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Abstract 

IMPACT OF NON-CODING RNAS IN GENETIC DISEASE AND 
PAPILLOMAVIRUS LIFECYCLE 

Rachel Priya Chirayil, M.A .

The University of Texas at Austin, 2017 

Supervisor:  Christopher S. Sullivan 

Non-coding RNAs are vital to several diverse biological processes. Untranslated 

regions of mRNAs (UTRs) and variability therein can often cause differential 

regulation of transcripts. This regulation is often effected by microRNAs 

(miRNAs), small non-coding RNAs that interacts with 3’UTRs to regulate gene 

expression post-transcriptionally. Here we investigate the variation in the 3’UTR 

of SERPINA1 gene, mutations of which cause the often life-threatening Alpha-1-

antitrypsin deficiency (A1AD), and effects on miRNA.  We screened 50 miRNA 

mimics and determined their overexpression does not affect secreted alpha-1-

antitrypsin (AAT). Additionally, we showed through the use of a poxvirus protein 

to degrade miRNAs that underexpression of miRNAs does not affect  secreted 

AAT. Using luciferase reporters we determine that in cultured cells, there are no 

liver-specific trans-factors that act on the SERPINA1 3’UTR, of any length, to 
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regulate gene expression. We sequenced the 3’UTRs from the largest cohort of 

of A1AD patients to date and determined that 3’UTR variation does not contribute 

to disease severity in patients with one form of A1AD, and that in a cell culture 

context, miRNAs do not regulate secreted AAT.  We conclude that neither 3’UTR 

variation nor miRNAs affect wild-type secreted AAT. 

In addition to genetic disease, miRNAs regulate multiple aspects of the host-

pathogen interface. Until now no widely accepted PV-encoded miRNAs have 

been described. We have developed miRNA Discovery by forced Genomic 

Expression (miDGE), a new wet bench approach to miRNA identification that 

screens numerous pathogen genomes in parallel. Using miDGE, we screened 

over 75 different PV genomes for the ability to code for miRNAs. We conclusively 

demonstrate a lack of PV miRNA expression in cancers associated with 

infections of several high risk HPVs. However, we identified five different miRNAs 

encoded by four different PVs (Human PVs 17, 37, 41 and Fringilla colebs (Fc) 

PV). We show that miRNAs from two PVs (HPV41 & FcPV) are able to regulate 

transcripts corresponding to the early region of the PV genome.. Combined, 

these findings identify the first canonical PV miRNAs and support that miRNAs of 

either host or viral origin are important regulators of the PV life cycle. 
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IMPACT OF NON-CODING RNAS IN GENETIC DISEASE AND 
PAPILLOMAVIRUS LIFECYCLE 

Chapter 1:  Introduction and overview of microRNAs and 
Papillomaviruses 

In recent years, there has been a dramatic rise in appreciation for the 

diverse regulatory roles of non-protein-coding RNAs. Deep sequencing 

technology has uncovered a surfeit of wide-ranging biological roles for non-

coding RNAs (ncRNAs) in across a large variety of eukaryotic and prokaryotic 

genomes. Several types of ncRNA regulate gene expression, controlling 

mechanisms such as transcription, pre-mRNA processing, transcript turnover, 

translation, and nuclear export (as reviewed in 13). 

RNA interference (RNAi) is the mechanism by which small non-coding 

RNAs, in complex with protein machinery, regulate gene expression by targeting 

messenger RNA (mRNA) molecules. MicroRNAs (miRNAs), small 19-22 

nucleotide (nt) RNAs that target mRNAs for cleavage or repression of translation, 

belong to one such class of ncRNAs (13, 22, 43). In the nearly twenty five years 

since their discovery in Caenorhabditis elegans (22, 43), much has been learned 

about these ncRNAs. With the advent of next-generation sequencing technology 

and computational approaches, miRNAs have been uncovered in a wide variety 

of eukaryotic genomes (13, 36). Several human miRNAs have been shown to 

regulate a diverse range of cellular processes, including the innate immune 
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response, cell growth and apoptosis, metabolism, developmental differentiation, 

he inflammatory response, and cancer (reviewed in 13, 14, and 53).  

MiRNAs are canonically derived from longer RNA polymerase II (pol II)- 

transcribed primary transcripts (pri-miRNAs) containing stem-loop structures 

(44). Shorter 70-100 nucleotide (nt) precursor miRNAs (pre-miRNAs) are cleaved 

from the pri-miRNA by an RNase III endonuclease Drosha/ DGCR8 complex (17, 

41, 44, 76) and exported into the cytoplasm by Exportin-5 in associated with 

RAN-GTP (74). Here, pre-miRNAs are cleaved in roughly 22 nt duplexed RNA by 

another RNase III endonuclease, Dicer (28, 33). This duplexed RNA is 

composed of a passenger strand RNA and a mature RNA, the latter of which is 

loaded onto the RNA-induced Silencing Complex (RISC). The miRNA-RISC 

complex targets complementary sequences in mRNA transcripts, typically in the 

non-coding 3’ untranslated region (3’UTR) for degradation or translational 

repression (35, 61).  

The 3’UTR is defined as the region of an mRNA transcript immediately 

following the stop codon through the poly-adenosine tail (20, 65). The average 

human 3’UTR is about 1000 nucleotides (65) in length, though this can vary in a 

context-specific manner. For instance, genes implicated in cancer progression 

often display shorter 3’UTRs, and some highly expressed neuronal genes have 

3’UTRs up to 1300 nucleotides in length (65).  As 3’ UTRs are generally long, 

most contain several potential binding sites for an array of miRNAs. Additionally, 

the same type of miRNA can target a diverse range of mRNA transcripts. 
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Watson-Crick base pairing plays a major role in binding efficiency of and 

subsequent processing by RISC-bound miRNAs. Typically, complementary 

pairing is most critical for binding between 3’UTR sequence and a “seed” 

sequence in the miRNA (nucleotides 2-7), and pairing with miRNA sequence 

upstream or downstream of the seed can contribute to binding energy (21, 4, 34). 

Given the highly sequence-dependent manner of miRNA binding and the 

availability of multiple miRNA binding sites on most 3’UTRs, variation in 3’UTR 

sequences can greatly affect 3’UTR-dependent regulation. One of the most 

common causes of 3’UTR variation, use of alternative poly-adenlyation, has been 

estimated to affect almost 70% of human transcripts (20). Alternative 

polyadenlyation can contribute to shortening or lengthening of a gene’s resultant 

3’UTR, and as such can provide additional miRNA binding sites, or ablate 

existing sites. Single nucleotide polymorphisms (SNPs) can also contribute to 

differential miRNA-dependent regulation (25, 54). SNPs occur on average once 

every 300 nts throughout the human genome. This rate can, however be 

misleading, as noncoding regions are less constrained for SNPs, meaning there 

is a higher likelihood of variation for ncRNA than for protein-coding RNA regions. 

As miRNA binding is highly sequence-specific, a single nucleotide change can 

greatly change the degree to which a transcript is post-transcriptionally regulated 

(as reviewed in 54). Thus, variation in the 3’UTR can have a dramatic impact on 

gene expression. 
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RNAi has been observed in plants, insects, and nematodes to be anti-

viral, though its role in the mammalian antiviral response remains controversial 

(1). Interestingly, several diverse viruses have been shown to use virus-encoded 

miRNAs in a pro-viral context. The largest portion of these are DNA viruses (16, 

36), but all known miRNA-encoding viruses share one important trait: they are 

capable of maintaining persistent infection (16). A hallmark of persistent infection 

is decreased viral gene expression, allowing for infection to evade innate immune 

surveillance. As key regulators of gene expression, miRNAs likely play a 

significant role in this.  

Papillomaviruses (PVs), double-stranded DNA viruses, are of special 

interest as they are highly related to human health. HPV16 and HPV18 are 

known to be responsible for the vast majority of cervical cancers, as well as a 

large share of throat cancers and anal cancers. As yet, there is no consensus on 

whether or not PVs encode miRNAs. Early attempts at sequencing have 

revealed no PV-encoded miRNAs. However, it has been reported that 

computational analysis of HPV18 revealed virus-encoded miRNAs (29). 

Additionally, more recent reports have suggested that small RNA library 

sequencing from HPV16, HPV 38, and HPV61 reveal PV-encoded miRNAs in 

each viral genome (57, 71). These studies do not provide complete evidence for 

miRNA identification, as the abundance of these small RNAs was extremely low, 

and neither biogenesis nor RISC activity were established. However, another 

study using fully infectious systems to study high risk PVs reported no evidence 
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of viral miRNAs derived from either HPV16 or HPV18 (76). The current dearth of 

information on noncoding PV RNAs is due in large part to the lack of ability to 

study PV infection in vitro. However, as novel technologies for small RNA 

sequencing develop, a clearer picture will emerge as to the absence or presence 

of PV miRNAs, and the biological significance in this important human pathogen.  
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Chapter 2: SERPINA1 3’UTR variation does not contribute to Alpha-1-

Antitrypsion Deficiency disease severity 

Introduction:  SERPINA1 and A1AD disease 

Alpha-1-antitryspin deficiency is a genetic disease caused by decreased 

functional levels of the protein Alpha-1-antitrypsin, and can lead to devastating 

damage to respiratory health and liver function due largely to misfolding of AAT 

protein and accumulation of immunoreactive isoforms in the liver (23, and 

references therein, 27). Alpha-1-antitrypsin (AAT) is a serine protease inhibitor 

that functions in the inflammatory response by regulating neutrophil activity. The 

52 kDa protein, which inhibits a range of proteases, is primarily produced and 

secreted in the liver and is present in high amounts in the plasma. AAT activity is 

vital for respiratory health. In the absence of AAT its primary target, neutrophil 

elastase, targets elastin in the lungs, leading to decreased elasticity and 

respiratory distress. A1AD can lead to increasingly poor respiratory health, 

causing or worsening diseases such as Chronic Obstructive Pulmonary Disease 

(COPD), asthma, and emphysema. Accumulation of misfolded protein in the liver 

can additionally lead to liver disease, such as cirrhosis or hepatocellular 

carcinoma (23, 27).  

AAT is encoded by the SERPINA1 gene, located on chromosome 14q32.1 

(15). Several allelic variations have been reported, with varying effects on AAT 

levels (48). These variants are annotated by their characteristic migration 
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patterns in isoelectic focusing analysis. Normal AAT migrates as a middle band 

(M), and other isoforms are classified as A-L for faster migrating bands and N-Z 

for slower migrating bands. A1AD is caused by one of several mutations of 

autosomal alleles that leads to low levels of wild-type Alpha-1-Antitrypsin 

circulation. The most clinically relevant of these mutations is the Z (Glu342Lys) 

mutation, which leads to drastically reduced levels of circulating AAT (20% of 

wildtype, in patients that are homozygous for the Z allele) (42). While the 

causative agent of this disease is understood as genetic mutations, there is little 

explanation for the wide variation of penetrance and disease severity seen in 

patients with this mutation (27, 42). As such, an increased understanding of the 

regulation of both the wild-type and disease form of AAT will be invaluable to the 

patient community.  

Much attention has been given to genomic variation in the SERPINA1 

gene and how this variation can account for disease phenotypes. There is, 

however, a paucity of information on post-trascriptional regulation of SERPINA1. 

The human transcriptome gives rise to multiple isoforms of a number of genes, 

and variation in pre-mRNA and mRNA transcripts can contribute significantly to 

variation gene expression. Here we focus on variation in the 3’ Untranslated 

Region (UTR) of SERPINA1, the site of a significant portion of post-

transcriptional regulation.  

The average 3’UTR in the human transcriptome is roughly 1000 

nucleotides (nt) in length (65). SERPINA1 has been reported to have an 
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extremely long (1700 nt) 3’UTR. This region of non-coding RNA can confer 

regulation in multiple ways, using both cis factors encoded in the UTR sequence 

as well as trans factors such as RNA-binding proteins to increase or decrease 

translation of the mRNA (20 and references therein, 50). 3’UTR-mediated 

regulation is necessarily sequence-specific, as it depends greatly on the 

presence and availability of binding sites for regulatory complexes. As such, 

truncations or elongations of a transcript’s 3’UTR can significantly alter post-

transcriptional regulation, either ablating or adding regulatory sites. Additionally, 

single-nucleotide changes in the 3’UTR can disrupt cis regulator factors such as 

signal sequences for processing machinery and nuclear export or binding sites of 

trans regulatory factors such as microRNAs (miRNAs) (21, 25, 54). 

One of the most prevalent mechanisms of 3’UTR-dependent regulation is 

Alternative Poly-Adenylation (APA), which affects an estimated 70% of 

transcripts (reviewed in 20). With the exception of a few mRNAs, such as histone 

mRNAs, most mature eukaryotic mRNAs end in a non-templated poly-adenosine 

(poly-A) tract. This non-templated end is produced through the recognition a six 

nucleotide motif, typically AAUAAA (5), within the 3’UTR by two protein 

complexes upon the transcript’s emergence from RNA polymerase II (RNA pol II) 

(5, 20). Recognition and binding to this sequence is followed by cleavage of the 

transcript roughly 40 nt downstream, and the addition of the poly-A tail by a poly-

A-polymerase. APA causes transcripts with varying 3’UTR length and variation in 

poly-A tail length due to the recognition of differing signal sequences within the 
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same 3’UTR. There are multiple potential poly-A signal sequences in the 

SERPINA1 3’UTR (Figure 4B). The most distal of these is a canonical AAUAAA 

hexamer resulting in a 1700 UTR, but an AUUAAA sequence ~70nt downstream 

of the stop codon may also be used (20). Reports have varied on the identity of 

the predominant SERPINA1 3’UTR. The variation between multiple SERPINA1 

UTRs could account for differential post-transcriptional regulation, but to our 

knowledge, no reports have investigated the impact of variation in SERPINA 

3’UTRs. 

Single nucleotide polymorphisms (SNPs) can also generate variation in 

3’UTR transcripts. “Common” SNPs occur in 1% or more of the population, and 

current estimates report 10 million SNPs in the human genome. SNPs in coding 

regions of genes are often given much attention for their ability to significantly 

alter amino acid sequences. However, roughly 93% of SNPs currently known are 

in non-coding regions. Though non-coding SNPs do not affect protein identity by 

changing amino acid sequences, they can significantly alter gene expression 

through changes in transcriptional or post-transcriptional regulation. SNPs in the 

5’ UTR can alter promoter or enhancer sequences, greatly affecting transcription 

efficiency. SNPs in the 3’UTR can alter binding sites of miRNA or RNA-binding 

proteins and impact 3’UTR-dependent post-transcriptional regulation to great 

consequence. Indeed, multiple 3’UTR SNPs have been reported to disrupt or 

disease-associated miRNA binding sites and alter gene expression through 

increases or decreases in miRNA-mediated gene repression. 
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miRNAs are of specific interest to liver-health, as several miRNAs have been 

implicated in a wide range of liver processes and disease. To our knowledge, no 

miRNAs have been identified as yet as regulators of AAT. Recently, miR-199 

was identified as a key regulator of the unfolded protein response to ER stress 

caused by the ZZ isoform of AAT (31, 32). This work contributes to a larger 

understanding post-transcriptional regulation surrounding SERPINA1. It does 

not, however, elucidate pathways of SERPINA1 regulation, focusing instead on 

downstream effects of misfolded SERPINA1 gene product. Our work 

demonstrates a significant step forward in the understanding of SerpinA1 post-

transcriptional regulation, as it validates previous work confirming the SerpinA1 

3’UTR, and is the first large-scale investigation of direct and indirect regulation of 

secreted AAT protein by miRNAs. 

Results: Effects of SERPINA1 3’UTR and variants on AAT 
secretion in the liver 

MiRNAs do not play a role in secretion of wild-type AAT 

We first determined candidate miRNAs as possible regulators of secreted 

AAT. As AAT is highly expressed in the liver, and the liver is the site of most 

disease relevance, it stands to reason that abundant liver miRNAs would be 

prime candidates to test as regulators of secreted AAT. To find these, we used 

miRNA-seq data deposited in The Cancer Genome Atlas to find the most 

abundant miRNAs expressed in normal liver cells (Supplementary Table 1). 
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Scoring miRNAs based on number of reads detected, we calculated the top fifty 

candidates across multiple data sets. 

To test whether or not these candidates regulate AAT, we first examined 

whether over-expression of these mimics can significantly alter secreted AAT 

levels in tissue culture. We transfected Huh-7 or HepG2 liver cell lines with either 

mimics for each of the top fifty liver miRNAs, negative control mimics, anti-

SERPINA1 siRNA, or negative control siRNA obtained from Sigma Aldrich. Two 

days post-transfection, RNA and cell culture supernatant were harvested for 

testing. We assayed SERPINA1 transcript levels by qPCR to confirm efficient 

delivery of these small RNAs, and knockdown of SERPINA1 transcripts in the 

presence of anti-SERPINA1 siRNA was confirmed (Figure 1A). To confirm that 

decrease in SERPINA1 transcript did indeed cause a decrease in secreted 

protein in both cell lines, we compared AAT levels in both mock, negative control 

siRNA, and anti-SERPINA1 siRNA-transfected cells (Figure 1B). Upon 

confirming of a reduction of roughly 80% in secreted protein by Enzyme Linked 

Immunosorbance Assay (ELISA), we assayed AAT levels for all miRNA mimics 

transfections by ELISA. Secreted AAT levels were assayed by ELISA from cell 

culture supernatant to determine whether overexpression of any of the candidate 

affects levels of secreted AAT positively or negatively. All values were 

normalized to a negative control miRNA mimic and to NanoLuc, an irrelevant 

secreted protein luciferase reporter, to control for non-specific decreases in 

secreted protein.  
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As an initial screen, we tested all fifty miRNA mimics, and any candidates 

that scored 20% higher or lower than the negative control mimic were selected 

for further screening (Figure 1C). Six candidates, Let-7a, miR-7a, miR-23, miR-

26, miR-27, and miR-182, did score by these criteria in our initial screen, and 

were subsequently assayed by qPCR for changes in transcript levels as well as 

in secreted protein (Figures 2A and 2B respectively). None of these six 

candidates screened consistently altered levels of either SERPINA1 transcripts 

or secreted AAT levels in follow-up screens, suggesting that overexpression of 

these miRNAs do not detectably alter AAT levels. 
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Figure 1.1 Effects of noncoding RNAs on SerpinA1 transcript and gene product levels 
(A) Quantitative real-time PCR analysis of SERPINA1 transcript levels. Two liver cell lines (Huh-7 and HepG2) were transfected with mock 
transfection conditions (RNAiMax and water), negative control siRNA, or anti-SERPINA1 siRNA, and SERPINA1 transcript levels were assayed 
by SYBR Green qPCR. Transcript levels were normalized to GAPDH transcript levels. Bars represent the mean SERPINA1 +/- SD (n=3) from 
three experiments in which transfections were performed in triplicate. (B) ELISA analysis of secreted AAT protein. Two liver cell lines (Huh-7 and 
HepG2) were transfected with mock transfection conditions (RNAiMax and water), negative control siRNA, or anti-SERPINA1 siRNA. Forty-eight 
hours post transfection, cell culture supernatant was harvested and secreted AAT levels were assayed by Abcam ELISA. Secreted AAT levels 
normalized to mock transfection. Bars represent the mean relative AAT +/- SD (n=3) from three experiments in which transfections were 
performed in triplicate. (C) ELISA analysis of secreted AAT protein in miRNA mimic-transfected cells. Two liver cell lines (Huh-7 and HepG2) 
were transfected with mock transfection conditions (RNAiMax and water), negative control siRNA, anti-SERPINA1 siRNA, negative control 
miRNA mimic, or one of fifty liver miRNA mimics. Forty-eight hours post transfection, cell culture supernatant was harvested and secreted AAT 
levels were assayed by ELISA (Abcam ab108799). Secreted AAT levels normalized to mock transfection Bars represent relative AAT levels from 
one experiment in which single transfections were performed per liver miRNA. 
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Figure 1.2. Secondary screen of initial miRNA hits does not reveal direct or indirect AAT regulators. 
 (A) ELISA analysis of secreted AAT protein. Two liver cell lines (Huh-7 and HepG2) were transfected with mock transfection 
conditions (RNAiMax and water), negative control siRNA, anti-SERPINA1 siRNA, negative control miRNA mimic, or one of 
six “hit” liver miRNA mimics.  Forty-eight hours post transfection, cell culture supernatant was harvested and secreted AAT 
levels were assayed by Abcam ELISA. Secreted AAT levels normalized to mock transfection. Bars for HepG2 cells represent 
the mean relative AAT +/- SD (n=2) from two experiments in which transfections were performed in triplicate. Bars for Huh7 
cells represent the relative AAT +/- SD (n=1) from one experiment in which transfections were performed in triplicate. (B) 
Quantitative real-time PCR analysis of SERPINA1 transcript levels. Two liver cell lines (Huh-7 and HepG2) were transfected 
with mock transfection conditions (RNAiMax and water), negative control siRNA, anti-SERPINA1 siRNA, negative control 
miRNA mimic, or one of six “hit” liver miRNA mimics. SERPINA1 transcript levels were assayed by SYBR Green qPCR. . 
Bars for HepG2 cells represent the mean SERPINA1 +/- SD (n=2) from two experiments in which transfections were 
performed in triplicate. Bars for Huh7 cells represent SERPINA1 +/- SD from one experiment in which transfections were 
performed in triplicate. 
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Next, to test whether any liver miRNAs were responsible for regulation of 

secreted protein, regardless of expression level, we infected Huh-7 liver cells 

with either an adenoviral vector expressing GFP (Ad-GFP) or the same vector 

with a fused poxvirus protein (Ad-GFP-VP55) which globally degrades miRNAs 

(2, 3). To confirm that miRNA expression was significantly reduced, RNA from 

infected cells was harvested and assayed for miRNA expression by Northern blot 

analysis. MiRNA expression was reduced in Ad-GFP-VP55-infected cells (Figure 

3A) by roughly 85%. Cell supernatant from the same infected cells were assayed 

by ELISA to determine relative secreted AAT levels, alongside cells transfected 

with either negative control siRNA or anti-SERPINA1 siRNA (Figure 3B). No 

difference in secreted AAT levels was observed between control-infected or Ad-

GFP-VP55-infected cells, suggesting that secretion of wild-type AAT is not 

affected by under-expression of miRNAs. Results of both over- and under-

expression analysis suggest that in the cell lines examined, miRNAs do not play 

a role in secretion of wild-type AAT. 
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Figure 1.3. Reduced miRNA expression does not significantly affect secreted AAT levels. 
(A) Northern blot analysis showing decrease in miRNA expression in AdGFPVP55-infected cells. 
Huh-7 cells were infected (MOI of 500) with either  control adenoviral vector AdGFP or a VP55 
vector AdGFPVP55, or transfected with either negative control siRNA (Sigma-Aldrich) or 
SERPINA1 siRNA. Forty-eight hours post-infection or post-transfection, total RNA was extracted 
and Northern blot analysis probing for liver miRNA miR-122 was performed. (B)Quantitative 
analysis of reduction in signal from Northern blot in Figure 3.A. Density of miR-122 was 
quantified for each lane and relative to signal for U6 RNA. Averages per treatment are shown 
relative to negative controls (n=3) Bars represent standard deviation from mean.(C) ELISA 
analysis of secreted protein from indicated cells. As indicated above, . Huh-7 cells were infected 
(MOI of 500) with either  control adenoviral vector AdGFP or a VP55 vector AdGFPVP55, or 
transfected with either negative control siRNA (Sigma-Aldrich) or SERPINA1 siRNA, and cell 
culture supernatant was assayed for secreted protein levels 48 hours post infection or post 
transfection. Bars represent the mean relative AAT +/- SD (n=2) from two experiments in which 
transfections were performed in triplicate. 
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Regulation of gene expression is independent of the SERPINA1 3’UTR 

To investigate the effects of the SERPINA1 3’UTR on protein expression, 

luciferase reporters were made with either the parental pSICHECK 2 plasmid’s 

3’UTR or the SERPINA1 3’UTR cloned behind a Renilla luciferase gene. Liver 

and non-liver cells were transfected with these reporter plasmids and Renilla 

luciferase expression relative to control firefly luciferase was assayed to 

determine liver-specific regulation of the SERPINA1 3’UTR (Figure 4A). 

However, no difference in expression was observed between liver and non-liver 

cells, suggesting that no liver-specific trans factors are responsible for regulation 

of the SERPINA1 transcript in the cell lines tested.  

Recently published data (58, 75) suggests that, contrary to previous reports, the 

predominant 3’UTR of SERPINA1 is much shorter than previously believed 

(Figure 4B). A non-canonical poly-adenylation signal sequence roughly 80 

nucleotides from the stop codon may be read by poly-A machinery to produce a 

3’UTR that is less than a tenth of the 1.7 Kb UTR. Recently, RNA-seq data 

deposited in ENSEMBLE (58) showed that the predominant form in liver tissue is 

indeed this shorter 3’UTR. To determine whether the longer transcript, which is 

still produced in low amounts, could be regulated we made two poly-A mutant 

reporters: 1) a two nucleotide mutation in the upstream signal sequence and 2) a 

deletion of the upstream signal sequence. We confirmed that these mutations 

make the full-length 3’UTR in greater abundance than the wild-type reporter 

using 3’RACE primers for nested PCR. Indeed, relative to the wild-type reporter, 
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both mutant reporters do favor the full-length SERPINA1 3’UTR (Figure 4C).  

While we have not confirmed that the short 3’UTR is produced in decreased 

abundance relative to the wild-type reporters, our initial PCR results give us 

confidence that the APA reporters are working as expected. However, both of 

these mutant reporters appear to repress expression to the same degree as the 

wildtype reporter (Figure 4D). This suggests that SERPINA1 alternative poly-

adenylation has no regulatory role in the systems we analyzed. 
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Figure 1.4. AAT 3’UTR does not confer regulation in a liver or miRNA-specific context. 
(A)  Luciferase assay measuring 3’UTR-dependent contribution to gene expression in liver and non-liver cells. Parental dual luciferase 

vector or modified vector with either AAT 3’UTR or inverted AAT 3’UTR (length control) cloned downstream of Renilla luciferase 
coding sequence were transfected into HEK293 or HepG2 cells. Renilla luciferase levels were assayed for gene expression with 
firefly luciferase expression serving as a transfection control. Bars represent the mean ratio (Renilla/Firefly) +/- SD (n=3) from three 
experiments in which transfections were performed in triplicate. (B) PolyA signal usage from liver tissue: graphical representation of 
SERPINA13’UTR length using data from APASdb. Bars represent reads in log scale mapping to regions with x axis representing 
distance from stop codon. (C) Nested PCR detection of Renilla luciferase reporter transcripts: HEK293T cells were transfected with 
indicated reporters. 48 hours post-transfection, ttal RNA was harvested, Dnase I treated to remove plasmid contamination, and 
reverse-transcribed using anchored oligo-d(T) primers. SERPINA1 3’UTR was amplified using primers for full-length 3’UTR. (D) 
Luciferase assay measuring contribution of Alternative PolyAdenylation to 3’UTR-mediated regulation of gene expression. Parental 
dual luciferase vector or modified vector with either AAT 3’UTR, polyAdenylation sequence mutant, or poly-adenylation deletion 
mutant AAT 3’UTR cloned downstream of Renilla luciferase coding sequence were transfected into HEK293 cells. Renilla 
luciferase levels were assayed for gene expression with firefly luciferase expression serving as a transfection control. Bars 
represent the mean ratio (Renilla/Firefly) +/- SD (n=3) from three experiments in which transfections were performed in triplicate. 
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The SERPINA1 3’UTR of ZZ-related A1AD patients do not contain common 

SNPs 

In order to determine whether or not SNPs present in the 3’UTR of 

SERPINA1 could modulate disease severity, we analyzed sequence of the 

SERPINA1 3’UTR region of a large number of A1AD patients. We obtained 

genomic DNA samples from 250 patients with varying degrees of A1AD, with 

associated clinical data, from the Alpha-1-Antitrypson Foundation DNA Bank. We 

used Sanger sequencing to sequence the wild-type SERPINA1 3’UTR of each of 

these patients. The SERPINA1 3’UTR was first amplified out of genomic DNA by 

polymerase chain reaction, then submitted for sequencing through the University 

of Texas at Austin DNA Sequencing Facility. To eliminate the possibility of PCR-

contamination, these samples were amplified on different days, with no template 

control reactions to ensure that the experimenter’s DNA was not being amplified. 

An assay was developed to identify the sex of the patient by amplifying a Y-

specific gene, and used to corroborate the unique identity of several patients 

(Figure 5A) as a further control. Additionally, an alternate genomic region from a 

different chromosome was sequenced to verify the capability of our approach to 

detect SNPs in diverse DNA populations. As expected, patients did have unique 

SNPs in common SNP regions (Figure 5B), but no unique SNPs were found in 

the genomic region of the SERPINA1 3’UTR of any of the patients (Table 1). This 

is likely due to the relatively recent occurrence of the ZZ allele responsible for 

A1AD seen in all sequenced patients.  
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SNP:	 Pa'ent	
popula'on	

	

Control	
DNA	
	

Expected	
Frequency	

SERPINA1	
3’UTR	

0	 -	 N/A	

AAT-linked	
locus	

100%	 25%	 25%	

Unlinked	
SNP	

~50%	 50%	 50%	

Table 1.1: Sequencing of A1AD patients 3’UTR 
Patient and non-patient populations sequenced for disease-linked SNPs as well as SNPs on 
unrelated chromosomes. Patients were identical in gene regions proximal to A1AD-causative 
mutation, and diverse in distal regions.  
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Figure 1.5. Sequencing of A1AD patient genome reveals no link between 3’UTR SNPs and disease severity. 
  
(A) Verification of unique identity of sequencing samples through amplification of Y-linked gene. PCR amplification of both AAT 3’UTR 
and Testes-specific Y-linked gene 1 (TSYP1) visualized by ethidium staining from genomic DNA. All input templates yield a band using 
AAT 3’UTR primer pair, but only male patients show characteristic 492 nt-length banding with Y-chromosome specific primer pair. Water 
and genomic DNA from HeLa (female) cells are provided as negative controls. (B) Sequencing chromatograms of SNP region on non-
SERPINA1-related region on chromosome 12. Sequence logo size related to relative frequency of nucleotide in pool of patient 
sequences.  
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Discussion 
Alpha-1 antitrypsin deficiency disorder is a disease that can cause a wide 

range of health defects, from asthma to liver failure. Disease pathologies are 

largely caused by aberrant protein folding due to genetic mutations in the coding 

sequence of the SERPINA1 gene. We hypothesized that some of this variation 

could be explained by variation in 3’UTR-mediated post-transcriptional 

regulation. 

Variations in 3’UTR-mediated post-transcriptional regulation can be 

caused by multiple cis and trans factors involved in gene expression. As the liver 

is the primary source of circulating AAT, we first tested whether or not liver 

miRNAs are trans regulators of SERPINA1 gene expression. We determined the 

top 50 liver-relevant miRNAs from over 1000 total human miRNAs using large 

datasets of small-RNA sequencing of healthy liver tissues from The Cancer 

Genome Atlas. We tested whether or not overexpression of these miRNAs could 

contribute directly or indirectly to production of secreted AAT in cell culture 

models, scored by a 20% increase or decrease in secreted protein relative to 

mock transfected cells in two different liver cell lines. Three miRNAs, miR-25, 

miR-182, and let-7a scored according to our original criterion. Due to this 

unexpectedly low number, we relaxed our original screening threshold to include 

miR-23 and miR-26, which were just outside the original threshold. However, in 

subsequent screens with multiple replicates, each of these original hits failed to 

consistently affect secreted AAT levels in a consistent manner. Additionally, they 
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did not seem to greatly impact SERPINA1 transcript levels. These data suggest 

that, at least in cell culture models, miRNA overexpression does not significantly 

increase or decrease AAT levels. Next, we investigated whether decreases in 

overall miRNA expression could impact secreted AAT protein. Utilizing a novel 

strategy developed by the tenOever lab, we delivered a poxvirus protein that 

degrades host miRNAs nonspecifically levels adenoviral vector and analyzed 

subsequent changes in AAT relative to control infection. Again, we did not 

observe any significant changes in secreted protein level, suggesting that in our 

given timeframe, the effects of decreased miRNA activity are not sufficient to 

impact secreted AAT levels. These observations are consistent with recently 

published data that suggest the predominant SERPINA1 3’UTR is the short form. 

With roughly 100 nucleotides of sequence space, there is little room for miRNA 

docking sites. Importantly, these data do not reflect effects on misfolded protein, 

measuring instead only wildtype AAT levels. It is possible that miRNAs impact 

levels of mutant AAT. Indeed, some reports have implicated miR-199 as a 

regulator of the unfolded protein response to the ZZ isoform of AAT, though no 

direct regulators of misfolded AAT have yet been uncovered. Our data combined 

suggest that in a cell culture model, neither overexpression nor underexpression 

of miRNAs is sufficient to alter secreted protein levels. 

Next we investigated whether the AAT 3’UTR, or variant transcripts, could 

contribute to regulation of gene expression. First we tested whether or not the 

AAT 3’UTR ould confer regulation in a liver-specific context. Using luciferase-
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based reporters, we compared the AAT 3’UTR to a parental vector 3’UTR, or an 

inversed AAT 3’UTR as a length control. Consistent with reports of a shorter 

3’UTR, we observed some amount of repression of Renilla luciferase gene 

product with the AAT 3’UTR relative to a parental vector 3’UTR of around 40-

50%. This repression is far less than that observed with the inverted 3’UTR size 

control. Additionally, we did not observe a significant difference in 3’UTR-

dependent repression between liver and non-liver cell lines. These data suggest 

there are no liver-specific trans factors that affect 3’UTR-mediated repression in 

cell culture models. Next, we tested whether or not alternative transcripts could 

confer additional regulation. As alternative poly-adenlyation is one of the most 

biologically significant sources of 3’UTR variation, we created poly-adenylation 

mutant reporters and verified that full-length AAT 3’UTRs are indeed produced in 

increasing abundance relative to our wild-type reporter. Surprisingly, the full-

length (1.7Kb) AAT 3’UTR does not confer additional repression relative to the 

more common, short 3’UTR when transfected into cells and assayed for Renilla 

luciferase levels. These reporters were tested in both liver and non-liver cells 

(data not shown), suggesting the possibility that the 3’UTR of SERPINA1, a 

major gene product of the liver, is not regulated by either liver-specific trans 

factor or cis factors leading to alternative polyadenylation.  

Finally, to test whether or not genetic variation in the AAT 3’UTR could 

contribute to disease severity, we sequenced the 3’UTR of 250 A1AD patients 

that are homozygous for the Z allele. We grouped these patients by disease 
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severity ranked on two measures: levels of inflammatory response protein CRP, 

and forced expiratory volume (FEV), a measure of respiratory distress. To our 

surprise, all 250 patient genomes have identical AAT 3’UTR regions. We 

additionally sequenced several patient genomes downstream of the wildtype AAT 

3’UTR, at a locus at which 25% of the general population has a single nucleotide 

polymorphism (SNP) according to NCBI’s dbSNP. In contrast to the general 

population, 100% of the patient UTRs sampled contained the same allele. This is 

likely due to the proximity of this allele locus to the shared ZZ allele in all tested 

A1AD patients. The ZZ allele arose from a single founder in a Viking colony an 

estimated twenty generations ago, and genetic linkage to any proximal SNPs is 

unlikely to be broken in such a short time (11). Importantly, a common SNP 

reported in 50% of the general population on an alternate (unlinked) 

chromosome, rs4149057, was equally represented in the patient population, 

demonstrating that unique SNPs are detectable in said population. These data 

suggest that SERPINA1 3’UTR variation does not contribute to A1AD disease 

severity.  

In conclusion, we have found no link between overexpression over liver-

expressed miRNAs and wildtype AAT regulation. Additionally, we found 

underexpression of all miRNAs does not impact wildtype AAT secretion. We 

found that the predominant SERPINA1 3’UTR is indeed atypically short, and 

does not confer gene regulation in a liver-specific manner. Finally, we determined 
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SERPINA1 3’UTR variation does not contribute to A1AD severity, likely due to 

genetic linkage to the causative ZZ allele. 
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Chapter 3: Identification of virus-encoded miRNAs in divergent 
Papillomaviruses 

Introduction:  Viral miRNAs and Papillomaviruses 

Papillomaviruses (PVs) comprise a large family of circular double-

stranded DNA viruses. Numerous PV genomes have been described including 

over 200 human PV (HPV) types. A minority of these are known as carcinogenic 

agents (80, 72) however only a small fraction of hosts infected with these high 

risk types will go on to develop high grade lesions. It remains incompletely 

understood what factors dictate whether or not HPV infection will develop into 

malignant cancer. Further, it is unclear why HPVs that share a high level of 

sequence similarity can have stark differences in tropism and infect different 

regions of the body. Developing a better understanding of PV gene products and 

regulation of their expression within the larger context of the PV family provides a 

foundation for deciphering the mechanisms controlling the differential outcomes 

of infection. 

An emerging class of viral gene products that are found in select virus 

families are small regulatory RNAs called microRNAs (miRNAs). Over 300 viral 

encoded miRNAs have been described, all from viruses able to undergo long 

term persistent infection (36, 63, 70, and references therein). Most of these 

viruses have DNA genomes including the herpes, polyoma, and anello virus 

families. However, delta and foamy retroviruses also encode miRNAs (9, 37,  

70). One likely role of viral miRNAs is to foster productive long-term interactions 



 29 

within the host (reviewed in 70). In this regard, at least some members of the PV 

family would be expected to encode miRNAs. However, to date, no credible 

examples of PV canonical miRNAs have been described. Two studies examining 

fully infectious experimental systems of the high-risk HPV types do not find 

evidence for virus-encoded miRNAs (78). Further, a study of latent and 

productive HPV31 cycles of replication concluded that this high-risk HPV does 

not encode miRNAs (12). There have been reports in transformed cells of small 

RNAs from high risk PVs such as HPVs16 &18, however these studies did not 

demonstrate a connection of PV-derived small RNAs to the miRNA biogenesis 

(Dicer/Drosha) or effector (RISC) machineries (57, 71). Therefore, these RNAs 

likely represent degradation fragments derived from the turnover of longer PV 

transcripts. In contrast, it is well documented that PV infection and individual PV 

gene products can alter the host miRNA repertoire, likely contributing to the 

biology of cancer (26, 30, 52, 73, 78). Furthermore, at least one PV, HPV31, 

utilizes a host miRNA to directly regulate early viral gene expression. Thus, what 

emerges is that although host miRNAs are involved in the PV life cycle and 

pathogenesis, of the few PV types that have been examined, no canonical PV 

miRNAs are yet established. 

One barrier to discovery of PV miRNAs is the dearth of facile fully-

infectious laboratory systems. There are experimental systems established for a 

few PV types (approximately <5) (18), but technological barriers have limited any 

comprehensive large-scale study of viral miRNAs in the majority of PV types. 
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Here we describe a new wet bench approach for the discovery of miRNAs that 

assays numerous viruses in parallel for the ability to express miRNAs. We 

identify bona fide PV miRNAs encoded by divergent PVs, and clearly 

demonstrate these miRNAs depend on canonical miRNA biogenesis effector 

machinery. Our further analysis rules out abundant canonical viral miRNAs in 

cancers associated with high-risk PV (HPVs 16, 18, and 31) infection. These 

findings resolve the issue of PV miRNAs and further the notion of miRNA 

importance to persistent virus infection. 

 

RESULTS 

Proof of concept for miDGE on a herpesviral genome. 

To identify miRNA genes in situations where transcripts are not easily 

obtainable, we developed the approach of miRNA Discovery by forced Genomic 

Expression (miDGE). miDGE relies on generating a library of numerous 

overlapping genomic segments of DNA from a particular organism or locus and 

subcloning them behind a heterologous RNA polymerase (RNP) II promoter 

(Figure 1). The concept relies on the principle that miRNA genes are compact 

and should be readily expressed by heterologous upstream RNP II promoters, or 

in the rare cases that a primary miRNA transcript is driven by RNP III, that these 

promoters are small and proximal to the miRNA gene so as to be included in 

miDGE library constructs. The miDGE library is then transfected into mammalian 

cells and small RNA is harvested and sequenced. Next, we apply bio-



 31 

computational methods to identify miRNA candidates whose transcripts display 

the hallmarks of processing by the miRNA biogenesis machinery. Finally, 

candidate miRNAs are validated via a series of molecular assays to establish 

biogenesis via the canonical miRNA processing machinery and activity within 

RISC, the miRNA silencing machinery. 

To test the effectiveness of miDGE approach, we first focused on a single 

larger genome virus, the herpesvirus Japanese Macaque Rhadinovirus (JMRV). 

JMRV is a gamma-2 herpesvirus with genomic sequence similar to the highly 

related Rhesus rhadino virus (RRV). When we initiated these studies, it was not 

yet known if JMRV encoded miRNAs, although it would be expected to given the 

numerous precursor miRNAs (pre-miRNAs) identified in RRV that share high 

sequence similarity with JMRV (64). Indeed, work from Skalsky et al. has now 

identified 15 novel viral miRNA encoded by JMRV. Thus, JMRV serves as proof-

of-principle test genome to evaluate miDGE. miDGE analysis correctly identified 

all fifteen known miRNAs in JMRV (data not shown). Importantly, there were no 

other high-confidence candidate miRNAs called within this 20 kB region. Thus, 

miDGE has a low background rate, at least in the context of a herpesviral 

genome and can successfully identify bona fide miRNAs. 
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Figure 2.1: Overview of the miDGE (miRNA Discovery by forced Genomic Expression) Methodology 

 (A) Pools of purified viral genomes are subjected to fragmentation via sonication or limited digest (average target size of fragments approx. 
250 bp) (B), follwed by cloning of subgenomic fragments to create an expression library (C). Thickened regions in A-C symbolize an 
unidentified pre-miRNA coding region present in one of the viral genomes. (D) After transient transfection, cloned subgenomic fragments are 
forcibly transcribed, allowing processing of pre-miRNA hairpins to produce mature miRNAs. Small RNAs purified from transfected cells (E) will 
contain mature miRNAs as well as random degradation products produced from library transcripts. To identify authentic miRNAs, small RNAs 
are sequenced and mapped back to viral genome pools (F). The majority of degradation products exhibits a random distribution, whereas 
miRNA products produce distinct pileups at pre-miRNA loci. Secondary structure prediction can then be used to identify characteristic pre-
miRNA hairpin structures (indicated by bracket notation in F) at such loci. In this study, we used the miRDeep2 package to identify miRNA 
candidates. 
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Identification of candidate PV miRNAs. 

Our goal was to screen numerous PV genomes representing diverse 

clades in the PV family. To accomplish this, we collected 125 cloned PV 

genomes from both human and non-human animal sources. Our collection 

contained representatives from the majority of known PV clades (Figure 2A). We 

then grouped subsets of these plasmids containing the various PV genomes into 

libraries. For four of the five libraries, we utilized 4-base pair cutter restriction 

enzymes to fractionate the PV DNA. For the fifth library, which contained mostly 

genomes also contained within the other libraries, we used sonication to 

fractionate the PV DNA. High throughput pyrosequencing of these DNA libraries 

revealed that we had good coverage of numerous genomes. Sixty one percent of 

genomes had greater than 95% coverage. We next conducted high- throughput 

pyrosequencing of small RNAs from cell transfected with these five libraries. We 

observed good coverage, with roughly 60% of the PV genomes having greater 

than 100% coverage at the RNA level and as expected, these correspond to the 

genomes best represented in our DNA miRNA expression libraries. These results 

demonstrate the plausibility of using our library methods to cover simultaneously 

a large number of PV genomes at the DNA and RNA level. 

We next applied bio-computational methods to identify small RNA reads 

consistent with bona fide miRNAs. Our algorithmic approach prioritized those 

small RNAs of appropriate size (between 18-24 nucleotides) that had a read 

distribution as being plausibly derived from a pre-miRNA hairpin. This approach 
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identifies read density coverage showing two "plateaus" of read density 

coverage, where each plateau represents a miRNA derivative from either the 5' 

or 3' arm of a pre-miRNA hairpin (5p or 3p miRNA, respectively) (Figure2B). In 

between each plateau is a trough in density coverage where the terminal loop 

portion of the pre-miRNA is under-represented in our libraries due to terminal 

loops of pre-miRNAs not being stabilized in RISC as miRNA derivatives are. 

miDGE readily called miRNAs from the positive control polyomavirus genomes 

included in the libraries (Simian Virus (SV40) and Merkel cell polyomavirus 

(MPyV)). For the vast majority of the greater than 539,000 combined nucleotide 

PV genomic space covered, few miRNA candidates were called, consistent with 

a low false positive rate for miDGE. Importantly, no miRNAs were called from any 

of the plasmid sequences that did not map to cloned viral genomic regions, 

further emphasizing the low false positive rate. However, miDGE did call five 

high-scoring miRNA candidates deriving from four different PV genomes, HPV17, 

HPV37, HPV41, and FcPV, the last of which infects the common chaffinch 

Fringilla coelebs (Figure 2B-D). These results demonstrate the plausibility of 

using miDGE to identify miRNAs from complex expression libraries and suggest 

that at least some PVs may encode miRNAs. 
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Figure 2.2: miDGE Assay Finds Five PV-encoded miRNA candidates.  

A)  Neighbor-joining tree calculated on alignment L1 nucleotide sequence of papillomaviruses included in miDGE library. Color 
indicates genus membership, with miRNA-encoding papillomaviruses in bold and cancer-associated papillomaviruses in 
italics. B) Frequency distrubition of the three miRNA candidates that were generated by MiRDeep2. C) Structures of HPV 
pre-miRNAs were predicted by minimal free energy folding using the RNAfold algorithm. The position of mature miRNAs is 
indicated by the red residues.  D) The position of identified viral miRNAs is denoted by the hairpin shape. The identified 
seed sequence matches are noted at their respective positions with the sequences of the miRNA and potential targets.  
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Validation of PV miRNAs 

The burden of proof for establishing bona fide miRNAs includes evidence 

of specific processing by the miRNA machinery and silencing activity within 

RISC. To vet the five PV candidate miRNAs, we first conducted northern blot 

analysis. Northern blot analysis can provide information about the size and 

processing of pre-miRNAs and derivative miRNAs. We cloned the candidate 

miRNA genes and flanking regions downstream of an RNP II promoter and 

transfected these plasmids into HEK293T cells. We harvested total RNA and 

conducted northern blot analysis. For each candidate, bands migrating at the 

appropriate size of typical of miRNAs were observed. Additionally, on most blots, 

a clear band consistent with a pre-miRNA was also observable. Thus, this 

analysis showed that all five candidates gave rise to banding patterns consistent 

with canonically processed miRNAs (Figure 3A). 

To further validate these candidates, we investigated their biogenesis, 

activity and expression. To determine if the biogenesis of these candidate 

miRNAs required canonical miRNA machinery, we transfected our candidate 

miRNA constructs into cells with Drosha knocked down or that had Dicer 

knocked out (Figures 7 and 8). As expected, this analysis showed that positive 

control SV40 miRNAs were dependent on both Drosha and Dicer (Figure 3B and 

3C, respectively). As a further control, a non-canonical Drosha-independent BLV 

miRNA (was not affected by knockdown of Drosha. All five candidate PV miRNAs 

showed reduced expression upon knockdown of Drosha (Figure 3B) and reduced 
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ratios of miRNA:pre-miRNA in the absence of Dicer (Fig 3C). These results 

conclusively demonstrate that the five candidate PV miRNAs derive from 

canonical miRNA biogenesis. We next generated luciferase-based RISC 

reporters for each viral miRNA candidate with two perfectly complementary 

sequences to determine if these candidate miRNAs are active in RISC. 

Transfection of these reporters with the candidate miRNA expression vectors 

resulted in specific knockdown of luciferase in each of the five reporters when co-

transfected with respective miRNA expression vectors, but not in negative control 

reporters that had three nucleotide substitutions in the miRNA docking sites (Fig. 

4A). These results suggest that each of the identified miRNAs are active in RISC. 

Finally, because FcPV infection gives rise to easily identifiable dense 

hyperplastic lesions on the feet of chaffinches, we were able to obtain RNA from 

host tissue infected by FcPV. Using qRT-PCR, multiple replicate experiments 

showed that two out of two diseased birds had detectable levels of at least one 

FcPV viral miRNA in FcPV-associated lesions. However, FcPV miRNAs were not 

detected in negative control tissues from the chests of these birds. We also 

obtained limited RNA from a third diseased bird from which we were only able to 

perform a single replicate for FcPV1, which gave consistent results (Table 1). 

Combined, the above results demonstrate that these candidates are bona fide 

PV miRNAs that derive from canonical biogenesis, are active in RISC and at 

least some are detectable in vivo in PV-associated disease tissue. In total, these 

results demonstrate that of our candidates, the FcPV miRNAs can indeed be 
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classified as bona fide miRNA, as they derive from canonical biogenesis, are 

active in RISC and are detectable in vivo in PV-associated disease tissue. 

Additionally, of the HPV miRNA candidates, we can say with high confidence 

they are likely viral miRNAs, meeting all criteria with the exception of being tested 

and established as being present in infected cells. In keeping with the miRNA 

naming convention set forth by miRBase, for the remainder of this paper, we 

name these miRNAs: FcPV miR-F1, FcPV miR-F2, HPV17 miR-H1, HPV37 miR-

H1 and HPV41 miR-H1. We have deposited the FcPV miR-F1, FcPV miR-F2 

pre-miRNA/miRNA sequences in miRBase and we note that until HPV miRNAs 

are confirmed in infected cells, these sequences will be withheld from miRBase. 



 39 

M
oc

k 
S

V
40

-m
iR

-S
1 

Fc
P

V-
m

iR
-F

1 
Fc

P
V-

m
iR

-F
2 

H
P

V
17

-m
iR

-H
1 

H
P

V
37

-m
iR

-H
1 

H
P

V
41

-m
iR

-H
1 

70 nt 
35 nt 

10 nt 

Probe: 

SV40-miR-S1 

FcPV-miR-F1 

FcPV-miR-F2 

HPV17-miR-H1 

HPV37-miR-H1 

HPV41-miR-H1 

Figure 2.3: MiRNA candidates identified from MIDGE analysis are detected by Northern blot. Northern blot analysis of total 
RNA from HEK293T cells transfected with indicated miRNA or putative miRNA expression vectors, with ethidium bromide stained 
low molecular weight RNA shown as a load control. Blot was probed first for control SV40 miRNA, then stripped and re-probed for 
each of the indicated miRNAs. Solid and outline arrows correspond to pre-miRNAs and mature miRNAs, respectively. B) Northern 
blot analysis of total RNA from HEK293T cells transfected with anti-Drosha siRNA or negative control (NC) siRNA, then re-transfected after 48 
hours with respective siRNAs and indicated putative miRNA expression vectors, and total RNA was harvested after 48 hours. Ethidium bromide 
stained low molecular weight RNA shown as a load control. Blot was probed first for control SV40 miRNA, then stripped and re-probed for each 
of the indicated miRNAs. Membrane was additionally probed for HSUR RNA as a transfection control, and Drosha-independent BLV miRNA.  
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Sample	 FcPV1	
Avg	Ct	+/-	
SD,	N	=	

Let7a	
Avg	Ct	+/-	SD,	N	

=	

Viral	miRNA	
Present?	

FcPV2	
Avg	Ct	+/-	

SD	
N	=		

Let7a	
Avg	Ct	+/-	SD,	

N	=	

Viral	miRNA	
Present?	

CF229-
Chest	

ND	
	N	=	2	

33.5	+/-	2.1,	N=2	 NO	 ND	
	N	=	3	

34.9	+/-	0.7	
N	=	3	

NO	

CF229-Foot	 30.3	+/-	1	
	N	=	2	

32		
N	=	1	

YES	 30.9	+/-	0.5	
N	=	3	

33.9	+/-	0.3	
N	=	3	

YES	

CF151-
Chest	

ND	
	N	=	3	

30.2	+/-	2		
N	=	3	

NO	 ND	
	N	=	3	

29.3	+/-	2.2	
N	=	3	

NO	

CF151-Foot	 33.8	+/-	0.4		
N	=	3	

26.8	+/-	0.7	
	N	=	3	

YES	 ND	
	N	=	3	

30.8	+/-	2.8	
N	=	3	

YES	

CF180-
Chest	

ND,	N	=	1	 34.0,	N	=	1	 NO	

CF180-Foot	 31.0,	N	=	1	 28.8,	N	=	1	 YES	

Table 2.1: FcPV miRNAs are found in vivo during viral infection: RNA was 
isolated from chaffinch tissues (Chest or Foot) and measured for the presence of 
each FcPV miRNA, as well as for the endogenous miRNA Let7a via Taqman qRT-
PCR. Ct values are shown with Standard Deviation (SD), as well as the number of 
repetitions (N). 
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PV miRNAs and select candidates can directly regulate transcripts 

corresponding to the early viral genomic region. 

Previous studies in the small DNA virus polyomavirus (PyV) family 

demonstrated that PyV miRNAs directly regulate early viral transcripts (8, 24). 

Furthermore, Bandicoot Papillomatosis Carcionomatosis Viruses 1 & 2 (BPCVs 

1&2), hybrid viruses that have PyV-like early genes and genomic organization 

but PV-like capsid genes, also regulate early viral transcripts via viral miRNAs. 

Therefore, we performed bioinformatic analysis to examine the possibility that PV 

miRNAs could regulate early viral gene expression. To identify putative viral 

target transcripts, we identified seed complementary sites of 7 or more 

nucleotides for each PV miRNA in its respective genome. This analysis revealed 

3 putative target sites for the five PV miRNAs/highly probable candidates (Figure 

2D). On average this is in line with what would be predicted by chance for 

random 7-mers. Notably, both FcPV and HPV41 had candidate viral miRNA 

docking sites in the E1/E2 regions of their genomes, which has previously been 

demonstrated to include transcripts regulated by a host miRNA for HPV31 (12). 

We therefore tested these possible PV mRNA docking sites by engineering 

chimeric luciferase reporters containing the entire E1/E2 region of each 

respective genome. Co-transfection of these reporter plasmids with individual PV 

miRNA expression vectors revealed that E1 reporters for the FCPV and HPV41 

genomes display significantly less expression in the presence of their respective 
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viral miRNAs (Figure 4B-E). Co-transfection of FcPV miR-F1 alone reduced 

expression of the FcPV E1/E2 reporter and this regulation was enhanced by co-

transfecting plasmids expressing both FcPV miRs-F1 and F2 (Figures 4 B-D ). 

Co-transfection of the HPV41 E1/E2 reporter and miRNA expression vectors 

demonstrated a significant reduction in luciferase expression. Because there 

were multiple predicted viral miRNA docking sites in both the FcPV and HPV41 

E1/E2 regions, we engineered chimeric reporters that contained portions of the 

E1/E2 genomic region encompassing only a single predicted site. Co-transfection 

of the respective viral miRNA with these reporters resulted in a significant 

reduction in expression for both the E1 and E2 docking sites in both FcPV and 

the E1 site in HPV41. Importantly, negative control reporters containing 3 

nucleotide mutations in the seed complement region of each predicted PV 

miRNA docking site alleviated the regulation that we observed (Figure 4B-E). 

These results demonstrate that FcPV and HPV41 miRNAs/candidates are able to 

directly regulate transcripts corresponding to the PV early genomic region. 



 43 

 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

Empty 3'UTR FcPV Early 

R
el

at
iv

e 
Lu

ci
fe

ra
se

 L
ev

el
s 

(R
en

ill
a/

 F
ir

ef
ly

) 

Control FcPV-miR-F1 FcPV-miR-F2 Both 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

Empty 
3'UTR 

E2  E2mut 

R
el

at
iv

e 
Lu

ci
fe

ra
se

 L
ev

el
s 

(R
en

ill
a/

 F
ir

ef
ly

) 

Control miRNA FcPV-miR-F2 

Figure 2.4: PV-encoded miRNAs are active in RISC and can regulate sequences in early genes: A-E) RISC reporter assays for the 
PV-encoded miRNAs. A) HEK293 cells were co-transfected with a firefly luciferase reporter and Renilla luciferase reporter with either 
perfectly complementary sequence matches for each indicated miRNA or its respective seed mutant, in addition to either empty vector, 
PV miRNA-expression vector, or control miRNA expression vector. Average Renilla luciferase activity relative to firefly luciferase 
normalized to empty vector controls is shown, N=3.  B) HEK293T cells were co-transfected with either control or indicated PV miRNA 
expression vector and both control firefly luciferase reporter and Renilla luciferase based reporter plasmids with vector UTR (Empty) or 
FcPV genomic DNA containing both putatitve miRNA sites (FcPV Early) N=4. C) HEK293T cells were co-transfected with either the SV40 
miRNA expression vector (Control) or the indicated PV miRNA expression vector and both control firefly luciferase reporter and Renilla 
luciferase based reporter plasmids with vector UTR (Empty) or FcPV E1 genomic sequence (E1 rLuc) or the seed sequence mutant (E1 
mut), N=3 D) FcPV E2 genomic sequence (E2 rLuc) or the seed sequence mutant (E2 mut), N=12 E) HPV41 genomic DNA containing 
both putatitve miRNA sites (HPV41 Early), the site in E1 (HPV41 E1), the seed sequence mutant (E1 mut) or the site in E2 (HPV41 E2). 
N=7 The average Renilla luciferase activity normalized to firefly luciferase activity is shown. Error bars indicate Standard Error. 

A B 

D 

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

FcP
V-m

iR
-F

1 

FcP
V-m

iR
-F

2 

HPV41
-m

iR
-H

1 

HPV17
-m

iR
-H

1 

HPV37
-m

iR
-H

1 

FcP
V F1 m

ut 

FcP
V F2 m

ut 

HPV41
 m

ut 

HPV17
 m

ut 

HPV37
 m

uta
nt 

R
el

at
iv

e 
Lu

ci
fe

ra
se

 L
ev

el
s 

(R
en

ill
a/

 
Fi

re
fly

) 

Vector Vector+ PV miRNA Vector + control miRNA 

E 

0	
0.2	
0.4	
0.6	
0.8	
1	

1.2	
1.4	

Empty 
3'UTR 

E1  E1 mut R
el

at
iv

e 
Lu

ci
fe

ra
se

 L
ev

el
s 

(R
en

ill
a/

 F
ir

ef
ly

) 

control miRNA FcPV-miR-F1 C 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

Empty 
3' UTR 

HPV41 
Early 

HPV41 
E1 

HPV41 
E1 mut 

HPV41 
E2 R

el
at

iv
e 

Lu
ci

fr
ea

se
 L

ev
el

s 
(R

en
ill

a/
 F

ir
ef

ly
) 

Control miRNA HPV41-miR-H1 



 44 

 

High risk PV types do not encode canonical miRNAs. 

Our miDGE results provided more than 99% coverage in our RNA and 

DNA libraries for 65 PV genomes. Of these, only HPVs 17, 37, 41 & FcPV and 

gave rise to miRNAs/highly probable candidates. The only PVs that had small 

RNA:DNA read ratios consistent with miRNA size in the same range as our 

positive controls were HPV41,? HPV17, HPV37, and FcPV. These results 

strongly suggest that many PVs, including the high risk types 16 & 18 that were 

previously suggested to give rise to miRNAs do not encode canonical miRNAs. 

Therefore, to further evaluate whether high risk PVs code for miRNAs, we 

analyzed the transcriptomes of 200 cervical carcinomas deposited in The Cancer 

Genome Atlas (TCGA). We limited our analysis to those lesions that had 

sufficient (at least 100%  RNA) coverage of a particular PV genome, which 

included HPVs 16, 18, 31 & 5. We then identified small RNA reads from these 

viruses and determined: 1) if they are enriched in any discreet regions of the 

genome, and 2) if they mapped to possible predicted hairpin secondary 

structures that are hallmarks of true pre-miRNAs. Although, we detected small 

RNAs in the appropriate size class of miRNAs derived from these 

transcriptomes, miRNA-size-class RNAs were not enriched over other sizes, nor 

did they map to probable predicted pre-miRNA structures  (data not shown). 

Thus, despite having transcripts that span the entire viral genome, tumors 

associated with high-risk PV types do not express canonical miRNAs. Because it 
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was previously reported that transformed lines gave rise to HPV16 viral miRNAs 

(48, 53) we analyzed the deposited transcriptomic datasets from these studies 

for genomic regions with enrichment of miRNA-sized RNAs over other sizes of 

RNA. Similar to the PV-associated tumors, the HPV small RNAs present in these 

cell-line-derived libraries are not enriched for miRNA size classes. These results 

suggest that the small RNAs in these studies  are degradation products derived 

from turnover of longer PV RNAs. Combining these findings with our miDGE 

results, we conclude that the high risk PVs (16, 18, & 31) do not express 

miRNAs. 

 

DISCUSSION 

Members of diverse virus families express miRNAs. These include the 

herpesviruses, polyomaviruses, anelloviruses and retroviruses (9, 36, 37, 38, 

66). Notably, all of these viruses undergo persistent infection, have access to the 

nucleus where key miRNA processing machinery resides and are exclusively 

DNA viruses or have a DNA component to their lifecycle. Viruses with a 

persistent component to their life cycle may especially benefit from the typically 

subtle regulation afforded by miRNAs. Based on these characteristics, at least 

some members of the PV family would be expected to encode miRNAs. Yet, until 

now, no widely accepted PV miRNAs are known. Here we report the first high 

confidence papillomavirus-encoded miRNAs from a minor subset of PVs. 
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We identify PV miRNAs from the bird Fringilla colebs and high-confidence 

candidate miRNAs the human PVs 17, 37, and 41. These all display the 

hallmarks of canonical miRNAs, including being processed by Dicer and Drosha 

and being highly active in RISC. These RNAs derive from three divergent clades 

of PV. HPVs 17 and 37 are in the beta clade, some members of which have been 

proposed to have a role in skin cancers . The pre-miRNA hairpin region of the E2 

locus for these viruses appears to have evolved in a common ancestor of these 

viruses, and may be shared with closely related HPVs15 & 80, which were not 

included in our library (data not shown). HPV41 is notable in that it is the sole 

member of the Nu clade and is one of the few PVs that have starkly different 

locations in a phylogenetic tree, depending if the trees are built upon late (L1) or 

the early proteins (E1). This implies HPV41 is likely a hybrid recombinant virus 

and may help to explain its atypical ability to encode a miRNA. FcPV is only 

distantly related to human PVs and is found in obvious highly keratinized large 

hyperplastic lesions afflicting the European Chaffinch songbird, Fringilla colebs. 

This allowed us to obtain RNA from PV-associated diseased tissue, which 

confirmed that FcPV miRNAs are expressed in vivo (Table 1) and confirmed their 

status as bona fide viral miRNAs.  

Both the FcPV and HPV41 pre-miRNAs are found in non-protein-coding 

genomic locations, a common feature of miRNAs. One of the FcPV miRNA loci 

and the HPV41 miRNA locus are both found in a similar location downstream of 

the late genes past the likely late poly A cleavage site. In contrast, the HPV17 
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and 37 miRNAs are found in an identical genomic region overlapping and in the 

same transcriptional orientation as the L2 locus. Although it is atypical for a pre-

miRNA gene to overlap a protein-coding gene, a similar genomic arrangement is 

observed for miR-K12 and the KaposinA gene in KSHV (25, 46, 47). Drosha can 

suppress Kaposin expression in latent infection, but its steady state levels and 

consequent ability to regulate Kaposin levels decrease during stress and at late 

times of lytic infection (47). Therefore, it is conceivable that HPVs 17 & 37 utilize 

Drosha to aid in controlling the expression of L2. HPV17 and 37 are the only PV 

miRNAs/candidates that share a high degree of sequence identity (91% 3P, 91% 

5P), consistent with their being derived from virus types that are closely related. 

Except for HPVs17 and 37, there is no obvious relationship between the miRNA-

positive PVs that might account for why they would preferentially encode 

miRNAs.  

miDGE covered at least 500,000 nucleotide of sequence space (the sum 

of viral genomes and bacterial plasmid sequences covered in our libraries) and 

did not call any miRNAs other than the the positive controls and the five PV 

miRNAs that we validated. Therefore, we conclude that miDGE has an intrinsic 

low false positive rate. These findings are consistent with the current 

understanding that pre-miRNA hairpins have specific structural features that are 

required for efficient processing (9). In contrast, only a subset of PV genomes (n= 

48) had 100% coverage in both our DNA and RNA libraries. Therefore, we can 

only make negative conclusions on this limited set of PVs. Our results show that 
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44/48PV genomes with complete DNA and RNA coverage lack the ability to 

efficiently give rise to canonical miRNAs. This list includes the high-risk PVs 16. 

18 & 31, which our further analysis demonstrated do not encode miRNAs in 

tumor or cancer cell line settings . Although we acknowledge that our findings are 

skewed toward the alpha clade human PVs, we conclude that numerous PVs 

lack the ability to encode their own miRNAs. 

What are the functions of the PV miRNAs? Our bioinformatic analysis and 

reporter assays (Figure 4) suggest that one function of PV miRNAs is to regulate 

viral gene expression. This notion is consistent with the known function of other 

viral mRNAs, especially those derived from the PyVs and BPCVs. Since our 

results suggest that many PVs do not encode miRNAs, this raises the question of 

if/how such viruses fine-tune their own gene expression. At least for one high risk 

PV, HPV31, the answer seems to be by co-opting host miRNAs. Gunasekharan 

et al. demonstrated that miR-145 is expressed at higher levels in undifferentiated 

versus differentiated keratinocytes, displaying an inverse pattern to HPV31 

replication levels (30). miR-145 negatively regulates HPV31 genome replication 

and gene expression. Interestingly, miR-145 directly docks to and regulates the 

E1/E2 transcripts in a genomic region similar to that we have uncovered for FcPV 

and HPV41 miRNAs.  

Our results demonstrate that miDGE can be a fruitful approach when 

applied to numerous viruses. However, while miDGE allowed us to make 

conclusions for ~60 PV genomes, some genomes that we intended to include in 
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our miDGE procedure were under-represented or not represented in the final 

libraries. Although we believe one major reason for this discrepancy is due to 

incorrect PVgenomic plasmids included in our original library pools, library 

coverage should be optimized in future applications of miDGE. Since miRNAs 

are generally stable, using miDGE could be used to identify biomarkers for gene 

expression of un-culturable pathogens. In addition to pathogen genomes that 

cannot be grown in culture, miDGE may have utility for identifying miRNAs 

expressed in only a few rare cells of an organism. For example, miR-Lys6 is only 

expressed in fewer than 10 cells in C. elegans and has been missed by most 

standard miRNA biochemical identification procedures .It is likely that similar 

miRNAs exist in complex multicellular organisms and these could be identified 

using miDGE. 

In summary, we have developed wet bench technology that can identify 

miRNAs from genomes in which complete transcriptomes are not readily 

available. Our approach uncovered five new PV miRNAs/highly probable 

candidates. As viral miRNAs often alter host targets conducive to infection, it will 

be interesting to determine host targets of these miRNAs. Furthermore, as our 

work lends further support to the role of miRNAs in control of the PV life cycle, it 

will be important to determine if variability in miRNA expression or activity can 

contribute to the differences in tropism and pathogenesis associated with the 

various PV types. 
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Chapter 4: Materials and Methods 

 
Materials and Methods:  SERPINA1 3’UTR variation does not 

contribute to Alpha-1-Antitrypsin Deficiency disease severity 

Cell culture 

HEK293, HepG2, and Huh--7 cells were obtained from ATCC and 

maintained in DMEM supplemented with 10% (vol/vol) FBS and Pen/Strep 

(Cellgro). All cells were grown at 37C in the presence of 5% CO2. 

 

Plasmids 

The wild-type AAT UTR sequence was amplified via PCR out of genomic 

DNA extracted from cultured cells using 3’UTR primer set (Appendix Table 1.1).  

The amplicons were then cloned into the Xho1/Not1 sites of pSICHECK 2 

(Promega). The polyA mutant vector was generated by PCR-directed 

mutagenesis using polyA mutant sense and polyA mutant antisense primers 

(Appendix Table 1.1).  The polyA deletion mutant vector was generated by PCR-

directed mutagenesis using 3’UTR deletion mutant sense and 3’UTR deletion 

mutant antisense primers (Appendix Table 1.1) Nano-Luc plasmid was obtained 

from Promega. 

 

Knockdown of SERPINA1 
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HepG2 or Huh-7 cells (12-well format, 70% confluency) were reverse 

transfected with Nano-Luc plasmid (Promega). Forty-eight hours later, cells were 

pooled and reverse transfected (12-well format, 70% confluency) with 20-pmol of 

either negative control siRNA (scrambled; Sigma-Aldrich) or SERPINA1-specific 

siRNAs (Sigma-Aldrich; part #: AM16708; siRNA ID#: 105842). Forty-eight hours 

later, cell culture supernatant was harvested (1 mL/ well) and total RNA was 

isolated using PIG-B (74). RNA was treated with DNase I to remove genomic 

DNA and re-isolated using NaOAC extraction. Poly-adenylated transcripts were 

then reverse transcribed by Superscript III enzyme using poly-d(T) primer, and 

SerpinA1 cDNA was quantified relative to GAPDH control by quantitative Real-

Time PCR using SYBR Green Master Mix and StepOne Real-Time PCR system 

from Applied Biosystems. Transfections were performed in triplicate. Secreted 

Nano-Luc was measured by Nano-Glo assay forty-eight hours post-transfection 

using GloMax® 96 Microplate Luminometer (Promega). Knockdown was 

confirmed by ELISA measuring secreted SERPINA1 gene product from cell 

culture supernatant using the SynergyMx Microplate Reader from BioTek. Data 

was normalized to negative control siRNAs and normalized for overall secretion 

levels by NanoLuc levels.  

 

miRNA Transfection 

HepG2 or Huh-7 cells (12-well format, 70% confluency) were reverse 

transfected with Nano-Luc plasmid (Promega). Forty-eight hours later, cells were 
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pooled and reverse transfected (12-well format, 70% confluency) with 20-pmol of 

either negative control siRNA (scrambled; Sigma-Aldrich) or SERPINA1-specific 

siRNAs (Sigma-Aldrich; part #: AM16708; siRNA ID#: 105842) as controls for 

SERPINA1 knockdown, or with either negative control miRNA mimic (scrambled, 

Sigma-Aldrich) or one of fifty liver-specific miRNA mimics (Sigma-Aldrich, 

Supplementary Table). Forty-eight hours later, cell culture supernatant was 

harvested (1 mL/ well) and total RNA was isolated using PIG-B (74). SiRNA-

mediated knockdown was assayed as above to confirm transfection efficiency. 

Secreted Nano-Luc was measured by Nano-Glo assay forty-eight hours post-

transfection using GloMax® 96 Microplate Luminometer (Promega). Relative 

AAT levels were assayed by ELISA measuring AAT levels from cell culture 

supernatant using the SynergyMx Microplate Reader from BioTek Data was 

normalized to negative control siRNAs and normalized for overall secretion levels 

by NanoLuc levels. MiRNA mimics that scored 20% above or below negative 

control levels in both cells lines were re-screened in triplicate in both cell lines. 

 

 

 

Reducing miRNA Expression Assay 

To determine the effect of miRNA under-expression on secreted AAT, 

Huh-7 cells were infected (MOI of 500) with either control adenoviral vector 

AdGFP or a VP55 vector AdGFPVP55, or transfected with either negative control 
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siRNA (Sigma-Aldrich) or SERPINA1 siRNA (Sigma-Aldrich). Forty-eight hours 

post-infection or post-transfection, cell culture supernatant was collected and 

total RNA was isolated using PIG-B (74). Northern blots were performed as 

described in McClure et al., 2011. Briefly, RNA was isolated using PIG-B (74), 

fractionated on 15% PAGE-UREA gel, and transferred to Amersham Hybond –

N+ membrane (GE Healthcare). The membrane was then probed in ExpressHyb 

hybridization solution (Clontech, CA) with indicated DNA oligos (Integrated DNA 

technologies; Supplemental Table 2) radio-labeled with [γ-32P]-ATP (6000 

Ci/mmol) by T4 Polynucleotide Kinase (New England Biolabs). Membranes were 

exposed to a storage phosphor screen (GE Healthcare) and visualized with a 

Typhoon biomolecular imager (GE Healthcare). Upon confirmation of miRNA 

depletion, cell culture supernatants were assayed for secreted AAT levels using 

Abcam ELISA kit.  

 

3’UTR-Mediated Regulation Assay: 

For analysis of 3’UTR-mediated regulation in liver and non-liver cells, 

HEK293 or HepG2 cells (12-well format, 70% confluent) were transfected with 50 

ng of the indicated Renilla Luciferase based  reporter constructs (pSICHECK2, 

Promega)  using Lipofectamine 2000 according to the manufacturer’s 

instructions. Transfections were carried out in triplicate for each transfection, as a 

technical replicate. Forty-eight hours post transfection, lysates were harvested 
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and dual luciferase assay was performed. Raw renilla/firefly ratios were 

normalized to pSICHECK2 parental vector for each data set. 

 

Alternative Poly-Adenylation Assay: 

For analysis of alternative UTR mediated regulation of SERPINA1, 

HEK293 cells  (12-well format, 70% confluent)  were transfected with 50 ng of the 

indicated Renilla Luciferase based  reporter constructs (pSICHECK2, Promega)  

using Lipofectamine 2000 according to the manufacturer’s instructions. 

Transfections were carried out in triplicate for each transfection, as a technical 

replicate. Forty-eight hours post transfection, lysates were harvested and dual 

luciferase assay was performed. Raw renilla/firefly ratios were normalized to 

pSICHECK2 parental vector for each data set. Production of alternative length 

3’UTRs was verified by RT-PCR using primers to detect the full-length (1.7 Kb) 

UTR in varying amounts, visualized by ethidium bromide staining of agarose 

gels.  

 

Patient 3’UTR Variation Detection: 

To determine whether or not patients with varying degrees of A1AD 

disease could be grouped by single nucleotide variations in the SERPINA1 

3’UTR, the SerpinA1 3’UTR was amplified out of genomic DNA of each of 250 

patients by PCR. Amplification of a single band per patient was verified by 

ethidium bromide staining of agarose gels, and each patient UTR was gel 
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extracted using Zymoclean DNA Gel Extraction kit. Each UTR was sequenced by 

Sanger sequencing, and chromatograms were analyzed using Geneius to detect 

variations in sequencing results. Additionally, patients were selected at random  

for resequencing to confirm initial results and sex of these patients were 

confirmed by determining the presence or absence of a Y chromosome-specific 

gene. Finally regions containing known common SNP rs4149057 were amplified 

from genomic DNA and sequenced for these patients to confirm that SNPs could 

indeed be detected in expected ratios in non-disease related gene regions.  

 

Materials and Methods:  Identification of virus-encoded miRNAs 
in divergent Papillomaviruses 

miDGE:  

For JMRV, a 20kb genomic region was PCR-amplified using ??? as 

template. We then sonicated to enrich for DNA fragments displaying a peak in 

size at approximately 1000 nucleotides. For the PVs, plasmids containing cloned 

PV genomes were collected from various labs. These plasmids were then 

grouped into sub-collections and for each collection of plasmids, separate 

libraries were made from digesting them with different 4-base pair cutter 

restriction enzymes (In addition, we also generated a library with mostly 

overlapping PV genomes that generated via sonication (as described above for 

JMRV). We then generated libraries in the pcDNA3.1 background, transfected 

HEK293T cells via lipofection, and harvested total RNA using PigB. RNA was 
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then size fractionated via excision from a 15% denaturing polyacrylamide gel 

enriching for RNA between approximately 10-35 nucletodies.  

 

Plasmids and Cells: 

HEK293T cells were obtained from ATCC and maintained in DMEM 

supplemented with 10% (vol/vol) FBS and Pen/Strep (Cellgro). HEK293T Dicer 

KO cells were obtained from the Cullen lab(6). All cells were grown at 37C in the 

presence of 5% CO2. 

Plasmids containing the genomes of the papillomaviruses used in this study were 

obtained from labs indicated in Appendix Table 1. 

The miRNA expression vectors were cloned through PCR amplification of the 

relevant portions of the viral genome (from the genomic plasmids), followed by 

restriction enzyme digestion and ligation. Specifically, the indicated regions of 

each viral genome listed in Appendix Table 1 were inserted into the XhoI/XbaI 

sites of pcDNA3.1 (Invitrogen). The SV40 miRNA expression construct is as 

previously described (2).Seed site mutant constructs altered the indicated 

positions 2, 3, and 5 of the seed site (FcPV mutant constructs), or positions 2, 3 

(HPV41 mutant construct) .To make RISC reporters for each miRNA, sequences 

with two perfectly complementary binding sites for each miRNA with a 12 

nucleotide spacer region were cloned into the Xho1/Xba1 sites of 

pcDNA3.1dsRLuc plasmid as listed. Respective mutants were made by mutating 
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three nucleotides in the seed sequence of each binding site, also listed in 

Appendix Table 2.2. 

 

RISC Activity Assay: 

HEK293T cells were split and plated onto twelve well dishes so that they 

were approximately 70% confluent the following day. These plates were then co-

transfected with five ng of the indicated Renilla Luciferase based reporter 

constructs (pcDNA3.1dsRluc (3)), five ng of Firefly Luciferase reporter 

(pcDNA3.1dsLuc2CP (3)) and one ug of either a control miRNA expression 

construct (the SV40 miRNA expression construct) or the indicated miRNA 

expression vector using Lipofectamine 2000 according to the manufacturer’s 

instructions. Transfections were carried out in triplicate for each transfection, as a 

technical replicate. Forty-eight hours later, cells were harvested with 100 uL of 

1X Lysis buffer from the Dual-Glo Luciferase Assay System (Promega). 5 uL of 

lysate from each well was then analyzed in duplicate for Renilla and Firefly 

luciferase activity with a Luminoskan Ascent luminometer (Thermo 

Electronic).These experiments were then performed for at least 3 biological 

replicates (new transfections on separate days), with the exact number noted in 

the individual figure legend. Data was analyzed by dividing the Renilla luciferase 

activity value by the Firefly luciferase activity value to obtain a Renilla/Firefly 

luciferase activity ratio. These ratios were then averaged between the two 

measures for each well of the twelve well dish. Then the averaged Renilla/Firefly 
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ratio was averaged for each of the technical triplicate wells, with the resulting 

average used to normalize the final values such that the control miRNA 

Renilla/Firefly ratio was set to 1. The one-sided Student’s t-test was used to 

assess the statistical significance of observed differences, with a P value of < 

0.05 considered statistically significant. 

 

miRNA Detection Assay: 

HEK293T cells were transfected with the indicated miRNA expression 

constructs with Lipofectamine 2000 (Invitrogen). 48 hours post-transfection, total 

RNA was harvested with PIG-B and Northern blot analysis was performed as 

described in McClure et al (51).  Briefly, RNA was transferred to Amersham 

Hybond –N+ membrane (GE Healthcare) and probed with DNA oligos indicated 

in Appendix Table 2.1. 

 

Drosha Dependence Assay: 

HEK293T cells were transfected with 20 nM Drosha siRNA or negative 

control siRNA using Lipofectamine RNAiMAX (Invitrogen). Forty-eight hours later 

these cells were pooled, replated to new wells and transfected with respective 

siRNAs and the indicated miRNA expression constructs with Lipofectamine 2000 

(Invitrogen). Forty-eight hours later, total RNA was harvested with PIG-B and 

Northern blot analysis was performed as previously described 52. Northern blot 

membrane was probed with DNA oligos indicated in Appendix Table 2.1. 
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Dicer Dependence Assay: 

HEK293T and HEK293T Dicer KO cells (6) were transfected with the 

indicated miRNA expression vectors using Lipofectamine 2000 (Invitrogen). 

Forty-eight hours post-transfection, total RNA was harvested with PIG-B and 

Northern blot analysis was performed. Northern blot membrane was probed with 

DNA oligos indicated in Table X.1. 

 

In Vivo miRNA Assay: 

Total RNA was extracted from both foot and pectoral muscle tissue from 

chaffinches that displayed clinical symptoms of FcPV infection. This RNA was 

then analyzed using TaqMan miRNA quantitation kits that were designed to each 

FcPV miRNA or the host Let7a miRNA using the manufacturer’s instructions, 

with the following exceptions. The RT-PCR reaction was performed with the 

Let7a and one of the two viral miRNA-specific primers. The product of this 

reaction was then split for individual qPCR reactions using probe/primer sets that 

were specific for either the viral or host miRNAs using StepOne Real-Time PCR 

system from Applied Biosystems. 
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Appendices 

Appendix 1:  SERPINA1 3’UTR variation does not contribute to 

Alpha-1-Antitrypsion Deficiency disease severity 

 

 

Appendix Figure 1.1: SERPINA1 3’UTR Alternative poly-adenylation (A) SerpinA1 3’ noncoding region 
contains multiple potential poly-A signal sequences. (B) Poly-A- signal sequence mutants constructed. 

ATTAAA ATGCAA 

Reporter polyA mutation: 

GCATTAAATG GCTG 

A B 
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Appendix Figure 1.2: Data from ENCODE (67) showing 
abundance of reads several fold higher at proximal poly-A-signal 
sequence. 
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Appendix Table 1.1: Primer sets used for SERPINA1 3’UTR 
analysis 

Luciferase reporter primers   

AAT 3'UTR F 5'-tagcCTCGAGtcccacccaaaaataactgc-3' 

AAT 3'UTR R 5'-tagctctagaAGCCAGGGGAGGTACTTCAT-3' 

AAT 3'UTR poly A mutant F 5'-gcaagaagggttgagctggt-3' 

AAT 3'UTR poly A mutant R 5'-atgtcatccagggaggggg-3' 

AAT 3'UTR deletion mutant F 5'-gaagggttgagctggtcc-3' 

AAT 3'UTR deletion mutant R 5'-tgtcatccagggaggg-3' 

InvertedF 5'-atcgctcgagAGCCAGGGGAGGTACTTCAT-3' 

InvertedR 5'-atcggcggccgcTCCCACCCAAAAATAACTGC-3' 

SNP sequencing primers   

rs4149057 F 5'-cttcatcttccgccatga-3' 

rs4149057  R 5'-gatcccagggtaaagccaat-3' 

T-Specific Y-linked primer F 5'-CGTCAGGTGAGCCGTTAGTT-3' 

T-specific Y-linked primer R 5'-ACACATCCCACACCCATTCA-3' 

qPCR primers   

SERPINA1 F 5'-gggcatcactaaggtcttca-3' 

SERPINA1 R 5'-tgaagaggggagacttggta3' 

GAPDH F 5'-acatcgctcagacaccatg-3' 

GAPDH R 5'-tgtagttgaggtcaatgaaggg-3' 

3'RACE primers   

RACE adapter 
5'-
GACTCGAGTCGACATCGTTTTTTTTTTTTTTTTTTTT3VN-3' 

FWD primer CAAGAGCTTCGTGGAGC 

REV primer GACTCGAGTCGACATCG 
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Appendix 2:  Identification of virus-encoded miRNAs in 
divergent Papillomaviruses 

Appendix Table 2.1: All papillomavirus genome plasmid included in 

miDGE analysis 
 

Genome Genus 
Obtained 
From Affiliation Location 

Human Papillomavirus 1 Mu 
E.-M. de 
Villiers 

German Cancer 
Research Center 

Heidelberg, 
Germany 

Human Papillomavirus 2 Alpha 
E.-M. de 
Villiers 

German Cancer 
Research Center 

Heidelberg, 
Germany 

Human Papillomavirus 3 Alpha 
E.-M. de 
Villiers 

German Cancer 
Research Center 

Heidelberg, 
Germany 

Human Papillomavirus 4 Gamma 
E.-M. de 
Villiers 

German Cancer 
Research Center 

Heidelberg, 
Germany 

Human Papillomavirus 5 Beta 
E.-M. de 
Villiers 

German Cancer 
Research Center 

Heidelberg, 
Germany 

Human Papillomavirus 6b Alpha 
E.-M. de 
Villiers 

German Cancer 
Research Center 

Heidelberg, 
Germany 

Human Papillomavirus 7 Alpha 
E.-M. de 
Villiers 

German Cancer 
Research Center 

Heidelberg, 
Germany 

Human Papillomavirus 8 Beta 
E.-M. de 
Villiers 

German Cancer 
Research Center 

Heidelberg, 
Germany 

Human Papillomavirus 9 Beta M. Favre Institut Pasteur Paris, France 

Human Papillomavirus 10 Alpha M. Favre Institut Pasteur Paris, France 

Human Papillomavirus 11 Alpha 
E.-M. de 
Villiers 

German Cancer 
Research Center 

Heidelberg, 
Germany 

Human Papillomavirus 12 Beta M. Favre Institut Pasteur Paris, France 

Human Papillomavirus 13 Alpha 
E.-M. de 
Villiers 

German Cancer 
Research Center 

Heidelberg, 
Germany 

Human Papillomavirus 14D Beta M. Favre Institut Pasteur Paris, France 

Human Papillomavirus 15 Beta M. Favre Institut Pasteur Paris, France 

Human Papillomavirus 16 Alpha 
E.-M. de 
Villiers 

German Cancer 
Research Center 

Heidelberg, 
Germany 

Human Papillomavirus 17 Beta M. Favre Institut Pasteur Paris, France 
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Human Papillomavirus 18 Alpha 
E.-M. de 
Villiers 

German Cancer 
Research Center 

Heidelberg, 
Germany 

Human Papillomavirus 19 Beta M. Favre Institut Pasteur Paris, France 

Human Papillomavirus 20 Beta M. Favre Institut Pasteur Paris, France 

Human Papillomavirus 21 Beta M. Favre Institut Pasteur Paris, France 

Human Papillomavirus 22 Beta M. Favre Institut Pasteur Paris, France 

Human Papillomavirus 23 Beta M. Favre Institut Pasteur Paris, France 

Human Papillomavirus 24 Beta M. Favre Institut Pasteur Paris, France 

Human Papillomavirus 26 Alpha 
E.-M. de 
Villiers 

German Cancer 
Research Center 

Heidelberg, 
Germany 

Human Papillomavirus 27 Alpha 
E.-M. de 
Villiers 

German Cancer 
Research Center 

Heidelberg, 
Germany 

Human Papillomavirus 28 Alpha M. Favre Institut Pasteur Paris, France 

Human Papillomavirus 29 Alpha M. Favre Institut Pasteur Paris, France 

Human Papillomavirus 30 Alpha 
E.-M. de 
Villiers 

German Cancer 
Research Center 

Heidelberg, 
Germany 

Human Papillomavirus 31 Alpha 

Lorna 
Sammour
y  Qiagen 

Washington, 
DC 

Human Papillomavirus 32 Alpha M. Favre Institut Pasteur Paris, France 

Human Papillomavirus 33 Alpha M. Favre Institut Pasteur Paris, France 

Human Papillomavirus 34 Alpha M. Favre Institut Pasteur Paris, France 

Human Papillomavirus 36 Beta M. Favre Institut Pasteur Paris, France 

Human Papillomavirus 37 Beta 
E.-M. de 
Villiers 

German Cancer 
Research Center 

Heidelberg, 
Germany 

Human Papillomavirus 38 Beta 
E.-M. de 
Villiers 

German Cancer 
Research Center 

Heidelberg, 
Germany 

Human Papillomavirus 40 Alpha 
E.-M. de 
Villiers 

German Cancer 
Research Center 

Heidelberg, 
Germany 

Human Papillomavirus 41 Nu 
E.-M. de 
Villiers 

German Cancer 
Research Center 

Heidelberg, 
Germany 

Human Papillomavirus 42 Alpha M. Favre Institut Pasteur Paris, France 

Human Papillomavirus 45 Alpha 
E.-M. de 
Villiers 

German Cancer 
Research Center 

Heidelberg, 
Germany 
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Human Papillomavirus 47 Beta 
E.-M. de 
Villiers 

German Cancer 
Research Center 

Heidelberg, 
Germany 

Human Papillomavirus 48 Gamma 
E.-M. de 
Villiers 

German Cancer 
Research Center 

Heidelberg, 
Germany 

Human Papillomavirus 49 Beta M. Favre Institut Pasteur Paris, France 

Human Papillomavirus 50 Gamma M. Favre Institut Pasteur Paris, France 

Human Papillomavirus 51 Alpha 
E.-M. de 
Villiers 

German Cancer 
Research Center 

Heidelberg, 
Germany 

Human Papillomavirus 52 Alpha 
E.-M. de 
Villiers 

German Cancer 
Research Center 

Heidelberg, 
Germany 

Human Papillomavirus 53 Alpha 
E.-M. de 
Villiers 

German Cancer 
Research Center 

Heidelberg, 
Germany 

Human Papillomavirus 54 Alpha M. Favre Institut Pasteur Paris, France 

Human Papillomavirus 56 Alpha 

Lorna 
Sammour
y  Qiagen 

Washington, 
DC 

Human Papillomavirus 57 Alpha 
E.-M. de 
Villiers 

German Cancer 
Research Center 

Heidelberg, 
Germany 

Human Papillomavirus 58 Alpha 
T. 
Matsukura Kyoto University Kyoto, Japan 

Human Papillomavirus 59 Alpha 
T. 
Matsukura Kyoto University Kyoto, Japan 

Human Papillomavirus 61 Alpha 
T. 
Matsukura Kyoto University Kyoto, Japan 

Human Papillomavirus 62 Alpha R. Burk 
Albert Einstein College 
of Medicine 

Bronx, New 
York 

Human Papillomavirus 63 Mu 
E.-M. de 
Villiers 

German Cancer 
Research Center 

Heidelberg, 
Germany 

Human Papillomavirus 65 Gamma 
E.-M. de 
Villiers 

German Cancer 
Research Center 

Heidelberg, 
Germany 

Human Papillomavirus 66 Alpha M. Favre Institut Pasteur Paris, France 

Human Papillomavirus 67 Alpha 
T. 
Matsukura Kyoto University Kyoto, Japan 

Human Papillomavirus 68a Alpha M. Favre Institut Pasteur Paris, France 

Human Papillomavirus 69 Alpha 
T. 
Matsukura Kyoto University Kyoto, Japan 

Human Papillomavirus 70 Alpha M. Favre Institut Pasteur Paris, France 

Human Papillomavirus 71 Alpha 
T. 
Matsukura Kyoto University Kyoto, Japan 

Human Papillomavirus 72 Alpha 
E.-M. de 
Villiers 

German Cancer 
Research Center 

Heidelberg, 
Germany 
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Human Papillomavirus 74 Alpha M. Favre Institut Pasteur Paris, France 

Human Papillomavirus 75 Beta 
E.-M. de 
Villiers 

German Cancer 
Research Center 

Heidelberg, 
Germany 

Human Papillomavirus 76 Beta 
E.-M. de 
Villiers 

German Cancer 
Research Center 

Heidelberg, 
Germany 

Human Papillomavirus 81 Alpha 
T. 
Matsukura Kyoto University Kyoto, Japan 

Human Papillomavirus 82 Alpga 
T. 
Matsukura Kyoto University Kyoto, Japan 

Human Papillomavirus 92 Beta 
O. 
Forslund Lund University 

Lund, 
Sweden 

Human Papillomavirus 93 Beta 
O. 
Forslund Lund University 

Lund, 
Sweden 

Human Papillomavirus 94 Alpha 
E.-M. de 
Villiers 

German Cancer 
Research Center 

Heidelberg, 
Germany 

Human Papillomavirus 96 Beta 
O. 
Forslund Lund University 

Lund, 
Sweden 

Human Papillomavirus 98 Beta 
E.-M. de 
Villiers 

German Cancer 
Research Center 

Heidelberg, 
Germany 

Human Papillomavirus 99 Beta 
E.-M. de 
Villiers 

German Cancer 
Research Center 

Heidelberg, 
Germany 

Human Papillomavirus 100 Beta 
E.-M. de 
Villiers 

German Cancer 
Research Center 

Heidelberg, 
Germany 

Human Papillomavirus 104 Beta 
E.-M. de 
Villiers 

German Cancer 
Research Center 

Heidelberg, 
Germany 

Human Papillomavirus 105 Beta 
E.-M. de 
Villiers 

German Cancer 
Research Center 

Heidelberg, 
Germany 

Human Papillomavirus 107 Beta 
O. 
Forslund Lund University 

Lund, 
Sweden 

Human Papillomavirus 108 Gamma 
E.-M. de 
Villiers 

German Cancer 
Research Center 

Heidelberg, 
Germany 

Human Papillomavirus 109 Gamma 
O. 
Forslund Lund University 

Lund, 
Sweden 

Human Papillomavirus 110 Beta 
O. 
Forslund Lund University 

Lund, 
Sweden 

Human Papillomavirus 111 Beta 
O. 
Forslund Lund University 

Lund, 
Sweden 

Human Papillomavirus 112 Gamma 
O. 
Forslund Lund University 

Lund, 
Sweden 

Human Papillomavirus 113 Beta 
E.-M. de 
Villiers 

German Cancer 
Research Center 

Heidelberg, 
Germany 

Human Papillomavirus 114 Alpha 
O. 
Forslund Lund University 

Lund, 
Sweden 

Human Papillomavirus 117 Alpha I. Nindl 

Charité – 
Universitätsmedizin 
Berlin 

Berlin, 
Germany 
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Human Papillomavirus 118 Beta I. Nindl 

Charité – 
Universitätsmedizin 
Berlin 

Berlin, 
Germany 

Human Papillomavirus 125 Alpha 
A. 
Kovanda Jožef Stefan Institute 

Ljubljana, 
Slovenia 

Human Papillomavirus 127 Gamma C. Buck 
National Institutes of 
Health 

Bethesda, 
Maryland 

Human Papillomavirus 128 Gamma I. Nindl 

Charité – 
Universitätsmedizin 
Berlin 

Berlin, 
Germany 

Human Papillomavirus 129 Gamma I. Nindl 

Charité – 
Universitätsmedizin 
Berlin 

Berlin, 
Germany 

Human Papillomavirus 130 Gamma I. Nindl 

Charité – 
Universitätsmedizin 
Berlin 

Berlin, 
Germany 

Human Papillomavirus 131 Gamma I. Nindl 

Charité – 
Universitätsmedizin 
Berlin 

Berlin, 
Germany 

Human Papillomavirus 132 Gamma I. Nindl 

Charité – 
Universitätsmedizin 
Berlin 

Berlin, 
Germany 

Human Papillomavirus 133 Gamma I. Nindl 

Charité – 
Universitätsmedizin 
Berlin 

Berlin, 
Germany 

Human Papillomavirus 134 Gamma I. Nindl 

Charité – 
Universitätsmedizin 
Berlin 

Berlin, 
Germany 

Human Papillomavirus 148 Gamma I. Nindl 

Charité – 
Universitätsmedizin 
Berlin 

Berlin, 
Germany 

Human Papillomavirus 149 Gamma I. Nindl 

Charité – 
Universitätsmedizin 
Berlin 

Berlin, 
Germany 

Human Papillomavirus 150 Beta 
A. 
Kovanda Jožef Stefan Institute 

Ljubljana, 
Slovenia 

Human Papillomavirus 151 Beta 
A. 
Kovanda Jožef Stefan Institute 

Ljubljana, 
Slovenia 

Bandicoot PV 1   
M. 
Bennett  

Small Animal Specialist 
Hospital 

North Ryde, 
Australia 

Bovine Papillomavirus 1 Delta C. Buck 
National Institutes of 
Health 

Bethesda, 
Maryland 

Camelus dromedarius 
Papillomavirus 1 Delta 

O. 
Forslund Lund University 

Lund, 
Sweden 

Camelus dromedarius 
Papillomavirus 2 Delta 

O. 
Forslund Lund University 

Lund, 
Sweden 

Delphinius delphis 
Papillomavirus  Upsilon I. Nindl 

Charité – 
Universitätsmedizin 
Berlin 

Berlin, 
Germany 
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European hedgehog 
Papillomavirus  Dyo I. Nindl 

Charité – 
Universitätsmedizin 
Berlin 

Berlin, 
Germany 

Felis domesticus 
Papillomavirus 1 Lambda Van Ranst 

Rega Institute for 
Medical Research 

Leuven, 
Belgium 

Fringilla coelebs 
Papillomavirus 1 Eta R. Burk 

Albert Einstein College 
of Medicine 

Bronx, New 
York 

Lynx rufus Papillomavirus 1 Lambda Van Ranst 
Rega Institute for 
Medical Research 

Leuven, 
Belgium 

Mus musculus 
Papillomavirus 1 Pi I. Nindl 

Charité – 
Universitätsmedizin 
Berlin 

Berlin, 
Germany 

Panthera leo persica 
Papillomavirus 1 Lambda Van Ranst 

Rega Institute for 
Medical Research 

Leuven, 
Belgium 

Phocoena phocoena 
Papillomavirus 1 Omikron I. Nindl 

Charité – 
Universitätsmedizin 
Berlin 

Berlin, 
Germany 

Psittacus erithacus timneh 
Papillomavirus 1 Theta R. Burk 

Albert Einstein College 
of Medicine 

Bronx, New 
York 

Puma concolor 
Papillomavirus 1 Lambda Van Ranst 

Rega Institute for 
Medical Research 

Leuven, 
Belgium 

Rattus norvegicus 
Papillomavirus 1 Pi I. Nindl 

Charité – 
Universitätsmedizin 
Berlin 

Berlin, 
Germany 

Rhesus monkey 
Papillomavirus  Alpha C. Buck 

National Institutes of 
Health 

Bethesda, 
Maryland 

Rousettus gegypiacus 
Papillomavirus 1 Psi A. Rector 

Rega Institute for 
Medical Research 

Leuven, 
Belgium 

Sus scrofa Papillomavirus 1 
Dyodelt
a A. Rector 

Rega Institute for 
Medical Research 

Leuven, 
Belgium 

Tursiops truncatus 
Papillomavirus 1 Upsilon A. Rector 

Rega Institute for 
Medical Research 

Leuven, 
Belgium 

Unicia uncia Papillomavirus 1 Lambda Van Ranst 
Rega Institute for 
Medical Research 

Leuven, 
Belgium 

Ursus maritimus 
Papillomavirus 1 Omega A. Rector 

Rega Institute for 
Medical Research 

Leuven, 
Belgium 
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Appendix Table 2.2: Primers and oligos used in PV miRNA analysis 

PV miRNA 
sequence   

FcPV miR-F1 
perfect complement 

5'-
AAATTCCGGAGAGGGAACCGATTactgactgAAATTCCGGAGAGGGAA
CCGATT-3' 

FcPV miR-F1 
mutant site 

5'-
AAATTCCGGAGAGGGAAGGCATTatcgatcgatcgAAATTCCGGAGAGGG
AAGGCATT-3' 

FcPV miR-F2 
perfect complement 

5'-
AGTATCTACTACCCGACCATATatcgatcgatcgAGTATCTACTACCCGAC
CATAT-3' 

FcPV miR-F2 
mutant site 

5'-
AGTATCTACTACCCCAGGATATatcgatcgatcgAGTATCTACTACCCCAG
GATAT-3' 

HPV17 miR-H1 
perfect complement 

5'-
TCTTACAGGGGGACTACCATCAatcgatcgatcgTCTTACAGGGGGACTA
CCATGA-3' 

HPV17 miR-H1 
mutant site 

5'-
TCTTACAGGGGGACTAGGATCAatcgatcgatcgTCTTACAGGGGGACTA
GGATCA-3' 

HPV37 miR-H1 
perfect complement 

5'-
TGATCCTAGTCCCCCTGTGCGACAGGGTACCGATTGATCCTAGTCC
CCCTGTGCGA-3' 

HPV37 miR-H1 
mutant site 

5'-
TGATCCTAGTCCCGGTCTGCGACAGGGTACCGATTGATCCTAGTCC
CGGTCTGCGA-3' 

HPV41 miR-H1 
perfect complement 

5'-
CACATGGACCGTCGAGGACACCatcgatcgatcgCACATGGACCGTCGA
GGACACC-3' 

HPV41 miR-H1 
mutant site 

5'-
CACATGGACCGTCGAGCAGAGCatcgatcgatcgCACATGGACCGTCGA
GCAGAGC-3' 

Northern blot 
oligos   

FcPV miR-F1 probe 5’- AATCGGTTCCCTCTCCGGAATTT -3’ 

FcPV miR-F2 probe 5’- ATATGGTCGGGTAGTAGATACT -3’ 
HPV17 miR-H1 
probe 5′ - TCTTACAGGGGGACTAGGATCA-3′ 
HPV37 miR-H1 
probe 5′ - TCGCACAGGGGGACTAGGATCA-3′  
HPV41 miR-H1 
probe 5′ -GGTGTCCTCGACGGTCCATGTG-3′ 

SV40 miR-S1 probe 5′ -GGCATGAAACA GGCA-3′  

BLV miR-B4 probe 5'-AAAGGCGCAGAGACTGTGGTGCTA-3' 

HSURNA probe 5'-AGAGTAACTCTCTGGCTGTGGGC-3' 
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PV E gene 
reporters   

FcPV E region  nucleotides 2401-3870 

FcPV E1 region nucleotides 2003-2848 

FcPV E2 region nucleotides 3501-3890 

HPV 41 E region nucleotides 1567-3027 

HPV 41 E1 region nucleotides 1576-1982 

HPV 41 E2 region nucleotides 2683-3027 

HPV17 E region   

HPV37 E1 region nucleotides 899-2728 

HPV37 E2 region nucleotides 2670-4034 
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