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Abstract 

 As a parameter within an information processing system, receptive field (RF) size should 

be tuned to maximize information transmission per unit of energy expended. We hypothesize 

that tuning RF size to maximize the amount of mutual information per RF would result in more 

efficient statistical learning due to the increased predictability of patterns in inputs. We argue 

that convolutional neural networks (CNNs) perform statistical learning and are information 

processing systems governed by the principles of information theory and are thus adequate 

models of statistical learning in systems like the brain. In this experiment we generate sets of 

inputs with high mutual information in different spatial resolutions, then use supervised CNNs 

with various receptive field sizes to classify these inputs. Our results show that RF sizes that 

increase mutual information per RF generally result in more efficient statistical learning. In light 

of these results, we contend that RF sizes that increase mutual information per RF could also be 

advantageous for neural circuits in the brain that perform statistical learning, and thus 

maximizing mutual information could have been a factor in the evolution of receptive field size.  
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Introduction 

 The brain is fundamentally an information processing system. Its primary task is to make 

sense of sensory input data within the context of other data1 to produce relevant actions and form 

relevant associations. As with any information processing system, the brain must operate within 

a set of constraints dictated by the laws of information theory. This means it should work to 

maximize information encoding efficiency. But as a part of a biological system, the brain is also 

subject to constraints dictated by the laws of evolution, meaning it should work to decrease the 

metabolic cost of its operations. Therefore, natural selection should favor a brain that transmits a 

maximized amount of information at a high signal-to-noise ratio2 in a way that expends the least 

amount of energy possible.   

There is abundant evidence to suggest that the brain does indeed work to maximize the 

amount of information gained from each Joule of energy expended. This idea is termed the 

Efficient Metabolic Principle by Stone (2018). Stone outlines several physiological parameters in 

the visual system that are tuned to transmit the most information at a low metabolic cost. These 

parameters include the coding of red, green, and blue cone photorecptor outputs in retinal 

ganglion cells (Buchsbaum & Gottchalk, 1983; Mather, 2006), the spacing of ganglion cell 

receptive fields (Borghuis et. al., 2008; Balasubramanian & Sterling, 2009; Vincent et. al., 2003), 

temporal receptive field structures (Srinivasan, Laughlin, & Dubs, 1982;), and the on/off 

concentric circle spatial structure of receptive fields (Srinivasan et. al., 1982; Hosoya, Baccus, & 

Meister, 2005). Each of these parameters has been tuned in such a way as to increase information 

encoding per unit of energy expended. 

                                                
1 Such as previous sensory input data and pre-existing associations.  
2 Signal-to-Noise Ratio compares the level of the desired signal to the level of background noise. A 

whisper to a friend in a noisy crowd has a low signal-to-noise ratio, while a shout to a friend in a silent 

room has a high signal-to-noise ratio. 
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The Efficient Metabolic Principle suggests that when physiological constraints allow it, more 

information per Joule of energy expended is always preferable. Stone (2018) also adds an 

important qualifier - that coding efficiency seems to be somewhat secondary to metabolic 

efficiency (i.e., information is maximized for a given metabolic cost, but metabolic efficiency is 

not often sacrificed for information coding efficiency).  

Another physiological parameter of the visual system (and other systems) in the nervous 

system is the size of receptive fields (RFs). It is unclear exactly why RFs are the size that they 

are but given the evidence above it seems likely that their size is governed by metabolic and 

information-based constraints. Thus, this experiment seeks to investigate whether the size of RFs 

are optimized to increase mutual information (MI) per RF and thus increase metabolic efficiency 

and aid in statistical learning. We will use convolutional artificial neural networks (CNNs), a 

type of artificial neural network (ANN), as a model for statistical learning and information 

processing in general in the brain. 

 

Information Theory and Mutual Information 

 

Information theory is the mathematical representation of concepts, parameters, and rules 

governing the transmission of messages through communication systems (Martignon, 2001). In a 

more abstract sense, concepts from information theory can be applied to any system in which a 

message is transmitted through encoding and decoding. The message can be anything and the 

communication system through which it passes can be realized in many forms (ex. telephone 

wires, computers, the brain). Formally conceptualized by Claude Shannon (1948), Information 

Theory has since been expanded and applied to diverse fields of study, especially in cognitive 

science where it has been applied extensively to areas such as the study of consciousness 
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(Tononi, 2017), cognitive control (Fan, 2014), and cognitive linguistics (Hale, 2003). In this 

investigation we will use the concept of MI from Information Theory to conceptualize statistical 

learning as it relates to RF size in the processing of sensory information. 

Information Theory dictates that the standard unit of measurement of information is a bit. 

Essentially, one bit of information is equal to the uncertainty resolved from a binary decision 

with equally likely outcomes, regardless of the system. This means that in a binary branching 

path diagram (Figure 1) it takes one bit of information to specify a path from one node to 

another, as long as the probability of branching left and right are equal. In order to express 

directions to one specific leaf node from the most interior node in Figure 1, it would require 4 

binary decisions and therefore 4 bits of information. By standardizing the measurement of 

information in this way, any system that transmits information can be compared quantitatively. 

For example, the result of flipping a fair coin carries less information than the result of picking a 

number out of a hat containing numbers 1-8. This is because the number of yes/no questions (i.e. 

binary decisions) needed to specify a number between 1 and 8 (inclusive) is greater than the 

number needed to specify a binary. In this case, it would take 3 bits to specify the number3, and 

only 1 to specify the result of the coin flip.  

 

                                                
3 1) Is the number less than or equal to 4? – No. 2) Is the number less than or equal to 6? – Yes. 3) Is the 

number 5? – No. As a result of these 3 yes/no questions the number must be 6. 
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Figure 1 shows a binary branching path diagram in which each binary path choice is represented by a 0 

or a 1. The blue and green paths show the binary directions required to get a specific node. The blue path 

indicates 2 bits of information while the green path requires 4. 

 

In most practical applications, the probabilities of outcomes are not perfectly equal. In 

these situations, information is more easily measured using the formula: 

 

 

 

where H is information in bits, n is the number of different event possibilities, and p is the 

probability of event i occurring. This formula allows for the calculation of the information from 

many events with varying probabilities. One example of this would be the information gained 

from finding out the outcome of the total of the numbers on two fair dice. Because there are 11 

possible outcomes and some values have different probabilities of occurring than others (e.g., 2 

will be rolled about 3% of the time, while 7 will be rolled about 17% of the time), calculating the 

information gained from rolling the dice is not as easy as in Figure 1. Using the formula above 

(where pi is the probability of rolling a certain number) we find that about 3.31 bits of 

information are gained from rolling 2 dice. Notice that if the probabilities of each outcome were 
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equal, the information content would be greater (3.46). This agrees with our intuition that if 

events are equally likely, we resolve more uncertainty (and thus gain more information) through 

finding the outcome of the event compared with a case in which there is a high probability of one 

event occurring and all other events are low probability. In the latter case, we already have a 

good idea of what the outcome of the event will be, while in the former case we are completely 

uncertain, thus more information is gained from finding out the outcome. The ability to formally 

measure information through this formula was a breakthrough that spurred progress in a diverse 

range of fields, such as cryptography (Shannon, 1949) and data compression (Ziv & Lempel, 

1977). 

MI is a concept in Information Theory that deals with the relationship between two 

random variables that are sampled simultaneously. Ideas that are closely related to this concept 

are co-occurrence and correlation between two variables. The mathematical formulation of MI 

for two discrete variables4 is:  

 

 

 

Where I(X;Y) is the MI between discrete variables X and Y, p(x,y) is the joint probability5 of X 

and Y, p(x) and p(y) are the marginal probability6 distribution functions of X and Y respectively, 

and the log function is base 2.  

One simple example of two discrete variables with high MI is the position of a light 

switch and whether the light bulb it’s connected to is producing light. Clearly, there is usually 

                                                
4 MI is measured differently for discrete and continuous variables, but for the purposes of this 

investigation only discrete variables will be relevant. 
5 Frequency that a specific combination of X and Y occurs in the set of sampled combinations. 
6 Frequency that a specific X value occurs in the set of sampled X values. 
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high MI between these variables because one variable reliably indicates the other and vice-versa. 

Figure 2 takes us through calculating the MI between these two variables. Clearly, the predictive 

relationship is not perfect, as can be seen in the 10th row of the leftmost table. In the 10th row we 

observe the light switch in the up position, but the light is not on. Perhaps the bulb has burned 

out. This row of data does not conform to the expected pattern formed by the other data, and thus 

it makes us less sure of the stable relationship between the two variables. Because of this, these 

variables do not achieve maximal MI. The MI between these two variables based on the 

observed samples is calculated in Figure 2 by determining the relevant marginal probabilities and 

joint probabilities, then plugging these values into the MI formula.  

 

Figure 2 The table on the upper right shows the marginal and joint probabilities of the two variables 

examined in the table on the left. The blue cells demonstrate how the marginal probability of light switch 

position 1 was calculated (4 instances / 10 total observations = 0.4). The green highlighted cells show 

how the joint probability of light switch position 0 and light bulb state 0 was calculated (1 instance / 10 
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total observations = 0.1). The table on the bottom right shows the relevant probabilities plugged into the 

MI formula for each possible combination of the two variables in question. It also shows the result of 

each MI calculation and their sum, which is the total amount of MI between the two variables based on 

the observed data. The gray arrows demonstrate how the probabilities are plugged into the formula for 

one possible combination of the two variables (switch = 0, bulb = 0). 

 

 

 A final MI of 0.61 in Figure 2 means that if you know the state of one variable, you have 

gained 0.61 bits of information about the state of the other variable. If the light switch was in the 

down position in row 10, the predictive relationship would be perfect, and the MI would be equal 

to 1 bit. Recall that 1 bit is the amount of information required to disambiguate between two 

equally likely variables. Therefore, 0.61 bits is not enough information to be sure of the state of 

the other variable, although it does tell us something about what the other variable is likely to be.  

 

A Brief Introduction to Convolutional Neural Networks  

 In this study we use CNNs as a model for statistical learning. CNNs are a type of ANN 

that are most commonly used for image classification and object recognition. They work by 

taking multiple “filters”, or groups of connection weights, and moving these filters sequentially 

through the pixels of the image all the while summing the product of the connection weights and 

pixel values to get an activation value that is passed on to the next layer in the network (Figure 

3). The number of filters used, the size of the filters, and how many pixels the filter moves for 

each new calculation of activation are parameters in the network. The size of the filters is called 

the receptive field, while the number of pixels the filters slide over for each calculation is called 

the stride. Once each filter (each with different connection weights) has passed through the 

whole image, all the output matrices (known as feature maps) get passed on to be the inputs to 

the next layer of the network.  
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Figure 3 The matrix on the left represents the input image pixel values. The blue box outlines the 

receptive field size (2x2) as it performs the first convolution. The connection weights (not shown) are all 

0.5 and are multiplied by each pixel, then summed to get the output result shown in the matrix on the 

right. The green box outlines the receptive field after it has shifted over the image to perform its second 

convolution (stride size is 1). After the filter has moved over the whole image, another filter with different 

connection weights will restart the process.  

 

 

 Generally, after some number of convolutional layers, the feature maps are flattened into 

one long 1 dimensional array of values and fed into dense layers (Figure 4), the last of which 

classifies the image. These layers are what common ANNs are generally made out of and consist 

of some number of nodes, each of which takes into account each input value to produce an 

output value. The output of each node is determined by summing the products of each input 

value and its corresponding connection weight. Then, this value is put through a function (called 

an activation function) to determine the output of the node.  
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Figure 4 The flattened array of values from the feature maps (left) are fed into fully connected dense 

layers then to a dense layer using a softmax activation function for final classification. 

 

In order to train a CNN, all connection weights start at random values between 0 and 1 

(most commonly), then image input values are run through the layers of the network one at a 

time. For each image, the network’s classification guess is compared to the true class of the 

image and some error metric is calculated (this metric is called loss). After some number of 

image inputs (called the batch size), a calculation called backpropagation is applied to change the 

connection weights in all layers of the network so as to try to decrease the error (loss). In a 

successful network, loss will decrease throughout training and the accuracy of classification will 

increase. A more comprehensive overview of CNNs, as well as more information about different 

activation functions and loss functions can be found in Rawat (2017).  

 

 

Parallels Between Artificial Neural Networks and Biological Neural Circuits 

 

Statistical Learning 

Humans are thought to learn (at least in part) through internalizing statistical regularities in their 

environment in a process called statistical learning. If things (objects, object-properties, sounds, 
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words, syllables, emotions, etc.) occur frequently in close spatial or temporal proximity, they 

become associated with each other. After reliable associations are formed, we often use them to 

predict things about our environment, such as the fact that if you see part of a fox poking out 

from behind a tree (Figure 3), you are likely to predict that the rest of the fox is behind the tree. 

This is because in a large number of previous exposures to foxes and other animals, heads tend to 

co-occur spatially with necks, bodies, legs, etc. This process of internalizing statistical 

regularities is thought to be a domain general mechanism of learning, likely occurring in the 

context of language learning (Abla, Katahira, & Okanoya, 2008; Cunillera et. al., 2006, 

McNealy, Mazziotta, & Dapretto, 2006), visual learning (Turk-Browne, Scholl, Chun & 

Johnson, 2009; Roser et. al., 2011), as well as auditory learning (McNealy, Mazziotta, & 

Dapretto, 2006).  

 

 

 

 

 

 

 

Figure 3 Shows a fox behind a tree. Although part of it is occluded by the tree, previous spatial 

associations between animals’ heads and bodies cause us to predict that the fox’s body extends behind the 

tree even though we cannot see it. 

 

 

 One of the most basic functions of artificial neural networks (ANNs) is to perform 

statistical learning – that is, to extract statistical regularities in input data (Bishop, 1999; 
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Ghahramani, 2015; Liu, 2018). In supervised learning7, the task of an ANN is most often to find 

the patterns of features that consistently co-occur in inputs that are in the same categories. CNNs 

function similarly – throughout training each filter (which can be conceptualized as a set of 

connection weights) gradually adjusts to become attuned to a commonly occurring spatial pattern 

in the image set. Then, throughout training inputs that consistently express similar patterns of 

these features are labeled as a different category than other inputs that express a different pattern 

of features. ANNs, including CNNs, are simply iteratively adjusting connection weights 

according to the properties of the inputs presented to them, thereby learning through extracting 

statistical regularities. So, although they may do it differently at the mechanistic level, both 

brains and ANNs perform statistical learning.  

  

Biological and Information Theoretic Comparison 

 

 ANNs and human neural circuits are both fundamentally information processing systems 

and thus follow the same information theoretic principles. Because a primary task of the brain 

and its circuitry is to encode and decode information about the world, it can be described in 

information theoretic terms. For example, sensory systems measure changes in energy in the 

world then encode them as patterned action potentials in sensory neurons. Then this information 

is decoded (usually in the brain) by extracting features in the changing energy patterns. In this 

way, information about the world is encoded and decoded by the human nervous system.  

ANNs, and more specifically CNNs, can be thought of in similar terms. ANNs receive 

inputs in their input layer, encode these inputs into activation patterns across nodes in the hidden 

                                                
7 Supervised learning refers to iteratively adjusting parameters (connection weights) in an ANN based on 

the difference between the network’s output and the correct output. Therefore, in supervised learning, 

having correctly labeled input data is necessary to train the network.  
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layer(s), then the output layer decodes these activation patterns into some meaningful 

representation of the inputs. Similarly, CNNs8 receive two dimensional inputs and encode these 

inputs into 2D activation patterns by multiplying groups of input values with many different 

filters. These 2D activations are then flattened into a 1D vector which is fed into a standard ANN 

which then decodes the activation patterns into some meaningful representation of the inputs (ex. 

An output vector of [1,0] may represent that the input image contains a cat while [0,1] represents 

that it does not). Thus, both ANNs (and CNNs by extension) and biological neural circuits 

function by encoding and decoding information.  

It has been made clear in previous sections that the brain operates according to principles 

of information theory, but what about ANNs? Here we seek to show that efficient information 

processing principles are fundamental in ANNs. We do this by attempting to show that 1) ANNs 

explicitly optimized for maximal information transference function efficiently in their tasks and 

2) ANNs that are not explicitly optimized for maximal information transference by using 

information theory inspired learning rules are nevertheless successful and are actually indirectly 

optimized to process information efficiently. 

Firstly, backpropagation methods that maximize MI between target output and ANN 

output result in successful and efficient learning (Santos, Alexandre, & de Sá, 2004; Silva, de Sá, 

& Alexandre, 2005). Additionally, learning rules that maximize the information transference in a 

network have been shown to perform redundancy reduction, effectively separating statistically 

independent components of their inputs and thus increasing information transference (Bell & 

Sejnowski, 1995). Similarly, Bichsel & Seitz (1989) show that setting connection weights in an 

                                                
8 Here and throughout we will restrict our scope to two-dimensional CNNs (i.e. CNNs in which the inputs 

as well as the filters that process the inputs are two dimensional). This is because we are working with 

binarized pattern matrices which are two dimensional.  
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ANN based on the minimal entropy (i.e., maximum information) principle optimizes network 

performance in small multilayer ANNs. These results indicate that ANNs that are optimized for 

explicitly maximizing information transference by use of principles from information theory are 

efficient and effective.  

 To address claim 2, we need only to state a few facts about successful ANNs. 

1) Generally, successful classification ANNs have high MI between their outputs and 

the “ground truth” categories of the inputs being categorized. 

The obvious goal of a classifying ANN is to have the ANN’s classifications match the inputs’ 

true classes. Essentially, any ANN that successfully does this is by definition maximizing MI 

between ANN output and the “ground truth” categories of the inputs. Thus, an inherent property 

of a categorizing ANN is to increase MI between inputs and outputs as much as possible. 

2) A feature of an efficient ANN is that it reduces redundancy as much as possible, and 

thus performs efficient coding. 

The goal of most ANNs is to learn to reliably map a relatively high number of input 

activations to a relatively low number of output neurons. A computationally efficient ANN uses 

the fewest number of nodes possible to do this. Therefore, ANNs simply work to maximize 

redundancy reduction in inputs, thus increasing the efficiency with which the information is 

processed. Of course, the amount of redundancy reduction possible depends on the 

categorization problem. For example, a CNN that works to determine whether a human face is 

present in a set of images containing chairs and faces will be able to perform more redundancy 

reduction than a CNN that works to categorize male human faces and female human faces. This 

is because the former CNN presumably needs only a relatively small amount of information from 
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the pixels to decide whether the image is a chair or a face (whether a mouth shape occurs might 

even be enough – this could be accomplished by a single filter). But in the latter CNN, a larger 

amount of information would likely be needed to differentiate between human male and human 

female faces (whether a mouth shape occurs will not be enough anymore). Thus, the latter ANN 

may need to retain more of the redundant information to classify correctly. For example, it may 

need to use a combination of many filters that detect features such as face width, lip fullness, 

shape of hair, etc. And it may even be the case that very little redundancy reduction is possible 

for some complex classification problems. But generally, ANNs solve classification problems by 

reducing redundancy in the inputs by extracting only the information that is relevant for 

classification. Thus, in general, successful and efficient ANNs inherently follow principles of 

efficient information processing by maximizing MI between outputs and ground truth categories 

and by reducing redundancy. 

In addition to these points, CNNs are used widely as models of biological visual system 

(Kriegeskorte, 2015). One replicated and generalized finding is that CNNs that perform better at 

object recognition tend to have representational spaces that are more similar to those found in the 

inferior temporal cortex in humans and some non-human primates (Yamins et. al., 2014; 

Khaligh-Razavi & Kriegeskorte, 2014). These results suggest that although CNNs are nowhere 

near equivalent to brains, they can act as good abstract models of some of the key processes 

involved in sensory information processing and statistical learning. 

 

Receptive Fields 

Biological receptive field size is a parameter in the sensory system that is of interest to us 

because it is a prime candidate for optimization based not only on metabolic constraints, but also 
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based on information coding efficiency. We hypothesize that adjusting the size of a RF by 

maximizing the MI within each RF would in theory increase information processing efficiency 

and thus benefit statistical learning mechanisms. An additional (non-biological) parallel 

application of this idea is that CNN learning could be made more efficient by choosing a RF size 

that maximizes MI per RF. This would offer a systematic and theoretically grounded method of 

choosing a RF size when training CNNs, whereas currently RF sizes are generally picked using 

unprincipled hyperparameter tuning or some general rules of thumb and common practices 

("Convolutional Neural Networks (CNNs / ConvNets)"; Rao, 2018).  

The RF of a neuron is considered to be the region of sensory space (in the visual field, on 

the body, in auditory space) in which changes in the environment influence firing of the sensory 

neuron. Neurons in the visual, auditory, and somatosensory systems are known to have RFs. The 

concept of a RF also applies to neurons further along in sensory processing that synapse with 

groups of sensory neurons. For example, ganglion cells in the retina have RFs that encompass 

input from a population of photoreceptors. In turn, cells in the primary visual cortex (V1) have 

RFs that encompass input from a population of ganglion cells. RF sizes vary between and within 

stages of processing and in general RF size increases from lower to higher levels of processing 

(Amano, Wandell, & Dumoulin, 2009; Smith, et. al., 2001).  

There are approximately 126 million photoreceptors in each human eye. These 

photoreceptors collect a huge amount of visual information about changes in light in the world. 

Much of this information is redundant and can be compressed while still maintaining its 

usefulness. Additionally, much of this information is not very useful to us and can be discarded. 

This lossy compression9 of information is an example of an instance in which metabolic 

                                                
9 Lossy compression refers to compression of information in which some information is lost and not 

recovered. 
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efficiency can be closely tied to information coding efficiency. One way the brain works to 

compress this information while still maintaining its usefulness is likely through RFs. For 

example, the redundancy of information contained in red and green photoreceptor cone outputs10 

(and blue to a lesser extent) is compressed through adding and subtracting the RGB channels in 

such a way that creates 3 new channels whose results are less correlated, and therefore more 

efficient at transmitting information (a process called sum-difference encoding). Through 

efficient coding, redundancies in inputs can be eliminated, thus decreasing the amount of 

metabolic energy that needs to be expended carrying information.  

We argue that the separation of incoming sensory information into smaller separate 

streams (via RFs) makes the processing of information more efficient in terms of metabolic cost 

and coding efficiency. By separating information into smaller streams whose size maximizes the 

amount of MI within the stream, the information processing system can more efficiently 

compress the information in each stream. To clarify this argument we can imagine a world in 

which the only things that exist are two-dimensional circles and squares that are all 

approximately the same size (let’s say they all fit inside a 5” by 5” box but not a 4” by 4” box). 

These shapes are placed in such a way that any 5” by 5” space is equally likely to contain a 

circle, square, or nothing. Suppose that for the beings in this world identifying circles and 

squares is the only thing that is important for survival and reproduction. Thus, statistical 

regularities in this world that are relevant to these beings would occur only at spatial scales 

smaller than 5” by 5” and it would be inefficient to analyze visual information for regularities at 

a spatial scale greater than 5” by 5”. Furthermore, we can find the spatial area that maximizes 

                                                
10 Neighboring red and green cones tend to have similar outputs because: 

1) Neighboring points in the visual field tend to have similar colors 

2) Red and green cones have similar tuning curves (they respond to light of similar frequencies) 
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statistical regularities by finding the area in which MI is the greatest. By processing the visual 

world using MI-optimal RFs, these beings would ideally be able to compress all the information 

in a RF into just 1.5811 bits of information, indicating whether the shape is a circle, a square, or 

neither. So, by processing the visual world through RFs that maximize MI, these beings would 

be able to perform the most information compression, thus processing information most 

efficiently. In the world we live in things are much more complicated because statistical 

regularities occur at many scales. But it stands to reason that there are some scales at which more 

regularities occur than others. Additionally, we are limited to collecting information at the range 

of scales determined by our sensors. For example, although statistical regularities occur at the 

microscopic level, these regularities cannot be detected by our visual system.  

Evidence that supports the claim that separating information into smaller streams is more 

efficient can be found in the brain and in ANNs. Visual processing pathways in the human cortex 

exemplify the separation of information into smaller streams at both macro and micro levels. For 

example, at the macro level it is well known that the human visual system splits into two separate 

streams after processing in the occipital lobe - the ventral stream dedicated to object processing 

(sometimes called the “what” pathway) and the dorsal stream dedicated to processing the spatial 

relationship between agent and object (sometimes called the “how” or “where” pathway) 

(Goodale & Milner, 1992; Ungerleider & Haxby, 1994). One possible explanation for this 

division of information is that splitting the processing into two streams makes learning easier 

because separating out spatial information allows object information acquired in one spatial 

context to transfer to other spatial contexts (Rueckl, Cave, & Kosslyn, 1989). A similar kind of 

                                                
11 The formula for calculating information is −∑ 𝑃𝑖 ∗ 𝑙𝑜𝑔2(𝑃𝑖)𝑖  where 𝑃𝑖 is the probability of outcome i. 

In this case there are 3 equally likely outcomes (square, circle, neither) so i = 3 and 𝑃𝑖 = 1/3. This yields 

1.58 bits.  
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information split is evident at the micro level, with initial visual processing relying on smaller 

RFs than later visual processing (Amano, Wandell, & Dumoulin, 2009; Smith, et. al., 2001). This 

too, may allow for more efficient learning. Jacobs and Kosslyn (1994) found that filtering inputs 

through small, non-overlapping Gaussian filters (conceptualized as RFs) before using them as 

inputs in a neural network led to better classification learning than with large overlapping 

Gaussian filters12. These results provide some possible clues as to why the visual system is 

structured the way it is. Dividing input into separate streams of processing likely makes 

information processing more efficient. 

 Our proposal is that the optimal RF size for capturing information in a set of stimuli can 

be estimated through finding the RF size that maximizes the MI available within each RF,  and 

that this maximization would lead to more efficient statistical learning. But, if dividing the 

processing stream is beneficial as we have suggested, why is it that all RFs are not arbitrarily 

small? One reason is that this would likely increase the metabolic cost of information collection 

dramatically (Figure 4).  

 

 

 

 

 

 

 

                                                
12 The reverse was true for learning to identify single exemplars, but in this investigation, we are primarily 

interested in learning through statistical regularities between inputs (and therefore not single instances of 

an input).  
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Figure 4 In the yellow diagram, 6 sensory neurons output to 2 intermediate neurons which output to one 

neuron. The two neurons in the intermediate layer can be said to have a RF of size 3 (because they receive 

outputs from 3 sensory neurons). The green diagram is the same except there are 3 hidden neurons, each 

with an RF of 2. There are fewer neurons (9 < 10) and connections between neurons (8 < 9) in the yellow 

diagram, making it the less metabolically expensive choice. 

 

A secondary reason we suggest here is that the information relevant to humans is generally 

structured at a particular resolution (one that is likely not arbitrarily small) and RF size should 

match this resolution. For example, there is an optimal RF size for capturing information about 

lines and edges in the world that are relevant to humans and there is a (different) RF size that is 

optimal for capturing information about the sound frequencies that are most relevant to humans.    

 But why should RF size match the resolution of relevant information in the world? The 

basic intuition is that if RF size is optimized based on maximization of MI per RF (i.e. matching 

RF size to the resolution of relevant information), this will increase the predictability of values 

within each RF, thus making processing more efficient and allowing for faster learning. And 

crucially, more MI per RF means that there is more redundancy within that RF, making for the 

possibility of greater compression of information. This means that in order to most efficiently 

gather and learn about information in the world, the structure of our sensory system should 

match the structure of information in the world.  

 To this end, the current study aims to investigate whether optimizing RF size based on 

maximizing the mutual MI per RF will lead to increased statistical learning in CNNs. If this is 

the case, MI maximization could be one potential factor contributing to the evolutionary process 

by which human RF size is influenced. 

 

Methods and Results 

Overview 
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In this investigation we begin by creating sets of spatial patterns (matrices of 1s and 0s), 

then calculating the RF size that maximizes the average MI per RF. Then, we use CNNs to 

categorize these patterns. We do this for many different RF sizes and record which RFs result in 

the most efficient learning. Our hypothesis is that the RF size that results in the quickest learning 

will be the RF size that was determined to maximize average MI per RF. This would give some 

initial evidence that determining RF size by maximizing average MI per RF would be beneficial 

to biological agents in the context of statistical learning.  

All code for input generation, data, MI analyses, and CNN analyses can be found on 

Github at https://github.com/thpossidente/Int-Seg-Model.  

 

Input Generation 

 In order to generate the inputs for this investigation, we created matrices with varying 

degrees of MI for different RF sizes. We used non-overlapping RFs exclusively, meaning the RF 

size and stride size were the same for input generation and analysis. All matrices used only zeros 

and ones. Figure 5 shows the basic process behind creating a set of matrices with high MI for a 

specific RF size. In this example we will create a simple set of 4*4 matrices with a RF size of 

2*2 that have high MI per RF. 

https://github.com/thpossidente/Int-Seg-Model
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Figure 5 Shows the process of input generation. In step one, four unique random patterns of zeros and 

ones are arranged in a submatrix with dimensions specified by the desired RF size (2*2 in this case). 

These patterns will be the only ones used to construct the set of matrices. In step two, for each of the four 

2*2 submatrices in the 4*4 matrix, one of the four RF patterns will be selected with replacement. Step 

two is repeated as many times as desired to create a set of matrices. In this case, 256 unique 4*4 matrices 

are possible, but only two are shown here.  

 

Once 256 unique matrices were generated for a set, we simple duplicated the 256 

matrices 20 times to acquire a set of 5120 matrices. This was so that we had 256 classes of 

matrices to classify using the CNNs. This relatively high number of classes was chosen because 

we did not want the classification task to be too easy, in which case we may have experienced a 

ceiling effect in CNN learning efficiency. 

After the 5120 matrices were generated, the desired amount of noise was introduced to 

the set. Random noise was introduced by “flipping” some percentage of cells from zeros to ones 

and ones to zeros. Because noise is separately applied to each matrix, the MI per RF will 

decrease as the percentage of cells increases, until 50% of the cells are flipped. This is because 

flipping 50% - 100% of the pixels actually linearly decreases noise from 50% to 0% because 



 
 

23 
 

there are only 2 possible values for each pixel. To generate a set of matrices with no (or very 

little) MI, matrices of a specified size are created and filled randomly with zeros and ones. 

  

Calculating MI 

 In this study, average MI per RF was measured by breaking down each matrix into RF 

sized matrices and grouping these RF sized matrices based on their position in the larger matrix. 

Then pixel-wise MI was measured for each group of RF sized matrices separately, and the results 

were averaged. The setup for calculating the average MI per RF for a set of four 4*4 matrices 

with 2*2 RFs is shown in Figure 6.  

 

   1. 
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Figure 6 Shows a few iterations of the process of MI calculation for a set of four matrices. Each picture 

shows all four of the matrices, each divided into four RFs by red lines. The green and purple boxes 

highlight the cells whose values are being examined. The table on the right of each picture shows how the 

outlined cells are organized in a pairwise fashion for MI calculation. As you can see in pictures 1-3, pixel 

position (1,1) is compared to each other pixel position in the RF (except for its own position), Then in 

pictures 4-6, pixel position (1,2) is compared to each other pixel position in the RF (except for itself). 

This process will continue until every pixel position comparison within one RF has been made once. Then 

MI between all those pixel pairs are measured and the value is saved. The process then repeats for the 

next RF (the top right RF in the above diagrams). Once MI has been measured for each RF, the results are 

averaged to get a final average MI per RF. Note that we do not record the observations from picture 4 

because the comparison between (1,1) and (1,2) has already been made and MI calculations are 

symmetric. This avoids double counting. Also note that using this process, the maximum MI of any RF 

size will be ∑ (𝑛 − 𝑖)𝑛
𝑖=1  where n is the number of cells in the RF. Thus, for the 2*2 RF example here, the 

maximum MI will be (4-1) + (4-2) + (4-3) + (4-4) = 6 bits. 

 

 

 MI is calculated between “Var 1” and “Var 2” in each table created from the process 

shown in Figure 6. This pixelwise MI is added together for all comparisons in a single RF, then 

the process starts over for the next RF. For the example shown in Figure 6, we would end up 

with MI sums for each of the four RFs. By averaging these four numbers we obtain the average 

MI per RF for the whole set of matrices.  

 

Experiment 1 Methods - MI Calculations with Various RF Sizes 

This experiment seeks to validate the hypothesis that RF sizes that match the structure of 

relevant information in the world (in this case, that match the input submatrix pattern size) will 
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lead to an increase in MI per RF compared to other RF sizes. In this experiment, we created test 

pattern matrix sets with varying sizes of submatrix patterns (through the process shown in Figure 

5) then calculated the average MI per RF for different RF sizes. We expected to find that MI 

would be greatest when calculating MI for a RF size that matched the submatrix pattern size. For 

example, if the test pattern matrix set was created by combining four 8*8 submatrices for each 

16*16 matrix in the set, we would expect that average MI would be highest when MI per RF was 

based on a RF of size 8*8. This goes back to the argument that our sensory system should take 

advantage of the fact that information in the world that is relevant to us tends to be structured in 

a certain way, and thus there is a specific RF size that maximizes MI per RF. We hypothesize 

that this optimization would be useful to us because statistical learning mechanisms would 

benefit from increased predictability within each RF.  

 Fifteen pattern sets were generated with 16*16 pattern matrices. Submatrix pattern size 

possibilities were 2*2, 4*4, and 8*8 while possible noise levels were 0%, 10%, 20%, 30%, and 

40% (3 submatrix size possibilities and 5 noise level possibilities = 15 sets). Noise was added by 

flipping X% of pixels in the matrix. Average MI per RF was calculated for each pattern matrix 

set using RFs of 2*2, 4*4, and 8*8. Additionally, a control set of 16*16 pattern matrices filled 

randomly with 0s and 1s was tested using the same RF sizes. We expect this set to have no (or 

very low) MI. Each pattern set in this experiment contained 5120 matrices. The same matrices 

created in this experiment were used for the second experiment. 

 

Experiment 1 Results - MI Calculations on Various RF Sizes 

 The results of this analysis (shown in Figure 7) show that RF sizes that are the same as 

the submatrix pattern size used to create the pattern matrices in the set generally have higher MI 
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per RF than most other RF sizes. There were 4 cases out of 15 that did not agree with our 

hypothesiss. Two of these cases were in the 4*4 submatrix pattern size condition and 2 of these 

cases were in the 8*8 submatrix pattern size condition. In each of the four nonconforming cases, 

lower RF sizes had greater percent MI per RF than the hypothesized RF size. Although some of 

the comparisons did not agree with our hypothesis, it is clear that when RF size matches pattern 

size it at least brings percent MI per RF levels up to the same level as the lower RF sizes, and in 

most cases exceeds them.   

 

 

 

 

 

 

 

 

 

 

 



 
 

28 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 This figure shows the results for the 16*16 sets. In each graph, the average MI per RF for each 

RF size in each of the submatrix pattern size conditions for one noise level is depicted. The Y-axis shows 

the percentage of the maximum possible MI while the X-axis shows the size of the input pattern used to 

generate the input matrices. Each color bar represents a different RF size used to analyze MI. The asterisk 

indicates non-conforming comparisons.  
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For the control sets with randomly placed 1s and 0s, there were no instances in which MI 

was greater than any of the trials shown above. Ideally, it should be the case that there is zero MI 

per RF field in the random matrix set, but there is some MI that occurs by chance in sets with a 

relatively small number of pattern matrices. It was found that as the number of pattern matrices 

in the random set increased, MI approached zero (Figure 8). 

 

 

Figure 8 As the number of matrices in the set of random matrices increases, the percent of the maximum 

MI per RF for each RF size approaches zero. 

 

Experiment 2 Methods – CNN Learning on Various RF Sizes 

 This experiment seeks to address the hypothesis that RF sizes that maximize MI are 

advantageous in terms of statistical learning. In this experiment we used the same sets of 

patterned matrices as in experiment 1 so that we would be able to directly compare MI per RF to 

CNN performance. Labels for the sets were created by simply taking the first 256 unique pattern 
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matrices generated and labeling them 1-256, then repeating those matrices to create 5120 total 

pattern matrices. Noise was added only after labeling. Each of these sets was analyzed by a CNN 

with the following RF sizes: 2*2, 4*4, 8*8. For each RF size the sets were analyzed with 0%, 

10%, 20%, 30%, 40%, and 50% noise. The metrics used to evaluate learning were loss at 5 

epochs and loss at 25 epochs. Loss is the sum of the error for each sample calculated using 

categorical cross-entropy. Each combination of submatrix pattern size, RF size, and noise level 

was run 10 times. In summary, 3 sets of different submatrix pattern sizes were analyzed with 3 

different RF sizes with 6 different noise levels.  

 The architecture of the CNN was very simple, consisting of one 16*16 2D convolutional 

layer with 4 filters (one for each possible submatrix pattern [see Figure 5]), one dense layer of 

512 nodes, and one dense layer of 256 nodes (one for each label). The convolutional layer and 

the first dense layer used a Rectified Linear Unit (ReLU) activation function, while the last dense 

layer used a softmax activation function for classification. The stride of the convolutional layer 

was always the same as the RF size. The loss function used was categorical cross-entropy and 

the optimizer used as Adam with a learning rate of 0.001. Batch size was 100 and training was 

run for 100 epochs. 75% of the pattern matrices (3840) were used for training and the remaining 

(1160) were used for validation.  

In order to quantitatively assess whether the pattern of CNN efficiency metrics matched 

up with the MI per RF calculations from experiment 1 we also made 2 Bayesian linear regression 

models. For the first, the dependent variable (DV) was loss at 5 epochs while the covariates were 

noise and percentage of maximum MI per RF. The second regression was identical except loss at 

25 epochs was used as the DV instead of loss at 5 epochs. From these analyses we hoped to 

investigate how much of the variance in loss was explainable by percentage of maximum MI per 
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RF, and how much was explained simply by the noise level. We expected noise level explain a 

lot of the variation in loss, but percentage of maximum MI per RF should add additional 

explanatory power if increased MI per RF increases CNN learning efficiency.  

Lastly, in order to get at the idea of metabolic cost for efficient information processing 

we also calculated an efficiency metric using average loss (over 10 runs) and number of trainable 

parameters in the network. To obtain this metric we simply multiply the number of parameters 

by the loss13. The lower the value of this efficiency metric, the lower the “metabolic” cost of the 

network.   

 

Experiment 2 Results – CNN Learning on Various RF Sizes 

A summary of the results of this experiment are shown in Figures 9 and 10 which show 

loss at epochs 5 and 25 (respectively) for each condition. In these graphs, the loss values shown 

are the average of the loss values from each of the 10 runs of the CNN for each specific 

condition. At 50% noise, accuracy was nearly equal to expected accuracy if classifying via 

random guessing which shows that, as expected, the 50% noise condition yielded no learning for 

any RF size in any submatrix pattern condition. This is because noise was maximized and there 

were no patterned regularities to distinguish one label from another. Because of this, the 50% 

noise condition was removed from Figures 9 and 10. In 23 of the 30 comparisons made, the RF 

size that resulted in the best performance (as measured by either loss at 5 or 25 losses) was the 

                                                
13 Although an initially intuitive metabolic cost metric would be loss per parameter, this metric would 

favor networks with high numbers of parameters, as they would have lower loss/parameter simply by 

virtue of having many parameters.  
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same RF size that resulted in maximum MI per RF in experiment 1. In Figures 9 and 10 asterisks 

mark the comparisons in which this was not true.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 This figure shows the loss at 5 epochs (averaged over ten 25 epoch trials) for each condition 

tested. Each graph shows one of the three submatrix pattern size conditions. Noise level is on the X-axis, 

loss is on the Y-axis and the color of the bars represent the different RF sizes tested. The asterisk indicates 

non-conforming comparisons.  
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Figure 10 This figure shows the loss at 25epochs (averaged over ten 25 epoch trials) for each condition 

tested. Each graph shows one of the three submatrix pattern size conditions. Noise level is on the X-axis, 

loss is on the Y-axis, and the color of the bars represent the different RF sizes tested. The asterisk 

indicates non-conforming comparisons.  
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 To see if these results matched the pattern of MI per RF for each condition, we created 2 

Bayesian linear regression models. The loss from each of the 10 runs per condition were counted 

as separate data points for this analysis, yielding 540 data points for both loss at 5 epochs and 

loss at 25 epochs. For both models, noise + percentage of maximum MI per RF explained the 

most variance in loss. With loss at 5 as the DV, the data are 5.966*107 times more likely under 

the noise + percentage of maximum MI per RF model than under the next best model (noise 

only) and 4.811*10271 times more likely than under the null model (Table 1). With loss at 25 

epochs as the DV, the data are 1.319*1022 more likely under the noise + percentage of maximum 

MI per RF model than the next best model (noise only) and 6.746*10203 times more likely than 

the null model (Table 2). This supports our hypothesis that high MI per RF results in more 

efficient CNN learning. 

 

Loss at 5 Epochs Model Comparison  

Models  P(M) P(M|data) BF M BF 01 R² 

Percent of Maximum MI per RF + Noise   0.250  1.000  1.790e  +8  1.000  0.906  

Noise   0.250  1.676e  -8  5.028e  -8  5.966e  +7  0.898  

Percent of Maximum MI per RF   0.250  1.186e -198  3.559e -198  8.430e +197  0.476  

Null model   0.250  2.079e -272  6.236e -272  4.811e +271  0.000  

 

 

Table 1 This table compares each model to the best model (Percent of Maximum MI per RF + Noise). 

P(M) is our prior odds for each model being the best predictor of loss at 5 epochs. P(M|data) is the 

posterior odds of each model given the data. BFM quantifies the change from prior odds to posterior odds. 

BF01 quantifies the likelihood of the data occurring under the best model divided by the likelihood of the 

data occurring under a given model. In other words, it is how many times more likely the best model is 

given the data than a given model. R2 is the amount of variability in loss at 5 epochs explainable by the 

model. 
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Loss at 25 Epochs Model Comparison  

Models P(M) P(M|data) BF M BF 01 R² 

Percent of Maximum MI per RF + Noise  0.250  1.000  ∞  1.000  0.831  

Noise  0.250  7.580e  -23  2.274e  -22  1.319e  +22  0.793  

Percent of Maximum MI per RF  0.250  3.855e -181  1.156e -180  2.594e +180  0.192  

Null model  0.250  1.482e -204  4.447e -204  6.746e +203  0.000  

 

 
Table 2 This table shows the same thing as Table 1, but with loss at 25 epochs as the DV. 

 

 

To better visualize these results, we created 2 scatterplots of the data used in the above 

analyses. These scatterplots show that as percentage of maximum MI per RF increases, loss at 

both 5 and 25 epochs generally decreases (indicating greater CNN efficiency) for each given 

noise level (Figure 11). From the plot showing the data for loss at 25 epochs it is clear that there 

was somewhat of a floor effect, as many models reached very low loss levels by 25 epochs. 
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Figure 11 This figure shows percent of maximum MI per RF plotted against loss for loss at 25 epochs 

(left) and 5 epochs (right) for each noise condition.  

 

 Lastly, Figures 12 and 13 show the metabolic efficiency metric (loss multiplied by the 

number of trainable parameters in the network) for loss at 5 and 25 epochs respectively. For all 

networks using an RF size of 2*2 there were 292,032 trainable parameters, 4*4 RFs yielded 

164,676 parameters, and 8*8 RFs resulted in 131,328 parameters. Clearly, the best performing 

networks are not always the most “metabolically” efficient, and smaller numbers of parameters 

tend to be more “metabolically” efficient at higher noise levels, perhaps because loss tends to be 

more similar across RF sizes in those conditions.  
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Figure 12 The graphs above show the “metabolic” efficiency metric at 5 epochs for each condition tested. 

Note that the Y axis is logarithmic (base 10) so that smaller values have visible bars. 
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Figure 13 The graphs above show the “metabolic” efficiency metric at 25 epochs for each condition 

tested. Note that the Y axis is logarithmic (base 10) so that smaller values have visible bars. 
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Discussion 

In Experiment 1 it was found that for RF sizes that were equal to the submatrix pattern 

sizes used to create the pattern matrix sets, MI per RF was generally highest. In the four non-

conforming trials it is possible that because only 4 submatrix patterns are generated for each set, 

the patterns generated at higher submatrix pattern sizes happened to contain high MI at lower 

submatrix pattern sizes as well. Overall, the results from this experiment show that we are able to 

vary the RF size that maximizes MI through this technique of matrix pattern set generation. 

Additionally, as expected, the MI for the control (random) sets approached zero as the number of 

pattern matrices in the set was increased. This gives evidence that our implementation of 

calculating MI is reliable. 

Now we turn to Experiment 2, whose aim is to show that higher MI per RF is indeed 

desirable in terms of statistical learning. In most cases, the RF size that had the highest percent of 

maximum MI per RF also resulted in the lowest loss when used as the RF for CNN 

classification. Additionally, the Bayesian linear regression models showed that at both 5 epochs 

and 25 epochs, including percent of maximum MI per RF added significantly to the model’s 

ability to explain the variation in loss. Taken together, these results give evidence that in general, 

an RF size that results in higher MI per RF will increase the efficiency of learning in terms of 

loss in our CNNs. Because both CNNs and biological neural circuits operate according to the 

constraints of Information Theory and both engage in statistical learning, this validates the 

possibility that biological RF sizes could be partially evolved to maximize MI per RF in order to 

aid in information processing in the form of statistical learning. 
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 Here it is important to discuss how the number of trainable parameters in each model 

may affect the results obtained. As the RF size increases, the number of trainable parameters in 

the CNN decreases. This means that CNNs with smaller RF sizes may potentially take longer to 

reach their minimum loss but may be able to reach a lower minimum. Conversely, CNNs with 

larger RF sizes may potentially take a shorter time to reach their minimum loss but may not 

reach as low of a loss. But this is not what we saw in our results, seeing as there were many cases 

in which CNNs with large RFs outperformed CNNs with small RFs in the long term (25 epochs) 

and cases in which CNNs with small RFs outperformed CNNs with large RFs in the short term 

(5 epochs). This led us to believe that any potential effects caused by the differential number of 

parameters in the CNNs were overshadowed by the effect of the MI per RF. It’s important to 

note that in larger CNNs with many millions of parameters, the difference in parameters between 

small RFs and large RFs would be greater, leading to the possibility of larger effects on 

performance.  

In experiment 2 we tried to take into account number of parameters by creating a metric 

of “metabolic” efficiency. As one might expect, when CNNs had relatively small differences in 

loss, the “metabolic” efficiency metric favored larger RFs (with lower numbers of parameters). 

But in cases where CNNs with low RFs (and thus more parameters) had lower loss than the other 

conditions by a large margin, they were still more “metabolically” efficient than the other low-

parameter conditions. And because we have shown that in general loss varies inversely with 

percentage of maximum MI per RF, this suggests that when two or more RFs have sufficiently 

similar percentage of maximum MI per RF, and we care about the “metabolic” efficiency of the 

system, we should select the larger RF. This idea fits well with the Metabolic Efficiency 

Principle suggested by Stone (2018).  
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Another important point to consider is that the scale of information that is relevant 

changes for each organism and each sensory system. For example, the scale at which touch 

information is useful to a ladybug is likely different than the scale of touch information useful to 

a human. And the scale of touch information useful to a human may be different than the scale of 

auditory information useful for a human. In order to simplify this complex problem in this 

experiment we have assumed that the scale of information with the most MI is relevant to the 

“organism”, but this may not always be the case. For example, as mentioned previously, it could 

be that the highest amount of MI possible occurs at a visual RF size that is microscopic. This RF 

size would not be very useful for many organisms and would be metabolically inefficient to 

implement due to the large number of photoreceptors that would be necessary14. So, we contend 

that within the scale of information that is 1) relevant to each organism and sensory system, 2) 

within the metabolic constraints of the organism, and 3) detectable by the organism’s sensors, RF 

size should be tuned in order to maximize MI per RF in order to increase learning efficiency. 

This idea is similar to finding a local minimum in a certain range of values. The range of values 

is determined by what spatial scale of information is useful to the organism, what scale metabolic 

constraints will allow, and what scale the organism’s sensors can detect, while the local 

minimum is the RF size that results in the highest MI per RF within this restricted range of 

values.  

 

 

 

                                                
14 How the scope of information relevant to the organism is determined is beyond the scope of this study, 

but presumably over time selection pressures push the organism’s sensory systems to look for information 

at a scale that is most useful for that organism’s survival and reproduction. 
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Conclusion 

These results give evidence that CNNs with a RF size that results maximal MI per RF 

learn more effectively than CNNs with RFs of other sizes. In light of these results, we contend 

that because both CNNs (and ANNs more generally) and neural circuits in the brain perform 

statistical learning and are subject to the constraints imposed by information theory, RF sizes that 

increase MI in their inputs could also be advantageous for neural circuits in the brain that 

perform statistical learning. This keeps open the possibility that RFs in biological organisms may 

have evolved to be the size that they are in part to increase MI per RF and thus match the scale at 

which relevant information is structured in their world.  

A parallel application of these results is to the training of CNNs in general. Currently, the 

most common method for determining RF size for a CNN is to perform hyperparameter tuning. 

This can be a slow and laborious method. As of now, we know of no commonly used systematic 

and theoretically grounded method for selecting a RF size in CNNs. Using the method of MI 

calculation described here, one could potentially select a RF size that maximizes MI per RF and 

therefore increases learning efficiency in CNNs.  

 

Further Research 

A Different Method of Calculating MI per RF 

 In this study, average MI per RF was measured by breaking down each matrix into RF-

sized matrices, then grouping these RF-sized matrices based on their position in the larger 

matrix. Next, pixel-wise MI was measured for each group of RF-sized matrices separately, and 

the results were averaged. An alternative to this approach would be to break down each matrix 

into RF-sized matrices, not group them by position in the larger matrix, then calculate pixel-wise 
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MI separately for each unique pixel-pair combination. There are two advantages to this 

approach. One is that it would be blind to the position of the RF-sized matrix, and therefore 

spatial patterns across matrices in different positions would contribute to the MI total instead of 

these patterns having to occur in the same position for there to be MI as is the case in this study. 

Secondly, it would preserve the spatial information present in different pixel-pair combinations 

within each RF. For these reasons we hypothesize that this way of measuring MI would result in 

the ability to capture more of the MI present in the set than the present method. This method of 

measuring MI per RF may or may not yield different results than those presented here, and 

therefore it is crucial to attempt to replicate these findings using this alternative method of 

measurement. 

 

Comparing MI-Optimal RF Size in Binarized Datasets 

 A natural next step in this investigation would be to move on from pattern matrix sets and 

use existing binarized image datasets such as the CalTech 101 Silhouettes Data Set. The idea 

here would be to find two or more binarized image datasets and perform MI analysis to find out 

what RF size results in maximization of MI per RF, then see if that size RF results in the best 

CNN performance compared to other RF sizes. Ideally, each dataset would have a different MI-

optimal RF size so we could test this for many different MI-optimal RF sizes. This extension 

would seek to strengthen the results found here by using datasets that were not created for the 

purpose of having high or low MI at certain spatial scales.  

 

Using MI Calculations to Estimate an Optimal RF Size for Training CNNs 
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 As previously mentioned, a larger scale investigation of the feasibility of using MI 

calculations to choose an effective RF size for training CNNs could be fruitful. Although these 

MI calculations would be computationally intensive for large datasets of large RGB images (as 

opposed to the small datasets of small binary matrices used here), it may still be more efficient 

than trial-and-error methods of selecting an optimal RF size that are commonly employed today. 

Additionally, these computations may be sped up by estimating MI via sampling rather than an 

exhaustive computation approach. One could imagine an algorithm that samples pairs of pixels 

from an image set until a stable MI estimation is obtained for many different RF sizes. But still, 

in order to calculate MI from RGB images (whose pixel values are 1-256) one would need to use 

the continuous version of the MI formula which is more computationally expensive and more 

difficult to implement. So, it could be the case that even MI estimation by sampling is too 

computationally intensive for regular use in big data analysis, thus further investigation of this 

method is necessary. However, if successful even in some cases for some types of data, this 

method offers the possibility of a more systematic and theoretically grounded approach to 

determining RF size for CNNs in general.  

 

Analyzing Natural Image Datasets to Estimate MI-optimal Biological RF Size 

 Another potential avenue to explore would be to perform the same methods used here 

(MI calculations and ANN analysis) on a large natural image dataset. This would accomplish 

two things. It would 1) attempt to replicate the findings here – namely that statistical learning 

occurs more efficiently if the RF size being analyzed maximize MI per RF. It would also 2) 

attempt to extend the findings here by investigating whether the optimal RF size for natural 

images is similar to the RF size found in retinal ganglion cells in the human visual system. We 
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hypothesize that because both the brain and CNNs perform statistical learning and are subject to 

the constraints of information theory, the same size RF should be optimal (in terms of maximal 

MI) for the same inputs (or an approximation of the same inputs, i.e. a natural image dataset). 

Using the RF size of the retinal ganglion cell as a comparison makes the most sense here because 

these cells carry the inputs into the main visual information processing areas of the brain 

(although there is some processing that occurs before the photoreceptor outputs reach the 

ganglion cells). If successful this experiment could give evidence that 1) CNNs are a good model 

for information processing and statistical learning in the brain, and 2) the human visual system’s 

RF size is influenced by the optimization of MI in each RF in order to increase efficiency in 

statistical learning. 

 One problem here could be the fact that RF size in humans is likely influenced by 

metabolic constraints and constraints imposed by what scale of information is relevant for the 

organism (as discussed previously). These same constraints do not apply to CNNs and therefore, 

the resulting optimal RF size could differ significantly from human retinal ganglion cells even if 

RF size is optimized based on MI in both systems. One potential solution would be to try to 

simulate these metabolic and relevance constraints in the CNNs, but penalties for metabolically 

inefficient numbers of parameters and relevance constraints would be difficult to determine in a 

theoretically motivated way. Thus, more research and careful consideration is required before 

this experiment could be carried out.  

 

Unsupervised ANNs as a More Biologically Plausible Alternative to CNNs 

 Approaching the same problem with unsupervised ANNs instead of CNNs could make 

the connection between ANN models and human neural circuitry stronger. This is because 
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unsupervised ANNs have much more in common with the mechanisms of statistical learning 

found in the brain. Besides exhibiting statistical learning and operating according to information 

theoretic principles, unsupervised ANNs could use winner-takes-all activation and Hebbian 

updating which is a key principle in statistical learning in the brain.  

Hebb’s postulate states that if neuron A continually takes part in causing neuron B to fire, 

the strength of connection between the two neurons will increase over time (Hebb, 1949) (i.e. 

nerves that fire together wire together). This idea has been expanded into a model of how 

associative learning occurs in mammals via long-term potentiation (LTP) and long-term 

depression (LTD), processes that rely on Hebbian updating (Jaffe & Johnston, 1990; Debanne, 

Gähwiler, & Thompson, 1994; Tsien, 2000; Shimizu, Tang, Rampon, & Tsien, 2000). Hebbian 

learning via LTP and LDP are still widely accepted as a strong model for learning in mammals 

(Maffei, 2018). Additionally, it is presumed that Hebbian updating (in the form of LTP and 

LTD) is a key mechanism driving statistical learning (Munakata & Pfaffly, 2004). The simple 

updating rule behind Hebb’s postulate could be realized in unsupervised ANNs by increasing the 

connection weight between nodes A and B by the activation value of A minus the connection 

weight between A and B multiplied by a learning rate parameter.  

Additionally, it would be plausible to implement a winner-take-all activation scheme in 

unsupervised ANNs. This means that, as in biological neurons, a node would either be activated 

or not with no intermediate activation possibilities. Lastly, ANNs that make use of statistical 

learning through Hebb’s rule have been found to yield topographical maps of activation where 

neighboring nodes learn to activate in concert to similar stimuli (Konen, Maurer & Von Der 

Malsburg, 1994), a feature characteristic of the brain. Thus, unsupervised ANNs using Hebbian 
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updating could to be a better model for statistical learning, a process that seems to occur 

abundantly across multiple domains in the brain.  

It should be mentioned that Hebbian learning does not account for all of associative 

learning. For example, when learning to associate two events/stimuli that are significantly 

temporally divorced, learning likely occurs through a different mechanism, possibly one 

involving some sort of supervisory signal (Suvrathan, 2019). But nevertheless, it is abundantly 

clear that Hebbian learning is the major player in associative learning. Additionally, we do not 

mean to indicate that ANNs using Hebbian updating are equivalent to neural circuits in the brain. 

Neural circuits in the brain are much more complex and are modulated not only by different 

neurotransmitters, but also by glial cells and top-down regulation from other circuits. But a 

model is not an exact reproduction and needs only to possess features that are believed to be 

critical to the phenomena under investigation. The features relevant to learning about co-

occurrences in stimuli are believed to be statistical learning and Hebbian updating, both of which 

can be convincingly modeled in an ANN using Hebbian updating.  

A more detailed potential implementation of these Unsupervised ANNs is contained in 

the Appendix.  
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Appendix 

Potential Unsupervised ANN Implementation 

 There will be one ANN dedicated to processing each RF sized section of the input matrix 

(Figure 14). The inputs to each ANN would be vectors of 1s and 0s contained in the RF field that 

that ANN is dedicated to. Each of these ANNs will then output to a single output layer (Figure 

15).  
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Figure 14 Shows how each RF contains the inputs to one unsupervised ANN. The green cells represent 

one 2*2 RF whose values are fed into the green ANN. The same applies to each of the other colors. 

 

 

 

 

 

 

 

 

 

 

Figure 15 Shows how each ANN outputs to a single output layer.  
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 The number of nodes in the input layer of each RF’s ANN would vary according to the 

number of elements in the RF. For example, the input layer for an 8*8 RF would have 64 nodes. 

The number of nodes in the second layer of each RF’s ANN would have 4 nodes, one for each 

possible input pattern (all sets of input matrices would consist of blocks of 4 unique patterns -- 

see Figure 5) The number of nodes in the final output layer would vary according to how many 

possible combinations of the four RF patterns there are. For example, for a set containing 8*8 

matrices, each with four 4*4 RFs, with each RF having 4 possible input patterns, there are 

(4*4*4*4) 256 possible combinations of input patterns (assuming submatrix patterns can be used 

more than once in the same pattern matrix). If the system learns perfectly, each of the 256 output 

nodes would correspond to the presentation of a unique matrix input pattern.  

 The activation calculations for these ANNs would be calculated simply by multiplying 

incoming inputs by the corresponding connection weight for each input to a single node, then 

summing all these values to obtain the node’s activation value. All activation values in a layer 

would then be compared and the highest value would be set to an activation of 1 while all the 

rest would be set to 0, thus implementing winner-takes-all activation.  

 Weight adjustment for these ANNs could be implemented using simple Hebbian 

updating: 

    W(i,j) = W(i,j) + LR * (x - W(i,j)) 

where W(i,j) is the connection weight from node i to node j, LR is the learning rate parameter, and 

x is the input from node i to node j. In essence, the weight from node i to j is increased when 

there are high activation values being passed from node i to j. Hebbian updating can result in 

“run-away weights”, meaning weights that iteratively increase to extremely high values over 

time. To avoid this problem, when calculating the update, the weight’s current value is 
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subtracted from the input activation. This would guarantee that the weight does not increase past 

the value of 1 (the maximum value of x is 1 due to winner-take-all activation).  
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