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Abstract 

 

Techniques for Advancing Value Prediction 

 

Pawan Balakrishna Joshi, M.S.E. 

The University of Texas at Austin, 2019 

 

Supervisor:  Calvin Lin 

 

Sequential performance is still an issue in computing. While some prediction 

mechanisms such as branch prediction and prefetching have been widely adopted in 

modern, general-purpose microprocessors, others such as value prediction have not been 

accepted due to their high area and misprediction overheads. True data dependences form 

a major bottleneck in sequential performance and value prediction can be employed to 

speculatively resolve these dependences. Accurate predictors [1] [2] have been shown to 

provide performance benefits, albeit requiring a large predictor state. We argue that a first 

step in making value prediction practical is to manage the metadata associated with the 

predictor effectively. Inspired by irregular prefetchers that store their metadata in off-chip 

memory, we propose the use of an improved prefetching mechanism for value prediction 

that not only provides performance benefits but also a means to off-load predictor state to 

the memory hierarchy. We show an average of 5.3% IPC improvements across a set of 

Qualcomm-provided traces [3].  



 vi 

The result of a static instruction can be predicted by mapping runtime context 

information to the value produced by the instruction. To that end, existing value 

predictors either use branch history contexts [2] or value history contexts [1] to make 

predictions. As long histories are needed to achieve high accuracy, these approaches slow 

down the training time of the predictor, negatively impacting coverage.  We identify that 

branch and value histories both provide distinct advantages to a value predictor, and 

therefore combine them in a novel predictor design called the Relevant Context-based 

Predictor (RCP) that maintains high accuracy while improving training time. We show an 

average of 38% speedup over a baseline that performs no value prediction on the 

Qualcomm-provided traces, compared to 34% by the previous best.   
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Chapter 1: Introduction 

 Computers are pervasive and vital and in the present day: from mobile devices to 

connect to the internet to the forecasting of complex phenomenon such as the weather, 

they are used to perform a broad range of tasks. With the amount of data being collected 

to be processed increasing, there is a sustained need for advances in high-performance 

computers. Over the last five decades, advances in the performance of processors have 

come from two key directions. First, as processors are clocked machines, increasing the 

frequency of the clock allowed the computations to be done faster. However, as the 

dynamic power consumption of the processor circuit increases with the frequency, 

today’s processors are designed using a maximum clock frequency of 4-5 GHz.  Second, 

as device technology shrank every few years from micrometer to nanometer sizes, an 

increasing number of transistors could be crammed onto the same semiconductor 

substrate [4]. This allowed the designers to implement complex processor designs that 

make use of pipelined, superscalar and out-of-order execution with branch prediction to 

improve single core performance. However, as single core performance gave diminishing 

returns for the number of transistors expended, the paradigm of multicore computing was 

introduced to increase the performance of a processor by parallelly executing pieces of 

the program. However, the multicore computing approach has fundamental limitations.   

1.1 THE PROBLEM: DATA DEPENDENCES LIMIT SEQUENTIAL PERFORMANCE 

Not all programs are amenable to be computed in parallel across multiple cores 

due to the nature of the algorithm and such programs would see no improvement in 
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performance on using more than one core. Further, even parallelizable programs have a 

sequential portion of the algorithm. The sequential fraction of the program limits the 

maximum performance attainable through using multiple cores, as stated by Amdahl’s 

Law [5]. For instance, if the sequential fraction of the program is 20% and the rest can be 

readily parallelized, a maximum speedup of 5x can be achieved even on using an infinite 

number of cores. Therefore, sequential performance remains a key bottleneck in 

improving performance of modern processors, multicore or otherwise. 

 While modern processors employ techniques such as branch prediction and out-

of-order execution to improve sequential performance, they strictly obey data 

dependences between instructions. Specifically, they stall execution of the dependent 

chain of instructions until the producer is executed. This is a major bottleneck in modern 

processors, especially given the slow main memory latency scaling - load instructions 

that miss the cache hierarchy can experience hundreds of processor cycles of latency. It is 

therefore imperative that we employ a technique to resolve data dependences in 

programs.  

1.2 MOTIVATION FOR THE WORK 

The technique of value prediction resolves data dependences in hardware through 

predicting the result of the producer instruction and speculatively executing the 

dependent instructions. Several approaches exist to predict the value of an instruction. 

While EVES [2] uses instruction PC and branch information to make predictions, the 

FCM-style predictors [1], [6], [7] use PC and PC-local value history information.  

Unfortunately, previous work suffers from two problems. First, existing predictors 

demand a large on-chip storage - they need tens to hundreds of kilobytes to store their 

metadata [3]. This severely impedes the adoption of value prediction in commercial 
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designs. We argue that the predictor metadata can be stored in a distributed manner in the 

memory hierarchy, while caching only the important predictor metadata in the predictor 

structure. Second, even for unlimited-sized predictors, existing algorithms do not 

efficiently learn the values produced by instructions. As programs exhibit control flow 

divergence, existing predictors resort to either using long branch or long value histories to 

accurately predict values. While providing better accuracy, the use of long context 

lengths adversely affects training time and hence coverage, which is the fraction of values 

predicted among all the eligible values. Figure 1 and Figure 2 show the poor coverage of 

the predictors that use longer branch [2] and value histories [1] respectively, measured 

using the Championship Value Prediction (CVP) infrastructure [3].  This poor coverage 

limits the speedup obtained by the predictor.  

 

Figure 1: Slower training with increasing branch history length 
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Figure 2: Slower training with increasing value history length 

1.3 KEY CONTRIBUTIONS 

In this thesis, we make two key contributions to advance the field of value 

prediction:  

• To manage the high area requirements of a value predictor,  we propose 

the use of an enhanced version of the irregular prefetching algorithm, ISB 

[8], that is capable of off-loading the predictor metadata to the memory 

hierarchy.  

• We propose the use of relevant contexts to handle divergence in programs, 

obviating the need to use either long branch or long value histories1. By 

clearly identifying the advantages provided by both branch and value 

histories, we combine them in a novel predictor design called the Relevant 

Context-based Predictor (RCP) that maintains accuracy while improving 

training time, and hence coverage.  

                                                 
1 Some of the conclusions on improved divergence handling capabilities using a combination of context 

information were arrived at independently by Subramanian [18] in their thesis as well. While this work 

derives them based on identifying the distinct benefits of value and branch histories in handling different 

types of divergence, their thesis derives its conclusions from an analysis of the gaps in performance 

between realistic and oracle divergence handling capabilities.  
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1.4 ORGANIZATION OF THE THESIS 

 The rest of this thesis is organized as follows: Chapter 2 introduces the 

architecture of a modern, general-purpose microprocessor; Chapter 3 motivates value 

prediction and describes previous work in the field; Chapter 4 describes the mechanism 

to off-load predictor metadata using the prefetcher ISB for value prediction and several 

enhancements made; Chapter 5 describes the handling of divergence in programs by 

combining branch and value contexts; Chapter 6 enlists the future directions and 

concludes the thesis.  
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Chapter 2:  Architecture of Modern General-Purpose Microprocessors 

Modern microprocessors are programmable machines that allow the user to 

provide software instructions to be executed to achieve the desired computation. The 

function a microprocessor performs is controlled by the binary inputs provided to the 

digital logic circuits within it. For example, to simply add two integers the arithmetic and 

logic unit present in the microprocessor needs to be provided the two input operands, a 

destination to store the result and a unique binary code for indicating that the operation to 

be performed is an addition. To facilitate programming, the microprocessor provides an 

interface to the user known as the Instruction Set Architecture or ISA. The ISA specifies 

the set of instructions and the set of registers that can be used by instructions to read 

operands and write their results. Typically, each instruction has an opcode, a set of source 

operands and a set of destination operands.  

 A computer program is a sequence of instructions specified to achieve a desired 

computation. When executing a program, the microprocessor’s state that is visible to the 

programmer is called architectural state, or software-visible state. This includes the 

values of the registers defined by the ISA, including the program counter (PC) which 

indicates the address of the instruction in memory, and the state of the memory. During 

execution, the instructions in the program read the architectural state as input, perform 

computation and write the updated architectural state back, one after the other.  This 

implies that the architectural state is atomically updated by the instructions in program 

order. This sequential model of execution is termed the von Neumann architecture. 

The underlying hardware that executes the instructions, called the 

microarchitecture, may have state that is not software-visible. We call this state the 

speculative state.  
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2.1 IN-ORDER PIPELINING 

Program execution on a microprocessor follows the following general flow. The 

instruction is fetched from memory using the address given by the current program 

counter, and the program counter is then updated to point to the next sequential 

instruction in the program. This constitutes the Fetch Stage. The instruction is then 

decoded into source register ids, destination register ids and opcodes, and the control 

signals to drive the functional units are generated. This forms the Decode Stage. In the 

next stage called Execute, the processor reads the source operands from the register file 

and uses one or more of its functional units to perform the computation. In case of 

instructions that access memory, such as load and store instructions, the address 

computation of the load/store is done in this stage. In the Memory stage of the 

computation memory is accessed by the instruction to read data. Finally, in the Writeback 

stage the instruction commits the result to the register file.  

The five stages described above form the basis for instruction execution. As 

processors are clocked machines, one can simply design a processor that executes one 

instruction every clock cycle. In this single-cycle microarchitecture, the duration of the  

 

 

 

 

Figure 3: Single-cycle Microarchitecture 
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Figure 4: Pipelined execution 

clock cycle is specified such that it is long enough to accommodate all the five stages of 

computation for the slowest instruction, as shown in Figure 3.  

The problem with the single-cycle microarchitecture is that at any given moment 

in time, the logic of only one of the five the different stages of computation is being 

utilized. This is inefficient as four-fifths of the resources are unused in every stage. To 

resolve the inefficiency of this design, a multi-cycle microarchitecture with pipelining 

was introduced. In a pipelined microarchitecture, an instruction is executed over multiple 

cycles with each stage of computation consuming one cycle to complete. Further, once a 

stage finishes its computation on one instruction, it is free to process the next instruction 

in the program in the next cycle. This allows for efficient utilization of all stages in every 

cycle of execution.  Figure 4 illustrates this concept, where once the pipeline is full, one 

instruction is processed every cycle.  

Contrary to the single-cycle design, the clock cycle need not be as long as the 

slowest instruction but instead needs to be only as long as the slowest stage of the 

pipeline. This allows for higher frequency clocks and better performance. For example, 
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assuming each stage of computation takes one cycle to execute, the single-cycle 

microarchitecture would finish one instruction in every 5 clock cycles. However, the 

pipelined design would finish one instruction every cycle once the pipeline is full.  

It is to be noted that the clock duration in the pipelined architecture can be made 

shorter by increasing the number of stages in the pipeline. However, the dynamic power 

consumption of the microprocessor increases with the clock frequency. Due to this 

reason, current microprocessors have clocks that are at 4-5 GHz, and it is impractical to 

increase the frequency of the clock further.  

2.2 MEMORY HIERARCHY 

Load and store instructions access the memory for reading or writing data. As 

memory accesses on average take longer than computation, in an in-order pipeline as 

described in the previous section, the memory stage is typically the slowest stage and 

determines the clock cycle. Therefore, to achieve high performance, memory accesses 

need to be low-latency operations.   

A slow memory technology such as DRAM is cheap and dense, while fast 

memory such as SRAM consumes more chip area and is expensive. To achieve a good 

balance between storage capacity and access latency in a modern processor, the memory  
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Figure 5: Memory System in a Processor 

subsystem consists of a hierarchy of storage in which the faster, higher levels store a 

subset of the slower, global memory, as depicted in Figure 5.  

In a memory hierarchy, typically the lower level of memory is the main memory 

or DRAM, with the higher levels or caches being SRAM. Apart from being built with 

slower memory technology (DRAM), the main memory is often located physically off-

chip from the processor. It is thus useful to note that while an access to the smallest level 

of the cache hierarchy takes a few processor cycles, an access to the main memory may 

take several hundred cycles, stalling the processor in the process. When a load/store 

instruction requests to read/write an address in memory, data is brought into the fast 

storage if absent. This is termed a cache miss.  As the cache has low capacity, the old 
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data is evicted to the lower level storage once fresh data is brought in. An algorithm 

called the cache replacement policy decides which data to evict from the caches. For 

example, the Least Recently Used (LRU) policy evicts the cache line which has been 

used the furthest in the past by the processor.   

Programs access large amounts of memory relative to the size of the caches. For 

high performance, it is necessary that in the average case, most of the memory accesses 

are made to the higher-level caches rather than to the slow main memory. The primary 

reason caches provide performance benefit despite having very low storage capacity is 

that typical programs exhibit a property known as locality. Temporal locality is seen 

when programs access the same memory address repeatedly over time, allowing the 

cache to serve the memory request after the data is loaded from the main memory. 

Another form of locality exhibited is spatial locality, in that programs access data that is 

close by the data currently accessed. In conclusion, the exploitation of locality by caches 

reduces some of the impact of the slow nature of memory accesses on performance.  

2.3 DEPENDENCE HANDLING IN PIPELINING 

2.3.1 Control Dependences 

Branch instructions can modify the flow of the program such that the next PC is 

not the same as the instruction immediately after the current PC. Branch addresses are 

typically determined only in the Execute stage of the pipeline. This presents a problem 

for the pipelined microarchitecture as the Fetch stage needs to access the memory with 

the address of the next instruction (next PC), which may not be ready as this address is 

yet to be generated by the Execute stage. This scenario where the address of the next 

instruction is unknown at Fetch is called a control dependence. As a result, one may 

naturally expect to stall the Fetch stage by the fetch-to-execute delay for branch 
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instructions, losing performance. In deeply pipelined modern processors, this delay may 

be as long as 10-15 cycles and control dependences become a key performance 

bottleneck.  

To resolve control dependences, modern processors use branch predictors. These 

predictors learn the direction and target of branch instructions dynamically and predict 

the address of the next instruction. The Fetch stage can then proceed even while the 

branch executes. However, as the prediction is not guaranteed to be correct, the pipeline 

must be reset upon detecting a mismatch between the predicted instruction address and 

the result of the branch instruction. Modern branch predictors typically achieve high 

accuracies in the range of 90-99% [9], [10]. 

2.3.2 Data Dependences 

An instruction in a program may be dependent on the output of a previous 

instruction. For example, consider the instruction sequence below, with R* representing 

the register id. 

I1: R1 = R0 + R2 

I2: R3 = R1 * R2 

I3: R1 = R4 – R0 

 As the value of register R1 produced by instruction I1 is required by I2, the 

instruction I2 is said to have a true data dependence or a Read-After-Write (RAW) 

dependence on instruction I1. These dependences convey the semantics of any sequential 

program, and hence are to be obeyed. In an in-order pipeline, such dependences cause the 

dependent instruction and all subsequent instructions to stall until the producer 

instruction completes execution.  
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Further, as instruction I3 writes the value of R1 after the instruction I2 has read it, 

I3 is said to have a Write-After-Read (WAR) or an anti-dependence on I2. If I3 were to 

write R1 before I2 read it, the program would execute incorrectly. Similarly, the 

instruction I3 is said to have a Write-After-Write (WAW) dependence on I1, as they write 

to the same register R1. If instruction I3 were to write to R1 before I1, the result of I3 

would be lost.  

It is to be noted that WAR and WAW dependences only exist because of 

insufficient architectural registers. For instance, if the instruction I3 could write its result 

into another register id, there would be no WAR dependence with I2. As a result, these 

dependences are often called fake dependences.  As an in-order pipeline only executes 

instructions in program order, fake data dependences are not an issue.   

2.4 OUT-OF-ORDER EXECUTION 

In the previous sections, an in-order pipeline was described as an efficient way to 

parallelize instruction processing while still maintaining sequential program semantics. 

Even though WAR and WAW data dependences are not an issue, true data dependences 

cause the pipeline to stall. This is particularly a bottleneck when the dependent 

instruction is waiting for the result of a load instruction that misses all the levels of the 

cache hierarchy, potentially stalling the pipeline for hundreds of processor cycles. The 

problem with the in-order pipeline is that it stalls even though there may be several 

instructions in the program downstream that are independent of the stalled instruction. 

Such independent instruction streams should ideally be executed while the stalled 

instruction waits for its operands. The presence of such independent streams of 

instructions in a program is called Instruction Level Parallelism or ILP.  
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To exploit ILP and reduce the impact of RAW dependences on performance, 

instructions can be executed out of program order. Such a processor is called an Out-of-

Order processor. During program execution, the processor uncovers instructions that are 

independent of one another and executes them in parallel. This approach results in the 

processor not stalling entirely when a RAW dependence is observed. To achieve this, the 

processor fills a window of instructions in a hardware buffer called the Instruction Queue 

(IQ), and schedules the instructions whose operands are ready, while those instructions 

stalled by RAW dependences wait in the IQ. This results in instructions executing in 

parallel and out of program order, while still maintaining the true data dependences 

between dependent instructions.  However, to maintain sequential program semantics, the 

processor still updates the architectural state in program order. It does so using a structure 

called the reorder buffer (ROB).   

In summary, an Out-of-Order processor pipeline hides the latency caused by 

RAW dependences by exploiting ILP. It uses an in-order front-end that fetches 

instructions in program order and feeds them into the out-of-order execution unit. The 

instructions then update the architectural state in an in-order manner.  

While out-of-order execution hides the latency of true data dependences through 

executing independent instructions in the instruction stream, it strictly enforces RAW 

dependences and stalls the dependent instructions in the pipeline until their producers 

finish execution. Hence, the single-thread performance of an out-of-order processor is 

limited by true data dependences. This work revisits the technique of Value Prediction as 

a way to improve performance by breaking the RAW dependences. At its core, value 

prediction aims to predict the result of the producer instruction in a RAW dependence so 

that the consumer can be speculatively executed. Upon a correct prediction the 
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dependence is broken, allowing the dependent instruction to execute concurrently with 

the producer, and higher sequential performance is achieved. 
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Chapter 3:  Value Prediction 

3.1 VALUE PREDICTION FOR SINGLE-THREAD PERFORMANCE 

 

Figure 6: Value prediction to improve performance 

As introduced in the previous chapter, value prediction is a speculative execution 

technique to resolve RAW dependences. For example, consider the sequential execution 

of three dependent instructions as illustrated in Figure 6. Without value prediction, each 

instruction would have to wait for its producers result. However, if we can accurately 

predict the result of an instruction, say I0, then instruction I1 can proceed, thus improving 

the ILP of the program and hence performance.  

Predicting values only improves performance if the producer instruction’s result is 

not ready when the dependent instruction arrives. For that to occur, the average  
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Figure 7: RAW dependence distances 

RAW dependence distance between the producer and the consumer needs to be smaller 

than the pipeline depth from fetch to execute; otherwise the producer’s result can be 

forwarded to the dependent instruction. We motivate the use of value prediction by 

measuring the RAW dependence distances in two SPEC2006 [11] benchmarks, bzip2 and 

gcc, using an Intel PIN [12] simulator. As is evident from Figure 7, nearly 70% of 

dependent instructions occur within 8 instructions of the producer, which is likely before 

the producer has executed.   

Further, evaluation of perfect value prediction on the Championship Value 

Prediction (CVP) framework [3] using a set of 130 Qualcomm-provided traces provides 

an average speedup of 245% over a baseline that performs no value prediction. Although 

absolute numbers are dependent on the simulation environment, this result motivates the 

use of value prediction for improving single-threaded performance.   

Just as the technique of caching data in a processor benefits from the spatial and 

temporal locality of memory addresses, the predictability of data values is made possible 

due to the locality of values. This observation was first described by Lipasti et al. [13] 

and Gabbay and Mendelson [14]. The key insight that enables value prediction is that 
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even though data in registers can span a large space of 264 values, dynamic instructions 

tend to produce values that remain constant, exhibit regular strided patterns, or exhibit 

repeated irregular patterns.  

For example: 

Constants: 100, 100, 100, 100, 100 ...  

Strided: 2, 4, 6, 8, 10 ...  

Correlated: 17, 41, 8, 140, 17, 41, 8, 140 ... 

To predict these patterns, Sazeides and Smith [6] define two types of value 

predictors: computation-based predictors and context-based predictors, which we 

describe in the next section.  

3.2 VALUE PREDICTION MECHANISMS 

Several algorithms have been proposed to predict the value produced by an 

instruction. The efficacy of a value predictor is measured using three metrics:  

1. Accuracy – the ratio of the number of correct predictions made to the total 

number of predictions made.  

2. Coverage – the ratio of the number of predictions made to the total 

number of values eligible for prediction in a given program.  

3. Speedup – the percentage increase in IPC of the processor over a baseline 

that performs no value prediction. Speedup is a function of the accuracy 

and the coverage achieved by the predictor, and the class of instructions 

predicted.   
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3.2.1 Computation-based Predictors 

A computation-based value predictor applies a computation or a function to the 

result of the previous instance(s) of the instruction to generate the prediction for  

 

 

Figure 8: Last value predictor 

the current instance. The last value predictor [13], the stride predictor [14] and the value 

estimator [1] are examples of computation-based predictors.  

3.2.1.1 Last Value Predictor 

As proposed by Lipasti et al. [13], a last value predictor predicts the value of the 

current instance of an instruction to be the same as the value produced by the previous 

instance. This predictor applies the identity function on the previously observed value 

and uses it as the next prediction. This prediction strategy, albeit very simple, is useful 

when the instruction produces constant values. For example, a significant portion of 

instructions in a program tend to repeatedly access variables and memory locations that 

are not modified once set, and hence are runtime constants.   
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The predictor is depicted in Figure 8. It is a structure that contains the lower bits 

of the instruction PC as a tag, along with the last seen value. Typically, the predictor 

entry also consists of a saturating counter used as a confidence mechanism. The predictor 

is accessed using the lower bits of the instruction PC as index, and if the tag matches, the  

 

 

Figure 9: Stride predictor 

 

Figure 10: Updating the stride predictor 

stored value is used as a prediction, given it has high enough confidence. If the tag does 

not match or the confidence is not high enough, no prediction is made. When an 

instruction retires, it updates its result into the table at the appropriate location based on 

its PC. The counter is incremented on a correct prediction and reset otherwise.   
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3.2.1.2 Stride Predictor 

Apart from constants, instructions in programs also tend to produce values that 

exhibit a regular strided pattern. For instance, when traversing an array, the addresses 

accessed by a program are separated by a constant stride. Similarly, the loop index 

variable of a for-loop typically exhibits a regular strided pattern. To predict strided 

patterns, Gabbay and Mendelson [14] introduced a stride predictor, as shown in Figure 9.  

A stride is computed by the difference in the values between consecutive 

instances of an instruction. To make a prediction for the current instance, the result of the 

previous instance is added to the stride. To update the predictor, when the instruction 

retires, its value is stored as the last value, while the difference in the value of the current 

instance and the previous instance is stored as the new stride. The update mechanism is 

depicted in Figure 10. 

 In contrast to the last value predictor described in the previous section, the stride 

predictor can predict values that it has never seen before by simply computing them 

through addition. 

3.2.2 Context-based Predictors 

Contrarily to computation-based predictors that compute new values based on 

previous ones, context-based predictors learn the values produced by a certain program 

context in the past and apply it in the future when the same context is observed. Program 

contexts can include values produced by the same instruction, value produced by other 

instructions, global branch outcome history, etc. These form a key class of predictors as 

not all instructions tend to produce values that are constant or exhibit strided patterns.  

For instance, programs commonly traverse linked lists and graphs, and the values 

produced by the pointer accesses in such programs tend to be irregular and not amenable 
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to computation-based predictors. However, if the programs traverse the same data 

structures repeatedly, a context-based predictor would be able to learn the values 

produced on each instance of some context and apply it when the same context repeats. 

We describe several context-based predictors in the sections below.  

 

Figure 11: Finite Context Method 

3.2.2.1 Finite Context Method (FCM) Predictor 

Introduced by Sazeides and Smith [6], FCM predictors use a two-level strategy to 

predict values. The first-level table, called the Value History Table (VHT) stores the last 

n-values produced by a static instruction. It is indexed by the instruction PC and is 

tagged. The second-level table, called the Value Prediction Table (VPT) is indexed by a 

hash of the last-n values stored in the VHT. This stores the actual value to be used for 

prediction and a confidence counter mechanism. As described by Sazeides and Smith, an 

order-n FCM tracks the last-n values in the VHT and is depicted in Figure 11. The update 

mechanism involves updating the value history in the VHT and the actual value produced 

by the instruction in the VPT. 

While being versatile to predict constants and strided value patterns, the FCM 

predictor is particularly useful at predicting correlated value patterns. For example, 
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consider traversing a four-node linked list repeatedly. For accessing the value of a node 

in a linked list, a pointer access is involved. It initiates a load of the pointer to the node 

which generates the node address. This is followed by a load of the address which 

generates the value of the node. The node addresses would show a repeating correlated 

pattern A1-A2-A3-A4 in each iteration, while the node values would present the sequence 

V1-V2-V3-V4. As the addresses and values can take arbitrary values, a stride predictor 

would not be able to predict the address and value sequences.  However, using a history 

of the value produced by the load in an order-1 FCM, one can predict the next value. In 

this case, learning that A3 is followed by A2 is sufficient to predict A3 every time we 

observe A2.  

3.2.2.2 Differential FCM 

Proposed by Goeman et al. [7] differential FCM is a modification on the original 

FCM predictor that tracks the differences in the local values of an instruction rather than 

the values themselves. The VPT is indexed using the hash of these deltas, and a delta is 

predicted to be used. The final value prediction is simply a sum of the predicted delta and 

the last value of the instruction stored in a separate table.  This makes the predictor a lot 

more space efficient as constant patterns which used to take up several distinct VPT 

entries in the original FCM design now would take up exactly one entry, as all constant 

patterns have a delta history of zero. Further, DFCM trains faster than the FCM predictor 

in case of constant patterns. This is because the predicted delta of zero holds true for 

numerous PCs that exhibit constant values, and it is sufficient to learn the zero-delta for 

one PC and apply the same to other PCs.  
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The update mechanism is similar to the FCM predictor, but deltas are computed 

upon instruction retirement and appropriately stored in the VHT and VPT, instead of 

values.   

3.2.2.3 DFCM++ 

For prediction mechanisms such as FCM and DFCM that use a PC-local history 

of values, it is imperative to make predictions using a value history that is not stale. In 

programs that have tight for-loops, it may often occur that the previous instance of an 

instruction may be in-flight when the prediction for the current instance is required. This 

would mean that the Value History Table would not be updated with the correct value 

history and using a stale history would likely cause a misprediction. Unless a specialized 

mechanism is used to address this issue, the predictor would simply have to give up 

predicting instructions that have several in-flight instances.   

Deshmukh et al. [1] propose the use of speculative delta histories that are updated 

using the predictions made by the DFCM predictor. In the first-level table of the DFCM 

predictor they maintain a commit-time history which is always correct, but also augment 

it with a predict-time history which is updated speculatively. During prediction, the 

predict-time delta history is used. Upon instruction retirement, the commit time history is 

updated with the correct deltas.   

3.2.2.4 VTAGE and EVES 

Perais and Seznec [15] address the problem of predicting inflight instructions 

differently than DFCM++ in that they do not use local value histories in their predictor. 

They use global branch history information along with the program counter of an 

instruction to index into a prediction table, and hence convert the problem of predicting 
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correlated values into constant values per branch context. This allows them to not store 

speculative histories and yet make predictions on constant, strided and correlated patterns 

of values. Intuitively, the predictor would require branch history lengths proportional to 

the length of the correlated value streams to remove aliasing. This is described in detail in 

Section 4.1.1.   

 While long branch histories provide the capability of predicting long streams of 

correlated values, invariably using long histories even for constant PCs and short value 

streams would slow down the training time of the predictor. The length of the branch 

history used hence presents a tradeoff between accuracy and training time of the 

predictor.  To exploit this tradeoff, VTAGE uses an array of branch history lengths in a 

geometric progression. This allows VTAGE to use the appropriate branch history length 

to predict different classes of instructions.  

Seznec further enhances VTAGE by making it more space efficient and augments 

it with a stride predictor in a hybrid predictor design called EVES [2].  

3.2.3 Store-Load Value Predictors 

 As discussed in the previous section, loads form an important class of instructions 

for value prediction due to their potentially higher latency than arithmetic instructions. 

An important problem in load-value prediction is that of conflicting stores. For example, 

if an instruction sequence looks like the following:  

Load X – Store X – Load X 

This exhibits with two dynamic instances of the same load with an interleaving store to 

the same memory location X, then the store would modify the learnt value of the load. 

However, as the store modifies a memory location in the data cache, it is possible to 

predict the value of the subsequent load using the value in the data cache. Sheikh et al 
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[16] propose the use of address prediction of the subsequent load to query the data cache. 

If the data is found, they then use the value to predict the second load.  

3.3 PREDICTION VALIDATION AND RECOVERY  

With several algorithms described to predict the value of an instruction, we now 

discuss some microarchitectural design tradeoffs in incorporating value prediction in a 

microprocessor.  

Validation and misprediction recovery mechanisms are key design choices to be 

made in implementing value prediction. Validation can be done either at execution time, 

when the result of the operation is ready, or at commit time, when the instruction that 

produced the value becomes the oldest instruction in the reorder buffer (ROB). The trade-

offs associated with this choice are clear: commit time validation necessarily has a higher 

misprediction penalty as there can be a multi-cycle latency between the value being ready 

at execute and the instruction reaching the top of the ROB. Hence, from a purely 

performance standpoint validation at execution is the more attractive option. However, 

validation at execution requires checkpointing the architectural state, additional ports to 

the physical register file and comparators at the output of functional units to compare the 

result with the predicted value, and hence has much higher hardware complexity.  

Upon validation, a misprediction recovery mechanism is to be initiated for every 

incorrect prediction that was consumed. There are two alternatives for recovery: pipeline 

squashing and selective re-issue. The former method involves flushing the pipeline state 

and re-executing from the instruction which consumed the incorrect value. However, it is 

not necessary to squash instructions that are independent of the producer instruction. 

Therefore, alternatively a selective re-issue mechanism can search through the instruction 

queue for dependent instructions which consumed the incorrect value, and selectively re-
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issues them. Undoubtedly, the latter method is immensely complex in hardware. Despite 

that, large performance improvements over pipeline squashing are not guaranteed as the 

re-issue is on the critical path of the recovery mechanism. Hence, the two methods can be 

expected to perform comparably in the average case. 

3.4 CHALLENGES IN VALUE PREDICTION 

As discussed in Chapter 1, control and data dependences impact the performance 

of a pipelined processor. While branch prediction has been widely adopted by modern 

microprocessors to resolve control dependences, there is no known implementation of 

value prediction in any commercial processor. This is because value prediction presents 

several significant challenges that either do not exist for conventional branch prediction 

or are less drastic. Firstly, instead of a binary taken or not taken decision, data can span a 

much larger range of values, making the state required for accurate predictions 

prohibitive. As the value predictor is typically stored in the processor core, the amount of 

predictor metadata that can be allocated on the chip is very limited (few kilobytes).  

Secondly, virtually every instruction depends on the result of some preceding 

instruction. This makes misprediction detection techniques such as validation at execute 

implausible due to the amount of checkpoint state required. Value prediction must instead 

rely on validation at commit, incurring a drastically higher misprediction penalty. As a 

result, there is a large asymmetry between the small average benefit of correctly 

predicting a value and the large misprediction penalty, requiring that value predictors be 

very accurate, typically over 99%. 

By observing computation and context-based predictors, two key points emerge:  

1. Although context-based predictors can predict the values of a wider class of 

instructions, such predictors are more complex than simple predictors such as last 
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value predictors or stride predictors as they must store previously observed 

contexts. Hence, they inevitably incur a larger area overhead. Typically, the 

longer the context to be stored, the larger is the area overhead.  

2. The quality of the context is crucial for the predictor to learn the patterns and 

apply it. While longer contexts intuitively can make more accurate predictions, 

they slow down the training of the predictor as the predictor observes the same 

context less frequently to learn from it. This negatively affects the coverage of the 

predictor.  

In the following Chapters, we address some of these issues of managing metadata 

and learning patterns accurately without sacrificing training speed.  
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Chapter 4:  Managing Predictor Metadata 

As described in the previous chapter, solutions that use the Finite Context Method 

(FCM) [1], [6], [7], and EVES [2] have been proposed to learn and predict streams of 

values that exhibit constant, strided and correlated patterns. However, the metadata 

storage overhead required by today’s value predictors is a major challenge in their 

implementation. As shown in prior work [7], FCM-based methods in particular require 

hundreds of kilobytes of storage to be competitive. Inspired by research in prefetchers 

[17], [8] that store their prediction metadata in off-chip memory, we evaluate an irregular 

prefetcher called the Irregular Stream Buffer (ISB) [8], that is capable of learning 

correlated streams of arbitrary length in the context of value prediction. We qualitatively 

argue that ISB’s management of metadata is a key insight that future value predictors 

should employ to achieve a practical implementation.  

Previous work [8] , [17] in the irregular prefetching community has demonstrated 

success in storing the metadata in the off-chip memory as a way to balance the amount of 

on-chip state required and the impact on memory performance. Similar to the idea used 

by prefetchers, we propose that one way of managing the metadata of PC-indexed value 

predictors is by tracking the I-TLB misses and evicting the cached metadata for the PCs 

whose pages are not TLB-resident. However, current value predictors store their values in 

large monolithic tables that are ill-suited to be off-loaded to the memory hierarchy. For 

example, in an FCM-based predictor, it is only possible to evict entries that correspond to 

a particular PC from the level-1 value history table. Evicting level-2 prediction table 

entries that correspond to a complete stream of values is impossible, as these values are 

scattered throughout the level-2 table due to the hash of the value history, and no 

information about their location is stored.  
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Figure 12: Structural address space [8] 

On the contrary, the Irregular Stream Buffer (ISB) prefetcher intelligently stores 

its metadata such that large contiguous streams of values per PC are in consecutive 

locations in the predictor structure, and hence can be efficiently offloaded to the off-chip 

memory. Therefore, we evaluate the ISB prefetcher in the context of value prediction and 

discuss mechanisms for reducing the on-chip area overhead of future value predictors. 

This solution allows for a larger effective distributed predictor structure, potentially 

improving value prediction performance. While it is evident that such a solution trades 

off increased pressure on the memory hierarchy for the benefit of value prediction, it is to 

be noted that no prior work in value prediction allows for making this tradeoff, 

completely leaving a design space unexplored. 

4.1 IRREGULAR STREAM BUFFER (ISB) FOR VALUE PREDICTION 

  This section describes the Irregular Stream Buffer (ISB) [8] by first briefly 

summarizing the concept of structural address space as illustrated in Figure 12, and the 

prefetcher design. We then describe the several enhancements made to adapt the 
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prefetcher to value prediction. We leave out the detailed description of the address 

mapping mechanisms used by ISB for brevity.  

4.1.1 Irregular Stream Buffer  

Unlike prior methods where the correlated streams of values associated with a 

particular PC can be scattered throughout the predictor structure, ISB uses a layer of 

indirection to map a stream of correlated values to a special address space known as the 

structural address space, where consecutive entries are at consecutive locations of the 

address space. Figure 12 shows that the stream X, Y, Z due to PC2, which is initially in 

the physical address space, is stored such that the complete stream is mapped to 

consecutive locations in the structural address space. This enables ISB to efficiently fetch 

streams of values associated with a PC from the memory hierarchy and evict complete 

streams out to memory when needed. 

The training strategy employed by ISB is similar to a first-order FCM: it 

determines pairs of values per PC that have high correlation, say A and B, and maps the 

two values to consecutive structural address locations, say S and S+1, in the predictor 

data structure. It maintains a confidence counter for the entry S+1, which is incremented 

if B is seen to follow A repeatedly, and decremented if a different value C is seen after A. 

While making a prediction for a trigger value A, the structural mapping S for A is 

determined, which naturally provides S+1 as the next value in the stream. Then, a reverse 

mapping from structure address S+1 to physical address B is used upon determining 

which the value B is predicted. The reader should note that any arbitrarily long stream of 

values can be mapped to consecutive locations in the structural address space. B.  
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4.1.2 Enhancements to ISB 

 Evaluating vanilla-ISB in the context of value prediction by training ISB on the 

stream of values produced made it evident that the implementation of ISB as described by 

Jain and Lin [8] exhibited aliasing between PCs. This was due to the common data 

structure used for storing all structural addresses, which caused severe destructive 

interference between different program counters. To resolve this issue, we implemented a 

stricter PC-localized version of ISB named local-ISB which completely eliminated any 

such interference by separating per-PC streams in the structural address space. Though 

destructive interference should be limited, constructive interference from different PCs 

should ideally be allowed to exist as it helps the predictor train faster. In the next 

enhancement attempted, we only separated PCs into different spaces in the predictor 

structure if they happened to show destructive aliasing. We name this version lazy-ISB, 

as it lazily separates PCs that interfere. Intuitively, this method is expected to tradeoff 

some accuracy to provide superior coverage.  

The problem of value prediction is considerably more challenging than 

prefetching due to several reasons. Most importantly, the penalties of a misprediction in a 

prefetching environment, cache pollution and bandwidth overhead, typically impact the 

performance far less than a recovery from a value misprediction. Thus, prefetching can 

afford to be less conservative than value prediction. To improve the accuracy of ISB in 

the context of value prediction, we employed strict confidence thresholds for predicting 

correlated pairs of values (127 consecutive appearances) and drastically reduced 

confidence upon a misprediction by dividing the confidence by 4. Finally, we observe 

that the main drawback of value context-based predictors such as ISB [8] and FCM [6] as 

compared to solutions such as VTAGE [15] is that the prediction depends on the value 

history being up to date. For instance, to make a prediction in a stream of values A, B, 
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C..., the value B must be updated in the predictor to make the prediction C. To extract 

higher performance from our predictor, we speculatively update the value history with 

the predicted value before the instruction retires if we are confident of the prediction, 

enabling us to make back-to-back predictions. We call this version spec-ISB.  

4.2 EVALUATION 

We evaluate our ideas in an out-of-order pipeline using the Championship Value 

Prediction (CVP) [3] infrastructure, which is a simulation infrastructure provided by 

Qualcomm as part of a year-round value prediction competition. Qualcomm has provided 

135 traces, each with 30M dynamic instructions, to be used for evaluating a value 

predictor submission. The traces are separated into Integer, Server and Floating Point 

(FP) traces. Table 1 describes the baseline microarchitectural details used for our 

experiments. We also implement an Intel PIN [12] -based simulator for testing our 

predictor implementation and use microbenchmarks alongside SPEC2006 benchmarks. 

Table 1: Baseline microarchitecture for simulation 

Instruction Window Size 256 

Fetch Width 16 

Branch Prediction 2-level predictor (2-bit PHT entry, 16-bit 

global history) 

Memory Disambiguation Perfect 

L1 cache 32 KB, 4-way, 64B, 2c 

L2 cache 1 MB, 8-way, 64B, 12c 

L3 cache 8 MB, 16-way, 64B, 60c 

Main memory 150c fixed latency 
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Figure 13: ISB variants, accuracy and coverage 

4.3 RESULTS 

We implement the vanilla-ISB prefetcher for value prediction in the CVP [3] 

simulator and an Intel PIN-based simulator, and thoroughly test the implementation 

against several microbenchmarks that involve array, linked list and tree traversals. We 

observe that while ISB performs well on the array and linked list microbenchmarks, it 

does not handle diverging value streams that occur in tree traversal well. This is expected 

as diverging streams effectively invalidate the previous correlations learnt by ISB.  

On the Qualcomm traces, we observe that the accuracy of the predictor, shown in 

Figure 13, is not sufficient for obtaining any performance benefits. In fact, we see a 55% 

slowdown as compared to the baseline due to the high number of mispredictions. We 

identify that most mispredictions can be attributed to destructive aliasing between PCs. 

As a result, our local-ISB enhancement more than doubles the accuracy of the predictor. 

To further improve the accuracy, we incorporate confidence mechanisms that require 

pairs of values to appear for several times greater than a confidence threshold to be  
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Figure 14: ISB variants, speedup 

considered for prediction. Through sensitivity studies, we find that a threshold of 127 is 

optimal for our implementation.  

The lazy-ISB variant which was designed to selectively remove destructive 

aliasing and maintain constructive aliasing, provides improved coverage. However, the 

accuracy is reduced. As a result, the lazy-ISB variant does not see any improvement in 

speedup. We then evaluate the speculative update enhancement in the local-ISB variant 

and observe that the accuracy of the predictor improves to 95.32%, while providing an 

average speedup of 5.32% across benchmarks, which indicates that early update solves a 

key problem associated with context-based predictors. This variant of local-ISB, with 

speculative update and confidence thresholds improves the performance of vanilla-ISB 

by more than 60% as shown in Figure 14 and improves the performance of the system by 

5.3% over the baseline of no value prediction.  

Finally, we conduct an oracle value prediction study for the final local-ISB 

variant and observe 15.57% speedup by predicting all the values that would have been 
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predicted by local-ISB correctly, indicating that the performance achieved is still limited 

by accuracy. On our PIN-based simulator we analyze the mispredictions made by local-

ISB on SPEC 2006 benchmarks, and as expected, we observe that divergence in the 

stream of values due to branch instructions causes most of the remaining mispredictions. 

We discuss potential future directions for improving accuracy in the following section.  

4.4 DISCUSSION:  

As is evident from the results of our experiments on using ISB for value 

prediction, the accuracy requirements for value prediction are extremely high, and our 

current version of ISB (Speculative local-ISB with confidence mechanisms) falls short 

due to poor handling of divergence of value streams. We observe that divergence is 

dependent on the control flow of the program and can be predicted by taking the branch 

direction history into account. We would expect the accuracy to improve by identifying 

and storing divergent values in streams and predicting them based on control flow. While 

FCM handles divergence by using a long value history, it incurs a severe area overhead 

and loses the ability to offload the metadata. This motivates us to design a predictor that 

uses branch history for handling divergence, but a short value history for tackling 

correlated value streams while keeping area overheads manageable.  
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Chapter 5: Handling Divergence  

5.1 UNDERSTANDING CONTROL FLOW IN PROGRAMS 

Branch instructions change the flow of control in programs. As discussed in the 

previous chapter, control flow affects the predictability of data values and hence should 

be an important consideration when designing a value predictor. Using simple examples, 

we discuss how branch instructions affect the value produced by a given static 

instruction. We then qualitatively analyze how existing predictors counter the effects of 

control flow divergence, where in a learnt pattern of values is disturbed through the 

dynamic changes in branch direction.  

Consider the example shown in Figure 15 below. It depicts a traversal of a linked 

list, which is a common occurrence in programs. The n values produced by the 

instruction at program counter pc1 are illustrated as A0, A1 … An-1. As the value produced 

by instruction pc1 potentially changes in every iteration of the loop, we denote this form 

of value variability as local divergence.   

Now consider a more complex example as depicted in Figure 16. We observe that 

this scenario commonly occurs during traversal of tree and graph data structures, where 

the value of a static instruction may diverge from the observed correlated stream A0, A1, 

… An-1 depending on the path of the graph chosen. As the values generated by the 

instruction depends on not just the “loop iteration” but also on the control flow path 

chosen to reach a particular node, we denote this form of value variability global 

divergence.  After abstractly defining the two forms of divergence observed in programs, 

we now discuss how existing value predictors handle them.   
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Figure 15: Linked list traversal: correlated value stream 

 

 

  

 

Figure 16: Graph traversal, local and global divergence 
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Figure 17: Prediction using branch and value contexts 

5.1.1 Divergence Handling using Branch Contexts 

Similar to Figure 15 above, consider traversing a four-node linked list repeatedly. 

To correctly learn the values generated by the instruction pc1 using just branch 

information, a method such as VTAGE [15] looks at the outcome history of the branch br 

in the program. Given a branch history register of (at least) four bits, we can isolate the 

values produced by pc1 such that no two values have the same branch history 

information, as elucidated in Figure 17 on the left.  The reader may convince themselves 

that this indeed is the case.  

While this allows a predictor that uses branch contexts to accurately predict 

streams of values, the stored length of the branch history limits the maximum predictable 

length of the value stream before aliasing of histories starts affecting accuracy. In 

particular, for a n-long value stream as shown in Figure 15, a minimum branch history 

length of n is required. As value streams can be of arbitrary length, using branch contexts 

presents a problem in handling local divergence.  



 40 

On the other hand, as global divergence occurs solely due to the path of control 

flow chosen, it is natural to use branch history information to resolve this form of 

divergence.  

5.1.2 Divergence Handling using Value Contexts 

Let us consider the linked-list example in Figure 15 again. An intuitive way of 

predicting the next value in the stream is through learning pairwise correlations. For 

instance, an FCM [6] predictor would learn that Ai+1 always follows Ai except at the last 

value of the steam. This is shown in Figure 17.  

While this scheme of learning using value contexts works very well in handling 

local divergence, it is ill-suited to handle global divergence. With a single value history, 

multiple values may follow any given value. For instance, while traversing a graph such 

as in Figure 16, values B or C0 may follow A1. As no control flow information is 

available, an FCM-like predictor substitutes it with longer value history, which acts a 

proxy for the control flow path taken.  

We argue that this is inherently an inefficient way of dealing with global 

divergence as potentially a very long value history is required to substitute branch 

history. Consider the graph traversal example in Figure 16 again. If the two values B and 

C0 are on equally likely paths of a branch, a value history of twice the length of the entire 

stream is required to accurately predict which value follows A1. However, a single bit of 

relevant branch history would suffice to predict the global divergence.  

While the reader may validly argue that using appropriately long branch or value 

histories would resolve all the issues of handling divergence, a predictor that employs 

long context information is bound to be limited by the training time, and hence have poor 

coverage. Moreover, the area overheads of using long contexts makes it a poor design 
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decision. This dichotomy between value history being efficient at handing local 

divergence and branch history being efficient at handling global divergence necessitates a 

design that uses the relevant context information to make predictions.  

5.2 COMBINING EVES AND DFCM++:  

As described in the previous section, we hypothesize that combining branch and 

value contexts may provide benefit in accuracy and training time. As existing predictors 

such as EVES [2] employ only branch histories and DFCM++ [1] employs only value 

histories, we conduct an experiment that combines the two predictors in an oracle 

manner. We make the following observations:  

1. Perfectly combining the two predictors gives us better coverage than 

DFCM++ which implies that branch history helps add additional 

predictions that are not learnt by value history alone. Figure 18 below 

shows that coverage increases 4% w.r.t DFCM++. On the other hand, 

value history helps increase coverage of EVES by 20%, implying that 

value contexts handle local divergence better.   

2. The combined predictor gives better accuracy than DFCM++, correcting 

the inaccuracies due to global divergence in DFCM++. This is depicted in 

Figure 19.  

3. As seen in  Figure 20, the combined predictor provides a speedup of 3.7% 

over EVES, while improving DFCM++ by over 13%.  

4. On average, out of all the correct predictions made, both predictors predict 

correctly 63% of the time, while DFCM++ predicts correctly 25% of the 

time when EVES does not predict/mispredicts. EVES predicts correctly 

5% of the time when DFCM++ misses to predict. This shows that the two 
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predictors make complementary predictions. This is illustrated in Figure 

21.  

 

Figure 18: Coverage on combining predictors 

 

 

Figure 19: Accuracy on combining predictors 
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 Figure 20: Speedup on combining predictors 

 

 

Figure 21: Correct prediction by each component of hybrid 



 44 

5.3 EMPLOYING RELEVANT CONTEXT INFORMATION:  THE RELEVANT CONTEXT-

BASED PREDICTOR (RCP) 

As performance of a value predictor is contingent on the accuracy of predictions 

and coverage, appropriate context information is key for a high-performance value 

predictor. A context may include PC information, branch history and/or value history. To 

choose the best combination of value and branch histories as part of the context, we 

define two metrics that quantify the quality of a context. First, we measure the variance 

of a particular context, defined as the number of unique data values seen by a context. 

Intuitively, predicting a context that has lower variance is expected to be more accurate. 

Variance is a measure of the localization capability of the context. It goes down with 

richer context information and is equal to 1 for a context whose value does not vary. 

 We further measure the predictability of data values observed with a context, 

which is defined as the percentage of all contexts that have a variance = 1 and repeat at 

least a set number of times. We then employ this information to choose the best 

combination of value and branch contexts.  

As seen in  Figure 22 and Figure 23 below, we observe that average variance 

across contexts reduces as we increase branch history and value history length. However, 

while at 1024 bits of branch history the variance is nine values, it is significantly higher 

at 250 values for a value history of 16 64-bit values. This provides evidence that branch 

history achieves better localization. When we combine branch and value histories, we 

observe that the localization achieved is almost double that of the using branch history 

alone. This is shown in Figure 24.  

As contexts may have low variance but may never repeat, rendering them 

unpredictable, we measure the percentage of contexts that show variance = 1 and repeat a 

set number of times. Setting this threshold to 4, we observe that the predictability of 
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value contexts is higher than branch contexts. This is expected as long branch contexts do 

not repeat as often, and hence incur a training time penalty. We observe that combining 

branch and value histories yields the best results even at short history lengths. This is 

illustrated in Figure 25. It is to be noted that we combine contexts by using equal number 

of bits of branch history and value history, where values are 64-bit each.  

In conjunction with the qualitative analysis in the Section 4.1, we see that the 

most predictable values are obtained in contexts using a short value history (1 value) that 

handles local divergence augmented with branch history (64 bits) to handle global 

divergence. We design a PC-localized predictor that employs 64-bit branch history and a 

single value history to make predictions and term it the Relevant Context-based Predictor 

(RCP). Figure 26 shows the speedup obtained by employing RCP that combines 64 bits 

of branch history and a single value history, by varying the confidence threshold. We 

observe a geomean speedup of 21% over a baseline that performs no value prediction 

across the 135 benchmarks.  

After combining a simple stride predictor with RCP, we compare it against the 

state-of-the-art value prediction mechanisms. We perform better than the schemes that 

solely employ branch histories (EVES) and value histories (DFCM++) owing to our 

better divergence handling capabilities, achieving a geomean speedup of 38% over no 

value prediction. Table 2 shows the comparison between the three predictors. We observe 

that we lose some coverage as compared to the EVES-DFCM++ hybrid at the expense of 

better accuracy.  
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Table 2: Comparing our predictor against EVES, DFCM++ 

 EVES DFCM++ RCP 

Accuracy (%) 99.91 99.78 99.88 

Coverage (%) 44.26 59.57 50.66 

Speedup (%) 34 24 38 

 

 

 

Figure 22: Variance of branch contexts 
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Figure 23: Variance of value contexts 

 

 

Figure 24: Variance upon combining contexts 
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Figure 25: Predictability of values for different contexts 

 

 

 

Figure 26: Speedup over no VP, obtained using {64-bit branch hist, 1 value} context 
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Chapter 6: Conclusion  

6.1 LIMITATIONS AND FUTURE WORK 

We identify that some aspects of our work need a more thorough investigation. In 

this work, we do not model the impact of limited predictor structure sizes or the impact of 

mechanisms that off-load metadata to the memory hierarchy. We anticipate the 

performance to be impacted by limited predictor size and a negative interaction with the 

caches, although an intelligent management policy that involves the value predictor, I-

TLB and the cache replacement policies should be able to make the appropriate tradeoffs. 

Such policies have been implemented for irregular prefetchers [8].  

Further, we do not model memory subsystem optimizations such as prefetchers, 

which help hide the latency of memory accesses to some extent. We anticipate that some 

of the performance gained by value prediction would be lost due to prefetching, but our 

initial experiments show that by perfectly predicting all the L1 cache hits and the ALU 

operations, we can achieve up to 200% speedup over a baseline that performs no value 

prediction.  

A key insight provided by EVES [2] and DFCM++ [1] is that the use of an array 

of context lengths helps training time and hence coverage. While we improve coverage in 

our predictor through the use of a single combination of branch and value contexts, a 

more sophisticated design would involve a combination of different history lengths of 

branch and value histories in the same predictor. We anticipate further improvements in 

predictor performance through such a mechanism. Moreover, as correlation or local 

divergence is handled by the use of value history, it would be interesting to see the 

benefits of not tracking backward branches in the branch history. This mechanism may 

further reduce the number of branch history bits required and improve training time.  
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Finally, there exist several limitations due to the choice of our simulation 

infrastructure. The CVP [9] infrastructure is limited to using only the Qualcomm-

provided traces. The speedups obtained by the predictors on other benchmark suites were 

not evaluated in this work. Further, the infrastructure assumes fixed microarchitectural 

parameters related to caches and memory disambiguation, which limits analysis. An 

implementation in a cycle-accurate environment such as gem5 can provide much more 

flexibility in design and analysis, and provide insights on overall system performance. 

6.2 CONCLUSION OF THE THESIS 

General-purpose computing has seen a slowdown in improvements as Dennard 

scaling and Moore’s law are fading or almost gone. While multicore computing provides 

an attractive alternative to achieve improved performance for some categories of 

workloads, it is limited by the sequential portion of the workloads, as stated by Amdahl’s 

Law [11]. Moreover, some kinds of workloads cannot be parallelized. As a result, single-

core performance is still a performance bottleneck, and value prediction is targeted at a 

wide category of users who run sequential and partially parallelizable workloads.   

However, implementing value prediction is bound to have high area and energy 

overheads unless intelligent methods to manage the predictor state are introduced. To this 

end, we introduce an enhanced version of an irregular prefetcher ISB, which is capable of 

off-loading the predictor metadata to the memory hierarchy. This allows a small fraction 

of the predictor state to be cached in the processor core.    

Existing value predictors either employ branch history contexts [2] or value 

history contexts [1] to make predictions. We demonstrate that control flow divergence in 

programs necessitates the use of very long histories to achieve high accuracy. As such, 

existing approaches slow down the training time of the predictor and hence achieve low 
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coverage.  We identify that branch and value histories provide mutualistic advantages to a 

value predictor in terms of handling control flow divergence, and therefore we combine 

them in a novel predictor design called the Relevant Context-based Predictor (RCP). Our 

predictor maintains high accuracy while improving training time, achieving an average of 

38% speedup over a baseline that performs no value prediction on the Qualcomm-

provided traces.  
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