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This work develops new methodology for Bayesian dependent mixture

models and dependent random partitions with applications to biomedical data.

A mixture model implies a random distribution over partitions by randomly

assigning individual observations to latent subpopulations that correspond to

the distinct components of the mixture. Subpopulations are typically homo-

geneous, but heterogeneous accross groups. In the biomedical applications

studied here, the mixture components capture different levels of gene/protein

expression, distinct stages of cellular development or the response to exposi-

tion to distinct drugs. Multiple forms of dependence are considered in order

to more accurately model biological features of the studied applications, in-

cluding dependence over time, dependence by arrangement on a tree and by

shared match with paired cell lines.
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Chapter 1

Introduction

1.1 Objectives and Outline

This work develops new methodology for Bayesian dependent mixture

models and dependent random partitions with applications to biomedical data.

A mixture model implies a random distribution over partitions by randomly

assigning individual observations to latent subpopulations that correspond to

the distinct components of the mixture. Subpopulations are typically homo-

geneous, but heterogeneous accross groups. In the biomedical applications

studied here, the mixture components capture different levels of gene/protein

expression, distinct stages of cellular development or the response to distinct

drugs. Multiple forms of dependence are considered in order to more accu-

rately model biological features of the studied applications, including depen-

dence over time (Chapter 2), dependence by arrangement on a tree (Chapter

3) and by shared match with paired cell lines (Chapter 4).

Summary and contributions

1. In Chapter 2, we model changes in protein expression after cell lines are

exposed to drugs (protein inhibitors) in an reverse phase protein array

(RPPA) experiment. We allow for clusters of proteins with different

1



treatment effects, and allow these clusters to change over time. The

proposed dependent random partitions define a refinement and coagu-

lation of protein clusters over time. We implement the approach using

a time-course RPPA dataset consisting of protein expression measure-

ments under different drugs, dose levels, and cell lines.

Biologic motivations: The biologic motivation for the experiment and

the developed inference approach is in to determine which proteins are

affected by each inhibitor and what is how intense is the effect based on

the dose that is administered.

Contributions: We developed a time-dependent random partition mod-

el that is defined by a sequence of random refinements and coagulations

at random change points. The model includes monotonicity as implied

by the application. In the motivating application, such dependence ac-

counts for the identification of the proteins that are affected by drugs,

although the proposed model can also be used in different applications

that exhibit similar patterns.

2. In Chapter 3, we introduce dependent mixture models when the cluster

locations are naturally connected by a spanning tree. The motivating ap-

plication is inference for cell lineage data on the basis of single cell RNA

sequencing (scRNAseq) data for cell differentiation. The terms of the

mixture model are interpreted as distinct cell types, including a known

root cell population and final differentiated cells. We propose prior mod-

els based on prior shrinkage of a minimum spanning tree (MST) of cluster

2



centers.

Biologic motivations: Related inference can eventually help investi-

gators to better understand the process of cell differentiation including

potential targets for treatment of pathological conditions.

Contributions: We develop a dependent mixture model where the

dependence arrises from the nature of the components as the nodes of

an underlying latent random tree. The dependence is represented by

a regularization factor in the prior distribution of the locations of the

nodes and it penalizes over-complex tree structures.

3. In Chapter 4, we construct a novel Bayesian statistical approach for

matching patient samples with cell lines. We propose a statistical ap-

proach that seamlessly combines the output of the Bayesian mixture

model based on a proposal by Parmigiani et al. (2002) with a novel two-

way Bayesian non-parametric (BNP) mixture model that is constructed

as an extension of a BNP bi-clustering model of Lee et al. (2013).

Biologic motivations: Our approach expands on the traditional pre-

cision medicine procedures of using the patients specific omics profile

in order to propose a personalized treatment that is expected to work

the best for that patient. When matching similar cell line profiles to

the patient’s own omics information, we can gather more data to use

in treatment design while still focusing on the patient profile. This ap-

proach also enables less invasive approaches for drug testing, since the

similar cell lines can be used to infer the expected effect on the patients

3



before they receive the treatment.

Contributions: The research described in Chapter 4 makes two impor-

tant methodological contributions in Bayesian non-parametrics: (i) the

seamless integration of the (modified) probability of expression (POE)

model for noise reduction and the nested bi-clustering approach; (ii) the

introduction of a novel random structure to allow probabilistic modeling

of co-clustering between cell lines and patients based on profile similari-

ties via dependent priors on partition models.

Finally, in Chapter 5 we present conclusions and future work. Appendix

A contains a list of well known probability distributions with the parameter-

ization that is used throughout the thesis. Appendix B contains additional

information that details the implementation of the MCMC algorithm that is

discussed in Chapter 2, as well as details on the use of AIC and BIC to select

the number of clusters. Appendix C describes details for the MCMC algorithm

to sample from the posterior distribution under the two models proposed in

Chapter 3: h-MST and s-MST. Finally, Appendix D contains the full con-

ditionals for the Metopolis within Gibbs algorithms that are used to sample

from the posterior distribution under the models described in Chapter 4 POE

model and uder the NobLoc model with matching of cell lines and patients.

1.2 The Bayesian Inference Framework

We introduce notation by way of a brief review of Bayesian infer-

ence for parameter estimation and prediction. Consider a random object

4



Y with an assumed probability distribution that is indexed by a parame-

ter vector θ. Here, Y could be, for example, a random variable, a ran-

dom vector, a random process or even a random measure. With the ob-

jective of understanding the probabilistic behavior of Y, a random sample

y = y1, . . . , yn is collected from Y and, based on it, we produce estimates of

θ. This procedure works because the observed data carries information about

the parameter θ which is mathematically coded in the likelihood function

l(· ; y) : Θ→ R+, defined as l(θ; y) = p(y | θ) as a function of θ, where Θ

is the parameter space and p(y | θ) is the density function (or the probability

mass function) of y. The likelihood function can therefore be interpreted as a

measurement of plausibility for θ in the light of the observed data y.

Under the Bayesian paradigm, subjective prior information about θ

is also considered. Such information is mathematically represented by the

prior distribution π(θ) which is specified unconditionally on the observed data.

Bayes theorem establishes the use of prior and likelihood to update uncertainty

about θ.

Bayes theorem: Let θ ∈ Θ be the parameter, p(θ) the density or proba-

bility mass function a priori, and y the vector of observations with likelihood

l(θ;y) = p(y | θ). Then, the posterior distribution is given by

p(θ | y) =
p(y | θ)p(θ)∫
p(y | θ)p(θ)dθ

∝ p(y | θ)p(θ),

5



where the product p(y | θ)π(θ), as well as any of its multiples by any factor

that does not depend on θ, is known as the kernel of π(θ | y).

All information on the parameter θ after seeing the data is contained in

the posterior distribution with associated density (or probability mass func-

tion) p(· | y) : Θ → R+. The posterior distribution is used to calculate

estimates of the parameters as well as to make predictions for new data y∗

through the predictive distribution

p(y∗ | y) =

∫
Θ

p(y∗ | θ) dp(θ | y)

=


∫

Θ

p(y∗ | θ)p(θ | y)dθ, (continuous case)∑
θ∈Θ

p(y∗ | θ)p(θ | y)dθ, (discrete case).

The predictive distribution can be interpreted as an average of the new data

likelihood p(y∗ | θ) weighted by the posterior p(θ | y) on the observed data.

The predictive distribution does not depend on θ in its analytical form.

1.3 Bayesian Mixture Models

A large class of attractive models in Bayesian inference, especially in

biomedical research problems, are hierarchical and related mixture models.

Mixture models are probabilistic models obtained from the integration of a

parameterized probability density (or probability mass function) with respect

to a mixing measure on the parameter. For example, Gaussian mixture models

are obtained as

6



p(y | θ) =

∫
N(y | µ,Σ) dGθ(µ,Σ), (1.1)

where N(x | a,B) denotes the density of a (multivariate) Gaussian distri-

bution with mean a and covariance matrix B evaluated at x. The mixing

measure Gθ is typically parameterized by unknown parameters θ, resulting in

p(y | θ) also being parameterized by θ. The model specification is completed

by specifying a hyperprior on θ.

Many different models p(y | θ) can be written as in (1.1), depending

on the choice of the mixing measure Gθ and the prior on θ. We focus on cases

where the integrand in (1.1) is Gaussian, although any other distribuitions

could also be considered.

Example 1.3.1. (Discrete Gaussian mixture model) In the case of a discrete

mixing measure Gθ(·) =
∑

k wkIµk,Σk(·) with Ix(·) denoting a unit point mass

(Dirac measure) at x, we have θ = (wk,µk,Σk, k = 1, . . . , K) and the mixture

reduces to p(y | θ) =
∑K

k=1wkN(y;µk,Σk). Here we allow for either finite

discrete mixtures (K ∈ N) or infinite discrete mixtures (K =∞).

Example 1.3.2. (Student-t as a Gaussian scale mixture) Consider the uni-

dimensional case y ∈ R, with p(y | µ, σ2) = N(y | µ, σ2). If Gα,β(·) is the

Gamma(α, β) distribution on σ−2 for fixed µ, then the mixture is a location-
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scale Student-t

(
2α, µ,

√
β
α

)
:

p(y | µ, α, β) =

∫
N(y | µ, σ2)dGα,β(σ−2) ∝

∝
∫ +∞

0

(σ−2)
1
2 exp

{
−1

2
(y − µ)2σ−2

}
× (σ−2)α−1 exp(−βσ−2)d(σ−2) ∝

∝
[
α(y − µ)2

β
+ 2α

]− 2α+1
2

.

Example 1.3.3. (Laplace as a Gaussian scale mixture) Consider the univari-

ate case p(y | µ, σ2) with mixing measure Gλ(σ
2) being the Exp

(
λ2

2

)
distribu-

tion. Then (y | λ, µ) ∼ Laplace(λ, µ, 1):

p(y | λ, µ) =

∫ +∞

0

N(y | µ, σ2)dGλ(σ
2)

∝
∫ +∞

0

(σ2)−
1
2 exp

{
−1

2
σ−2(y − µ)2

}
exp

{
−λ

2

2
σ2

}
dσ2

∝ exp {−λ|y − µ|} .

An important application of the Laplace distribution as a scale mixture of nor-

mals arises in the Bayesian lasso (Park and Casella, 2008) variable selection

approach where the Laplace prior is responsible for an L1 regularization of the

coefficients and the augmentation provided by the scale mixture representation

guarantees conjugacy for the full conditionals of the Gibbs sampler (section

1.4.2), therefore simplifying the algorithm.
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We focus on discrete Gaussian mixtures as in Example 1.3.1. Imple-

menting posterior simulation, the parameter space is augmented to include

latent group assignment variables (or cluster membership indicators) δi, i =

1, . . . , n for observations yi. The event {δi = k} indicates that observation i is

sampled from the subpopulation k, i.e., (yi | δi = k,µk,Σk) ∼ N(yi | µk,Σk).

The probability vector w = (w1, . . . , wK) then serves as prior for the cluster

membership indicators: P (δi = k | w) = wk.

The final step to define the Bayesian discrete Gaussian mixture model

is to specify the prior for the atoms (µk,Σk)
K
k=1 and for the probability vector

w, i.i., Gθ in (1.1). There are many possibilities for defining such priors. For

finite discrete Gaussian mixtures (K < ∞) a common choice is a Dirichlet

distribution for the weights: w ∼ Dirichlet(η) and an i.i.d. conditionally con-

jugate prior for the atoms: µk ∼ N(µ0,Σ0), Σk ∼ IW (ν,Ψ). To summarize,

the full Bayesian model in this case is:

(yi | δi = k,µk,Σk) ∼ N(yi | µk,Σk),

P (δi = k | w) = wk,

and priors,

w ∼ Dirichlet(η), µk ∼ N(µ0,Σ0), Σk ∼ IW (ν,Ψ). (1.2)

Under the representation of the mixture model in equation (1.1) as

an expectation with respect to a mixing measure Gθ it is natural to inter-
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pret (1.2) as a prior on Gθ, in this case indexed by a fixed dimension vector

of hyperparameters (η,µ0,Σ0, ν,Ψ). In general, prior probability models on

random probability measures such as Gθ are also known aas non-parametric

Bayes models (BNP) (Ferguson et al., 1992). In this sense, mixture models

are naturally linked with BNP priors.

1.3.1 Bayesian non parametrics and mixture models

In contrast to parametric approaches, non-parametric models include

infinitely many parameters which under the Bayesian framework requires a

prior on a space of infinite dimensions. The main motivation for non-parametric

models is the flexibility that is achieved in comparison with a parametric model

with finite dimensional parameter space. In this section we will present some

applications of Bayesian non-parametric (BNP) priors for mixture models.

We start with the arguably simplest non-parametric model on ran-

dom probability measures: the Dirichlet process (DP) (Ferguson, 1973). If

G ∼ DP (G0, α), we say that G is a random measure following a Dirichlet

process with baseline probability measure G0 on a set S and concentration

parameter α. Ferguson (1973) defines G ∼ DP (G0, α) by defining probability

assignments on partitions of S as

(G(B1), . . . , G(BK)) ∼ Dirichlet((αG0(B1), . . . , αG0(BK)))

for any measurable partition S = B1 ∪ . . . ∪ BK for any K ∈ N. The author

shows that the DP is well defined, meaning that there are no inconsistencies

with the random assignment of probabilities through the DP.
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However, the definition provided by Ferguson (1973) does not directly

allow for an easy way of, for example, simulating such random measure. Sim-

ulation of a DP random measure is important to implement Bayesian infer-

ence in models involving DP’s. Sethuraman (1994) provided a very simple

and efficient way of sampling a DP. The procedure is called stick breaking

representation and it works as follows. First generate a sequence of atoms

(θk)
+∞
k=1. For each k ∈ N sample βk ∼ Beta(1, α) and create a probabil-

ity vector w = (wk)
∞
k=1 as w1 = β1, wk = βk

∏
`<k(1 − β`) for K > 1. This

definesG(·) =
∑∞

k=1wkIθk(·). The stick breaking construction by itself already

gives valuable insights on G ∼ DP (G0, α) when G0 is a continuous probabil-

ity measure: (1) G is a discrete probability measure with infinite number of

atoms; (2) the atoms are sampled i.i.d. from the baseline measure; (3) the

atoms are a dense set in the support of G0; (4) α controls the rate of decay of

the weights wk as k →∞.

1.4 Markov Chain Monte Carlo Posterior Simulation

In many important Bayesian models, it is not possible to evaluate poste-

rior integrals analytically. Alternatively, there are many numerical quadrature

integration methods to approximate p(y), such as the trapezoids rule, Simpson

integration formula, Gauss Hermite quadrature and more (for a brief introduc-

tion, see for example Süli and Mayers 2003). Such methods usually work well

when θ is low dimensional because then the construction of the grid of points

to integrate over can be reasonably distributed over the parameter space Θ.
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However, in moderate dimension (say p = 8 or beyond) the construction of

such a grid reaches a prohibitive computational cost.

In these cases, either optimization or simulation based methods are

used. Regarding optimization algorithms, gradient descent for maximum a

posteriori (MAP), expectation-maximization (EM) (Dempster et al., 1977)

and variational inference (Blei et al., 2017) are among the most popular meth-

ods. An issue with optimization approaches is the way uncertainty is treated:

posterior inference under optimization methods is typically limited to point

estimates. In case of variational inference, we can use the variational posterior

q(θ) as an approximation for the true posterior p(θ | y) and report uncer-

tainty in using q. However q could be a poor approximation for p if the space

of variational distributions is too restricted, e.g. under the mean field assump-

tion (independence of the components of θ). See Yin and Zhou (2018) for an

expansion on the commonly used analytic variational distribution family that

produces accurate variational approximations in a broad range of scenarios.

In this work, we will focus on simulation approaches. Perhaps the most

popular is Markov chain Monte Carlo (MCMC), which simulates a random

Markov chain having the posterior p(θ | y) as its invariant distribution. Then

assuming ergodicity, averages over the simulated states approximate posterior

integrals as the algorithm iterates.

Next we describe two popular MCMC sampling schemes in prepara-

tion for Chapters 2, 3 and 4: the Gibbs sampler and the Metropolis-Hastings

algorithms.
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1.4.1 Metropolis Hastings

Consider a target probability distribution with density π(x) and sup-

port X ⊂ Rd from which we want to obtain a random sample by MCMC

simulation. We suppose that π(x) is analytically available up to a propor-

tionality constant, i.e., π(x) = π∗(x)C−1 where C is unknown and the kernel

π∗(x) is available in analytic form with
∫
X
π∗(x)dx = C. For example, π(x)

could be a posterior distribution in a Bayesian inference problem, i.e., x = θ

and X = Θ with π(θ) = p(θ | y). We already saw that the kernel of the poste-

rior distribution is analyticaly available when the prior p(θ) and the likelihood

p(y | θ) are analytically available.

The objective is to build an irreducible and aperiodic Markov chain

with transition probability p(x̃ | x) having invariant distribution π(x). Such

conditions guarantee the convergence of the Markov chain to its target in-

variant distribution π(x). It is usually easy to build an irreducible aperiodic

Markov chain. A sufficient condition for invariance is the detailed balance

condition.

Detailed balance condition: If π(x̃)p(x | x̃) = π(x)π(x̃ | x), ∀x, x̃ then

π(x) is the invariant distribution of the Markov chain with transition p(x | x̃).

In this case, we say that p(x̃ | x) satisfies the detailed balance condition with

respect to the invariant distribution π(x).

13



To create a transition p(x̃ | x) that satisfies the detailed balance con-

dition with respect to π(x) we start with an initial proposal q(x̃ | x) on

X that is irreducible and aperiodic. The initial proposal will usually violate

detailed balance condition, i.e., for some pairs (x̃,x) ∈ X × X, π(x)q(x |

x̃) 6= π(x̃)q(x̃ | x). Suppose without loss of generality that a pair (x̃,x)

satisfies π(x)q(x | x̃) > π(x̃)q(x̃ | x). Then we include the multiplicative

terms 0 < α(x | x̃) < 1 and α(x̃ | x) to form a new transition probability

p(x̃ | x) ∝ q(x̃ | x)α(x̃ | x) under which the pair (x̃,x) satisfies

π(x̃)q(x | x̃)α(x | x̃)︸ ︷︷ ︸
p(x|x̃)

= π(x)q(x̃ | x)α(x̃ | x)︸ ︷︷ ︸
p(x̃|x)

.(1.3)

Analogously, for pairs (x̃,x) satisfying π(x̃)q(x | x̃) < π(x)q(x̃ | x), we take

0 < α(x̃ | x) < 1 and α(x | x̃) where α(x | x̃) is also chosen to satisfy

equation 1.3. We can combine both cases by taking

α(x | x̃) =

{
1,

π(x)q(x̃ | x)

π(x̃)q(x | x̃)

}
.

The chain with transition p(x̃ | x) ∝ α(x̃ | x)q(x̃ | x) satisfies the detailed

balance condition. Notice that α(x̃ | x) can be evaluated even if we only have

the kernel of the target distribution analytically available.

We iteratively sample from the Markov chain with transition probabil-

ity p(x̃ | x) = α(x̃ | x)q(x̃ | x) + (1−α(x̃ | x))Ix(x̃) by first proposing a new

value x∗ from the proposed transition q(x∗ | x) at the current state x that
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is to be randomly accepted with probability α(x∗ | x). If x∗ is accepted, we

make x̃ = x∗, otherwise we take x̃ = x.

In the context of Bayesian inference, the target invariant distribution

is the posteriori π(x) = p(θ | y) with X = Θ and the acceptance probability

simplifies to

α(θ̃ | θ) =

{
1,

p(y | θ)p(θ)q(θ̃ | θ)

p(y | θ̃)p(θ̃)q(θ | θ̃)

}
.

Pseudocode for the implementation of a Metropolis Hastings transi-

tion probability in the context of Bayesian inference is presented in Algorithm

1. Assuming that the Markov chain is ergodic, the process Θ̂ := {θ(i) : i =

1, . . . ,M} in Algorithm 1 provides an (approximate) Monte Carlo sample from

p(θ | y). See for example Robert and Casella (2013) for details. Averages over

Θ̂ provide the desired approximation of integrals with respect to the target

p(θ | y).
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Algorithm 1: Metropolis Hastings algorithm for posterior samples

1 Initialize x(1) ∼ π0(θ);

2 Choose the proposal q(θ̃ | θ) (irreducible and aperiodic);
3 for (i ≤M) do

4 Propose θ̃ ∼ q(θ̃ | θ(i));

5 Calculate α(θ̃,θ(i)) =

{
1,

p(y|θ)p(θ)q(
˜θ|θ)

p(y| ˜θ)p(
˜θ)q(θ| ˜θ)

}
;

6 Sample u(i) ∼ Unif(0, 1);

7 if u(i) ≤ α(θ̃ | θ) then

8 θ(i+1) ← θ̃;
9 else

10 θ(i+1) ← θ(i);
11 end

12 end

Possible choices for the proposal q(θ̃ | θ) are

1. Independent proposal: q(θ̃ | θ) = q(θ̃) ∀ θ, θ̃ ∈ Θ. The independent

proposal does not depend on the current state of the chain. The closer

q(θ̃) is from p(θ̃ | y), the higher the chance of accepting proposed values

which defines a better mixing Markov chain.

2. Random walk proposal: q(θ̃ | θ) = q(θ | θ̃), for example q(θ̃ | θ) =

N(θ̃ | θ,V ) for the tunning covariance matrix V . Typically, we take

V = diag(v2
1, . . . , v

2
d) to be a diagonal matrix. We propose a new value
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centered on the current one. For component k, if v2
k is too big, then

the proposal is too erratic, leading to a low acceptance probability. On

the other hand, for values of v2
k too small we get a chain with very high

acceptance, but moving too slowly in each iteration, i.e. a slowly mixing

Markov chain. Therefore, some tunning of v2
k is usually necessary.

Under both proposals, a sufficient condition for an irreducible and ape-

riodic chain p is Pq(θ̃ ∈ A | θ) > 0 ∀A ⊂ Θ measurable (meaning that q

allows the chain to move to any measurable set within the support Θ within

a single move). In conclusion, the resulting Marokv chain will be ergodic and

will converge to the posterior distribution.

1.4.2 Gibbs sampler

Consider x = (x1, . . . , xd) ∈ Rd and the target distribution π(x) again

analytically available up to an unknown multiplicative normalization constant.

The Gibbs sampler operates by sequentially sampling from the full conditional

distributions π(xk | x−k), k = 1, . . . , d, as stated in algorithm 2 where the

target is, again, the posterior distribution: π(x) = p(θ | y).

Algorithm 2: Gibbs sampling algorithm for posterior samples

1 Initialize θ(1) ∼ π0(θ);
2 for (i ≤M) do

3 Sample component 1: θ
(i+1)
1 ∼ p(θ1 | y, θ(i)

2 , . . . , θ
(i)
d );

4 Sample component 2: θ
(i+1)
2 ∼ p(θ2 | y, θ(i+1)

1 , θ
(i)
3 , . . . , θ

(i)
d );

5
...

6 Sample component d: θ
(i+1)
d ∼ p(θd | y, θ(i+1)

1 , . . . , θ
(i+1)
d−1 );

7 end
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1.4.3 Reversible jumps and variable dimensions

Many BNP models involve parameter vectors of variable dimension. In

order to accomodate for this, it is common to extend the Metropolis-Hastings

algorithm to propose transdimensional moves using a reversible jump MCMC

(Green, 1995). In this section, we provide a brief summary of reversible jump

MCMC (RJMCMC). More details and examples are available in Green (1995)

and Richardson and Green (1997).

In the following discussion, let x denote the parameter vector. The

target distribution is denoted by π(x) for transdimensional x ∈ ∪n∈NRn. The

target distribution restricted to Rn is denoted by πn(xn) and it has density

fn(xn). We start defining up and down moves that will respectively increase

or decrease the dimensionality of the parameter. As always in a Markov chain,

transition probabilities are allowed to depend on the current state; for example,

down moves in a mixture model could be proposed by selecting which pair of

the current components (clusters) to merge. For a state x ∈ Rn, the list of

all (finite) possible up and down moves are Mu(x) = {u1(x), . . . , unx(x)} and

Md(x) = {d1(x), . . . , dnx(x)} respectively. We will denote M(x) = Md(x) ∪

Mu(x). Finally, let qm(x) be the probability of using the transition probability

m ∈M(x) when the current state is x.

Furthermore, suppose all up moves u ∈ Mu(x) from any state x to a

state y are obtained by sampling auxiliary variables v ∼ qaux(v) and then

applying the deterministic invertible transformation y = Tu(x,v). Notice that

given the current state x and the up move u, the proposed value y = Tu(x,v)
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is random due to the randomness of v. On the other hand, we will assume that

proposed values from down moves d ∈ M(y) are obtained deterministically,

given the current state y and the down move d. One last definition: αm(x,y)

is the probability of accepting the proposed value of y given the transition

probability m ∈M(x) and the current state x. Notice that αm(x,y) depends

on the auxiliary variable v.

Let |J | = det(∂T/∂x∂v) denote the Jacobian of transformation T .

Finally, the reversible jump MCMC uses the following acceptance probabilities

for up and down moves:

αu(x,y) = min

{
1,

qd(y)fn+1(y)|J |
qu(x)qaux(v)fn(x)

}
,

αd(y,x) = min

{
1,
qu(x)qaux(v)fn(x)

qd(y)fn+1(y)|J |

}
= min

{
1,

1

αu(x,y)

}
.

It can be shown that the defined transition probabilities satisfy the detailed

balance condition.
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Chapter 2

A Bayesian Random Partition Model for

Sequential Refinement and Coagulation

2.1 Scientific publication

This work has appeared in Zanini et al. (2019)1. Carlos Tadeu Pagani

Zanini is the first author of the paper and worked on developing the overall in-

ference approach, the MCMC algorithm for posterior estimation, designing the

simulation study, analysing the data, identifying modifications to the model in

response to observed lack of fit with the real data and also leading the drafting

of the manuscript.

2.2 Introduction

2.2.1 Overview

In this section, we propose a model for a sequence of partitions that

includes refinement of the initial partition followed by later coagulation. The

model is motivated by an analysis of protein activation over time after an

intervention.

1Full citation: Zanini CTP, Müller P, Ji Y, Quintana FA (2019). A Bayesian
random partition model for sequential refinement and coagulation. Biometrics.1-12.
https://doi.org/10.1111/biom.13047
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A functional protein pathway involves proteins whose expressions are

dependent. For example, expression of a protein can stimulate the expression

of another protein. Usually a stable pathway leads to an equilibrium state

of the expression of all proteins in the pathway, which can be modeled as a

probability distribution. In cancer cells, biological pathways are almost always

disrupted, which shifts the equilibrium state of the protein expression. Effec-

tive cancer drugs, such as targeted protein inhibitors, can help treat cancer

patients by altering protein expression for key biomarkers. Through pathways,

other proteins are subsequently affected which ultimately leads to phenotypes

that are beneficial for patient survival or quality of life. For a new develop-

mental drug, one of the first steps is to test which proteins are affected when

the drug is introduced to the cells. This is typically done by functional as-

says. We consider such an assay in which protein expression of a biological

pathway is measured at the baseline and at multiple time points after a drug

is introduced to cancer cells.

We analyze protein expression data from such functional assays. To

investigate which proteins have their expression levels changed (directly or

indirectly) after being exposed to the drug, we define a Bayesian model for

protein expressions with a time-dependent clustering structure. The under-

lying assumption of the model is a stylized representation of the earlier de-

scription of disrupted protein pathways. We assume that the proteins are

originally clustered in a canonical way with respect to their protein expres-

sions and, after a certain time period of drug exposure, some or all of the
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proteins have their expressions altered, which may lead to a different cluster-

ing structure. As time passes the drug effect wears off, and the clustering

structure of the proteins may revert to the initial state. In other words, we

model protein expression and the treatment effect by arranging proteins in

different subsets (clusters), possibly corresponding to biologic function, with

cluster-specific mean expression levels. Treatment response is modeled by al-

lowing a change in cluster-specific means over a time interval after treatment,

and by adding new clusters to allow for heterogeneous treatment responses.

The model includes random time points to define this time interval after treat-

ment. Methodologically, through a Bayesian modeling framework we propose

an approach that allows inference for such dependent and temporal clustering.

The dependence is on the partitions that define the clusters, rather than on

the distribution of these partitions.

The proposed process is a reduced and simplified version of the more

general fragmentation and coagulation process of Teh et al. (2011). Another

more general model, without explicit modeling of refinement or coagulation,

is proposed in Elliott et al. (2018) who use a hierarchical Dirichlet process to

infer local genetic ancestry from genotype data. The model implies a parti-

tion of subjects into subsets with common ancestry at each locus. Partitions

are allowed to vary across genetic locus and dependence is formalized by a

hidden Markov process. In general, any dependent discrete random probabil-

ity model such as the Dirichlet or Pitman-Yor (PY) processes (Pitman and

Yor, 1987), indexed by discrete time, could be used to induce the desired
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time-dependent random partition. Such models are developed in Caron et al.

(2017) and Rodŕıguez and Ter Horst (2008). Caron et al. (2017) construct a

sequence of random partitions with each partition marginally distributed as

in a PY mixture model, with an additional parameter to control similarity

between partitions. The approach is based on a property of the Ewens sam-

pling formula known as consistency under deletion (Kingman, 1978). However,

these models for sequences of random partitions are more general than what

is needed here and the implied marginal distribution of the random partition

at each time point is the same. In contrast, the assumed monotonicity of

fragmentation and following coagulation is important in our application. It

represents how the treatment affects the proteins (refinement), and that effect

eventually vanishes (coagulation). This desired monotonicity (of adding and

then removing clusters) and the limited data in the motivating application lead

us to construct a much simplified version of such more general models. The

main inference target is the subset of proteins that form the refined partition

clusters, corresponding to the desired subset of proteins that are most affected

by the initial treatment.

2.2.2 Dataset

The motivating data are from an experiment using reverse phase protein

arrays (RPPA) which record the expression of selected proteins in a biological

pathway simultaneously on multiple samples. Multiple cell line samples are

prepared and exposed to multiple protein inhibitors at different dose levels
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(Charboneau et al., 2002). The experimental design is a balanced factorial

structure, including C = 2 cell lines, D = 3 drugs, J = 3 technical replicates,

and L = 4 doses (0, 0.625, 2.5 and 10uM), with expression measurements

of I = 55 proteins recorded at T = 8 different times (0, 5, 15, 30, 60, 90, 120

and 180 minutes) after the drug exposure. The cell cultures are treated with

three protein inhibitors that are often investigated in cancer studies. The in-

cluded drugs act on: Phosphoinositide 3-Kinase (PI3K), which is responsible

for coordinating cell functions such as proliferation, cell survival, degranu-

lation, vesicular trafficking and cell migration (Azadi et al., 2016); Protein

Kinase B (AKT), which promotes growth factor-mediated cell survival, cell

proliferation and inhibits apoptosis through the inactivation of pro-apoptotic

proteins (Nitulescu et al., 2016); and mitogen-activated protein kinase kinase

(MEK), which is an important component of the ERK1/2 signaling pathway

that is often deregulated in cancer cells (Caunt et al., 2015).

Some of the data can be seen in the four panels in the left column of

Figure 2.7. The plots show the data for cell line c = 1 under drug d = 1,

which is the PI3K inhibitor. The horizontal axis is time (in minutes) after

treatment. The vertical axis is protein expression (averaged over J = 3 repeat

experiments). Notice how some proteins have their expressions altered after

the dose is administered. Figure 2.8 shows the same for cell line c = 2.

For an initial exploratory data analysis one could use a fit of the tra-

jectory for each protein and try to identify systematic changes. Figure 2.1,

for example, shows a fit of the data using a flexible regression model – in this

24



0
2

4
6

8
10

Time

P
ro

te
in

 e
xp

re
ss

io
n

0 15 60 1205 30 90 180

Dose: 0uM

0
2

4
6

8
10

Time
P

ro
te

in
 e

xp
re

ss
io

n

0 15 60 1205 30 90 180

Dose: 0.625uM

0
2

4
6

8
10

Time

P
ro

te
in

 e
xp

re
ss

io
n

0 15 60 1205 30 90 180

Dose: 2.5uM

0
2

4
6

8
10

Time

P
ro

te
in

 e
xp

re
ss

io
n

0 15 60 1205 30 90 180

Dose: 10uM

Figure 2.1: Smoothing splines based on the J=3 repetitions over time (min-
utes) for each protein in cell line 1 for drug PI3Ki. Cluster structure (repre-
sented in colors) is constrained to be the same for all different doses. Compare
with the data shown in the left column of Figure 5.

case smoothing splines. While the fit is reasonable, it remains difficult to spot

proteins that respond to treatment. By arranging proteins in clusters we will

reduce some of the noise and be able to highlight possible treatment effects.

2.3 Probability Model

Let ycd`ijt denote the expression level for protein i in cell line c, drug

d, dose `, replicate j and time point t. To simplify notation, we drop c and

d from the subindex in the following discussion as they appear in (almost) all

variables. Only one parameter, Σc is common across drugs which we highlight

by including the c subindex for Σc. In addition, some of the hyperparameters

are common across all c, d as indicated below. We use notation for column

vectors such as (an)Nn=1 = (a1, . . . , aN)>.

We assume a model y`ijt = µ`it+ ε`ijt, where µ`it is the mean expression
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level for a specific cell line, drug, dose, protein and time, and ε`ijt represent

time-dependent Gaussian errors. Let ε`ij = (ε`ijt)
T
t=1 denote the error vector.

We assume ε`ij
iid∼ N(0,Σc) with Σc denoting covariance matrix, independently

across cell line, drugs, doses, proteins and replicates. Similarly let y`ij =

(y`ijt)
T
t=1 and µ`i = (µ`it)

T
t=1. The joint likelihood becomes

y`ij
ind∼ N(µ`i,Σc), (2.1)

with independence across all subindex values, but dependence of the elements

y`ijt across time t = 1, . . . , T . We assume an inverse Wishart conjugate prior

on the covariance matrices Σc
ind∼ IW(νΣ,V Σ), c = 1, . . . , C, with expectation

V Σ

νΣ−T−1
. Here V Σ is a (fixed) T × T matrix-variate hyperparameter and νΣ ≥

T + 2 are the degrees of freedom. Introducing a more detailed model for

temporal dynamics is not meaningfully possible with the small sample sizes

and only T = 8 longitudinal observations.

We introduce a time-dependent partition of the proteins, which together

with cluster-specific means implies a generative model for the mean protein

expressions µ`i within cell line, drug and dose, and across different time points

t = 1, . . . , T . We first develop the structure for the time-dependent partitions.

Let δt = (δti)
I
i=1 denote the partition at time t of proteins i = 1, . . . , I into κt

clusters m = 1, . . . , κt. The random partitions δt are characterized by cluster

membership indicators δti ∈ {1, . . . , κt} with δti = m when protein i is in the

m-th cluster at time t. A key model feature is the prior probability model for

the sequence of partitions δ1, . . . , δT that defines the evolution of the partitions

26



over time (as before, separately for each cell-line c and drug d). See below for

the choice of κt – we will reduce it to only two distinct values, κ1 and κ2,

over time. Also, for clarification we note that the dependence should be on

the partitions themselves rather than on their distributions. Modeling the

dependence on the actual proteins, i.e., the cluster membership of proteins,

allows us to represent how the treatment affects each protein.

One desired feature motivated by the nature of the RPPA data analysis

is that partitions should initially start fragmenting (i.e., more subsets should

be formed) up to a certain change point, after which a coagulation process

starts (i.e., merging of clusters into fewer subsets). This reflects the drug

action on proteins. In other words, the drug is expected to alter the regular

expression pattern of the proteins, resulting in more heterogeneous expression

profiles and therefore more clusters. As the drug effect wears off, the expression

of the proteins should revert to the original states, implying a coagulation of

the clusters.

We implement the desired structure with two change-points in time.

The first change point marks the beginning of the refined partition with more

clusters, and the second change point marks the time when the partition reverts

to the original clusters. We let τ 1
` (refinement change point) denote the first

change point when the proteins form the finer partition, and let τ 2
` (coagulation

change point) denote the second change point. We assume 1 ≤ τ 1
` < τ 2

` ≤ T

for all cell lines c, drugs d, and doses `. One key feature is that τ 1
` and τ 2

` are

specific to dose `. This represents how different doses act faster or slower on
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the proteins. Higher doses are expected to start acting on the proteins earlier

than lower doses, i.e., we expect monotonicity of τ 1
` and τ 2

` over doses. We

further assume (τ 1
` , τ

2
` )

iid∼ Unif ({(u1, u2) : 1 ≤ u1 < u2 ≤ T − 1}) . Adding an

informative prior would be straightforward. However, even with the (vague)

uniform prior we find little posterior uncertainty on the change points.

The prior probability models for the baseline and fragmented parti-

tions are constructed as Dirichlet-multinomial models for cluster membership

indicators. Let δu = (δui )Ii=1 for u ∈ {1, 2} denote the two partitions of pro-

teins with u = 1 indicating the original (coarse) partition that applies for

t < τ 1
` and t > τ 2

` , and u = 2 indicating the (refined) partition that applies for

τ 1
` ≤ t ≤ τ 2

` . That is,

δt =

{
δ1, for 1 ≤ t ≤ τ 1

` , or t ≥ τ 2
` + 1

δ2, for τ 1
` + 1 ≤ t ≤ τ 2

` .

We assume that P (δ1
i = m) = π1

m for clusters m = 1, . . . , κ1. The prior

for the fragmented partition δ2 is constructed in two steps. First, set δ2
i = δ1

i

with probability γ; second, all proteins i with δ2
i 6= δ1

i are gathered in the set

A := {i : δ1
i 6= δ2

i }, and form new clusters by P (δ2
i = m) = π2

m−κ1
, m =

κ1 + 1, . . . , κ2, i ∈ A. Note that p(δ2 | δ1) does not define δ2 as a partition

nested within δ1. This is why we use the term refinement throughout.

We assume independent priors for γ, π1 = (π1
1, . . . , π

1
κ1

) and π2 =

(π2
1, . . . , π

2
κ2−κ1

) as γ ∼ Beta(aγ, bγ) π1 ∼ Dir(η1), and π2 ∼ Dir(η2). The

hyperparameters γ,π1,π2 are shared across all cell lines c and drugs d.
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Next, we construct a prior for the mean protein expression µ`i in (2.1)

by defining cluster-specific common values. That is, the partition is linked

with the protein mean expression. Given {δt : 1 ≤ t ≤ T} we assume

µ`it =


µ∗`1(δ1

i ), if 1 ≤ t ≤ τ 1
`

µ∗`2(δ2
i ), if τ 1

` + 1 ≤ t ≤ τ 2
`

µ∗`3(δ1
i ), if τ 2

` + 1 ≤ t.

(2.2)

In words, µ`it = µ∗`u(m) for all proteins in cluster m under dose level ` in

the time interval u = 1, 2 or 3, with the time intervals corresponding to the

initial, fragmented and final partitions respectively (initial and final partitions

are assumed equal). The choice of the piecewise constant mean function in

(2.2) is only for parsimony. Alternatively, one could use a piecewise linear

mean response, without much change in the remaining discussion. The use

of a distinct µ∗`3, i.e. µ∗`3 = µ∗`1 allows for a persisting effect of the drug

intervention, short of a complete restriction to baseline.

The model is completed with a prior on the cluster-specific parameters,

(µ∗`u(m) | µ0u, v0u)
iid∼ N(µ0u, v

−1
0u ), µ0u

iid∼ N(µ00, v
−1
00 ) and v0u

iid∼ Gamma(av, bv).

The hyperparameters (µ0u, v0u) are common across cell lines c and drugs d.

In summary, the proposed model constructs a mixture of Gaussian

sampling model for the observed protein expressions over time, with the mix-

ture being induced by the latent partitions δ1 and δ2. In fact, marginal-

izing δ1 and δ2, we find the following mixture of normals sampling model.

Let u1 = (1, . . . , 1, 0, . . . , 0)>, u2 = (0, . . . , 0, 1, . . . , 1, 0, . . . , 0)> and u3 =

(0, . . . , 0, 1, . . . , 1)> denote design vectors with 1’s in positions 1, . . . , τ 1
` (for
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u1), in positions τ 1
` + 1, . . . , τ 2

` (for u2) and in positions τ 2
` + 1, . . . , T (for u3),

respectively, and let µ∗`(k1, k2) = µ∗`1 (k1)u1 + µ∗`2 (k2)u2 + µ∗`3 (k1)u3 denote

the T -dimensional mean vector for proteins in clusters k1 and k2 under the

initial and the refined partition, respectively. Let N(x; m,S) denote a multi-

variate normal p.d.f. evaluated at x with mean m and covariance matrix S.

Then

p(y`ij | τ 1
` , τ

2
` ,Σc,µ

∗
`1,µ

∗
`2,µ

∗
`3,π1,π2, γ) =

= (1− γ)

κ1∑
k1=1

κ2−κ1∑
k2=1

π1
k1
π2
k2
N(y`ij;µ

∗
`(k1, k2),Σc) +

+ γ

κ1∑
k1=1

π1
k1
N(y`ij;µ

∗
`(k1, k1),Σc).

Note how the proposed model is different from models that allow de-

pendence of the distributions for the random partitions. Dependence in the

prior on the random partitions over time would not necessarily enforce the

desired monotonicity of refinement (to represent the treatment effect) and

following coagulation for an actual realization of protein-specific cluster mem-

bership. Here, the dependence is built on the partitions themselves, unlike, for

example, the earlier mentioned model of Caron et al. (2017) where each δt is

marginally distributed according to a PY-style (Generalized Pólya urn) distri-

bution, exploring several ways to relate and control similarity across partitions.

The fragmentation and coagulation feature cannot be represented by models

with invariant marginal distribution. Modeling the desired monotone pattern

of change in the partition is the key motivation for the proposed construction.
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Finally, we would like to comment on the choice of the proposed model

versus a seemingly simpler parametric model, such as a linear mixed effects

model or a regression with splines, as in Figure 1 in the supporting infor-

mation section. While such parametric models could adequately model time-

dependent mean response, inference for protein-specific response to treatment

effects would require corresponding protein- and time-specific random effects.

2.4 Posterior Inference

We implement Markov chain Monte Carlo (MCMC) posterior simula-

tion. Let θ denote the complete parameter vector. For posterior simulation it

is now important to keep track of parameters that are in common across cell

lines c and drugs d. We therefore start to include the subindexes c and d again

as needed. The joint prior distribution can be factorized as

p(θ) ∝

{
3∏

u=1

p(v0u)

}{
3∏

u=1

p(µ0u)

}{
C∏
c=1

D∏
d=1

L∏
`=1

p(τ 1
cd`, τ

2
cd`)

}
p(γ)

×

{
C∏
c=1

D∏
d=1

p(δ1
cd | π1)p(δ2

cd | δ1
cd, γ,π2)

}
× p(π1)p(π2)×

D∏
d=1

C∏
c=1

p(Σc)

×
C∏
c=1

D∏
d=1

L∏
`=1


κ1∏
m=1

p(µ∗cd`1(m) | µ01, v01)︸ ︷︷ ︸
u=1

×
κ2∏
m=1

p(µ∗cd`2(m) | µ02, v02)︸ ︷︷ ︸
u=2

×

×
κ1∏
m=1

p(µ∗cd`3(m) | µ03, v03)︸ ︷︷ ︸
u=3

 ,
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where κ1 is the number of clusters in time intervals {t : 1 ≤ t ≤ τ 1
cd`}

(corresponding to u = 1) and {t : t > τ 2
cd`} (or u = 3); and κ2 is the number

of clusters in time interval {t : τ 1
cd` + 1 ≤ t ≤ τ 2

cd`} (or u = 2). If desired, the

model could easily be generalized to different number of clusters across cell

line and drugs. The likelihood is given by the independent normal sampling

model
C∏
c=1

D∏
d=1

I∏
i=1

L∏
`=1

J∏
j=1

N(ycd`ij; µcd`i, Σc).

Although posterior inference is not analytically tractable for this model, condi-

tional conjugacy implies that all full conditionals are well known distributions

that are straightforward to sample from (see Web Appendix A). We therefore

implement MCMC simulation using a Gibbs sampler Markov chain. We run

one common Markov chain for inference across all (c, d), but report inference

on partitions separately for each (c, d). Therefore, in the following discussion

of inference summaries, we drop the cd subindex again.

Point estimates of the cluster-membership indicators are obtained using

the approach proposed by Dahl (2006). After judging (practical) convergence

of the MCMC algorithm, we evaluate for each pair i < j of proteins, the

pairwise co-clustering probability p̂ij = 1
K

∑
kp

(k)
ij , where K is the Monte Carlo

sample size and p
(k)
ij is an indicator for i and j being allocated to the same

cluster. The p
(k)
ij and p̂ij are combined into (I × I) matrices P (k) = [p

(k)
ij ] and

P̂ = [p̂ij]. We then report as posterior estimated δ̄ the partition corresponding

to the P (k∗) that minimizes ||P̂ − P (k)||, i.e., k? = arg mink ||P̂ − P (k)||. In

words, k? indexes the Monte Carlo sample whose co-clustering matrix is closest
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to P̂ . Once the point estimate of the clustering structures is obtained, we

run a new MCMC chain with fixed cluster membership indicators to carry

out inference for the remaining parameters, now conditional on the estimated

partition.

Finally, we consider learning about the unknown size κ1 and κ2 of the

partitions. Using transdimensional transition probabilities, such as reversible

jump (Green, 1995), the selection of these parameters could be included in

the same MCMC simulation. However, we found that the implementation

of such transition probabilities is impractical for the proposed model. Con-

sidering a variation of reversible jump for multivariate mixtures of normals

with split and merge proposals that are constructed to maintain marginal first

and second moments (Zhang et al., 2004; Dellaportas and Papageorgiou, 2006)

we find it impossible to achieve acceptable mixing rates of the Markov chain

simulation. The challenge lies in finding a split move that simultaneously pro-

poses reasonable draws for µ∗cd`u(m) across all ` ∈ {1, . . . , L}, u ∈ {1, 2, 3} and

m ∈ {1, . . . , κ1} with high probability. We therefore recommend to use an al-

ternative model selection framework to determine (κ1, κ2). We consider several

criteria, including AIC (Akaike, 1973), BIC (Schwarz, 1978), DIC (Spiegelhal-

ter et al., 2002), and WAIC (Watanabe, 2010) as well as log pseudo marginal

likelihood (LPML). See, for example, Gelman et al. (2014) for a review on

these methods. The specifics of counting the number of parameters, as it is

required to evaluate AIC and BIC are described in Web Appendix B. In the

following section we report a specific recommendation, based on results in a
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simulation study.

2.5 Simulation

We carried out several simulation studies to verify that the proposed

model allows for meaningful inference in the context of weak signals and rela-

tively small sample sizes as in the RPPA data. We considered two scenarios,

with several variations.

Scenario 1: We simulated five hypothetical datasets with the following

(true) partition sizes: (κ1, κ2) ∈ {(2, 3), (3, 4), (3, 5), (4, 7), (5, 7)}. In all five

cases we simulated from the model described in section 2.3. The bottom

level hyperparameters were fixed as γ = 0.9, v0u = 5 for u = 1, 2, 3 and

Σc = 0.1I8×8, where I8×8 denotes the 8 dimensional identity matrix. For

any cell line c and dose `, the change points were fixed as (τ 1
cd`, τ

2
cd`) = (2, 5)

for d = 1, (τ 1
cd`, τ

2
cd`) = (3, 6) for d = 2 and (τ 1

cd`, τ
2
cd`) = (4, 7) for d = 3.

For (κ1, κ2) = (2, 3), (3, 4), (3, 5), we fixed µ0u = (0.5, 1.5, 0.4), whereas for

(κ1, κ2) = (4, 7), (5, 7), we fixed µ0u = (1.0, 1.5, 1.4). The remaining parameters

were randomly generated from the respective prior probability model.

For each dataset we then implement inference in two steps as in section

2.4. First we run 500 MCMC iterations, discarding the first 100 as initial

burn-in under each one of 21 possible pairs of (κ1, κ2). We use the pairs

{(a, b) : a ∈ {2, . . . , 8}, b ∈ {a+ 1, a+ 2, a+ 3} }. This first step evaluates the

different model choice criteria (see below) to select the best pair (κ1, κ2), and
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Table 2.1: Simulation truth and estimate for (κ1, κ2) under alternative model
selection criteria. ? Under simulation truth (5, 7), AIC selects (5, 6).

truth (2,3) (3,4) (3,5) (4,7) (5,7)
BIC (2,5) (2,5) (3,4) (3,6) (5,6)
AIC, DIC,WAIC, LPML (4,7) (3,6) (5,6) (4,7) (8,10)?

then estimates (δ1
cd, δ

2
cd) using the approach of Dahl (2006).

In a second step we simulate 5000 more MCMC iterations to imple-

ment inference conditional on the chosen model, i.e., with fixed δ1
cd, δ

2
cd,

c = 1, 2, d = 1, 2, 3. The first 2000 iterations are discarded as initial burn-

in. Hyperparameters are fixed as νΣ = 10, V Σ = I8×8, aγ = 1, bγ = 1,

η1 = (1, ..., 1)> ∈ Rκ1 , η2 = (1, ..., 1)> ∈ Rκ2−κ1 , µ00 = 0, v−1
00 = 0.4444, av = 1

and bv = 1 to reflect weak prior information.

We implement learning about the cluster sizes (κ1, κ2) as model selec-

tion using various criteria proposed in the literature. We briefly summarize

the results in Table 2.1. BIC always selects a more parsimonious model, and

AIC, DIC, WAIC and LPML always point to the same model (except under

(5, 7)). We conclude to use BIC, as it gives the best trade-off of a good fit and

selecting parsimonious models.

Next we summarize results for the simulation scenario with true (κ1, κ2)

= (3, 5). In this case BIC selects (κ1, κ2) = (3, 4). The objective is to explore

whether inference can recover mean parameters and cluster structure for data

with sample sizes and complexity comparable to the motivating RPPA study.

Figure 2.2 shows estimated partitions under coagulation and refinement, ar-
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Figure 2.2: Scenario 1: Simulation truth δucd (above horizontal lines) and pos-
terior estimated δ

u

cd (bellow horizontal lines). Each vertical bar corresponds to
a gene, with colors (grayscale) representing their respective estimated cluster
memberships.

ranged by cell line and drug (c, d). In a few cases, we get estimates that merge

two (true) clusters together (e.g., in the estimated partitions δ1
cd and δ2

cd for

(c, d) = (1, 3) and for (c, d) = (2, 1)). In most cases, however, the underlying

cluster structure is accurately recovered and we are able to correctly identify

which proteins are affected by the respective drug (proteins corresponding to

darkest shades of gray in plot (b)).

Figure 2.3 shows estimated cluster membership and mean responses

(first two columns) in comparison with the simulation truth (last two columns)

for one specific combination of cell line and drug (c = 2, d = 3). Comparing

the simulation truth in column 4 with the estimated means in column 2 we

find a good fit for the data. With one less cluster in the refinement stage
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picked by BIC, the model merges the two new clusters (darkest shades of gray

in columns 3 and 4) into only one (darkest shade of gray in columns 1 and 2),

still providing a good fit with a more parsimonious model.

Scenario 1a. We explore prior sensitivity with respect to the prior on

the random partitions and the structure of partitions over time. We first

repeat inference, still with the same data as in scenario 1; but with a different

hyperprior on the random partition, namely π1 ∼ Dir(0.1, . . . , 0.1) and π2 ∼

Dir(0.1, . . . , 0.1). Comparing Figure 2.4(a) with the second column of Figure

2.3 we find no difference with respect to the estimated mean responses.

Scenario 1b. Alternatively we consider inference under a single random

partition that remains invariable over time, that is, using δ2
cd = δ1

cd for all c

and d, but still allowing changing mean levels over time as in (2.2). Figure

2.4 summarizes the resulting inference by showing the simulated data and

the estimated clusters, using the same format as first and fourth columns in

Figure 2.3. Comparing Figure 2.4(b) with the second column of Figure 2.3

shows a substantially deteriorated fit under the reduced model without the

refined partition.

Scenario 2: We consider another hypothetical scenario with a simulation

truth that closely mimicks the estimated effects in the actual RPPA data

analysis. The data ycdi`jt are simulated with parameters fixed at the posterior

estimates obtained in section 2.6, with (κ1, κ2) = (4, 6). Figure 2.5 summarizes

simulation results for c = 2 and d = 1. Using the BIC criterion we select

(κ1, κ2) = (4, 6), matching the simulation truth (with (κ1, κ2) = (4, 7) and
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Figure 2.3: Scenario 1: Mean-response estimation for one of the simulated
cases (cell line 2, drug 3). Each row corresponds to a different (increasing)
dosage level. Time is measured in minutes on the horizontal axis. Column 1
and 3: average over repetitions, ȳit = 1

J

∑J
j=1 y`ijt for the 55 proteins. Each

line corresponds to a specific protein and the color (grayscale) indicates the
posterior estimated cluster (column 1) and the true cluster (column 3). Col-
umn 2 and 4: posterior estimates (column 2) and simulation truth (column 4)
for µi`t with dashed lines denoting estimated refinement and coagulation times
τ 1
` and τ 2

` .
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(a) π1 ∼ Dir(0.1, . . . , 0.1) and π2 ∼ Dir(0.1, . . . , 0.1).
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(b) Single partition model: δ2
cd = δ1

cd.

Figure 2.4: Scenarios 1a and 1b: Inference under two variations of the prior
model. Colors (grayscale) denote estimated clusters. Panel (a) shows in-
ference under an alternative hyperprior with a symmetric Dirichlet prior,
π1 ∼ Dir(0.1, . . . , 0.1) and π2 ∼ Dir(0.1, . . . , 0.1). Panel (b) shows inference
using a single invariant partition of proteins over time, i.e., δ2

cd = δ1
cd.
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(5, 6) being second and third best). Overall, the cluster-specific means are

accurately estimated and the model fits the simulated data, indicating that

inference under the proposed model can report meaningful summaries for the

motivating RPPA data.

2.6 Proteomics Data

Based on BIC we select (κ1, κ2) = (4, 6) (Figure 2.6). While more

complex models (with more clusters) exhibit even better BIC, we find that

the results for those models remain very similar to the ones obtained under

(4, 6), but with several empty and redundant clusters. We therefore proceed

with the more parsimonious model.

We implement MCMC simulation for 5,000 iterations discarding the

first 2,000 as initial burn-in. Hyperparameters are fixed as in the simulation

study under Scenario 1, i.e., νΣ = 10, V Σ = I8×8, aγ = 1, bγ = 1, η1 =

(1, ..., 1)> ∈ Rκ1 , η2 = (1, ..., 1)> ∈ Rκ2−κ1 , µ00 = 0, v−1
00 = 0.4444, av = 1 and

bv = 1.

Figures 2.7 and 2.8 show estimates of the effect of PI3K inhibitor on

the 55 proteins in cell lines 1 and 2 over time, respectively. Cell line 1 is

the cell line MDA-MB-231 and cell line 2 is MDA-MB-468. Both are derived

from a 51-year-old caucasian woman with metastatic breast cancer. The two

cell lines have been shown to respond differently to chemotherapies and hor-

mone therapies. Here, the goal is to characterize response to PI3K inhibition.

The following discussion highlights related inference summaries. Keeping in
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(a) Simulated data (over 4 doses). Data for each protein is shown as a
connected line over time. Colors (grayscale) indicate cluster membership

under the simulation truth.
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(b) Estimated mean expression and cluster memberships. Colors (grayscale)
indicate estimated cluster structure.

Figure 2.5: Scenario 2. Data (panel a) and estimated mean response and
cluster membership (panel b).

41



●

●

●

●

●

●

●

2 3 4 5 6 7 8−
14

50
0

−
13

50
0

−
12

50
0

−
11

50
0

κ1

B
IC

●

●

●

●

●

●

●

●

●

● ●

●

●

●

κ2  =  κ1 + 1
κ2  =  κ1 + 2
κ2  =  κ1 + 3

Figure 2.6: BIC for different number of clusters κ1 and κ2 (the bigger, the
better).

mind the context of this analysis in the early phase of a drug development

and the moderate sample sizes, inference should be understood as hypothesis

generating, and findings should not be over-interpreted.

The first two columns in both figures are as in Figure 2.3 and show the

model fit to the data. Going from top to bottom (increasing dose) in Figure 2.7

one can see that protein S6 pS235/236 decreases with increased PI3Ki dose. At

the same time HER2 is activated by the PI3K inhibitor. These two genes form

singletons in our analysis. The inhibition of S6 and activation of HER2 after

PI3K inhibition have been well reported in the literature (Podsypanina et al.,

2001; Serra et al., 2011). Our analysis for cell line 1, MDA-MB-231 confirms

these findings. In addition, we see that MAPK pT202Y204 is activated in this

cell line as a result of PI3K inhibition. We see increased MAPK expression

5 minutes after the PI3K inhibitor is applied to the samples. The activation

of MAPK as a result of PI3K inhibition is a major known discovery in breast
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cancer (Liu et al., 2009).

In contrast, results are different in cell line 2, MAD-MB-468 (Figure

2.8). MAPK is briefly inhibited by the PI3K inhibitor instead of being acti-

vated as in cell line 1. This suggests that cell line 2 includes a mechanism that

might reverse the interactions of PI3K and MAPK. Due to large and complex

down-stream pathways regulated by PI3K, the effects of its inhibition can be

tissue-dependent and heterogeneous (Engelman, 2009). This is shown in the

different response of protein expression in the two cell lines of this RPPA ex-

periment. The differential response of MAPK to PI3K inhibition across the

two cell lines could be important in interpreting the reason why they respond

differently to therapies. Discoveries like this are expected to help biologists to

set up new hypothesis for further testing.

Summarizing the refinement at time τ 1 as a distance between δ1 and

δ2 one could use, for example, the Hamming distance between co-clustering

matrices P 1 and P 2 with entries P 1
ij = I(δ1

i = δ1
j ) and P 2

ij = I(δ2
i = δ2

j )

respectively. We find relative (to the number of pairs) Hamming distances

between the partitions δ1
cd and δ2

cd to range from 0.01 to 0.03 depending on the

cell line c and drug d.

Table 2.2 shows point estimates for the refinement and coagulation

times τ 1
` and τ 2

` , respectively. For cell line 1 the three drugs (columns) behave

similarly, causing the proteins to refine and revert to te baseline with a similar

delay, without apparent dose effects. Cell line 2 is different from cell line 1 in

that the cells in this line react heterogeneously to the three drugs and doses.
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Table 2.2: Estimated (mode) refinement and coagulation times (minutes): τu`
for cell line c, drug d, dose ` and u ∈ {1, 2}.

cell line 1 cell line 2
drug PI3Ki AKTi MEKi PI3Ki AKTi MEKi

dose/time refin. coag. refin. coag. refin. coag. refin. coag. refin. coag. refin. coag.
0 uM 0 15 0 5 0 15 60 120 60 90 5 120

0.625 uM 0 15 0 5 0 5 60 90 5 90 60 120
2.5 uM 0 30 0 5 0 5 30 120 5 120 15 90
10 uM 0 30 5 30 0 5 0 30 90 120 30 60

In particular, cell line 1 seems to be more robust to the drugs as the refinement

period is very short across doses. That is, the proteins in this cell line in general

do not react to the drugs. For cell line 2, proteins seem to be more sensitive

to the drugs. For the first three dose levels, 0, 0.625, and 2.5 µM , refinement

starts earlier and ends later with increasing dose levels. This is expected as

higher doses will lead to quick reaction and longer duration of the biological

system. Dose level 10 µM is an outlier with a very short refinement period

again. This might be due to the high potency of the high drug concentration

(10 µM is the highest dose level).

Additionally, in Figure 2.9 we illustrate the benefit of the time-dependent

clustering, with only two change points when the partition changes. In the

figure we explore the use of independent clustering at each time point, using

k-means for an easy implementation. While one could still identify a small

number of proteins that seem to have their expression gradually increased or

decreased at higher doses of the PI3K inhibitor, there is substantially more

noise in the summary than in the corresponding plot in Figures 2.7 and 2.8.
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Figure 2.7: Results for proteins in cell line c = 1 exposed to PI3K inhibitor
(d = 1). Colors (grayscale) denote distinct clusters with dashed lines corre-
sponding to additional clusters formed at refinement. Columns 1 and 2 show
ȳit and µi`t as in Figure 2.3. The horizontal axis contains the observed times
measured in minutes. Columns 3 and 4 show the original partition before
refinement (δ1

cd, column 3) and the refined partition after refinement (δ2
cd,

column 4).
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Figure 2.8: Same as Figure 2.7, now for cell line c = 2.
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Figure 2.9: Independent k-means (k=5) estimation of partitions across time
for different doses of PI3K inhibitor administered to cell line 1. For a fixed
column (time index), each color represents the estimated cluster specific mean
for that particular protein (higher expressions are darker).

2.7 Discussion

We introduced a model for finding a subpopulation of proteins that are

most affected by a particular intervention. The key element of the model is a

sequence of random partitions subject to the desired monotonicity. The same

inference – without any change in the probability model – can be interpreted

as inference on mean protein expression over time, with the clusters serving

the purpose of adaptively borrowing strength across proteins, doses, drugs

and cell lines. The latter happens only at the level of hyperparameters. The

approach is meaningful in any inference problem with a sequence of partitions

that include a notion of monotonicity. It is most appropriate when limited

data or high noise leaves more complexly structured models impractical to fit.

Several extensions and generalizations of the proposed model are possi-

ble. With more data one could replace the piecewise constant mean response

by a piecewise linear mean response with little change in the remaining model.
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In the application to the RPPA data it was reasonable to assume that once the

treatment effect wears off the mean response would revert to the initial levels.

Other applications might call for lasting treatment effects, allowing for a dif-

ferent final level. Also, in other applications the use of more than two change

points might be meaningful, with possibly different sequences of refinements

and coagulations.

In the discussion following equation (2.1) we commented on alternative

priors on Σc. In an application with richer data one could alternatively consider

a Gaussian Process prior with more general covariance structure.

The main limitation is the computationally awkward problem of esti-

mating the size of the partitions. With respect to the application, a limitation

is that the described inference targets only mean expression levels, missing

changes that are in the dependence structure. The latter is plausible when the

intervention affects pathways and feedback mechanisms.
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Chapter 3

Dependent Mixtures: Modelling Cell Lineages

3.1 Introduction

This chapter introduces a Bayesian mixture model with dependent prior

on the component-specific parameters. The simplest Bayesian mixture models

assume independent priors on cluster-specific parameters that index the sam-

pling model for each term of the mixture model, motivated mostly by ease of

implementation. For a review of Bayesian inference in mixture models see, for

example, Frühwirth-Schnatter (2006) and Frühwirth-Schnatter et al. (2019,

Chapter 1).

However, in many situations, the observed data structure is not well

supported by independent mixture components. Xu et al. (2016) argue for

priors that favor diverse and parsimonious components in the mixture via de-

terminantal point process. The idea is to favor mixture models with terms

that define meaningfully different subpopulations. This becomes important

if the inference aim is related to a biological interpretation of the underlying

structure. While one can argue that asymptotically posterior inference in mix-

tures will concentrate on a parsimonious structure (Rousseau and Mengersen,

2011), this is not true for any finite sample size unless appropriate model as-
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sumptions are explicitly introduced. In this paper we consider an inference

problem that gives rise to a special type of parsimony in a mixture model.

3.1.1 Modeling cell lineage data

The work developed in this chapter is motivated by the study of cell

lineages. Cell lineage data comes from single-cell transcriptomics and it is used

to recover the evolutionary path of cells in a given environment. The finer res-

olution of single-cell assays such as single cell RNA sequencing experiments

(scRNAseq) in comparison with aggregated ”bulk” data provides cell-specific

data. Applications include for example studies in immune systems (Stubbing-

ton et al., 2017; Miragaia et al., 2017), virus-host interactions (Cristinelli and

Ciuffi, 2018), hematopoiesis (Wilson and Göttgens, 2018; Dharampuriya et al.,

2017) among others. In particular, single-cell assays allow to trace back the

“history” of fully differentiated cells starting from their precursors, so they

have become very important to the study of cell lineages (Stubbington et al.,

2017).

A typical cell lineage dataset contains a sample of cells from a certain

tissue along with cell-specific transcriptional profiles obtained, for example,

from scRNAseq. Such profiles exhibit differences that are associated with the

development stage of the cell. For instance, stem cells evolve into fully differ-

entiated cells according to a process characterized by gradual transcriptional

changes. Therefore, important differences are observed in transcription pro-

files along the development path of the cell. Another potential application
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concerns temporal transformation of the cells, e.g. during cancer progression.

Lineage inference is then carried out to identify the underlying path of devel-

opment from the initial state of the cell until its matured states. For a more

detailed description of the objectives and challenges of lineage inference, see

Korthauer et al. (2016) .

Figure 3.1: Left panel: Three-dimensional representation of single-cell gene
expression profiles based on principal component analysis (data of Fletcher
et al. (2017)); cells are colored by cluster. Right panel: results using the
“Slingshot” method of Street et al. (2018).

Typically, the process of estimating the latent tree in cell lineage prob-

lems is done in three sequential steps. First, dimension reduction methods are

applied to summarize information from the high dimensional scRNAseq data;

then clustering of the cells is carried out in the reduced dimensional space;

finally, the latent tree is inferred given the estimates of the partition of cells.

Figure 3.1 illustrates the results of this sequential approach applied to a lin-

eage cell lineage dataset. Notice how in Figure Figure 3.1 (and the following
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discussion) the data includes observations on all nodes of the tree, not only the

leaves. This is because the data is a snapshot of cells accross all intermediate

steps in the evolution of the cells.

Shiffman et al. (2018) introduce a generative model based on a Dirichlet

diffusion process (Neal, 2003). This model, however, despite introducing a

notion of tree along which cell evolution occurs, the model does not favor

simple trees with well dinstinguished clusters of cell. Trees from a Dirichlet

diffusion process are generated on a latent space via Brownian motion and

thus do not enforce neither a partition nor a parsimonious representation of

the data.

In contrast, Street et al. (2018) develop a method (“Slingshot”) that

takes as input a partition of the cell lines into different cell types and returns

a smooth version of the underlying MST defined by the clusters’ centroids:

the paths from root to leaves are smoothed by principal curves. The Slingshot

procedure requires observations to be clustered, which is done sequentially

by a k-means algorithm for instance, before the construction of a minimum

spanning tree on the cluster centroids. Such sequential approach (of first fixing

the partition of cells, then using the centroids as nodes of the MST) is very

common in the bioinformatics literature despite its assumption that the lineage

structure (represented by the MST) does not play a role in clustering the cells.

Such assumption is not biologically ideal.

In the following section we propose an inference approach that uses a

model-based Bayesian perspective such as in Shiffman et al. (2018), but in
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the context of mixtures as in “Slingshot”. That is, we propose a Bayesian

dependent mixture model for cell lineage inference. The mixture components

represent clusters of cells in the same development stage and the dependence

is defined by a latent random tree with nodes that correspond to the centroid

of the clusters. The cluster and lineage structures are modeled jointly and as

a consequence, the lineage represented by the random tree structure is allowed

to affect the clustering of cells. Full posterior inference on the clusters, the

random tree and pseudotimes are obtained by Markov chain Monte Carlo

(MCMC).

3.1.2 Dependent mixture models

The proposed model is a variation of Bayesian mixture models in which

dependent priors are assumed. Clusters of cells should be dependent on each

other due to the fact that mixture components represent distinct interme-

diate states in the continuous process of cell development. Most literature

on Bayesian mixture models assumes a priori independent cluster-specific pa-

rameters, with some exceptions. Xu et al. (2016) describe the application of

determinantal point processes (DPP) (Kulesza and Taskar, 2012) in Bayesian

mixture models as a way to impose repulsive stochastic behaviour for the prior

on the mixture components. The motivation comes from the observation that

similar mixture components do not make the model more flexible. Conversely,

they only create redundancy and hurt the interpretability of the components.

In the context of cell lineage data, the repulsive nature of the DPP would
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enforce the intermediate states of cell development to be dissimilar from each

other.

Another motivation for dependent mixtures is the sharing of informa-

tion between the different groups, causing a shrinkage effect that is also a

form of regularization. Mixed effect models is a key example of the use of

hyperpriors for regularization (Lindstrom and Bates, 1990; Alston et al., 2012;

Lachos et al., 2013). In Bayesian non-parametrics, hierarchical Dirichlet pro-

cesses (Teh et al., 2006) incorporate shrinkage effect by assuming dependent

component-specific Dirichlet processes (DP) Gj ∼ DP (α0, G0) for mixture

components j = 1, . . . , K with a common base measure G0 that is itself a

DP. Since DPs generate discrete random measures with the countably infinite

support consisting of an iid sample from the base measure, it follows from the

discreteness of G0 that all Gj, j = 1, · · · , K will all share the same atoms.

An application of mixture models with predictor-dependent compo-

nents is described in Chung and Dunson (2011). The authors define a Dirich-

let process that assigns stick-breaking weights and atoms to random locations

in predictor space, therefore obtaining random probability measures (which

define the distribution of the mixture components) indexed by covariates in a

continuous way.

Our proposal is to define dependence on the components of the mixture

in a way that explicitly incorporates the biological structure that characterizes

cell lineage applications. We therefore propose the use of a random tree struc-

ture not only to explain the snapshot in the latent space of the continuous
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development of cells from its initial stage into mature differentiated cells, but

also to model the dependence structure between the clusters of cells. Regular-

ization is incorporated in the form of a penalization on trees with too many

nodes or with redundant edges. Our proposed model builds upon the slingshot

model in Street et al. (2018) in which a Minimum Spanning Tree is calculated

given the estimated centroids of the clusters of cells in a latent low dimen-

sional space. The authors then use projections onto the MST to get a point

estimate of the pseudotimes for each cell. In contrast, by formally construct-

ing a Bayesian mixture model with random trees on such latent space, we

are able to provide full inference (with uncertainty captured by the posterior

samples obtained through MCMC) on the clusters of cells, on the underlying

tree structure and also on pseudotimes. In addition, the model assumes the

partition of cells to depend on the lineage structure.

3.2 Dependent Mixture Models for Cell Lineage Data

Let yi ∈ RD denote the recorded markers for the ith cell. In a study

of cell lineage, the raw data could be biomarkers, i.e., protein levels for some

selected proteins. The raw data are typically further processed by extracting,

for example, the first few principal components which become the data yi in

the upcoming discussion.

We start the construction of a Bayesian inference model by assuming

a mixture sampling model for yi, i = 1, . . . , n. Let θ denote all unknown
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parameters. We assume

yi | θ
iid∼

k∑
j=0

wj N(yi | µj,Σj). (3.1)

The parameter vector includes, in particular, the number of terms in the

mixture, k + 1, the location parameters µj and the covariance parameters for

each cluster in the mixture model, and the relative weights wj, j = 0, . . . , k.

In words, we assume a mixture of normals for the data yi, including

cluster-specific covariance matrices Σj and cluster-specific location parameters

µj. Next, we introduce a dependent prior across µj. Dependence is supported

by the nature of the cell subpopulations being biologically related as part of

the cell differentiation process.

Recall that the goal is to infer a structure that reflects the cell evolu-

tion path and its possible branching, starting with an original cell population

indexed by k = 0 (and biologically known to be the root population). We

represent this cell evolution path as a tree that includes the terms µj in the

mixture model (3.1) as the vertices, which are connected by edges that rep-

resent the cell differentiation. An additional set b = (b1, . . . , bk) of indicator

variables bj ∈ {0, . . . , k} records the tree structure by specifying for each node

the index of the parent node. The root node, j = 0 has no parent. A prior on

the tree implicitly defines the prior probability model for the mixture compo-

nent locations µj, as described in Sections 3.2.1 and 3.2.2.

In order to define a meaningful notion of cell evolution, we need to

carefully choose the form of such tree. This is achieved by defining a tree with
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a globally-dependent structure, which is able to induce repulsions between

the branches and to avoid redundant components. For example, we avoid

the possibility of a tree to grow back into itself. In fact, cell evolution fol-

lows a “monotonicity” requirement in the sense that cell characteristics evolve

towards progressive degrees of differentiation, not going back to an undiffer-

entiated stage.

We introduce a preference for such structure using the notion of a min-

imum spanning tree (MST), whose origin traces back to Boruvka (1926). A

MST is an edge-weighted, undirected graph that connects all vertices together,

without any cycles and with the minimum possible total edge weight. The

weight on an edge is the distance between the two nodes of the correspond-

ing edge. In such a way, the most likely tree induces the desired parsimony

requirement. In fact, given a set of nodes representing the different cell sub-

populations, a MST can be seen as the most parsimonious way to represent

the cell lineage.

We consider two alternative priors for (k,µ1, . . . ,µk) based on a MST.

One model is centered around trees that constitute a MST of the locations µj,

but also allows trees that are not MST. The second model restricts the tree to

be a MST, making b a deterministic function of (µ0, . . . ,µk).

3.2.1 Soft MST-dependent prior

Let Tk = (k,µ1, . . . ,µk, b1, . . . , bk) denote the tree, including cluster

locations µj (note that µ0 is known and hence no prior is assigned to it) and
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tree structure b. The soft-MST (s-MST) prior defines a dependent prior on

the cluster locations as

p(µ1, . . . ,µk, b, k) ∝
k∏
j=1

{
q(µj)

}
exp

{
−α

k∑
j=1

d2(µj,µbj)

}
q(k). (3.2)

with b restricted to tree structures, i.e., no cycles and a single known root in

µ0. Also, notice that (3.2) includes k as a random variable.

In equation (3.2), d(µi,µj) denotes the Euclidean distance between

two nodes µi and µj. The terms q(k) and q(µj) are reference probability

models. We use q(µj) ∼ N(µj | m0, σ
2
0I) where I denotes the identity matrix

of dimension D. The penalty parameter α controls the level of shrinkage

towards a MST, with α = 0 implying no shrinkage and α → ∞ implying a

deterministic restriction to MSTs. In summary, equation (3.2) is the prior on

the random tree. It is difficult to visualize p(Tk) by way of prior simulation.

It is important to notice that q(k) and q(µj) are not the marginal

models for k and µj. The marginal distributions are implicitly determined by

q(k), q(µj) and by the parameter α. In fact, conditionally on k, the model in

(3.2) reduces to

p(µ1, . . . ,µk, b|k) =
1

Zk

k∏
j=1

{
q(µj)

}
exp

{
−α

k∑
j=1

d2(µj,µbj)

}
,

where

Zk =

∫
· · ·
∫

Rp×k

k∏
j=1

{
q(µj)

}
·

[
k∑

b1=0

· · ·
k∑

bk=0

exp

{
−α

k∑
j=1

d2(µj,µbj)

}]
dµ1 . . . dµk
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is an intractable normalizing constant. The marginal prior on k can be written

as p(k) ∝ Zk q(k) with normalization constant
∑∞

k=1 Zk q(k). It is easy to see

that p(µ1, . . . ,µk, b, k) defined in (3.2) is proper (see Appendix C.1).

The dependence among the centers is induced by the exponential term,

that penalizes complex branching structures; for example, in trees with too

many nodes or with redundant edges. Therefore, the prior can be seen as a

regularization term, that is ballanced by the likelihood, which tends to favor

complex trees that provide better fit to the training data. The parameter α

determines the strength of the regularization implied by the prior in compar-

ison with the likelihood of the data. Implicit in (3.2) is the fact that the only

branching structures b allowed are the ones that span trees with no internal

cycles.

This joint prior, despite presenting an intractable normalizing constant,

induces simple conditionals. For example, note that

p(bj = i|µ1, . . . ,µk, b
(−j), k) ∝ exp

{
−α d2(µj,µi)

}
,

∀i = 0, . . . , k, ∀j = 1, . . . , k (3.3)

and that

p(µj|µ(−j), b, k) ∝ q(µj) exp

[
−α

{
d2(µj,µbj) +

∑
l:bl=j

d2(µl,µj)

}]
. (3.4)

Equations (3.3) and (3.4) reflect the repulsive effect of the prior on the branch-

ing structure. In fact, the conditional distribution for b favours minimum

spanning trees by assigning smaller probabilities to redundant structures, e.g.
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branches that grow back. This can be seen by the fact that each branch is

selected to be the shortest (with larger probabilities) among those who pre-

serve the spanning structure of the tree. In the case α→ +∞, this procedure

has several analogies with Prim’s algorithm (see Prim, 1957). In the opposite

case, i.e. when α → 0, the prior on the trees is invariant with respect to the

branching structure and the centers are independent. The model in this case

corresponds to a finite mixture model with a prior on the number of compo-

nents. In general, the model does a soft assignment of the branches to a MST

structure (s-MST).

The conditional prior on the means, instead has a different effect. Each

center is drawn from a linear combination of the independent prior term and

the position of its parent and children. The larger the α parameter, the more

evident the attraction towards the barycentre of parent and children. More-

over, note that if the distance d chosen is the squared euclidean, the conditional

distribution of each µj is still normal, with updated parameters, i.e.

µj|µ(−j), b, k ∼ N
(
µp,Σp

)
,

µp =
m0/σ

2
0 + 2α(µbj +

∑
l:bl=j

µl)

1/σ2
0 + 2α(1 + fj)

(3.5)

Σp =

{
1

σ2
0

+ 2α(1 + fj)

}−1

I. (3.6)

where fj is the number of children of node j and (m0, σ
2
0) are the prior hyper-

parameters of q(µj). The Gaussian prior on (µj|µ(−j), b, k) is a fundamental

feature that will imply posterior conditional conjugacy.
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For the weights and the kernel covariance we use conditionally conju-

gate priors,

Σ0, . . . ,Σk ∼ IW (ν,Ψ)

(w0, . . . , wk) | k ∼ Dir(δ, . . . , δ) (3.7)

α ∼ Exp(λ0)

k ∼ Geom(k − 2|r0), k ≥ 2.

3.2.2 Hard MST-dependent mixture model

The prior in (3.2) formalizes a preference for parsimonious structure by

favoring mixture models with clusters that are connected by a tree with short

cumulative length. By favoring shorter cumulative length the model shrinks

the tree structure towards a MST, but stops short of insisting on the tree

actually being a MST. The model defines a joint prior p(µ, b) on the cluster

locations µ = (µj)
k
j=1 and the tree b. An alternative model, named here as

hard-MST (h-MST), defines a prior on µ only and implies b by introducing

the MST as a deterministic function b = MST(µ) of µ:

p(µ1, . . . ,µk | k) ∝
k∏
j=1

{
N(µj; m, σ2

0I)
}

exp [−αW {MST (µ1, . . . ,µk)}] .

(3.8)

The term MST(µ1, . . . ,µk) in equation (3.8) represents the minimum

spanning tree with nodes µ1, . . . ,µk and edges Eµ1,...,µk
⊂ {1, . . . , k}2. The
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function W denotes the total length of a graph, which is defined by the sum

of the squared lengths of its edges. Therefore, we have

W(MST (µ1, . . . ,µk)) =
∑

(j1,j2)∈Eµ1,...,µk

d2(µj1,µj2).

By taking the lengths of the edges squared to define the length of

the whole tree, we preserve conjugacy for the component specific means. By

enforcing the MST structure the h-MST model provides stronger parsimony

(in terms of favoring simpler tree structures) if compared with the s-MST. The

parameter α regulates the strength of influence of the MST on the clustering

structure: the higher its value, the simpler the underlying tree structure due

to a stronger penalization on the length of the MST.

Under the h-MST, the priors for the remaining parameters are the same

as described in section 3.2.1 equation (3.7) for the s-MST.

As mentioned in subsection 3.1.1, there is a crucial difference between

our modeling approach and the two-step slingshot algorithm of Street et al.

(2018) with regards to the dependence relationship of the cell lineage and the

cluster centroids. Although the hard MST-dependent mixture model defines

the MST as a deterministic function of the cluster centers, it implies a reg-

ularization effect of the tree structure on the distribution of the centroids by

favoring cluster-specific means that lead to simpler (shorter) MSTs. On the

other hand, the clustering step in Street et al. (2018) does not make use of the

underlying lineage structure represented by the MST.
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All full conditional distributions for this model are analytically avail-

able, except for p(µj | y, rest) for which a Mtropolis-Hastings step was imple-

mented. More details are available in Appendix C.3.

3.3 Posterior Inference

In this section, we present the posterior simulation scheme to infer the

tree structure, the optimal clustering configuration, as well as the estimation

of the pseudotimes for each cell. For both the s-MST and h-MST models, the

inference procedure is done via reversible jumps MCMC.

For inference with an unknown number of components k we added a

prior k ∼ Geom(k − 2|r0), k ≥ 2 and implement transdimensional posterior

simulation, to accommodate the variable dimension of the parameter vector

as k changes. The soft-MST prior uses reversible jump MCMC (RJ-MCMC)

(Green, 1995) to implement trans-dimensional transitions. Proposing a tree

also requires a proposal for the branching structure. However, given k nodes

the total number of spanning trees is kk−2, implying a curse of dimensionality

for even fairly moderate values of k. This would in turn lead to inefficient

proposals, which cause the algorithm to mix poorly.

In order to overcome this issue, we propose a variant of the RJ-MCMC

which has been previously used in Xu et al. (2016) and Lee et al. (2015). De-

note the parameters with θk = (µ1, . . . ,µk, b1, . . . , bk, w0, . . . , wk,Σ0, . . . ,Σk).

In the RJ-MCMC, a proposal that involves a change of k to k̃ would re-

quire to propose also a new set of parameters θ̃k̃. In practice, the joint pro-
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posal for a “new” dimension and a “new” set of parameters, decomposes in

q(θ̃k̃, k̃|θk, k) = q(θ̃k̃|k̃, k, θk) q(k̃|k). In practice, it is difficult to make good

proposals q(θ̃k̃, k̃ | θk, k) and q(θk, k | θ̃k̃, k̃) with reasonable acceptance prob-

abilities.

We follow an approach from Lee et al. (2015) nd Xu et al. (2016).

The idea is to split the data into two parts: a small training set y′ that

serves the purpose of creating informative proposal distributions, and a test

set y′′ to evaluate the acceptance ratio. Let p1(θk|y′) = p(θk|k, y′) denote the

posterior distribution under k using the training sample y′. We use p1 in two

instances. First, we replace the original prior term p(θk|k) and, second, we

also use it as proposal distribution q(θ̃k̃|k̃). The test data y′′ is then used to

evaluate the acceptance probability. By the nature of the Metropolis-Hastings

acceptance probability the proposal distribution and the prior factor in the

target distribution cancel out, making this a feasible strategy, i.e.

α(θ̃k̃, k̃ | θk, k) = min

{
1;

p(k̃) p(y′′|θ̃k̃, k̃)���
��p1(θ̃k̃ | k̃)XXXXq(θk|k)q(k|k̃)

p(k) p(y′′|θk, k)
XXXXXp1(θk | k)���

��q(θ̃k̃ | k̃) q(k̃|k)

}

= min

{
1;
p(k̃) p(y′′|θ̃k̃, k̃) q(k|k̃)

p(k) p(y′′|θk, k) q(k̃|k)

}
, (3.9)

The strategy has an analogy with model comparison via fractional Bayes fac-

tors (O’Hagan, 1995).

Performing inference for a fixed size tree is straightforward under the

soft-MST. In particular, the full conditionals are available in closed form and

easy Gibbs sampling updates can be implemented (details are described in

Appendix C.2).
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Inference under the h-MST with fixed tree size is similar to s-MST. Full

conditionals are also analytically available, except for the component-specific

means µ1, . . . ,µk, which are sampled according to a Metropolis-Hastings step.

In summary, each full conditional p(µj | µ(−j),y, rest), j = 1, . . . , k is

a finite mixture of truncated normals with non-overlapping truncation regions

which are hard to determine analytically. The issue of sampling from p(µj |

µ(−j),y, rest) is avoided when approximating it by the efficient Metropolis-

Hastings proposal

q(µ̃j | y,µ(−j)) ∝
∏
i∈Sj

N(yi; µ̃j,Σ)N(µ̃j;m, σ2
0I) exp

−α∑
i∈Vj

d2(µi, µ̃j)

 ,

where Sj = {I : ci = j} and Vj denotes the ser of neighbors of node j in

the current MST (µ). The proposal is built so that the acceptance probability

equals 1 if the set of neighbors of j in MST (µ̃j, µ
(−j)) equals Vj. For further

details, see Appendix C.3.

3.3.1 Optimal partition

Once the posterior distribution is obtained vvia MCMC, it is necessary

to assign each observation to a cell subpopulation, which corresponds to a

point estimate of the partition of cells a posteriori. Although the posterior

includes also values for the visited partitions {c(m)}Mm=1 where m denotes the

MCMC iterations, finding a point estimate for a random partition is non-trivial

due to the cardinality of the space of partitions (Bell number). The posterior
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mode, for example, is not an adequate solution as each support point might

have a negligible posterior probability. In the Bayesian literature, a common

approach is to use a decision theoretic framework. In practice, one introduces

a suitable loss function L(cn, ĉn) giving the cost of estimating the “true” cn

by ĉn. Then, a Bayes optimal estimate is given by any partition ĉn which

minimizes the posterior expectation of the loss function. In other terms, the

loss is averaged across all possible true clusterings, where the loss associated

to each potential true clustering is weighted by its posterior probability. For

example, the posterior mode corresponds to the 0 − 1 loss, i.e. L0−1(c, ĉ) =

1(c 6= ĉ). This loss function is not satisfactory because a partition which

differs from the truth in the allocation of only one observation is penalized

the same as a partition which differs from the truth in the allocation of many

observations. To alleviate this issue, Dahl (2006); Lau and Green (2007); Wade

et al. (2018) propose different loss functions. In this work, we use the Variation

of Information loss, whose theorerical results were developed in Wade et al.

(2018).

3.3.2 Estimation of pseudotimes

Starting from a pre-specified root node (which in our case represents

the cluster center of stem cell), pseudotime for a data point in the mixture

is defined as the cumulative length of the shortest path starting at the root

and ending at the closest projection of the data point onto the latent tree.

Pseudotimes are a deterministic function of the latent tree structure. Since
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MCMC simulation produces a posterior sample of realizations of the latent

random tree (as a function of locations µj and branching structure b), the

same simulation output implies a posterior sample on pseudotimes.

In the context of inference for cell lineage, inference on pseudotimes

relates to the time a cell takes to develop from the initial state until it reaches

its current stage of development.

3.4 Simulated Datasets

Here we show results of posterior inference under s-MST and h-MST for

two simulated datasets, and compare them with inference under the slingshot

method. The first dataset was generated as a Gaussian mixture model with

independent components that are chosen to replicate the structure of a random

tree. The second dataset comes from a simulation dataset by Street et al.

(2018) designed to infer how accurate is the recovered branching structure.

3.4.1 Simulation 1

We first assess the model with a stylized example consisting of a dataset

simulated via a mixture model on an underling tree (see Figure 3.2, left panel).

Soft MST

In Figure 3.2 (right) we show the posterior sampled trees, which seem

to reconstruct well the underlying truth. In Figure 3.3 we show that the s-MST

model produced a parsimonious estimate of lineage structure with 6 clusters
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instead of 7. In summary, the density estimate in Figure 3.3 (right) fits the

data well.
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Figure 3.2: Fit of the s-MST model. The left panel shows the simulation truth.
The right panel shows M = 500 posterior samples of τk.
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Figure 3.3: Posterior density estimate obtained via the s-MST model. The
observations are colored according to the optimal cluster labeling.

Hard MST

Inference under the h-MST model is done via transdimensional MCMC

according to Section 3.3 (full conditional distributions are described in Ap-

pendix C.3). First, we run very short parallel MCMC chains (5 iterations)
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with fixed number of components k ranging from 2 to 15. In this first step,

the full conditionals in Appendix C.3 are computed using only the training

data and transdimensional moves are not proposed. The second step consists

of 10000 iterations of the transdimensional MCMC in which changes in the

number of components k are proposed as in Section 3.3 followed by the regular

Gibbs sampling updates listed in Appendix C.3. Finally, cluster membership

point estimates ĉ := (ĉ1, . . . , ĉn) are obtained based on those 10000 iterations

following Wade et al. (2018). Fixing c = ĉ (which also implies a fixed posterior

estimate on k) we run the update steps 2-5 in C.3 for more 5000 iterations.

Table 3.1 shows the results of the estimation of k under different ini-

tial number of mixture components k0 ∈ {2, 8, 15} and different fractions of

training data ε ∈ {0.1, 0.25, 0.5, 0.75} reserved for proposing transdimentional

moves. In general, the h-MST favors more parsimonious trees in comparison

with the s-MST prior. Here, the results from both soft and hard models are

quite similar. The h-MST model recovers 6 clusters for most configurations of

k0 and ε. Notice how in the simulation, one of the centroids could be ”erased”

without causing big differences in the underlying tree. The h-MST therefore

provided a more parsimonious tree in comparison with the s-MST.

Figure 3.4 shows the posterior estimates on the MST structure and

cluster membership for k0 = 8 and ε = 0.5. The branching structure is well

recovered by the h-MST model with six clusters instead of the simulated truth

of 7, which was also observed with the s-MST. We can see that using one node

less than the in the simulation true, did not compromise the overall branching
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structure of the tree.

Table 3.1: Estimated number of clusters k under the hMST model. The
methodology of Wade et al. (2018) was applied to the first 10000 iterations
of the transdimensional MCMC under different choices of ε (fraction of data
reserved as training) and k0 (value of k used in the initialization of the MCMC
algorithm).

k0 = 2 k0 = 8 k0 = 15

ε = 0.1 3 6 6
ε = 0.25 4 6 6
ε = 0.5 6 6 6
ε = 0.75 6 6 6
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Figure 3.4: Estimated branching structure of the hMST model with k0 = 8
and ε = 0.5 based on the last 5000 MCMC iterations. When the cluster
membership indicators are fixed at the point estimate a posteriori, clusters 7
and 8 are empty.
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Slingshot

When analyzing the results of applying k-means (k=7) for recovering

the clustering of cells followed by the slingshot algorithm to the simulated

data, we noticed that some initializations lead to cluster structures that do

not correspond to the truth under simulation. This issue is fixed once we

consider a higher number of random initializations and select the one with

best value of the objective function (Figure 3.5). The slingshot algorithm is

robust to the choice of k, specially when picking large values of k in the k-means

algorithm. The method however does not account for statistical uncertanty,

which is accomodated in the s-MST and h-MST.
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Figure 3.5: Parallel runs of slingshot applied to the simulated data for k
ranging from 4 to 11. Clusters are estimated by the best result among 10
random initializations of the k-means algorithm.
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3.4.2 Simulation 2

We now apply the algorithm to the same simulated dataset presented

in Street et al. (2018). In Figure 3.6 (left) we show samples from the posterior

on the trees. The density estimate in Figure 3.6 (right) fits the data well.

−5.0

−2.5

0.0

2.5

5.0

−5 0 5 10

X

Y

−5.0

−2.5

0.0

2.5

5.0

−5 0 5 10

X

Y

0.01

0.02

0.03

0.04

0.05

0.06

Figure 3.6: Left panel: Plot of the posterior sampled trees. Right panel:
posterior density estimate obtained via the s-MST model. The observations
are colored according to the optimal cluster labeling.

Hard MST

Again, we run 15000 iterations of MCMC on h-MST model. The first

10000 iterations include transdimensional proposal based on splitting the data

into training and test, while the last 5000 are evaluated conditionally on the

VI point estimate for the cluster membership structure. The h-MST model

enforces more parsimony than the s-MST, which can be seen in Figure 3.7 as

fewer components (five) are identified by MCMC.
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Figure 3.7: Results of posterior estimation of MST. Curves in gray are the
posterior sampled MST and the black tree in the point estimate a posteriori.
α represents the strength of regularization towards simple MST structures that
is implied by the hMST prior on µ. ε is the fraction of the data reserved as
training for the purpose of building the transdimensional proposals.

3.5 Mouse Data

We analyze data from a single cell RNA-seq experiment on horizontal

basal cells (HBC) from the adult mouse olfactory epithelium (Street et al.,

2018). The goal is to infer the continuous progression from stem cells into

terminal mature cells and to estimate the cell-specific pseudotimes.

Due to the heterogeneity of cell populations, the analysis of traditional

transcription data, such as bulk microarrays, does not allow researchers to

discover cell dynamics. In fact, the underlying signal can be potentially masked

when averaging over thousands of samples (Korthauer et al., 2016), possibly

compromising statistical power.

The original data (before preprocessing) is available on GEO in GSE95601

and also in https://github.com/drisso/fletcher2017data. Preprocessing follows
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the steps in (Perraudeau et al., 2017), which are listed here for completeness.

The dataset originally contains measurements for 28284 genes throughout 849

cells. A total of 102 low-quality cells are removed from the dataset and the

1000 most variable genes are retained.

The resulting data is then normalized and the dimension is further

reduced to 50 by fitting a Zero-Inflated Negative Binomial-based Wanted

Variation Extraction (ZINB-WaVE) model following Risso et al. (2018). The

ZINB-WaVE assumes a zero inflated negative bionomial model to extract low-

dimensional signal from the data, accounting for dropouts (inflation of zeros),

over-dispersion, and the count nature of the single cell RNA-seq data. Finally,

multidimension scale (MDS) (Mardia et al., 1979) is applied to reduce the

dimension further to 2 (this is the only deviation from Perraudeau et al. 2017

in which the dimension is reduced to 5). MDS consists of a rearrangement of

the observations in a lower dimensional space (dimension 2 here) based on the

matrix of pairwise distances computed using all the original 50 dimensions.

Hard-MST model. We start by showing results of application of the model

that enforces MST structure (Section 3.2.2). The RJMCMC was run for 3000

iterations. The first 2000 are used to obtain a point estimate for the cluster

membership indicators ci according with Dahl (2006) and also for the number

of mixture components k. The final 1000 iterations are run with fixed ci and

k. The hyperparameters were chosen as r0 = 0.5, a0 = b0 = 10, σ2
0 = 1, λ0 = 1

and δ = 1 to reflect non-informative prior knowledge.
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Figure 3.8 shows the estimation of the underlying minimum spanning

tree. We estimate 8 nodes with one branching leaving the main path of the

spanning tree (green). The right pannel illustrates the posterior uncertainty

on the edges of the tree and highlights the proximity of green cluster with both

the purple and the yellow clusters.
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Figure 3.8: Posterior estimates of the latent MST and clustering membership
structure based on the last 5000 MCMC iterations. Left panel: independent
mixture (α = 0). Right panel: MST dependent mixture (α = 2.5).

We now focus on posterior estimation of pseudotimes. For each MCMC

sample (after burn-in) we construct a posterior sample for the cell-specific

pseudotimes as a deterministic transformation of the underlying MST. Such

transformation is defined by calculating the distance along the tree from its

root node to the projection of the cell onto the closest edge in the tree. Let

Ti(τ) denote the pseudotime for cell i. Figure 3.9a illustrates the evaluation

of Ti(τ), where the particular tree in the plot is fixed as the MST τ deter-

mined by the posterior point estimates for the cluster centers. The right panel

shows marginal posterior standard deviations for the cell-specific pseudotimes,
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conditional on cluster membership. Such graphical summaries help to identify

those cells that are more prone to missclassification for being at approximately

equal distance from two or more branches in the MST.
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Figure 3.9: Left panel: Estimated pseudotimes for each cell. The extremes
0 and 1 were chosen arbitrarily. Right panel: posterior standard deviation
of pseudotimes for each cell. Axis represent the two components of the MDS
transformation.

In Figure 3.10, we can have a broader view of the estimated pseudotimes

for cells in each one of the k clusters.
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Figure 3.10: Cluster specific boxplots of median posterior pseudotimes ob-
tained for each cell.
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Slingshot. The slingshot method is a multistep algorithm that produces an

underlying MST conditional on a fixed estimate of the cluster centroids. The

algorithm first computes the MST with the clusters’ centroids as nodes. Then

it fits for each leaf a principal curve that smooths the path from the root to

that leaf along the corresponding branches of the MST. Each principal curve

represents a cell different development path.

We now investigate the sensitivity of the slingshot method to the clus-

tering of cells. We apply multiple independent runs of k-means algorithm

initialized at random with k=8. Figure 3.11 shows that the resulting MST is

highly dependent on the initialization of the k-means algorithm, in some cases

omitting important branches or creating artificial branches that clearly do

not correspond to distinct cell populations. However, picking the best among

multiple consistently solves the issue, as illustrated in Figure 3.12.
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Figure 3.11: Multiple runs of slingshot applied to the mouse data. Each plot
corresponds to a distinct random initialization of k-means algorithm (k=8).
Axis represent the 2 MDS components for dimension reduction.
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Figure 3.12: Multiple runs of slingshot applied to the mouse data. Each plot
corresponds to the best result among 10 distinct random initializations of k-
means algorithm (k=8). Axis represent the 2 MDS components for dimension
reduction.
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3.6 Discussion

We developed a dependent mixture model for single cell RNA sequenc-

ing data to estimate cell lineages. The proposed model takes into account the

underlying tree in the transformed data on a lower dimension when defining

the cluster structure of the cells: the model penalizes cluster allocations that

define over complex trees. We presented two forms of defining such penaliza-

tion terms: under soft MST or hard MST.

Motivated by the cell lineage applicaion, we deffined a dependent prior

based on tree alignment. Other applications might give rise to dependence

based on alignment of clusters on other, more general graphs.
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Chapter 4

A Two Step Bayesian Model for Matching

Cell Line and Patient Genomic Profiles

4.1 Introduction

In a precision medicine paradigm, the patient’s specific genetic archi-

tecture is assessed to propose a personalized treatment that is expected to

be optimal for that individual. In this context, there is a trend in modern

medicine to move from generalized treatment approaches towards the tailored

treatment strategy that is dictated by their genomics or molecular profile. This

paradigm shift accelerates the needs for advances in pharmacogenomics tech-

nology and associated analytical methods. In this paper, we develop methods

to meet this demand, inclduing in particular novel priors for random struc-

tures. Briefly, we propose developing an integrative statistical framework, that

merge multiplatform genomics (’omics, in short) profiles from multiple model

systems (e.g. patients and cell-lines) for finding significant drug targets, pre-

clinical models for appropriate drug discovery and repurposing and, finally, to

calibrate therapeutic potential for future patients. By identifying these sim-

ilarities (and differences) across model systems, we are able to gather more

refined information about the patient than what is contained in their specific

profile, while still proposing a personalized treatment that is strongly tied to
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the patient’s profile - through appropriate integration of various data sources.

The objective of this paper is then to construct a novel Bayesian statis-

tical approach for matching patient gene profiles with cell line profiles. Such

inference is needed, among many other applications, for data integration, pre-

cision medicine and patient specific treatment assignment. The expansion of

modern medicine and fast growth of research in health sciences have led to a

great increase in available data on multiple sources/platforms such as The Can-

cer Genome Atlas (TCGA, tcga-data.nci.nih.gov), Cancer Cell Line Ency-

clopedia (CCLE, portals.broadinstitute.org/ccle), International Cancer

Genome Consortium (ICGC, icgc.org) to name a few. A model-based ap-

proach for matching of a patient profile with data from other sources, such

as from cell lines, allows us to access a wider range of information to predict

a patients response to specific treatments. Important for the envisioned ap-

plication, the matching should be carried out on the basis of a biologically

meaningful signal only, putting aside mere noise.

A cell line is a culture of cells extracted from a tissue (e.g., cancer cells

from a tumor in a human tissue) and grown in an in-vitro environment that

simulates the environment of the tissue in the organism where it was extracted.

Therefore, cell lines serve as models to study cancer biology. Information from

the response to a drug or treatment applied to cell lines (cultivated in-vitro)

is used to infer about the expected response in vivo (Goodspeed et al., 2016).

Similarly, individuals can be grouped according to similarities between their

profiles and observed profiles in a fixed set of cell lines. In such scenarios, the
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mapping of cell lines and patients opens the possibility to construct treatment

recommendations based on results for the corresponding cell lines (Sinha et al.,

2015). We propose a statistical approach that seamlessly combines the output

of the Bayesian mixture model based on a proposal by Parmigiani et al. (2002)

with a novel two-way Bayesian non-parametric (BNP) mixture model that is

constructed as an extension of a BNP bi-clustering model of Lee et al. (2013).

Parmigiani et al. (2002) propose a Gaussian-uniform mixture model for

probability of expression (POE). Later in the model construction we shall use

the latent trinary signal of the POE model to carry out nested clustering of

patient samples and the desired matching with cell lines. The uniform compo-

nent in the POE models havier tails associated with genes that are over- and

under-expressed, while the Gaussian term corresponds to regularly expressed

genes. The authors argue that, by trichotomizing gene expressions into these 3

categorical levels, the POE approach smoothly removes uninformative biolog-

ical and instrumental noise that is naturally present in genomic profile data,

therefore strengthening downstream analysis.

The clustering of patient samples and the desired match with cell lines

builds on a model developed of Lee et al. (2013), who present a Bayesian model

(NoB-LoC) that identifies genes (columns) that are relevant for clustering of

samples/individuals (rows). The identified genes are then partitioned in such

a way that genes within the same subgroup (column-wise clusters) give rise to

a common nested partition of individuals (row-wise clusters). The approach

is motivated by the observation that high-dimensional protein profiles make it

82



hard to find meaningful clusters of samples/individuals. Researchers therefore

often restrict attention to groups of proteins that are expected to lead to

more meaningful and interpretable results. NoB-LoC identies such groups in

a seamless process, together with the nested clustering of samples. The NoB-

LoC model conveniently allows for different clustering of samples with respect

to different groups of proteins. In our context, this translates to association

of cell lines and patients depending on the set of proteins in the profile.

Developing the outlined model consturction, this chapter makes two

major contributions: the first one is the integration of POE with the two-way

clustering building on the NoB-LoC model. The second, and perhaps more

important contribution is the extension of the NoB-LoC model to allow for ex-

plicit probabilistic matching of profiles that could come from distinct sources

(e.g., cell lines and patients). In short, in the proposed approach we first use

the NoB-LoC model to partition the proteins according to a zero enriched

Pólyia urn process where some proteins are set aside as inactive proteins,

while the selected proteins are grouped into protein clusters (active proteins).

Within each protein cluster, the samples are partitioned again, using a par-

tition model that matches patients to cell lines. The motivation is that the

usually high-dimension protein profiles make it hard to find similar samples to

be clustered together, therefore restricting the attention to groups of proteins

is expected to lead to more meaningful and interpretable results. This pro-

cedure also naturally allows for identification of co-expressed proteins in the

form of protein clusters, i.e. a group of genes that are biologically correlated
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are also expected to have their expression levels ”tied together” along different

samples. Finally, the NoB-LoC model conveniently allows for different cluster-

ing of samples depending on the subsample of proteins that is considered. In

our problem, this translates to association of cell lines and patients depending

on the set of proteins in the profile.

The real data used in the statistical analysis comes from an experi-

ment using reverse phase protein arrays (RPPA) which record the expression

of selected proteins simultaneously on multiple cell lines and patients samples

(Charboneau et al., 2002). The dataset analyzed here consists of lung can-

cer protein expressions (233 proteins) measured in 687 patients and 124 cell

lines. Data is batch corrected, i.e., they are also adjusted for the batch effect

difference between cell line and patients’ data).

4.2 POE Model

In this section we describe the POE (probability of expression) model

defined in Parmigiani et al. (2002). We modified some of the priors in or-

der to obtain analytical full-conditionals for as many parameters as possible,

which facilitates the MCMC implementation in the larger, encompassing model

(more details ahead and also in appendix D.1).

Each observation ysg consists of expression levels for protein (gene)

g ∈ {1, . . . , G} and sample s ∈ {1, . . . , S}. Latent variables esg indicate high

expression of gene g in sample t (esg = 1), normal expression (esg = 0) and

under expression (esg = −1). Each possible value of esg determines a differ-
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ent distribution for the observed gene expressions according to the following

Gaussian-Uniform mixture model

(ysg | esg) ∼


Unif(αs + µg, αs + µg + k+

g ), if esg = 1,

N(αs + µg, σ
2
g), if esg = 0,

Unif(αs + µg − k−g , αs + µg), if esg = −1.

The lengths k+
g and k−g of the support of the uniform components should

cover the tails of the corresponding gene expression distribution implying heav-

ier tails than the Gaussian distribution. Under normality, the great majority

of the samples (probability 0.997) concentrate within 3 standard deviations

from the mean; therefore the constraints k+
g > k0σg, k

−
g > k0σg imply heavier

than Gaussian tails for fixed values of k0 greater than, say, 3.

We now define the weights for each term in the mixture by the proba-

bility vectors πg := (π−g , π
0
g , π

+
g ), g ∈ {1, . . . , G} where π+

g = P (esg = 1 | πg),

π0
g = P (esg = 0 | πg) and π−g = P (esg = −1 | πg). We assume (πg | ηπ) ∼

Dirichlet(ηπ).

Figure 4.1 illustrates the implied mixture model in the context of den-

sity estimation. The augmentation of the parameter space with inclusion of

indicatior variables est allows for identification of up- and down-regulated genes

that are not well captured bythe light tails of a single Gaussian component.

Posterior probabilities of differential expression are determined by Bayes
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Figure 4.1: Left panel: Weighted components of the Gaussian-Uniform mix-
ture model. Right panel: density estimates using Gaussian-Uniform mixture
(black line) and using kernel estimate (gray line). Vertical bars represent data
generated from the Gaussian-Uniform mixture.

rule as

p+
sg := P (esg = 1 | ysg,πg, f1,g, f0,g)

=
π+
g f1,g(ysg)

π+
g f1,g(ysg) + π0

gf0,g(ysg) + π−g f1,g(ysg)
× 1(ysg ∈ Sf1,g)

=
π+
g f1,g(ysg)

π+
g f1,g(ysg) + π0

gf0,g(ysg)
× 1(ysg ∈ Sf1,g), (4.1)

where 1(·) is the indicator function and Sf1,g denotes the support of f1,g.

Analogously,

p−sg : = P (esg = −1 | ysg,πg, f−1,g, f0,g)

=
π−g f−1,g(ysg)

π−g f−1,g(ysg) + π0
gf0,g(ysg)

× 1(ysg ∈ Sf−1,g). (4.2)

86



Equations (4.1) and (4.2) are used for visualization of sample specific

gene profiles. Since p+
sg and p−sg are not simultaneously positive, the differences

dsg := p+
sg−p−sg will fall in the interval [−1, 1], therefore serving as a unidimen-

sional measure of gene expression ( dsg ≈ 1 for highly expressed and dsg ≈ −1

for underexpressed genes).

The model is completed by the prior specification (µg | θµ, τµ) ∼

N(θµ, τµ), (αs | µα, τα) ∼ N(µα, τα) restricted to
∑S

s=1 αs = 0, (σ2
g | γ, λ) ∼

InvGamma(γ, λ), (k+
g | αk+ , βk+) ∼ InvGamma(αk+ , βk+), (k−g | αk− , βk−) ∼

InvGamma(αk− , βk−).We also chose prior models for hyperparameters as θµ ∼

N(mµ, s
2
µ), τµ ∼ InvGamma(aτµ , bτµ), αk+ ∼ Exp(λαk+ ), αk− ∼ Exp(λαk− ),

βk+ ∼ Gamma(aβk+ , bβk+ ), βk− ∼ Gamma(aβk− , bβk− ).

The motivation to propose Inverse Gamma priors for k+
g , k−g and Dirich-

let prior for πg is to make use of conjugacy results in the full-conditional pos-

terior of these parameters, which was not originally explored in Parmigiani

et al. (2002).

4.2.1 Posterior inference for the POE model

We implement posterior inference by MCMC simulation. All full con-

ditionals are available in closed form due to the choice of contditionally con-

jugate priors/hyperpriors; the only exceptions are αk+ and αk− . We therefore

implement Gibbs sampling transition probabilities for all parameters except

(αk+ | y, else) and (αk− | y, else). For the latter we use Metropolis-Hastings

transition probabilities with random walk proposal on logαk+ and logαk+ re-

87



spectively. See appendix D.1 for more details.

To avoid numerical instability when sampling from truncated inverse

gamma distributions (full conditional posterior distributions for k+
g and k−g ),

we used a variable augmentation scheme proposed in Damien and Walker

(2001). The prior on the auxiliary variables introduced by the authors imply

full-conditional posterior distributions for those variables, which are sampled

together with the original parameters of the POE model within the full MCMC

algorithm.

4.3 Nonparametric Bayesian Clustering with Patient
and Cell Line Matching

4.3.1 A nested random partition and matching structure

Following posterior simulation for the POE model, the posterior esti-

mated values dsg become the inputs for model-based clustering of proteins and

samples and the desired pairing with cell lines. This is implemented by the

construction of a nested partition model that builds on the Nonparametric

Bayesian local clustering (NoB-LoC) model defined in Lee et al. (2013). In

this section, we relabel the data dsg as dcig if sample s corresponds to the i-th

cell line or as dpig if it is the i-th patient. The subindex g still denotes protein

g. We will assume the dataset contains G proteins and S samples, including

Np patient samples and N c cell line samples (Np +N c = S).

The model first partitions the proteins according to a zero enriched

Pólya urn. One special cluster (corresponding to the zero-enrichment) is in-
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terpreted as ”inactive proteins”. The remaining ones are grouped into protein

clusters (active proteins). Within each of these protein clusters, the samples

are partitioned again by a second, nested partition model. The nested par-

tition model includes also the desired pairing of each patient sample cluster

with a matching cell line.

Consider the cluster membership indicator wg for each protein g =

1, . . . G and denote w = (w1, . . . , wG) the vector of protein cluster indicators.

Let π0 be the probability of inactivation and let α0 > 0 be the potential for

creating a new cluster. Finally, define nk := #{g; wg = k} the number of

proteins that fall into protein cluster k, for k = 0, 1, . . . , Kw with k = 0

denoting the cluster of inactive proteins and Kw denoting the total number

of active clusters of proteins determined by w. Then the zero enriched Pólyia

urn defines p(w | π0) as

p(w | π0) = πn0
0 (1− π0)G−n0 × α

Kw
0

∏Kw
k=1 Γ(nk)∏G

g=1(α0 + g − 1)
, (4.3)

and for short we write (w | α0, π0) ∼ ZEPU(α0, π0).

For each cluster of proteins defined by w, two dependent partitions of

the samples are defined, the first one involving patients only, and the second

one (which is stochastically dependent on the partition of patients) includes

only cell lines. The cluster membership indicators for the i-th patient and i-th

cell line in k-th cluster of proteins are defined as δp,ki and δc,ki , respectively.

The two partitions are then determined by the cluster membership indicators
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for patients and for cell lines. We marginally model the cluster membership

of patients δp,k := (δp,ki )N
p

i=1 as δp,k ∼ ZEPU(αpk, πpk). This implies a random

number Jk of active clusters of patients within the k-th group of proteins.

Conditionally on δp,k, several choices of priors on δc,k are possible, each

of them representing one way of matching cell lines’ to patients’ profiles.

Discrete uniform prior: we assume a discrete uniform prior for δc,k on the

patient samples and the set of inactive samples: δc,ki | δ
p,k ∼ Uniform({0, 1, . . . , Jk}).

Discrete uniform prior with at most ` cell lines per cluster of samples:

the conditional prior on (δc,k | δp,k) has the p.m.f

p(δc,k | δp,k) ∝ 1(δc,k ∈ B
c,k
` ) (4.4)

with support

B
c,k
` =

{
(δc,ki )N

c

i=1 ∈ {0, 1, . . . , N c}Nc ;
∑Nc

i=1 1(δc,ki = j) ≤ ` ∀j ∈ {1, . . . Jk}
}
.

In the special case ` = 1 for example, the multiplicative normalization constant

in equation (4.4) is
∑min{Jk,Nc}

n=0

(
Jk
n

)(
Nc

n

)
n! .

Conditional zero inflated Polya urn: a conditional zero inflated Polya

urn prior distribution is assumed prior for δc,k | δp,k as a continuation of the

process of clustering patient samples. This means that the initial probability

of allocation of cell lines to a patient cluster is proportional to the cluster size.

Stochastically, this approach is equivalent to a joint zero inflated Polya urn
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for all samples.

We consider the Gaussian sampling model (dcig | θcig, σ2
g) ∼ N(θcig, σ

2
g)

and (dpjg | θ
p
ig, σ

2
g) ∼ N(θpjg, σ

2
g) for cell line i and patient j and protein g. The

prior for θxig with x being either c or p is

θxig ∼


Iθ∗jg , if δ

x,wg
i = j > 0 and wg > 0 (active prot. and smpl.)

N(µ1g, σ
2
1g), if δ

x,wg
i = 0 and wg > 0 (active prot. inactive smpl.)

N(µ2g, σ
2
2g), if wg = 0 (inactive prot.),

(4.5)

where Ix denotes the point mass distribution (Dirac measure) at x. In (4.5)

(first equation) we define the unique mean responses θ∗jg for active proteins

and samples. We denote by Jk the number of active sample clusters for all

proteins g such that wg = k. Notice that active cell lines and patients share

the same mean response if they belong to the same sample cluster.

For the purpose of deriving the MCMC algorithm for posterior infer-

ence, we marginalize the patient specific (and cell line specific) means θxig in

(4.5), which implies the following data distribution

dxig ∼


N(θ∗jg, σ

2
g) if δ

x,wg
i = j > 0 and wg > 0 (active prot. and smpl.)

N(µ1g, σ
2
1g + σ2

g), if δ
x,wg
i = 0 and wg > 0 (active prot. inactive smpl.)

N(µ2g, σ
2
2g + σ2

g), if wg = 0 (inactive prot.).

(4.6)

91



The prior for the unique mean response values is specified as θ∗jg ∼

N(µ0g, σ
2
0g) with hyperpriors σ−2

g ∼ Gamma(ag, bg), τ
−2
lg ∼ Gamma(alg, blg)

and µ0g, µ1g, µ2g
iid∼ N(m0, s

2
0).

4.3.2 Summarizing the posterior nested partition

Point estimates of the cluster-membership indicators are obtained using

the approach proposed by Dahl (2006). We run the MCMC algorithm and,

after judging (practical) convergence, we evaluate for each pair i < j of tumors

within gene g, the pairwise co-clustering probability p̂ij = 1
K

∑
k pijk, where

K is the Monte Carlo sample size and pijk is an indicator for i and j being

allocated to the same cluster, i.e., pijk = 1⇔ egi = egj during iteration k. The

dependence on g is omitted from the notation for clarity. The pijk and the

p̂ij are combined into (I × I) matrices P (k) = [pijk] and P̂ = [p̂ij]. We then

report as posterior estimated δ̄ the partition corresponding to the co-clustering

matrix P (k∗) that minimizes ||P̂ − P (k)||. In other words,

P (k∗) = arg min
k
||P̂ − P (k)||.

That is, k∗ indexes the Monte Carlo sample whose co-clustering matrix is

closest to P̂ . The procedure for choosing k∗ is done independently over each

gene g.
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4.4 Simulation

4.4.1 Simulation 1: POE

We carry out a first simulation to validate inference under the POE

model.

We simulate a dataset with 100 samples and 20 genes assuming the POE

model as the underlying truth. Some small changes were done in the simu-

lation process that deviates slightly from the model in section 4.2. Namely,

σ2
g was sampled from σ2

g = N(0, 0.25)2 + 1 instead of an Inverse Gamma

prior and k+
g , k−g were both sampled from max(Gamma(8, 1), 5σg) instead of

max(InvGamma(8, 1), 5σg). Hyperparameters were fixed as ηg = (1, 1, 1),

µα = 0, τα = 0.5, θµ = τµ = 1.

To carry out the MCMC inference procedure, we fix ηg = (1, 1, 1), µα =

0, τα = 100, aτµ = bτµ = aβk+ = bβk+ = aβk− = bβk− = λαk+ = λαk− = 0.01,

γ = λ = 0.1, mµ = 0 and s2
µ = 100. Such values were chosen to represent

weak prior information.

Figure 4.2 shows that the estimated cluster membership assignment of

the observations reasonably recovers the simulation truth (compare pannels

(a) and (b) ). Panel (c) shows how the POE model removes noise from the

data and highlights the biologically meaningful levels of protein activation

(low, medium, high).

Figure 4.3 shows the density estimates a posteriori for 4 genes, compar-

ing the true protein-wise cluster assignment with the point estimates obtained
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with the methodology from Dahl (2006) as described also in 4.3.2. The cluster

membership indicators are typically well recovered. Notice that when 2 com-

ponents are enough to estimate the underlying density among the different

samples, we might have the absence of one of the groups of proteins with low,

medium or high expression (see g = 15 for example). Also, the use of uniform

components can, in some cases, exhibit high density near the center of the re-

sulting mixed distribution therefore producing samples of medium expression

even when the true is esg = ±1 in the simulation.
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(a) Simulated ysg ordered by true esg.

(b) Simulated ysg ordered by estimated esg.

(c) dsg ordered by true esg.

Figure 4.2: (a): Simulated data ysg. Samples in each column are sorted by true
esg. (b) Simulated data ysg. Samples in each column are sorted by estimated
E (esg | y). (c) Differences dsg = p+

sg − p−sg with the same ordering as in panel
(a). The ordering of samples change according to the protein (column) but is
the same throughout the 3 panels.
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Figure 4.3: Posterior density estimates. Vertical bars represent centralized
gene expressions ysg−µg−αs, s = 1, ..., S for all genes g collored according to
its estimated cluster membersip indicators (top) and true cluster membership
indicators (bottom). Full lines represent the best fitting uniform and normal
components of the mixture a posteriori multiplied by the respective weights.
Dashed line corresponds to a kernel density estimate based on the vertical
bars. Color code: black = -1, red = 0, green = 1.

4.4.2 Simulation 2: nested partitions

In this section we describe the simulation to validate inference on the

NobLoc model. We replicated the scenario in Lee et al. (2013), with 100

samples and 20 proteins. The simulation truth incorporates the local clus-

tering feature of first partitioning proteins and then within protein cluster,

partitioning the samples. However, instead of simulating the protein and sam-

ple partitions according to a zero inflated Plya urn, we fixed the partition of

proteins upfront to have two active protein clusters, the first one containing

proteins with 3 active sample clusters; and the second containing 4 proteins

with 2 active sample clusters. The cluster-membership assignment of sam-

ples was made uniformly at random among the available sample clusters. The

cluster specific means were fixed at the same values in Table 1 of Lee et al.

(2013). Inactive samples and proteins were all sampled from Unif(−0.8, 0.8).
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The standard deviation of the Gaussian sampling model for active samples

was fixed at σg = 0.1 For an illustration, see Figure 4.4 panel (a).

In Figure 4.4 panel (b) we can see that the underlying cluster structure

was reasonably captured by the NobLoc model. The only discrepancy is the

inclusion of protein 19 in the first active cluster together with proteins 1 -

8, instead of classifying it as an inactive protein according to the simulation

truth.

(a) Simulated ysg ordered by
true cluster assignments.

(b) Simulated ysg ordered by
estimated cluster assignments.

Figure 4.4: (a): Observations ordered according to the simulation truth. (b):
Observations ordered according to estimated cluster membership indicators a
posteriori. In both panels, rows represent samples while columns represent
proteins.

4.5 Lung Cancer Dataset

4.5.1 The data

The dataset consists of protein profiles coming from an RPPA exper-

iment on lung cancer samples. The data records 233 proteins that were pre-

selected for their biological relevance to the study of this type of cancer. The
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data records samples from 687 patients and 124 cell lines. The objective is to

identify groups of similar patients and cell lines with respect to subgroups of

co-expressed proteins (we informaly say that proteins are co-expressed if their

expressions are correlated). We therefore expect that the samples (patients

and cell lines) can be partitioned in a different way depending on the group of

co-expressed proteins that is considered.

4.5.2 Results

We describe here the results of a joint inference of the POE model and

nested clustering by NoB-LoC. We start by analyzing the results of directly

applying the NoB-LC model to the original lung data (without running POE

first), which is illustrated in Figure 4.5 (a).

Figure 4.5: Observed protein expression arranged according to posterior esti-
mated cluster structure under NoB-Loc. Only active proteins are displayed.
Panel (a) shows the result of application of the NobLoc model on the original
data and panel (b) shows the results after the application of POE.

Figure 4.6 shows one of the blocks in Figure 4.5 in more details high-

lighting the similarities between the cell lines and proteins in that block. Sam-
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ples are reasonably homogeneous in terms of the expressions of the particular

subgroup of proteins shown in the figure. Notice also that some proteins

present typically high expression while others typically present low expression

considering the particular group of samples.

Figure 4.6: Protein expressions within one of the samples/proteins blocks of
Figure 4.5 (b). The cell lines and patients exhibit very similar profiles when
considering the subset of proteins that were clustered together by the model.

4.6 Discussion and Future Directions

Some innovations were introduced in this chapter: (i) The model nat-

urally accounts for co-expression of genes and/or proteins in a manner that

allows distinct clustering of samples depending on each estimated subgroup

of co-expressed functional units or pathways; (ii) We develop efficient models

for matching patients and cell line profiles. Development of such inferential
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tools is of critical relevance to implementing precision medicine, since it can

be used for potential treatment assignment that is specific to a patient, and

borrows information not only from that patient, but also from cell lines coming

from external sources. The latter is critical also because experiments with cell

lines can be carried out freely. (iii) Third, the approach does not need to be

restricted to cell lines and patients but can be generalized to multiplatform

omics profiles from diverse model systems such as patient-derived xenographs

(PDX) models and organoids.

This chapter makes two important methodological contributions in

Bayesian non-parametrics: (i) the seamless integration of the (modified) prob-

ability of expression (POE) model for noise reduction and the nested bi-

clustering approach; (ii) the formal probabilistic modeling of co-clustering be-

tween cell lines and patients based on profile similarities via dependent priors

on partition models.

There are some areas that need to be more thoroughly investigated.

One of them is the need to extend the simulation studies where the underly-

ing truth differs from the POE and NobLoc models in order to address the

performance of the proposed methodology under model misspecification. In

our results, we restricted the matching of cell lines and patients to a condi-

tional zero inflated Pólya urn (see section 4.3.1), therefore the investigation of

the other models for matching information from cell lines to patients is also

proposed as a future work.

One of the limitations of the oroposed approach is the computational

100



effort of full posterior simulation. Alternative implementations based on vari-

ational inference for example are possible alternatives (see section 1.4).
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Chapter 5

Conclusions and future directions

The common theme of the three major projects in this thesis was the use

of dependent priors for mixtures and random partitions. We discussed some

motivating examples where the scientific research questions naturally give rise

to such dependent structures. Information on a specific form of dependence

represents potentially useful expert knowledge, which should be exploited when

available. It is still common practice, however, to ignore such domain knowl-

edge and proceed with default independent priors. For the specific examples

discussed in this thesis we constructed suitable dependent models, developed

practicable posterior inference methods and demonstrated the proposed ap-

proaches in simulation studies and in the actual applications.

Many open questions remain. For the application to cell lineage data,

the approach proposed in Chapter 3 can be characterized as an empirical

fit to the data with a model that respects the dependencies that arise from

the nature of the data. In future research we plan to consider alternative

generative models that mimick the actual biologic process of how cells diversify.

A generative model is used, for example, in Shiffman et al. (2018), however

still without using restrictions and informative priors that would arise from
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the nature of the data.

Also for the problem of matching patients and patient clusters with

representative cell lines that we considered in Chapter 4, many open questions

remain. In the currently proposed model we match each patient cluster with

one representative cell line, implicitly allowing each cell line to be paired with

only one patient cluster. This restriction could be removed, giving rise to a

slightly different random structure. Another aspect of the problem is that

investigators have a preference for reporting very distinct clusters of proteins

(genes) and similarly for the nested clusters of patients. That is, the desired

summary of the random partition should perhaps take into account preferences

for parsimony and interpretability. And such preferences could alternatively

already be included in the prior probability model. One approach is the use of

repulsive prior probability models that favor very distinct clusters, for example

the determinantal point process (DPP) (Xu et al., 2016). Similar issues arise

with the applications in Chapters 2 and 3.
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Appendix A

Probability distributions

Here we describe the parameterization used for some of the probability

distributions referred throughout the text. Namely: Gamma, Inverse Gamma,

Exponential, Laplace, univariate and multivariate Student T (with location-

scale parameters), univariate and multivariate Gaussian.

A.1 Normal

A continuous random variable X follows a normal distribution N(µ, σ2)

if its density is

fX(x) =
1√

2πσ2
exp

{
−1

2

(
x− µ

2σ

)2
}
, x ∈ R.

It follows that E(X) = µ and V ar(X) = σ2.

A.2 Multivariate Normal

A continuous random vector X ∈ Rd follows a d−variate normal dis-

tribution N(µ,Σ) if its density is
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fX (x) = (2π)−
d
2 det |Σ|−

1
2 exp

{
−1

2
(X − µ)>Σ−1(X − µ)

}
, x ∈ Rd,

for Σ positive definite. It follows that E(X) = µ and V ar(X) = Σ2.

A.3 Gamma

A continuous random variableX follows a Gamma distribution Gama(a, b)

if its density is

fX(x) =
ba

Γ(a)
xa−1e−bx, x > 0.

It folows that E(X) = a
b

and V ar(X) = a
b2

.

A.4 Inverse Gamma

A continuous random variableX follows an Inverse Gamma distribution

with parameters a and b, i. e., X ∼ GamaInv(a, b) if the random variable

Y = 1/X follows Gamma(a, b). Then, X has density

fX(x) =
ba

Γ(a)
x−a−1e−

b
x , x > 0.

It follows that E(X) = b
a−1

and V ar(X) = b2

(a−1)2(a−2)
.
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A.5 Student-t

A continuous random variable X follows a Stident T distribution with

ν degrees of freedom, location µ and scale σ, if its density is

fX(x) =
Γ
(
ν+1

2

)
σ
√
νπΓ(ν

2
)

[(
x− µ
σ

)2

+ ν

]− ν+1
2

, x ∈ R.

In this case, we denote X ∼ T (ν, µ, σ). Under this parameterization,

we have E(X) = µ if ν > 1 and V ar(X) = σ2 × ν
ν−2

for ν > 2. For ν = 1, the

average of the Student-T is not defined and if ν ≤ 2, the same holds for the

variance.

A.6 Multivariate Student-t

A continuous random vector X ∈ Rd follows a multivariate Student-T

distribution with ν degrees of freedom and parameters µ and Σ if its density

is

fX (x) ∝
[
d+ (x− µ)′Σ−1(x− µ)

]−n+d
2 x ∈ Rd.

In this case, we denoteX ∼ Tn(µ,Σ). Here µ is the location parameter

and the positive definite matrix Σ is the scale matrix. In this parameterization,

E(X) = µ if ν > 1 and V ar(X) = Σ × ν
ν−2

for ν > 2. Similar to the

unidimensional case, forν = 1 the mean of the distribution is not defined and

if ν ≤ 2, the same happens for Σ.
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An important result states that if X ∼ Tn(µ,Σ), then the marginals

are Student are also Student-T: Xi ∼ Tn(µi, σ
2
i ) where µi is the i-th entry of

the mean vector and σ2
i = Σi,i.

A.7 Laplace

A continuous random variable X ∈ R+ follows a Laplace distribution

with parameter λ, location µ and scale σ > 0 if its density is

fX(x) =
λ

2σ
exp

{
−λ|y − µ|

σ

}
, x > 0.

In this case, we denote X ∼ Laplace(λ, µ, σ). It follows that X ∼

Laplace(λ, µ, σ)⇒ E(X) = µ and V ar(X) = 2σ2.

A.8 Negative Binomial

A disctrete random variable X follows a Negative Binomial distribution

with parameters n ∈ R+ e p ∈ (0, 1) if X its probability mass function

pX(x) =
Γ(x+ n)

Γ(x+ 1)Γ(n)
(1− p)npx, x = 0, 1, 2, . . .

In this case, we denote X ∼ NegBin(n, p).

Under such parameterization, E(X) = np
1−p and V ar(X) = np

(1−p)2 .
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A.9 Log Normal

A continuous random variableX follows a LogNormal(µ, σ) distribution

if the random variable Y := logX follows a normal distribution N(µ, σ2). In

this case, the density function of X is

fX(x) =
1

x
√

2πσ2
exp

{
−
(

log x− µ
σ

)2
}
, x > 0.

It follows that E(X) = eµ+σ2

2 and V ar(X) = (eσ
2 − 1)e2µ+σ2

.
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Appendix B

Appendix for Chapter 2

B.1 Full Conditionals

We briefly describe the full conditional posterior distributions, num-

bered (1) through (9) below, that define the transition probabilities in the

Gibbs sampler MCMC implementation. We define Ψ := (θ,y) as the random

vector that includes the full parameter vector as well as the data, and we use

the notation Ψ−a to represent Ψ excluding component a.

1. Updating v0u, u = 1, 2, 3:

(v0u | Ψ−v0u) ∼ Gamma

(
av +

1

2
CDL× κu,

bv +
1

2

C∑
c=1

D∑
d=1

L∑
`=1

κu∑
m=1

(µ∗cd`u(m)− µ0u)
2

)
.

2. Updating µ0u, u = 1, 2, 3:

(µ0u | Ψ−µ0u) ∼ N

(
v0u

∑C
c=1

∑D
d=1

∑L
`=1

∑κu
m=1 µ

∗
cd`u(m) + µ00v00

v00 + CDL× κuv0u

,

1

v00 + CDL× κuv0u

)
.

3. Updating µ∗cd`u: From equation (1), the vector µcd`i can be written as

µcd`i = µ∗cd`1
(
δ1
cdi

)
u1 + µ∗cd`2

(
δ2
cdi

)
u2 + µ∗cd`3

(
δ1
cdi

)
u3,
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where u1 = (1, . . . , 1, 0, . . . , 0)>, u2 = (0, . . . , 0, 1, . . . , 1, 0, . . . , 0)> and

u3 = (0, . . . , 0,

1, . . . , 1)> with 1’s in positions 1, . . . , τ 1
cd` (for u1), in positions τ 1

cd` +

1 . . . τ 2
cd` (for u2) and in position τ 2

cd` + 1 . . . T (for u3), respectively.

We find that (µ∗cd`1(m) | Ψ−µ∗cd`1(m)) ∼ N(a1, b1), with b1 = (v01 +

J(#Pmcd1)u>1 Σ−1
c u1)−1 and

a1 = b1


∑
i∈Pmcd1

∑
j

ycd`ij − Ju2

∑
i∈Pmcd1

µ∗cd`2(δ2
cdi)− J(#Pmcd1)u3µ

∗
cd`3(m)

>

Σ−1
c u1 + µ01v01

 ,
where Pmcd1 := {1 ≤ i ≤ I : δ1

cdi = m}.

Similarly, (µ∗cd`2(m) | Ψ−µ∗cd`2(m)) ∼ N(a2, b2), with

b2 = (v02 + J(#Pmcd2)u>2 Σ−1
c u2)−1 and

a2 = b2


∑
i∈Pmcd2

∑
j

ycd`ij − Ju1

∑
i∈Pmcd2

µ∗cd`1(δ1
cdi)− Ju3

∑
i∈Pmcd`2

µ∗cd`3(δ1
cdi)

>

Σ−1
c u2 + µ02v02

 ,
where Pmcd2 := {1 ≤ i ≤ I : δ2

cdi = m}.

And (µ∗cd`3(m) | Ψ−µ∗cd`3(m)) ∼ N(a3, b3), with

b3 = (v03 + J(#Pmcd1)u>3 Σ−1
c u3)−1 and
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a3 = b3


∑
i∈Pmcd1

∑
j

ycd`ij − Ju2

∑
i∈Pmcd1

µ∗cd`2(δ2
cdi)− J(#Pmcd1)u1µ

∗
cd`1(m)

>

Σ−1
c u3 + µ03v03

 .
4. Updating Σc: Under the normal-inverse Wishart conjugate model we

get

(Σc | Ψ−Σc
) ∼ IW

(
IDLJ + νΣ,

I∑
i=1

D∑
d=1

L∑
`=1

J∑
j=1

(ycdi`j − µcd`i)(ycdi`j − µcd`i)> + VΣc

)
5. Updating γ:

(γ | Ψ−γ) ∼ Beta

(
aγ +

C∑
c=1

D∑
d=1

I∑
i=1

1(δ2
cdi = δ1

cdi),

bγ +
C∑
c=1

D∑
d=1

I∑
i=1

1(δ2
cdi 6= δ1

cdi)

)
6. Updating τ 1

cd` and τ 2
cd`: We update τ 1

cd` and τ 2
cd` in different blocks

of the Gibbs sampler. This way we evaluate fewer scenarios than in the

case of sampling both together in a single step, due to the restriction

τ 1
cd` < τ 2

cd`.

p(τ 1
cd` | Ψ−τ1

cd`
) ∝

I∏
i=1

J∏
j=1

N(ycd`ij;µcd`i,Σc), τ 1
cd` < τ 2

cd`.

p(τ 2
cd` | Ψ−τ2

cd`
) ∝

I∏
i=1

J∏
j=1

N(ycd`ij;µcd`i,Σc), τ 1
cd` < τ 2

cd`. (B.1)

112



If evaluating the probabilities in (B.1) is too computationaly intensive,

one can alternatively implement a Metropolis-Hastings transition proba-

bility, proposing unit increments or decrements, subject to the constraint

τ 1
cd` < τ 2

cd`. This would require at most four evaluations of the right hand

side product in (B.1).

7. Updating cluster membership indicators δ1
cdi: If δ2

cdi ≤ κ1, then

δ1
cdi is equal to the value of δ2

cdi with probability 1. Otherwise, by

multinomial-Dirichlet conjugacy results, the full conditional distribu-

tion of δ1
cdi is P (δ1

cdi = m | Ψ−δ1
cdi

) ∝ N1
cdi(m)π1

m, m = 1, . . . , κ1 where

N1
cdi(m) =

∏
`

∏
j N(ycd`ij | µcd`i,Σc) with µcd`i evaluated under δ1

cdi =

m.

8. Updating cluster membership indicators δ2
cdi: The full conditional

p.m.f. for δ2
cdi is given by

P (δ2
cdi = m | Ψ−δ2

cdi
) ∝

{
γ ×N2

cdi(δ
1
cdi) if m = δ1

cdi.

(1− γ)× π2
m−κ1

N2
cdi(m) if κ1 + 1 ≤ m ≤ κ2.

where N2
cdi(m) =

∏
`

∏
j N(ycd`ij | µcd`i,Σc) with µcd`i being calculated

assuming δ2
cdi = m.

9. Updating π1 and π2: under the conjugate multinomial-Dirichlet

model we find the following posterior distribution. Let n1
m =

∑C
c=1

∑D
d=1∑I

i=1 1(δ1
cdi = m). for m = 1, . . . , κ1. Similarly, let n2

m =
∑C

c=1

∑D
d=1∑I

i=1 1(δ2
cdi = m) for m = κ1 + 1, . . . , κ1 + κ2. Then (π1 | Ψ−π1) ∼

Dir(η11+n1
1, . . . , η1κ1+n1

κ1
) and (π2 | Ψ−π2) ∼ Dir(η21+n2

κ1+1, . . . , η
2
κ2−κ1

+

n2
κ1+κ2

).
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B.2 Number of Model Parameters for AIC and BIC

Here we describe how the number of parameters was determined when

evaluating the BIC criterion in sections 4 and 5 and AIC in section 4. The

description focuses on BIC, but the same arguments are valid for evaluation

of AIC.

The number of parameters for a given model is a function of κ1 and κ2

that can be decomposed as N(κ1, κ2) = f(κ1, κ2)+const, where const depends

on the number of data points, but not on κ1 or κ2. The only parameters

in the likelihood that vary in number as κ1 and κ2 change are {µ∗`,u : c ∈

[C], d ∈ [D], ` ∈ [L], u ∈ [3]}, which contains f(κ1, κ2) = CDL(2κ1 + κ2)

parameters. Therefore, BIC = 2 log p(y | θ) − N(κ1, κ2) log n, where n is

the number of observations, hence the comparison of any pair of models is

invariant with respect to the term const and we can, for simplicity, consider

N(κ1, κ2) = CDL(2κ1 + κ2).
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Appendix C

Appendix for Chapter 3

C.1 Proper Prior on (µ1, . . . ,µk, b1, . . . , bk, k)

Here we show that p(µ1, . . . ,µk, b, k) defined in (3.2) is a proper prior.

In fact, since

exp

{
−α

k∑
j=1

d(µj,µbj)

}
< 1, ∀ 1 ≤ j ≤ k,

it follows that

Zk ≤
∫
· · ·
∫

Rp×k

k∏
j=1

[p(µj)] k
k dµ1 . . . dµk = kk <∞.

Without loss of generality, we can truncate P (k) to have suport 1 ≤ k ≤ M

for some finite upper limit M and therefore p(k) will be also proper. The

truncation is justified in practical appications since one expects finite number

of nodes in the tree.

C.2 Full Conditional Distributions for the s-MST Model

We now describe posterior inference under the s-MST model of Section

3.2.1. A simple MCMC can be implemented in such a scenario, leading to the
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Gibbs sampling transition probabilities:

1. Updating ci:

p(ci = k|yi,µk,Σ, wk) ∝ L(yi|ci = k,µk,Σ) p(ci = k|wk)

∝ wk N(yi;µk,Σ), ∀k = 0, . . . , k.

2. Updating w:

p(w|c1, . . . , cn) ∝ p(c1, . . . , cn|w) p(w)

∼ Dirichlet(n0 + δ, . . . , nk + δ).

3. Updating Σ:

p(Σ|Y, rest) ∝ L(Y |µk, c1, . . . , cn,Σ) p(Σ)

∝
n∏
i=1

{
|Σ|−

1
2 e
− 1

2
(xi−µci

)TΣ−1(xi−µci
)
}
|Σ|−

ν+p+1
2 e−

1
2
tr(RΣ−1)

∼ Inv-Wishart

(
ν + n,Ψ +

∑
i

(yi − µci)(yi − µci)
T

)
.

4. Updating µk,∀k = 1, . . . , k:

p(µk|Y, rest) ∝ L(Y |c1, . . . , cn,µk,Σ) p(µj|µ(−j), b, α, k)

∼ N

(
(Σ−1

p + njΣ
−1)−1

[
Σ−1
p µp + Σ−1

∑
i:ci=j

yi

]
,

(Σ−1
p + njΣ

−1)−1

)
,

where fj,µp,Σp were defined in equations (3.5) and (3.6).
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5. Updating the branching structure: by resampling it from the prior con-

ditionals p(bj = i|µ0, . . . ,µk, b
(−j), k) described in (3.3).

6. Updating the dimension K using a RJ-MCMC move:

(a) Generate a proposal k̃ ∼ q(k̃|k) and a matching set of parameters

θ̃k̃ ∼ p1(θ̃k̃|y′) as described in Section 3.3

(b) Accept (k̃, θ̃k̃) with probability α defined in (3.9).

C.3 Full Conditional Distributions for the h-MST Model

First, we list the full conditional distributions for implementation of

Gibbs sampler on the model described in Section 3.2.2 conditionaly on the

dimension k.

1. Updating cj:

p(ci = j|yi,µj,Σj, wj, k) ∝ L(yi|ci = j,µj,Σ) p(ci = j|wj)

∝ wj N(yi;µj,Σj), ∀j = 0, . . . , k.

2. Updating w:

p(w|c1, . . . , cn, k) ∝ p(c1, . . . , cn|w, k) p(w | k)

∼ Dirichlet(n0 + δ, . . . , nk + δ).

117



3. Updating Σ−1

p(Σ−1 | y, rest) ∝
n∏
i=1

p(yi | µci ,Σ
−1)p(Σ−1)

∼ Wishart

n+ ν,

[
Ψ−1 +

n∑
i

(yi − µci)(yi − µci)
>

]−1
 .

4. Updating µj:

The conditional posterior density p(µj | y, rest) is not straightforward

to either write in analytic form or to sample from.

Denote by Sj := {i : ci = j} the set of observations that belong to

cluster j. Combining the likelihood with the h-MST prior, we have

p(µj | µ(−j),y, rest) ∝

∏
i∈Sj

N(yi;µj,Σ)N(µj;m, σ2
0I)

×
× exp {−αW(MST (µ1, · · · ,µk))} ,

in which the sum W(MST (µ1, · · · ,µk)) involves different terms depend-

ing on the position of µj in RD. This leads to the full conditional being a

finite mixture of truncated normals, with non-overlapping truncation re-

gions Al ⊂ RD, l = 1, . . . , n such that the neighbors of any node µj ∈ Al

are the same under the MST (µ1, . . . ,µk) when we fix the remaining

nodes µ(−j). The challenge lies in defining the regions Al that partition

RD.
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However, we can build a tractable and efficient Metropolis Hastings

proposal q(µ̃j | µj;µ(−j),y, rest) to approximate p(µj | y, rest). We

will omit the dependence on variables other than µj from the nota-

tion for clarity of exposition, therefore writing q(µ̃j | µj) instead of

q(µ̃j | µj;µ(−j),y, rest). We define q(µ̃j | µj) as follows. Take from the

edges Eµ1,...,µk
of the MST (µ1, . . . ,µk) the subset Vj = {i : {j, i} ∈

Eµ1,...,µk
} of all neighbors of node j. We propose a new component

specific mean µ̃j from

q(µ̃j | µj) ∝
∏
i∈Sj

N(yi; µ̃j,Σ)N(µ̃j;m, σ2
0I) exp

−α∑
i∈Vj

d2(µi, µ̃j)

 ,

which simplifies to q(µ̃j | µj) ∼ N(µ̃j; aj,Bj), where Bj = (|Sj|Σ−1+

σ−2
0 I+2α|Vj|I)−1 and aj = Bj

(
Σ−1

∑
i∈Sj yi + σ−2

0 m+ 2α
∑

l∈Vj µl

)
.

By denoting the proposed neighborhood of µ̃j as Ṽj = {i : {i, j} ∈

Eµ∗
1,...,µ∗

k
} where µ∗l = µl if l 6= j and µ∗j = µ̃j, the resulting Metropolis

Hastings acceptance probability equals 1 if Ṽj = Vj and

α(µ̃j | µj) = min

{
1,
q(µj | µ̃j)p(µ̃j | y)

q(µ̃j | µj)p(µj | y))

}

= min

1,

[∏
i∈Sj N(yi; µ̃j,Σj)

]
N(µ̃j;m, σ2

0I)[∏
i∈Sj N(yi;µj,Σj)

]
N(µj;m, σ2

0I)
×

×
exp

{
−αW(MST (µ̃j,µ

(−j)))
}

exp {−αW(MST (µ1, · · · ,µk))}
×
N(µj; ãj, B̃j)

N(µ̃j; aj,Bj)

}
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= min

1,

[∏
i∈Sj N(yi; µ̃j,Σj)

]
N(µ̃j;m, σ2

0I)[∏
i∈Sj N(yi;µj,Σj)

]
N(µj;m, σ2

0I)

N(µj; ãj, B̃j)

N(µ̃j; aj,Bj)
×

×
exp

{
−α
∑

i∈Ṽj d
2(µ̃j,µi)

}
exp

{
−α
∑

i∈Vj d
2(µj,µi)

}


otherwise.
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Appendix D

Appendix for Chapter 4

D.1 Full Conditionals for the POE Model

Here we briefly describe how to sample from each one of the full con-

ditionals. In this section, we use 1(·) to denote either an indicator function

or th support of a truncated probability distribution. We also define the sets

P+
g := {1 ≤ t ≤ T : esg = 1} and P+

t := {1 ≤ g ≤ G : esg = 1}. The sets

P0
g, P

−
g , P

0
t and P−t are defined analogously.

Updating esg

p(esg = x | y, else) ∝


π+
g

k+
g
× 1(αs + µg < ysg < αs + µg + k+

g ), if x = 1,

π0
g ×N(ysg; αs + µg, σ

2
g), if x = 0,

π−
g

k−g
× 1(αs + µg − k−g < ysg < αs + µg), if x = −1.

Updating k+
g and k−g
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(k+
g | y, else) ∼ InvGamma(#P+

g + αk+ , βk+)

1

(
k+
g > max

(
max
t∈P+

g

{ysg − αs − µg}, k0σg

))
.

(k−g | y, else) ∼ InvGamma(#P−g + αk− , βk−)

1

(
k−g > max

(
max
t∈P−

g

{αs + µg − ysg}, k0σg

))
.

Updating πg

(πg | y, else) ∼ Dirichlet
(
( #P−g + α−π , #P0

g + α0
π, #P+

g + α+
π )
)
.

Updating σ2
g

(σ2
g | y, else) ∼ InvGamma

#P0
g

2
+ γ,

1

2

∑
t∈P0

g

(ysg − αs − µg)2 + λ


1

(
σ2
g <

min
(
k+
g , k

−
g

)2

k2
0

)
.

Updating µg

(µg | y, else) ∼ N(ag, bg)1
(
max

(
M+

g ,M
−
g

)
< µg < min

(
m+
g ,m

−
g

))
,
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where

M+
g = max{ysg − αs; t ∈ P+

g } − k+
g ;

M−
g = max{ysg − αs; t ∈ P−g };

m+
g = min{ysg − αs; t ∈ P+

g };

m+
g = min{ysg − αs; t ∈ P−g }+ k−g ;

bg = (#P0
gσ
−2
g + τ−1

µ )−1;

ag = bg ×

σ−2
g

∑
t∈P0

g

(ysg − αs) + τ−1
µ θµ

 .
Updating αs

(αs | y, else) ∼ N(at, bt)

1
(
max

(
M+

t ,M
−
t

)
< αs < min

(
m+
t ,m

−
t

))
1

(
T∑
t=1

αs = 0

)
.

where

M+
t = max{ysg − µg − k+

g ; g ∈ P+
t };

M−
t = max{ysg − µg; g ∈ P−t };

m+
t = min{ysg − µg; g ∈ P+

t };

m+
t = min{ysg − µg + k−g ; g ∈ P−t };

bt =

∑
g∈P0

t

σ−2
g + τ−1

α

−1

;

at = bt ×

∑
t∈P0

t

(
ysg − αs
σ2
g

)
+ τ−1

α µα

 .
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Updating θµ

(θµ | y, else) ∼ N

((
mµs

−2
µ + τ−1

µ

G∑
g=1

µg

)
(s−2
µ +Gτ−1

µ )−1, (s−2
µ +Gτ−1

µ )−1

)

Updating τµ

(τµ | y, else) ∼ InvGamma

(
G

2
+ aτµ ,

1

2

G∑
g=1

(µg − θµ)2 + bτµ

)

Updating βk+

(βk+ | y, else) ∼ Gamma

(
Gαk+ + aβk+ , bβk+ +

G∑
g=1

1

k+
g

)

Updating βk−

(βk− | y, else) ∼ Gamma

(
Gαk− + aβk− , bβk− +

G∑
g=1

1

k−g

)

Updating αk+

p(αk+ | y, else) is not analytically available since

p(αk+ | y, else) ∝ Γ(αk+)−G

(
βGk+∏G
g=1 k

+
g

)αk+

e−αk+λα
k+ .
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One way of (approximately) sampling from this distribution is through

the Metropolis-Hastings scheme.

We specify a proposal q(αnewk+ | αoldk+ ) corrected by the acceptance prob-

ability α(αnewk+ | αoldk+ ) := min
{

1, r(αnewk+ | αoldk+ )
}
, where

r(αnewk+ | αoldk+ ) :=
q(αoldk+ | αnewk+ )p(αnewk+ | y, else)
q(αnewk+ | αoldk+ )p(αoldk+ | y, else)

.

Our proposal is a random-walk on logαk+ , i.e., logαnewk+ ∼ N(logαoldk+ , V +)

for some fixed V + > 0. which implies a LogNormal proposal density on the

original scale with q(αnewk+ | αoldk+ ) = N(αnewk+ ;αoldk+ , V +)× 1/αnewk+ .

It is straightforward to verify that

log r(αnewk+ | αoldk+ ) = (logαoldk+ − logαnewk+ )−G
[
log Γ(αnewk+ )− log Γ(αoldk+ )

]
+

+ (αnewk+ − αoldk+ )

[
G log βk+ −

G∑
g=1

log k+
g − λαk+

]
.

Updating αk−

Updating αk− is entirely analogous to updating αk+ .

D.1.1 Sampling from truncated distributions within MCMC

In this section we describe the Gibbs sampler augmentation scheme to

asymptotically sample from the truncated inverse gamma and truncated nor-

mal distributions that appear in appendix D.1. Although sampling algorithms

for truncated distributions can be easy derived, sometimes even by the inverse

c.d.f. method, the resulting algorithm can often be numerically unstable (take
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the truncated Gaussian distribution for example). In such cases, it could be

advantageous to use an approximate sampler if it is more robust to computa-

tional errors. In this regard, we follow the directions on Damien and Walker

(2001).

The univariate normal sampling scheme can be seen as a particular

instance of the algorithm for multivariate normals or as an extension of the

sampling scheme for univariate standard normals that are both described in

Damien and Walker (2001). The algorithm to sample from truncated inverse

gamma is very similar to the one that samples from the truncated Gamma. We

describe both sampling schemes here solely for the purpose of completeness.

D.1.1.1 Truncated normal

Suppose a truncated Gaussian distribution for the random variable X:

X ∼ N(µ, σ2)1(a < X < b), i.e., fX(x) ∝ exp
{
− (x−µ)2

2σ2

}
1(a < x < b), where

we could have a = −∞ or b = +∞ to represent unilateral truncation. We

define the auxiliary variable Y through the joint density

fX,Y (x, y) ∝ 1(0 < y < e−
(x−µ)2

2σ2 )1(a < x < b)

so that the implied marginal for X matches the original N(µ, σ2)1(a < X < b).

The full conditional distributions are

126



(Y | X = x) ∼ Unif

(
0, exp

{
−(x− µ)2

2σ2

})
, (D.1)

(X | Y = y) ∼ Unif
(

max(a, µ−
√
−2σ2 log y), min(b, µ+

√
−2σ2 log y)

)
.

(D.2)

Within the MCMC scheme described in section D.1, we include sam-

pling from the auxiliary variables Yµg and Yαt corresponding to the full con-

ditional distributions of µg, and αt respectively. The auxiliary variables are

sampled from (D.1) while the original variables are sampled from (D.2), with

the appropriate values of µ, σ2, a and b.

D.1.1.2 Truncated inverse gamma

Suppose X ∼ InvGamma(α, β)1(a < x < b), i.e., fX(x) ∝ x−α−1e−
x
β

1(a < x < b). We define the joint density of X and Y :

fX,Y (x, y) ∝ x−α−11(0 < y < e−
x
β )1(a < x < b)

so that the implied marginal forX matches the original InvGamma(α, β)1(a <

X < b). The full conditional distributions are

(Y | X = x) ∼ Unif(0, e−
x
β ), (D.3)

fX|Y (x | y) ∝ x−α−11(M(y) < x < b), (D.4)

where M(y) := max
(
a, − β

log y

)
. The inverse c.d.f. method provides an ef-

ficient way to sample from (D.4): sample U ∼ Unif(0, 1) then evaluate the

transformed variable
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M(y)

[U({M(y)/b}α − 1) + 1]
1
α

,

which will be distributed as (D.4).

Within the MCMC scheme described in section D.1, we include sam-

pling from the auxiliary variables Yk+
g

, Yk−g and Yσ2
g

corresponding to the full

conditional distributions of k+
g , k−g and σ2

g respectively. The auxiliary variables

are sampled from (D.4) while the original variables are sampled from (D.3),

with the appropriate values of α and β.

D.2 Full Conditionals for Matching Cell Line and Pa-
tients Model

This appendix describes steps of the Gibbs sampler algorithm used to

carry out posterior inference.

Define Sx,kj := {i : δx,ki = j} with x being either c or p. In the remainder

of this appendix section, we will denote by sj the single element in the set Sc,kj

(it could even be sj = ∅), omitting the superscripts for simplicity.

The full posterior (up to a normalizing constant depending solely on

the data d) can be factorized as
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p(Ψ | d) ∝

[
G∏
g=1

p(σ−2
g )p(σ−2

1g )p(σ−2
2g )

]
p(w | π0, α0)

Kw∏
k=1

p(δp,k)p(δc,k | δp,k)

×
×

Kw∏
k=1

∏
g:wg=k

Jk∏
j=1

p(θ∗jg | µ0g, σ
2
0g)×

[
G∏
g=1

p(µ0g)p(µ1g)p(µ2g)

]
×

×
Kw∏
k=1

∏
g:wg=k

Jk∏
j=1

p(dcig | θ∗jg, σ2
g)
1(Sc,kj ={i}6=∅)

∏
i:δp,ki =j

p(dpig | θ∗jg, σ2
g)

×
×

Kw∏
k=1

∏
g:wg=k

 ∏
i:δc,ki =0

p(dcig | µ1g, σ
2
g , σ

2
1g)

∏
i:δp,ki =0

p(dpig | µ1g, σ
2
g , σ

2
1g)

×
×
∏

g:wg=0

[
Np∏
i=1

p(dpig | µ2g, σ
2
g , σ

2
2g)

Nc∏
i=1

p(dcig | µ2g, σ
2
g , σ

2
2g)

]
. (D.5)

Updating θ∗jg:

p(θ∗jg | d,Ψ−θ∗jg) ∝ N(θ∗jg; µ0g, σ
2
0g)

∏
i∈Sc,wgj

N(dcig; θ
∗
jg, σ

2
g)

∏
i∈Sc,wgj

N(dpig; θ
∗
jg, σ

2
g)

(θ∗jg | d,Ψ−θ∗jg) ∼ N

(
(
∑

i∈Sc,wgj
dcig +

∑
i∈Sp,wgj

dpig)σ
−2
g + µ0gσ

−2
0g

(|Sc,wgj |+ |Sp,wgj |)σ−2
g + σ−2

0g

,

1

(|Sc,wgj |+ |Sp,wgj |)σ−2
g + σ−2

0g

)
.

Updating δp,k:

We follow Bush and MacEachern (1996) and sample the cluster mem-

bership indicators δp,k within a Gibbs block marginalizing θ∗ out, i.e., by
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sampling p(δp,ki = j | d,Ψ−(δp,ki ,θ∗
)
) for i = 1, . . . , Np. These updates together

with the previous one where we sampled θ∗jg ∼ p(θ∗jg | Ψ−θ∗jg) for all j and g,

asymptotically provides a blocked joint sample from p(θ∗, δp,k | d,Ψ
−(δp,k,θ∗

)
).

Denote by A−p,k the number of active patient samples within protein

sample k excluding patient i and define Sp,k−j := Sp,kj \ {i}. Then δp,k ∼

ZEPU(αp,k, πpk) implies

P (δp,ki = j | δp,k−i ) =


πpk, j = 0

(1− πpk)
|Sp,k−j |
αpk+A−

p,k

, j = 1, . . . , J−k

(1− πpk) αp,k

αpk+A−
p,k

, j = J−k + 1.

(D.6)

Using equation (D.6), we obtain

P (δp,ki = j | δc,k, δp,k−i ) ∝ p(δc,k | δp,k)P (δp,ki = j | δp,k−i )

∝ P (δp,ki = j | δp,k−i )
min{Jk,Nc}∑

n=0

(
Jk
n

)(
N c

n

)
n! (D.7)

analytically. Notice that Jk varies with δp,ki so the summation term cannot by

omitted from (D.7).

After marginalizing θ∗jg out from p(dpig | d
p
−ig, d

c
sjg
, δp,ki = j,Ψ−δp,ki

), we

obtain
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p(dpig | d
p
−ig, d

c
sjg
, δp,ki = j,Ψ−(δp,ki ,θ∗

)
)

=

√
(|Sp,k−j |σ−2

g + σ−2
0g )(|Sp,k−j |σ−2

g + σ−2
0g + σ−2

g )

(2πσ2
g)

×

× exp

−1

2

dpig2σ−2
g + (|Sp,k−j |σ−2

g + σ−2
0g )×

×

σ−2
g

∑
`∈Sp,k−j

dp`g + dcsjg1(Sc,kj 6= ∅)σ−2
g + µ0gσ

−2
0g


2
×

× exp

1

2
(σ−2

g + σ−2
0g + |Sp,k−j |σ−2

g )−1 ×

×

dpigσ−2
g +

 ∑
`∈Sp,k−j

dp`g + dcsjg1(Sc,kj 6= ∅)

σ−2
g + µ0gσ

−2
0,g


 .

Using equation (D.7), we get

P (δp,ki = j | Ψ−(δp,ki ,θ∗
)
) ∝

∝



[∏
g:wg=kN(dpig | µ1g, σ

2
g + σ2

1g)
]
πpk
∑J−

k +1
n=0

1
(Nc−n)!

bj, j = 0

∏
g:wg=k p(d

p
ig | d

p
−ig, d

c
sjg
, δp,ki = j,Ψ−(δp,ki ,θ∗

)
)×

×(1− πpk)
|Sp,kj −{i}|
αpk+A−

p,k

∑J−
k +1
n=0

1
(Nc−n)!

bj, j = 1, . . . , J−k

∏
g:wg=kN(dpig | µ0g, σ

2
g + σ2

0g)×
×(1− πpk) αp,k

αpk+A−
p,k

∑J−
k +2
n=0

1
(Nc−n)!

bj, j = J−k + 1,
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where J−k is the number of active clusters of patients within protein group k

after removing patient i and bj := 1(|Sc,kj | = 1)1(|Sp,kj | > 0)+1(|Sc,kj | = 0) is a

binary variable that enforces non-empty active clusters of cell lines to contain

at least one patient sample as well.

Updating δc,ki :

p(δc,ki = j | d,Ψ−δc,ki ) ∝

∝


∏

g:wg=kN(dcig; θ
∗
jg, σ

2
1g), j > 0, Sp,kj 6= ∅, S

c,k
j = ∅∏

g:wg=kN(dcig; µ1, σ
2
g + σ2

1g), j = 0

0, otherwise.

We also define a Metropolis-Hastings algorithm to sample from δc,k in

a way that hopefully produces Markov Chains with better mixing properties.

Here we omit the upper indexes c, k from δc,k for clarity of exposition.

Recall that the Metropolis-Hastings algorithm produces a new sample

δt+1 from δt according to an auxiliary transition probability q(δt+1 | δt) that

is irreducible and aperiodic. Then δt+1 is accepted with probability α(δt+1 |

δt) := max{1, r(δt+1 | δt)} where r(δt+1 | δt) := q(δt|δt+1
)p(δt+1

)

q(δt+1
|δt)p(δt)

.

We define two types of transitions and at each iteration we uniformly

chose one of them at random.

Type I: We take an active cell line and switch it with one of the

inactive cell lines. Under such proposal, q(δt+1 | δt) = 1

|Sc,k0 |(Nc−|Sc,k0 |)
. Under

this proposal, the acceptance ratio reduces to
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r(δc,k(t+ 1) | δc,k(t)) =
∏

g:wg=k

N(dci0(t+1);µ1, σ
2
g + σ2

1g)N(dcig; θ
∗
jg, σ

2
g)
∣∣
j=δc,k

i1(t+1)

N(dci0(t);µ1, σ2
g + σ2

1g)N(dcig; θ
∗
`g, σ

2
g)
∣∣
`=δc,k

i1(t)

,

where i1(x) and i0(x) respectively denote the active and inactive cell lines

selected by the proposal at time x (before switching, when x = t; and after

switching, when x = t+ 1).

Type II: Randomly pick an active cluster j. If |Sc,kj (t)| = 0 (no active

cell line in cluster j), assign an inactive cell line to cluster j uniformly at

random. On the other hand, if |Sc,kj (t)| = 1 we reassign the only active cell

line i ∈ Sc,kj (t) from cluster j to the group of inactive cell lines by making

δc,ki (t+ 1) = 0. Under such proposal, we have q(δt+1 | δt) = 1

Jk|Sc,k0 (t)|
1(|Sc,kj | =

0) + 1
Jk
1(|Sc,kj | = 1). Under this proposal,

r(δc,k(t+ 1) | δc,k(t)) =


N(dcig ; θ∗jg ,σ

2
g)|Sc,k0 (t)|

N(dcig ; µ1,σ2
0gσ

2
g)

∣∣∣
i∈Sc,kj (t+1)

, Sc,kj (t) = ∅

N(dcig ; µ1,σ2
0gσ

2
g)

N(dcig ; θ∗jg ,σ
2
g)|Sc,k0 (t+1)|

∣∣∣
i∈Sc,kj (t)

, Sc,kj (t) = {i} 6= ∅.
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Rodŕıguez, A. and Ter Horst, E. (2008). Bayesian dynamic density estimation.

Bayesian Analysis, 3:339–366.

140



Rousseau, J. and Mengersen, K. (2011). Asymptotic behaviour of the posterior

distribution in overfitted mixture models. Journal of the Royal Statistical

Society: Series B (Statistical Methodology), 73(5):689–710.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of

Statistics, 6(2):461–464.

Serra, V., Scaltriti, M., Prudkin, L., Eichhorn, P. J., Ibrahim, Y. H., Chan-

darlapaty, S., et al. (2011). PI3K inhibition results in enhanced HER signal-

ing and acquired ERK dependency in HER2-overexpressing breast cancer.

Oncogene, 30(22):2547.

Sethuraman, J. (1994). A constructive definition of dirichlet priors. Statistica

sinica, pages 639–650.

Shiffman, M., Stephenson, W. T., Schiebinger, G., Huggins, J., Campbell,

T., Regev, A., and Broderick, T. (2018). Reconstructing probabilistic trees

of cellular differentiation from single-cell RNA-seq data. arXiv e-prints,

arXiv:1811.11790.

Sinha, R., Schultz, N., and Sander, C. (2015). Comparing cancer cell lines and

tumor samples by genomic profiles. bioRxiv, page 028159.

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and Van Der Linde, A. (2002).

Bayesian measures of model complexity and fit. Journal of the Royal Sta-

tistical Society: Series B (Statistical Methodology), 64(4):583–639.

141



Street, K., Risso, D., Fletcher, R. B., Das, D., Ngai, J., Yosef, N., Purdom,

E., and Dudoit, S. (2018). Slingshot: cell lineage and pseudotime inference

for single-cell transcriptomics. BMC Genomics, 19(1):477.

Stubbington, M. J., Rozenblatt-Rosen, O., Regev, A., and Teichmann, S. A.

(2017). Single-cell transcriptomics to explore the immune system in health

and disease. Science, 358(6359):58–63.
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