certainties calculated following Montgomery & Odonoghue 1999 with the Pe-

riod04 software; Lenz & Breger 2004). The FT also reveals 3 significant

resolved frequencies in the range 764–913µHz. This cluster of significant fre-

quencies likely corresponds to a sequence of pulsational power bands—modes

that are not strictly coherent over the course of observations—as were observed
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in the previous two cases of outbursting cool DAVs. The signal-to-noise of this

data set is not sufficient for easily identifying an exhaustive list of individual

frequencies associated with pulsational eigenmodes of this star, so we charac-

terize generally the pulsational properties of this star as consisting of bands

of power in the range 764–913µHz with a more stable mode at the higher

frequency, 2053.514µHz. The actual frequency range of excited pulsational

modes in the power band region is likely broader than the formally signifi-

cant range reported, which is limited by the photometric signal-to-noise and

baseline of observations.

3.3 The Fourth Outburster: EPIC 229227292

We targeted EPIC 2292272921 (Kp = 16.7 mag, ATLASJ 134211.62

−073540.1) for short-cadence K2 monitoring using an early data release of

the VST/ATLAS survey, which is a deep ugriz photometric survey of the

southern hemisphere (Shanks et al. 2015). Based on its high reduced proper

motion and ugr colors, we considered the object a high-probability white dwarf

near the DAV instability strip and proposed observation in K2 Campaign 6

(proposal GO6083).

As with EPIC 211629697, we extracted and detrended the short-

cadence light curve using the pipeline described in Armstrong et al. (2015)

and use the long-cadence light curve from the Kepler Guest Observer office.

1This target received a duplicate EPIC identifier, and is also cataloged as
EPIC 229228124.
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Figure 3.3: The K2 Campaign 6 light curve of EPIC 229227292. The short
cadence data are presented in black (in quiescence) and gray (in outburst), with
the long cadence data in red. Left: The full light curve featuring 33 significant
outbursts. Right: A detailed view of the outburst of median energy, with the
same y-axis scale and x-axis units.

We clipped the short-cadence data of outliers >4σ below or >8σ above the

local median (32 total, with the higher threshold above the median value

to preserve astrophysical signal), leaving 113,635 individual observations

over 78.93 d. Our final light curves, spanning 2015 July 13 22:54:00 UT to

2015 September 30 21:08:31, are displayed in Figure 3.3. The FT of the

entire short-cadence light curve, including the data in outburst, is shown in

Figure 3.4.

One complication in our extraction came from the presence of charge

bleed in the K2 target pixels caused by the saturation of naked-eye M dwarf,

82 Virginis (a.k.a. the known variable mVir, J134136.78−084210.7), which

falls roughly 1 deg south of EPIC 229227292. Our 3× 3 pixel extraction aper-

ture centered on the white dwarf excludes this hot column. We have also

ensured that this object does not contaminate our photometry by inspecting
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the light curve extracted from only the top and bottom two pixels of this

charge bleed column, where we do not see evidence of brightening events from

mVir on the same timescale as the outbursts. As we discuss in Section 3.3.2,

the outbursts affect the pulsations, confirming that these brightening events

are occurring on the white dwarf.

3.3.1 Outbursts

We identify 33 significant outbursts in the long-cadence light curve

of EPIC 229227292 with the same automated method as used for EPIC

211629697 (after discarding four spurious detections that are not corroborated

by the short-cadence data). These outbursts are highlighted in the left panel

of Figure 3.3. The outbursts reach amplitudes of 4–9% (the peak local median

of 6 consecutive points in the short cadence light curve), with a median

duration of 10.2 hr before returning to quiescence. The mean time between

outbursts is 2.4 d.

The detected outbursts have equivalent durations (proportional to out-

burst energy in the Kepler bandpass) between 2.6− 12 min, with a median of

5.8 min. Following the same approach as for EPIC 211629697 and using the

spectroscopic and model parameters determined in Section 3.3.3, we convert

these to total outburst energies in the range 1.4 − 6.3 × 1033 erg, with a me-

dian energy of 3.1 × 1033 erg. The outburst of median equivalent duration is

displayed in the right panel of Figure 3.3.
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Figure 3.4: FT of the K2 light curve of EPIC 229227292. We detect several
peaks in the range 800− 1250µHz (800− 1250 s), and two peaks at 1945.048
and 2697.423µHz (≈ 371 and 514 s) that exceed our 0.1% FAP significance
threshold (dashed line). The peak just below the significance threshold at
3456.41µHz (289 s) is highly suggestive of being astrophysical signal (see text).

3.3.2 Pulsations

The FT of the full EPIC 229227292 light curve (including outbursts) in

the region of astrophysical power is presented in Figure 3.4. We use the same

bootstrap approach as before to calculate a 0.1% FAP significance threshold

of 0.0403% for single peaks in the FT. Again, we do not believe any power

< 100µHz arises directly from stellar pulsations.

Owing to higher photometric signal-to-noise for this brighter object,

our significance criterion is much lower and we can discern more details of

the pulsational signatures in the FT. We detect at least 11 wide bands of

pulsational power clustered in the range 800 − 1250µHz, with two relatively
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stable pulsation modes at higher frequencies: 1945.048±0.005 and 2697.423±

0.013µHz (analytical uncertainties; Montgomery & Odonoghue 1999). The

peak at 3456.41± 0.02µHz is also highly suggestive, rising to a signal-to-noise

of 4.95 (defined as the ratio of the peak amplitude to the local mean amplitude

in the FT, 〈A〉), but does not meet our adopted significance criterion. With

our significance threshold being a conservative estimate, it is difficult to assess

the precise likelihood of this frequency belonging to a pulsation mode in the

star, but we mention it as a tentative astrophysical signal. The approach to

determining detection thresholds in the FTs of K2 short-cadence observations

of Baran et al. (2015) assigns a confidence of ≈ 90% to peaks with this signal-

to-noise ratio, so this is likely the highest frequency pulsation mode observed

in an outbursting DAV so far.

The high signal-to-noise of the EPIC 229227292 data also enables us to

explore changes in the pulsations on shorter timescales through the running

FT, displayed for the 20th to 55th day of observations in Figure 3.5. This

shows the evolution of the FT as calculated for a three-day sliding window

on the light curve in the region of pulsational power bands. Individual mode

amplitudes are observed to grow and decay dramatically on the timescale of

days. The times of detected outburst peaks are indicated with vertical dotted

lines. We note that the outbursts coincide in many cases with the sudden

growth or decay of mode amplitudes, suggesting that the outbursts play a role

in redirecting pulsational energy, and that they at least have some effect on

the pulsations.
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Figure 3.5: Running FT of EPIC 229227292, showing how the amplitude of
pulsations changes in relation to outbursts. Vertical dotted lines mark the
times of maximum brightness during the detected outbursts in Figure 3.3;
we use a 3-day sliding window, which smears the events. We note that the
rapid growth/decay of power in individual modes commonly coincides with
a detected outburst (e.g., the dropping out of power near 1209µHz that im-
mediately follows the outburst near Day 24). This strongly suggests that the
observed pulsations respond to outbursts in EPIC 229227292, as was observed
in PG 1149+057 (Hermes et al. 2015b).

3.3.3 Spectroscopy

No spectroscopy of EPIC 229227292 existed previous to this work. Af-

ter discovering pulsations, we followed up this white dwarf using the Goodman

spectrograph on the 4.1 m SOAR telescope (Clemens et al. 2004). We obtained

6×180 s exposures taken consecutively on 2016 February 15, covering roughly

3700− 5200 Å with a dispersion of 0.84 Å pixel−1. Using a 3′′ slit, our resolu-

tion was seeing limited; seeing was steady around 1.1′′ during our observations,

yielding a roughly 3.2 Å resolution. Each exposure had a signal-to-noise (S/N)
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Figure 3.6: The best-fit atmosphere model (red) plotted over the average of the
SOAR spectra (black) of EPIC 229227292 shows the agreement in the Balmer
lines. Each spectral line is offset vertically by a factor of 0.3 for clarity.

of roughly 17 per resolution element in the continuum at 4600 Å, for an over-

all S/N ' 41. Including overheads, our observations span roughly 18.5 min,

covering at least one pulsation cycle for most oscillations.

We processed the images using the starlink packages figaro and

kappa, and optimally extracted the spectra (Horne 1986) using the pamela

package (Marsh 1989). Wavelength and flux calibration were performed with

an FeAr lamp and the spectrophotometric standard GD 71, using the molly
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package2.

We fit each individual spectrum with a set of one-dimensional pure-

hydrogen-atmosphere models and fitting procedure described in Gianninas et

al. (2011) and references therein, which use ML2/α = 0.8. We found the

weighted mean of these individual exposures, and used the 3D convective cor-

rections of Tremblay et al. (2013) to determine the atmospheric parameters of

EPIC 229227292 to be Teff = 11,190±170 K and log g = 8.02±0.05, correspond-

ing to a mass of 0.62±0.03 M� (Fontaine et al. 2001). The best-fit atmosphere

model is plotted over the spectroscopic data in Figure 3.6 to demonstrate the

quality of the fit.

These atmospheric parameters indicate that EPIC 229227292 is consis-

tent with being the hottest outbursting DAV discovered so far, but this white

dwarf is still located close to the cool edge of the DAV instability strip. We

estimate that this white dwarf was in outburst for 19% of the 78.93 d that it

was monitored by K2. There is thus a roughly one-in-five chance that some of

our spectroscopy was taken in outburst, which may contribute to the relatively

high Teff measured.

3.4 A Wider Search for Outbursts

As part of a search for transits and rotational variability of stellar

remnants, K2 has already observed several hundred white dwarfs in the first

2http://www.warwick.ac.uk/go/trmarsh
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six campaigns, mostly at long cadence with exposures taken every 29.4 min.

These targets have been proposed by a number of different teams3, leading to

the discovery of the first transits of a white dwarf: the object WD 1145+0174,

observed in K2 Campaign 1, is transited every ∼4.5 hr by a disintegrating

minor planet (Vanderburg et al. 2015).

In all, more than 300 spectroscopically confirmed DA white dwarfs have

been observed by K2 through Campaign 6, spanning temperatures from 4800 K

up to 100,000 K. These light curves provide a unique opportunity to immedi-

ately constrain the temperature distribution of outbursting white dwarfs. Our

automatic detection algorithm considers only the long-cadence light curves,

demonstrating that these observations are sufficient to detect outbursts since

the events typically have durations of many hours (see Figures 3.1, 3.3).

We put these outbursting and non-outbursting white dwarfs into con-

text in Figure 3.7. We focus in detail on a subset of 52 white dwarfs that have

effective temperatures within 2000 K of 10,900 K, roughly the mean effective

temperature of the first four outbursting DAVs. In all cases, the atmospheric

parameters have been obtained from the SDSS spectra using the models de-

scribed in Tremblay et al. (2011a) and ML2/α = 0.8, with the exception of

EPIC 203705962 (Kawka & Vennes 2006) and EPIC 212564858 (Koester et al.

3The white dwarfs described in this section were proposed for K2 observations by teams
led by M. Kilic, M. R. Burleigh, Seth Redfield, Avi Shporer, Steven D. Kawaler, and our
team.

4WD 1145+017 was proposed jointly by teams led by M. Burleigh, M. Kilic, and
Seth Redfield, searching for transits.
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Figure 3.7: The location of the four known outbursting DAVs (red squares) in
log g–Teff parameter space, as well as the candidate EPIC 211891315 (orange
triangle; see Section 3.4.1). The crosses show white dwarfs observed by K2
which do not show outbursts (Table 3.2), confining this outburst phenomenon
to the coolest pulsating white dwarfs, between roughly 10,600 K and 11,200 K.
Previously known DAVs are shown in cyan circles (Tremblay et al. 2011a;
Gianninas et al. 2011), and non-outbursting pulsating white dwarfs observed
with Kepler are shown in yellow (with error bars; see Table 3.2). The empirical
instability strip is demarcated with blue and red dashed lines (Tremblay et al.
2015). All atmospheric parameters have been corrected for the 3D-dependence
of convection (Tremblay et al. 2013). The dash-dotted gray lines mark evo-
lutionary cooling tracks for 0.6 M� and 0.8 M� white dwarfs (Fontaine et al.
2001).

2009b). All parameters have been corrected for the 3D-dependence of convec-

tion (Tremblay et al. 2013) and are listed in Table 3.2.

The long-cadence light curves for this subsample were obtained from

the Mikulski Archive for Space Telescopes (MAST). In each case, we have

either used extracted and de-trended light curves from the pipeline described

in Vanderburg & Johnson (2014) (VJ) or, from Campaign 3 and onward,

the pre-search data conditioned light curves produced by the Kepler Guest

Observer office (GO). Both pipelines mitigate for attitude corrections from
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K2 thruster firings, but in slightly different ways, and we include in Table 3.2

which pipeline we use for our outburst analysis. We have ensured that the

apertures used enclose only the white dwarf target.

Many of these targets are very faint, with Kp > 19.0 mag, which is

why we did not propose short-cadence observations of those with tempera-

tures inside the empirical instability strip. However, K2 has proven itself

stable enough to deliver useful long-cadence photometry on these faint tar-

gets; a Kp = 19.2 mag target typically has roughly 1.2% r.m.s. scatter, which

increases to roughly 3% for a Kp = 19.5 mag target. We assign limits on a

non-detection of outbursts in these targets in Table 3.2. These limits were cal-

culated by comparing the highest three consecutive points in the long-cadence

light curves with the overall standard deviation of flux measurements (σ). The

long-cadence light curves of the known outbursting DAVs all show multiple

occurrences of at least three consecutive points exceeding 3σ that correspond

with identified outbursts. The data for the objects listed in Table 3.2 do not

have three points exceeding 3σ anywhere in the light curve, with three excep-

tions: EPIC 211891315 shows evidence of a single possible outburst, which we

describe in more detail in Section 3.4.1; EPIC 228682333 shows significant flux

deviations in the first few points of the light curve which is likely the result of

a poor reduction; EPIC 212100803—the faintest star in our sample—registers

a brief sequence of three anomalously high points 39.11 days into observations

immediately preceding a Kepler GO quality flag for simultaneous thruster fir-

ing, coarse point mode of the spacecraft, and a reaction wheel desaturation
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event. For these reasons, we do not accept the flagged points in the latter two

objects as outbursts to the limits given in Table 3.2.

In addition to these targets observed at long cadence, we have also

inspected the Kepler light curves of 11 pulsating white dwarfs that had previ-

ously published spectroscopic parameters and were proposed for short-cadence

observations by our team to study their oscillations. We will present asteroseis-

mology on these targets in forthcoming work, but we can rule out outbursts to

various limits in each of these DAVs by considering their long-cadence observa-

tions in a manner identical to the other objects. Their atmospheric parameters

were determined in the same way as our other targets, and constraints on the

presence of outbursts in these light curves are included at the bottom of Ta-

ble 3.2.

Figure 3.7 shows that outbursts are narrowly confined to the lowest-

temperature region of the empirical DAV instability strip between roughly

11,300 K and 10,600 K, below which pulsations are no longer observed. None of

the other spectroscopically confirmed DAs observed by K2 with temperatures

outside this plot range show obvious outbursts, either.

Notably, there are two pulsating white dwarfs that have effective tem-

peratures inside the region where we have detected the four other outbursting

DAVs.

KIC 4357037, with 10,950± 130 K and log g = 8.11± 0.04 determined

from WHT spectroscopy (Greiss et al. 2016), was observed continuously for
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36.3 d in the original Kepler mission, but did not show outbursts to a limit of

at least 0.8%. However, the pulsation spectrum of this white dwarf does not re-

semble a cool white dwarf, let alone the outbursting DAVs, with weighted mean

pulsation period (WMP =
∑
AiPi/

∑
Ai, where Ai are the measured ampli-

tudes corresponding to Pi, the measured periods) of roughly 342.4 s. WMPs

systematically increase as white dwarfs cool and develop deeper convection

zones, with values near 342.4 s typically observed in white dwarfs with Teff

> 11, 650 K (see, e.g., Mukadam et al. 2006, where the “BG04” sample from

Bergeron et al. 2004 and Gianninas et al. 2005 is most comparable with the

parameters derived in this work). The interloper KIC 4357037 may thus be

hotter in actuality than its spectroscopic temperature suggests.

EPIC 60017836 (also known as GD 1212; Teff = 10,970 ± 170 K; log g

= 8.03±0.05; Hermes et al. 2014b), was observed for 9.0 continuous days during

engineering time in preparation for K2 operations. With a Kepler magnitude

of 13.3, we can rule out outbursts to an amplitude limit of 0.2% that recur

on timescales . 9.0 d. The pulsation spectrum of this star is qualitatively

similar to those of the outbursting DAVs, with a cluster of modes between

800 − 1270µHz, and additional significant peaks at higher frequency. EPIC

60017836 is scheduled to be re-observed by K2 in Campaign 12, which will

allow us to explore the possibility of outbursts from this target with recurrence

timescales & 9 d.
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3.4.1 EPIC 211891315: A Possible Single Outburst

The K2 photometry for many of these faint objects is affected by long-

term systematics, which are often aperiodic variations with timescales of sev-

eral days. These trends very often also show up in the background flux, which

is the median value of the background pixels that lie outside of the aperture

used to extract the target photometry. These long-term trends often arise

from solar coronal mass ejections (CMEs), small spacecraft thermal variations,

so-called argabrightenings (see Kepler data release notes5), and electronic ar-

tifacts, such as rolling bands caused by time-varying crosstalk (e.g., Clarke et

al. 2014).

In our inspection of the 52 DA white dwarfs within 2000 K of 10,900 K,

we found one object with a light curve that shows a significant brighten-

ing event that does not correlate with changes in other light curves on the

same CCD module. The long-cadence K2 Campaign 5 light curve of that

white dwarf, EPIC 211891315 (Kp = 19.4 mag, SDSSJ 090231.76+183554.9),

is shown in Figure 3.8.

There are two noted data anomalies with K2 data taken in Campaign 5,

neither of which correlate with our observed brightness increase. The first, an

unexplained argabrightening event, occurred roughly 38 d into the campaign.

The second, an increase in the median dark current likely caused by a CME,

lasted for roughly one day starting 55.5 d into the campaign.

5http://keplerscience.arc.nasa.gov/k2-data-release-notes.html
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Figure 3.8: The long-cadence light curve of EPIC 211891315 (Kp = 19.4 mag)
from K2. We highlight with solid gray the single feature starting near Day
52.3 that looks compellingly like an astrophysical brightening event. The three
yellow hatch regions indicate identified instrumental systematics corresponding
to (in chronological order): an argabrightening event, a likely CME, and a local
background flux enhancement (see text).

We note that the brightening event we tentatively categorize as an

outburst between Days 52.3 − 54.1 does not correlate with any trends in the

background flux, whereas the brightening at the end of the light curve be-

tween Days 65− 75 is correlated with an increase in background flux, strongly

suggesting it is instrumental. We also rule out an asteroid or other contam-

inant moving through the photometric aperture during Days 52.3 − 54.1 by

inspecting the raw pixel data with the K2flix visualization tool (Barentsen

2015). We tentatively identify EPIC 211891315 as a candidate outbursting

DAV. Our fit to the SDSS spectrum indicates this is a 11,310 ± 410 K and

log g = 8.03± 0.16 white dwarf, included as an orange triangle in Figure 3.7.

If this is an outburst of the same nature as in other DAVs observed

by Kepler, it is by far the most energetic ever observed with an equivalent

duration of 4.58 hr, corresponding to an approximate total energy output of
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1.5× 1035 erg.

Because the exposure time of long-cadence K2 light curves is much

longer than typical DAV pulsation periods, we followed this target up with

high-speed photometry using the ProEM Camera on the 2.1m Otto Struve

Telescope at McDonald Observatory. We observed EPIC 211891315 for 4 hr

on the night of 2015 December 17 with 14 s exposures through a broadband

BG40 filter, which cuts off light redward of 6000 Å to reduce sky noise. We

obtained another 5 hr of 10 s exposures on 2015 December 18 through the

BG40 filter.

The frames were dark subtracted and flat-fielded with standard IRAF

tasks. Aperture photometry was measured with the ccd hsp package that

utilizes IRAF tasks from the phot package (Kanaan et al. 2002). We used

the WQED software tools (Thompson & Mullally 2013) to divide the flux

measured for the target by the normalized flux from comparison stars in the

field to correct for transparency variations, then divided each night’s light

curve by a second-order polynomial to account for differential airmass effects

on stars with different colors. We repeated this process using a range of circular

aperture sizes and adopt the apertures that yield the highest signal-to-noise.

The FT of these two nights of data is displayed in Figure 3.9.

With a total of 9 hr of ground-based, time-series photometry over two

nights, we were able to cleanly prewhiten (fit and subtract) significant sinu-

soidal signals from these data. For this reason, we adopt a different signifi-

cance criterion for this data set. We measure the mean local amplitude along
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the FT, 〈A〉, and use the standard 4〈A〉 significance threshold for single-site

ground-based photometry (Breger et al. 1993).

We identify significant signals through an iterative process of calcu-

lating the FT and significance threshold, prewhitening all significant peaks,

then recalculating the FT and threshold for the prewhitened light curve. We

repeat this until no additional significant peaks are identified. Figure 3.9 dis-

plays the FTs of the original (black) and prewhitened (red) data with the final

significance threshold and four significant frequencies marked. We establish

EPIC 211891315 as a new DAV. The four significant pulsation modes that we

detect have frequencies 1322.0± 0.4 (2.22% amplitude), 1779.0± 0.4 (1.99%),
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Figure 3.9: We confirmed pulsations in ground-based observations of the can-
didate outbursting white dwarf EPIC 211891315. We show the original FT in
black, and the prewhitened FT in red, after subtracting the four significant
pulsation frequencies that are marked with triangles at 1322.0, 1780, 2057.7,
and 1021.7 µHz. The dashed grey line marks the running 4〈A〉 significance
threshold.
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2057.7± 0.7 (1.19%), and 1021.7± 0.7 µHz (1.12%).

The confirmation of pulsations in this white dwarf provides marginal

supporting evidence that the single brightening event during K2 observations

was a bona fide outburst. However, given the prevalence of systematic artifacts

in the K2 light curves of such faint targets, we are not comfortable confirming

that EPIC 211891315 is a new outbursting white dwarf, especially with only

one event detected. Additionally, the observed pulsations have overall much

higher frequencies than what we have measured in the four confirmed out-

bursting DAVs, with a weighted mean period of 685.9 s. For now, we classify

EPIC 211891315 as only a candidate outbursting white dwarf.

3.5 Discussion and Conclusions

The four confirmed members of the outbursting class of DAV have three

distinct commonalities: (1) repeated outbursts, recurring on irregular intervals

of order days and lasting for several hours; (2) effective temperatures that put

them near the cool, red edge of the DAV instability strip; and (3) rich pulsation

spectra dominated by low-frequency (800− 1400 s period) pulsations that are

unstable in amplitude/frequency with at least one stable mode at significantly

higher frequency (350− 515 s, and maybe as short as 290 s), which in the first

two cases appeared to be an ` = 1 from rotational splittings (Bell et al. 2015c;

Hermes et al. 2015b). We summarize their main characteristics in Table 3.1.
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Table 3.1. Properties of Outbursting DAVs

Name Kp Teff log g τrecur Med. Duration Max. Flux Max. Energy Reference
(mag) (K) (cgs) (d) (hr) (%) (erg)

KIC 4552982 17.9 10,860(120) 8.16(0.06) 2.7 9.6 17 2.1× 1033 Bell et al. (2015c)
PG 1149+057 15.0 11,060(170) 8.06(0.05) 8.0 15 45 1.2× 1034 Hermes et al. (2015b)

EPIC 211629697 18.4 10,570(120) 7.92(0.07) 5.0 16.3 15 1.8× 1034 This work
EPIC 229227292 16.7 11,190(170) 8.02(0.05) 2.4 10.2 9 3.1× 1033 This work
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The discovery of repeated outbursts in four of the first 16 DAVs ob-

served by the Kepler spacecraft indicates that this is not an incredibly rare

phenomenon. However, it does beg the question of how outbursts have been

missed during the first 45 years of studies of pulsating white dwarfs.

In this context, the minimum outburst duration observed offers a clue:

So far, every outburst lasts for more than several hours. Nearly all previous

ground-based, time-series photometry of pulsating white dwarfs involves differ-

ential photometry: dividing the target by a (usually redder) comparison star

to compensate for changing atmospheric conditions. Due to color-dependent

extinction effects, nearly all groups have adopted a methodology of divid-

ing out at least a second-order polynomial to normalize the light curves (e.g.

Nather et al. 1990). It is possible that outbursts were observed during previ-

ous ground-based studies of pulsating white dwarfs but were unintentionally

de-trended from the data. Notably, the DBV (pulsating helium-atmosphere

white dwarf) GD 358 underwent a large-scale brightening event in 1996, which

may have been the first documented case of an outburst in a pulsating white

dwarf (Nitta et al. 1999; Montgomery et al. 2010).

The physical mechanism that causes outbursts remains an exciting open

question. Hermes et al. (2015b) suggested that, following the theoretical frame-

work laid out by Wu & Goldreich (2001), the outbursts could be the result of

nonlinear three-mode resonant coupling. In this model, energy is transferred

from an observed, overstable parent mode to daughter modes via parametric

resonance, one or both of which may be damped by turbulence in the convec-
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tion zone and deposit their newfound energy there.

All four of the outbursting white dwarfs have some of the longest pulsa-

tion periods observed in DAVs, excluding the extremely low-mass white dwarfs

(Hermes et al. 2013b). Wu & Goldreich (2001) predicted that mode coupling

would be most prevalent in the coolest white dwarfs with the longest-period

pulsations, simply because there are more possible modes with which to couple.

By inspecting the light curves of the more than 300 spectroscopically

confirmed DA white dwarfs observed already by K2, we have shown that out-

bursts only occur in a narrow temperature range, between roughly 11,300 K

and 10,600 K. This temperature range falls just hot of the empirical red edge

of the DAV instability strip, below which pulsations are no longer observed.

The red edge of the DAV instability strip has been notoriously difficult

to predict from nonadiabatic pulsation codes, which suggest that white dwarfs

should have observable pulsations down to at least 6000 K (e.g. Van Grootel et

al. 2012). There have been two proposed mechanisms to bring the theoretical

red edge in line with observations.

Hansen et al. (1985) suggested that there is a critically maximal mode

period, beyond which g-modes are no longer reflected off the outer mode cavity

and thus evanesce. Van Grootel et al. (2013) showed that applying this critical

mode period for ` = 1 modes to the thermal timescale at the base of the

convection zone can successfully reproduce the empirical red edge of the DAV

instability strip across a wide range of white dwarf masses.
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Additionally, a series of papers by Wu & Goldreich proposed amplitude

saturation mechanisms in the coolest DAVs from turbulent viscosity of the

convection zone as well as resonant three-mode interactions as ways to cause a

hotter red edge than nonadiabatic predictions (Goldreich & Wu 1999b; Wu &

Goldreich 2001). If outbursts are indeed caused by nonlinear mode coupling,

this suggests amplitude saturation as an important contributor to the cessation

of observability of pulsations in the coolest DAVs.

The measured properties of outbursts provide observational leverage

for efforts to understand pulsational mode selection and driving, especially in

the context of the few short-period modes that are selected in all four of the

outbursting DAVs. Fortunately, DAV pulsations are extremely sensitive to

structural changes in white dwarfs, and our understanding of outbursts will

benefit from further asteroseismic analysis of these objects that will be the

subject of future work.

K2 continues to obtain extensive space-based photometry on new fields

roughly every three months, and we look forward to inspecting future data

releases for additional instances of this exciting physical phenomenon.
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Table 3.2: White Dwarfs Not Observed to Outburst with Kepler Observations

EPIC ID Kp Teff (K) log g (cgs) Pipe.a Field Dur. (d) Lim(%) Ref.b

212154350 19.8 12900(790) 7.91(0.21) VJ 5 73.9 8.1 1
212100803 20.0 12600(650) 7.80(0.21) GO 5 74.8 16.7 1
206284230 19.0 12570(430) 8.03(0.11) GO 3 69.1 2.5 1
210484300c 19.0 12490(450) 8.52(0.09) VJ 4 68.6 2.9 1
211975984 19.3 12480(440) 8.08(0.11) VJ 5 73.9 5.6 1
211888384 18.3 12330(210) 8.33(0.05) GO 5 74.8 1.3 1
228682421 19.7 12070(450) 8.17(0.13) VJ 5 73.9 6.1 1
211564222 19.8 12060(510) 8.07(0.16) VJ 5 73.9 11.6 1
211934410 19.0 11940(280) 7.72(0.11) VJ 5 73.9 3.4 1
201754145 19.4 11930(460) 8.05(0.15) VJ 1 80.1 3.4 1
201331010 19.3 11670(290) 8.16(0.09) VJ 1 80.1 2.8 1
228682407 19.9 11620(680) 8.24(0.21) VJ 5 73.9 13.6 1
228682371 19.9 11420(480) 8.22(0.17) VJ 5 73.9 8.2 1
228682428 19.8 11380(610) 8.52(0.22) GO 5 74.8 11.1 1
211891315 19.4 11310(410) 8.03(0.16) VJ 5 73.9 n/ad 1
228682357 19.9 11240(390) 8.09(0.15) VJ 5 73.9 6.4 1
211330756 19.9 11090(600) 8.05(0.27) GO 5 74.8 14.3 1
201259883 19.7 11010(450) 8.17(0.21) VJ 1 80.1 8.0 1
228682400 19.9 10970(410) 8.13(0.20) VJ 5 73.9 22.7 1
212169533 19.9 10890(460) 7.90(0.23) GO 5 74.8 15.6 1
212091315 19.4 10630(210) 8.39(0.14) VJ 5 73.8 3.7 1
211886776 19.0 10570(150) 8.09(0.09) VJ 5 73.9 2.1 1
203705962 15.1 10380(120) 7.95(0.09) VJ 2 77.5 0.2 2
228682361 19.8 10340(220) 7.95(0.17) VJ 5 73.9 4.2 1
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Table 3.2 (cont’d): White Dwarfs Not Observed to Outburst with Kepler Observations

EPIC ID Kp Teff (K) log g (cgs) Pipe.a Field Dur. (d) Lim(%) Ref.b

212071753 18.9 10300(150) 8.11(0.12) VJ 5 73.9 3.8 1
206302487 18.7 10190(110) 8.13(0.10) VJ 3 66.8 1.3 1
211932844 17.9 10060(80) 8.09(0.07) VJ 5 73.9 1.4 1
211519519 18.9 9990(130) 7.99(0.13) VJ 5 73.9 2.1 1
228682409 20.0 9960(160) 8.22(0.15) GO 5 74.8 13.5 1
201513373 18.2 9800(80) 8.13(0.08) VJ 1 80.0 0.9 1
201789520 18.4 9710(80) 7.88(0.09) VJ 1 80.0 1.2 1
201498548 18.3 9680(60) 8.07(0.07) VJ 1 80.0 1.5 1
201663682 19.0 9530(110) 8.07(0.12) VJ 1 80.1 4.5 1
201810512 18.4 9510(90) 8.20(0.09) VJ 1 80.0 1.7 1
228682315 19.5 9470(150) 7.74(0.19) GO 5 74.8 11.0 1
201838978 18.7 9460(80) 7.79(0.10) VJ 1 80.1 2.5 1
211932489 19.8 9450(180) 8.03(0.20) VJ 5 73.9 5.6 1
201834393 18.7 9440(90) 7.85(0.11) VJ 1 80.1 2.7 1
201887383 18.8 9400(100) 8.14(0.11) VJ 1 80.0 6.5 1
201521421 19.2 9340(160) 8.09(0.17) VJ 1 80.1 2.0 1
201879492 18.1 9320(70) 8.05(0.08) VJ 1 80.0 1.8 1
201816218 18.4 9260(80) 7.98(0.09) VJ 1 80.0 1.1 1
211768391 18.5 9250(80) 7.60(0.12) VJ 5 73.9 2.1 1
211692110 18.8 9180(90) 7.59(0.13) VJ 5 73.9 2.2 1
201224667 18.6 9180(110) 8.02(0.13) VJ 1 80.0 3.2 1
201723220 17.7 9110(50) 8.05(0.05) VJ 1 80.0 0.8 1
211788137 18.6 9100(100) 7.98(0.12) VJ 5 73.9 3.0 1
228682387 18.8 9100(90) 7.90(0.11) VJ 5 72.0 1.6 1
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Table 3.2 (cont’d): White Dwarfs Not Observed to Outburst with Kepler Observations

EPIC ID Kp Teff (K) log g (cgs) Pipe.a Field Dur. (d) Lim(%) Ref.b

201700041 19.2 9070(160) 7.99(0.19) VJ 1 80.1 3.3 1
212564858 15.7 9050(110) 7.83(0.03) GO 6 78.9 0.3 3
228682333 17.8 9000(60) 7.76(0.09) VJ 5 73.9 2.6 1
228682427 18.6 8980(90) 8.17(0.10) VJ 5 73.9 4.9 1

Pulsating White Dwarfs Not Observed to Outburst with SC Kepler Observations
201730811 15.7 12490(260) 8.01(0.06) VJ 1 80.1 1.8 4
212395381 15.7 12020(190) 8.18(0.05) GO 6 73.9 2.5 5
10132702 19.1 11940(380) 8.12(0.04) GO K1 30.8 2.5 6
211916160 19.0 11900(230) 8.23(0.07) VJ 5 73.9 2.1 1
7594781 18.2 11730(140) 8.11(0.04) GO K1 31.8 0.6 6
211926430 17.7 11690(120) 8.09(0.04) VJ 5 73.9 3.1 1
11911480 18.1 11580(140) 7.96(0.04) GO K1 82.6 1.9 6
201719578 18.1 10990(125) 7.91(0.06) VJ 1 80.1 2.1 1
211596649 19.0 11230(260) 7.94(0.11) VJ 5 73.8 2.4 1
60017836 13.3 10970(170) 8.03(0.05) GO Eng 9.0 0.2 5
4357037 18.3 10950(130) 8.11(0.04) GO K1 36.3 0.8 4

aK2 reduction pipeline, where GO is the Kepler Guest Observer light curve, and VJ is the Vanderburg & Johnson (2014)
optimally extracted light curve.

bSpectroscopic sources: (1) Tremblay et al. (2011a); (2) Kawka & Vennes (2006); (3) Koester et al. (2009b); (4) Hermes
et al. (2015a); (5) Gianninas et al. (2011); (6) Greiss et al. (2016)

cThe atmosphere model that best fits the Balmer line profiles of the spectrum of EPIC 210484300 disagrees with its
photometric colors from SDSS.

dEPIC 211891315 shows evidence of a single outburst and was observed to pulsate in follow-up, ground-based observations
as discussed in Section 3.4.1.

95



Chapter 4

New Outbursting ZZ Ceti Variables Through

K2 Campaign 10 ∗

Chapter 3 reproduced the most recent refereed publication about the

discovery of outbursting cool ZZ Ceti pulsators (oDAVs) from extended Kepler

and K2 observations through K2 Campaign 6. That paper brought the total

number of oDAVs up to four, with one additional candidate that may have

exhibited a single, particularly energetic outburst: EPIC 211891315. The K2

mission has now publicly released data through Campaign 10, and we have

continued to find new cool ZZ Ceti variables that exhibit this behavior. In

this chapter I describe these most recent discoveries and summarize the cur-

rent class of eight (or nine) ZZ Cetis with observed outbursts. I also provide

new spectroscopic parameters from a uniform set of spectra obtained and fit by

collaborators J. J. Hermes and P.-E. Tremblay. The light curves and Fourier

transforms of the first two new objects were published in conference proceed-

∗This work was previously published as Bell, K. J., Hermes, J. J., Montgomery, M. H.,
Winget, D. E., Gentile Fusillo, N. P., Raddi, R., and Gänsicke, B. T., 2017, The First Six
Outbursting Cool DA White Dwarf Pulsators, 20th European White Dwarf Workshop, 509,
303. I led the photometric analysis in this work. J. J. Hermes identified the outbursting
objects from his K2 light curve extractions. M. H. Montgomery and D. E. Winget advised
me in this work. N. P. Gentile Fusillo, R. Raddi, and B. T. Gänsicke helped to identify
these objects as candidate pulsating white dwarfs for K2 observation.

96



ings of the 20th European White Dwarf Workshop (Bell et al. 2017b).

The results in this chapter are preliminary. I will prepare a more com-

plete manuscript for refereed publication following the submission of this the-

sis.

4.1 Time Series Photometry Analysis of Four New Out-
bursting ZZ Cetis

Due to their infrequency, irregularity, and durations of tens of hours,

all known outbursting ZZ Cetis have been identified from extensive Kepler/K2

data. The streak continues with four additional oDAVs since the work pub-

lished in Bell et al. (2016, Chapter 3). In the following subsections, I detect

and characterize the outbursts (quantitatively) and pulsations (qualitatively)

in the K2 light curves of these newest oDAVs. Descriptions of the pipelines

and processing of each light curve—as well as follow-up photometry in the case

of EPIC 220329764—will be described separately for each object.

My algorithm for detecting and characterizing outbursts in the K2 data

was described in Section 3.2.1. To summarize, I calculate the standard devi-

ation (σ) of the long cadence light curve and flag any occurrence of three

consecutive points above 3σ as a candidate outburst (so all outbursts are nec-

essarily longer than 1.5 hr). I mask these candidate events from the light curve

and search again, iterating until no new candidates are found. I then care-

fully vet every candidate event, comparing the long- and short-cadence light

curves (when available) to ensure that instrumental anomalies are identified
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and rejected.

I interpolate to find the previous and next times that the long-cadence

light curve crossed its median to calculate the outburst duration. Because

of the smoothing of the underlying signal by the 30-minute long-cadence ex-

posures, I use the short-cadence data, when available, to measure the peak

flux enhancement of an outburst. I record the highest median of seven adja-

cent relative flux measurements as the outburst peak to avoid individual noisy

measurements from dominating this value. I measure the equivalent duration

of an outburst (the duration that the star would have to shine in quiescence

to output the same amount of energy in the observational bandpass as the

total excess energy from the outburst, similar to a spectroscopic equivalent

width) by numerically integrating the light curve above its median from the

detected start to end of the event. Finally, I estimate the physical energy

output of an outburst (assuming that the fractional brightness enhancement

is the same at all wavelengths and that the outbursts are isotropic) by multi-

plying its equivalent duration by the white dwarf’s expected luminosity from

the Stefan-Boltzmann law and its spectroscopic and model parameters. We

use values from new spectra that are presented in Section 4.2.

All plotted Fourier transforms (FTs) have been calculated with the

Period04 software (Lenz & Breger 2004). The 0.1% False Alarm Probabilities

(FAP) for signals in the FTs were calculated with the same bootstrapping

approach described in the previous two chapters (using a fast implementation

of the FFT for unevenly sampled data; Press & Rybicki 1989).
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Figure 4.1: Light curve of EPIC 229228364. The left panel shows the full short-
cadence K2 light curve (black) and a 30-minute-smoothed long-cadence light
curve (red). The gray segments of the light curve mark detected outbursts.
The right panel zooms in on a representative, median-energy outburst.

4.1.1 EPIC 229228364

EPIC 229228364 was observed by K2 at short cadence for 81.4 days in

Campaign 7. We detect six outburst in the light curve displayed in Figure 4.1,

with a median-energy outburst features in the right panel. These last between

11.4 and 15.5 hours, the brightest causing the overall flux to increase by 15%.

The average time between detected outbursts is 11.6 days. Equivalent dura-

tions are in the range 11.4–15.5 min, with a median of 13.7 min. From the

new spectroscopic parameters to be introduced in Section 4.2, the maximum

observed outburst energy is roughly 6.3× 1033 erg.

The FT of the short-cadence K2 light curve of EPIC 229228364 is dis-

played in Figure 4.2. Two peaks in the typical range of ZZ Ceti pulsation fre-

quencies exceed the 0.1% FAP significance threshold at 894.48 and 927.47µHz.

These are likely part of broadened features corresponding to pulsation modes

that vary in phase/frequency/amplitude as are observed in other oDAVs, but
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Figure 4.2: Fourier transform of EPIC 229228364. The 0.1% significance
threshold was calculated from 10,000 bootstrap randomizations.

the signal-to-noise is not sufficient in this light curve to fit these features.

4.1.2 EPIC 220453225

The short-cadence light curve of EPIC 220453225 from K2 Campaign 8

is displayed in Figure 4.3. The 15 outbursts that we detect in this light curve

are highlighted in the left panel, with the median-energy outburst featured in
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Figure 4.3: Light curve of EPIC 220453225. The left panel shows the full short-
cadence K2 light curve (black) and a 30-minute-smoothed long-cadence light
curve (red). The gray segments of the light curve mark detected outbursts.
The right panel zooms in on a representative, median-energy outburst.
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Figure 4.4: Fourier transform of EPIC 220453225. The 0.1% significance
threshold was calculated from 10,000 bootstrap randomizations.

more detail in the right panel. The outbursts have durations of 5.9–13.3 hr

(median 8.6 hr), peak flux enhancements of 5.7–9.4% (median 7.7%), equiv-

alent durations of 5.0–12.4 min (median 9.3 min), and estimated energies of

2.6–6.4× 1033 erg (median 4.8× 1033 erg). The detected outbursts recur every

4.9 days on average.

The FT of the K2 data on EPIC 220453225 is displayed in Figure 4.4.

There are at least 10 significant bands of pulsational power present in the range

760–1100µHz that exceed the 0.1% FAP significance threshold of 0.0677%.

Characterization of 16 independent pulsation frequencies in the range 718–

3211µHz will be included in a forthcoming paper from Hermes et al. (2017d,

in prep.).

4.1.3 EPIC 220329764

EPIC 220329764 was only observed in long cadence (30 min) during the

78.7-day K2 Campaign 8. The light curve is displayed in Figure 4.5. Since
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Figure 4.5: Light curve of EPIC 220329764. The left panel shows the full long-
cadence K2 light curve (black), with the detected outbursts marked with red
points and highlighted in yellow. The right panel zooms in on a representative,
median-energy outburst.

my outburst detection algorithm operates on the long-cadence data, we iden-

tify 27 brightening events recurring on an average timescale of 2.9 days. The

outbursts last 2.9–11.3 hr (6.8 hr median), with equivalent durations of 3.5–

16.8 min (10.8 min median). Because we do not have concurrent short-cadence

data from K2, we measure the peak flux enhancement from the highest mea-

surement during each outburst in the long-cadence light curve, which yields

a lower limit because the long exposures smooth the underlying signal. The

outbursts reach at least 3–8% (5.5% median). Using the spectroscopic param-

eters presented in Section 4.2, we convert the measured equivalent durations

to approximate energies 1.8–8.7× 1033 erg (5.6× 1033 erg median).

So far, every white dwarf observed to exhibit this outburst phenomenon

has been a ZZ Ceti pulsator. The long cadence data are not sensitive to these

pulsations (at least in this star; see Chapter 8 for exceptions). We decided

to follow-up this object with high-speed photometry with the ProEM Camera
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on the McDonald Observatory 2.1-meter Otto Struve Telescope. Don and

Karen Winget were at the telescope in early August 2016 and observed this

target for > 3 hours on each of three consecutive nights. The first night of data

disappointingly showed no evidence of significant photometric variability to an

approximate limit of 0.5% semi-amplitude. The next two nights did, however,

reveal significant pulsational power. The FTs for each of the three nights

are displayed in Figure 4.6. While the simplest explanation of this change

in measured behavior is beating between closely spaced modes masking the

signal from the first night, the measured average outburst timescale of 2.9

days suggests that an outburst event is likely to have occurred close in time

to one of these measurements. Observations of high signal-to-noise short-

cadence K2 light curves have demonstrated that outbursts can dramatically

affect pulsation amplitudes (most dramatically demonstrated for PG 1149+057

in Hermes et al. 2015b). We cannot definitively demonstrate whether this is

the case with the data in hand, yet my difficulty in fitting and phasing the

individual pulsation modes across these three nights of data is consistent with

this explanation.

4.1.4 EPIC 228952212

The K2 Campaign 10 data is the most recently released, and we have

found yet another outbursting ZZ Ceti in this field, EPIC 228952212. J. J. Her-

mes extracted the short-cadence light curve from the pixel level data, and I

also consider the Kepler Guest Observer long cadence extraction in my analy-
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Figure 4.6: Fourier transforms of EPIC 220329764 light curves obtained from
the McDonald Observatory 2.1-meter Otto Struve Telescope on three different
nights in August 2016. While we do not detect variability above the signif-
icance threshold on the first night, the do measure stellar pulsations on the
next two nights.

sis. Both light curves are displayed in Figure 4.7. The 14-day gap in coverage

was caused by the failure of a CCD module1. In the 48-day span following the

gap, we detected four outbursts with durations 14.1, 12.3, 9.0, and 6.3 hr, peak

flux enhancements of 14, 9, 9, and 8%, and equivalent durations of 14.5, 10.9,

3.6, and 3.9 min, in chronological order. The average time between detected

outbursts is 10.2 days. Using the spectroscopic values presented in Section 4.2,

the approximate outburst energies are 8.1, 6.1, 2.0, and 2.2× 1033 erg.

The FT of the 48 days of short-cadence data following the gap is dis-

played in Figure 4.8. Multiple bands of power exceed the 0.1% FAP significance

criterion between 1175–1350µHz, with other suggestive peaks falling just short

of this conservative threshold.

1https://keplerscience.arc.nasa.gov/k2-data-release-notes.html
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Figure 4.8: Fourier transform of EPIC 228952212. The 0.1% significance
threshold was calculated from 10,000 bootstrap randomizations.

4.2 New Spectroscopic Parameters

J. J. Hermes has acquired spectra of the first seven oDAVs observed

in K2 with the Goodman spectrograph on the 4.1-meter SOAR telescope

(Clemens et al. 2004). P.-E. Tremblay fit the Balmer line profiles with one-

dimensional pure-hydrogen-atmosphere models with ML2/α = 0.8 following

the methodology described in Tremblay et al. (2011a, with uncertainties deter-
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Table 4.1. New Spectroscopic Parameters for Outbursting ZZ Cetis

Name Teff (1D) log g (1D) Teff (3D) log g (3D) Mass (3D)
(K) (cgs) (K) (cgs) (M�)

KIC 45529821 11130(120) 8.34(0.06) 10860 8.16 0.69(0.04)
EPIC 201806008 11200(130) 8.182(0.038) 10910 8.019 0.61(0.02)
EPIC 211629697 10890(130) 7.950(0.046) 10600 7.772 0.48(0.02)
EPIC 229227292 11530(140) 8.146(0.038) 11210 8.028 0.62(0.02)
EPIC 229228364 11330(140) 8.172(0.038) 11030 8.026 0.62(0.02)
EPIC 220453225 11540(140) 8.153(0.038) 11220 8.035 0.62(0.02)
EPIC 220329764 11500(140) 8.148(0.038) 11180 8.026 0.62(0.02)
EPIC 228952212 11400(160) 8.076(0.050) 11080 7.949 0.58(0.02)

1From previous work (Hermes et al. 2011; Bell et al. 2015c)

mined following Gianninas et al. 2011). Table 4.1 lists the best-fit parameters

of Teff and log g, along with those values corrected for the effects of three-

dimensional convection (Tremblay et al. 2013), and masses inferred from the

white dwarf evolutionary sequences updated from Fontaine et al. (2001)2. The

details of these observations, reductions, and analysis will be published in a

forthcoming paper (Hermes et al. 2017, in prep.). The locations of all known

oDAVs in spectroscopic log g–Teff parameter space (3D corrected) are plotted

in Figure 4.9. With the four additional discoveries detailed in this chapter, it

remains true that all of the DAVs that exhibit outbursts are located near the

cool edge of the instability strip, and that only pulsating DAVs outburst.

2Available online at http://www.astro.umontreal.ca/~bergeron/CoolingModels/
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Figure 4.9: Location of presently known outbursting DAVs in log g–Teff pa-
rameter space. The oDAVs listed in Table 4.1 are marked with squares of
different colors. The yellow circles and gray crosses correspond to the DAVs
and long-cadence white dwarf targets that do not exhibit outbursts in K2 data
through Campaign 6 (from Bell et al. 2016). The dashed lines are the empir-
ical instability strip boundaries (Tremblay et al. 2015), and the dash-dotted
lines are cooling tracks for 0.6 and 0.8M� white dwarfs (Fontaine et al. 2001),
for context. The cyan circles are ZZ Cetis known from the ground (Gianni-
nas et al. 2011), with the addition the “odd duck” SDSS J2350−0054 from
(Mukadam et al. 2004, with updated spectroscopic parameters from Kepler et
al. 2016) to highlight the existence of ZZ Cetis cooler than the empirical strip
boundaries.

4.3 Observational Summary of the New Outbursting
Class of ZZ Ceti

I have collected summary statistics characterizing the typical outburst

properties of all presently known oDAVs in Table 4.2. I have updated these

values for the first two discovered oDAVs, KIC 4552982 (Bell et al. 2015c) and

EPIC 201806008 (Hermes et al. 2015b), after redoing these measurements with

the same methodology of the newer objects for uniformity.

Beyond the established pattern that only ZZ Cetis near the cool edge

of the instability strip exhibit outbursts, I am interested in further exploring
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Table 4.2. Newest Outburst Properties of oDAVs

Name Kp τrecur Med. Duration Max. Flux Max. Energy
(mag) (d) (hr) (%) (erg)

KIC 45529821 17.9 2.7 9.6 15 2.1× 1033

EPIC 2018060082 15.0 8.0 15 29 1.2× 1034

EPIC 2116296973 18.4 5.0 16.3 15 2.0× 1034

EPIC 2292272923 16.7 2.4 10.2 9 6.3× 1033

EPIC 2292283644,5 17.9 9.7 13.7 15 7.6× 1033

EPIC 2204532254,5 18.0 4.9 8.6 9 6.4× 1033

EPIC 2203297645 18.6 2.9 6.8 8a 8.7× 1033

EPIC 2289522125 18.5 10.2 10.6 14 8.1× 1033

1Bell et al. (2015c)

2Hermes et al. (2015b)

3Bell et al. (2016)

4Some values presented in Bell et al. (2017b)

5This work

aFlux enhancements may be underestimated from long-cadence data.

relationships between the outburst properties that may help us to develop

a theory for their physical mechanism. Figures 4.10 and 4.11 explore two

such trends amongst individual events: peak flux enhancement vs. outburst

durations, and outburst energy vs. delay between events, respectively. There is

a positive correlation between both pairs of measurements. The plotted points

are color-coded to match the squares in Figure 4.9. Figure 4.11 particularly

suggests that the relationship between outburst energy and delay time for

different oDAVs are characterized by different slopes. The overall increased

delay time before more energetic outbursts suggests a “charging” effect, where
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Figure 4.10: Peak flux enhancement versus outburst duration for all detected
outbursts, color-coded by target to match the squares in Figure 4.9.
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Figure 4.11: Approximate outburst energy versus delay since last outburst
for events that are not separated by greater than 3-hour gaps in monitoring,
color-coded by target to match the squares in Figure 4.9.

energy must build up to power more extreme outbursts.

Finally, Figure 4.12 displays outburst frequency distributions for every
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Figure 4.12: Outburst energy distributions show the rates that stars exhibit
outbursts of at least a given energy. Color-coded by target to match the
squares in Figure 4.9. The trend of higher outburst energy with lower log g is
likely due to a poor method of approximating the outburst energy.

outbursting ZZ Ceti (calculated like the flare frequency distributions of Gersh-

berg 1972). The turnover at low energy is likely due to incompleteness of our

detections at the lowest energies, which the turnover at high energy suggests

a physical limitation on outbursts. For comparison, the ZZ Ceti outbursts

appear to saturate at ∼ 1034 erg, while solar flares max out at around 1032 erg

(e.g., Wang & Dai 2013). The suggestive trend between higher energy dis-

tributions and spectroscopic log g is likely due to an overly simplistic method

of converting equivalent durations to outburst energies. This will be replaced

with a more sophisticated calculation prior to the submission of this work for

refereed publication.
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4.4 Opportunities for Future Observational and Theo-
retical Advances

My thesis research has spanned the discovery of this new outburst be-

havior in the Kepler light curve of the first ZZ Ceti identified in the original

field of view, through the growth of the class of oDAVs to the point that we

can begin studying their ensemble properties. There is still much work to be

done in this area, both observational and theoretical. I close this section by

outlining and speculating what I consider to be some of the promising areas

of development for oDAVs in the immediate future.

Kepler is expected to have enough fuel to last, hopefully, through K2

Campaign 17, and J. J. Hermes has been the Principle Investigator submitting

K2 Guest Observer proposals to continue monitoring likely and known ZZ

Cetis in upcoming fields at short cadence. We expect to roughly double the

number of ZZ Cetis with extensive space-based photometry in this time, and

the number of oDAVs should double, too.

The fact that we have only detected this behavior in space-based ob-

servations is partially due to the infrequency of outbursts, but also because of

their long timescales. Since airmass and transparency variations can imprint

low-frequency variations onto our data, we routinely fit and remove low-order

polynomials from ground-based light curves prior to Fourier analysis (Nather

et al. 1990). This could also remove the signature of outbursts. The large

amount of archival data at UT-Austin should be carefully revisited with an

eye for missed events. One student of the UT College of Natural Sciences’
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Freshman Research Initiative, Luke Stevens, attempted this for quite a few

objects, but he found no clear evidence of outbursts. Cool ZZ Cetis have been

empirically well-known to change their pulsation characteristics dramatically

from night to night, so pulsational hints of outbursts may have also been ig-

nored historically for this reason. If the unknown outburst mechanism also

operates in helium-atmosphere pulsating white dwarfs, it may have been first

observed as the “whoopsie” or “sforzando” during August 1996 Whole Earth

Telescope observations of GD 358 (Kepler et al. 2003).

It would be worthwhile to do targeted ground-based observations in

the future to hunt for outbursts. Kepler and K2 only observed in a single

passband and we could not be alerted of ongoing outbursts in real time. With

small telescopes or planned transient surveys, we could monitor the outburst

state of a large number of candidate oDAVs, quickly moving to obtain multi-

color photometry and spectroscopy when an outburst is detected. These data

could constrain whether the outbursts are local or global phenomena, assisting

us greatly in developing a physical model of the process.

The data from transient surveys will be useful in their own right. While

Kepler and K2 only saved data for pre-identified objects of interest in limited

areas on the sky, existing and upcoming synoptic surveys will observe ZZ

Cetis in a much larger volume. While observations of each target will be

more sparse, projects like the Palomar Transient Factory (data became public

in December 2016, though I was unable to find signs of outbursts in known

oDAVs), Zwicky Transient Facility, and Large Synoptic Survey Telescope have

112



6812 6813

JD - 2450000

-20%

-10%

0%

10%

20%

30%

40%
re

la
ti

v
e
 f

lu
x

Kepler

7530 7535 7540 7545 7550 7555

JD - 2450000

ASAS-SN

Figure 4.13: Comparison of the highest amplitude outburst of EPIC 201806008
observed by K2 (left; Hermes et al. 2015b) and a compelling outburst detection
from ASAS-SN (right).

the sensitivity to detect the significant excess flux from an outburst, some in

multiple filters. The All-Sky Automated Survey for Supernovae (ASAS-SN;

Shappee et al. 2014) made a compelling detection of flux enhancement3 in the

highest amplitude outbursting ZZ Ceti known, EPIC 201806008, as shown in

Figure 4.13. This type of data will improve our statistics on outburst rates as a

function of global stellar properties, and may reveal something about outburst

temperatures.

We certainly also need to make advances in the theory of cool ZZ Ceti

outbursts. The suggestion (originally brought up to me by J. J. Hermes) that

gets kicked around the most invokes a mechanism from Wu & Goldreich (2001)

whereby a pulsation mode can reach an amplitude saturation threshold where

it dumps its energy into two daughter modes. The sum of these daughter

mode frequencies must be close to the parent frequency. If these modes are

3Data publicly available from the ASAS-SN light curve server at asas-sn.osu.edu

(Kochanek et al. 2017)
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globally damped, this energy may go into heating the convection zone. This

temperature change would make the star brighter overall. It would also cause

the convection zone to become shallower, partially explaining the higher ob-

served pulsation amplitudes during outbursts (especially in EPIC 201806008;

Hermes et al. 2015b). The change in the stellar structure in the outer parts of

the star would shift the frequencies of pulsation modes that are most sensitive

to that region, and we do observe that low-radial-order modes are more stable

in frequency during outbursts. Power at lower frequencies shifts to slightly

higher frequencies during outbursts, perhaps because the thermal timescale at

the base of the convection zone decreases.

I was recently invited to present this work at UC-Berkeley and I dis-

cussed this idea with a theorist there, Jing Luan. She is also a proponent of

this idea, but suggested that this parametric instability should happen in all

ZZ Cetis, it may just be that the inertia of hotter ZZ Ceti pulsation modes

is so high that they cannot dump their energy quickly enough to cause an

outburst. I added that this could happen more frequently in cooler ZZ Cetis

because we empirically observe that their pulsation modes are less coherent

in frequency, so they may sweep through resonances with daughter modes,

lowering the amplitude threshold for energy transfer. Jing has been exploring

this mechanism in some detail and I hope to see a publication on this topic

from her soon.

Further development of an outburst theory should explain the differ-

ences observed in outburst energies and timescales between different stars, and
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how this might relate to global or structural parameters revealed through spec-

troscopy and precision asteroseismology—work that is largely still pending.

Finally, we have noted all along that the cool edge of the instability strip

has been empirically determined and is not theoretically well understood. The

recent thorough attempt to computationally model the red edge by Van Groo-

tel et al. (2012) reached the same conclusion as many efforts that proceeded

it: pulsations are theoretically expected to continue many thousands of Kelvin

below the observed Teff cutoff. While highly speculative, it is possible that this

newly discovered physical process could be the missing ingredient necessary to

finally explain the red edge of the ZZ Ceti instability strip.
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Chapter 5

Pruning The ELM Survey: Characterizing

Candidate Low-mass White Dwarfs Through

Photometric Variability∗

My primary research goal from McDonald Observatory has been to dis-

cover and characterize pulsating DA white dwarfs at the low end of the white

dwarf mass distribution. Extremely low-mass (ELM; . 0.3M�) white dwarfs

must have formed through mass transfer in tight binaries, since the Galaxy

is not old enough for them to be produced from single stars. This has been

widely supported by measurements of short-period radial velocity variations

in time series spectroscopy by the ELM Survey (Hermes et al. 2012a, 2013a,c;

Bell et al. 2015b; Kilic et al. 2015a). A pulsating variable class of these objects

(ELMVs) was just being discovered at McDonald Observatory as I began my

research there. All of these targets were identified by the ongoing ELM Survey,

∗ This work was previously published as Bell, K. J., Gianninas, A., Hermes, J. J., Winget,
D. E., Kilic, M., Montgomery, M. H., Castanheira, B. G., Vanderbosch, Z., Winget, K. I. and
Brown, W. R., 2017, Pruning The ELM Survey: Characterizing Candidate Low-mass White
Dwarfs through Photometric Variability, ApJ, 835, 180. I led the photometric observations
and analysis in this work. A. Gianninas, M. Kilic, and W. R. Brown spectroscopically
characterized the studied objects and assisted in their interpretation. B. G. Castanheira,
Z. Vanderbosch, K. I. Winget, and D. E. Winget all contributed photometric observations
from McDonald Observatory. J. J. Hermes, D. E. Winget, and M. H. Montgomery helped
me to develop the context for discussing these results.
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and I decided to follow up candidate ELMVs from their most recent two pub-

lications. I discovered three new pulsating variables, but none were among the

ELM Survey targets confirmed in binaries. The dominant 4.31-hr pulsation

in one exceeds the physical limit for a cooling-track white dwarf. Two other

targets turned out to be photometric binaries, and while the ellipsoidal vari-

ations measured in one support its classification as an ELM white dwarf (see

Chapter 7), the long eclipses in the other implied a primary star radius that

exceeds 0.4R�—again inconsistent with a cooling-track white dwarf. I pub-

lished the following work as Bell et al. (2017a), in which I argue that the ELM

Survey suffers systematic misclassification for objects with spectroscopically

inferred Teff . 9,000 K.

5.1 Introduction

The Galaxy is not old enough for . 0.3 M� white dwarfs (WDs) to have

formed in isolation, even from high-metallicity systems (Kilic et al. 2007).

These objects are instead formed as the remnants of mass transfer in post-

main-sequence common-envelope binaries. A close companion can strip away

material if a star overflows its Roche lobe while ascending the red giant branch,

leaving behind an extremely low-mass (ELM) WD with a degenerate helium

core and hydrogen-dominated atmosphere (e.g., Nelemans et al. 2001). Al-

thaus et al. (2013) and Istrate et al. (2016a) have calculated the most recent

evolutionary ELM WD models, and Heber (2016, Section 8) provides a nice

overview of these objects.
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The ELM Survey (Brown et al. 2010, 2012, 2013, 2016; Kilic et al.

2011a, 2012; Gianninas et al. 2015) is a spectroscopic effort to discover and

characterize ELM WDs. So far, this survey has measured spectra of 88 objects

with parameters from line profiles consistent with He-core WDs (5.0 . log g

. 7.0 and 8000 K . Teff . 22,000 K). Membership to close (Porb < 25 hr)

binary systems through measured radial velocity (RV) variations supports the

mass-transfer formation scenario for 76 targets.

The reliability of spectral line profiles as an ELM diagnostic is chal-

lenged by the discovery of thousands of objects that exhibit spectra consistent

with low-log g WD models with Teff . 9,000 K in recent Sloan Digital Sky

Survey (SDSS) data releases (Kepler et al. 2016). The nature of this large pop-

ulation is under debate, as different observational aspects weigh for-or-against

different physical interpretations, including ELM WDs, main sequence A stars

in the Galactic halo, or binaries comprised of a subdwarf and a main sequence

F, G, or K dwarf (Pelisoli et al. 2017). These objects are labeled as “sdA”

stars, with the ELM classification reserved only for those with supporting or-

bital parameters from RV variations. Only ≈15% of ELM Survey objects are

found to have Teff < 9,000 K.

Six pulsating stars have been published as ELM WDs in a low-mass

extension of the hydrogen-atmosphere (DA) WD instability strip from time

series photometry obtained at McDonald Observatory (Hermes et al. 2012a,

2013a,c; Bell et al. 2015b). However, only the first three discovered show RV

variations in available time series spectroscopy. Another pulsating ELM vari-
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able (ELMV) in a binary system with a millisecond pulsar was reported by

Kilic et al. (2015a). Stellar pulsations in these objects provide the potential

to constrain the details of their interior structures and to better understand

their formation histories through asteroseismology. The pulsational properties

of ELM WDs have been explored theoretically by Van Grootel et al. (2013)

and Córsico & Althaus (2014a, 2016a). The DA WD instability strip is both

empirically and theoretically found to shift to lower Teff with lower log g, in-

tersecting the population of sdAs in the ELM regime.

ELM WDs can also exhibit photometric variability that results from

their binary nature, including signatures of eclipses, ellipsoidal variations (tidal

distortions), and relativistic Doppler beaming (also called Doppler boosting;

Shporer et al. 2010; Kilic et al. 2011b; Hermes et al. 2014a). In the case of the

12.75-minute binary SDSS J0651+2844, these have enabled the measurement

of orbital decay from gravitational radiation (Hermes et al. 2012b).

In addition to these variables, numerous stars have been published as

pulsating precursors to ELM WDs (pre-ELMs). Maxted et al. (2013, 2014) dis-

covered two recently stripped cores of red giants that pulsate in binary systems

with main sequence A stars. Corti et al. (2016) reported on two variable stars

that occupy a region of parameter space where they could plausibly be either

pre-ELM WD or SX Phoenicis pulsators. Finally, Gianninas et al. (2016) dis-

covered three pre-ELMs with mixed H/He atmospheres that pulsate at higher

temperatures than an extrapolation of the empirical DA WD instability strip

due to the presence of He in their atmospheres. Córsico et al. (2016c) have
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explored the properties of pre-ELM WD pulsations in the evolutionary models

of Althaus et al. (2013).

In this work, we assess the photometric variability of nine candidate

ELM WD pulsators from The ELM Survey papers VI (ELM6; Gianninas et

al. 2015) and VII (ELM7; Brown et al. 2016). We describe our candidate

selection and observations in Section 5.2. We present an object-by-object

analysis in Section 5.3. We discuss our new variable and non-variable objects

in the context of the rapidly developing picture of ELM WD parameter space

in Section 5.4 and conclude with a summary in Section 5.5.

5.2 Observations

Our observing campaign targeted all nine stars published in the ELM6

and ELM7 samples with log g < 7.0 and Teff within 500 K of the current empiri-

cal ELMV instability strip, which has been updated to reflect the spectroscopic

corrections derived from 3D convection models in the ELM regime (Tremblay

et al. 2015; Gianninas et al. 2015). Select physical parameters published for

these stars by the ELM Survey are listed in Table 5.1.

We observed each of these targets with the ProEM camera on the Mc-

Donald Observatory 2.1-m Otto Struve Telescope. The ProEM camera is a

frame-transfer CCD that obtains time series photometry with effectively zero

readout time. The CCD has 1024×1024 pixels and a field of view of 1.6′×1.6′.

We bin 4×4 for an effective plate scale of 0.36′′ pix−1. All observations were

made through a 3 mm BG40 filter, which blocks light redward of ≈ 6500 Å to
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reduce the sky background. A complete journal from 31 nights of observing

these stars is provided in Table 5.2.

We obtained at least 31 dark frames of equal exposure time as our

science frames, as well as dome flat field frames, at the start of each night.

Table 5.2: Journal of Observations

SDSS Date Exposure Run Duration
(UTC) Time (s) (h)

J0308+5140 11 Oct 2015 3 4.9
12 Oct 2015 3 1.7
13 Oct 2015 3 2.7
06 Feb 2016 3 4.1

J1054−2121 15 Mar 2015 20 1.7
20 Apr 2015 30 3.0
21 Apr 2015 20 4.2

J1108+1512 19 Mar 2015 30 0.9
12 Mar 2016 30 1.6
12 Mar 2016 60 4.0
16 Mar 2016 30 4.3
01 May 2016 15 2.5

J1449+1717 23 Jul 2014 15 2.3
24 Jul 2014 25 2.6
14 Apr 2016 5 0.6
14 Apr 2016 15 2.9

J1017+1217 08 Jan 2016 5 2.2
09 Jan 2016 30 3.5
11 Mar 2016 5 3.9
17 Mar 2016 10 3.4
30 Apr 2016 5 2.1
03 May 2016 10 3.9

J1355+1956 14 Apr 2016 3 2.6
04 May 2016 3 1.5
05 May 2016 3 2.0
06 May 2016 5 6.4

J1518+1354 15 Apr 2016 30 4.3
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Table 5.2 (cont’d): Journal of Observations

SDSS Date Exposure Run Duration
(UTC) Time (s) (h)

J1735+2134 30 Apr 2016 3 4.5
01 May 2016 3 0.9
01 May 2016 3 3.0
03 May 2016 3 4.1
07 May 2016 5 2.5

J2139+2227 06 Jul 2016 5 4.3
02 Aug 2016 10 5.3
03 Aug 2016 10 4.5
04 Aug 2016 10 7.2
05 Aug 2016 15 6.9
08 Aug 2016 5 2.8

5.3 Analysis

For each run, we measure circular aperture photometry in the dark-

subtracted, flatfielded frames for the target and nearby comparison stars with

the iraf package ccd hsp, which relies on tasks from phot (Kanaan et al.

2002). We use the wqed software (Thompson & Mullally 2013) to divide

the target counts by the summed counts from available comparison stars to

remove the effect of variable seeing and transparency conditions during each

observing run. wqed also applies a barycentric correction to our timestamps

to account for the light travel time to our targets changing as the Earth moves

in its orbit.

We search for significant signals of astrophysical variability in the resul-

tant light curves. We present individual analyses for each target below, sorted
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into three groups by our ultimate classification of the objects: new pulsating

stars, binary systems with photometric variability related to their orbits, and

systems for which we can only put limits on a lack of photometric variability.

5.3.1 Pulsating Stars

Most pulsating stars, including most WD pulsators, oscillate at mul-

tiple simultaneous frequencies. We find multiple significant, independent fre-

quencies of photometric variability in three of our targets: SDSS J1735+2134,

SDSS J2139+2227 and SDSS J1355+1956.

5.3.1.1 SDSS J1735+2134

We observed SDSS J1735+2134 over 4 nights between 30 Apr and 07

May 2016. These light curves, displayed in Figure 5.1, evidence multi-periodic

pulsations reaching up to 3% peak-to-peak amplitude.

We take an iterative approach to determining the pulsation properties

of this target. To detect a new mode, we calculate the Fourier transform

(FT) of the combined light curve and assess whether the highest peak exceeds

an adopted 4〈A〉 significance threshold, where 〈A〉 is the mean amplitude in

a local 1000µHz region of the FT (this corresponds to ≈99.9% confidence;

Breger et al. 1993; Kuschnig et al. 1997). If a significant signal is present, we

find the non-linear least-squares fit of a sinusoid to the data, using the peak

amplitude and frequency from the FT as initial guesses. We then “prewhiten”

the light curve by subtracting out this best fit and compute the FT of the
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Figure 5.1: The light curves of SDSS J1735+2134 from 4 nights are displayed
in black dots. The x-axis units are hours since the start of the 30 Apr 2016
run. The y-axis gives the ratio of the measured flux relative to the mean flux.
Our 4-period model fit to the data is displayed as a solid line.

residuals. If another significant signal is detected above 4〈A〉 in the FT of the

residuals, we redo the non-linear fit with a sum of sinusoids. We repeat this

process until no new significant signals are found.

For SDSS J1735+2134, we find 4 significant signals corresponding to 4

eigenfrequencies of this pulsating star. Their properties are collected in Ta-

ble 5.3, along with analytical uncertainties (Montgomery & Odonoghue 1999).

We use millimodulation amplitude (mma) as our unit for pulsation amplitude,

where 1 mma = 0.1% flux variation.

The sequence of FTs corresponding to all iterations of our mode detec-

tion algorithm is displayed in Figure 5.2. The original FT is in black, with
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Figure 5.2: Fourier transforms of the original (black) light curves, increasingly
prewhitened data (lighter shades of gray; see text), and final residuals (red) for
SDSS J1735+2134 in the region of significant pulsational power. The dashed
line is the final 4〈A〉 significance threshold for the data prewhitened by the
four sinusoids characterized in Table 5.3.

increasingly lighter shades of gray representing the FTs of the prewhitened

light curves after additional mode detections. The red FT is of the fully

prewhitened data and the dashed line is the final 4〈A〉 significance threshold.

5.3.1.2 SDSS J2139+2227

We characterize the pulsations of SDSS J2139+2227 from 26 hours of

photometry obtained over the span of 7 nights in early Aug 20161. The same

1One nearby comparison star in the field of view, SDSS J213905.27+222709.1 (g =
16.77 mag), was incidentally observed to show deep eclipses while we were monitoring
SDSS J2139+2227. The eclipses last ≈3 hours and decrease the flux in the BG40 filter
by ≈16% at mid eclipse. We observed similar eclipses 1.848 days apart, but the binary
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Table 5.3. Pulsation Properties of SDSS J1735+2134

Mode Frequency Period Amplitude
(µHz) (min) (mma)

f1 220.172(0.013) 75.698(0.004) 7.60(0.11)
f2 260.79(0.03) 63.909(0.007) 3.64(0.11)
f3 201.56(0.03) 82.687(0.012) 3.38(0.11)
f4 297.38(0.05) 56.046(0.009) 2.04(0.11)

Table 5.4. Pulsation Properties of SDSS J2139+2227

Mode Frequency Period Amplitude
(µHz) (min) (mma)

f1 471.82(0.06) 35.324(0.004) 1.52(0.08)
f2 402.85(0.09) 41.372(0.009) 1.02(0.08)
f3 302.73(0.09) 55.055(0.016) 0.99(0.08)

iterative FT, least-squares fitting, and prewhitening process as used for the pre-

vious object reveals the three significant pulsation frequencies that are listed

in Table 5.4. The FT before and after prewhitening is displayed in Figure 5.3.

The pulsation amplitudes are too small relative to the photometric signal-to-

noise ratio to be clearly apparent to the eye in the light curve.

period could be an integer fraction of that.
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Figure 5.3: Fourier transform of the original (black) and fully prewhitened
(red) light curves of SDSS J2139+2227 covering the full region of significant
pulsational power. The dashed line is the final 4〈A〉 significance threshold for
the data prewhitened by the three sinusoids characterized in Table 5.4 and
indicated here with triangles.

5.3.1.3 SDSS J1355+1956

The target SDSS J1355+1956 shows a dominant signal with such a

long period that only our 6.41 hr run from 06 May 2016 captured a full cycle.

Figure 5.4 displays the light curves that we obtained on three consecutive

nights, 04–06 May 2016. Since the durations of the earliest two runs are

shorter than the dominant period, they suffer some non-ideal normalization

in our standard reduction pipeline. To account for this, we fit multiplicative

scaling factors to the different May 2016 runs simultaneously with the least-

squares sinusoid-fitting step of our period search algorithm for renormalization.
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Figure 5.4: The light curves of SDSS J1355+1956 from three consecutive nights
in May 2016. The best-fit two-sinusoid model is plotted over the data.

The FT of the 06 May 2016 run alone provided an initial guess of

4.74 hr for the dominant period; however, this value aligns poorly with the

data from the two previous nights. The Catalina Sky Survey (CSS; Drake et

al. 2009) Data Release 22 provides 321 epochs of well calibrated photometry

from eight seasons of observations that we use to guide our mode selection from

the complicated alias structure in the FT of our May 2016 data (Figure 5.5).

Rather than the highest peak in the FT of our data (corresponding to 5.2604±

0.0011 hours), the CSS data prefer a period near 4.29 hours. We use this

as an initial guess in calculating the least-squares single-sinusoid fit to the

three-night light curve (with free renormalization parameters). The FT of the

2http://nesssi.cacr.caltech.edu/DataRelease/
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Figure 5.5: The Fourier transform of the scaled original (black) and fully
prewhitened (red) light curves of SDSS J1355+1956 from May 2016. The
dashed line shows the final 4〈A〉 significance threshold for the prewhitened
light curve. The frequencies of the two significant modes in Table 5.5 are
marked with triangles.

Table 5.5. Pulsation Properties of SDSS J1355+1956

Mode Frequency Period Amplitude
(µHz) (hr) (mma)

f1 64.430(0.010) 4.3113(0.0007) 46.18(0.16)
f2 98.94(0.05) 2.8075(0.0015) 8.94(0.16)

residuals supports the presence of a second significant frequency in this star.

A simultaneous fit of two sinusoids to the data gives our final solution, with

parameters listed in Table 5.5. This solution is plotted over the observed light

curves in Figure 5.4.
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Figure 5.5 includes the FTs of the rescaled light curve both before and

after prewhitening our two-period solution. The dominant period exceeds the

theoretical limit for pulsations in ELM WDs as discussed in Section 5.4. The

residuals are just barely shy of our adopted significance criterion at a period of

7.295 hours. A pulsation mode of this duration could account for the apparent

residual disagreement found in the last panel of Figure 5.4, though this could

also be attributed to differential extinction between the target and comparison

stars during this long run (see Section 5.3.3).

5.3.2 Photometric Binaries

Binary systems can be photometrically variable for many reasons: pri-

mary and secondary eclipses, ellipsoidal variations (tidal distortion), reflection,

and relativistic Doppler beaming. We detect photometric variability related

to the binary orbital periods determined from RV variations (see Table 5.1) in

two of our targets.

5.3.2.1 WD J0308+5140

WD J0308+5140 is the only target that we observed that does not fall

within the SDSS footprint; it was instead originally identified from a LAMOST

(Large Sky Area Multi-Object Spectroscopy Telescope; Wang et al. 1996; Cui

et al. 2012) spectrum. For convenience, we follow the convention of Gianninas

et al. (2015) and include it in tables under the “SDSS” column header.

This target shows the longest-period RV variations in our sample at
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Figure 5.6: The phase-folded light curve of WD J0308+5140 shows evidence
of eclipses that implies a primary star radius & 0.4 R�. The blue hatched
region marks the observed eclipse.

19.342±0.009 h. Our data reveal dramatic photometric variability related to

the orbit in partial coverage of the binary period.

Figure 5.6 displays the light curve folded on the measured orbital

period. We normalized the target counts summed in the aperture for

WD J0308+5140 by those of a single, similarly bright (B = 16.5 mag)

field comparison star—entry 1350-03091578 from USNO-A2.0 located at

RA(2000) = 03h08m19.s87, Dec.(2000) = 51◦40′34.15′ (Monet 1998)—so that

the individual runs align smoothly.

While our phase coverage is not complete enough to precisely determine

system parameters, we identify by eye the apparent start and end times of

a deep primary eclipse. This range, centered on phase 0, is highlighted in
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Figure 5.6.

We rely on five simplifying assumptions to calculate a lower limit on the

radius of the primary star: (1) the stars are in circular orbits; (2) the relative

velocity between the two stars equals the measured RV semi-amplitude of

K1 = 78.9 ± 2.7 km s−1; (3) the catalogued K1 value represents only the

speed of the primary star; (4) the system inclination is 90◦; and (5) the two

binary components have equal radii. Under this oversimplified model, the

radius of the primary star is related to the measured eclipse duration, ∆t, by

the expression R1 = K1∆t/4. With an eclipse duration of ≈4 hours, we have

R1 & 0.4 R�. The first assumption is supported by the sinusoidal fit to the

RV measurements in ELM6. If any of the latter four assumptions are false, we

would find a larger radius for the primary star, so our result is a conservative

lower limit.

5.3.2.2 SDSS J1054−2121

While we see no evidence of pulsational variability in the light curve of

SDSS J1054−2121, it does show photometric variability related to the binary

orbital period of 2.51± 0.16 h determined from RV measurements.

Because of the long gap between our short March 2015 run and our

7.28 h of data that April, we use only the April data in this analysis. Since

both April runs exceed one full orbital cycle, we divide a straight line fit from

each light curve to correct for differential extinction effects without concern

for missing longer-timescale variations.
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Figure 5.7: The phase-folded, binned light curve of SDSS J1054−2121 shows
evidence of ellipsoidal variations and relativistic Doppler beaming. Our best
fit model is plotted over the data in red.

The FT of these data reveals a dominant signal at 1.251±0.004 h (with

additional extrinsic uncertainty of ±0.07 h from the aliasing structure of the

spectral window) consistent with half the orbital period. We interpret this as

the signature of tidally induced ellipsoidal variations of the star.

We phase-fold the April data on the refined binary period and then

average the photometry within 100 phase bins, each having width 1.5 min and

containing 7–16 measurements. We calculate the standard deviation of points

within each phase bin and divide that by the square root of the number of

points to get error bars for the binned, phase-folded light curve. This light

curve is repeated through two full orbital cycles in Figure 5.7.

The dominant sinusoidal signal is from ellipsoidal variations, which has
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Table 5.6. Least-squares Amplitudes

SDSS cos 2φ (%) sinφ (%) cosφ (%)

J1054−2121 0.75(0.08) 0.23(0.08) 0.03(0.08)

peaks twice per orbit when the elongated side of the tidally distorted ELM is

presented to our line of sight. We refer to this as the cos 2φ term with angular

frequency 2 cycles orbit−1—where phase zero (φ = 0) is defined as when the

ELM WD is furthest from us.

Doppler beaming is the modulation of the measured flux with the ra-

dial velocity of the target, caused by both the Dopper shift of flux in/out the

observational bandpass and the relativistic beaming of light in the direction

of motion (e.g., Rybicki & Lightman 1979; van Kerkwijk et al. 2010). With

our phase convention, this has a sinφ behavior with frequency 1 cycle orbit−1.

The amplitude of this effect is directly related to the RV semi-amplitude of

the target through ADB = −(3 − α)K1/c, where α = d logFν/d log ν is the

spectral index, which accounts for the Dopper shift of flux into the observa-

tional bandpass. We estimate the spectral index of SDSS J1054−2121 to be

α = 0.956 by averaging the mean α for our best-fit model spectrum in each of

the two wavelength ranges 3200–3600 Å and 5500–6500 Å, which correspond

approximately to the blue and red edges of the BG40 bandpass. With an RV

semi-amplitude of 261.1±7.1 km s−1, we expect to measure a Doppler beaming

signal of ≈ 0.18% in this system.

135



A cosφ component of the light curve could be present from reflection

if the ELM WD’s companion is sufficiently hot, but Hermes et al. (2014a) did

not find this effect to a significant level in 20 double-degenerate binaries with

low-mass primary stars.

We compute a least-squares fit for the cos 2φ, sinφ and cosφ ampli-

tudes, along with the phase and an overall vertical offset, to the folded light

curve. Our best-fit model is overplotted in red in Figure 5.7. The reduced χ2 of

this five-parameter fit is 0.85. The amplitudes of the three sinusoidal compo-

nents are given in Table 5.6. We calculate the uncertainties from the diagonal

elements of the covariance matrix after scaling the photometric uncertainties

to give χ2
red = 1.

The sinφ amplitude is within 1σ of the expected 0.18% and the cosφ

term is consistent with zero. The cos 2φ term is entirely consistent with el-

lipsoidal variations in an ELM WD. A more thorough analysis of this target,

including a refinement of system parameters from the photometric data, will

be presented in follow-up work.3

5.3.3 Null Results

For the remaining four targets of the present survey, we do not de-

tect significant astrophysical signals in our data. However, the extent of our

observational coverage is not sufficient to completely rule out photometric

3See Chapter 7.
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Figure 5.8: Each plot in the top panel displays the divided light curve with the
largest overall trend for each of the four targets that do not show clear signs
of intrinsic stellar variability. The solid red lines show the best-fit differential
extinction model for each. Our analysis of the residuals displayed in the bottom
panel reveals no significant astrophysical signal.

variability in these stars. Since stellar pulsations and orbital timescales can

be on the order of hours for ELM WDs, we are careful not to classify a star as

a nonvariable without multiple individual runs of at least this duration. We

are cautious because multiple sources of variability (e.g., two pulsation modes)

can happen to destructively combine during an individual night’s observations,

masking the signal. Sky and transparency conditions also commonly vary on

timescales of hours and can leave signatures in the data.

For some observing runs on our remaining targets, we do see overall

long-timescale trends throughout the divided light curves. This is likely due

to differential extinction with changing airmass during a night’s observations.

Since the spectral energy of our targets is generally distributed differently

(usually more toward shorter wavelengths) across the observational bandpass

than nearby comparison stars, light from the target will experience a different
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Table 5.7. Limits on Pulsations in NOVs

SDSS Period or Amplitude
(h) (mma)

J1108+1512 > 4.0 < 13.4
J1449+1717 > 2.6 < 9.8
J1017+1217 > 3.9 < 5.3
J1518+1354 . . . . . .

amount (usually more) of atmospheric scattering on the way to our detector.

For normal-mass WDs, where pulsation periods of ∼10 minutes are

usually much shorter than the duration of observations, we typically mitigate

this effect by fitting and dividing out a low-order polynomial (e.g., Nather et

al. 1990). However, when searching for signals with timescales on the order of

the run duration, this approach is inappropriate as it may mistakenly remove

astrophysical signals of interest.

Instead, we divide from each light curve the least-squares fit of a exp bX,

where X is the airmass at each frame and a and b are free coefficients. This ap-

proach will not represent differential extinction well if there are major changes

in atmospheric conditions during observations or if extinction has an azimuthal

dependence at the observing site, but this first-order approach appears to fully

explain the dominant trends found in the light curves of our remaining targets.

The top panels of Figure 5.8 display the light curves with the

most pronounced airmass trend for each remaining target (from left to
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right): SDSS J1108+1512, SDSS J1449+1717, SDSS J1017+1217 and SDSS

J1518+1354. The solid lines are the least-squares fits of the differential

extinction models, and the bottom panels show the final reduced light curves

after dividing out these systematics. FTs of these fully reduced light curves,

and those from all other runs on these targets, do not reveal significant signals

to our 4〈A〉 significance threshold (see Section 5.3.1.1).

We place conservative limits on possible pulsation amplitudes and pe-

riods that may be present in these objects in Table 5.7. Since we impose a

careful requirement of considering at least two multi-hour light curves before

designating a star as not observed to vary (NOV), we do not provide limits

for SDSS J1518+1354, the only target in our sample that was observed on

only one night. For the others, we base our quoted limits on the two longest

light curves for each object alone, claiming that no pulsations are present with

periods shorter than the second-longest observing run and amplitudes greater

than the largest 4〈A〉 threshold value in the FT of either run.

It is worth noting that a peak in the FT of the combined runs on

SDSS J1017+1217 from 30 Apr and 03 May 2016 exceeds a lower 3〈A〉 level,

and we consider this feature with period 48.569 ± 0.006 min and amplitude

2.7± 0.5 mma suggestive.

Additional observations of any of these targets could reveal lower am-

plitude or longer timescale variations.
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5.4 Discussion

In our search for photometric variability from nine candidate pulsating

ELM WDs, we identified significant signals in five targets. However, the ob-

served properties of some of these targets are not in agreement with the ELM

WD classification.

Since ELM WDs can only form through mass transfer in close binary

systems, we expect to be able to measure orbital RV variations for these stars,

except in very few nearly face-on (i . 20◦) cases. Brown et al. (2016, Sec-

tion 3.4) determine that the total 11 non-RV-variable objects (eight with Teff

< 9,000 K) out of 78 targets with log g < 7.15 catalogued in the ELM Survey

likely represents an overabundance to a 2.5σ significance compared with ex-

pectations from a random distribution of orbital orientations. This suggests

that some of these non-RV-variable objects may not be bona fide ELM WDs.

For one of the non-RV-variable ELM WD candidates, SDSS J1355+1956,

we measure an exceptionally long dominant pulsation period of 4.3113±0.0007

hours. Following Hansen et al. (1985), we calculate the approximate the-

oretical maximum allowed nonradial gravity mode pulsation period of

Pmax ≈ 45 min for a WD with the published spectroscopic parameters of this

target, assuming an Eddington gray atmosphere. The observed pulsations

greatly exceed this theoretical limit for surface reflection in a WD, providing

additional evidence that this star is individually a false positive in the ELM

Survey. This strongly supports that SDSS J1355+1956 is not a WD, and

its actual surface gravity is likely less than the spectroscopically determined
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value log g = 6.10± 0.06. With the dominant mode amplitude reaching 41.51

mma, we are likely observing pressure-mode pulsations in a high-amplitude δ

Scuti—a class of pulsating star typically found in the range 6000 . Teff . 9000

K (e.g., Uytterhoeven et al. 2011). However, recent analysis of the hot,

lead-rich subdwarf UVO 0825+15 by Jeffery et al. (2016) provides compelling

evidence for pulsation periods that exceed the Hansen et al. (1985) limit,

casting some doubt on the robustness of this theoretical result. Given the

large amplitude and the upper limit on RV semi-amplitude from ELM7 of

K1 < 40.9 km s−1, the observed variability cannot be attributed to ellipsoidal

variations of an ELM WD (Morris & Naftilan 1993).

Of the remaining pulsating candidate ELM WD variables, only

four out of eight show RV variations in time series spectroscopy: SDSS

J184037.78+642312.3 (Hermes et al. 2012a), SDSS J111215.82+111745.0,

SDSS J151826.68+065813.2 (Hermes et al. 2013a), and PSR J1738+0333

(Kilic et al. 2015a). The two other new pulsating stars described in this

work are not RV variables, as is the case for the previously published

pulsators SDSS J161431.28+191219.4 and SDSS J222859.93+362359.6

(Hermes et al. 2013c). It is unknown whether another claimed ELMV—SDSS

J161831.69+385415.15 (Bell et al. 2015b) that was identified as an ELM

candidate from SDSS spectroscopy (Kepler et al. 2015)—is RV variable.

We submit that none of these non-RV-variable pulsating stars have been

conclusively shown to be ELMVs. Some could be in nearly face-on binary

systems, but when we simulate random binary orientations, we find the
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probability of four out of eight systems with i < 20◦ to be < 0.0008.

Kepler et al. (2016) found thousands of objects with SDSS DR12 spec-

tra that are consistent with ELM WDs that they call “sdAs,” with the ELM

classification requiring confirmation of RV variations. The sdAs are strongly

concentrated around Teff ≈ 8000 K, which is where the DA WD instability

strip extends through the ELM regime. There is no evolutionary scenario that

predicts such an abundance of ELM WDs at this temperature, which may

highlight an inaccuracy in current spectroscopic models or their application.

We suspect that SDSS J1355+1956 and some of our other non-RV-variable

pulsating stars are actually members of this sdA class. This does imply that

the sdAs also pulsate in or near the same region of spectroscopic parameter

space, revealing the potential for distinguishing between sdAs and ELM WDs

asteroseismically.

We depict the present landscape of WD pulsations in log g–Teff space

in Figure 5.9. We distinguish confirmed ELMVs (yellow diamonds) from pul-

sating candidate ELM WDs without measured RV variations (squares). The

black square corresponds to SDSS J1355+1956, with a much longer pulsa-

tion period than expected from an ELM WD. The white square is SDSS

J161831.69+385415.15 (Bell et al. 2015b), which does not have available time

series spectroscopy. The symbols representing objects analyzed in this work are

outlined with bold black borders. We include NOVs with limits on pulsational

variability (×), more massive ZZ Ceti variables (triangles), and pulsating pre-

ELMs (orange narrow diamonds) for context. The empirical bounds of the DA
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Figure 5.9: The locations of known pulsating stars with ELM-like spectra
in log g–Teff space. Pulsating ELMVs confirmed with RV variations (Hermes
et al. 2012a, 2013a; Kilic et al. 2015a) are indicated with yellow diamond
markers. Pulsating ELM WD candidates without measured RV variations are
marked with squares, including three objects from this work and the targets
published in Hermes et al. (2013c) and Bell et al. (2015b). The filled black
square represents SDSS J1355+1956, which cannot be a WD, and the white
square is SDSS J1618+3854 (Bell et al. 2015b) that has not yet been observed
with time series spectroscopy. Objects with constraints on a lack of pulsations
from time series photometry are marked with × symbols (this work; Hermes et
al. 2012a, 2013a,c). Pulsating pre-ELM WDs from Maxted et al. (2013, 2014);
Corti et al. (2016) and Gianninas et al. (2016) are marked with orange narrow
diamonds. Typical log g ∼ 8 ZZ Ceti pulsators from Gianninas et al. (2011),
corrected for 3D convection effects (Tremblay et al. 2013), are marked with
yellow triangles. The empirical DA instability strip published in Gianninas et
al. (2015) is marked with dashed lines. The objects presented in this work are
outlined with thicker black borders.

instability strip from Gianninas et al. (2015) are marked with dashed lines. If

we redefine these boundaries based on only the confirmed ELMVs, we find a

more narrow extension of the strip to low log g.
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We also observe variability from photometric binaries in our sample.

Partial coverage of the 19.342-hour binary period of WD J0308+5140 reveals

evidence of eclipses. The lower limit on the primary star radius of R1 & 0.4

R� is inconsistently large compared with the maximum expected radius for

a cooling ELM WD. The evolutionary models of Althaus et al. (2013) give a

maximum cooling-track radius of ≈0.13 R�, while the Istrate et al. (2016a)

models find a maximum of ≈0.17 R�. However, the models with element diffu-

sion enabled show that some ELM WDs can temporarily become much larger

during CNO flashes as they settle onto their final cooling tracks (Althaus et

al. 2013; Istrate et al. 2016a, and previous works referenced therein). Kepler

photometry of the eclipsing system KIC 10657664 has demonstrated empiri-

cally that ELM WDs can be at least as large as 0.15± 0.01 R� (Carter et al.

2011). Additional photometry of WD J0308+5140 would provide some of the

first precise constraints on the physical properties of sdA stars.

The presence of this false positive in the ELM Survey cautions that

binary confirmation alone is not sufficient to positively identify an ELM WD.

The properties of WD J0308+5140 are similar to another eclipsing system,

SDSS J160036.83+272117.8, which was not included in the ELM6 sample due

to eclipse durations that were inconsistent with the ELM WD classification

(Wilson et al. 2015, 2017 in prep.). Only binary RV periods short enough

to preclude non-degenerate stellar components (Porb . 6 hr), or those with

supporting data as photometric binaries, should be interpreted as ELM WDs

with confidence.
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The other binary that we observe photometric variations of,

SDSS J1054−2121, is just such a case. The ellipsoidal variation signature

of 0.75 ± 0.08% amplitude is entirely consistent with that expected for a

double-degenerate binary with an ELM WD primary. In future work, we will

use the measured ellipsoidal variability amplitude to significantly improve our

physical constraints on this system.

5.5 Summary and Conclusions

We identified nine candidate pulsating ELM WDs from the ELM Survey

papers VI and VII. Each of these targets has spectroscopically determined

Teff and log g values that place them within 500 K of the empirical low-mass

extension of the DA WD instability strip, which overlaps the population of

sdA stars with 〈Teff〉 ≈ 8000 K. We obtained time series photometry of these

systems from McDonald Observatory, most over many nights.

The following are our main results:

– Fourier analysis reveals that three targets—SDSS J1355+1956, SDSS

J1735+2134, and SDSS J2139+2227—show significant pulsational variabil-

ity. However, since these targets are among the few for which time series

spectroscopy from ELM7 did not show the RV variations that are expected

from an ELM WD, we do not consider them confirmed ELMVs.

– In particular, SDSS J1355+1956 pulsates with a dominant period of 4.3113±

0.0007 hours, far exceeding the theoretical limit for pulsations in a WD. This

is likely a δ Scuti variable with an overestimated log g from spectroscopic
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model fits.

– A total of 4 out of 8 other pulsating variable stars in the parameter space of

ELM WDs do not show significant RV variations in time series spectroscopy.

There is less than a 0.0008 probability that these are all nearly face-on

(i < 20◦) binaries. Some of these targets are likely sdA stars—a stellar

population revealed in recent SDSS data releases (Kepler et al. 2016) of

unclear nature.

– Our data on WD J0308+5140 reveal evidence for a deep ≈4 hr eclipse, im-

plying that the primary star has radius & 0.4 R�. This is not consistent

with an ELM WD and demonstrates that a mere detection of RV variations

is not sufficient to make this classification, though very short period binaries

may exclude other classes.

– Ellipsoidal variation and Doppler beaming amplitudes measured in SDSS

J1054−2121 are consistent with the ELM WD classification for this object.

We note that the remaining ambiguity of the nature of the non-RV-

variable objects with ELM-like spectral lines will be largely resolved by Gaia

astrometric solutions, including for all ELM Survey objects, within the next

few years. This will allow us to determine not only the stellar types of individ-

ual objects, but also the relative sizes and spatial distributions of the different

stellar populations that occupy this region of spectroscopic parameter space.

146



Chapter 6

Fishing in the sdAs: Pulsating Stars including

an Extremely Low-Mass White Dwarf

The search for and characterization of pulsating extremely low-mass

(ELM; . 0.3M�) white dwarf stars was a very productive research area at

the start of my work at McDonald Observatory. The senior graduate student

of our research group, J. J. Hermes, had published the first five pulsating

ELM white dwarf variables (ELMVs), all identified as candidates from the

ELM Survey (Hermes et al. 2012a, 2013a,c). I led the continuation of this

effort following his doctoral defense, and I described my results in Chapter 5

(published as Bell et al. 2017a). The main result of this work was the discovery

of pulsation and eclipse timescales that imply radii that exceed the physical

limits for cooling-track ELM white dwarfs near Teff = 8,000 K in more recent

ELM Survey publications. There is also an overabundance of pulsating stars in

this region of parameter space that do not show radial velocity (RV) variations

expected of ELM white dwarfs given their theoretical formation in close binary

systems. This implies that the ELM Survey is significantly contaminated at

Teff . 9,000 K by stars that are larger than white dwarfs, and that spectro-

scopically determined log g values near this temperature may be systematically

overestimated. With other stellar types being spectroscopically misclassified
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as ELM white dwarfs, we adopt the more strict requirement for the positive

identification of an ELM white dwarf that it is a confirmed member of a close

binary from RV variations. This is a personal definition to this work and does

not account for possible scenarios like mergers or ejection from a binary. This

brings the number of confirmed ELMVs down to four: three from Hermes et

al. (2012a, 2013a), and one more recently from Kilic et al. (2015a).

There have also been a few recent discoveries of pulsating pre-ELM

stars that are still increasing in temperature as they contract toward their

final cooling tracks. Maxted et al. (2013, 2014), Corti et al. (2016), Zhang

et al. (2016), and Gianninas et al. (2016) all classified new pulsating variable

stars as pre-ELMs. Some of these objects pulsate at higher temperatures than

a simple extrapolation of the DA (hydrogen atmosphere) white dwarf insta-

bility strip to low log g, which may be due to the contribution of atmospheric

helium to the driving (Gianninas et al. 2016; Fontaine et al. 2017). Corti

et al. (2016) suggest that their objects exist in a part of spectroscopic pa-

rameter space where they may be either pre-ELMs or high amplitude δ Scuti

pulsators. While Zhang et al. (2016) claim to have observed gravity-modes in

a pre-white-dwarf, the relationship they find between the rotational splitting

of pulsation modes and the stellar rotation rate of the star is characteristic of

pressure modes (p-modes), so they likely misidentified which binary compo-

nent exhibits pulsations in this system (though p-modes are also theoretically

expected in ELMs; e.g., Córsico & Althaus 2016a; Istrate et al. 2016b).

Concurrent with all of this, some exciting and unexpected results were

148



coming from new data releases of the Sloan Digital Sky Survey (SDSS). Fits

of white dwarf atmosphere models to SDSS spectroscopy placed 376 stars

in DR10 (out of 9088 with spectra consistent with new white dwarf models;

Kepler et al. 2015) and 2675 in DR12 (out of 6576; Kepler et al. 2016) in the

physical parameter space of ELM white dwarfs: 5.5 < log g < 6.5 and Teff

< 20,000 K. This is a large population, in contrast to the 78 objects cataloged

by the ELM Survey (67 in confirmed binary systems from RV measurements;

Brown et al. 2016) that were identified as ELM candidates primarily from hot

color cuts in SDSS photometry. Kepler et al. (2016) labeled these stars “sdA,”

which highlights their location below the main sequence without committing

to a stellar evolutionary context.

A few different papers have weighed in on the potential nature of this

sdA population. Pelisoli et al. (2017) propose three possible physical explana-

tions of the sdAs (each with its own weakness): subdwarf plus main sequence

binaries (yet most sdAs do not show the UV excess of a hot subdwarf); main

sequence A stars with overestimated log g values (yet this would place many

at high velocity in the Galactic halo, where young stars are not expected);

and ELM or pre-ELM white dwarfs (but the SDSS subspectra do not show

the expected RV variations of close binaries). Hermes et al. (2017a) compare

colors, proper motions, and RV variations of SDSS subspectra between sdAs

and confirmed ELM white dwarfs to argue that the vast majority of sdAs are

not ELMs, based on the definition that ELM white dwarfs are all in short

period binaries. Brown et al. (2017) published a thorough investigation of 22
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sdA stars, demonstrating that many sdAs found to eclipse by Ingrid Pelisoli

(private communication) in Catalina Sky Survey data (Drake et al. 2009) are

consistent with metal-poor main sequence A stars. They did not consider pre-

ELM stars that are converging to their white dwarf cooling tracks. Comparing

pure-hydrogen white dwarf model atmospheres to metal-poor main sequence

models, they demonstrate a systematic offset of ∼ +0.6 dex in log g near the

empirical 7000 K<Teff < 9000 K range of sdAs. They argue that only ∼ 1%

of the sdAs are ELMs, but this fraction is still contentious in the white dwarf

community, especially since the authors of the original SDSS classification

found that the majority of these spectra are specifically not consistent with

main-sequence models.

The results from Bell et al. (2017a, and Chapter 5) demonstrate that

objects other than cooling-track ELM white dwarfs in this region of spectro-

scopic parameter space also pulsate. I decided to obtain similar observations

of some sdA stars with spectroscopic parameters that place them in or near

the empirical low-mass extension of the DAV (hydrogen atmosphere pulsating

white dwarf) instability strip. I intend to submit a revised version of this

chapter for refereed publication following the defense of this thesis in July

2017, but for now I present only a preliminary analysis. I describe the obser-

vations and targets in Section 6.1. In Section 6.2, I characterize and interpret

the observational properties of six new variable sdAs. I highlight a couple of

noteworthy targets that we do not unambiguously detect pulsations from in

Section 6.3 and look forward to future developments in our understanding of
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sdA stars in Section 6.4.

6.1 Time Series Photometric Observations

Unlike the systematic evaluation of photometric variability of ELM

Survey objects described in Bell et al. (2017a, and Chapter 5), it was not

practical to carry out such an exhaustive study of the thousands of sdA stars

revealed from recent SDSS data releases. Instead, observations were made in

a mode that we call “fishing,” and selection of sdA targets was influenced by

many complicated, non-uniform factors. Following the SDSS DR12 release,

which provided many bright (g < 17) sdAs near the empirical DAV instability

strip, this project became largely our go-to backup for nights with poor seeing

or transparency conditions that prevented us from observing fainter or shorter-

timescale variables. B. G. Castanheira, Z. Vanderbosh, D. E. Winget, and

K. I. Winget all contributed observations to this effort on targets that they

individually selected while covering some of my allotted observing time on

the 2.1-meter Otto Struve Telescope at McDonald Observatory. The target

selection carries the complex biases of these observers and myself as we respond

to changing observing conditions on the mountain. Furthermore, with the

P.I. of the SDSS spectroscopic classification effort, S. O. Kepler, as a close

collaborator and thesis committee member, I received preliminary parameters

from pure-hydrogen atmosphere fits to the SDSS DR12 spectra before they

were published, while our target selection following May 2016 was informed

by still-unpublished parameters from solar-metallicity model fits (described
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by Pelisoli et al. 2017). The shift in parameters between pure-hydrogen and

solar-z fits moves some targets significantly in log g–Teff space. For all of

these reasons, the final set of sdA stars that we observed is quite varied in

atmospheric properties.

In total, we observed 24 sdA targets from McDonald Observatory.

Their atmospheric parameters from pure-H and solar-z fits are given in Ta-

ble 6.1. The quoted uncertainties are the formal, intrinsic uncertainties from

the model fits. There are also extrinsic uncertainties in these parameters that

should be added in quadrature, which Liebert et al. (2005) find to be of-order

1.2% in Teff and 0.038 dex in log g. We plot the best-fit parameters determined

using both sets of models in log g–Teff space in Figure 6.1. The figure caption

describes the various other objects that we included for context.

We note than the average shift from pure-H to solar-z parameters is not

systematic in log gas Brown et al. (2017) predicted, which does not directly

support their explanation of sdAs as main sequence A stars.
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Figure 6.1: Positions of observed candidate pulsating sdAs in spectroscopic
log g–Teff space. Black filled circles mark the parameters determined from
solar-z models, while white filled circles are from pure-H models. Parameters
determined for the same object are connected by lines. Circles outlined in
red are new pulsating stars from this work. The diamonds mark ELMVs
confirmed from RV variation measurements (Hermes et al. 2012a, 2013a; Kilic
et al. 2015a). Gray circles mark previously published pulsating stars either
without time series spectroscopic observations (Corti et al. 2016) or with no
detected RV variation signals (Hermes et al. 2013c; Bell et al. 2017a).
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Table 6.1. sdA Spectroscopic Parameters

SDSS Plate-MJD-Fiber Teff (K; solar z) log g (cgs; solar z) Teff (K; pure H) log g (cgs; pure H)

J123831.40-014654.26 0335-52000-0497 7932(17) 4.836(0.081) 7864 5.03
J131011.61-014232.96 0340-51990-0426 8237(10) 4.721(0.060) 8224 5.33
J221524.54-005018.19 0374-51791-0131 7719(0) 4.197(0.000) 7838 5.72
J090804.54-000208.76 0470-51929-0076 8168(10) 5.039(0.036) 8130 5.33
J091416.42+004146.8 0472-51955-0499 8417(20) 5.883(0.081) 8440 5.71
J093003.42+054815.5 0992-52644-0435 8760(37) 6.240(0.105) 8656 5.52
J074939.74+194203.5 1582-52939-0406 7846(32) 5.958(0.094) 8042 6.71
J162953.16+220634.5 1658-53240-0584 8087(35) 5.833(0.122) 8057 5.08
J160410.81+062705.51 1729-53858-0213 7969(9) 5.473(0.039) 8097 5.71
J082900.96+084645.4 1758-53084-0449 8394(25) 5.995(0.100) 8195 5.16
J140119.77+351323.15 1838-53467-0506 8054(19) 4.996(0.094) 7908 5.21
J192253.84+783959.09 1857-53182-0494 7980(10) 5.328(0.032) 7904 5.24
J233258.96+490400.32 1888-53239-0477 8323(12) 6.210(0.036) 8283 5.77
J223831.92+125318.32 1892-53238-0249 7980(11) 4.816(0.056) 7999 5.03
J114224.61+374703.65 1997-53442-0225 8075(9) 5.211(0.037) 8082 5.16
J093356.45+191601.5 2361-53762-0308 8333(39) 6.088(0.127) 8126 3.75
J083054.47-035118.94 2807-54433-0499 8473(8) 4.444(0.042) 8460 5.03
J113143.46-074220.49 2861-54583-0078 7853(12) 4.635(0.064) 7637 4.61
J045309.80-041800.66 3123-54741-0483 7897(7) 4.693(0.042) 7665 4.59
J074013.22+481036.70 3668-55478-0370 7961(5) 3.932(0.021) 7748 5.34
J075644.33+502741.16 3679-55209-0229 7108(7) 4.045(0.027) 6875 5.34
J223716.61+052228.33 4291-55525-0872 8902(40) 6.695(0.017) 8856 6.66
J161831.69+385415.15 5189-56074-0177 9307(70) 7.153(0.096) 9149 6.70
J161831.69+385415.15a 5199-56067-0744 9354(54) 6.257(0.075) 9058 6.04

aThis is a second, lower-S/N SDSS spectrum of the same object as above.
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A full journal of the sdA targets that we observed from McDonald

Observatory is provided in Table 6.2. Six new pulsating stars of particular

interest appear above the horizontal line, and our null results are listed lower

in the table. We observed each of these stars with the ProEM frame-transfer

CCD camera at Cassegrain focus on the McDonald Observatory 2.1-meter

Otto Struve Telescope through a red-cutoff BG40 filter to reduce sky noise.

We obtained dark and dome flatfield calibration frames at the start of each

night, which we use to reduce the science images with standard IRAF tasks.

We then perform circular aperture photometry for the target and available

comparison stars in the field with ccd hsp (Kanaan et al. 2002) for a range

of apertures of size 2–10 pixels (0.76–3.8′′ at 4 × 4 binning). We divide the

measured target by comparison star flux with Wqed, which also applies a

barycentric correction to the timestamps so that we can combine runs that

span multiple nights. We perform our final analyses on the light curves from

apertures that yield the highest signal-to-noise ratio in the Fourier transform.

6.2 Pulsating sdA Stars

The first six objects listed in Table 6.2 all exhibit clear pulsation signa-

tures in our photometry. In this section, we use Fourier analysis to measure the

pulsation frequencies of these stars and discuss their likely classifications. All

Fourier transforms (FTs) were computed with the Period04 software (Lenz

& Breger 2004).
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Table 6.2: Journal of Observations

SDSS Date Exposure Run Duration
(UTC) Time (s) (h)

J1618+3854 23 Apr 2014 20 6.5
24 Apr 2014 25 6.4
22 May 2014 30 1.0
22 May 2014 20 3.9
24 May 2014 30 2.6
25 May 2014 30 5.9
27 May 2014 30 7.8
21 Apr 2015 20 4.6
26 Apr 2015 30 5.7
20 May 2015 20 3.2
26 May 2015 30 7.7

J1131-0742 19 Jan 2015 10 3.7
20 Jan 2015 5 5.0

J0756+5027 11 Feb 2015 1 7.1
J1142+3747 25 Apr 2015 3 2.0

22 May 2017 15 3.2
24 May 2017 30 3.2

J2238+1253 11 Aug 2015 5 4.5
12 Aug 2015 5 1.6
13 Aug 2015 5 0.8
14 Aug 2015 3 5.1
16 Aug 2015 3 1.0

J1604+0627 14 Sep 2015 3 1.7
16 Sep 2015 5 2.3
06 Jul 2016 1 3.1

J2237+0522 25 Jun 2014 30 3.2
26 Jun 2014 30 3.0
12 Sep 2015 60 5.0
13 Sep 2015 20 6.1

J0453-0418 24 Jan 2015 10 2.7
J0830-0351 24 Jan 2015 10 2.5
J0740+4810 26 Jan 2015 15 3.6

156



Table 6.2 (cont’d): Journal of Observations

SDSS Date Exposure Run Duration
(UTC) Time (s) (h)

J1310-0142 14 Mar 2015 10 3.4
J1238-0146 15 Mar 2015 30 3.3
J1512-0303 25 Apr 2015 3 2.8
J0908-0002 26 Apr 2015 3 2.8
J2215-0050 14 Sep 2015 20 5.2

15 Sep 2015 5 6.3
J2332+4904 16 Sep 2015 5 5.6
J1922+7839 17 Sep 2015 3 3.9
J1401+3513 07 Jan 2016 5 2.5
J1629+2206 06 Aug 2016 5 4.0

07 Aug 2016 5 4.7
J0749+1942 28 Nov 2016 10 1.5

28 Nov 2016 30 2.5
29 Nov 2016 20 3.1

J0829+0846 01 Jan 2017 10 2.0
02 Jan 2017 10 4.8

J0914+0041 20 Jan 2017 5 1.3
20 Jan 2017 5 1.1

J0933+1916 26 Jan 2017 20 3.7
J0930+0548 03 Mar 2017 14 3.0

6.2.1 SDSS J1618+3854

SDSS J161831.69+385415.1 (hereafter SDSS J1618+3854) was the first

candidate ELMV that I identified from the SDSS DR10 spectroscopic sample.

This data release contained two spectra for this object, and the weighted mean

parameters are Teff = 9144 ± 56 K and log g = 6.83 ± 0.13. If we apply the

corrections from the 3D convection models of Tremblay et al. (2015), these

become Teff = 8939 K and log g = 6.54.
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We confirmed SDSS J1618+3854 as a pulsating variable star on 23 Apr

2014 and have observed it on a total of 10 nights. I presented this work as a

poster at the 19th European White Dwarf Workshop in Montréal in August

2014 and published it as the sixth discovery of an ELMV in the conference

proceedings (Bell et al. 2015b). We kept after the target hoping to obtain

robust constraints on convection from nonlinear light-curve fitting, as was

previewed in those proceedings, but the conditions were never good enough

for a long observing stretch for me to complete this project. The discovery

data are still the most useful, since the cycle count ambiguities associated

with long gaps between later runs cause messy spectral windows. Figure 6.2

displays the light curves from Apr 2014.

The Fourier transform of the August 2014 light curve of

SDSS J1618+3854 is displayed in Figure 6.3. We mark five significant

signals, the properties of which are listed in Table 6.3. Two frequencies

correspond to independent pulsation modes, while the other three are
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Figure 6.2: April 2014 observations of SDSS J1618+3854 with the best fit
solution overlaid.
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Table 6.3. Pulsation Properties of SDSS J1618+3854

Mode ID Frequency Period Amplitude
(µHz) (s) (%)

f1 202.61(15) 4936(4) 6.19(19)
f2 162.8(3) 6143(11) 3.35(19)
f1 + f2 365.4(3) 2740(20) 2.68(19)
2f1 405.2(3) 2468(18) 2.66(19)
2f1 + f2 568.0(4) 1761(12) 1.88(19)

harmonics or combination frequencies.

This object is most likely a bona fide ELMV. One of the SDSS spectra
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Figure 6.3: Fourier transform (FT) of the April 2014 light curve of
SDSS J1618+3854 displayed in Figure 6.2. The significant peaks are marked
with triangles, and the FT of the residuals (red) and final significance threshold
(blue) are also displayed.
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Figure 6.4: χ2 versus orbital period for MMT RV measurements of
SDSS J1618+3854. There are four significant period aliases that are described
in Table 6.4. The phase folded RV curve of the strongest alias is plotted in
Figure 6.5.

yields a RV measurement for SDSS J1618+3854 of 15 ± 16 km s−1, while the

other is at −136 km s−1, indicating that it is clearly RV variable (S. O. Kepler,

I. Pelisoli, private communication). My collaborator Warren Brown acquired

another spectrum in March 2017 that showed a RV of −224± 15 km s−1 from

MMT. He followed this up in June 2017, obtaining ten more spectra over three

nights. The data reveal clear RV variations, but with four significant aliases.
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Table 6.4. Significant Period Aliases of SDSS J1618+3854 MMT RV Data

Period (days) K (km s−1)

0.20785 219± 12
0.26628 244± 14
0.37196 292± 20
0.6225 419± 36

Figure 6.5: MMT RV measurements of SDSS J1618+3854 folded on the
strongest period alias.

Warren’s plot of χ2 versus orbital period is displayed in Figure 6.4, and the

best-fit properties of the competing solutions are listed in Table 6.4. A phase-

folded RV curve of the strongest signal is plotted in Figure 6.5. Because of the

strong aliasing, each of these solutions will have to be considered in our final

analysis, and we may be able to dismiss some on physical grounds.
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Figure 6.6: Best fit model of the pulsational nonlinearities of SDSS J1618+3854
to the 24 April 2014 light curve using the tools of Montgomery (2005). Figure
from Bell et al. (2015b).

My advisor Mike Montgomery developed tools for fitting models of the

parameterized response of white dwarf convection zones to the temperature

variations of stellar pulsations (2005). I recognized an exciting opportunity

to constrain the behavior of convection in a new physical regime from the

nonlinear pulsation behavior of this ELMV. We explored this some in the con-

ference proceedings that announced the discovery of this new ELMV (Bell et

al. 2015b). The parameterized response of the convective timescale to temper-

ature variations is expressed as τC = τ0T
−N
eff . The results of a preliminary fit

to the April and May 2014 light curves gave N = 92 and τ0 = 810 s for a star

with a pulsational axis inclined to i = 87◦. This model is plotted over the April

2014 light curve in Figure 6.6 (borrowed from Bell et al. 2015b). These values

seem reasonable, with N falling in the typical range of 90–95 found for other

DAVs, with a longer value of τ0, as expected for cooler white dwarfs. Despite

this, we were concerned about how robust these results were with the data
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in hand, and we were never quite able to obtain better observations on this

target than the original discovery data. This is still a most promising object

for exploring the temperature-response of convection in ELM white dwarfs.

6.2.2 SDSS J1131-0742

I selected SDSS J113143.46-074220.49 (hereafter SDSS J1131-0742) as

a target based on excess scatter in the Catalina Sky Survey (CSS; Drake

et al. 2009) data on this object. Observations over two nights in January

2015 confirmed this as a pulsating variable star. Figure 6.7 displays the light

curves from these two nights. Figure 6.8 shows the corresponding FT, and

the properties of the marked significant signals are listed in Table 6.5. The

overall peak-to-peak variations are as large as 60%! If this is an ELMV, it

would be by far the most dramatic example of its class. The measured log g

of 4.6 is, however, at the low end for the sdAs, so this is more likely either

a pulsating pre-ELM or a main sequence star with a slightly overestimated

log g—this exact ambiguity of classification was the main conclusion for the

objects described in Corti et al. (2016).

From discussions with Michel Breger, UT’s local expert on δ Scuti

stars, this light curve is reminiscent of a high amplitude δ Scuti (HADS).

These stars include the SX Phoenicis variables that Corti et al. (2016) propose

as an alternate classification for their pre-ELM pulsator candidates. In fact,

SDSS J1131-0742 was classified as a δ Scuti by Palaversa et al. (2013) based

on data from the LINEAR survey. This is a readily tested hypothesis for this
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Figure 6.7: Light curve of SDSS J1131-0742 from two nights in January 2015.

star, since HADS variables have well defined period ratios between their two

dominant modes. The ratio of the radial fundamental mode period to its first

overtone will be in the range 0.76–0.80 for a HADS star, with some dependence

on fundamental period and metallicity (Poretti et al. 2005; Pigulski et al. 2006).
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Figure 6.8: FT of SDSS J1131-0742 light curves from January 2015.
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Table 6.5. Pulsation Properties of SDSS J1131-0742

Mode ID Frequency Period Amplitude
(µHz) (s) (%)

f1 197.402(11) 5065.8(3) 23.21(5)
f2 162.8(3) 6143(11) 1.89(5)
2f1 394.80(2) 2532.90(15) 8.79(5)
3f1 592.21(3) 1688.60(10) 3.58(5)
4f1 789.61(5) 1266.45(7) 1.57(5)

The ratio of the two independent mode periods listed in Table 6.5 is above this

range at 0.8246±0.0016. However, due to gaps in the ground based data, it is

possible that we have selected an incorrect alias for one or both of these modes

by the daily aliasing gap of ∼ 11.6µHz (Chapter 8 demonstrates how common

this is). Selecting different plausible aliases in this case does not support a

likely ratio in the HADS range.

Being consistent with pulsations in HADS stars does not rule out all

other classifications. Models of pre-ELMs evolve through this region of spec-

troscopic parameter space before settling onto their final cooling tracks. Evo-

lutionary models suggest that some loop through this space repeatedly during

a sequence of CNO flashes that burn residual hydrogen—those with masses

0.18M� . MWD . 0.4M� in the models of Althaus et al. (2013). Córsico &

Althaus (2014a) carried out a pulsational analysis of those models, including

for one star that is undergoing a CNO flash. These CNO flashes are short

lived and therefore objects in this evolutionary stage should be found only
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rarely, yet they have interesting structures and pulsation properties. During

the flash, a second convective region is established between the helium core

and the hydrogen envelope as the star swells in size, and nonadiabatic analysis

of Córsico & Althaus (2014a) finds that only well separated modes that are

trapped in the outer hydrogen envelope are strongly driven to observable am-

plitude at long periods. These modes could have characteristic period ratios

analogous to the HADS stars that are sensitive to the evolutionary stage of

pre-ELMs and their remaining hydrogen content. For the one model that they

analyze in detail, Córsico & Althaus (2014a) measure a period ratio of ≈ 0.68,

but a more complete analysis of how this ratio varies across their model grid

would be quite valuable to assess the diagnostic potential.

The most recent graduate student to join the white dwarf group at

UT-Austin, Zach Vanderbosch, recently added an automated filter wheel to

the ProEM camera setup so that we can now take multi-color time series

data. SDSS J1131-0742 was one of the targets of his second year defense and

masters thesis observations. He compared the amplitudes of pulsations as

measured through different filters to test whether the variations are consistent

with gravity-modes in a cooling-track ELM white dwarf. He concluded that the

measured r-band to g-band amplitude ratio for the primary mode of 0.690 ±

0.003 was not consistent with expectations from theoretical models and did

not support this hypothesis.

I asked my collaborator Warren Brown if he could obtain some time

series spectroscopy on SDSS J1131-0742 to search for a binary companion.
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Figure 6.9: RV measures of SDSS J1131-0742 from Warren Brown.

The RV measurements across four nights are displayed in the top panels of

Figure 6.9. The data were obtained with the FAST instrument on the 1.5 m

at Mt. Hopkins. The bottom panel shows the data folded on the most com-

pelling period of 2.28 hr, but this signal is not significant and the data are

consistent with a constant value. Ingrid Pelisoli (private communication) has

also obtained a few hours of time series spectroscopy on this target from SOAR

that suggest an approximate orbital period of 4.67 hr (4.58 hr if she includes

Warren’s measurements in the period search).
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Figure 6.10: Alex Gianninas’ best fit model to the FAST spectrum of
SDSS J1131-0742.

I asked Alex Gianninas to fit his models to the Mt. Hopkins spectrum

of SDSS J1131-0742 to get independent atmospheric parameters. Figure 6.10

displays the best fit model over the observed spectrum that yields parameters

Teff = 8260±130 K and log g = 5.35±0.13. This log g value is higher than that

determined from the SDSS spectrum, lending more weight to the pulsating pre-

ELM hypothesis. The spectrum does not appear to be strongly contaminated

by metal lines.

Finally, these objects must be placed in a Galactic context, which I

will do for the final, published analysis. S. O. Kepler used SDSS J1131-0742 to

emphasize this point to me. A δScuti (A star) is roughly 100× more luminous

than an ELM white dwarf, and therefore 10× further away for a given apparent

magnitude. With a galactic latitude of b = 50◦ and a measured g magnitude
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of 15.95, SDSS J1131-0742 would be approximately 4600 pc above the disk if

it were an A star. Based on its measured radial velocity and proper motion

from the APOP catalog (Qi et al. 2015), it would take ∼10 Gyr to reach this

distance from the plane—far exceeding the the main sequence lifetime of an

A star!

6.2.3 SDSS J0756+5027

Like SDSS J1131-0742, SDSS J075644.33+502741.16 (SDSS J0756+5027)

was selected as an observing target based on significant excess scatter in the

Catalina Sky Survey data (Drake et al. 2009). Our single light curve from the

night of 11 Feb 2015 in Figure 6.11 shows changes of more than a factor of

two in brightness. Even with more than seven hours of coverage, we do not

observe a complete period of the dominant pulsation mode.

Using the online periodogram feature of the Catalina Sky Survey DR2
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Figure 6.11: Light curve of SDSS J0756+5027 from McDonald Observatory on
11 Feb 2015.
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Figure 6.12: Phase folded CSS data on SDSS J0756+5027.

website1 reveals a strong periodicity of roughly 29.3 hours. The CSS data,

folded on this period, are displayed in Figure 6.12.

These pulsations are reminiscent in morphology to the photometric

variations of RR-Lyrae stars. S. O. Kepler suggested that this object could be

physically similar to the 0.26M� star that exhibits RR-Lyrae-like pulsation

described by Pietrzyński et al. (2012)—the recent product of mass transfer

in a system that will eventually evolve to become a double-degenerate binary.

Karczmarek et al. (2017) explore the theoretical properties and context of such

binary mass-transfer products.
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6.2.4 SDSS J1142+3747

Our 2-hour run from April 2015 showed some marginal evidence of

photometric variability in SDSS J114224.61+374703.65 (SDSS J1142+3747).

Based on this light curve, we decided to revisit this object during two nights in

May 2017. These two nights of data are displayed in Figure 6.13. The Fourier

1http://nesssi.cacr.caltech.edu/DataRelease/
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Figure 6.13: Light curve of SDSS J1142+3747 from two nights in May 2017.
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Figure 6.14: FT from two nights of data on SDSS J1142+3747 in May 2017.
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transform is displayed in Figure 6.14. We detect only a single significant

periodicity in these data, the strongest alias of which is at 263.8 ± 0.2µHz

(3791 ± 3 s period) with an amplitude of 0.51 ± 0.04%. With only a single

period detected, this data set is not of great asteroseismic value, but more data

could reveal additional periodicities. The period detected is consistent with

pulsations calculated for ELM white dwarf models (e.g., Córsico & Althaus

2014a). Alternatively, this could be the signature of ellipsoidal variations

(photometric variations as the projected area of a tidally stretched star changes

along its binary orbit), which are commonly observed from ELM white dwarfs

in tight binary systems (Chapter 7; Hermes et al. 2014b; Bell et al. 2017a).

Warren Brown obtained time series spectroscopy on this target from the 1.5-

m FLWO telescope in June 2017 covering 2.1 hours (twice the photometric

period) to test this hypothesis, and did not detect significant variations to

the ∼10 km s−1 level, which rules against ellipsoidal variations. However, the

high-S/N summed FLWO spectrum SDSS J1142+3747 does reveal a bounty

of metal lines. This is perhaps a Am (metallic) or Ap (peculiar) star and a

full abundance analysis may be more appropriate than the hydrogen-line fits

that have been used to classify this target so far.

6.2.5 SDSS J2238+1253

SDSS J223831.92+125318.32 (SDSS J2238+1253) is similar to the pre-

vious object in that it exhibits a single significant periodicity with a similar

period. Figure 6.15 displays the light curves obtained over five nights in Au-
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Figure 6.15: SDSSJ2238+1253 light curve.
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Figure 6.16: SDSSJ2238+1253 FT.

gust 2015. Figure 6.16 shows the FT of these data. The two marked signals

are the main periodicity and its second harmonic: f1 = 267.114 ± 0.005µHz

(3743.72± 0.07 s periodicity) with an amplitude of 4.329± 0.018% (harmonic

amplitude at 0.488 ± 0.018%). This solution is plotted over the data in Fig-

ure 6.15.
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Figure 6.17: RV measurements of SDSS J2238+1253 from Warren Brown.

As with SDSS J1142+3747, a single independent frequency of photo-

metric variability could be caused by ellipsoidal variations (although this would

be a large amplitude for tidal distortion of an ELM white dwarf, a pre-ELM

could plausibly show such a large signal). I asked Warren Brown to obtain

time series spectroscopy covering the candidate 2.08 hr orbital period. The RV

measurements are displayed in Figure 6.17. We do not detect a significant RV

signal in these data, supporting the idea that the photometric variations of

SDSS J2238+1253 are caused by stellar pulsations.
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6.2.6 SDSS J1604+0627

The photometric variability that we observed in SDSS J160410.81+062705.51

(SDSS J1604+0627) is quite different in character from the other new variable

sdAs. The single frequency of significant photometric variability that we

detect in this star is quite high at 3651.35± 0.19µHz (273.871± 0.014 s) with

amplitude 0.37 ± 0.02%. To help make the pulsations visible to the eye, we

plot a running average over 10 adjacent measurements in the light curves

displayed in Figure 6.18. The single significant periodicity that we detect is

apparent in the Fourier transform plotted in Figure 6.19, and we overlay this

solution on the data in Figure 6.18.

There are only a couple of known types of pulsating star that show this

short of period. The spectral lines are too narrow for this to be a low-order

g-mode in a pulsating white dwarf of typical mass. Rapidly Oscillating Ap

stars (roAp) exhibit short, high-overtone p-mode periods, but a periodicity as

short as 274 s has never been observed (Kurtz et al. 2006). Pressure modes in

hot subdwarfs could show such short periodicities. In fact, Pelisoli et al. (2017)
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Figure 6.18: SDSSJ1604+0627 light curve.

175



0 1000 2000 3000 4000 5000 6000 7000
frequency (µHz)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

am
pl

itu
de

 (%
)

Figure 6.19: SDSSJ1604+0627 FT.

suggested that some sdAs may be binaries that contain a sdB star. These stars

must be hotter than the zero-age horizontal branch, typically & 20,000 K,

and therefore they will have a flux excess in the UV. Model fits to Balmer

lines usually admit two solutions: a hot and cool solution. Multi-passband

photometry is usually used to select between these. For SDSS J1604+0627,

the hot solution gives Teff = 19950 ± 90 K, which could plausibly correspond

to a sdB star, but the GALEX nuv - g color (nuv−g) ≈ 2.79 is too large to

be consistent with the subdwarf hypothesis.

The nonadiabatic pulsation analysis of ELM white dwarf models by

Córsico & Althaus (2016a) suggests that this short period could correspond

to low-k g-modes in ELMVs that likely require contributions to the driving
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from the ε-mechanism to become unstable (Córsico & Althaus 2014b). Alter-

natively, this period is consistent with p-modes in pulsation calculations for

pre-ELM models (Istrate et al. 2016b). The lack of longer period g-modes sug-

gest that this star may fall in a narrow temperature range to the hot edge of

the instability strip where only p-modes are unstable (e.g., Córsico & Althaus

2014a).

Finally, I note that the ELMV SDSS J1112+1117 exhibits pulsations

with periods 108 s and 134 s that have been suggested to be p-mode pulsations

(Hermes et al. 2013a). As we consider objects of lower log g, these modes

generally move to longer period, which could be what we are observing in

SDSS J1604+0627.

6.3 Null Detections of Note

Having observed the majority of the non-variable targets only once, I do

not feel comfortable assigning limits on the variability of most of these objects.

These stars could easily have pulsation amplitudes that exceed the noise in

their FTs if closely spaced modes with beat cycles exceeding the observing

run durations happen to be destructively interfering during our observations.

This cannot explain all of the null detections, so I infer that the majority

of these objects are not high amplitude pulsators. I explore only a couple

remaining objects in more detail in this manuscript because they do show

some evidence of photometric variability.

177



6.3.1 SDSS J1310-0142

I obtained a single photometric run on SDSS J1310-0142 on 14 March

2015. The light curve and FT displayed in Figure 6.20 show compelling signs

of multi-periodic variability. With such a short light curve, we likely have not

resolved the individual pulsation frequencies in this target. We hope to obtain

more coverage of this star during our next observing run (Zach Vanderbosch,

private communication) to confirm and constrain its pulsation periods. Since

parameters from the solar-metallicity fit to the SDSS spectrum of SDSS J1310-

0142 yield a lower-log g value of 4.72± 0.06, it is plausible that this particular

target may be a δ Scuti type variable.
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Figure 6.20: Left: light curve of SDSS J1310-0142 from 14 March 2015, boxcar
smoothed over each 5 adjacent points. Right: FT of the raw light curve. The
4〈A〉 threshold is a rule-of-thumb significance criterion that supports that this
star exhibits multi-modal pulsations.
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6.3.2 SDSS J0908-0002

Catalina Sky Survey photometry indicated that SDSS J0908-0002 is

an eclipsing binary system with a 9.15-hour orbital period, as shown in Fig-

ure 6.21. Our single run confirms this with incomplete coverage of an eclipse,

Figure 6.21: Catalina Sky Survey photometry of SDSS J0908-0002, folded on
a period of 9.15 hours.
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Figure 6.22: Short McDonald Observatory light curve of SDSS J0908-0002
from 26 April 2015 confirms the eclipsing system.
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displayed in Figure 6.22. We see no obvious signatures of pulsations in addi-

tion to the eclipse signal from this single 2.8-hour run. The asymmetry in the

eclipse profile may be caused by the changing airmass to this target through

the observing run.

6.4 Conclusions and Future Work

Based on the characteristic of its pulsations and its high amplitude RV

variations, SDSS J1618+3854 fits our adopted definition of an ELMV, though

a more complete analysis of the implications of the competing orbital period

aliases is still pending. Pulsations in the other sdAs that we observed are at

least consistent with pulsating pre-ELMs. This is the most likely explanation

for those with spectroscopic log g > 5.0 from both pure-hydrogen and solar-

metallicity spectroscopic fits.

The objects that occupy this spectroscopic parameter space are cer-

tainly interesting, but further classification from pulsations alone has proven

quite challenging. With typically long periods, it takes a lot of observing time

to resolve and precisely measure pulsation frequencies. For most of these new

variables, we detect only a small number (often one) of independent modes,

which severely limits their current asteroseismic utility.

Forthcoming astrometric measurements from Gaia will largely reveal

the natures of the individual sdA stars. Distance constraints from parallax

measures will allow us to infer absolute magnitudes. Combining absolute mag-

nitudes with Teff measurements enables us to constrain the radii of these stars,
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allowing us to convert log g measurements to stellar masses. However, due

to their high proper motions, astrometric solutions for most of these targets

will not be included in the upcoming Gaia Data Release 2, scheduled for

April 2018. Once the nature of sdA stars is fully elucidated, we can begin

asteroseismically constraining the interior structures of these stars from the

pulsation characteristics measured in this work, even for objects that exhibit

few pulsation modes.

The main component of this work that remains to be completed before

publication involves placing these objects into a Galactic context based on

available radial velocity and proper motion data. Under the A star hypothesis,

bright sdAs at high galactic latitude would be too far above the plane of the

Milky Way given their velocities and main sequence lifetimes. If such objects

turn out to be A stars, they must still be products of binary mass transfer to

explain their ages; i.e., blue straggler stars.
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Chapter 7

White Dwarf Radius Constraints from

Ellipsoidal Variations in Tight Binaries

In a close binary system, tidal effects from one star can stretch the

other, making it noticeably non-spherical. As the distorted star moves in its

orbit, its projected area changes, causing a modulation of the measured flux.

Since we see the broadest side of the star twice per orbit, the frequency of this

ellipsoidal variation effect is twice the orbital frequency. Comparison of mea-

sured frequencies of photometric variability to orbital constraints from radial

velocity measurements can help identify signals from ellipsoidal variations.

In Bell et al. (2017a, and Chapter 5), I detected this effect in a tight

binary containing an extremely low-mass (ELM) white dwarf binary, SDSS

J1054−2121. This could also be the source of mono-periodic photometric

variations measured in SDSS J1142+3747 in Chapter 6, but time series spec-

troscopy is required to establish the connection between the photometric and

orbital periods.

Hermes et al. (2014b) measured significant ellipsoidal variation signa-

tures in the light curves of eight out of twenty observed low-mass white dwarf

binary systems. They used the measured amplitude of this effect to constrain
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the radii of the distorted stars. I wanted to apply those same tools to the obser-

vations of SDSS J1054−2121, but as I did my analysis, I decided to modify the

approach. A version of the following originally was included in Section 3.2.2.

of an early draft of Bell et al. (2017a), but fully describing my method for this

single object caused that section to dominate the paper and to distract from

the main narrative. Ultimately I decided to save this discussion for this thesis,

and possibly another more focused publication.

7.1 Ellipsoidal Variations of SDSS J1054−2121

In Section 5.3.2.2, I measured a sinusoidal component of photometric

variability from the ELM white dwarf SDSS J1054−2121 at twice its orbital

frequency (cos 2φ component) with an amplitude of 0.75 ± 0.08% through

a BG40 filter. This observed amplitude of ellipsoidal variations allows us

to better constrain the binary system parameters, particularly the mass of

the secondary and the orbital inclination. We take a straightforward Monte

Carlo approach to determining these new constraints, as well as improving our

knowledge of the binary period and the ELM white dwarf log g, mass, radius,

and radial velocity semi-amplitude.

Our Monte Carlo analysis is inspired by the approach of Hermes et

al. (2014b) to very similar data sets; it relies on solving their Equations 1–

3 (reproduced below) for ellipsoidal variation amplitude, mass function, and

surface gravity for random deviates drawn from probability density functions

for log g, Teff , Porb, and K1 (RV semi-amplitude). The approach rests on a
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few assumptions: (1) that the rotation period of the tidally deformed star ≈

the binary period; (2) that the light curve is a record of significant flux from

only the primary star of this single-lined spectroscopic binary; (3) that the

mass of the secondary is < 3 M�, corresponding to another white dwarf or

neutron star; and (4) that there do not exist strong covariances between the

four spectroscopically determined input quantities.

We have no a priori knowledge of the inclination angle, i, so we set a

uniform prior on cos i between 0–1, corresponding to random orientations.

We adopt Gaussian prior probability distributions for log g, Teff , Porb,

and K1 with mean and standard deviation values equal to those published in

Gianninas et al. (2015). We use the original values from the direct model fits

of Teff = 9540 ± 140 K and log g = 6.27 ± 0.13, and apply the corrections

for 3D convection from Tremblay et al. (2015) as part of our analysis. We

generate 10 million sets of Monte Carlo deviates from these Gaussians, as well

as from the distribution of orbital inclinations. We calculate for each set,

as follows, the corresponding values for the limb-darkening coefficient (u1),

gravity-darkening coefficient (τ1), primary ELM mass (M1), ELM radius (R1),

and secondary mass (M2), as well as the expected signature from ellipsoidal

variations, the star-star separation (a), and the gravitational radiation merger

timescale (τmerge).

• We interpolate the linear limb darkening coefficient, u1, for each log g and

Teff from Gianninas et al. (2013). We use the values calculated for the LSST

184



g band as a proxy for BG40, which has a similar central wavelength. We

use the uncorrected log g and Teff values to get these coefficients since they

are computed directly from the model spectra.

• We apply the correction formulas from 3D convection simulations to log g

and Teff (Tremblay et al. 2015), which we use in all of the below calculations.

• We calculate temperature-dependent gravity-darkening coefficients, τ1, fol-

lowing Morris (1985), using β = 0.25 (the law of von Zeipel 1924) and 5000 Å

as a representative central wavelength of the BG40 bandpass.

• Direct bilinear interpolation of Table 3 from Althaus et al. (2013) gives

a mean and standard deviation spread of their evolutionary ELM model

masses that could correspond to each log g and Teff deviate pair. We select

a random deviate for M1 from the corresponding Gaussian distribution.

• The ELM white dwarf radius, R1, follows directly from the definition log g =

GM1/R
2
1.

• We calculate the secondary mass, M2, from the measured mass function:

PorbK
3
1/2πG = M3

2 sin2 i/(M1 +M2)2.

• We calculate the flux variation amplitude expected for the given input from

(in cgs units)

AEV =
3π2(15 + u1)(1 + τ1)M2R

3
1 sin2 i

5P 2
orb(3− u1)GM1(M1 +M2)

.

• The orbital separation, a, comes from solving Kepler’s third law: a3 =

GP 2(M1 +M2)/4π.
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Figure 7.1: The results of Monte Carlo simulations of our constraints on the
parameters of the binary system SDSS J1054−2121. The dark gray logarithmic
histograms include all models with M2 < 3 M�. The light gray histograms
include only those models that were selected in proportion to the adopted
Gaussian likelihood distribution for the system’s ellipsoidal variation ampli-
tude (Figure 7.2). Our improved constraints are summarized in Table 7.1.

• Finally, we calculate the timescale to a binary merger caused by the release

of orbital energy from gravitational radiation using the relation (for mass in

M�, period in hours; Landau & Lifshitz 1958)

τmerge =
(M1 +M2)1/3

M1M2

P 8/3 × 10−2 Gyr.

Histograms of the marginal distributions of most of these parameters

are displayed in dark gray in Figure 7.1. These represent the state of our

understanding of this binary system from the spectroscopic results of Gian-

ninas et al. (2015) alone (with the only added constraint that M2 < 3 M�,

eliminating 9% of possible solutions).

We do not apply a cut to systems that should eclipse due to meeting
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Figure 7.2: The distribution of expected EV amplitudes given prior spectro-
scopic constraints on the binary system SDSS J1054−2121 is displayed in dark
gray. The light gray distribution shows the solutions that we accepted from our
Monte Carlo simulations in proportion to a Gaussian distribution consistent
with the photometric EV amplitude measurement.

the condition a cos i < R1 because some eclipses (e.g., those involving neutron

star secondaries) would not be detectable in our light curve. These account

for less that 0.006% of our models, and affect our final results negligibly.

The vast majority of these parameter combinations predict ellipsoidal

variations—plotted in dark gray in Figure 7.2—that are incompatibly small

compared to the measured amplitude. To improve our constraints on the sys-

tem by imposing that it agrees with this new measurement, we accept Monte

Carlo realizations in proportion to a Gaussian that is centered on the mea-

sured value with standard deviations that equals our 1σ errors. We plot in
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Table 7.1. Revised System Parameters for SDSS J1054−2121

Parameter Name Symbol New Constraint Units

Orbital Period P 0.097+0.007
−0.006 days

RV Semi-amplitude K1 262± 7 km s−1

Surface Gravity log(g) 5.77+0.04
−0.05 cm s−1

Effective Temperature Teff 9020+150
−130 K

Orbital Inclination i 77+6
−9 deg

Primary ELM Mass M1 0.1548+0.0016
−0.0014 M�

Primary ELM Radius R1 0.085+0.005
−0.004 R�

Secondary Mass M2 0.39+0.04
−0.03 M�

Star Separation a 1.06+0.07
−0.06 R�

Merger Timescale τmerge 1.3± 0.2 Gyr

light gray the distributions of the 0.014% of accepted EV amplitudes in Fig-

ure 7.2, and the marginal distributions of other important system parameters

in Figure 7.1. The median values of these final distributions are listed in Ta-

ble 7.1, with the quoted errors corresponding to the values ±34% to either side.

This new measurement of the photometric ellipsoidal variation amplitude of

SDSS J1054−2121 greatly improves our constraints on this system, implying

that the secondary is a low-mass white dwarf. This would not be considered

an ELM white dwarf under the definition that MELM < 0.3M�, though white

dwarfs above this mass can still form with helium cores through mass transfer

in a binary system.
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Chapter 8

Destroying Aliases from the Ground and

Space: Super-Nyquist ZZ Cetis in K2 Long

Cadence Data

Short-cadence Kepler/K2 data are practically the ideal observations

for measuring the signals of pulsations in white dwarfs. The extent of the data

ensures that they are resolved, have high signal-to-noise, and can be measured

precisely. The 1-minute exposure times sample white dwarf pulsations periods

well, and the absence of large gaps in the data simplifies the spectral window in

frequency space. Much of the work presented in Chapters 2, 3, and 4 utilized

this type of data.

Signatures of white dwarf pulsations can be detected in long-cadence

(30 min) K2 data, but they suffer dramatic aliasing and amplitude reduction

since they exceed the Nyquist frequency. J. J. Hermes alerted me of two

DA white dwarfs that appeared to show multiple frequencies of variability in

long-cadence K2 data, and I decided to follow these up from McDonald Ob-

servatory. The ground-based data also suffer severe aliasing from daily gaps,

but the types of problems in each of these non-ideal data sets help to mitigate

the problems in the other. For a few of the significant signals in the K2 obser-

vations, I was able to recover accurate measurements of pulsation frequencies
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with the full precision of roughly 80 days of observations. EPIC 220274129, in

particular, exhibits multiple rotational multiplets that support that this star

shows photometric modulation on its rotation period and twice the rotation

period. The physical cause of this subharmonic is unclear but a very interest-

ing. In addition to the K2 signals, I detect many additional pulsation modes

in the ground-based data on these new ZZ Ceti variables, most of which the

K2 observations would not have been sensitive to.

I felt it necessary to include in this work a treatise on the myriad

ways that observational details can affect the signatures of stellar pulsations

in time series photometry, as well as limit our ability to accurately identify

the pulsation frequencies. The instances where I am able to match signals

between space- and ground-based data sets also serve as demonstrations of

possible pitfalls in the analysis of either data set on its own.

Zach Vanderbosch obtained the light curves of EPIC 220274129 in Oc-

tober and November 2016. J. J. Hermes obtained spectra of both new ZZ Cetis

from SOAR, which Pier-Emmanuel Tremblay fit models to determine their at-

mospheric parameters. Mike Montgomery calculated the expected amplitude

ratio of ` = 1 or 2 pulsations between the McDonald ProEM + BG40 filter

and the Kepler photometric systems, and Don Winget provided important

insights on how the temporal sampling affects the spectral window.

This is the most recent draft of a paper that I aim to submit to the

AAS Journals shortly. The published version will be slightly improved based

on feedback from my coauthors and referee.
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8.1 Introduction

Stellar pulsations are extremely sensitive to the detailed interior struc-

tures of stars, and Fourier analysis of photometric light curves can reveal the

eigenfrequencies of these physical systems. This is the only method by which

we directly constrain stellar interiors. However, the measurement of accurate

pulsation frequencies for precision asteroseismology requires extended photo-

metric monitoring with few gaps and short exposure times. For data that do

not meet these criteria, frequency determination is hindered by the aliasing of

pulsation signals.

The atmospheres of the majority of white dwarf stars are dominated by

hydrogen (DA white dwarfs). As these stars cool, partial ionization of hydro-

gen eventually causes an outer convection zone to develop. The modulation of

the flux by convection can drive global nonradial oscillations (Brickhill 1991)

that manifest as photometric variability of the star. Near the mean mass of

0.66 M� (Kepler et al. 2015), DA white dwarfs pulsate as ZZ Ceti variables

(a.k.a., DAVs) in the range 12,500 & Teff & 10,800 K (Tremblay et al. 2013),

and exhibit pulsations with periods of 3–20 minutes.

White dwarf asteroseismology has flourished in the era of precision

time series photometry from the Kepler spacecraft. Kepler saves data for

pre-selected targets of interest in one of two observing modes: long cadence,

with continuous exposures of roughly 30 minutes; and short cadence, with one-

minute exposures for a limited number of targets (Howell et al. 2014). Short-

cadence observations are required to sufficiently oversample typical white dwarf
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pulsation periods for straightforward frequency measurements. Both in its

original mission and while observing new fields along the ecliptic as K2, Ke-

pler has targeted known and candidate pulsating white dwarf stars at short ca-

dence, collecting the most extensive coverage of ZZ Ceti (hydrogen-atmosphere

pulsating white dwarf) variability to date. This has enabled the precise deter-

mination of pulsation frequencies for asteroseismic analysis (Greiss et al. 2014;

Hermes et al. 2014b, 2015a, 2017c,d; Bell et al. 2015c), as well as the discovery

of a new pulsation-related outburst phenomenon that operates near the cool

edge of the ZZ Ceti instability strip (Bell et al. 2015c, 2016, 2017b; Hermes et

al. 2015b).

Long-cadence K2 observations can potentially reveal white dwarf pul-

sations, but the signals suffer dramatic aliasing against the Nyquist frequency,

as well as amplitude reduction, since the 30-minute cadence severely under-

samples the pulsations. While the sub-Nyquist pulsation frequency aliases

measured from these data are extremely inaccurate, they are of exceptionally

high precision owing to the long observational baseline of K2.

High-speed photometry from individual ground-based observatories

causes a different kind of aliasing: gaps in the data from daylight and weather

introduce cycle-count ambiguities into the pulsation record. Selecting the

correct alias among the comb of peaks that make up the observational

spectral window is nontrivial.

By combining long-cadence K2 data with single-site high-speed follow-

up from McDonald Observatory, we can use the strengths of each data source
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to resolve the aliasing of the other. We apply this method to two new ZZ

Ceti variables in long-cadence K2 data: EPIC 210377280 from Campaign 4

and EPIC 220274129 from Campaign 8. We describe the K2 observations,

as well as follow-up spectroscopy and high speed photometry, in Section 8.2.

We discuss the instrumental and astrophysical effects that cause differences

in the pulsation signatures between our ground- and space-based light curves

in Section 8.3. We then carefully analyze these data sets together for both

EPIC 210377280 and EPIC 220274129 in Section 8.4, identifying multiple sig-

nificant pulsation frequencies in each star. We recover K2 -level precision for

those modes that we are able to match between data sets. We discuss the K2

signals that are not matched in the ground-based light curves in the concluding

Section 8.5.

8.2 Observations

8.2.1 Long-cadence K2 photometry

EPIC 210377280 and EPIC 220274129 were both identified as white

dwarf stars in K2 fields 4 and 8, and were observed at long cadence for 70.82

and 78.66 days respectively. Both exhibit multiple significant periodicities of

photometric variability.

For each target, we utilize the light curves extracted and processed by

the EVEREST 2.0 pipeline (Luger et al. 2016, 2017), discarding all points

with “quality” flags set. We further smooth the light curves by fitting a cubic
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spline1, tuning the fitting weights manually to remove residual noise at the

lowest frequencies without affecting the measured amplitudes of the signals

of astrophysical interest in the Fourier transform. We note that version 2.0

of the EVEREST pipeline accounts for contamination from nearby stars in

the photometric aperture, which otherwise would dilute the amplitudes of

variability measured in Kepler ’s 4′′ pixels.

The details of the K2 observations of both stars are summarized in

Table 8.1, including the total number of long-cadence observations in the final

light curves.

1Using tools from SciPy: http://www.scipy.org/
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Table 8.1. K2 Target Observing Summary

K2 ID Campaign R.A. Dec. Begin Date End Date Good Obs. Kp

(EPIC) (h:m:s) (d:m:s) (UTC) (UTC) (#) (mag)

210377280 4 04:04:24.924 +12:55:43.38 08 Feb 2015 20 Apr 2015 3249 18.52
220274129 8 01:05:28.745 +02:05:01.14 04 Jan 2016 23 Mar 2016 3475 16.79
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Table 8.2. Journal of McDonald Observations

EPIC Date Exposure Run Duration
(UTC) Time (s) (h)

210377280 04 Feb 2016 15 4.6
05 Feb 2016 10 4.5
07 Feb 2016 20 1.9
07 Feb 2016 10 2.3
08 Feb 2016 15 4.7

220274129 28 Oct 2016 3 5.5
29 Oct 2016 20 2.0
29 Oct 2016 30 3.0
01 Nov 2016 10 6.0

8.2.2 Time series photometry from the ground

We confirmed the pulsational nature of the photometric variations of

both targets from the ground with the ProEM camera on the 2.1-m Otto

Struve Telescope at McDonald Observatory. At Cassegrain focus, the ProEM

camera has a 1.6′×1.6′ field of view, and with 4×4 binning, our effective plate

scale is 0.38′′ pixel−1. Each object was observed on four different nights, as

detailed in Table 8.2. The data were acquired through a broad-band BG40

filter that transmits greater than 50% of flux between 3300–6000 Å to reduce

sky noise.

We use standard IRAF tasks to dark-subtract and flatfield the im-

ages with calibration frames that we acquired each night. We extract circular

aperture photometry for the target and comparison stars in the field using
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ccd hsp, an IRAF script that uses tasks from phot (Kanaan et al. 2002).

We divide the measured target counts by a weighted sum of comparison star

counts, then by a low-order best-fit polynomial to correct for airmass and

transparency variations using the Wqed tools (Thompson & Mullally 2013).

Wqed also applies a barycentric correction and accounts for the latest leap

seconds to enable the reliable combination of multiple nights of data.

8.2.3 Spectroscopy

We acquired spectroscopic observations for both stars with the Good-

man spectrograph (Clemens et al. 2004) on the 4.1-m SOAR telescope on Cerro

Figure 8.1: Balmer line profiles from the SOAR spectra of EPIC 210377280
(left) and EPIC 220274129 (right). The best fit 1D models are overplotted in
red, and their parameters are indicated at the bottom of each panel.
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Table 8.3. Spectroscopic Parameters

EPIC Teff log g Teff log g Mass
(K; 1D) (cgs, 1D) (K; 3D) (cgs, 3D) (M�)

210377280 11890(200) 8.001(0.060) 11590 7.943 0.57(0.02)
220274129 12090(210) 8.077(0.054) 11810 8.029 0.62(0.02)

Pachón, Chile, using the setup described in Hermes et al. (2017d).

We fit the data to 1D atmosphere models following the methodology

of Tremblay et al. (2011a), with the ML2/α = 0.8 mixing length theory pa-

rameterization. The uncertainties include the systematic effects estimated

by Gianninas et al. (2011). We also apply the 3D convection corrections of

Tremblay et al. (2013). Both sets of atmospheric parameters are provided in

Table 8.3. A comparison of the best-fit models to the observed Balmer line

profiles is displayed in Figure 8.1.

8.3 Comparability of Data Sets

There are a number of effects, both observational and astrophysical,

that cause the signatures of pulsations in these stars to differ between the

K2 photometry and the follow-up ground-based light curves. We must factor

in these considerations as we approach the task of matching signals between

these data sets. In this section, we discuss the most significant of these effects

and how we incorporate them into the analysis that follows.
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8.3.1 Nyquist aliasing

The Nyquist critical frequency for evenly sampled data is fNy = 1/2∆t,

where ∆t is the constant spacing in time between observations. Fourier trans-

forms (FTs) of photometric light curves exhibit peaks at the accurate frequen-

cies of intrinsic stellar brightness variations for signals that are bandwidth

limited to below fNy. However, frequencies of stellar photometric variabil-

ity greater than fNy will be aliased into the range 0 < f < fNy. Figure 8.2

demonstrates the relationship between the underlying signal frequency and the

location of its 0 < f < fNy alias.

The long-cadence K2 light curves are acquired onboard the spacecraft

with a regular spacing of 29.43 minutes. These timestamps are then corrected

for the changing distance between the spacecraft and the solar system barycen-

ter, breaking the strict regularity of the time sampling. The Nyquist frequency

is not so simply defined under these conditions. Eyer & Bartholdi (1999) show

that the effective Nyquist frequency over which signals are exactly aliased is

fNy = 1/2p, where p is the greatest common factor of all time separations

between pairs of observations. p is the longest period that the time series

could be folded on to cause all samples to be coincident in phase. Koen (2006)

points out that there is a practical lower limit on p (upper limit on fNy) set

by the recorded timestamp precision.

FTs of the K2 data are significantly affected by Nyquist-like aliasing

across lower frequencies due to the near-even spacing of K2 observations. This

pseudo-Nyquist behavior occurs at f ∗Ny = 1/2p∗, where the time samples folded

199



0 1 2 3 4 5 6 7 8 9 10

fintrinsic/fNyquist

0.0

0.2

0.4

0.6

0.8

1.0

A
m
e
a
su

re
d
/A

in
tr
in
si
c

0

1

f m
e
a
su

re
d
/
f N

y
q
u
is
t

Figure 8.2: The effect of continuous time series sampling on the measured
amplitude and frequency of a signal. Signals with intrinsic frequencies beyond
the Nyquist frequency will be aliased into the sub-Nyquist regime (right axis)
with significantly decreased amplitudes (left axis).

on p∗ are highly concentrated in phase. Murphy et al. (2013) exploited the

difference in aliasing behavior between this and the true Nyquist frequency to

identify the intrinsic stellar pulsation frequencies for super-Nyquist pulsators

in the original Kepler Mission.

Following the framework of Eyer & Bartholdi (1999), we identify the

pseudo-Nyquist frequency by direct calculation of the spectral window (the

signature in the FT of a pure sinusoid sampled as the data). The frequency

of the first peak beyond zero in the spectral window with amplitude near

unity is twice f ∗Ny. The pseudo-Nyquist frequencies of EPIC 210377280 and
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EPIC 220274129 are 283.2377 and 283.2388 µHz, respectively. The distinction

is subtle, so we refer to f ∗Ny as simply the Nyquist frequency for the remainder

of this paper.

8.3.2 Phase smearing

Finite exposure lengths of photometric observations have the effect of

boxcar smoothing the underlying signal. The amplitudes measured from the

data are therefore smaller than the intrinsic signal amplitudes, and a correction

factor must be applied if accurate amplitudes are of interest. When exposures

of duration texp are used to record a sinusoid of period P , its amplitude will

appear smaller by a factor of η:

η = Ameasured/Aintrinsic = sinc (πtexp/P ). (8.1)

Figure 8.2 demonstrates this in terms of the ratio of the signal frequency

to the Nyquist frequency, assuming continuous exposures with no overhead.

This expression for phase smearing can be found in various works, including

Hekker & Christensen-Dalsgaard (2017), where it is referred to as “apodiza-

tion.” A derivation is available in Murphy (2014, Section 1.2.2).

This effect has a major impact on the pulsation amplitudes measured

from the K2 data, where texp > P . The equation also expresses K2 ’s lack

of sensitivity to signals with periods that are near integer fractions of the

exposure time.
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8.3.3 Passband differences

Variations of the emergent flux from a star due to pulsations are wave-

length dependent. This causes the same pulsations to have different measured

amplitudes in different photometric systems. Kepler has a broad response

function spanning roughly 4300–8900 Å2, while the McDonald observations

were made through Earth’s atmosphere and a BG40 filter that spans 3300–

6000 Å.

To account for this effect, we calculated the expected pulsation am-

plitude ratio as measured through these two passbands for a representative

Teff = 12,000 K, log g = 8.0 white dwarf model. We utilized the grid of spectro-

scopic models described in Koester (2010) for the emergent flux. We consider

pulsations of spherical degree ` = 1 and ` = 2, since practically all available

constraints on white dwarf pulsations are consistent with these two mode iden-

tifications (e.g., Winget & Kepler 2008). We expect the intrinsic amplitudes of

both ` = 1 and ` = 2 pulsation modes to be larger in the McDonald data than

the K2 observations by a factor of roughly 1.128. While this is near unity, we

include this scaling factor when comparing measurements between data sets

throughout this work.

2https://keplerscience.arc.nasa.gov/CalibrationResponse.shtml
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8.3.4 Spectral window

Gaps in data can cause confusion in the determination of pulsation

frequencies by introducing an uncertainty in the number of cycles missed when

observations were not being made. Our ground-based data suffer significant

aliasing since they are distributed across multiple nights. As opposed to the

intrinsic limitations on frequency precision set by the spectral resolution (∝

1/T , where T is the total baseline of observations; Montgomery & Odonoghue

1999), aliasing introduces an additional extrinsic error in the accuracy of our

frequency determinations, since we might select an incorrect alias peak.

The uncertainty introduced by these aliases is best understood by

studying the spectral window: the signature of a pure sinusoid in the FT

that arises solely from the time sampling. We plot the spectral windows for

both stars as part of our analyses that follow. We characterize the magnitude

of the potential frequency confusion by measuring the location of the highest

non-central alias in the spectral window.

Any pulsation modes included in our frequency solutions based on the

ground-based data alone are flagged as potentially suffering from spectral win-

dow alias ambiguities. We emphasize that this extrinsic error is non-Gaussian,

and that any attempt at asteroseismic inference should carefully consider al-

ternate frequency solutions for these stars that employ other viable aliases.
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8.3.5 Intrinsic mode variation

Despite our best efforts to account for instrumental differences between

the pulsation signatures in these data sets, we face an astrophysical limitation

that is more difficult to surmount: the amplitudes and frequencies of stellar

pulsations may have changed significantly between epochs of observation. The

challenges of comparing multi-season pulsation measurements for ZZ Ceti vari-

ables that have cooled significantly beyond the hot edge of the instability strip

is well established in the literature, particularly from Whole Earth Telescope

(WET; Nather et al. 1990) campaigns. GD 154 (Pfeiffer et al. 1996), G29–38

(Kleinman et al. 1998), and HL Tau 76 (Dolez et al. 2006), for example, show

such dramatic amplitude changes that significant modes from one year can be

completely absent the next. With 9 and 7 month gaps between space- and

ground-based campaigns on EPIC 210377280 and EPIC 220274129, we have

no expectation that the same eigenmodes will be excited to similar amplitudes

in both data sets.

Extended, continuous records from Kepler and K2 have provided new

insights into mode variations (e.g., Hermes et al. 2014b; Bell et al. 2015c,

2016). By inspecting the FTs of 27 ZZ Cetis observed by Kepler and K2,

Hermes et al. (2017d) discovered a dichotomy of mode behavior: while some

modes are notably coherent, others undergo significant modulation and ap-

pear as multiple closely spaced peaks in the FT. These bands of power are

well fit by Lorentzians with half-widths-at-half-maximum of order 1µHz. The

amplitudes of the many individual peaks that make up these power bands
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are typically smaller than the instantaneous, intrinsic amplitudes of the cor-

responding pulsation modes. Unlike the phase smearing and passband effects,

we are unable to apply a corrective factor to pulsation amplitudes measured

in K2 data that accounts for this mode incoherence.

8.4 Comparing Data Sets

The ZZ Ceti pulsation signals in long-cadence K2 data may have suf-

fered any integer number of Nyquist reflections. We assess these candidate

intrinsic frequencies through comparison with ground-based observations from

McDonald Observatory. Pulsation frequencies that we are able to positively

match between these data sets do not suffer measurement ambiguities from

either the Nyquist aliasing of the K2 data or the window function aliasing

of the multi-night ground-based photometry. We conservatively accept only

unique, unambiguous matches between data sets.

To determine the signals of statistical significance in the K2 data, we

use a bootstrapping approach to calculate a threshold in the FT that corre-

sponds to a 0.1% false alarm probability (FAP). This is similar to the calcu-

lations made in, e.g., Greiss et al. (2014), Bell et al. (2015c, 2016)3. Signals

are significant to better than 99.9% confidence4 if they exceed the 99.9 per-

3We note that the application in these previous works was not strictly bootstrapping, as
the resampled flux values were drawn without replacement (i.e., shuffled). The 0.1% FAP
thresholds calculated through resampling with replacement agree to within 1% the values
from resampling without replacement.

4This is a slightly conservative criterion, since this approach treats astrophysical signals
as additional sources of noise.
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centile of maximum peak amplitudes detected in the full FTs of 10,000 random

bootstrap samplings of the K2 light curves of each star.

The rule-of-thumb significance criterion for ground-based light curves

is to accept peaks that reach amplitudes in excess of four times the mean

noise, 4〈A〉, in a local region of the FT (Breger et al. 1993; corresponding to

≈ 0.1% FAP; Kuschnig et al. 1997). For these data sets, a high density of

pulsation signatures convolved with a broad spectral window makes this local

measurement a challenge, and we instead interpolate between 4〈A〉 values

calculated in regions on each side of the frequency range of pulsational power:

0–800µHz and 6000–8000µHz.

All FTs examined in this work were computed with the Period04

software package (Lenz & Breger 2004). We oversample the spectral resolution

by a factor of 20 to obtain representative peak amplitudes. We average the

ground-based light curves into 60 s bins (matching the least common multiple

of exposure times used on different nights) to avoid giving runs with shorter

exposure times undue weight in the FT.

While our primary analysis utilizes the K2 light curves extracted by

the EVEREST pipeline, we test the robustness of our signal detections by con-

firming their presence in the light curves produced by the K2 Guest Observer

pipeline (Twicken et al. 2010) and the extractions described by Vanderburg &

Johnson (2014).
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8.4.1 EPIC 210377280

The FT of the long-cadence K2 light curve of EPIC 210377280 is dis-

played in the top panel of Figure 8.3. Our bootstrap calculation yields a 0.1%

FAP significance threshold at 0.148% amplitude, which is indicated by the

dashed red line. The peak marked with a × symbol is within 0.3µHz of a

typical instrumental artifact at ≈50µHz caused by K2 ’s thruster firings (Van

Cleve et al. 2016), so we exclude it from our analysis. We mark four signifi-

cant signals of astrophysical interest with colored triangles. Their properties,

computed from least-squares sinusoidal fits to the entire K2 light curve, are

listed in Table 8.4.

The spectral window from four nights of ground-based observations of

EPIC 210377280 from McDonald Observatory is displayed in the bottom panel

of Figure 8.3. Any signals in the ground-based data are convolved with this

complex aliasing structure in the FT, making it difficult to select the correct

pulsation frequencies. The x-axes of both panels of Figure 8.3 have the same

scale, emphasizing the relative imprecision of ground-based signal detections.

We aim to use the precise K2 data to guide our selection of the correct alias

peaks; in doing so, we determine the number of Nyquist bounces of the K2

signals and recover accurate pulsation frequencies at K2 precision. When the

K2 data do not assist our peak selection, we risk choosing the wrong aliases

and adopting frequencies that are off by of-order 11.6µHz, as discussed in

Section 8.3.4.

The FT of the ground-based observations of EPIC 210377280 in the full
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Figure 8.3: Top: Fourier transform of the K2 observations of EPIC 210377280
out to the Nyquist frequency with a 0.1% false alarm probability (FAP) sig-
nificance threshold (see text). Significant signals are marked with colored
triangles. Bottom: The spectral window from four nights of McDonald Ob-
servatory observations of EPIC 210377280 over a five night span in Feb 2016.
The highest alias is located 11.6µHz away from the central peak. The x-axes
of both panels have the same scale.
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Table 8.4. Significant K2 Aliases for EPIC 210377280

Frequency Period Amplitude
(µHz) (s) (%)

u F1 68.569(13) 14584(3) 0.17(3)
u F2 118.297(11) 8453.3(8) 0.20(3)
u F3 122.630(9) 8154.6(6) 0.24(3)
u F4 236.362(13) 4230.8(2) 0.17(3)

range of pulsational power is presented in the top panel of Figure 8.4. The pink

shaded region corresponds to the 0.1% FAP level for the K2 data (dashed line

in Figure 8.3), corrected for the effects of phase smearing (Section 8.3.2) and

passband differences (Section 8.3.3). This essentially represents the sensitivity

of the long-cadence K2 observations to the pulsation signatures measured from

the ground; if these light curves were obtained simultaneously, we would expect

the signals above the pink shaded region in Figure 8.4 to rise above the 0.1%

FAP threshold in Figure 8.3. Integer multiples of the Nyquist frequency are

marked in the figure with vertical red lines, and the 4〈A〉 significance threshold

for the ground-based data is displayed as the dashed red line. Notably, the K2

observations would not be sensitive to the majority of significant pulsations

that we detect from the ground.
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Figure 8.4: (Continued on the following page.)
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Figure 8.4: Top: Fourier transform of the McDonald observations of EPIC
210377280 with the K2 sensitivity function overlaid (K2 observations are not
sensitive to the shaded region to a FAP of 0.1%). Vertical lines mark inte-
ger multiples of the K2 Nyquist frequency. The possible intrinsic frequencies
and expected amplitudes (corrected for phase smearing and bandpass differ-
ences) corresponding to the measured aliases in the K2 FT are indicated with
diamond markers (color coded to match the top panel of Figure 8.3). Bot-
tom: Prewhitening sequence for EPIC 210377280 (progresses left to right,
then down). Black arrows indicate alias frequency selections supported by K2
observations; white arrows point to peaks selected from ground-based data
alone. The red dashed line in all panels shows the 4〈A〉 significance threshold
for the ground-based data. The last panel highlights the residual power in our
fully prewhitened light curve.
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Figure 8.4 also indicates the possible intrinsic frequencies and expected

amplitudes corresponding to the significant signals measured in the K2 data

with diamonds that are color-coded to match Figure 8.3 and Table 8.4.

After adopting each new frequency from the ground-based data, we

use a least-squares optimization in Period04 to refine the overall solution.

We then subtract (prewhiten) the best fit and search for additional signifi-

cant signals in the FT of the residuals. The sequence of FTs in the smaller

panels of Figure 8.4 demonstrates our process of frequency selection. Those

signals marked with solid black triangles were informed by the precision K2

data, while signals marked with white triangles were selected as the highest-

amplitude peaks in the ground-based data and may be the incorrect aliases.

The modes are characterized in Table 8.5 in order of adoption, and

this best-fit model is plotted over the McDonald light curve in Figure 8.5. We

refer to frequencies detected in the K2 data with a capital Fn (as in Table 8.4),

and our final frequencies as fn (Table 8.5). For frequencies matched to a K2

signal, we refine the frequency value and uncertainty by doing a final least-

squares fit of the correct alias to the K2 data; otherwise, the values come from

least-squares fits to the McDonald light curve. Uncertainties are determined

following Montgomery & Odonoghue (1999).

The first small panel of Figure 8.4 depicts the first significant frequency

that we adopt. This is a clear demonstration of the combined strength of these

two data sets: one of the highest aliases (but not the highest; see discussion in

Section 8.5) of the largest signal from the ground-based photometry precisely
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Table 8.5. Frequency Solution for EPIC 210377280

Mode Frequency Period Amplitudea

(µHz) (s) (%)

f1
b 1255.581(9) 796.444(6) 3.33(14)

2f1
b,c 2511.162(19) 398.222(3) 0.64(14)

f2
d 1513.14(3) 660.88(6) 1.66(14)

f3
d 1004.17(13) 995.85(13) 1.62(14)

f4
d 1059.07(13) 944.22(12) 1.57(14)

f5
d 1591.54(19) 628.32(7) 1.11(14)

f6
d 1872.49(19) 534.05(5) 1.09(14)

f7
d 2259.8(2) 442.51(4) 1.05(14)

aAmplitude based on fit to ground-based
data only.

bAlias matched to K2 signal.

cHarmonic of previously found signal.

dDetected in ground-based data alone and
may be incorrect alias of spectral window.

matches the four-Nyquist-bounce candidate intrinsic signal underlying F3 in

both amplitude and frequency. We fit and prewhiten this signal from the light

curve to search for additional signals in the residuals. We also identify the

second harmonic of this mode, which is displayed in the second small panel

of Figure 8.4; the exact 2:1 ratio of harmonics informs this alias selection.

Since F3 has been positively matched to a ground-based signal, we exclude

other possible underlying solutions for this mode in later panels. The final

frequency values listed for f1 and 2f1 in Table 8.5 are based on a least-squares

213



0 1 2 3 4
-10

0

10

20
∆

F/
〈F
〉(

%
)

24 25 26 27 28
Time (hours)

72 73 74 75 76 96 97 98 99 100

Figure 8.5: The frequency solution overlaid on the ground-based observations
of EPIC 210377280 from McDonald Observatory.

fit of f1 to the K2 light curve.

The other frequencies that we adopt do not unambiguously resolve K2

aliases. For instance, F2 has candidate frequencies close to aliases of both f3

and f5. We simply adopt the highest alias peaks associated with each signal in

Table 8.5. At the amplitudes observed in the McDonald data, many of these

would not be detectable at long cadence by K2 due to amplitude suppression

from phase smearing (Section 8.3.2). An exception to this is f2, which was most

likely not excited to such high amplitude throughout the K2 observations, as

discussed in Sections 8.3.5 and 8.5.

The bottom-right panel of Figure 8.4 displays part of the FT of the

final residuals relative to our significance threshold. While some remaining

peaks exceed our adopted significance criterion, alias selection is non-trivial

and not attempted.
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8.4.2 EPIC 220274129

The FT of the K2 photometry on EPIC 220274129 displayed in the

top panel of Figure 8.6 reveals a greater number of signals that exceed our

0.1% FAP threshold (0.059% amplitude) than for the previous object. These

are characterized in Table 8.6. While matching these signals between data

sets may initially seem daunting, we are able to exploit the physics of stellar

oscillations to largely sort them out.

Rotation can break the azimuthal degeneracy of spherical harmonic

pulsation patterns, splitting a mode of spherical degree ` into 2`+ 1 multiplet

components of integer azimuthal order number −` ≤ m ≤ `. For the nonradial

gravity mode pulsations of white dwarfs, modes of adjacent m have frequency

spacings δνk`m = (m/Prot)×(1−Ck`), where Prot is the rotation rate (assumed

solid body) and Ck` is the Ledoux constant that describes the effect of the

Coriolis force on a particular mode (Ledoux 1951). In the asymptotic limit of

high radial order, k, Ck` = 1/`(`+ 1), but generally Ck` ≤ 1/`(`+ 1).

We identify among the K2 signals three sets of triplets that share a

similar frequency spacing near 11.6µHz. These are marked with connected

arrows in Figure 8.6. If these are rotationally split ` = 1 triplets, they cor-

respond to a rotation period consistent with the signal at 2F1 for reasonable

values of Ck` ≈ 0.487. Only the spacing measured between the two highest

frequencies gives a problematic Ck` > 0.5, but this is easily explained if the sig-

nal very near the Nyquist frequency (dashed arrow in Figure 8.6) was aliased

one more (or fewer) time than the other multiplet components. Based on this
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Figure 8.6: Top: Fourier transform of the K2 observations of EPIC 220274129
out to the Nyquist frequency with a 0.1% false alarm probability (FAP) signif-
icance threshold (see text). We identify rotationally split mode triplets with
connected arrows (see text). Bottom: The spectral window from four nights
of McDonald Observatory observations of EPIC 220274129 over a five night
span in Oct/Nov 2016. The highest alias is located 11.5µHz away from the
central peak. The x-axes of both panels have the same scale.
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Table 8.6. Significant K2 Aliases for EPIC 220274129

Frequency Period Amplitude
(µHz) (s) (%)

u F1
a 11.266(7) 88770(60) 0.081(7)

u 2F1
a 22.540(6) 44360(12) 0.101(7)

u F2 (m=∓1)b 67.901(2) 14727.4(5) 0.266(7)
u F2 (m=0)b 79.890(8) 12517.2(1.2) 0.078(7)
u F2 (m=±1)b 91.159(7) 10969.8(8) 0.089(7)
u F3 127.589(4) 7837.8(3) 0.138(7)
u F4 156.169(7) 6403.3(3) 0.082(7)
u F5 (m=∓1)b 216.156(4) 4626.29(8) 0.156(7)
u F5 (m=0)b 227.427(5) 4397.02(9) 0.126(7)
u F5 (m=±1)b 238.701(6) 4189.34(10) 0.102(7)
u F6 (m=∓1)b 259.161(4) 3858.60(6) 0.156(7)
u F6 (m=0)b 271.145(10) 3688.07(13) 0.061(7)
u F6 (m=±1)b,c 282.130(11) 3544.47(14) 0.055(7)

aF1 is a subharmonic of the rotation rate, 2F1.

bComponent of a rotationally split `=1 triplet.

cThis signal was reflected one more or fewer time than
the other components of this triplet (see text).

evidence, we identify the sub-Nyquist 2F1 signal as starspot modulation on

EPIC 220274129’s rotation period of 44360 ± 12 s (12.324 ± 0.003 hr) with a

photometric subharmonic present at F1. This period is typical of white dwarfs

with measured rotation rates (Kawaler 2015; Hermes et al. 2017d). We do not

attempt to match the rotation signals against the ground-based data.

The spectral window of our McDonald observations is displayed in the
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bottom panel of Figure 8.6. The near coincidence between the location of the

highest alias at 11.5µHz and the splitting of ` = 1 multiplets underscores the

insensitivity of single-site ground-based observations for asteroseismic mea-

surements of typical white dwarf rotation rates.

Because we have measured the splittings of the ` = 1 triplets, we can

determine the intrinsic frequencies of each set to K2 precision by resolving the

super-Nyquist ambiguity of any one component. For triplets that we match to

the ground-based data, we are also able to identify which signals correspond

to the m = +1 versus m = −1 components.

We exclude a few peaks that reach significant amplitudes from Ta-

ble 8.6 that are within 1µHz of other, higher-amplitude signals. These are

likely caused by amplitude modulation during the K2 observations distribut-

ing the power into a set of closely spaced peaks (Section 8.3.5). Though it

is just shy of our conservative significant threshold, we include the highest

frequency component of F6 because it is also supported by matching the rota-

tional frequency splitting seen in other modes.
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Figure 8.7: (Continued on the following page.)
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Figure 8.7: Same as Figure 8.4, except for EPIC 220274129. Mode-by-mode
frequency adoption and prewhitening progresses in the sequence of smaller
panels from left to right, then top to bottom. The vertical dashed lines and
diamonds indicate candidate frequencies and amplitudes underlying the K2
signals, color-coded to match the triangles in Figure 8.6. The last panel high-
lights residual power in the fully prewhitened light curve.
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The top panel of Figure 8.7 depicts our comparison of possible frequen-

cies underlying the K2 pulsation signals to the FT of the McDonald data in

the full range of significant pulsational power. Like Figure 8.4 for the previous

object, the pink shaded region highlights the sensitivity of the K2 data, and

the diamonds are color-coded to match Figure 8.6 and Table 8.6.

We adopt and prewhiten pulsation signals from the ground-based data

in each of the smaller panels. First, we recognize that the largest signal from

the ground matches a candidate frequency for the highest-amplitude compo-

nent of the F5 triplet. Resolving that these signals were aliased off the Nyquist

five times in the K2 data, we can refine the frequencies of all three compo-

nents by fitting the correct signals to the full K2 light curve. These precise

frequencies are provided in Table 8.7. Because there is a ground-based aliasing

degeneracy that matches the ` = 1 rotational splitting, we can only prewhiten

the single dominant component from the ground based data. We report a

ground-based amplitude for this signal in Table 8.7, but this may not be phys-

ical due to the proximity of the other modes. As with EPIC 210377280, we

also identify the second harmonic of the dominant signal, as displayed in the

second small panel of Figure 8.7.

The third small panel of Figure 8.7 indicates agreement between the

next strongest ground-based signal and the triplets of the F6 detection. We

use the K2 data to refine these fits in Table 8.7.

The K2 data do not clearly prefer a strong alias of the FT structures

around the other signals that we detect from the ground. We prewhiten the
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Table 8.7. Frequency Solution for EPIC 220274129

Mode Frequency Period Amplitudea

(µHz) (s) (%)

f1 (m=−1)b 1460.731(6) 684.589(3) n/a
f1 (m=0)b 1472.007(5) 679.345(2) n/a
f1 (m=+1)b 1483.276(4) 674.1832(17) 3.62(7)
2f1 (m=+1)b,c 2966.553(8) 337.092(3) 0.64(7)
f2 (m=−1)b 1392.117(4) 718.331(2) 1.92(7)
f2 (m=0)b 1404.099(10) 712.200(5) n/a
f2 (m=+1)b 1417.303(11) 705.565(5) n/a
f3

d 2192.95(5) 456.006(11) 1.85(7)
f4

d 2875.83(11) 347.725(13) 0.90(7)
f5

d 2320.67(12) 430.91(2) 0.81(7)
f6

d,e 1457.98(10) 685.88(5) 0.97(7)
f7

d 3688.13(16) 271.140(11) 0.63(7)
f8

d 1315.75(16) 760.02(9) 0.61(7)
f9

d 720.89(19) 1387.2(4) 0.51(7)

aAmplitude based on fit to ground-based data only,
where applicable.

bAlias refined by K2 signal.

cHarmonic of previously found signal.

dDetected in ground-based data alone and may be
incorrect alias of spectral window.

eThis peak is suspected to be redundant with the
f1 triplet that could not be completely fit out of the
ground-based data.

highest aliases one-at-a-time through f9. Though f9 does appear to closely

match a candidate solution for F4, the match was not compelling before
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Figure 8.8: The frequency solution overlaid on the ground-based observations
of EPIC 220274129 from McDonald Observatory.

prewhitening many ground-based signals that likely include multiple incorrect

alias selections, so we err on the side of caution by not claiming K2 preci-

sion for this mode. We also note that f6 falls within the triplet structure of

f1, which we were unable to completely fit out of our McDonald light curve

because of the degeneracy between rotational splitting and the daily ground-

based aliasing; we therefore suspect that this signal is redundant with the f1

triplet properties already refined from K2 data.

As with Figure 8.4, the last panel displays residual power that is for-

mally significant but difficult to select aliases from; we assert that additional

pulsations are likely excited near these frequencies, but we decline to charac-

terize them from these data.

Our final frequency solution for EPIC 220274129 is listed in Table 8.7,

and the best fit to the McDonald observations is plotted over the light curve

in Figure 8.8.
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8.5 Discussion and Conclusions

Using a few nights of ground-based photometry, we have successfully

resolved the frequency ambiguities underlying a few of the super-Nyquist sig-

nals in the long-cadence K2 observations of two new ZZ Ceti pulsating white

dwarfs, EPIC 210377280 and EPIC 220274129. While each of these data sets

is non-ideal for asteroseismic measurements, they complement each other such

that we can measure pulsation frequencies to a precision of ∼ 0.01µHz. We

used a similar approach in Hermes et al. (2017c) to confirm the super-Nyquist

nature of a rotationally split ` = 1 triplet centered on 109.15103 s in the short-

cadence K2 light curve of the ZZ Ceti star EPIC 211914185, but this is the

first example of recovering frequencies beyond 4–5 times the Nyquist.

By using the K2 data to resolve the ground-based aliasing, we have

demonstrated the difficulty in selecting the correct peaks. The K2 data se-

lected the second most probable alias of f1 from the FT of McDonald data on

EPIC 210377280, rather than the marginally higher-amplitude peak. For the

K2 -informed second harmonics of f1 in both stars, the correct peaks do not

have the highest amplitudes locally. Frequency selection from ground-based

data alone can be off by many times the daily aliasing of ≈11.6µHz, as many

of the frequencies in our solutions certainly are. This error can be much larger

than the offset from assuming the wrong azimuthal order, m, which Metcalfe

(2003) found to affect but not negate the usefulness of asteroseismic investiga-

tions. Prewhitening by incorrect aliases can also adversely impact the proper-

ties of pulsation modes later inferred from the residuals. Any comparison of
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asteroseismic models to data with gaps should ideally consider thoroughly the

many viable combinations of aliases that can describe the light curves.

Our identification of rotationally split ` = 1 triplets in EPIC 220274129

and their correspondence to a photometric rotation period of 44360 ± 12 s

(12.32 hr) increases the scientific value of this data set. Similar to the work of

Hermes et al. (2017b) for the pulsating helium-atmosphere (DB) white dwarf

PG 0112+104 with rotational splittings and a photometric rotation period,

detailed asteroseismic analysis of the splittings measured in EPIC 220274129

can test models of differential rotation and empirically constrain values of Ck`.

An unexplained aspect of EPIC 220274129’s rotation signature is the

presence of a precise subharmonic. The FT of the K2 data on PG 0112+104

exhibited significant peaks at the rotation rate and its second harmonic, cor-

responding to the non-sinusoidal morphology of the spot modulation in the

light curve (Hermes et al. 2017b), but a subharmonic implies that the spot

signature is different every other rotation. Kurtz et al. (2011) suggest that

the subharmonic of the rotation frequency of a pulsating roAp star observed

by Kepler, KIC 10195926, represents a torsional (r-mode) oscillation; however,

Balona (2013) highlights our lack of understanding why only one r-mode with

` = m = 3 would be excited to detectable amplitude. To our knowledge, this

is the first detection of a rotational subharmonic in a ZZ Ceti star, and while

it could correspond to an r-mode oscillation, we refrain from overinterpreting

this signal without better models.

Besides those pulsation signals that we were able to refine to K2 pre-
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cision by positively matching between data sets, we identify ≥ 6 additional

pulsation signatures from the ground-based light curves of each star. These

are measured to lower precision and may be incorrect aliases from the spec-

tral window, but they will still be useful for asteroseismically constraining the

interior structures of these rich ZZ Cetis. The K2 data would not have been

sensitive to most of these at their observed amplitudes.

There are also significant signals in the K2 data that we were unable to

confidently match to the McDonald observations. As discussed in Section 8.3.5,

pulsation amplitudes of ZZ Ceti stars have been observed to change drastically

on month timescales, potentially explaining the apparent absence of many of

these during ground-based observations. For instance, the highest multiplet

component of F2 in EPIC 220274129 was almost certainly the dominant mode

during K2 observations, since super-Nyquist signals that are aliased closer

to zero frequency generally suffer greater phase smearing. We also neglected

some compelling candidate matches to be cautious against overinterpretation.

It is possible that the difference between the pseudo-Nyquist frequency

and true Nyquist behavior (described in Section 8.3.1) could also be exploited

to place additional constraints on the intrinsic frequencies of the K2 signals

as in Murphy et al. (2013, applied to Kepler data). This would provide an

important confirmation to our frequency solutions and enable the precise iden-

tification of the K2 aliases that we did not match in our ground based data.

The addition of these precise frequencies to the solutions for these stars would

increase our leverage on asteroseismically constraining their interiors. The
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sensitivity of this method to K2 data, where light curve durations are much

shorter than a spacecraft orbit, has not yet been demonstrated (S. Murphy,

private communication).

The spectra and light curves of EPIC 210377280 and EPIC 220274129

are available online at http://www.k2wd.org, alongside the published data for

short-cadence ZZ Cetis observed with Kepler and K2 (Hermes et al. 2017d).
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Chapter 9

Pulsating White Dwarfs in Sparse Time

Domain Surveys

Most of my thesis work on pulsating and other variable stars has focused

on the analysis of time series photometry. In these observations, we take pains

to develop strategies for data acquisition that will ease their later frequency

analysis. For Kepler/K2, this means submitting likely pulsating white dwarfs

for short-cadence observations (an effort that collaborator J. J. Hermes has

led). From McDonald, this means using short enough exposure times to keep

the Nyquist frequency above the frequency range of astrophysical interest, to

obtain enough data to detect low-amplitude signals in Fourier transforms, to

have long enough observational baselines to resolve closely spaced signals, and

to minimize gaps as much as possible to limit the complexity of the spectral

window. Section 8.3 describes in detail the main ways that the characteris-

tics of this type of data can complicate the reliable measurement of stellar

variability timescales.

While this has been the arena of my primary thesis efforts, I concur-

rently developed an interest in another type of astronomical data: time domain

survey photometry. Being in the periphery of my focus over the past few years,
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my study of stellar pulsation in synoptic astronomical surveys has been mostly

anticipatory. Given the speed and sensitivity of upcoming surveys such as the

Zwicky Transient Facility (ZTF) and Large Synoptic Survey Telescope (LSST),

I have identified this as a most productive area for white dwarf and other stel-

lar variability research over the coming decades. Just considering the increase

in survey footprints from Kepler/K2, which has been responsible for arguably

the most important recent advances is stellar astrophysics from pre-selected

targets in a handful of fields, to these deep all-sky time-domain surveys high-

lights their promise for revealing important new stellar variables. I hope to

steer my career toward deeper involvement in these efforts as a postdoctoral

researcher or in a longer term position.

Since the goal of synoptic survey design is to capture data that are use-

ful to many areas of astronomy, these tend to not be ideal for the particular

subfield of asteroseismology. Still, these efforts will amass a large amount of

quality observations over time on a large number of stars. These data will

capture the signatures of stellar variability to various degrees of interpretabil-

ity. I have done some light exploration of the sensitivity and limitations of

these data for stellar seismology work, especially for LSST, since an extensive

simulation framework exists for that project. The main goal of this work has

been to advocate for pulsating star science to the ZTF and LSST communities

while these projects are still in their design phases.

I sought involvement with LSST following a discussion with thesis com-

mittee member Chuck Claver on the utility of the survey for variable white
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dwarf science. I joined the LSST Transients and Variable Stars (TVS) Science

Collaboration in 2014 and gave a talk that summer on the prospects of LSST

data for the study of pulsating white dwarfs at the 19th European White Dwarf

Workshop at the Université de Montréal (Bell et al. 2015a). I was immersed in

the details of the project at the 2015 LSST Project and Community Workshop

in Bremerton, WA, and quickly became proficient in assessing the sensitivity

of simulated surveys with the Metrics Analysis Framework (MAF; Jones et al.

2014). I presented my analyses at the TVS Roadmap Workshop at Argonne

National Laboratory in March 2016 (where I also coauthored the “Pulsating

Variables” roadmap1), the Hot-wiring the Transient Universe V meeting at

Villanova University in October 2016, and the ZTF Galactic Plane Science

Workshop at Caltech in March 2017.

In this chapter I summarize three separate approaches that I have de-

veloped to characterizing the detectability of stellar pulsations in synoptic

photometric surveys. These successively relax assumptions about the “good”

behavior of the stars, but each suffers certain oversimplifications. They are

meant as demonstrations of the potential of these surveys for variable star sci-

ence. In Section 9.1, I explore the extent to which aliasing caused by sparse—

by which I mean infrequently and irregularly sampled—photometric data will

muddy the determination of pulsation frequencies. In Section 9.2, I develop

a new analytical technique that is applicable for constraining the energetics

of pulsating stars that are incoherent in frequency but that have constant

1https://tvs.science.lsst.org/node/23
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pulsation amplitudes. Finally, I test the basic detectability of photometric

variations in ZZ Cetis from LSST, assuming no phase, frequency, or ampli-

tude consistency in Section 9.3.

9.1 Frequency Detection in Sparse Time Domain Sur-
vey Photometry2

Stellar pulsations arise from the excitation of eigenmodes in stars.

These vibrations are global; they pass through and are affected by stellar inte-

riors. Thus, measured frequencies of photometric variability can be studied to

constrain sub-photospheric structure. Precision asteroseismology requires ac-

curate determination of pulsational eigenfrequencies, typically through Fourier

analysis of time series photometry. For evenly sampled data, this relies on four

primary observational requirements:

• The signal-to-noise ratio in the Fourier transform is sufficient to reveal

pulsations (S/N ∝ √#pts).

• The time series is long enough to resolve closely spaced signals (frequency

resolution = 1/duration; i.e., duration exceeds beat periods).

• The Nyquist frequency exceeds the highest pulsation frequency of inter-

est (fNyq = 1/2τrevisit, where τrevisit is the exposure time for continuous

observations).

2This section is based closely on an indefinitely unpublished extended abstract that I
submitted to the Hot-wiring the Transient Universe V meeting.
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• Gaps are minimized to avoid aliasing from cycle count ambiguity.

These conditions are not met by most large upcoming surveys; e.g., the

baseline cadence for LSST has a 0.02% duty cycle for the main survey. How-

ever, the situation for pulsating stars is not as dire as this implies. The left

panel of Figure 9.1 shows an example light curve with a single 700 µHz signal

at 2.9% amplitude plus 1.2% Gaussian noise sampled for a simulated wide-fast-

deep pointing at the current baseline cadence (minion_1016) of LSST. The

right panel displays the discrete Fourier transform of these data. While this

simplistic treatment ignores variations in photometric signal-to-noise and filter

changes, it does reveal how the observing strategy affects frequency recover-

ability. The power in the Fourier transform is centered on the input frequency

of 700 µHz, demonstrating that it is safely below the Nyquist frequency, which

can be far higher than the average sampling frequency in unevenly sampled

data (Eyer & Bartholdi 1999). The spread in the spectral window is a direct re-

flection of the cadence, with the fine alias spacing caused by daily gaps and the

wider envelope by the scheduled 3-hour revisit time. This broad profile may

cause confusion in multi-periodic pulsators, but the fine spectral resolution

from a 10-year baseline should limit alias overlap. Still, the spectral window

could be simplified by optimization of the observing cadence, improving the

potential for precision asteroseismology from LSST and other surveys.

This simple analysis supposes that the frequencies and amplitudes of

pulsations remain constant for the duration of the survey. This is an unre-

alistic expectation for pulsating white dwarf stars, but this exercise demon-
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Figure 9.1: Simulated light curve (left) and Fourier transform (right) of a
mono-periodic pulsating star in the LSST wide-fast-deep survey. See text for
discussion.

strates that some of the classical observer’s gut instincts about the limita-

tions of sparsely sampled data may not apply in this situation. The effects

of phase/frequency/amplitude variations on pulsation signatures in the fre-

quency domain still need to be explored, and optimal analysis techniques for

these situations need to be developed. I will note that I employed the Fourier

transform for this analysis purely because of access and familiarity to Fourier

software implementations. Because of the uneven phase coverage of synop-

tic survey data, the Lomb-Scargle periodogram is a more appropriate choice

that makes for easier interpretation of the signal-to-noise of peaks, but the

same lessons about aliasing still apply. gatspy provides a fast Lomb-Scargle

implementation in Python (VanderPlas 2016), and its author has written an

excellent treatise on the algorithm (VanderPlas 2017).
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9.2 A New Amplitude-Only Signal Processing Tech-
nique

As a thought experiment, I considered our ability to measure individual

pulsation amplitudes in sparse time domain photometric surveys. This would

be useful for stars with constant pulsation amplitudes, but for which we are

unable to measure the individual frequencies. This could be the cases when

aliasing is too complicated to disentangle, or for modes that are incoherent in

frequency. The latter case may not be a very good approximation to actual

pulsating stars (as this is likely accompanied by amplitude variations). The

new analytical technique that I developed for this situation is likely applicable

to other signal processing problems, astrophysical or otherwise.

This technique was developed over many conversations with my advisor

Mike Montgomery. I worked this approach out conceptually, relying mostly

on my intuition about Fourier transforms. In order to convince himself, Mike

validated the method with a rigorous mathematical proof, which I do not

include here. In this section, I present my plausibility argument for a method

to disentangle the energetics of individual pulsation modes from the measured

distribution of flux values.

The first ingredient of this technique is the probability density function

(PDF) of instantaneous flux values with an underlying sinusoidal signal. For

a sinusoid of unit semi-amplitude, this takes the form

1/π
√

1− a2, (9.1)
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Figure 9.2: Left: a sinusoid plotted through one period. Right: the probability
density function (PDF) of values randomly sampled from a sinusoid.

as depicted in Figure 9.2 (with normalization required for signals of different

amplitude). A random sampling of a sinusoid is more likely to yield values

near the extrema because of the slow rate of change there.

For multi-periodic variables, the PDF of flux values is the convolution

of the individual signal PDFs. The convolution theorem states that the Fourier

transform (FT) of a convolution of signals is the product of the FTs of the

individual signals (see, e.g., Robinson 2016). We assume that the survey

observations are essentially random in phase (revisit times far exceed pulsation

periods), thus the distribution of measured flux values approximates the PDF.

If the FT of Equation 9.1 lends itself to ready interpretation, we may be able

to disentangle information about the individual sinusoid amplitudes present

in a large set of flux measurements.

It turns out that the FT of Equation 9.1 has the form of a Bessel

function of the first kind, which crosses the x-axis with a signature pattern.
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FTs obey an uncertainty property, such that the more concentrated the input

signal is, the more spread it will be in Fourier space. One important result

of this is the Heisenberg uncertainty principle, which states that there are

certain pairs of conjugate variables that cannot both be determined to infinite

precision in a quantum mechanical system; a precise measurement of the the

position of a particle, for example, comes at the cost of being fundamentally

unable to precisely measure its momentum.

The zero-crossings of the FT of the measured distribution of flux values

for a high-amplitude pulsator therefore are scaled closer together than the zero-

crossings for a low-amplitude variable. Since the product of functions with

zero-crossings exhibits all of these crossings, we expect to be able to detect

the number and amplitudes of sinusoids underlying a randomly sampled signal

by studying the FT of the histogram of measured values.

Mike Montgomery worked out a fitting routine that uses the Bayesian

information criterion to select the most likely number of signals underlying a

set of measurements. Testing this method for 2000 randomly timed observa-

tions of a signal made up of three sinusoids of amplitudes 5.0, 1.3, and 0.6,

we can recover that there are most likely three signals present. The best fit

of Bessel functions to the FT of the measured histogram of flux values, both

shown in Figure 9.3, produces the amplitude measurements listed in Table 9.1.

So far our numerical tests have been exploratory and quite limited,

but we have established a proof-of-concept that this approach can recover

information in cases where usual signal-processing assumptions fail (no help

236



5 0 5
flux values

0.000

0.025

0.050

0.075

0.100

0.125
P(

s)

1 0 1
k

0.02

0.00

0.02

0.04

0.06

0.08

P(
k)

data
0 mode
1 mode
2 mode
3 mode

Figure 9.3: Left: measured histogram of flux values for randomly sampled
3-sinusoid signal. Right: Fourier transform of histogram and best-fit Bessel
function decompositions.

Table 9.1: Best Fit Amplitudes for Example Simulation
Mode Amp in Amp out Error (%)

1 5.0 4.92 1.6
2 1.3 1.34 -2.9
3 0.6 0.71 -18

from the frequencies). We still need to explore the sensitivity and limitations of

this method with more systematic numerical experiments. We especially need

to include the effects of noise and quantify uncertainties in the fit parameters.

It would also be interesting to explore how the presence of harmonics to the

pulsation signals affects the measured flux distribution; the odd (sine) terms

of the FT may reveal information about nonlinear pulsation behavior.
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9.3 Variability Depth and ZZ Cetis in LSST

LSST solicited community input on how their observing strategy design

will impact the scientific yield of the project. For this purpose, they developed

an extensive simulation framework for generating hypothetical data products

for different assumed strategies (Connolly et al. 2014). Researchers from many

astronomical subfields have developed metrics to quantify how well these dif-

ferent simulated surveys serve their scientific needs. These calculations make

use of the Metrics Analysis Framework (MAF; Jones et al. 2014), which in-

terprets the simulated pointing and photometric quality records of the LSST

Operations Simulator (OpSim; Delgado et al. 2014). This work was produced

for inclusion in the LSST Observing Strategy White Paper3, and I include

some excerpts here. The VarDepth MAF metric described here will be used

to evaluate the comparative usefulness of different proposed LSST observing

strategies to stellar variability studies.

While LSST data should be useful for studying many types of pulsating

stars, it is only “synoptic” in this context if it is sensitive to all varieties. For

this reason, I treat ZZ Ceti variables as an important benchmark; if LSST

will provide sufficient data to significantly advance our understanding of this

faintest, lowest-amplitude class of pulsators, then nearly all types of pulsat-

ing star science will benefit from the LSST data. We hope to be able to

measure frequencies and amplitudes for individual pulsation modes from the

3In prep: github.com/LSSTScienceCollaborations/ObservingStrategy
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LSST data alone, but the realities of frequency and amplitude variability on

year timescales may make this more difficult than it seems from my idealistic

analyses in the previous sections. For LSST to really revolutionize the field of

ZZ Ceti pulsations, we would like to see an order of magnitude increase in the

number of known ZZ Cetis, with robust measurements of overall pulsational

power in multiple filters. This means a detection of 1000+ ZZ Cetis from

excess scatter in the multi-epoch photometry alone, including in the u filter,

where we stand to statistically learn the most about the `-identifications of

excited modes (Brassard et al. 1995).

With this goal defined, I developed a simple method of predicting the

number of ZZ Cetis detected as significantly variable in each band at the end of

LSST operations. OpSim provides the observing details for simulated 10-year

surveys, including the fields observed, the filters used, and the photometric

sensitivity (given as the 5σ depth, m5σ, the magnitude of a star detected to

signal-to-noise 5). I wrote a MAF metric that calculates from these records

the limiting magnitude at which a star of a given intrinsic root-mean-squared

variability (r.m.s.) would be correctly identified as variable within given tol-

erances of completeness and contamination in a given filter by the end of the

survey, which I call the “variability depth.” To do this, I generate 10,000

random realizations of the photometric scatter at each pointing for a set of

test magnitudes both with and without underlying intrinsic signal. Figure 9.4

demonstrates this calculation for a single pointing and test magnitude. Be-

cause of the effectively random timing of the observations in phase (given
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Figure 9.4: An example calculation of the probability density functions of a
photometric variable measured for pure-signal, pure-noise, and signal+noise
sources at a generic input test magnitude and signal for a single pointing. The
top panel shows histograms, and the bottom shows cumulative distributions,
which better indicate the percentage of overlap. See text for discussion.

the short periods of white dwarf pulsations compared to typical survey revisit

times), there is a spread in the possible measured variances from the same

pure underlying intrinsic signal, indicated in black. We model the variability

with a Gaussian distribution, which is justified for a multi-modal pulsator by

the central limit theorem. The realization of the random noise also populates

a probability density function (PDF), which is very sensitive to the magnitude

of the target and the total number of observations. The PDF of the measured

variance when both measurement noise and intrinsic signal are present will be
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greater than the noise-only or signal-only cases on average, but there can still

be significant overlap. We can be confident that we will identify the majority

of variable stars of an assumed intrinsic signal to a limiting magnitude where

the signal+noise PDF is well resolved from the noise-only case. For the LSST

Observing Strategy White Paper, I allowed for a 90% completeness goal and

10% contamination, meaning that the 90% point of the noise-only cumulative

density distribution overlaps the 10% levels of the signal+noise distribution at

the variability depth, which is roughly the condition depicted in the bottom

panel of Figure 9.4.

For LSST, each patch of sky is observed a different number of times

and through different filters and conditions. I can calculate the variability

depth as a function of position and filter for any intrinsic signal of interest.

Figure 9.5 shows a map of the variability depth in the r band after 10 simulated

years of the baseline cadence (OpSim run name minion 1016) for 1% r.m.s.

variables. We see that for most of the survey area, 1% variables with r-

band magnitudes of 19 will be detected with 10% contamination and 10%

incompleteness. Brighter targets will be more reliable recovered. Areas of

the sky that receive fewer or greater numbers of r-band observations have

shallower and deeper variability depths, respectively.

To estimate the number of ZZ Cetis from which LSST will detect signif-

icant excess photometric scatter, I created maps of the expected ZZ Ceti mag-

nitude distribution across the sky in different filters. I built this by querying

the CatSim database at the University of Washington, which contains a repre-
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opsim  r: variability depth

16.216.516.817.117.417.718.018.318.618.919.219.519.820.120.4
variability depth (mag)

Figure 9.5: Example output of the VarDepth MAF metric run on the cur-
rent baseline cadence, minion 1016, after 10 years of survey operations. Input
parameters and SQL queries were set to calculate the magnitude limit for
detecting 90% of pulsators with 1% r.m.s. variability from a cut on the mea-
sured variance in the r band (allowing contamination from 10% of nonvariable
sources).

sentative model of the Galactic stellar content, including white dwarf spectral

energy distributions based on the Pierre Bergeron et al. cooling tracks4. I

accept any simulated DA white dwarf with 10,600 ≤ Teff ≤ 12,500 K as a

ZZ Ceti, where neglecting the slight log g-dependence of the instability strip

should not prohibit representative statistics. The map of ZZ Ceti density be-

tween 16 < r < 27 is displayed in Figure 9.6 (the northernmost declinations

4http://www.astro.umontreal.ca/~bergeron/CoolingModels/
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Figure 9.6: Simulated distribution of Galactic ZZ Cetis with r-band magni-
tudes between 16 and 27.

are irrelevant to LSST).

By combining these ZZ Ceti density maps with the results of the

VarDepth metric, I can estimate the number of ZZ Cetis that LSST will

detect in different passbands. To simplify the calculations, we model all

ZZ Cetis as showing the same overall amount of photometric variability (so

that VarDepth only has to be calculated once across the sky). Mukadam

et al. (2006) measured the rms pulsational power of ZZ Cetis across the

instability strip and found that the lowest-amplitude variables showed about

a 1% standard deviation to their underlying flux variations. If we assume

1% variability for all ZZ Cetis and calculate the corresponding VarDepth

(allowing 10% contamination and 10% incompleteness) and sum the number

of ZZ Cetis to that survey limit, we expect to detect the number of ZZ Cetis

listed in Table 9.2. I present counts from both the r and u bands for two
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OpSim outputs: minion 1016, which is the current baseline LSST cadence,

and kraken 1045, which obtains u band exposures with double the exposure

time (60 s instead of 30 s).

Table 9.2: ZZ Ceti Recovery for 1% R.M.S. Variability
OpSim Run Filter # ZZ Cetis
minion 1016 u 9

r 127
kraken 1045 u 17

r 123

This calculation predicts over 100 ZZ Ceti detections in the r band and

∼10 in the u band, which is far below the goal of 1000+ in multiple bands.

However, one must recall that most ZZ Cetis show greater variability than the

1% rms assumed for ZZ Cetis in this first calculation. The conclusion is that

LSST will generally not be sensitive to the lowest-amplitude ZZ Cetis.

To get a more realistic count of the total number of ZZ Cetis expected

from LSST, we can model all ZZ Cetis as having the average rms scatter of

roughly 3% (Mukadam et al. 2006). Under this assumption, we calculate the

expected counts listed in Table 9.3.

Table 9.3: ZZ Ceti Recovery for 3% R.M.S. Variability
OpSim Run Filter # ZZ Cetis
minion 1016 u 197

r 1601
kraken 1045 u 325

r 1534
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These numbers support that LSST will make considerable new discov-

eries of ZZ Cetis, yielding over 1500 from the r band alone. The ZZ Cetis that

will be detected purely from the u band are not so numerous, but it is im-

portant to remember that these observations will not be analyzed in isolation.

A variable source will be best identified by considering the observations in all

bands together, and then constraints on the variability in different bands can

be made. Still, robust measurements of u band amplitudes are most impor-

tant for doing ZZ Ceti astrophysics directly from the LSST observations, so I

advocate for any observing strategy that increases the number of expected ZZ

Ceti detections in the u band. We see from Tables 9.2 and 9.3 that doubling

the exposure times in u increases the number of detections in u considerably

more than it detracts from the expected detections in r, which are already

plentiful.
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Appendix A

Contributed Observations

Over the course of 225 nights personally observed at McDonald Ob-

servatory as a graduate student, I have had the privilege to contribute obser-

vations to numerous exciting projects led by my collaborators. Most of these

targeted known or candidate pulsating white dwarfs, the majority being DAVs.

Some have focused on the opposite extremes of the DAV instability strip than

have been the primary topic of this thesis: high-mass DAVs (e.g., Curd et

al. 2017) and long-term modeling of stable modes in hot DAVs to constrain

secular evolution and reflex motions from planetary companions (follow-up

work to Mullally et al. 2008; Winget et al. 2015). I have also observed many

white dwarfs in Kepler/K2 fields, either to identify new pulsators or to com-

plement the space-based data with a faster cadence or a different passband.

In this appendix, I want to highlight the diversity of my observational work

by briefly presenting some light curves that I obtained on white dwarfs that

are not pulsating. For those works that are not yet published, the light curves

are presented with the permission of the project PIs.
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Figure A.1: Light curves of WD 1145+017 from four consecutive nights in
February 2016 show transits of multiple planetesimals around the white dwarf,
the morphologies of which evolve over these few nights. The light curves are
folded on an average orbital period of 4.493 days, with each night offset by
−0.5 in relative flux.

A.1 WD 1145+017 – disintegrating planetesimals tran-
siting a white dwarf

The discovery of disintegrating planetesimals transiting WD 1145+017

in K2 photometry by Vanderburg et al. (2015) was one of the most important

recent results in the search for exoplanets around white dwarfs. This sparked

extensive ground-based follow-up from small and large telescopes in multiple

passbands. One such update came from Gänsicke et al. (2016), who used

high speed photometry to track the orbital evolution of different planetesimal

chunks. After realizing that our ProEM camera can be rotated on the sky to

just fit a bright comparison star in the opposite corner from WD 1145+017, I
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began to contribute additional observations to the continued monitoring effort

led by Boris Gänsicke. This evolution is apparent in the light curves that

I obtained from the 2.1-meter Otto Struve Telescope during four consecutive

nights in February 2016 run at McDonald Observatory, displayed in Figure A.1.

Over the past two years we have observed this target dozens of times as part of

a larger campaign that includes observations from the Thai National Telescope

and the Issac Newton Telescope.

A.2 SDSS J0651+2844 – eclipsing double white dwarf
binary decaying from gravitational radiation

This is the object that I have observed the most at McDonald Observa-

tory during my graduate work, with our group obtaining well over 100 hours

of coverage over the last three years. This object was identified as a double-

white-dwarf eclipsing binary system with a 12.75-minute orbit by Brown et

al. (2011). Hermes et al. (2012b) were the first to make the exciting measure-

ment of orbital decay of this system caused by gravitational radiation. After

J. J. Hermes departed from UT-Austin, I took over as the primary observer for

the continued monitoring of orbital decay in this system. A typical light curve

of this system is displayed in the sample screen shot of my online reduction

software in the next section, Figure B.1. Primary and secondary eclipses, as

well as ellipsoidal variations (from tidal distortions) are all clearly visible in

this light curve. By the end of the 2017 observing season, we were measur-

ing mid-eclipse arrival times more than three minutes earlier than they would
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Figure A.2: Folded discovery light curve of spot modulation in the massive
DA white dwarf SDSS J1529+2928 from McDonald Observatory on 09 June
2015 (gray) with a smoothed version plotted in black.

have been if gravitational radiation was not shrinking the orbits. A detailed

publication of this work is forthcoming.

A.3 SDSS J1529+2928 – starspot modulation from a
massive white dwarf

Originally observed as a candidate pulsating massive white dwarf for

the survey published in Curd et al. (2017), my data from the McDonald Ob-

servatory 2.1-meter Otto Struve Telescope revealed striking variability with a

period of 38 minutes. This discovery light curve is displayed in Figure A.2

(some observations of this system from the Apache Point Observatory 3.5-

meter predate this light curve, but the data were not reduced until after the

discovery from McDonald). Our model of starspot modulation is described by

Kilic et al. (2015b). We followed this system up with multiple filters to con-

strain the temperature of the spot. The Hubble Space Telescope will obtain
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a light curve of this system in the UV with the Cosmic Origins Spectrograph

in the coming months to further test this model. These observations may

confirm a suspected flux redistribution from metals concentrated by magnetic

fields onto a spot, i.e., brightening in the UV while dimming occurs in the

optical.
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Appendix B

OLD MAID: OnLine Data Management And

Interactive Display Software∗

When obtaining time series photometry at the telescope, it is important

for the observer to be able to visualize their data on-the-fly to inform their

decisions about when to change targets. Real-time light curves and Fourier

transforms can signal a number of important situations: a signal in Fourier

space has reached the target signal-to-noise; signals have become sufficiently

resolved; an upper limit on the presence of some signal has been set sufficiently

low to accept the null result; the event of interest (e.g., and eclipse) is over; or

there is not sufficient signal-to-noise in the light curve for it to be of practical

value. Real time displays can also help the observe to monitor observing

conditions and to easily tweak the telescope focus.

I wrote the OnLine Data Management And Interactive Display

(OLD MAID) Software with PyQt 41 and PyQtGraph2 to serve this need.

This program was presented to the UT-Austin astronomy community at the

∗ Some of this chapter was published in Bell, K. J., 2015, OnLine Data Management
And Interactive Display Software for time series photometry with the ProEM Camera on
the McDonald Observatory 82” Otto Struve Telescope, Proceedings of the Frank N. Bash
Symposium 2015, 23.

1https://riverbankcomputing.com/software/pyqt
2http://www.pyqtgraph.org/
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Figure B.1: Screen shot of the OLD MAID software working on time se-
ries photometry of the 12.75-minute eclipsing double-white-dwarf binary
SDSS J0651+2844 (Hermes et al. 2012b, 2017 in prep; Section A.2).

2015 Frank N. Bash Symposium on the topic of New Horizons in Astronomy

and summarized in a short proceedings paper (Bell 2015). A screen shot of

the program in action is displayed in Figure B.1.

The key features are: automatic dark subtraction and flatfielding, dis-

play of most recent image with marked apertures, selection of target and com-

parison stars with the mouse, raw light curves, divided light curves (optionally

smoothed), records of seeing and sky brightness over time, Fourier transform,

ability for user to select aperture size and comparison star to divide by, and

manual rejection of “bad” points. The observing log fields are not currently

saved automatically, but a screenshot of the program and all visible fields is au-
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tomatically saved when the end of data acquisition is automatically detected.

A record of per-frame timestamps is also saved at this point.

OLD MAID could benefit from additional development, especially to

handle multi-filter data, which we are beginning to obtain a lot of now that

Zach Vanderbosch has installed an automatic filter wheel in the light path.

I aim to generally clean the program up to make it easier for others in the

group to update as needed in future years. The program is publicly available

at https://github.com/ccd-utexas/OLD-MAID.
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Córsico, A. H., & Althaus, L. G. 2014a, A&A, 569, A106
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Córsico, A. H., Althaus, L. G., Serenelli, A. M., et al. 2016c, A&A, 588, A74
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