

Copyright

by

Pawan Balakrishna Joshi

2019

The Thesis Committee for Pawan Balakrishna Joshi

Certifies that this is the approved version of the following Thesis:

Techniques for Advancing Value Prediction

APPROVED BY

SUPERVISING COMMITTEE:

Calvin Lin, Supervisor

Mattan Erez

Techniques for Advancing Value Prediction

by

Pawan Balakrishna Joshi

Thesis

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin

May 2019

Dedicated to my beloved parents

 v

Abstract

Techniques for Advancing Value Prediction

Pawan Balakrishna Joshi, M.S.E.

The University of Texas at Austin, 2019

Supervisor: Calvin Lin

Sequential performance is still an issue in computing. While some prediction

mechanisms such as branch prediction and prefetching have been widely adopted in

modern, general-purpose microprocessors, others such as value prediction have not been

accepted due to their high area and misprediction overheads. True data dependences form

a major bottleneck in sequential performance and value prediction can be employed to

speculatively resolve these dependences. Accurate predictors [1] [2] have been shown to

provide performance benefits, albeit requiring a large predictor state. We argue that a first

step in making value prediction practical is to manage the metadata associated with the

predictor effectively. Inspired by irregular prefetchers that store their metadata in off-chip

memory, we propose the use of an improved prefetching mechanism for value prediction

that not only provides performance benefits but also a means to off-load predictor state to

the memory hierarchy. We show an average of 5.3% IPC improvements across a set of

Qualcomm-provided traces [3].

 vi

The result of a static instruction can be predicted by mapping runtime context

information to the value produced by the instruction. To that end, existing value

predictors either use branch history contexts [2] or value history contexts [1] to make

predictions. As long histories are needed to achieve high accuracy, these approaches slow

down the training time of the predictor, negatively impacting coverage. We identify that

branch and value histories both provide distinct advantages to a value predictor, and

therefore combine them in a novel predictor design called the Relevant Context-based

Predictor (RCP) that maintains high accuracy while improving training time. We show an

average of 38% speedup over a baseline that performs no value prediction on the

Qualcomm-provided traces, compared to 34% by the previous best.

 vii

Table of Contents

Abstract ...v

List of Tables ..x

List of Figures ... xi

Chapter 1: Introduction ..1

1.1 The Problem: Data Dependences Limit Sequential Performance1

1.2 Motivation For The Work ...2

1.3 Key Contributions ...4

1.4 Organization of the Thesis ..5

Chapter 2: Architecture of Modern General-Purpose Microprocessors.....................6

2.1 In-Order Pipelining ...7

2.2 Memory Hierarchy ..9

2.3 Dependence Handling in Pipelining ...11

2.3.1 Control Dependences ...11

2.3.2 Data Dependences ..12

2.4 Out-of-Order Execution ..13

Chapter 3: Value Prediction ..16

3.1 Value Prediction For Single-Thread Performance..16

3.2 Value Prediction Mechanisms ..18

3.2.1 Computation-based Predictors ...19

3.2.1.1 Last Value Predictor ..19

 viii

3.2.1.2 Stride Predictor ..21

3.2.2 Context-based Predictors ...21

3.2.2.1 Finite Context Method (FCM) Predictor22

3.2.2.2 Differential FCM ...23

3.2.2.3 DFCM++ ..24

3.2.2.4 VTAGE and EVES ..24

3.2.3 Store-Load Value Predictors ..25

3.3 Prediction Validation and Recovery ...26

3.4 Challenges in Value Prediction...27

Chapter 4: Managing Predictor Metadata ...29

4.1 Irregular Stream Buffer (ISB) for Value Prediction ...30

4.1.1 Irregular Stream Buffer ..31

4.1.2 Enhancements to ISB ...32

4.2 Evaluation ...33

4.3 Results ...34

4.4 Discussion: ..36

Chapter 5: Handling Divergence ..37

5.1 Understanding Control Flow in Programs ..37

5.1.1 Divergence Handling using Branch Contexts39

5.1.2 Divergence Handling using Value Contexts ..40

5.2 Combining EVES and DFCM++: ...41

5.3 Employing Relevant Context Information: The Relevant Context-based

Predictor (RCP)...44

 ix

Chapter 6: Conclusion ...49

6.1 Limitations and Future Work ..49

6.2 Conclusion of the Thesis...50

BIBLIOGRAPHY ..52

 x

List of Tables

Table 1: Baseline microarchitecture for simulation .. 33

Table 2: Comparing our predictor against EVES, DFCM++ ... 46

 xi

List of Figures

Figure 1: Slower training with increasing branch history length .. 3

Figure 2: Slower training with increasing value history length .. 4

Figure 3: Single-cycle Microarchitecture ... 7

Figure 4: Pipelined execution ... 8

Figure 5: Memory System in a Processor ... 10

Figure 6: Value prediction to improve performance ... 16

Figure 7: RAW dependence distances .. 17

Figure 8: Last value predictor ... 19

Figure 9: Stride predictor .. 20

Figure 10: Updating the stride predictor ... 20

Figure 11: Finite Context Method... 22

Figure 12: Structural address space [8] ... 30

Figure 13: ISB variants, accuracy and coverage ... 34

Figure 14: ISB variants, speedup .. 35

Figure 15: Linked list traversal: correlated value stream.. 38

Figure 16: Graph traversal, local and global divergence .. 38

Figure 17: Prediction using branch and value contexts .. 39

Figure 18: Coverage on combining predictors .. 42

Figure 19: Accuracy on combining predictors .. 42

Figure 20: Speedup on combining predictors ... 43

 xii

Figure 21: Correct prediction by each component of hybrid .. 43

Figure 22: Variance of branch contexts .. 46

Figure 23: Variance of value contexts .. 47

Figure 24: Variance upon combining contexts ... 47

Figure 25: Predictability of values for different contexts ... 48

Figure 26: Speedup over no VP, obtained using {64-bit branch hist, 1 value} context ... 48

 1

Chapter 1: Introduction

 Computers are pervasive and vital and in the present day: from mobile devices to

connect to the internet to the forecasting of complex phenomenon such as the weather,

they are used to perform a broad range of tasks. With the amount of data being collected

to be processed increasing, there is a sustained need for advances in high-performance

computers. Over the last five decades, advances in the performance of processors have

come from two key directions. First, as processors are clocked machines, increasing the

frequency of the clock allowed the computations to be done faster. However, as the

dynamic power consumption of the processor circuit increases with the frequency,

today’s processors are designed using a maximum clock frequency of 4-5 GHz. Second,

as device technology shrank every few years from micrometer to nanometer sizes, an

increasing number of transistors could be crammed onto the same semiconductor

substrate [4]. This allowed the designers to implement complex processor designs that

make use of pipelined, superscalar and out-of-order execution with branch prediction to

improve single core performance. However, as single core performance gave diminishing

returns for the number of transistors expended, the paradigm of multicore computing was

introduced to increase the performance of a processor by parallelly executing pieces of

the program. However, the multicore computing approach has fundamental limitations.

1.1 THE PROBLEM: DATA DEPENDENCES LIMIT SEQUENTIAL PERFORMANCE

Not all programs are amenable to be computed in parallel across multiple cores

due to the nature of the algorithm and such programs would see no improvement in

 2

performance on using more than one core. Further, even parallelizable programs have a

sequential portion of the algorithm. The sequential fraction of the program limits the

maximum performance attainable through using multiple cores, as stated by Amdahl’s

Law [5]. For instance, if the sequential fraction of the program is 20% and the rest can be

readily parallelized, a maximum speedup of 5x can be achieved even on using an infinite

number of cores. Therefore, sequential performance remains a key bottleneck in

improving performance of modern processors, multicore or otherwise.

 While modern processors employ techniques such as branch prediction and out-

of-order execution to improve sequential performance, they strictly obey data

dependences between instructions. Specifically, they stall execution of the dependent

chain of instructions until the producer is executed. This is a major bottleneck in modern

processors, especially given the slow main memory latency scaling - load instructions

that miss the cache hierarchy can experience hundreds of processor cycles of latency. It is

therefore imperative that we employ a technique to resolve data dependences in

programs.

1.2 MOTIVATION FOR THE WORK

The technique of value prediction resolves data dependences in hardware through

predicting the result of the producer instruction and speculatively executing the

dependent instructions. Several approaches exist to predict the value of an instruction.

While EVES [2] uses instruction PC and branch information to make predictions, the

FCM-style predictors [1], [6], [7] use PC and PC-local value history information.

Unfortunately, previous work suffers from two problems. First, existing predictors

demand a large on-chip storage - they need tens to hundreds of kilobytes to store their

metadata [3]. This severely impedes the adoption of value prediction in commercial

 3

designs. We argue that the predictor metadata can be stored in a distributed manner in the

memory hierarchy, while caching only the important predictor metadata in the predictor

structure. Second, even for unlimited-sized predictors, existing algorithms do not

efficiently learn the values produced by instructions. As programs exhibit control flow

divergence, existing predictors resort to either using long branch or long value histories to

accurately predict values. While providing better accuracy, the use of long context

lengths adversely affects training time and hence coverage, which is the fraction of values

predicted among all the eligible values. Figure 1 and Figure 2 show the poor coverage of

the predictors that use longer branch [2] and value histories [1] respectively, measured

using the Championship Value Prediction (CVP) infrastructure [3]. This poor coverage

limits the speedup obtained by the predictor.

Figure 1: Slower training with increasing branch history length

 4

Figure 2: Slower training with increasing value history length

1.3 KEY CONTRIBUTIONS

In this thesis, we make two key contributions to advance the field of value

prediction:

• To manage the high area requirements of a value predictor, we propose

the use of an enhanced version of the irregular prefetching algorithm, ISB

[8], that is capable of off-loading the predictor metadata to the memory

hierarchy.

• We propose the use of relevant contexts to handle divergence in programs,

obviating the need to use either long branch or long value histories1. By

clearly identifying the advantages provided by both branch and value

histories, we combine them in a novel predictor design called the Relevant

Context-based Predictor (RCP) that maintains accuracy while improving

training time, and hence coverage.

1 Some of the conclusions on improved divergence handling capabilities using a combination of context

information were arrived at independently by Subramanian [18] in their thesis as well. While this work

derives them based on identifying the distinct benefits of value and branch histories in handling different

types of divergence, their thesis derives its conclusions from an analysis of the gaps in performance

between realistic and oracle divergence handling capabilities.

 5

1.4 ORGANIZATION OF THE THESIS

 The rest of this thesis is organized as follows: Chapter 2 introduces the

architecture of a modern, general-purpose microprocessor; Chapter 3 motivates value

prediction and describes previous work in the field; Chapter 4 describes the mechanism

to off-load predictor metadata using the prefetcher ISB for value prediction and several

enhancements made; Chapter 5 describes the handling of divergence in programs by

combining branch and value contexts; Chapter 6 enlists the future directions and

concludes the thesis.

 6

Chapter 2: Architecture of Modern General-Purpose Microprocessors

Modern microprocessors are programmable machines that allow the user to

provide software instructions to be executed to achieve the desired computation. The

function a microprocessor performs is controlled by the binary inputs provided to the

digital logic circuits within it. For example, to simply add two integers the arithmetic and

logic unit present in the microprocessor needs to be provided the two input operands, a

destination to store the result and a unique binary code for indicating that the operation to

be performed is an addition. To facilitate programming, the microprocessor provides an

interface to the user known as the Instruction Set Architecture or ISA. The ISA specifies

the set of instructions and the set of registers that can be used by instructions to read

operands and write their results. Typically, each instruction has an opcode, a set of source

operands and a set of destination operands.

 A computer program is a sequence of instructions specified to achieve a desired

computation. When executing a program, the microprocessor’s state that is visible to the

programmer is called architectural state, or software-visible state. This includes the

values of the registers defined by the ISA, including the program counter (PC) which

indicates the address of the instruction in memory, and the state of the memory. During

execution, the instructions in the program read the architectural state as input, perform

computation and write the updated architectural state back, one after the other. This

implies that the architectural state is atomically updated by the instructions in program

order. This sequential model of execution is termed the von Neumann architecture.

The underlying hardware that executes the instructions, called the

microarchitecture, may have state that is not software-visible. We call this state the

speculative state.

 7

2.1 IN-ORDER PIPELINING

Program execution on a microprocessor follows the following general flow. The

instruction is fetched from memory using the address given by the current program

counter, and the program counter is then updated to point to the next sequential

instruction in the program. This constitutes the Fetch Stage. The instruction is then

decoded into source register ids, destination register ids and opcodes, and the control

signals to drive the functional units are generated. This forms the Decode Stage. In the

next stage called Execute, the processor reads the source operands from the register file

and uses one or more of its functional units to perform the computation. In case of

instructions that access memory, such as load and store instructions, the address

computation of the load/store is done in this stage. In the Memory stage of the

computation memory is accessed by the instruction to read data. Finally, in the Writeback

stage the instruction commits the result to the register file.

The five stages described above form the basis for instruction execution. As

processors are clocked machines, one can simply design a processor that executes one

instruction every clock cycle. In this single-cycle microarchitecture, the duration of the

Figure 3: Single-cycle Microarchitecture

 8

Figure 4: Pipelined execution

clock cycle is specified such that it is long enough to accommodate all the five stages of

computation for the slowest instruction, as shown in Figure 3.

The problem with the single-cycle microarchitecture is that at any given moment

in time, the logic of only one of the five the different stages of computation is being

utilized. This is inefficient as four-fifths of the resources are unused in every stage. To

resolve the inefficiency of this design, a multi-cycle microarchitecture with pipelining

was introduced. In a pipelined microarchitecture, an instruction is executed over multiple

cycles with each stage of computation consuming one cycle to complete. Further, once a

stage finishes its computation on one instruction, it is free to process the next instruction

in the program in the next cycle. This allows for efficient utilization of all stages in every

cycle of execution. Figure 4 illustrates this concept, where once the pipeline is full, one

instruction is processed every cycle.

Contrary to the single-cycle design, the clock cycle need not be as long as the

slowest instruction but instead needs to be only as long as the slowest stage of the

pipeline. This allows for higher frequency clocks and better performance. For example,

 9

assuming each stage of computation takes one cycle to execute, the single-cycle

microarchitecture would finish one instruction in every 5 clock cycles. However, the

pipelined design would finish one instruction every cycle once the pipeline is full.

It is to be noted that the clock duration in the pipelined architecture can be made

shorter by increasing the number of stages in the pipeline. However, the dynamic power

consumption of the microprocessor increases with the clock frequency. Due to this

reason, current microprocessors have clocks that are at 4-5 GHz, and it is impractical to

increase the frequency of the clock further.

2.2 MEMORY HIERARCHY

Load and store instructions access the memory for reading or writing data. As

memory accesses on average take longer than computation, in an in-order pipeline as

described in the previous section, the memory stage is typically the slowest stage and

determines the clock cycle. Therefore, to achieve high performance, memory accesses

need to be low-latency operations.

A slow memory technology such as DRAM is cheap and dense, while fast

memory such as SRAM consumes more chip area and is expensive. To achieve a good

balance between storage capacity and access latency in a modern processor, the memory

 10

Figure 5: Memory System in a Processor

subsystem consists of a hierarchy of storage in which the faster, higher levels store a

subset of the slower, global memory, as depicted in Figure 5.

In a memory hierarchy, typically the lower level of memory is the main memory

or DRAM, with the higher levels or caches being SRAM. Apart from being built with

slower memory technology (DRAM), the main memory is often located physically off-

chip from the processor. It is thus useful to note that while an access to the smallest level

of the cache hierarchy takes a few processor cycles, an access to the main memory may

take several hundred cycles, stalling the processor in the process. When a load/store

instruction requests to read/write an address in memory, data is brought into the fast

storage if absent. This is termed a cache miss. As the cache has low capacity, the old

 11

data is evicted to the lower level storage once fresh data is brought in. An algorithm

called the cache replacement policy decides which data to evict from the caches. For

example, the Least Recently Used (LRU) policy evicts the cache line which has been

used the furthest in the past by the processor.

Programs access large amounts of memory relative to the size of the caches. For

high performance, it is necessary that in the average case, most of the memory accesses

are made to the higher-level caches rather than to the slow main memory. The primary

reason caches provide performance benefit despite having very low storage capacity is

that typical programs exhibit a property known as locality. Temporal locality is seen

when programs access the same memory address repeatedly over time, allowing the

cache to serve the memory request after the data is loaded from the main memory.

Another form of locality exhibited is spatial locality, in that programs access data that is

close by the data currently accessed. In conclusion, the exploitation of locality by caches

reduces some of the impact of the slow nature of memory accesses on performance.

2.3 DEPENDENCE HANDLING IN PIPELINING

2.3.1 Control Dependences

Branch instructions can modify the flow of the program such that the next PC is

not the same as the instruction immediately after the current PC. Branch addresses are

typically determined only in the Execute stage of the pipeline. This presents a problem

for the pipelined microarchitecture as the Fetch stage needs to access the memory with

the address of the next instruction (next PC), which may not be ready as this address is

yet to be generated by the Execute stage. This scenario where the address of the next

instruction is unknown at Fetch is called a control dependence. As a result, one may

naturally expect to stall the Fetch stage by the fetch-to-execute delay for branch

 12

instructions, losing performance. In deeply pipelined modern processors, this delay may

be as long as 10-15 cycles and control dependences become a key performance

bottleneck.

To resolve control dependences, modern processors use branch predictors. These

predictors learn the direction and target of branch instructions dynamically and predict

the address of the next instruction. The Fetch stage can then proceed even while the

branch executes. However, as the prediction is not guaranteed to be correct, the pipeline

must be reset upon detecting a mismatch between the predicted instruction address and

the result of the branch instruction. Modern branch predictors typically achieve high

accuracies in the range of 90-99% [9], [10].

2.3.2 Data Dependences

An instruction in a program may be dependent on the output of a previous

instruction. For example, consider the instruction sequence below, with R* representing

the register id.

I1: R1 = R0 + R2

I2: R3 = R1 * R2

I3: R1 = R4 – R0

 As the value of register R1 produced by instruction I1 is required by I2, the

instruction I2 is said to have a true data dependence or a Read-After-Write (RAW)

dependence on instruction I1. These dependences convey the semantics of any sequential

program, and hence are to be obeyed. In an in-order pipeline, such dependences cause the

dependent instruction and all subsequent instructions to stall until the producer

instruction completes execution.

 13

Further, as instruction I3 writes the value of R1 after the instruction I2 has read it,

I3 is said to have a Write-After-Read (WAR) or an anti-dependence on I2. If I3 were to

write R1 before I2 read it, the program would execute incorrectly. Similarly, the

instruction I3 is said to have a Write-After-Write (WAW) dependence on I1, as they write

to the same register R1. If instruction I3 were to write to R1 before I1, the result of I3

would be lost.

It is to be noted that WAR and WAW dependences only exist because of

insufficient architectural registers. For instance, if the instruction I3 could write its result

into another register id, there would be no WAR dependence with I2. As a result, these

dependences are often called fake dependences. As an in-order pipeline only executes

instructions in program order, fake data dependences are not an issue.

2.4 OUT-OF-ORDER EXECUTION

In the previous sections, an in-order pipeline was described as an efficient way to

parallelize instruction processing while still maintaining sequential program semantics.

Even though WAR and WAW data dependences are not an issue, true data dependences

cause the pipeline to stall. This is particularly a bottleneck when the dependent

instruction is waiting for the result of a load instruction that misses all the levels of the

cache hierarchy, potentially stalling the pipeline for hundreds of processor cycles. The

problem with the in-order pipeline is that it stalls even though there may be several

instructions in the program downstream that are independent of the stalled instruction.

Such independent instruction streams should ideally be executed while the stalled

instruction waits for its operands. The presence of such independent streams of

instructions in a program is called Instruction Level Parallelism or ILP.

 14

To exploit ILP and reduce the impact of RAW dependences on performance,

instructions can be executed out of program order. Such a processor is called an Out-of-

Order processor. During program execution, the processor uncovers instructions that are

independent of one another and executes them in parallel. This approach results in the

processor not stalling entirely when a RAW dependence is observed. To achieve this, the

processor fills a window of instructions in a hardware buffer called the Instruction Queue

(IQ), and schedules the instructions whose operands are ready, while those instructions

stalled by RAW dependences wait in the IQ. This results in instructions executing in

parallel and out of program order, while still maintaining the true data dependences

between dependent instructions. However, to maintain sequential program semantics, the

processor still updates the architectural state in program order. It does so using a structure

called the reorder buffer (ROB).

In summary, an Out-of-Order processor pipeline hides the latency caused by

RAW dependences by exploiting ILP. It uses an in-order front-end that fetches

instructions in program order and feeds them into the out-of-order execution unit. The

instructions then update the architectural state in an in-order manner.

While out-of-order execution hides the latency of true data dependences through

executing independent instructions in the instruction stream, it strictly enforces RAW

dependences and stalls the dependent instructions in the pipeline until their producers

finish execution. Hence, the single-thread performance of an out-of-order processor is

limited by true data dependences. This work revisits the technique of Value Prediction as

a way to improve performance by breaking the RAW dependences. At its core, value

prediction aims to predict the result of the producer instruction in a RAW dependence so

that the consumer can be speculatively executed. Upon a correct prediction the

 15

dependence is broken, allowing the dependent instruction to execute concurrently with

the producer, and higher sequential performance is achieved.

 16

Chapter 3: Value Prediction

3.1 VALUE PREDICTION FOR SINGLE-THREAD PERFORMANCE

Figure 6: Value prediction to improve performance

As introduced in the previous chapter, value prediction is a speculative execution

technique to resolve RAW dependences. For example, consider the sequential execution

of three dependent instructions as illustrated in Figure 6. Without value prediction, each

instruction would have to wait for its producers result. However, if we can accurately

predict the result of an instruction, say I0, then instruction I1 can proceed, thus improving

the ILP of the program and hence performance.

Predicting values only improves performance if the producer instruction’s result is

not ready when the dependent instruction arrives. For that to occur, the average

 17

Figure 7: RAW dependence distances

RAW dependence distance between the producer and the consumer needs to be smaller

than the pipeline depth from fetch to execute; otherwise the producer’s result can be

forwarded to the dependent instruction. We motivate the use of value prediction by

measuring the RAW dependence distances in two SPEC2006 [11] benchmarks, bzip2 and

gcc, using an Intel PIN [12] simulator. As is evident from Figure 7, nearly 70% of

dependent instructions occur within 8 instructions of the producer, which is likely before

the producer has executed.

Further, evaluation of perfect value prediction on the Championship Value

Prediction (CVP) framework [3] using a set of 130 Qualcomm-provided traces provides

an average speedup of 245% over a baseline that performs no value prediction. Although

absolute numbers are dependent on the simulation environment, this result motivates the

use of value prediction for improving single-threaded performance.

Just as the technique of caching data in a processor benefits from the spatial and

temporal locality of memory addresses, the predictability of data values is made possible

due to the locality of values. This observation was first described by Lipasti et al. [13]

and Gabbay and Mendelson [14]. The key insight that enables value prediction is that

 18

even though data in registers can span a large space of 264 values, dynamic instructions

tend to produce values that remain constant, exhibit regular strided patterns, or exhibit

repeated irregular patterns.

For example:

Constants: 100, 100, 100, 100, 100 ...

Strided: 2, 4, 6, 8, 10 ...

Correlated: 17, 41, 8, 140, 17, 41, 8, 140 ...

To predict these patterns, Sazeides and Smith [6] define two types of value

predictors: computation-based predictors and context-based predictors, which we

describe in the next section.

3.2 VALUE PREDICTION MECHANISMS

Several algorithms have been proposed to predict the value produced by an

instruction. The efficacy of a value predictor is measured using three metrics:

1. Accuracy – the ratio of the number of correct predictions made to the total

number of predictions made.

2. Coverage – the ratio of the number of predictions made to the total

number of values eligible for prediction in a given program.

3. Speedup – the percentage increase in IPC of the processor over a baseline

that performs no value prediction. Speedup is a function of the accuracy

and the coverage achieved by the predictor, and the class of instructions

predicted.

 19

3.2.1 Computation-based Predictors

A computation-based value predictor applies a computation or a function to the

result of the previous instance(s) of the instruction to generate the prediction for

Figure 8: Last value predictor

the current instance. The last value predictor [13], the stride predictor [14] and the value

estimator [1] are examples of computation-based predictors.

3.2.1.1 Last Value Predictor

As proposed by Lipasti et al. [13], a last value predictor predicts the value of the

current instance of an instruction to be the same as the value produced by the previous

instance. This predictor applies the identity function on the previously observed value

and uses it as the next prediction. This prediction strategy, albeit very simple, is useful

when the instruction produces constant values. For example, a significant portion of

instructions in a program tend to repeatedly access variables and memory locations that

are not modified once set, and hence are runtime constants.

 20

The predictor is depicted in Figure 8. It is a structure that contains the lower bits

of the instruction PC as a tag, along with the last seen value. Typically, the predictor

entry also consists of a saturating counter used as a confidence mechanism. The predictor

is accessed using the lower bits of the instruction PC as index, and if the tag matches, the

Figure 9: Stride predictor

Figure 10: Updating the stride predictor

stored value is used as a prediction, given it has high enough confidence. If the tag does

not match or the confidence is not high enough, no prediction is made. When an

instruction retires, it updates its result into the table at the appropriate location based on

its PC. The counter is incremented on a correct prediction and reset otherwise.

 21

3.2.1.2 Stride Predictor

Apart from constants, instructions in programs also tend to produce values that

exhibit a regular strided pattern. For instance, when traversing an array, the addresses

accessed by a program are separated by a constant stride. Similarly, the loop index

variable of a for-loop typically exhibits a regular strided pattern. To predict strided

patterns, Gabbay and Mendelson [14] introduced a stride predictor, as shown in Figure 9.

A stride is computed by the difference in the values between consecutive

instances of an instruction. To make a prediction for the current instance, the result of the

previous instance is added to the stride. To update the predictor, when the instruction

retires, its value is stored as the last value, while the difference in the value of the current

instance and the previous instance is stored as the new stride. The update mechanism is

depicted in Figure 10.

 In contrast to the last value predictor described in the previous section, the stride

predictor can predict values that it has never seen before by simply computing them

through addition.

3.2.2 Context-based Predictors

Contrarily to computation-based predictors that compute new values based on

previous ones, context-based predictors learn the values produced by a certain program

context in the past and apply it in the future when the same context is observed. Program

contexts can include values produced by the same instruction, value produced by other

instructions, global branch outcome history, etc. These form a key class of predictors as

not all instructions tend to produce values that are constant or exhibit strided patterns.

For instance, programs commonly traverse linked lists and graphs, and the values

produced by the pointer accesses in such programs tend to be irregular and not amenable

 22

to computation-based predictors. However, if the programs traverse the same data

structures repeatedly, a context-based predictor would be able to learn the values

produced on each instance of some context and apply it when the same context repeats.

We describe several context-based predictors in the sections below.

Figure 11: Finite Context Method

3.2.2.1 Finite Context Method (FCM) Predictor

Introduced by Sazeides and Smith [6], FCM predictors use a two-level strategy to

predict values. The first-level table, called the Value History Table (VHT) stores the last

n-values produced by a static instruction. It is indexed by the instruction PC and is

tagged. The second-level table, called the Value Prediction Table (VPT) is indexed by a

hash of the last-n values stored in the VHT. This stores the actual value to be used for

prediction and a confidence counter mechanism. As described by Sazeides and Smith, an

order-n FCM tracks the last-n values in the VHT and is depicted in Figure 11. The update

mechanism involves updating the value history in the VHT and the actual value produced

by the instruction in the VPT.

While being versatile to predict constants and strided value patterns, the FCM

predictor is particularly useful at predicting correlated value patterns. For example,

 23

consider traversing a four-node linked list repeatedly. For accessing the value of a node

in a linked list, a pointer access is involved. It initiates a load of the pointer to the node

which generates the node address. This is followed by a load of the address which

generates the value of the node. The node addresses would show a repeating correlated

pattern A1-A2-A3-A4 in each iteration, while the node values would present the sequence

V1-V2-V3-V4. As the addresses and values can take arbitrary values, a stride predictor

would not be able to predict the address and value sequences. However, using a history

of the value produced by the load in an order-1 FCM, one can predict the next value. In

this case, learning that A3 is followed by A2 is sufficient to predict A3 every time we

observe A2.

3.2.2.2 Differential FCM

Proposed by Goeman et al. [7] differential FCM is a modification on the original

FCM predictor that tracks the differences in the local values of an instruction rather than

the values themselves. The VPT is indexed using the hash of these deltas, and a delta is

predicted to be used. The final value prediction is simply a sum of the predicted delta and

the last value of the instruction stored in a separate table. This makes the predictor a lot

more space efficient as constant patterns which used to take up several distinct VPT

entries in the original FCM design now would take up exactly one entry, as all constant

patterns have a delta history of zero. Further, DFCM trains faster than the FCM predictor

in case of constant patterns. This is because the predicted delta of zero holds true for

numerous PCs that exhibit constant values, and it is sufficient to learn the zero-delta for

one PC and apply the same to other PCs.

 24

The update mechanism is similar to the FCM predictor, but deltas are computed

upon instruction retirement and appropriately stored in the VHT and VPT, instead of

values.

3.2.2.3 DFCM++

For prediction mechanisms such as FCM and DFCM that use a PC-local history

of values, it is imperative to make predictions using a value history that is not stale. In

programs that have tight for-loops, it may often occur that the previous instance of an

instruction may be in-flight when the prediction for the current instance is required. This

would mean that the Value History Table would not be updated with the correct value

history and using a stale history would likely cause a misprediction. Unless a specialized

mechanism is used to address this issue, the predictor would simply have to give up

predicting instructions that have several in-flight instances.

Deshmukh et al. [1] propose the use of speculative delta histories that are updated

using the predictions made by the DFCM predictor. In the first-level table of the DFCM

predictor they maintain a commit-time history which is always correct, but also augment

it with a predict-time history which is updated speculatively. During prediction, the

predict-time delta history is used. Upon instruction retirement, the commit time history is

updated with the correct deltas.

3.2.2.4 VTAGE and EVES

Perais and Seznec [15] address the problem of predicting inflight instructions

differently than DFCM++ in that they do not use local value histories in their predictor.

They use global branch history information along with the program counter of an

instruction to index into a prediction table, and hence convert the problem of predicting

 25

correlated values into constant values per branch context. This allows them to not store

speculative histories and yet make predictions on constant, strided and correlated patterns

of values. Intuitively, the predictor would require branch history lengths proportional to

the length of the correlated value streams to remove aliasing. This is described in detail in

Section 4.1.1.

 While long branch histories provide the capability of predicting long streams of

correlated values, invariably using long histories even for constant PCs and short value

streams would slow down the training time of the predictor. The length of the branch

history used hence presents a tradeoff between accuracy and training time of the

predictor. To exploit this tradeoff, VTAGE uses an array of branch history lengths in a

geometric progression. This allows VTAGE to use the appropriate branch history length

to predict different classes of instructions.

Seznec further enhances VTAGE by making it more space efficient and augments

it with a stride predictor in a hybrid predictor design called EVES [2].

3.2.3 Store-Load Value Predictors

 As discussed in the previous section, loads form an important class of instructions

for value prediction due to their potentially higher latency than arithmetic instructions.

An important problem in load-value prediction is that of conflicting stores. For example,

if an instruction sequence looks like the following:

Load X – Store X – Load X

This exhibits with two dynamic instances of the same load with an interleaving store to

the same memory location X, then the store would modify the learnt value of the load.

However, as the store modifies a memory location in the data cache, it is possible to

predict the value of the subsequent load using the value in the data cache. Sheikh et al

 26

[16] propose the use of address prediction of the subsequent load to query the data cache.

If the data is found, they then use the value to predict the second load.

3.3 PREDICTION VALIDATION AND RECOVERY

With several algorithms described to predict the value of an instruction, we now

discuss some microarchitectural design tradeoffs in incorporating value prediction in a

microprocessor.

Validation and misprediction recovery mechanisms are key design choices to be

made in implementing value prediction. Validation can be done either at execution time,

when the result of the operation is ready, or at commit time, when the instruction that

produced the value becomes the oldest instruction in the reorder buffer (ROB). The trade-

offs associated with this choice are clear: commit time validation necessarily has a higher

misprediction penalty as there can be a multi-cycle latency between the value being ready

at execute and the instruction reaching the top of the ROB. Hence, from a purely

performance standpoint validation at execution is the more attractive option. However,

validation at execution requires checkpointing the architectural state, additional ports to

the physical register file and comparators at the output of functional units to compare the

result with the predicted value, and hence has much higher hardware complexity.

Upon validation, a misprediction recovery mechanism is to be initiated for every

incorrect prediction that was consumed. There are two alternatives for recovery: pipeline

squashing and selective re-issue. The former method involves flushing the pipeline state

and re-executing from the instruction which consumed the incorrect value. However, it is

not necessary to squash instructions that are independent of the producer instruction.

Therefore, alternatively a selective re-issue mechanism can search through the instruction

queue for dependent instructions which consumed the incorrect value, and selectively re-

 27

issues them. Undoubtedly, the latter method is immensely complex in hardware. Despite

that, large performance improvements over pipeline squashing are not guaranteed as the

re-issue is on the critical path of the recovery mechanism. Hence, the two methods can be

expected to perform comparably in the average case.

3.4 CHALLENGES IN VALUE PREDICTION

As discussed in Chapter 1, control and data dependences impact the performance

of a pipelined processor. While branch prediction has been widely adopted by modern

microprocessors to resolve control dependences, there is no known implementation of

value prediction in any commercial processor. This is because value prediction presents

several significant challenges that either do not exist for conventional branch prediction

or are less drastic. Firstly, instead of a binary taken or not taken decision, data can span a

much larger range of values, making the state required for accurate predictions

prohibitive. As the value predictor is typically stored in the processor core, the amount of

predictor metadata that can be allocated on the chip is very limited (few kilobytes).

Secondly, virtually every instruction depends on the result of some preceding

instruction. This makes misprediction detection techniques such as validation at execute

implausible due to the amount of checkpoint state required. Value prediction must instead

rely on validation at commit, incurring a drastically higher misprediction penalty. As a

result, there is a large asymmetry between the small average benefit of correctly

predicting a value and the large misprediction penalty, requiring that value predictors be

very accurate, typically over 99%.

By observing computation and context-based predictors, two key points emerge:

1. Although context-based predictors can predict the values of a wider class of

instructions, such predictors are more complex than simple predictors such as last

 28

value predictors or stride predictors as they must store previously observed

contexts. Hence, they inevitably incur a larger area overhead. Typically, the

longer the context to be stored, the larger is the area overhead.

2. The quality of the context is crucial for the predictor to learn the patterns and

apply it. While longer contexts intuitively can make more accurate predictions,

they slow down the training of the predictor as the predictor observes the same

context less frequently to learn from it. This negatively affects the coverage of the

predictor.

In the following Chapters, we address some of these issues of managing metadata

and learning patterns accurately without sacrificing training speed.

 29

Chapter 4: Managing Predictor Metadata

As described in the previous chapter, solutions that use the Finite Context Method

(FCM) [1], [6], [7], and EVES [2] have been proposed to learn and predict streams of

values that exhibit constant, strided and correlated patterns. However, the metadata

storage overhead required by today’s value predictors is a major challenge in their

implementation. As shown in prior work [7], FCM-based methods in particular require

hundreds of kilobytes of storage to be competitive. Inspired by research in prefetchers

[17], [8] that store their prediction metadata in off-chip memory, we evaluate an irregular

prefetcher called the Irregular Stream Buffer (ISB) [8], that is capable of learning

correlated streams of arbitrary length in the context of value prediction. We qualitatively

argue that ISB’s management of metadata is a key insight that future value predictors

should employ to achieve a practical implementation.

Previous work [8] , [17] in the irregular prefetching community has demonstrated

success in storing the metadata in the off-chip memory as a way to balance the amount of

on-chip state required and the impact on memory performance. Similar to the idea used

by prefetchers, we propose that one way of managing the metadata of PC-indexed value

predictors is by tracking the I-TLB misses and evicting the cached metadata for the PCs

whose pages are not TLB-resident. However, current value predictors store their values in

large monolithic tables that are ill-suited to be off-loaded to the memory hierarchy. For

example, in an FCM-based predictor, it is only possible to evict entries that correspond to

a particular PC from the level-1 value history table. Evicting level-2 prediction table

entries that correspond to a complete stream of values is impossible, as these values are

scattered throughout the level-2 table due to the hash of the value history, and no

information about their location is stored.

 30

Figure 12: Structural address space [8]

On the contrary, the Irregular Stream Buffer (ISB) prefetcher intelligently stores

its metadata such that large contiguous streams of values per PC are in consecutive

locations in the predictor structure, and hence can be efficiently offloaded to the off-chip

memory. Therefore, we evaluate the ISB prefetcher in the context of value prediction and

discuss mechanisms for reducing the on-chip area overhead of future value predictors.

This solution allows for a larger effective distributed predictor structure, potentially

improving value prediction performance. While it is evident that such a solution trades

off increased pressure on the memory hierarchy for the benefit of value prediction, it is to

be noted that no prior work in value prediction allows for making this tradeoff,

completely leaving a design space unexplored.

4.1 IRREGULAR STREAM BUFFER (ISB) FOR VALUE PREDICTION

 This section describes the Irregular Stream Buffer (ISB) [8] by first briefly

summarizing the concept of structural address space as illustrated in Figure 12, and the

prefetcher design. We then describe the several enhancements made to adapt the

 31

prefetcher to value prediction. We leave out the detailed description of the address

mapping mechanisms used by ISB for brevity.

4.1.1 Irregular Stream Buffer

Unlike prior methods where the correlated streams of values associated with a

particular PC can be scattered throughout the predictor structure, ISB uses a layer of

indirection to map a stream of correlated values to a special address space known as the

structural address space, where consecutive entries are at consecutive locations of the

address space. Figure 12 shows that the stream X, Y, Z due to PC2, which is initially in

the physical address space, is stored such that the complete stream is mapped to

consecutive locations in the structural address space. This enables ISB to efficiently fetch

streams of values associated with a PC from the memory hierarchy and evict complete

streams out to memory when needed.

The training strategy employed by ISB is similar to a first-order FCM: it

determines pairs of values per PC that have high correlation, say A and B, and maps the

two values to consecutive structural address locations, say S and S+1, in the predictor

data structure. It maintains a confidence counter for the entry S+1, which is incremented

if B is seen to follow A repeatedly, and decremented if a different value C is seen after A.

While making a prediction for a trigger value A, the structural mapping S for A is

determined, which naturally provides S+1 as the next value in the stream. Then, a reverse

mapping from structure address S+1 to physical address B is used upon determining

which the value B is predicted. The reader should note that any arbitrarily long stream of

values can be mapped to consecutive locations in the structural address space. B.

 32

4.1.2 Enhancements to ISB

 Evaluating vanilla-ISB in the context of value prediction by training ISB on the

stream of values produced made it evident that the implementation of ISB as described by

Jain and Lin [8] exhibited aliasing between PCs. This was due to the common data

structure used for storing all structural addresses, which caused severe destructive

interference between different program counters. To resolve this issue, we implemented a

stricter PC-localized version of ISB named local-ISB which completely eliminated any

such interference by separating per-PC streams in the structural address space. Though

destructive interference should be limited, constructive interference from different PCs

should ideally be allowed to exist as it helps the predictor train faster. In the next

enhancement attempted, we only separated PCs into different spaces in the predictor

structure if they happened to show destructive aliasing. We name this version lazy-ISB,

as it lazily separates PCs that interfere. Intuitively, this method is expected to tradeoff

some accuracy to provide superior coverage.

The problem of value prediction is considerably more challenging than

prefetching due to several reasons. Most importantly, the penalties of a misprediction in a

prefetching environment, cache pollution and bandwidth overhead, typically impact the

performance far less than a recovery from a value misprediction. Thus, prefetching can

afford to be less conservative than value prediction. To improve the accuracy of ISB in

the context of value prediction, we employed strict confidence thresholds for predicting

correlated pairs of values (127 consecutive appearances) and drastically reduced

confidence upon a misprediction by dividing the confidence by 4. Finally, we observe

that the main drawback of value context-based predictors such as ISB [8] and FCM [6] as

compared to solutions such as VTAGE [15] is that the prediction depends on the value

history being up to date. For instance, to make a prediction in a stream of values A, B,

 33

C..., the value B must be updated in the predictor to make the prediction C. To extract

higher performance from our predictor, we speculatively update the value history with

the predicted value before the instruction retires if we are confident of the prediction,

enabling us to make back-to-back predictions. We call this version spec-ISB.

4.2 EVALUATION

We evaluate our ideas in an out-of-order pipeline using the Championship Value

Prediction (CVP) [3] infrastructure, which is a simulation infrastructure provided by

Qualcomm as part of a year-round value prediction competition. Qualcomm has provided

135 traces, each with 30M dynamic instructions, to be used for evaluating a value

predictor submission. The traces are separated into Integer, Server and Floating Point

(FP) traces. Table 1 describes the baseline microarchitectural details used for our

experiments. We also implement an Intel PIN [12] -based simulator for testing our

predictor implementation and use microbenchmarks alongside SPEC2006 benchmarks.

Table 1: Baseline microarchitecture for simulation

Instruction Window Size 256

Fetch Width 16

Branch Prediction 2-level predictor (2-bit PHT entry, 16-bit

global history)

Memory Disambiguation Perfect

L1 cache 32 KB, 4-way, 64B, 2c

L2 cache 1 MB, 8-way, 64B, 12c

L3 cache 8 MB, 16-way, 64B, 60c

Main memory 150c fixed latency

 34

Figure 13: ISB variants, accuracy and coverage

4.3 RESULTS

We implement the vanilla-ISB prefetcher for value prediction in the CVP [3]

simulator and an Intel PIN-based simulator, and thoroughly test the implementation

against several microbenchmarks that involve array, linked list and tree traversals. We

observe that while ISB performs well on the array and linked list microbenchmarks, it

does not handle diverging value streams that occur in tree traversal well. This is expected

as diverging streams effectively invalidate the previous correlations learnt by ISB.

On the Qualcomm traces, we observe that the accuracy of the predictor, shown in

Figure 13, is not sufficient for obtaining any performance benefits. In fact, we see a 55%

slowdown as compared to the baseline due to the high number of mispredictions. We

identify that most mispredictions can be attributed to destructive aliasing between PCs.

As a result, our local-ISB enhancement more than doubles the accuracy of the predictor.

To further improve the accuracy, we incorporate confidence mechanisms that require

pairs of values to appear for several times greater than a confidence threshold to be

 35

Figure 14: ISB variants, speedup

considered for prediction. Through sensitivity studies, we find that a threshold of 127 is

optimal for our implementation.

The lazy-ISB variant which was designed to selectively remove destructive

aliasing and maintain constructive aliasing, provides improved coverage. However, the

accuracy is reduced. As a result, the lazy-ISB variant does not see any improvement in

speedup. We then evaluate the speculative update enhancement in the local-ISB variant

and observe that the accuracy of the predictor improves to 95.32%, while providing an

average speedup of 5.32% across benchmarks, which indicates that early update solves a

key problem associated with context-based predictors. This variant of local-ISB, with

speculative update and confidence thresholds improves the performance of vanilla-ISB

by more than 60% as shown in Figure 14 and improves the performance of the system by

5.3% over the baseline of no value prediction.

Finally, we conduct an oracle value prediction study for the final local-ISB

variant and observe 15.57% speedup by predicting all the values that would have been

 36

predicted by local-ISB correctly, indicating that the performance achieved is still limited

by accuracy. On our PIN-based simulator we analyze the mispredictions made by local-

ISB on SPEC 2006 benchmarks, and as expected, we observe that divergence in the

stream of values due to branch instructions causes most of the remaining mispredictions.

We discuss potential future directions for improving accuracy in the following section.

4.4 DISCUSSION:

As is evident from the results of our experiments on using ISB for value

prediction, the accuracy requirements for value prediction are extremely high, and our

current version of ISB (Speculative local-ISB with confidence mechanisms) falls short

due to poor handling of divergence of value streams. We observe that divergence is

dependent on the control flow of the program and can be predicted by taking the branch

direction history into account. We would expect the accuracy to improve by identifying

and storing divergent values in streams and predicting them based on control flow. While

FCM handles divergence by using a long value history, it incurs a severe area overhead

and loses the ability to offload the metadata. This motivates us to design a predictor that

uses branch history for handling divergence, but a short value history for tackling

correlated value streams while keeping area overheads manageable.

 37

Chapter 5: Handling Divergence

5.1 UNDERSTANDING CONTROL FLOW IN PROGRAMS

Branch instructions change the flow of control in programs. As discussed in the

previous chapter, control flow affects the predictability of data values and hence should

be an important consideration when designing a value predictor. Using simple examples,

we discuss how branch instructions affect the value produced by a given static

instruction. We then qualitatively analyze how existing predictors counter the effects of

control flow divergence, where in a learnt pattern of values is disturbed through the

dynamic changes in branch direction.

Consider the example shown in Figure 15 below. It depicts a traversal of a linked

list, which is a common occurrence in programs. The n values produced by the

instruction at program counter pc1 are illustrated as A0, A1 … An-1. As the value produced

by instruction pc1 potentially changes in every iteration of the loop, we denote this form

of value variability as local divergence.

Now consider a more complex example as depicted in Figure 16. We observe that

this scenario commonly occurs during traversal of tree and graph data structures, where

the value of a static instruction may diverge from the observed correlated stream A0, A1,

… An-1 depending on the path of the graph chosen. As the values generated by the

instruction depends on not just the “loop iteration” but also on the control flow path

chosen to reach a particular node, we denote this form of value variability global

divergence. After abstractly defining the two forms of divergence observed in programs,

we now discuss how existing value predictors handle them.

 38

Figure 15: Linked list traversal: correlated value stream

Figure 16: Graph traversal, local and global divergence

 39

Figure 17: Prediction using branch and value contexts

5.1.1 Divergence Handling using Branch Contexts

Similar to Figure 15 above, consider traversing a four-node linked list repeatedly.

To correctly learn the values generated by the instruction pc1 using just branch

information, a method such as VTAGE [15] looks at the outcome history of the branch br

in the program. Given a branch history register of (at least) four bits, we can isolate the

values produced by pc1 such that no two values have the same branch history

information, as elucidated in Figure 17 on the left. The reader may convince themselves

that this indeed is the case.

While this allows a predictor that uses branch contexts to accurately predict

streams of values, the stored length of the branch history limits the maximum predictable

length of the value stream before aliasing of histories starts affecting accuracy. In

particular, for a n-long value stream as shown in Figure 15, a minimum branch history

length of n is required. As value streams can be of arbitrary length, using branch contexts

presents a problem in handling local divergence.

 40

On the other hand, as global divergence occurs solely due to the path of control

flow chosen, it is natural to use branch history information to resolve this form of

divergence.

5.1.2 Divergence Handling using Value Contexts

Let us consider the linked-list example in Figure 15 again. An intuitive way of

predicting the next value in the stream is through learning pairwise correlations. For

instance, an FCM [6] predictor would learn that Ai+1 always follows Ai except at the last

value of the steam. This is shown in Figure 17.

While this scheme of learning using value contexts works very well in handling

local divergence, it is ill-suited to handle global divergence. With a single value history,

multiple values may follow any given value. For instance, while traversing a graph such

as in Figure 16, values B or C0 may follow A1. As no control flow information is

available, an FCM-like predictor substitutes it with longer value history, which acts a

proxy for the control flow path taken.

We argue that this is inherently an inefficient way of dealing with global

divergence as potentially a very long value history is required to substitute branch

history. Consider the graph traversal example in Figure 16 again. If the two values B and

C0 are on equally likely paths of a branch, a value history of twice the length of the entire

stream is required to accurately predict which value follows A1. However, a single bit of

relevant branch history would suffice to predict the global divergence.

While the reader may validly argue that using appropriately long branch or value

histories would resolve all the issues of handling divergence, a predictor that employs

long context information is bound to be limited by the training time, and hence have poor

coverage. Moreover, the area overheads of using long contexts makes it a poor design

 41

decision. This dichotomy between value history being efficient at handing local

divergence and branch history being efficient at handling global divergence necessitates a

design that uses the relevant context information to make predictions.

5.2 COMBINING EVES AND DFCM++:

As described in the previous section, we hypothesize that combining branch and

value contexts may provide benefit in accuracy and training time. As existing predictors

such as EVES [2] employ only branch histories and DFCM++ [1] employs only value

histories, we conduct an experiment that combines the two predictors in an oracle

manner. We make the following observations:

1. Perfectly combining the two predictors gives us better coverage than

DFCM++ which implies that branch history helps add additional

predictions that are not learnt by value history alone. Figure 18 below

shows that coverage increases 4% w.r.t DFCM++. On the other hand,

value history helps increase coverage of EVES by 20%, implying that

value contexts handle local divergence better.

2. The combined predictor gives better accuracy than DFCM++, correcting

the inaccuracies due to global divergence in DFCM++. This is depicted in

Figure 19.

3. As seen in Figure 20, the combined predictor provides a speedup of 3.7%

over EVES, while improving DFCM++ by over 13%.

4. On average, out of all the correct predictions made, both predictors predict

correctly 63% of the time, while DFCM++ predicts correctly 25% of the

time when EVES does not predict/mispredicts. EVES predicts correctly

5% of the time when DFCM++ misses to predict. This shows that the two

 42

predictors make complementary predictions. This is illustrated in Figure

21.

Figure 18: Coverage on combining predictors

Figure 19: Accuracy on combining predictors

 43

 Figure 20: Speedup on combining predictors

Figure 21: Correct prediction by each component of hybrid

 44

5.3 EMPLOYING RELEVANT CONTEXT INFORMATION: THE RELEVANT CONTEXT-

BASED PREDICTOR (RCP)

As performance of a value predictor is contingent on the accuracy of predictions

and coverage, appropriate context information is key for a high-performance value

predictor. A context may include PC information, branch history and/or value history. To

choose the best combination of value and branch histories as part of the context, we

define two metrics that quantify the quality of a context. First, we measure the variance

of a particular context, defined as the number of unique data values seen by a context.

Intuitively, predicting a context that has lower variance is expected to be more accurate.

Variance is a measure of the localization capability of the context. It goes down with

richer context information and is equal to 1 for a context whose value does not vary.

 We further measure the predictability of data values observed with a context,

which is defined as the percentage of all contexts that have a variance = 1 and repeat at

least a set number of times. We then employ this information to choose the best

combination of value and branch contexts.

As seen in Figure 22 and Figure 23 below, we observe that average variance

across contexts reduces as we increase branch history and value history length. However,

while at 1024 bits of branch history the variance is nine values, it is significantly higher

at 250 values for a value history of 16 64-bit values. This provides evidence that branch

history achieves better localization. When we combine branch and value histories, we

observe that the localization achieved is almost double that of the using branch history

alone. This is shown in Figure 24.

As contexts may have low variance but may never repeat, rendering them

unpredictable, we measure the percentage of contexts that show variance = 1 and repeat a

set number of times. Setting this threshold to 4, we observe that the predictability of

 45

value contexts is higher than branch contexts. This is expected as long branch contexts do

not repeat as often, and hence incur a training time penalty. We observe that combining

branch and value histories yields the best results even at short history lengths. This is

illustrated in Figure 25. It is to be noted that we combine contexts by using equal number

of bits of branch history and value history, where values are 64-bit each.

In conjunction with the qualitative analysis in the Section 4.1, we see that the

most predictable values are obtained in contexts using a short value history (1 value) that

handles local divergence augmented with branch history (64 bits) to handle global

divergence. We design a PC-localized predictor that employs 64-bit branch history and a

single value history to make predictions and term it the Relevant Context-based Predictor

(RCP). Figure 26 shows the speedup obtained by employing RCP that combines 64 bits

of branch history and a single value history, by varying the confidence threshold. We

observe a geomean speedup of 21% over a baseline that performs no value prediction

across the 135 benchmarks.

After combining a simple stride predictor with RCP, we compare it against the

state-of-the-art value prediction mechanisms. We perform better than the schemes that

solely employ branch histories (EVES) and value histories (DFCM++) owing to our

better divergence handling capabilities, achieving a geomean speedup of 38% over no

value prediction. Table 2 shows the comparison between the three predictors. We observe

that we lose some coverage as compared to the EVES-DFCM++ hybrid at the expense of

better accuracy.

 46

Table 2: Comparing our predictor against EVES, DFCM++

 EVES DFCM++ RCP

Accuracy (%) 99.91 99.78 99.88

Coverage (%) 44.26 59.57 50.66

Speedup (%) 34 24 38

Figure 22: Variance of branch contexts

 47

Figure 23: Variance of value contexts

Figure 24: Variance upon combining contexts

 48

Figure 25: Predictability of values for different contexts

Figure 26: Speedup over no VP, obtained using {64-bit branch hist, 1 value} context

 49

Chapter 6: Conclusion

6.1 LIMITATIONS AND FUTURE WORK

We identify that some aspects of our work need a more thorough investigation. In

this work, we do not model the impact of limited predictor structure sizes or the impact of

mechanisms that off-load metadata to the memory hierarchy. We anticipate the

performance to be impacted by limited predictor size and a negative interaction with the

caches, although an intelligent management policy that involves the value predictor, I-

TLB and the cache replacement policies should be able to make the appropriate tradeoffs.

Such policies have been implemented for irregular prefetchers [8].

Further, we do not model memory subsystem optimizations such as prefetchers,

which help hide the latency of memory accesses to some extent. We anticipate that some

of the performance gained by value prediction would be lost due to prefetching, but our

initial experiments show that by perfectly predicting all the L1 cache hits and the ALU

operations, we can achieve up to 200% speedup over a baseline that performs no value

prediction.

A key insight provided by EVES [2] and DFCM++ [1] is that the use of an array

of context lengths helps training time and hence coverage. While we improve coverage in

our predictor through the use of a single combination of branch and value contexts, a

more sophisticated design would involve a combination of different history lengths of

branch and value histories in the same predictor. We anticipate further improvements in

predictor performance through such a mechanism. Moreover, as correlation or local

divergence is handled by the use of value history, it would be interesting to see the

benefits of not tracking backward branches in the branch history. This mechanism may

further reduce the number of branch history bits required and improve training time.

 50

Finally, there exist several limitations due to the choice of our simulation

infrastructure. The CVP [9] infrastructure is limited to using only the Qualcomm-

provided traces. The speedups obtained by the predictors on other benchmark suites were

not evaluated in this work. Further, the infrastructure assumes fixed microarchitectural

parameters related to caches and memory disambiguation, which limits analysis. An

implementation in a cycle-accurate environment such as gem5 can provide much more

flexibility in design and analysis, and provide insights on overall system performance.

6.2 CONCLUSION OF THE THESIS

General-purpose computing has seen a slowdown in improvements as Dennard

scaling and Moore’s law are fading or almost gone. While multicore computing provides

an attractive alternative to achieve improved performance for some categories of

workloads, it is limited by the sequential portion of the workloads, as stated by Amdahl’s

Law [11]. Moreover, some kinds of workloads cannot be parallelized. As a result, single-

core performance is still a performance bottleneck, and value prediction is targeted at a

wide category of users who run sequential and partially parallelizable workloads.

However, implementing value prediction is bound to have high area and energy

overheads unless intelligent methods to manage the predictor state are introduced. To this

end, we introduce an enhanced version of an irregular prefetcher ISB, which is capable of

off-loading the predictor metadata to the memory hierarchy. This allows a small fraction

of the predictor state to be cached in the processor core.

Existing value predictors either employ branch history contexts [2] or value

history contexts [1] to make predictions. We demonstrate that control flow divergence in

programs necessitates the use of very long histories to achieve high accuracy. As such,

existing approaches slow down the training time of the predictor and hence achieve low

 51

coverage. We identify that branch and value histories provide mutualistic advantages to a

value predictor in terms of handling control flow divergence, and therefore we combine

them in a novel predictor design called the Relevant Context-based Predictor (RCP). Our

predictor maintains high accuracy while improving training time, achieving an average of

38% speedup over a baseline that performs no value prediction on the Qualcomm-

provided traces.

 52

BIBLIOGRAPHY

[1] N. Deshmukh, S. Verma, P. Agrawal, P. Biswabandan and M. Cahudhuri,

"DFCM++: Augmenting DFCM with Early Update and Data Dependence-

driven Value Estimation," in CVP-1 1st Championship Value Prediction, Los

Angeles, USA, 2018.

[2] A. Seznec, "Exploring Value Prediction with the EVES predictor," in CVP-1

1st Championship Value Prediction, Los Angeles, USA, 2018.

[3] "CVP," 2018. [Online]. Available: https://www.microarch.org/cvp1/.

[4] G. Moore, "Cramming more components onto integrated circuits," in

Proceeding of the IEEE, Jan 1998.

[5] G. Amdahl, "Validity of the single processor approach to achieving large scale

computing capabilities," in Proceedings of the Spring Joint Computer

Conference, 1967.

[6] Y. Sazeides and J. Smith, "The predictability of data values," in In Proceedings

of the International Symposium on Microarchitecture (MICRO), 1997.

[7] B. Goeman, H. Vandierendonck and K. Bosschere, "Differential FCM:

Increasing Value Prediction Accuracy by Improving Table Usage Efficiency,"

in Proc. Seventh Int’l Symp. High Performance Computer Architecture, 2001.

[8] A. Jain and C. Lin, "Linearizing Irregular Memory Accesses for Improves

Correlated Prefetching," in MICRO, 2013.

 53

[9] A. Seznec and P. Michaud, "A case for (partially) TAgged GEometric history

length branch prediction," in Journal of Instuction Level Parallelism, Feb.

2006.

[10] "Championship Branch Prediction," Held in conjunction with the Internation

Symposium in Computer Architecture, 2014. [Online]. Available:

http://www.jilp.org/cbp2014/program.html.

[11] Standard Performance Evaluation Corporation. CPU2006..

[12] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V.

Reddi and K. Hazelwood, "Pin: Building Customized Program Analysis Tools

with Dynamic Instrumentation," in Proceedings of the 2005 ACM SIGPLAN

Conference on Programming Language Design and Implementation, New

York, NY, USA, 2005.

[13] M. Lipasti and J. Shen, " Exceeding the dataflow limit via value prediction," in

In Proceedings of the annual International Symposium on Microarchitecture

(MICRO), 1996.

[14] F. Gabbay and A. Mendelson, "Speculative Execution Based on Value

Prediction," in Technion TR-1080, 1996.

[15] A. Perais and A. Seznec, "Practical data value speculation for future high-end

processors," in In Proceedings of the International Symposium on High

Performance Computer Architecture, 2014.

 54

[16] R. Sheikh, H. Cain and R. Damodaran, "Load Value Prediction via Path-based

Address Prediction: Avoiding Mispredictions Due to Conflicting Stores.," in In

Proceedings of the International Symposium on Microarchitecture (MICRO),

2017.

[17] K. Nesbit and J. Smith, "Data Cache Prefetching Using a Global History

Buffer," in HPCA, 2004.

[18] A. Subramanian, Advancing value prediction, Master's Thesis, University of

Texas, Austin, 2019.

