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Abstract 
 In response to the classical symbolic approach to cognitive science that 

emphasizes the importance of representational structures in the mind and the use of 

computational procedures, Rodney Brooks and Rolf Pfeiffer advocated for a theory of 

cognition that centers on embodiment, in which intelligent behavior arises as a result of 

the body’s interaction with the surrounding environment. Under this notion of 

embodied cognitive science, the body’s morphology influences its perception and guides 

not only its behavior but also the amount of control the body has over those actions. 

However, by completely cutting ties with the computational theory of mind and 

representational states, the field of embodied cognition has difficulties producing 

formal, quantitative models without delving into highly sophisticated mathematical 

formalisms. Morphological computation represents a potential solution by suggesting 

that the body performs certain processes to offload the computational burden needed 

for behavior on the brain, but it is as challenging to quantify as embodied cognition. 

This project attempts to use algorithmic information theory as a new approach to 

measure morphological computation. In order to gauge the effectiveness of this 

approach, eight morphologically different vertebral columns based on the corn snake 

(Pantherophis guttatus) were tested on a central pattern generator (CPG) to imitate the 

snake’s lateral undulation behavior. The computer code running the CPG was then 

modified so that all variants exhibit the same degree of lateral undulation and then 

compared with the control to measure the computational load relieved by each 

morphology. Through this investigation, we tested the viability of algorithmic 

information theory as a way to quantify embodied cognition by measuring how the 

morphology of the snake body aids its undulatory locomotion. Although noticeable 

discrepancies were present in ascertaining how different morphological elements 

influence the physical properties of the body, the experiment uncovered a positive 

correlation between the changes made to the morphology and the amount of 

computation needed to adjust the behavior in order to account for those morphological 

changes. As a result, we have determined that the general framework of this proposed 

approach offers substantial promise in navigating the relationship between the 

morphology of the agent and the cognitive computation required for its body to execute 

specific behaviors.  
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Introduction 
 As part of an effort to better understand human intelligence, scholars have often 

used analogies between the human body and the latest technological marvels to distill 

complex systems into more easily accessible models. In 1633, French philosopher René 

Descartes once proposed that a certain hydraulic lifeforce powered the motions of the 

human body by coursing through the nerves after he witnessed mechanical statues in 

the royal gardens of Saint-Germain-en-Laye moving once water was pumped through an 

elaborate network of hydraulic pipes (Gottlieb, n.d.; Woody & Viney, 2017). Then in the 

1860s, German physicist Hermann von Helmholtz depicted the nervous system as a 

network of telegraphic wires, transmitters, and receivers based on the recently invented 

telegram (Hoffman, 2003). More recently, the notion that the brain is or is like a 

computer has dominated discussions about cognition over the past several decades as 

an attractive way to visualize how the human mind works (von Neumann, 1958). The 

widespread adoption of this popular metaphor illustrates how the perception of the 

human brain as a computational system has become deeply entrenched in the study of 

cognitive science. 

 

The History of Computation 
 In the mid-1600s, German polymath Gottfried Wilhelm Leibniz became 

entranced with a wonderful idea: a universal alphabet of symbolic expressions, where 

each symbol represented a definite concept of human thought. Together, these symbols 

formed a calculatable language driven by the calculus ratiocinator—the algebra of 

logic—that encompassed the full scope of the mind. Leibniz called this system a 

“universal characteristic,” and he believed that this formal language of symbol 

manipulation possessed the capacity to map out the complete extent of human 

reasoning under mathematical laws (Davis, 2000).  

Following Leibniz’s death in 1716, the world of mathematics experienced a series 

of enormous transformations as logicians such as George Boole, Gottlob Frege, and 

Georg Cantor advanced the study of arithmetic to produce the universal language of 

logic that Leibniz envisioned. In particular, Frege formulated a revolutionary system of 

logic in 1879 called Begriffsschrift (or first-order logic), which he described as “a 

formula language, modeled upon that of arithmetic, for pure thought” (Davis, 2000, p. 

48). Frege essentially created a set of notations for logical relations, including negation 

(not A), the universal quantifier (for all A), the existential quantifier (there exists at least 

one A), and the conditional (if A then B). Frege ultimately established a language for 

propositional calculus, which uses a set of variables and logical operators to tackle a 

problem, and he readied the stage for the world to formally define the concept of 

computation (Davis, 2000).  

In 1928, German mathematician David Hilbert introduced two challenges 

regarding the basic logic of Frege’s Begriffsschrift. His first question demanded absolute 
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proof that first-order logic is a theoretically reliable foundation with no gaps in its rules 

that would cause a premise to not reach their proper conclusion even if the deductive 

inferences are correct. His second question, which he called the Entscheidungsproblem, 

asked whether there existed a method based on first-order logic that could determine 

within a finite number of rule-based steps whether or not a mathematical statement—

any formula at all—is universally true, a process known as an “effective procedure” 

(Hilbert & Ackermann, 1950; Immerman, 2015). Hilbert believed that solving these 

questions would not only codify exactly what could be solved, or “computed,” using first-

order logic but also require the mathematicians to formally define the concept of an 

algorithm beforehand (Davis, 2000).  

The first of Hilbert’s questions was solved by mathematician Kurt Gödel, who 

managed to provide a complete axiomatization of first-order logic in 1930 as part of his 

Ph.D. thesis. Referred to as the Completeness Theorem, Gödel’s proposition proved that 

there exists a finite mechanical procedure of instructions and rules that guides every 

valid inference to the correct conclusion. As long as the inference is correct, there exists 

a set of steps based on first-order logic that will always lead to the proper outcome 

(Davis, 2000; Immerman, 2015). Hilbert’s second question was later solved in 1936 by 

American mathematician Alonzo Church and his student Alan Turing, both of whom 

proved independently that Hilbert’s much desired effective procedure could not exist. 

Church solved the Entscheidungsproblem by using lambda calculus, a model of 

computation that he developed in the 1930s. With lambda calculus, Church defined the 

concept of “effective calculability,” which describes whether an effective method exists 

for a function, i.e., what determines an algorithm. He states, “[I]t is true, under the same 

definition of effective calculability, that every function, an algorithm for the calculation 

of the values of which exists, is effectively calculable” (Church, 1936, p. 356).  

On the other hand, Turing solved the Entscheidungsproblem by introducing an 

abstract model of computation called an automated machine (which later became 

known as a Turing machine). According to Turing, an automatic machine, or “a-

machine,” is a system that manipulates symbols according to the machine’s internal 

state and a set of rules known as an algorithm—an explicit, step-by-step procedure 

designed to answer a question, solve a problem, or perform a task (Turing, 1936). 

Depending on what internal state the machine is in, the symbols are subjected to 

changes under different rules that may change the state of the machine and even 

influence the final outcome. Most importantly, Turing demonstrated that, under his 

model of computation, anything computable by any algorithmic process can be 

computed by a Turing machine. He declared, “[I]f there is a general process for 

determining whether a formula of the Hilbert function calculus is provable, then the 

determination can be carried out by a machine” (Turing, 1936, p. 249). As a result, if 

there exists a task that a Turing machine can’t complete, then there are no algorithms 

that can accomplish that task, either. By following this process of logic, Turing showed 

that an algorithm for the Entscheidungsproblem couldn’t possibly exist (Davis, 2000).  
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Soon afterwards, Turing proved that his thesis on Turing machines featured an 

equivalent approach to defining an effective method as Church’s lambda calculus thesis. 

Combined, Church’s and Turing’s work produced the Church-Turing Thesis, which 

formally defined an effective method, i.e. an algorithm, as a method that satisfies the 

following criteria (Copeland, 2017): 

1. The method consists of a finite number of exact instructions, where each 

instruction is expressed with a finite number of symbols. 

2. The method will always produce the desired result in a finite number of steps if 

carried out without error. 

3. The method can be carried out by a human being unaided by any machinery 

besides paper and pencil. 

4. The method demands no insight or ingenuity on the part of the human being 

carrying it out. 

Once the notion of an algorithm was clearly defined with this explanation, scholars 

could study the nature of algorithms with renewed vigor, marking the beginning of the 

modern theory of computation. 

While Church’s and Turing’s answer dashed Hilbert’s hopes of finding an 

effective procedure for all of mathematics, Turing’s thesis on his automated machines 

had enormous implications in the study of cognition. By demonstrating that Turing 

machines possess the means of capturing symbolic algorithms, he opened the possibility 

that a Turing machine could capture the computation performed by the human mind. 

Turing proposed that there exists a universal Turing machine that could run the 

program of any other Turing machine as long as the algorithms on how to perform those 

programs are included in the universal Turing machine’s own algorithm. In other words, 

a single machine has the capacity to perform any computational task given the proper 

input and algorithm. This conclusion led to a revolutionary hypothesis: What if the 

brain is a universal Turing machine? Based on the assumption that human mental 

abilities are algorithmic, this theory proposes that the human brain can be understood 

in much the same way as any computational system that relies on symbol manipulation 

and algorithms (Searle, 1990). In other words, a universal Turing machine, which aims 

to transform symbols based on rules and state changes, may represent how the human 

mind operates. Assuming that this model is accurate, computation in the human mind 

occurs through the manipulation of mental representations, a process that is physically 

implemented by neural activity in the brain. Likewise, computer software consists of 

algorithms that serve to transform input symbols into the desired output to achieve a 

task. In that sense, the human mind and a computer program are proposed to share 

similar principles in that both are computational systems that manipulate 

representations based on rules and internal states. This theoretical framework that 

correlates the structure of human cognition with the architecture of a computer program 

under the basis of computational systems represents the central hypothesis of cognitive 

science known as the Computational Theory of Mind (CTM).  
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Responses to the Computational Theory of Mind 
 Turing’s radical proposal suggesting the human brain operates as a 

computational system immediately brought extreme reactions from both proponents of 

his theories as well as his critics. Centuries of dualism had ingrained in many people 

that their body housed a “soul,” which experiences qualia and other uniquely human 

elements of cognition like language that separate them from machines and even live 

animals (Mesaros, 2014). As a result, the notion that the human mind functions under 

the same principles as a rule-based machine had prompted multiple arguments against 

Turing. Some argued that the ability to create art or express emotions in an attempt to 

highlight the differences between humans and machines, while others insisted that 

human cognition is much too vast to define it under a set of algorithms. In response, 

Turing proposed a thought experiment called the imitation game to determine whether 

a machine could “think.” With it, he stripped down the behavior of a machine and a 

human to their most basic cognitive elements and provided an operational definition 

and a set of conditions under which one could determine whether a machine is capable 

of thinking (Turing, 1950). 

 For those in favor of Turing’s vision of humanity, the Computational Theory of 

Mind (CTM) and the rapid progress made in the field of computer science opened the 

door to the exploration of Artificial Intelligence (AI), where scholars attempted to 

construct the computing machines that exhibited the same phenomenon as human 

cognition. Having fully adopted Turing computation, traditional cognitive science was 

dominated by CTM—now referred to as the classical computational theory of mind—and 

emphasized the need for computational systems to interpret real objects as mental 

representations before that mental state undergo systematic change. In a similar vein, 

the representational theory of mind also placed great emphasis on mental 

representations, except the focus was placed more on the process of symbol 

manipulation (Rescorla, 2017). Under this understanding of human cognition, early AI 

research emphasized intelligent behavior that involved decision-making, problem-

solving, and reasoning, all of which were grounded in rule-based systems. AI 

researchers tried their best to fit the human mind into the framework of a 

computational system, often following the viewpoint espoused by the physical symbol 

system hypothesis (PSSH) (Newell & Simon, 1976). This empirical hypothesis stated 

that a digital computer has the sufficient means of demonstrating intelligent action as 

long as the appropriate symbol-processing programs are provided. Any system that 

exhibits general intelligence must be a physical-symbol system, because no other theory 

best demonstrates an alternative method born out of empirical evidence that can 

achieve intelligent activity (Newell & Simon, 1976). However, despite the early success 

that the field experienced, AI failed to live up to the high expectations garnered by 

academics and suffered a drastic blow in public interest.  

 Following the disappointments brought upon by traditional AI research, other 

approaches to cognitive science emerged in response to the flaws exhibited by the 
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classical computational theory of mind. Connectionism acts as one example of an 

alternative model of cognition, in which the neural architecture of the brain produces a 

network of activity dictated by interconnected nodes. Within this framework, the brain 

processes information by distributing representations in a sub-symbolic form across its 

connections (Figure 1). The behavior of the network hinges on the interactions among 

different nodes, which cause larger patterns to appear when grouped together. While 

connectionism serves a model of a brain’s neural activity, it acts as more of an abstract 

representation of the neural processing that occurs, not a replication of the biological 

neural networks (Eliasmith, 2013). However, deep neural networks built on the 

foundation of connectionism are capable of learning patterns and generalizing its 

behavior in the face of novel inputs (Rumelhart, D. E., Hinton, G. E., & Williams, R. J., 

1986).  

 
Figure 1. A multilayer network displaying the sub-symbolic model of representation in connectionism (Rumelhart, 
D. E., Hinton, G. E., & Williams, R. J., 1986, p. 320). 

Another example of an alternative model of cognition is dynamicism, which 

compares cognitive systems to a dynamical, state-dependent system that evolves not 

through the configuration of symbols but through measurable, bodily actions. Rather 

than relying on symbol manipulation, a dynamical system consists of quantities that 

change corresponding to state-space evolution. In 1995, cognitive scientist Tim van 

Gelder proposed that the Watt Governor, a mechanism that controls the speed of an 

engine shaft, serves as a better metaphor of cognition than the Turing machine. 

Generally used to control steam engines, the Watt Governor performs different actions 

depending on its state, which continually changes depending on time and the 

environment (Figure 2). Van Gelder argued that cognitive systems could only be 

properly understood by characterizing their state changes through time, suggesting that 
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cognitive systems are directly coupled to their environment (Eliasmith, 2013). In other 

words, the nature of the environment can strongly influence how cognitive behaviors are 

realized, and intelligent behavior can be viewed as adjustments made in response to 

changes in that environment. Van Gelder states, “In this vision, the cognitive system is 

not just the encapsulated brain; rather, since the nervous system, body, and 

environment are all constantly changing and simultaneously influencing each other, the 

true cognitive system is a single unified system embracing all three” (van Gelder, 1995, 

p. 373).  

 
Figure 2. The Watt centrifugal governor, which controls the speed of a steam engine based on the rotation of the 
flywheel. As the speed of the wheel increases, the arms of the governor were raised upward, restricting the flow of 
steam from the throttle valve (van Gelder, 1995, p. 349). 

 Dynamicism’s efforts to integrate the body and the environment into its model of 

cognition resonated strongly with many academics who grew disillusioned with the 

physical symbol system hypothesis, early AI, and connectionism. One major critic of this 

traditional view of cognitive science was roboticist Rodney Brooks, who argued that the 

basic foundation of classical cognitive science was flawed from the onset. He explained 

that the push towards the computational theory of mind and the drive to explain 

cognition using a framework of symbols only made it clearer that these precise, abstract 

models of cognition were not compatible with real, chaotic, biological systems (Brooks, 

1991). Therefore, Brooks claimed that constructing an intelligent system requires its 

representations to be grounded in the physical world and that it must be built in a 

bottom-up manner. Known as the physical grounding hypothesis, this theory 

highlighted the need to connect the system to the physical world using sensors and 

actuators. Believing that the world served as its own best model, Brooks argued that a 

cognitive system must be defined by its physical actions (Brooks, 1990). As an example, 

he confirmed the viability of the physical grounding hypothesis by constructing several 

robots using what he called “subsumption architecture,” which organized the control 

system into a fixed hierarchy of priorities. Within each rank of the subsumption 
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architecture, a fixed network of simple finite state machines guided the behavior of the 

robot as it interacted with the dynamic environment (Brooks, 1991). As a result, these 

robots exhibited clear goal-directed actions and adjusted its behavior in response to 

external stimuli, much like a human being.  

 Brooks’ work on the physical grounding hypothesis ultimately paved the way for a 

new approach to understanding the human mind that expanded the scope of cognition 

to the surrounding world. In essence, Brooks demonstrated the importance of 

embodiment, the state of having a physical body situated in the real world, in the 

emergence of intelligent behaviors. Through embodiment, the agent could accomplish 

cognitive tasks with simple sensorimotor interactions with the environment without the 

need to represent the real world. The situated nature of the body allows a substantial 

simplification of the control system (Paul, 2006). However, while embodiment is often 

summarized as “intelligence requires a body,” this concept presents a much more 

significant set of implications than what the popular saying entails. According to 

computer scientists Matej Hoffmann and Rolf Pfeifer, cognitive systems under the 

framework of embodiment behave under the influence of not just the internal control 

structure, like the central nervous system, but also the ecological niche of its 

environment, the morphology of its physical body, and the material properties that 

make up the morphology. By changing the physical constraints that shape the dynamics 

of the embodied system’s interactions with the environment, embodiment greatly 

impacts not only low-level sensory-motor activities like locomotion but also higher-level 

cognitive processes that defined the research of classical computational theories of mind 

(Hoffman & Pfeiffer, 2011). This brand of thinking led to what many cognitive scientists 

call the embodied approach to AI, or embodied cognition.  

 

 

Quantifying Embodied Cognition 
 According to cognitive scientist Margaret Wilson (2002), embodied cognition 

presents six prominent claims about the nature of cognition: 

1. Cognition is situated: Cognitive activity takes place in the context of a real-

world environment, and it inherently involves perception and action. 

2. Cognition is time pressured: Cognition must be understood in terms of how 

it functions under the pressures of real-time interaction with the environment. 

3. Agents off-load cognitive work onto the environment: Because of limits 

on our information-processing abilities, we exploit the environment to reduce the 

cognitive workload. We make the environment hold or even manipulate 

information for us, and we harvest that information only on a need-to-know 

basis. 

4. The environment is part of the cognitive system: The information flow 

between mind and world is so dense and continuous that, for scientists studying 
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the nature of cognitive activity, the mind alone is not a meaningful unit of 

analysis. 

5. Cognition is for action: The function of the mind is to guide action, and 

cognitive mechanisms such as perception and memory must be understood in 

terms of their ultimate contribution to situation-appropriate behavior. 

6. Off-line cognition is body-based: Even when decoupled from the 

environment, the activity of the mind is grounded in mechanisms that evolved for 

interaction with the environment, i.e. mechanisms of sensory processing and 

motor control. (p. 626) 

 

As a response to the symbol-processing computational theory of mind, embodied 

cognition found success in addressing many of the problems seen in classic cognitive 

science and the symbol system hypothesis. In 1969, computer scientists John McCarthy 

and Patrick Hayes introduced the Frame Problem, which asked if whether it would be 

possible for classical AI, if dictated by first-order logic, to make decisions on what 

information is relevant when predicting the outcome of its own actions. In other words, 

how would a system based on pre-set algorithms and symbol manipulation continually 

modify its scope of reasoning so that it processes all the necessary information relevant 

to a given task without explicitly considering all the irrelevant information? Philosopher 

Jerry Fodor called this the “Hamlet problem,” emphasizing the need for the robot to 

avoid situations where it forces itself to think through every possible scenario instead of 

focusing only on what is relevant (Shanahan, 2016). In 1980, John Searle posited 

another problem with classical AI with the Chinese Room Argument. In this thought 

experiment, Searle argued that even if a system like computer is tasked with 

manipulating symbols based on a given set of algorithms, there is insufficient evidence 

to claim that the computer demonstrates intelligence with this behavior. According to 

Searle, computational processing systems cannot derive meaning from symbol 

manipulation (Searle, 1980). In both cases, the issue with classical AI and the physical 

symbol system hypothesis stems from the lack of intentional agency: Purely 

computational systems cannot determine what features of the world are significant from 

the perspective of the system itself, rather than that of the human designer (Froese & 

Ziemke, 2009). In contrast, embodied cognition has managed to address these problems 

through the very design of its framework.  

 However, as if to completely wipe the slate clean, there has been a powerful push 

to erase the computational theory of mind and the physical symbol system hypothesis 

from cognitive science and establish embodied cognition as the dominant model. For 

instance, cognitive scientists Andrew Wilson and Sabrina Golonka called embodied 

cognition “the most exciting hypothesis in cognitive science” and theorized that the 

focus on the interaction between the body and the world will replace the need for 

complex internal mental representations (Wilson & Golonka, 2013, p. 1). Philosopher 

Lawrence Shapiro noted that one of the three most prominent themes in the embodied 
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cognition literature was the replacement hypothesis, the call for cognitive science to give 

up completely on algorithmic processes over symbolic representation as an area of study 

and direct all attention towards embodiment (Shapiro, 2011). After decades of 

disappointment over the slow pace of progress in classical AI, frustration over symbol 

manipulation and computation within the cognitive science field had reached a boiling 

point that has resulted in a zealous rejection of the old ways. This is unsurprising, given 

how the early emergence of embodiment theory was tinged with bitterness. Brooks 

himself believed that the symbol system hypothesis had reached the end of its 

usefulness, stating “[O]nce this commitment [to the physical grounding hypothesis] is 

made, the need for traditional symbolic representations soon fades entirely” (Brooks, 

1990, p. 5).  

 However, numerous critics have argued that embodied cognition lacks the 

sufficient capacity to completely overthrow the foundational theories of classical 

cognitive science. According to a report by cognitive scientist Stephen Goldinger and his 

colleagues, the basic principles of embodiment theory are either unacceptably vague or 

offer nothing new, thus providing no scientifically valuable insight. In other words, they 

criticized how embodied cognition resembles a dead end in terms of empirical research. 

The report asks, “Cognition is influenced by the body. As a scientist, what can you do 

with this claim? How might we write an equation that expresses embodiment? […] How 

can the environment…be parameterized?” (Goldinger, Papesh, Barnhart, Hansen, & 

Hout, 2016, p. 964). Despite the semblance of fertile ground for major scientific 

advancement, embodied cognition offers very few opportunities for scholars to create an 

overarching formal model, limiting investigations to broad, qualitative predictions. 

Goldinger et al. (2016) notes that, despite its immense popularity and appeal, embodied 

cognition currently consists of vague claims that desperately require some way to test 

empirically. In addition, they note how supporters of embodied cognition seem to have 

difficulty agreeing on a formal definition based on how the concepts of this model vary 

across publications. Without defined parameters, this approach certainly will be unable 

to properly explain cognition and behavior by itself. 

 In response to these criticisms, one of the best strategies that embodied cognition 

may have in quantifying the role of the body in cognition is a concept known as 

morphological computation. According to Rolf Pfeiffer and Josh Bongard (2006), 

morphological computation refers to the notion that certain processes are performed by 

the body that otherwise would have to be performed by the brain. For example, the 

elasticity of human leg muscles allows the body to perform small adaptive movements 

without any neural control every time the leg impacts the ground. In contrast, a robot 

built without carefully considering the effects of morphology must apply complex 

control to simply adjust to uneven surfaces. In short, the morphology of the body 

operates passively in a way that relieves some of the computational burden that a 

behavior requires the control to process. In the context of robotics, systems with high 

morphological computation only need to generate motor commands when they are 
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needed. This act of outsourcing computation to the body serves to reduce the controller 

complexity and the computational cost, which helps reduce energy consumption and 

promote survival (Ghazi-Zahedi, Haeufle, Montúfar, Schmitt, & Ay, 2016). 

As an architecture of control, morphological computation stands out as a 

potential method of producing a formal model, because its very concept hints at the 

existence of a common currency between the realm of the physical body (the physical 

world) and the controller (abstract computation) (Paul, 2006). The classical 

computational theory of mind maintains that the brain controls cognition using 

representational symbols and computation, while embodied cognition maintains that 

the body controls cognition using interactions between the body and the environment. 

However, based on the logic of morphological computation, embodied cognition can be 

understood in the same framework as classical cognitive science. If the physical 

interactions of the body can perform computations to offload the burden of the mind, 

then that means embodiment and the computational theory of mind are two sides of the 

same coin. In other words, these two models of computation, if morphological dynamics 

are a computation, are connected to each other, not isolated like both sides of the feud 

had argued. Morphological computation acts as the bridge that connects embodied 

cognition with classical cognitive science, allowing the former to be measured using the 

metric of the latter. However, Paul (2006) notes that morphological computation is only 

one of the many mechanisms by which the morphology and control trade-off occurs. But 

now, embodied cognition has a clear direction, in theory, on how it can proceed to 

parameterize itself. 

 Unfortunately, the theory of morphological computation has encountered the 

same problem with embodied cognition in terms of empirical research. The idea of 

morphological computation is incredibly attractive, but parameterizing it remains 

immensely challenging. Rolf Pfeiffer and Fumiya Iida makes a note of this serious 

dilemma, stating, “One problem with the concept of morphological computation is that 

while intuitively plausible, it has defied serious quantification efforts: We would like to 

be able to ask ‘How much computation is actually being done?’” (Pfeiffer & Iida, 2006, 

p. 5). Currently, it seems unclear as to how one would even measure morphological 

computation. For example, how would one determine how much of the computational 

legwork that the elasticity of the leg muscles offloads from the control during 

ambulation? While the morphology demonstrates a reduced level of complexity of the 

control, it presents challenges in the creation of a formal model. Because morphological 

computation tends to offer itself in the form of a qualitative improvement rather than a 

quantitative one, it’s difficult to determine the conversion factor between the 

morphology of the body and the symbols that dictate its control.  

In addressing this issue, proponents of morphological computation have made 

several attempts to effectively pin down the common currency between the physical 

body and the abstract controller. There are currently two primary approaches to 

formalizing this theory, the dynamical systems approach and the information theoretic 
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approach (Ghazi-Zahedi, Langer, & Ay, 2017). The dynamical systems approach 

attempts to model morphological computation by treating the body as a type of reservoir 

computer, a framework of computation that consists of neural networks that behave as a 

dynamical system (Jaeger, 2007). However, this approach largely fails to quantify how 

the body reduces the computational burden of the brain. On the other hand, the 

information theoretic approach attempts to model morphological computation by 

modeling the sensorimotor loop as a causal graph, which determines the distribution of 

labor that contributed to an observed behavior between the internal computation and 

the body-environment interactions. This method has shown greater success than the 

dynamical systems approach but remains relatively arduous to perform (Ghazi-Zahedi, 

Langer, & Ay, 2017). 

 To address these issues, this senior thesis presents a new idea for quantifying 

morphological computation. I propose that algorithmic information theory, which 

bridges computation and information, provides a viable framework that will help 

establish a formal model for morphological computation and embodied cognition as a 

whole. According to mathematicians Andrey Kolmogorov, Ray Solomonoff, and Gregory 

Chaitin, the complexity K(x) of any mathematical object, x, is defined by the length of 

the shortest program for x in any standard computer programming language. Unlike 

Claude Shannon’s standard information theory, algorithmic information theory’s 

definition of simplicity applies to individual objects rather than the probabilities 

associated with objects. As a result, it can be intuitively assumed that cognitive systems 

have an inherent goal to compress the data it possesses in an easily recoverable form 

(Chater & Vitanyi, 2003). In short, algorithmic information theory posits that a string of 

characters is as complex as the length of the shortest computer program that can 

produce that string. The length of that program is called the Kolmogorov complexity of 

the string, K(s) (Yanofsky, 2018).  

This concept can be implemented in the context of embodied cognition by 

creating a physical model that performs an observable behavior dictated by a computer 

program. By measuring the dimensions of the behavior in relation to the programming 

code that controls it, morphological computation can be quantified based on the 

Kolmogorov complexity, or the shortest length of the program that allows the system to 

behave the way it does. Thus, the length of the computer program can be equated with 

its computational simplicity: The shorter the program, the simpler the computation 

needed to perform that behavior. As a result, we can determine and measure the impact 

of the morphology on behavior by observing the change in the program needed to 

account for it, working under the assumption that a decrease in program length 

represents the offloading of the computational burden onto the body.  

This new approach merges the morphological component of cognition with the 

physical symbol system hypothesis. Here, the role that morphology plays in cognition 

and behavior is quantified using the manipulation of symbols. The goal for this 

investigation is to determine the viability of this framework by first (1) demonstrating 
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that the morphology influences behavior and then (2) quantifying the effects of that 

morphology on behavior by observing how much of the computational load that the 

morphology took on, relative to its variants. Physical models of bodies with similar yet 

distinct morphologies will be created and then coupled with a central pattern generator 

(CPG) that will perform a specific behavior according to a fixed computer program. The 

CPG incorporates a neurological component in the cognitive system, linking the 

symbolic aspect of computation in the code with the morphological aspect of 

computation in the physical body. The CPG allows the physical body to behave as the 

controller commands without input from an outside observer. The morphology of each 

physical model will translate the computation of the controller into a corresponding, 

unique kinematic variant of the control behavior. Afterwards, the CPG code will be 

modified for each of the physical models to exhibit the same behavior performance as 

the control model. The makeup of the code can then be compared between each of the 

physical models to examine the structural differences in the code that needed to be 

implemented in order for the variant models to behave similarly to the control model. In 

addition, the physical properties of each physical model will be measured according to 

the mechanical tests inspired by Etnier (2001) to determine how each morphological 

trait influences the range of possible behavior that it allows for the body. These tests will 

determine the flexural stiffness (EI) and the torsional stiffness (GJ) of each physical 

model in order to obtain the twist-to-bend ratio (EI/GJ), which indicates the relative 

resistance of the vertebral column to bending versus twisting without reference to the 

absolute magnitude of either (Etnier, 2001). Therefore, a higher twist-to-bend ratio 

reveal a structure that twists more readily than it bends.  

 

Using the Snake Body as the Model 
 Given the design of the experiment, the decision on which biological body to 

model is of great importance. For the purposes of this investigation, the body must 

exhibit clear variations in morphology that would impact behavior but have a simple 

enough form so that the observed behavior is simple to model and analyze. While the 

current literature on morphological computation often use limbs undergoing 

locomotion to exemplify its framework, the limb is much too complex to create an 

accurate physical model that accounts for every morphological attribute that contributes 

to its general operation. Given the criteria, the trunk of a snake serves as a simpler yet 

suitable model to study how differences in morphology can influence cognition and 

behavior. 

 Snakes provide an interesting case study when it comes to how their various body 

mechanisms interact. At first glance, their body appears quite simple—an elongated, 

cylindrical body with no limbs. Its lack of visibly discernable morphological features 

may sway some to believe that its movements are rudimentary. But despite its outwardly 

simple appearance, snakes can demonstrate a wide range of movement patterns that 

allow it to adapt to many different situations. Snakes can travel on land, climb trees, 
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swim underwater, traverse over sand, and even glide in a freefall just by moving their 

body in a variety of specific patterns. In addition, snakes have demonstrated four 

different modes of terrestrial locomotion, each with their own advantages and 

drawbacks, and can even modify and combine these movement patterns if necessary to 

travel in a specific environment (Gans, 1970). Researchers have also found that snakes 

exhibit a very homogeneous vertebral microanatomy across ecological niches. This 

seems to indicate that the morphology of most snakes is designed to prioritize versatility 

in a variety of environments rather than rigid specialization for one particular 

environment. However, it is important to note that snake vertebrae are by no means 

identical and that outliers certainly exist (Houssaye, Boistel, Böhme, & Herrel, 2013). 

Given its unique anatomical structure, the body of a snake can be seen as one 

long organ designed for locomotion. Even with its lack of limbs, snakes can contort their 

entire body to move. One possible reason for this flexibility is the number of muscles 

they have: While the human body has around 700 to 800 muscles, snakes have around 

10,000 to 15,000 (Cox, 2016). Not only that, snakes have a large number of segments in 

their vertebral column—generally between 200 to 400 vertebrae (Lindell, 1994). 

According to Gans (1970), each vertebra in the snake’s vertebral column swings left and 

right by about 50 degrees and bend up and down by about 28 degrees in relation to its 

neighbors, giving the vertebral column an incredible number of degrees of freedom. By 

having more vertebrae than any animal on the planet, snakes have the flexibility to bend 

and curl freely as a result of the degrees of freedom granted by each and every vertebra 

in their vertebral column (Wallach & Peters, 2019). 

A snake vertebra has three sets of joints, or articulations (Figure 3). The cotyle 

connects with the condyle, the prezygapophysis connects with the postzygapophysis, 

and the zygosphene connects with the zygantrum (Carmona et al., 2010). The 

zygosphene and the zygantrum are found almost exclusively in snakes (Wallach & 

Peters, 2019). While these articulations allow movement between vertebrae in the plane 

of each surface, movement is also restricted by those same articulations. For instance, 

there has been much debate over the question of torsion regarding the zygosphene-

zygantrum joint and the structure of the vertebral column allowing the body to twist. 

Many scientists believe that torsion between vertebral joints would be impossible 

because the prezygapophysis-postzygapophysis and the zygosphene-zygantrum 

articulations oppose one another. However, biologist Brad Moon (1990) demonstrated 

that the vertebrae can exhibit around one to two degrees of torsion per vertebral joint, 

which can magnify the body’s full torsional capability over several vertebrae. The snake 

body is also largely modular, meaning that the vertebral column consists of very similar 

vertebrae that function as building blocks for the design of the body. Each vertebral 

segment in the trunk of the body is representative of the function and design of any 

other length of vertebrae in the trunk of the body as well. As a result, examining a 

specific segment of the snake’s trunk and analyzing how the morphology affects its 

movements may open the possibility to extrapolate the findings to the body as a whole. 
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Figure 3. Anterior (A), lateral (B), and posterior (C) views of three vertebrae of the African egg-eating snake, 
Dasypeltis fasciata (Gans, 1962, p. 170). Colored boxes have been added to the image to define each structure of the 
vertebra. The red box contains the cotyle, the purple box contains the condyle, the yellow boxes contain the 
prezygapophysis, the orange boxes contain the postzygapophysis, the green box contains the zygosphene, and the blue 
box contains the zygantrum.  

Therefore, the decision to base the physical model for this investigation on the 

snake body is supported by two major reasons. First, the segmentation of the snake’s 

body plan allows for a simple yet functionally diverse model that can test for a behavior 

exhibited in not just a singular appendage but in the entire body—lateral undulation. A 

simplified version of the snake’s body will be created in the form of an “infinite,” 

meaning non-tapering and invariant with respect to length, vertebral column, which 

consists of identical vertebrae. In other words, the physical model will exhibit 

modularity, where each module acts as a functional unit that is capable of maintaining 

its intrinsic properties regardless of its surrounding components (Sauro, 2008). While it 

is associated with reduced cost in design within engineering, modularity has been 

observed in biological organisms as a way for the organism to explore the space of 

biological possibility in the context of evolution (Lorenz, Jeng, & Deem, 2015). Using an 

infinite vertebral column as a model will allow any changes to the morphology of the 

base vertebra to be magnified across the entire vertebral column. Similar to how the 

shape of the vertebra allows for significant torsion across multiple vertebrae, any 

modifications in the morphology of the vertebra will be amplified across the infinite 

vertebral column, allowing for easier observation of the effects of the morphological 

change. Second, the articulations of the snake vertebrae provide a convenient source of 

modification to the morphology that, based on previous work, will greatly impact the 

body’s performance of lateral undulation. Given how the articulations allow movement 

in some directions and restrict movement in others, removing specific articulations 

would directly influence the lateral undulation to a degree where variations in behavior 

would be clearly visible.  

 

  



The Link Between Body and Behavior    19 

Method 
 The experiment consisted of three major stages. During the first stage, titled “The 

Physical Model,” nine different vertebral columns were created for the experiment with 

one acting as the control model and the others serving as morphological variants. Each 

variant displayed a combination of one of four different vertebra morphology and one of 

two types of body compositions. During the second stage, titled “The Mechanical Test,” 

a large mechanical apparatus was constructed to measure the flexural stiffness and 

torsional stiffness of each vertebral column in order to determine each of their 

respective twist-to-bend ratio. During the third stage, titled “The Central Pattern 

Generator,” the CPG was built to analyze the behavior of the vertebral columns and 

ascertain the computational load that each morphological characteristic offloads from 

the control model.  

 

The Physical Model 
 The physical model was based on the corn snake, Pantherophis guttatus. A 

stereolithography (STL) file of an anterior vertebra (6 mm x 8 mm x 7 mm) from a P. 

guttatus was obtained with the help of researchers Henry Astley and Derek Jurestovsky 

at the University of Akron in Akron, OH. The snake from which the vertebra was 

modeled measured 96.7 cm SVL with a tail length of 19.1 cm and a total mass of 227 

grams. In order to improve the visibility of the morphological features, the vertebra in 

the STL file was enlarged to about 666% of the original size of the real-life vertebra (40 

mm x 55 mm x 45 mm) in the 3D printing software Ultimaker Cura 3.6.0. The vertebra 

clearly exhibited the relevant morphological features: the cotyle, the condyle, the 

prezygapophysis, the postzygapophysis, the zygosphene, and the zygantrum.  

 

 

 

 
Figure 4. The 3D-printed models of the vertebra. From left to right: Complete morphology, Variant A (no 
zygosphene), Variant B (no pre- or postzygapophysis, and Variant C (no zygosphene, prezygapophysis, or 
postzygapophysis). Top row: An anterior view of the vertebrae. Middle row: A posterior view of the vertebrae. 
Bottom row: A dorsal view of the vertebrae. 
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With the original vertebra as the base model, three different variants were 

created using Meshmixer, a 3D sculpting-based CAD (Computer Assisted Design) 

program. These variants were produced by removing different combinations of the 

aforementioned morphological features from the vertebra. Variant A featured a vertebra 

with the zygosphene removed. Variant B featured a vertebra with the prezygapophysis 

and postzygapophysis removed. Finally, Variant C featured a vertebra with the 

zygosphene, prezygapophysis, and postzygapophysis removed. In total, four different 

vertebra types were used for this experiment (Figure 4). All the vertebrae were printed 

with a Monoprice Mini V1 3D printer using Hatchbox PLA 1.755 mm white printer 

filament at 10% filament density. 

 

  
Figure 5. The four skeleton models. The yellow boxes indicate the ends of the extension springs. From top to bottom: 
Complete, Variant A, Variant B, and Variant C. Left: The oblique view of the skeleton vertebral columns. Right: The 
top view of the skeleton vertebral columns. 

The vertebral columns came with two different body compositions, the skeleton 

model and the body model. The skeleton models consist of eight vertebrae of the same 

morphological variant joined together with an extension spring threaded through the 

neural canal (Figure 5). The extension springs were made of music wire with a length of 

279.4 mm, an outer diameter of 7.92 mm, a wire diameter of 0.787 mm, and a load of 

1.34 kg. The vertebrae on the extension spring were pressed close together so that the 

neighboring vertebrae fit snugly in place. In order to keep the vertebrae secured and in 

physical contact with their neighboring vertebrae at all times, small plastic bookends 

were strung through both ends of the extension spring to maintain the tension and keep 

the vertebrae from coming loose or falling out. The bookends were cut from paper-thin, 

disposable plastic rulers. A hole was made through the center of each piece to tightly fit 

around the circumference of the extension spring. 

The body models consisted of the skeleton models encased in a matrix of silicone 

rubber to replicate the effects of the tissue surrounding an organism’s skeleton. The 

muscles, tendons, and ligaments that envelop the skeleton greatly affect the physical 

properties of the snake body. Thus, a corresponding body model of each of the four 

skeleton models was created. The body models were constructed by preparing a mold 
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that propped up the vertebral column vertically inside a 

cylindrical tube. The mold was made out of three parts 

(Figure 6). The cylindrical tube designed to hold the 

vertebral column consisted of a clear plastic tube with an 

inner diameter of 57.15 mm that was cut to the length of 

27.5 cm. The tube was also cut in half laterally so that it 

could open and close freely. Once the vertebral column was 

placed inside, the two halves of the tube were taped 

together, creating an enclosed area. The base of the mold, 

which propped up the tube, was made out of Lego parts. In 

the middle of the base was a hole to insert a thin metal rod 

with a length of 32 cm and a diameter of 5 mm. The rod 

held the vertebral column in place and upright once it was 

inserted into its neural canal.  

 

 

 
Figure 7. The process of creating the body models using the Dragon Skin FX-Pro silicone rubber solution and the 
constructed mold. Top Left: The two separately-marked liquids, Part A and Part B, that came with the FX-Pro 
package were poured in a single container and mixed thoroughly. Bottom Left: The mixture was carefully poured 
into the mold while making sure that there were minimal air bubbles. Top Right: The Ziplock bags and rubber bands 
ensured that the silicone rubber solution did not leak out of the mold before it dried. Bottom Right: The two halves of 
the plastic tube were carefully separated at the end of the cure time to retrieve the finished cast.  

Figure 6. Mold made using a Lego 
base, a clear plastic tube, and a 
metal rod. 
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Once the vertebral column was placed inside the mold, approximately 0.8 liters 

of Dragon Skin FX-Pro silicone rubber solution was poured inside the plastic tube. The 

Dragon Skin solution had a Shore Hardness of 2A and a tensile strength of 288 psi. As 

an additional measure to prevent the contents of the tube from spilling out from the 

bottom, Ziplock bags were tied to the bottom end of the plastic tube with rubber bands. 

For the complete morphology and Variant A vertebral columns, the prezygapophysis 

and the postzygapophysis allowed the vertebrae to fit tightly around the inner 

circumference of the plastic tube, locking it in place. However, for the Variant B and 

Variant C vertebral columns, the lack of the prezygapophysis and the postzygapophysis 

sometimes caused the vertebral column to either spin or float in the silicone rubber 

solution. A long, wooden rod had to be used to push these vertebral columns down 

whenever the vertebrae started to float up to the surface. Any air bubbles that appeared 

on the surface were also popped to ensure that the resulting matrix was largely 

homogeneous (Figure 7). 

 

 

 

 

 

 
Figure 8. The five body models. The black dot represents the midpoint of the vertebral column. From top to bottom: 
Body models with Complete, Variant A, Variant B, Variant C, and No Vertebrae morphology. 
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Using this method, a body model for each type of skeleton vertebral column was 

created, as well as a ninth body model with the extension spring but without the 

vertebrae to test the effects of the matrix by itself (Figure 8). In total, nine different 

vertebral column variations were created for this experiment (Table 1). 

 

Label Morphology Variant Body Composition Length (cm) 

CMB Complete Body 26.7 

NSB A Body 26.5 

NPB B Body 27 

SPB C Body 27 

NVB No Vertebrae Body 27 

CMS Complete Skeleton 24 

NSS A Skeleton 24 

NPS B Skeleton 24 

SPS C Skeleton 24 
Table 1. A summary of the vertebral column variants. The model CMB serves as the control for the experiment. 

 

The Mechanical Test 
 The mechanical test served to establish how the presence of each articulation, as 

well as the presence of the matrix, influenced the physical properties of the vertebral 

column. Given how the presence of the articulations seemingly locked the movement of 

the neighboring vertebrae within a limited range, the experiment was conducted under 

the assumption that removing each articulation freed up the movements of the 

vertebrae to a certain degree. However, the mechanical test was performed to verify the 

validity of this assumption. In particular, the range of possible movements granted by 

the articulations was determined by measuring the flexural and torsional stiffness of the 

vertebral columns. The design of the mechanical apparatus intended to test these 

characteristics was inspired by the model described in Etnier (2001). For this 

experiment, the mechanical apparatus was constructed by placing two Black+Decker 

Workmate 425 portable workbenches on top of each other and securing them in place 

with large metal clamps (Figure 9-A). Throughout the mechanical test, various 

modifications were made to the mechanical apparatus depending on the test that 

needed to be performed and the type of vertebral column that had to be tested. 

 Testing the flexural stiffness of the physical models required the apparatus to 

hold one end of the vertebral column from the top and have the bottom end be pulled by 

a string in one direction through the use of a pulley system. The force that caused the 

vertebral column to bend was generated by a series of weights in the form of clamps 

dangling in the air as part of the pulley system. The weights were added to the pulley 

system incrementally with each addition to the load increasing the force bending the 

vertebral column. A video recorder placed on a tripod stand was positioned facing the 



The Link Between Body and Behavior    24 

front of the mechanical apparatus in order to capture the lateral displacement of the free 

end of the vertebral column caused by each set of weights. 

 
Figure 9. The mechanical apparatus for testing the flexural stiffness of the body models. (A) Left: An oblique view 
of the entire apparatus. (B) Top Right (in red): A close-up view of the top platform of the mounted workbench. (C) 
Middle Right (in green): A close-up side view of the pulley system. (D) Bottom Right (in blue): A front view showing 
the camera’s perspective. 

Depending on the body composition, different grippers had to be used for the 

apparatus to firmly grasp onto the vertebral column. For the body models, a clear plastic 

tube with a length of 200 mm and an inner diameter of 57.15 mm was used to hold onto 

approximately 50 mm of the body model from one end. The vertebral column was 

secured tightly inside the plastic tube by applying pressure on two fronts. First, the 

plastic tube containing the vertebral column was placed within the gap between the two 

wooden planks that made up the top platform of the mounted workbench. Second, two 
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lengths of plywood were clamped onto the top platform of the mounted workspace and 

positioned perpendicularly to the wooden planks of the platform. By tightening the 

metal clamps, pressure was applied on the plywood to squeeze the plastic tube between 

the two wooden boards (Figure 9-B). For the skeleton models, the plastic tube was too 

large to hold the vertebral column. Instead, a three-finger clamp oriented with the 

prongs facing down was used to tightly grip onto the first vertebra of the vertebral 

column over the gap in the top platform of the mounted workbench. A larger clamp was 

then used to secure the end of the three-finger clamp in place onto the platform (Figure 

10). 

 

  
Figure 10. The mechanical apparatus for testing the flexural stiffness of the skeleton models. Left: A front view 
displaying the skeleton model with the string tied around a vertebra. Right: A three-finger clamp that has been 
clamped to the top platform of the workbench and placed on its side was used to hold one end of the vertebral column. 

The pulley system was established on the left side of the workbench scaffolding at 

a height of around 125 cm from the ground. A clamp held a small wooden plank in place 

and another clamp fastened the handle of the pulley onto the wooden plank (Figure 9-

C). A long length of string rope with a loop tied on both ends ran through the pulley with 

one end wrapped around the vertebral column and the other end dangled in the air. The 

latter end of the string rope was where weights were attached. For each physical model, 

the string rope was wrapped around the part of the vertebral column that caused the 

least slack. Therefore, the position of the loop was at the same height as the pulley, 

meaning that the string rope met the vertebral column at a 90-degree angle. In addition, 

tape was applied to the loop to tighten the grip of the string rope around the vertebral 

column. A backdrop was positioned right behind the vertebral column to measure its 

lateral displacement as it moved. The backdrop consisted of a rectangular cut-out of a 

poster board with sheets of graph paper taped onto the surface. Each block on the graph 

paper was 0.2 in x 0.2 in. The backdrop was held up by two ring stands with the use of 

two clamp holders. These two rings stands stood on top of a long piece of plywood 

placed through the bottom side holes of the workbench with the base of each ring stand 

clamped onto the plywood. Lastly, a lamp was clamped onto the front corner of the 

workbench to illuminate the vertebral column and the backdrop (Figure 9-D).  
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Figure 11. The mechanical apparatus for testing the torsional stiffness of the body models. Left: A front view of the 
apparatus displays a yardstick in front of the vertebral column and a pulley system unique from the one used to test 
flexural stiffness. Right: A close-up view of the pulley system used to test torsional stiffness. 

Testing the torsional stiffness of the physical models required the apparatus to 

hold both ends of the vertebral column. While the grip holding the top end remained 

fixed in place, the grip holding the bottom end had to be able to turn about the long axis 

in order for the physical model to undergo torsion. This force was generated by a pulley 

system attached near the bottom of the workbench. Similar to the flexural stiffness test, 

a series of weights in the form of a dangling chain of clamps created the torsion force 

using the force of gravity. In addition, the weights were added to the pulley system 

incrementally with each addition to the load increasing the force turning the physical 

model. A video recorder placed on a tripod stand was positioned facing the front of the 

mechanical apparatus in order to capture the torsion of the vertebral column caused by 

each set of weights (Figure 11).  

Similar to the gripper for the flexural stiffness test, the grippers holding the top 

end of the vertebral column for the torsional stiffness test were different for the body 

and skeleton models. In the case of the body models, the grippers were identical to the 

ones used for the flexural stiffness test. About 50 mm of the vertebral column from one 

end was placed a clear plastic tube, which was locked into place with the pressure 

generated by the wooden planks of the workbench platform and the wooden boards 

clamped onto the workbench platform. However, the torsional stiffness test required 

several modifications to the grippers for the skeleton models. In order for the vertebral 

column to reach the pulley system at the bottom, the three-finger clamp holding onto 

the first vertebra of the vertebral column was oriented to face downwards into the 

platform gap. In addition, two wooden boards were clamped onto the platform on 

opposite sides of the three-finger clamp to apply pressure onto the clamp to hold it in 

place (Figure 12).  
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Figure 12. The mechanical apparatus for testing the torsional stiffness of the skeleton models. Left: The front view 
displaying the skeleton model with a three-finger clamp holding onto both sides of the vertebral column. Right: A 
three-finger clamp oriented downwards holds onto one end of the vertebral column as two wooden boards clamped 
onto the top platform of the work bench hold the clamp in place. 

 In contrast to the flexural stiffness test, the torsional stiffness test had a gripper 

hold the bottom end of the dangling vertebral column. For the body models, the 

vertebral column was enclosed inside a plastic tube, and the three-finger clamp gripped 

the plastic tube (Figure 11). For the skeleton models, the three-finger clamp gripped the 

vertebra on the end of the vertebral column directly (Figure 12). In order for the 

vertebral column to undergo torsion, the three-finger clamp holding the bottom end of 

the physical model had to remained fixed in its position but exhibit enough flexibility to 

allow turning without any resistance. Therefore, two ring stands were clamped on top of 

a length of plywood placed through the bottom side holes of the workbench, and a long 

rod was affixed perpendicularly to the ring stands with the help of clamp holders. A 

clamp holder with a hole in one end and a C-shaped groove on the other end secured the 

three-finger clamp holding the bottom end of the vertebral column to the rod. The 

grooved end of the clamp holder was fastened tightly to the rod, while the handle of the 

three-finger clamp was placed through the hole end, allowing the three-finger clamp to 

turn but not move out of position. The pulley system also had a small wooden plank 

clamped onto the side of the workbench’s metal scaffolding, while a different clamp 

affixed the handle of the pulley onto the wooden plank, much like the pulley system for 

the flexural stiffness test. However, the string rope in this pulley system was tied to both 

of the screw fasteners of the three-finger clamp gripping the vertebral column. First, a 

knot was tied to the screw fastener facing towards the video recorder before looping 

around the right scaffolding of the workbench and becoming tied to the screw fastener 

facing away from the video recorder. Thus, whenever the weights pulled on the string 

rope, the knots caused the three-finger clamp and the vertebral column to turn 

clockwise. In order to make sure that string rope wouldn’t slip down the workbench 

scaffolding, a clamp was positioned directly underneath the string rope at the bend 

(Figure 11).  
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 For each trial of flexural and torsional stiffness testing, the vertebral column was 

always oriented so that the cotyle pointed up and the condyle pointed down. In addition, 

the dorsal side of the vertebral column always faced the video recorder at the start of 

each trial. During the mechanical test, a total of seven clamps were added to the weight-

loading end of the pulley system. Each clamp, labeled A to G, was always added in a 

predetermined order for each trial (Table 2).  

 

Clamp A B C D E F G 

Mass (g) 104.1 105.3 109.9 110.1 110.1 105.6 106.5 
Table 2. The mass of the weights added to the pulley system for the mechanical tests. For each trial, the weights were 
added in order starting with Clamp A and ending with Clamp G. 

 Flexural stiffness (in N * m2) was calculated using the following formula, where F 

is the applied force, L is the length of the vertebral column, and y is the lateral 

displacement caused by the applied force: 

𝐹𝑙𝑒𝑥𝑢𝑟𝑎𝑙 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 (𝐸𝐼) =
𝐹𝐿3

3𝑦
 

In this case, F represented the applied force (N), which was the product of the combined 

mass of the weights used in kilograms and the acceleration of gravity (9.8 m/s2). L 

represented the beam length (m), the distance from the edge of the top gripper to the 

site where the string rope was wrapped around the vertebral column. This value was 

determined by counting the number of blocks in the backdrop when the vertebral 

column was at its initial position before any weights were added. The value was then 

converted from units of blocks to that of meters. However, this number only made up 

the visible portion of the beam length. In order to determine the total beam length, the 

visible beam length was summed with the unseen beam length above the backdrop and 

outside of the view of the camera. The unseen beam length was 45 mm across all trials. 

The variable y represented the arc length measured from the position of the knot tied 

around the vertebral column at the start of the trial to the position of the knot after 

Clamps A to G were added to the load. In order to calculate the arc length, the lateral 

displacement of the knot was first measured by counting the number of blocks traveled 

between the initial position and the final position. This was made possible with the use 

of screenshots taken from the video recording at different points in time and analyzed in 

the Paint 3D software. Then, the arc length was calculated with the following equation, 

where r represents the radius, i.e. the total beam length, and θ represents the angle of 

lateral movement: 

𝑎𝑟𝑐 𝑙𝑒𝑛𝑔𝑡ℎ =
θ

360 ∗ 2𝜋𝑟
 

 

The angle, θ, was calculated by using the arctangent, the total beam length, and 

the lateral displacement of the vertebral column. This is because the angle of a right 
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triangle can be determined by finding the arctangent of the side opposite of the angle 

over the side adjacent to the angle:  

 

θ =  𝑡𝑎𝑛−1  (
𝑂𝑝𝑝𝑜𝑠𝑖𝑡𝑒

𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡
) =  𝑡𝑎𝑛−1 (

𝐿𝑎𝑡𝑒𝑟𝑎𝑙 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡

𝑇𝑜𝑡𝑎𝑙 𝐵𝑒𝑎𝑚 𝐿𝑒𝑛𝑔𝑡ℎ
) 

  

Once the value of all three variables were found, the value for flexural stiffness 

was calculated for each set of weights used. As a result, each vertebral column provided 

seven values for flexural stiffness, one for each weight load from A to G. Therefore, the 

average of these values served as the flexural stiffness of the vertebral column. In 

addition, the arc length produced by the applied force generated with each weight load 

was plotted on a spring stiffness graph, where the slope (k) represented the spring 

stiffness of the vertebral column.  

Torsional stiffness (in N * m2) was calculated with the following formula, where F 

is the force at moment arm d, θ is the angle of resulting rotation in radians, and L is the 

length of the vertebral column: 

𝑇𝑜𝑟𝑠𝑖𝑜𝑛𝑎𝑙 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 (𝐺𝐽) =  
𝐹𝑑

θ/L
 

 Similar to flexural stiffness, F represented the applied force and L represented 

the distance from the edge of the top gripper to the edge of the bottom gripper, both of 

which were determined with the same procedure used to find these values for the 

flexural stiffness calculation. The only difference was that the total beam length was 

visible within the scope of the video recorder and thus could be measured directly. 

However, the torsional stiffness equation features the variables d and θ. The variable d 

was found by measuring the distance from the knot of the string rope to the body of the 

three-finger clamp, which was the same throughout all the trials. The variable θ 

represented the angle of rotation observed, which first required obtaining the lateral 

displacement, i.e. the distance traveled by a point on the vertebral column as it turned, 

to calculate. In a fashion similar to finding the lateral displacement during the flexural 

stiffness calculation, screenshots of the video recording at different points in time were 

analyzed in Paint 3D to determine the lateral displacement. Specifically, this value was 

determined by using the yardstick in front of the vertebral column to measure the 

distance that the point traveled from the beginning of the experiment to the timepoint 

when each weight was added. The lateral displacement was then converted from units of 

blocks to meters. The angle of rotation was then measured by using the Law of Cosines, 

the radius of the vertebral column (r), and the lateral displacement (d). With the Law of 

Cosines, the cosine of any angle of a triangle can be determined if the lengths of the 

three sides (a, b, and c) of the triangle are known: 

 

𝑐𝑜𝑠 (𝐴) =  
𝑏2 + 𝑐2 − 𝑎2

2bc
, 𝑖𝑓 𝑎𝑛𝑔𝑙𝑒 𝐴 𝑖𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑖𝑑𝑒𝑠 𝑏 𝑎𝑛𝑑 𝑐 
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Therefore, the angle itself can be determined by calculating the arccosine: 

 

θ =  𝑐𝑜𝑠−1  (
𝑟2 + 𝑟2 − 𝑑2

2 ∗ 𝑟 ∗ 𝑟
) =  𝑐𝑜𝑠−1  (

2𝑟2 − 𝑑2

2𝑟2
) = 𝑐𝑜𝑠−1  (1 −  

𝑑2

2𝑟2
) 

 

 Once the value of all four variables were found, the value for flexural stiffness was 

calculated for each set of weights used. As a result, similar to flexural stiffness, each 

vertebral column provided seven values for torsional stiffness, one for each weight load 

from A to G. Therefore, the average of these values served as the torsional stiffness of 

the vertebral column. In addition, the angle produced by the torque (applied force 

multiplied by the moment arm) generated with each weight load was plotted on a 

rotational stiffness graph, where the slope (t) represented the rotational stiffness of the 

vertebral column. 

Once the flexural stiffness (EI) and the torsional stiffness (GJ) of the vertebral 

column was calculated, the twist-to-bend ratio was determined for each of the vertebral 

columns with the following formula: 

𝑇𝑤𝑖𝑠𝑡 − 𝑡𝑜 − 𝐵𝑒𝑛𝑑 𝑅𝑎𝑡𝑖𝑜 =
𝐸𝐼

𝐺𝐽
 

 

The Central Pattern Generator 
 The central pattern generator (CPG) produced the behavior that the physical 

model had to perform. Specifically, the purpose of the CPG was to move the physical 

models to perform lateral undulation. Initially, the CPG consisted of an Arduino Mega 

and four servo motors (SunFounder Metal Gear 55g Digital RC Motor) powered by a 

lithium-ion battery connected to two power distribution adaptors (Figure 13). The 

power distribution adaptors, in particular, were custom built by Vassar technician 

Phillip Cooper, and they served to safely dispense the power from the lithium-ion 

battery to the Arduino Mega and the servo motors. 

 

 
Figure 13. The preliminary design for the CPG. Left: A top view depicting the Arduino Mega on the left, the four 
connected servo motors on the bottom, the two power distribution adaptors above, and the lithium-ion battery pack 
on the right. Right: A side view of the preliminary design for the CPG. Two sets of servo horn (in white) were screwed 
onto the servo horns attached to the servo motors (in black) in an alternating manner to keep the servo horns at the 
same height. Rubber bands were also attached to the sides of the servo motors in an effort to keep the servo motors 
together. 
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In the early design, the servo motors were intended to be attached to the top of 

the vertebral column and cause it to move in an undulatory manner, much like how the 

servo motors controlled the movements of the modular snake robot (Wright et al., 

2007). With that idea in mind, the four servos were connected with a flexible bridge 

made out of servo horns that could bend to allow that undulatory motion. Rubber bands 

were also used to connect the servos (Figure 13). However, after several revisions to the 

early design, the CPG was formally constructed to remain stationary and instead feature 

grippers that can grab onto different areas of the physical model and twist them based 

on the servo motor activity. In order to lock the servo motors into place, a base structure 

was built out of Lego pieces to hold the four servo motors. The dimensions of the base 

structure were 34 cm x 4cm x 5 cm, and the servo motors were spaced approximately 33 

mm away from each other (Figure 14). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

By enclosing the servo motors with Lego pieces, the base structure allowed the 

servo motors to rotate the output spline, which pointed up in the air. On each of the 

servo motors, a 12-hole servo horn was screwed onto the output spline and 12 cotter 

pins (1.59 mm x 25.4 mm) were inserted through the holes of the servo horn in a 

symmetrical arrangement. A rubber band was then interwoven with the cotter pins on 

each of the servo horns so that the handle of a three-finger clamp would fit tightly in the 

makeshift clamp holder. The orange bits of tape marked the rotation position of the 

outline spline in order to make it easier to discern its orientation (Figure 14). The handle 

of the three-finger clamp was thus inserted into the opening of the modified servo horn 

Figure 14. The base structure of the CPG with the servo motors inside. Top Left: A top view of the base structure.  
Bottom Left: A side view of the base structure. Right: The base structure implemented in the final design with 
bookends holding it in place.  
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in a way so that the alignment of the fingers matched the placement of the tape. These 

three-finger clamps served to hold the vertebral column. Despite the existence of four 

servo motors, only the servo motors located at the ends of the base structure were used 

for the experiment. This was because, despite its connection to the power distribution 

adaptors, the Arduino Mega could not coordinate the movement of all four servo motors 

simultaneously without malfunctioning. 

 

 

 
Figure 15. The final design of the CPG. Top Left: A top view of the CPG. Top Right: A front view of the CPG. Bottom: 
An oblique view of the CPG. 

The base structure of the CPG was stationed on top of a Black+Decker Workmate 

425 portable workbench, where two pairs of bookends pressed against the sides and 

taped onto the workbench to keep it in place. A ring stand was placed on top of the flat 
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portion of each bookend and clamped down on the workbench to prevent the CPG from 

shaking. Attached to each of the ring stands was a universal clamp that clasped the 

handle of a three-finger clamp holding up the physical model. However, while the 

universal clamp made sure that the three-finger clamp did not tip over, its grip was 

loose enough so that the three-finger clamp could rotate without any resistance. Above 

the universal clamp, a clamp holder gripped a long metal rod positioned parallel to the 

vertebral column. In the middle of the two rods above the CPG, a clamp holder held 

onto a ruler oriented perpendicularly to the vertebral column at the midpoint indicated 

by the black dot. Next to the base structure, the Arduino Mega and the two power 

distributor adaptors were affixed to the workbench with plastic tag fasteners (Figure 15).  

 

 
Figure 16. A full view of the CPG on the workbench with the tripod positioned beside it. The video camera on top of 
the tripod is facing down to capture the lateral undulation of the vertebral column from the top view.  

 For this experiment, the CPG was programmed to swivel the three-finger clamps 

holding up the vertebral column so that the vertebral column exhibited lateral 

undulation. In order to film this behavior from the top view, a large cart was clamped to 

the workbench and a tripod was placed on top of the cart with its legs fully extended. A 

video recorder was placed on top of the tripod with the lens facing downward (Figure 
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16). The vertebral column’s lateral undulation was measured by tracking the lateral 

displacement of the black dot at the center during each cycle of undulation. Around 20 

seconds of footage was captured for all nine vertebral columns.  The video was then 

analyzed in Logger Pro 3, where the lateral displacement of the black dot was 

determined at six FPS. The program controlling the actions of the CPG was written in 

Arduino 1.8.8 and frequently tested in Tinkercad, a software program for 3D design, 

electronics, and coding (Figure 17). 

 

 
Figure 17. A computer simulation of the breadboard wiring for the CPG in Tinkercad. Arduino pins 2 and 9 were 
used to send signals controlling the behavior of the servo motors. The code for the CPG was initially tested using this 
simulation before being implemented in the real CPG circuit.  

 The CPG testing consisted of two rounds of trials for each vertebral column. 

During the first round, the CPG used the same code for all the vertebral columns in 

order to display how each of them behaved in response (See Appendix A). Afterwards, 

the first nine seconds of footage for each vertebral column was analyzed, starting at the 

beginning of an undulation cycle. The lateral displacement was then plotted in a graph 

to portray its patterns of movement. For each vertebral column, the amplitude of the 

curve of each cycle throughout the nine-second duration was measured and then 

averaged. Before the start of the second round, the code was modified for all of the 

vertebral columns, so that their amplitude matched that of the control, i.e. the complete 

morphology body model. Under ideal circumstances, the computation for the target 

behavior would be based on the length of the computer code generating that behavior. 

This way, one could compare the number of code lines needed to perform a particular 

behavior between the different vertebral columns. However, due to the nature of the 

target behavior for this experiment, only a simple value change is typically necessary for 

all the variants to match the amplitude of the control. Thus, in accordance to the spirit 

of this new approach to measuring morphological computation, a portion of the code 

was structured to allow for a standardized method of quantifying this behavior with 

lines of code (See Appendix D).  
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Figure 18. The section of the CPG code that determined the angle range of the servo motors. This version was used 
during the first round of CPG testing for all the vertebral columns.   

During the first round of CPG testing, the servo motors were programmed to 

rotate back and forth between 30 degrees and 150 degrees. This was done by setting the 

variable setRotationAngle to 120. However, after the first round, the code for each 

vertebral column was modified to match the amplitude of the control by adding the 

variable lineUnit to setRotationAngle. Each addition of lineUnit was designed to 

subtract 10 degrees to setRotationAngle and take up one line of code, thus creating a 

standard unit for this particular case (Figure 18). Through a process of trial and error, 

the second round of CPG testing consisted of modifying the code for each of the 

vertebral columns so that the lateral displacement came as close to possible to that of 

the control. Once that was achieved, the behavior of vertebral columns dictated by their 

respective programming code was filmed and undergone the same analysis process that 

occurred after the first round of CPG testing. In addition, the percent error in amplitude 

between the control and the variants during the second round as well as the percent 

difference between the amplitude found in the first round and that of the second round 

for each of the vertebral columns was calculated to determine how the number of 

additional code lines correlated with the change in behavior.  

Microsoft Excel 16.0 (2016) was used for all data manipulation and statistical 

analysis.  
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Results 
  

The Mechanical Test 
 The purpose of the mechanical test was to assess the validity of the assumption 

that the three sets of articulations that connect neighboring snake vertebrae together 

serves to mainly restrict the movements of the vertebral column. The flexural stiffness of 

the vertebral column varied greatly between the body models and the skeleton models 

(See Appendix B). While the body models were able to handle the load of all seven 

weights from A to G, the skeleton models quickly deformed once weight B was added to 

the load. As a result, flexural stiffness testing for the latter consisted of testing for only 

weight A. This meant that flexural stiffness could not be averaged across each weight 

and the spring stiffness, k, could not be determined for the skeleton models. 

Nevertheless, the collected data shows a clear difference in flexural stiffness between the 

body models and the skeleton models, demonstrating the large effect that the matrix has 

on the bending of the vertebral column (Figure 19).  

 

 
Figure 19. Mean flexural stiffness for the nine vertebral columns. Error bars represent standard errors. 

Among the body models, CMB had a relatively low flexural stiffness (M = 1.87, SD 

= 0.308) compared to the other vertebral columns. Instead, NSB had the highest 

flexural stiffness (M = 3.37, SD = 0.227), followed by NPB (M = 2.22, SD = 0.566). 

However, SPB had a slightly lower flexural stiffness (M = 1.85, SD = 0.254) than CMB. 

By far, the body model with the lowest flexural stiffness was NVM (M = 0.963, SD = 

0.214). In addition, NSB had a greater spring stiffness (k = 2.93 x 103) than CMB (k = 

2.971 x 103), but CMB had a greater spring stiffness than either NPB (k = 1.60 x 103) or 

SPB (k = 1.27 x 103). NVB had the lowest spring stiffness value among the body models 

(k = 8.90 x 102) (Figure 20). Compared to the body models, the flexural stiffness of the 
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skeleton models was quite small, to the point where differences between each vertebra 

morphology were not clearly visible. NPS had the highest flexural stiffness among the 

skeleton models (M = 8.41 x 10-2), followed by CMS (M = 8.11 x 10-2), then NSS (M = 

7.07 x 10-2), and lastly SPS (M = 6.26 x 10-2). This seems to suggest that, without the 

presence of the matrix, the bending of the models came largely from the properties of 

the extension spring holding the vertebrae together rather than the articulations 

themselves (Table 3).  

 

 
Figure 20. Relationship between applied force (N) and the arc length of the lateral displacement displayed by the 
body model. Stiffer models have a steeper slope: CMB (m = 2556), NSB (m = 2924), NPB (m = 1603), SPB (m = 1274), 
& NVB (m = 890). 

 The torsional stiffness of the vertebral column was less distinct between the body 

and skeleton models as well as between vertebra morphology (Figure 21). However, 

compared to the values for flexural stiffness, the values for torsional stiffness were 

generally smaller. Among the body models, NSB had the highest torsional stiffness (M = 

0.113, SD = 2.79 x 10-2), while NPB (M = 3.93 x 10-2, SD = 1.02 x 10-2) and SPB (M = 4.05 

x 10-2, SD = 7.70 x 10-3) had around the same value. In contrast, CMB had a relatively low 

value for torsional stiffness (M = 3.33 x 10-2, SD = 7.13 x 10-3), but NVB had the lowest 

value among the body models (M = 5.41 x 10-3, SD = 9.48 x 10-4). Among the skeleton 

models, NSS exhibited a surprisingly high torsional stiffness (M = 6.19 x 10-2, SD = 2.54 

x 10-2) that was greater than that of all the other vertebral columns except for NSB. 

However, given that the torsional stiffness for all the vertebral columns are very small, 

this difference may be caused by discrepancies in measurement. Following NSS, NPS (M 

= 1.43 x 10-2, SD = 4.98 x 10-3) had the next highest torsional stiffness, then CMS (M = 

9.22 x 10-3, SD = 3.85 x 10-3), and lastly SPS (M = 2.77 x 10-3, SD = 1.08 x 10-3) (Table 3). 

Notably, in some cases with the earlier weights, the torsional stiffness was infinity, 

indicating that the vertebral column with the given weight did not rotate. These values 

were not included in the calculations.  
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Figure 21. Mean torsional stiffness for the nine vertebral columns. Error bars represent standard errors. 

For the rotational stiffness of the vertebral columns, the body models showed less 

distinct differences between vertebra morphology than the skeleton models. Among the 

body models, NVB stood out from the other vertebral columns (t = 3.77 x 10-2), while CMB 

(t = 0.191), NSB (t = 0.415), NPB (t = 0.282), and SPB (t = 0.148) were largely clustered 

together. However, it is noteworthy that the rotational stiffness for NSB and NPB was 

greater than that of CMB (Figure 22). For the skeleton models, the vertebral columns 

displayed a more distinct difference in rotational stiffness (Figure 23). Similar with the 

body models, SPS had the lowest rotational stiffness within its respective body 

composition group (t = 1.44 x 10-2). In addition, NSS (t = 9.63 x 10-2) and NPS (t = 8.43 x 

10-2) had a higher rotational stiffness than CMS (t = 5.32 x 10-2) (Table 3).  

 

 
Figure 22. Relationship between applied force (N) and the angle of rotation displayed by the body models. Stiffer 
models have a steeper slope: CMB (m = 0.192), NSB (m = 0.415), NPB (m = 0.282), SPB (m = 0.148), & NVB (m = 
0.0377). 
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Figure 23. Relationship between applied force (N) and the angle of rotation displayed by the skeleton models. Stiffer 
models have a steeper slope: CMS (m = 0.0532), NSS (m = 0.0963), NPS (m = 0.0843), & SPS (m = 0.0144). 

 Once the flexural stiffness and torsional stiffness was determined for all the 

vertebral columns, the twist-to-bend ratio was calculated. In general, the body models 

had a higher twist-to-bend ratio than the skeleton models, signifying the body models’ 

aversion to torsion compared to bending (Figure 24). Among the body models, NVB had 

the highest twist-to-bend ratio (M = 178, SD = 75.7), followed by a close tie between 

NPB (M = 56.4, SD = 37.0) and CMB (M = 56.1, SD = 10.4), then SPB (M = 45.5, SD = 

6.23), and lastly NSB (M = 29.9, SD = 6.73). In contrast, SPS had the highest twist-to-

bend ratio among the skeleton models (M = 22.6), followed by CMS (M = 8.80), then 

NPS (M = 5.90), and lastly NSS (M = 1.14) (Table 3).  

 

 
Figure 24. Mean twist-to-bend ratio for all nine vertebral columns. The twist-to-bend ratio for the body models was 
first determined for each weight load before they were averaged across all the weights for each vertebral column. 
For the skeleton models, due to the inability to gather more values for flexural stiffness, the EI value obtained with 
Clamp A was used as the numerator instead of the average flexural stiffness. Error bars represent standard errors. 
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Model Flexural 

Stiffness 

(N*m2) 

Spring 

Stiffness 

Torsional Stiffness 

(N*m2) 

Rotational 

Stiffness 

Twist-to-

Bend 

Ratio 

CMB 1.87 (0.308) 2.71 x 103 3.33 x 10-2 (7.13 x 10-3) 0.191 56.1 (10.4) 

NSB 3.37 (0.227) 2.93 x 103 0.113 (2.79 x 10-2) 0.415 29.9 (6.73) 

NPB 2.22 (0.566) 1.60 x 103 3.93 x 10-2 (1.02 x 10-2) 0.282 56.4 (37.0) 

SPB 1.85 (0.254) 1.27 x 103 4.05 x 10-2 (7.70 x 10-3) 0.148 45.5 (6.23) 

NVB 0.963 (0.214) 8.90 x 102 5.41 x 10-3 (9.48 x 10-4) 3.77 x 10-2 178 (75.7) 

CMS 8.11 x 10-2 0.00 9.22 x 10-3 (3.85 x 10-3) 5.32 x 10-2 8.80 

NSS 7.07 x 10-2 0.00 6.19 x 10-2 (2.54 x 10-2) 9.63 x 10-2 1.14 

NPS 8.41 x 10-2 0.00 1.43 x 10-2 (4.98 x 10-3) 8.43 x 10-2 5.90 

SPS 6.26 x 10-2 0.00 2.77 x 10-3 (1.08 x 10-3) 1.44 x 10-2 22.6 
Table 3. Values for flexural stiffness, spring stiffness, torsional stiffness, rotational stiffness, and the twist-to-bend 
ration for all the vertebral columns. The standard deviation for each parameter, if present, is given in the parentheses.  

 

The Central Pattern Generator 
 The purpose of the CPG test was to first observe the lateral undulation of all the 

vertebral columns and then determine how many lines of code needed to be added in 

order for the lateral displacement of the variants to match that of the control. Lateral 

undulation was characterized primarily by the amplitude of the wave cycles generated 

by the CPG. Given how the stiffness of the vertebral columns directly affects the 

amplitude of the wave, behavior demonstrated by the vertebral columns helped bolster 

the results obtained during the mechanical test. For the first round of testing, all the 

vertebral columns undulated in a consistent, steady pattern with a similar frequency 

(See Appendix C). However, a noticeable difference could be observed in the behavior 

between the body models and the skeleton models. In general, the waves generated by 

the skeleton models exhibited a larger amplitude than those generated by the body 

models (Figure 25). Among the body models, NVB demonstrated the largest amplitude 

(M = 4.07, SD = 7.69 x 10-2), followed by SPB (M = 2.65, SD = 6.15 x 10-2). Interestingly, 

the amplitude for NSB (M = 1.05, SD = 9.49 x 10-2) was smaller than that of CMB (M = 

1.23, SD = 6.63 x 10-2), although CMB had a smaller amplitude than NPB (M = 1.91, SD 

= 9.85 x 10-2). In contrast, many of the skeleton models exhibited similar amplitude 

measurements. Unlike with the body models, CMS had a smaller amplitude (M = 5.16, 

SD = 0.139) than either NSS (M = 5.24, SD = 0.235) or NPS (M = 5.87, SD = 0.272), but 

it was still larger than that of SPS (M = 3.83, SD = 0.255) (Table 4).  
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Figure 25. Lateral Displacement of the vertebral columns for the first round over a period of around 9 seconds. Top: 
Line graphs that depict the lateral displacement of the five body models. Bottom: Line graphs that depict the lateral 
displacement of the four skeleton models and the CMB vertebral column (in green) as reference. 

 Before the start of the second round of CPG testing, the program running the 
CPG for each of the vertebral columns were modified appropriately to match the 
behavior of the control. Modifications came in the form of the addition of the code line 
lineUnit, which subtracted 10 degrees from the variable setRotationAngle (See Appendix 
D). No other changes were made to the rest of the program. As the control, the program 
for CMB remained unchanged for its second round of testing with no lineUnits added. 
As an outlier due to having a smaller amplitude than that of the control, one lineUnit 
was added to the program for NSB, but the value of lineUnit was changed so that 10 
degrees was added to setRotationAngle instead of subtracting 10 degrees from the 
variable. For all the other body models, lineUnit served to subtract 10 degrees from 
setRotationAngle. NPB required four lineUnits, SPB required six lineUnits, and NVB 
required eight lineUnits. On the other hand, the skeleton models displayed such large 
amplitude compared to the control that either nine lineUnits (NSS and SPS) or ten 
lineUnits (CMS and NPS) had to be added to their respective program (Table 4). 
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However, because only the amplitude of the undulations was altered in the code, 
variants showed a greater frequency during the second round of CPG testing compared 
to the first round in response. As a result, the second round featured more chaotic 
patterns of lateral undulation as the servo motors rotated at a faster rate (Figure 26).  
 

 

 
Figure 26. Lateral Displacement of the vertebral columns for the second round over a period of around 9 seconds. 
Top: Line graphs that depict the lateral displacement of the five body models. Bottom: Line graphs that depict the 
lateral displacement of the four skeleton models and the CMB vertebral column (in green) as reference. 

 The main goal of the second round of CPG testing was to ensure that the 

modification to the program brought the behavior of the variants as close to that of the 

control as possible. After the second round, the amplitude of the waves for each of the 

vertebral columns was averaged over their respective number of cycles within the nine-

second duration. In making sure that the amplitude of the variants did not exceed that 

of the control, the control ended up having the largest amplitude out of all the vertebral 

columns for the second round (M = 1.23, SD = 6.43 x 10-2). NSB (M = 1.17, SD = 0.127), 

NPB (M = 1.15, SD = 0.118), and SPB (M = 0.946, SD = 0.140) came closest to matching 

the amplitude of the control with a percent error of 4.26%, 6.22%, and 22.8%, 

respectively. However, all the skeleton models displayed a percent error of 
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approximately 30% in amplitude compared to the control, where CMS had a percent 

error of 33.1% (M = 0.819, SD = 0.216), NSS had a percent error of 30.8% (M = 0.848, 

SD = 0.196), NPS had a percent error of 36.9% (M = 0.772, SD = 0.275), and SPS had a 

percent error of 31.8% (M = 0.836, SD = 0.191). The variant with the largest percent 

error was NVB, which had a percent error of 62.0% (M = 0.465, SD = 0.196) (Table 4). 

While not identical to the behavior of the control, the modifications to the program 

brought each of the vertebral columns within a reasonable range of the control’s 

observed amplitude. In addition, this data seems to suggest that the vertebral columns 

whose behavior deviated the most from the control during the first round of CPG testing 

were the most difficult to adjust for the second round of CPG testing (Figure 27). 

 

Model Round 1: Ave. 

Amplitude 

(cm) 

Round 2: Ave. 

Amplitude 

(cm) 

Round 2:  

% Error 

between 

Control & 

Variants 

% Diff. 

between 

Round 1 & 2 

No. Code 

Lines 

Added 

CMB 1.23 (6.63 x 10-2) 1.23 (6.43 x 10-2) 0.00% 0.790% 0 

NSB 1.05 (9.49 x 10-2) 1.17 (0.127) 4.26% 10.6% 1 

NPB 1.91 (9.85 x 10-2) 1.15 (0.118) 6.22% 50.0% 4 

SPB 2.65 (6.15 x 10-2) 0.946 (0.140) 22.8% 94.8% 6 

NVB 4.07 (7.69 x 10-2) 0.465 (0.196) 62.0% 159% 8 

CMS 5.16 (0.139) 0.819 (0.216) 33.1% 145% 10 

NSS 5.24 (0.235) 0.848 (0.196) 30.8% 148% 9 

NPS 5.87 (0.272) 0.772 (0.275) 36.9% 150% 10 

SPS 3.83 (0.255) 0.836 (0.191) 31.8% 128% 9 
Table 4. Values for the amplitude during the first and second round of testing, the percent error between the control 
and the variants for round 2, the percent difference between the amplitude for round 1 and round 2, and the number 
of code lines that was added to the program for each respective vertebral column. The standard deviation for each 
parameter, if present, is given in the parentheses. 

 
Figure 27. Mean amplitude of the vertebral columns for round 1 of CPG testing (in blue) and round 2 of CPG testing 
(in orange). Error bars represent standard errors. 
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In order to determine how much of the computational load that each vertebra 

morphology and the matrix offloaded from the abstract controller, i.e. the 

morphological computation of each morphological feature, the number of lineUnits 

added to the program and the corresponding percent difference in behavior between the 

first and second round were analyzed in context of one another. A graph depicting the 

percent difference in each vertebral column’s amplitude between the first and second 

round of CPG testing in the context of the number of lineUnits was added to the 

respective CPG program showed a general pattern where the percent difference in 

behavior demonstrated a positive correlation with the number of code lines added 

(Figure 28). In other words, the removal of morphological characteristics from the 

vertebral column led to an observable difference in behavior. In addition, the more 

morphological features were removed from the vertebral column, the more lines of code 

that the CPG program required in order to replicate the behavior of a vertebral column 

with a complete morphology with no missing characteristics. 

 

 
Figure 28. The number of lineUnits added to the CPG program of each respective vertebral column (in blue) 
alongside the percent difference in observed amplitude that occurred between the first round of CPG testing and the 
second round of CPG testing (in orange). 
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Discussion 
Based on the results of this experiment, several insights can be made about the 

vertebral column of the snake and the approach to measuring morphological 

computation proposed by this study. Among the various findings, one that stood out in 

particular was the relative stiffness of the vertebral column with the complete 

morphology compared to the other variants. Due to the very nature of how the 

articulations restrict certain movements between neighboring vertebrae, this 

experiment was conducted under the pretense that removing these articulations would 

reduce the overall stiffness of the vertebral columns. But while the complete morphology 

models generally demonstrated more stiffness than the models with both the 

zygosphene-zygantrum and prezygapophysis-postzygapophysis articulations removed, 

the former often exhibited less stiffness compared to models where only one of those 

articulations were missing. This discrepancy was prevalent primarily among the body 

models. During the mechanical test, CMB exhibited a much lower flexural stiffness and 

torsional stiffness than both NSB and NPB. In addition, NSB displayed a greater spring 

stiffness and rotational stiffness than CMB. This pattern was also observed during the 

CPG test, where NSB exhibited a smaller amplitude in its undulation than CMB.  

Based on the existing literature, it seems implausible that the presence of the 

zygosphene or the zygapophyses would, in fact, increase the vertebral column’s 

flexibility rather than decrease it. The zygosphene and the zygantrum are morphological 

traits that are unique to certain reptiles and highly developed in snakes. Past studies 

have shown that the opposing nature of the zygosphene-zygantrum articulations renders 

torsion wholly impossible, or at the very least severely limit it in snakes. Although Moon 

(1999) has argued that even incremental twisting can produce substantial torsion over a 

long stretch of the vertebral column, there is no indication that actually removing the 

zygosphene-zygantrum articulation would hinder torsion in any way. Similarly, the 

prezygapophysis-postzygapophysis articulation has been proposed to not only severely 

limit torsion but also lateral bending at each intervertebral joint (Morinaga & 

Bergmann, 2019). Any additive effect that these articulations may have to allow a wider 

range of movement is left largely irrelevant when comparing the behavior of vertebral 

columns with the same number of vertebrae.  

Therefore, it is possible that the relatively low stiffness of CMB compared to NSB 

and NPB could be due to the silicone rubber matrix encasing the vertebral column. 

During the creation of the body models, the Dragon Skin silicone rubber solution was 

poured into the mold from the top, allowing the solution to seep through the holes 

between the vertebrae of the vertebral column inside the plastic tube. However, the 

zygosphene-zygantrum articulation creates a small pocket of air where the joints meet, 

since it may not be easy for the silicone rubber solution to fully infiltrate the wedge-

shaped cavity. Thus, there is a possibility that CMB has small pouches of air inside the 

cavity of the zygosphene-zygantrum articulations that contribute to its flexibility, while 
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the silicone rubber solution fully seeped between the vertebrae of NSB, contributing to 

its relatively high stiffness. If this is the case, then the skeleton models should more 

closely exhibit the expected patterns of stiffness between the different vertebral 

columns. However, the results for the skeleton models largely show the same pattern 

found with the body models. For both flexural stiffness and torsional stiffness, CMS was 

not the vertebral column that demonstrated the greatest stiffness among the skeleton 

models. In addition, not only do the skeleton models lack the same amount of 

observable data as the body models in terms of flexural stiffness, but there is also the 

likelihood that their lateral displacement could have been skewed by the properties of 

the extension spring that held the vertebrae together. Unfortunately, a multitude of 

factors could have influenced the results of the mechanical test, such as possible wear 

and tear on the vertebral columns.  

Although it remains unclear as to what may have caused the complete 

morphology models to have a lower flexural and torsional stiffness compared to the 

variants in their respective body composition groups, the data shows that the stiffness 

between the vertebral columns are distinct. In most cases, the differences in the results 

were visibly perceptible, meaning that changes to the shape of the vertebra led to 

explicit changes in their behavior within the vertebral column. This finding reflects how 

snake species in different ecological niches have evolved vertebra with different 

morphological characteristics. For instance, researchers have found that the vertebrae of 

aquatic species have greater bone mass than the average snake in order to swim at the 

bottom of the water. Likewise, heavy-bodied strikers like most pythons have vertebrae 

with greater bone mass in order to anchor their bodies to the ground when attacking 

prey (Houssaye, Boistel, Böhme, & Herrel, 2013). According to a study by researcher 

Ralph Gordon Johnson, the differences in the shape of the vertebra between different 

snake species are so significant that he proposed that the vertebra morphology better 

reflect the taxonomic relationships of snakes than gross adaptation (Johnson, 1955).  

In addition, the results of the mechanical test clearly demonstrate the difference 

in behavior caused by the existence of an extracellular matrix. For both the flexural 

stiffness and torsional stiffness tests, the skeleton models generally displayed less 

stiffness than the body models. In particular, the flexural stiffness of the skeleton 

models was so low compared to the body models that the value for flexural stiffness for 

each of them were on different orders of magnitude. This result clearly indicates the 

importance of the musculature surrounding the vertebral column in absorbing the 

strain and stress that would otherwise impact the skeleton directly. Lastly, the twist-to-

bend ratio calculated for each vertebral column displays whether the model was more 

prone to bending or twisting. Interestingly, despite demonstrating a much higher 

torsional stiffness than the skeleton models, the body models also had a greater twist-to-

bend ratio. This result seems to suggest that, at least with the matrix, the vertebral 

column is incredibly averse to torsion. However, as Moon (1999) indicates, the 

articulations do not outright make torsion impossible for the vertebral column. In 
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addition, given how NVB displayed the largest twist-to-bend ratio out of all the other 

vertebral columns as well as the very low twist-to-bend ratios for the skeleton models, it 

appears the matrix was also largely responsible for having the vertebral columns favor 

bending over twisting.  

In regard to testing the effectiveness of the new approach to measuring 

morphological computation, the results seem to endorse its viability. During the first 

round of CPG testing, each of the vertebral columns displayed distinct differences in 

behavior, as measured by the amplitude of their undulatory wave. Furthermore, as 

shown in Figure 27, there was a positive correlation between the number of code lines 

needed and the size of the gap in behavior between the first round and the second 

round. For variants like NSB and NPB where only one or two morphological traits were 

missing from the control design, the differences in the observed lateral undulation were 

relatively minimal and required only a few lines of code to adjust the behavior and close 

the gap in amplitude. In contrast, variants like NVB were so morphologically different 

that a lot more lines of code were needed to close the gap in amplitude. Based on this 

graph, the presence of the matrix was so influential to the performance of lateral 

undulation that it overshadowed the effects of morphological differences in vertebra 

shape. All four of the skeleton models exhibited lateral undulations with much greater 

amplitudes than the control due to the lack of this matrix and thus required 8 to 9 

additional lines of code to adjust the behavior, independent of the vertebra morphology. 

Additionally, the behavior of the variants during the second round of testing was more 

or less within the parameters of the control, as shown in Figure 26. In other words, the 

unique modifications to the CPG program for each of the variants successfully adjusted 

the behavior of the variants to match that of the control.  

Based on the collected data, we can quantify the morphological computation of 

each of the morphological features of the vertebral column. Thus, the presence of the 

zygosphene would be equivalent to about one line of lineUnit code, the presence of the 

prezygapophysis and the postzygapophysis would be equivalent to about four lines of 

lineUnit code, and the presence of the extracellular matrix would be equivalent to about 

ten lines of lineUnit code. A noteworthy outcome of this conclusion is the fact that the 

zygosphene is implied to have offloaded the equivalent of only one lineUnit of 

computation from the abstract controller even though the results of the mechanical test 

suggests that the zygosphene plays a major role in deciding the stiffness of the vertebral 

column. This could be an instance where, even though the morphology greatly 

influences how the body responds to outside stimuli, it still plays a relatively small role 

in the computation that produces the behavior. 

However, the results of this experiment should be interpreted with caution due to 

potential sources of error inherently present within the methodology of this particular 

experiment. For instance, the measurements during the mechanical tests were all done 

by eye, although the behavior was carefully filmed and analyzed in Paint 3D afterwards. 

For both flexural stiffness and torsional stiffness, the lateral displacement and height of 
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the vertebral columns relied on the observer properly keeping track of the models’ 

movement and position as weights were added to the pulley system. In addition, the 

vertebral columns exhibited very small changes in behavior for many cases, meaning 

that any error in measuring that behavior greatly affected the value of the output.  

Most importantly, several adjustments could be made to the CPG testing to 

improve its precision and accuracy. While the percent error between the behavior of the 

control and the variants during the second round of testing was mostly under 50%, an 

ideal scenario would have the percent error reduced to less than 10%. This issue in 

particular stemmed from the increase in frequency that resulted from adjusting the 

amplitude of the variants. Due to the increased speed of their movements during the 

second round, tracking the lateral displacement of the variants proved to be incredibly 

difficult and likely caused some errors in measurement. This issue could potentially be 

addressed by modifying the program for each vertebral column to adjust not only for the 

amplitude but also for the frequency of its lateral undulation. Another unexpected issue 

that arose was the shape of the lateral undulation for the skeleton models. While the 

presence of the matrix helped distribute the force across the vertebral column, which 

caused the body models to bend naturally, the skeleton models had a more deformed 

lateral undulation pattern due to the lack of a proper medium that could evenly transmit 

the force. While right side of the lateral undulation produced a distinct curve, the left 

side did not (See Appendix C). This issue further highlights the disruptive influence of 

the extension spring, whose effects may overshadow that of the articulations of 

vertebrae. In the future, a more rigorous methodology with a more precise protocol to 

measuring the behavior would lead to more accurate results.  

 Besides accounting for errors in behavior measurement, this approach to 

quantifying morphological computation must address perhaps its greatest obstacle, 

which is its limited applicability. The core structure of this method relies on our ability 

to not only physically model the target behavior but also ascertain that changes to the 

target behavior can be attributed to a specific, isolated cause or morphology. While this 

experiment naturally ascribed the amplitude of the model’s lateral undulation to the 

vertebral column’s articulations and body composition, there is a possibility that 

implementing these modifications altered some other aspect of the morphology that 

offloaded the computation instead of the traits that we had assumed. Not only that, the 

lateral undulation behavior was performed while the vertebral column was held up in 

the air, completely divorced from the environment with which the body was supposed to 

interact. Part of what allows snakes to propel themselves using lateral undulation is 

their use of irregularities in the ground, such as depressions, pebbles, and tufts of grass, 

push their bodies against to move forwards (Gans, 1970). Therefore, the implementation 

of the initial CPG design, where the servo motors lined the dorsal side of its body and 

controlled its movements on the ground, would have produced a more accurate 

representation of the behavior that we wanted to observe.  
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 In essence, the success of this method hinges on the accuracy of the physical 

model, if one could even be built to model the target system. Furthermore, the computer 

program that controls its behavior must likewise demonstrate a high level of accuracy in 

its representation of the hypothesis for that behavior. Given the sheer amounts of 

complexity that biological systems possess, fulfilling these two crucial prerequisites for 

the successful implementation of this proposed approach can be expensive and difficult 

to fabricate, as well as impractical in some scenarios. This is especially true when one 

also has to account for how the target system interactions with the environment as a 

necessary component of embodied cognition.  

According to roboticist Barbara Webb, biological models that serve to represent a 

hypothesis about a target system can be assessed in seven different ways (Webb, 2001): 

1. Relevance: whether the model tests and generates hypotheses applicable to 

biology. 

2. Level: the elemental units of the model in the hierarchy from atoms to societies. 

3. Generality: the range of biological systems the model can represent. 

4. Abstraction: the complexity, relative to the target, or amount of detail include in 

the model. 

5. Structural accuracy: how well the model represents the actual mechanisms 

underlying the behavior. 

6. Performance match: to what extent the model behavior matches the target 

behavior. 

7. Medium: the physical basis by which the model is implemented. 

Depending on how the physical model is defined within this framework, the 

employment of the method proposed by this study can lead to varying outcomes on how 

the morphological computation of a target trait is quantified. It is also important to note 

that not all morphological computation serves to benefit the controller. “Bad” 

morphological computation occurs when the interaction between the morphology and 

the environment causes more work for the controller or causes the behavior to fail 

(Ghazi-Zahedi, Deimel, Montufar, Wall, & Brock, 2017). This means that the 

morphological computation of a physical characteristic measured from the physical 

model may reveal that the morphology actually impedes the system from achieving its 

intended behavioral goal. Such instances would identify sources of error within the 

model that may need reassessment in its representation.  

Perhaps the reason why embodied cognition has dodged attempts to establish a 

formal model is because doing so is equivalent to creating a formal model that quantifies 

how much each aspect of a biological system contributes to each facet of behavior. 

Similar to morphological computation, one can easily perceive whether a trait assisted 

in the completion of a specific task, but few, if any, can formally quantify its importance 

in fulfilling that behavior. In addition, the sheer amount of variance present across all 

biological systems creates immense difficulties in generalizing a formal model that can 

encompass each and every discrepancy and inconsistency. Reducing the biological world 
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to a universal set of numbers is certainly a Herculean task that many would feel 

inadequately prepared to face. In comparison, the task of building a world of symbols 

and algorithms from the bottom-up would be a welcomed challenge. 
 

 

Conclusion 

This experiment investigated whether algorithmic information theory can be 

used to measure morphological computation, and thus quantify embodied cognition. In 

order to determine the viability of this approach, we created different physical models of 

the corn snake’s vertebral column and tested not only their physical properties but also 

whether we could measure the gaps in behavior that arose from differences in 

morphology. Based on the results, the changes in behavior caused by specific differences 

in morphology were distinct enough to be measured in number of code lines. Therefore, 

certain morphological characteristics could be correlated with specific lengths of code. 

In addition, the observed data demonstrated an additive effect, where the removal of 

multiple morphological traits led to greater changes in behavior that required more lines 

of code to properly account and adjust for the difference. While this approach suffers 

from several flaws in its design, the core idea and the general framework of this method 

offer substantial promise in providing further information about the relationship 

between the morphology of the agent and the cognitive computation required for it to 

execute specific behaviors. The use of computer code lines and algorithmic information 

theory may very well contribute to the formation of stronger ties between the physical 

symbol system hypothesis and embodiment, thus bridging the chasm between the 

computational theory of mind and embodied cognition.  

Most importantly, this investigation is not the only effort being made to connect 

these two models of cognition together. Within the field of cognitive science, several 

researchers have already begun to formulate different ways to unify the discipline by 

integrating elements from both theories. For cognitive scientist Chris Eliasmith, the 

answer to properly explaining cognition comes in the form of a model he called 

“Semantic Pointer Architecture.” This cognitive architecture adopts cognitively relevant 

representations, computations, and dynamics that are natural to implement in large-

scale, biologically plausible neural networks. Through this process, Eliasmith aims to 

produce a unified characterization of biological cognition, which understands cognition 

as a biological process by building models that implement cognitive behavior (Eliasmith, 

2013). With the help of these kinds of all-encompassing models, we may be able to take 

another step forward in understanding the wonders of human intelligence and what it 

can offer to the world. 
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Appendix A 
 

Arduino Code for the First Round of CPG Testing: 
 

 
/* 
   ControlSineWave: The two servo motors will move in accordance to a sinusoidal wave. 
   This is the original code that was used during Round 1 of CPG testing. 
*/ 
 
//Import the servo library 
#include <Servo.h> 
 
//Create the servo objects to control each servo 
Servo s2; 
Servo s9; 
 
//Variables 
const int servoPin2 = 2; 
const int servoPin9 = 9; 
 
//Variable to store the servo position 
int pos1; 
 
//Unit of information change 
int lineUnit = 10; 
 
//Variable to store angle range of servos 
//Add lineUnit to setRotationAngle to increase angle of rotation 
//Subtract lineUnit to setRotationAngle to decrease angle of rotation 
int setRotationAngle = 120; 
int setLeftRange = 90 - (setRotationAngle / 2); 
int setRightRange = (setRotationAngle / 2) + 90; 
 
//Variable to determine speed of servo 
int servoSpeed = 8; 
 
void setup() { 
  s2.attach(servoPin2); 
  s9.attach(servoPin9); 
} 
 
void loop() { 
  //Goes from 0 degrees to 180 degrees in steps of 1 degree 
  for (pos1 = setLeftRange; pos1 <= setRightRange; pos1 += 1) { 
    s2.write(pos1); 
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    s9.write(180 - pos1); 
    delay(servoSpeed); 
  } 
  // goes from 180 degrees to 0 degrees in steps of 1 degree 
  for (pos1 = setRightRange; pos1 >= setLeftRange; pos1 -= 1) { 
    s2.write(pos1); 
    s9.write(180 - pos1); 
    delay(servoSpeed); 
  } 
} 
 

  



The Link Between Body and Behavior    58 

Appendix B 
 

Annotated Screenshots of the Mechanical Test for Flexural Stiffness: 
 

Model: CMB 

  
No Clamps Clamps A to G 

Figure B1. Observed lateral displacement of CMB during the flexural stiffness mechanical test. Left: No clamps 
attached to the load. Right: Clamps A to G attached to the load. 

Model: NSB 

   
No Clamps Clamps A to G 

Figure B2. Observed lateral displacement of NSB during the flexural stiffness mechanical test. Left: No clamps 
attached to the load. Right: Clamps A to G attached to the load. 
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Model: NPB 

   
No Clamps Clamps A to G 

Figure B3. Observed lateral displacement of NPB during the flexural stiffness mechanical test. Left: No clamps 
attached to the load. Right: Clamps A to G attached to the load. 

 

Model: SPB 

  
No Clamps Clamps A to G 

Figure B4. Observed lateral displacement of SPB during the flexural stiffness mechanical test. Left: No clamps 
attached to the load. Right: Clamps A to G attached to the load. 
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Model: NVB 

   
No Clamps Clamps A to G 

Figure B5. Observed lateral displacement of NVB during the flexural stiffness mechanical test. Left: No clamps 
attached to the load. Right: Clamps A to G attached to the load. 

 

Model: CMS 

   
No Clamps Clamp A 

Figure B6. Observed lateral displacement of CMS during the flexural stiffness mechanical test. Left: No clamps 
attached to the load. Right: Clamp A attached to the load. 
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Model: NSS 

   
No Clamps Clamp A 

Figure B7. Observed lateral displacement of NSS during the flexural stiffness mechanical test. Left: No clamps 
attached to the load. Right: Clamp A attached to the load. 

 

Model: NPS 

   
No Clamps Clamp A 

Figure B8. Observed lateral displacement of NPS during the flexural stiffness mechanical test. Left: No clamps 
attached to the load. Right: Clamp A attached to the load. 
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Model: SPS 

   
No Clamps Clamp A 

Figure B9. Observed lateral displacement of SPS during the flexural stiffness mechanical test. Left: No clamps 
attached to the load. Right: Clamp A attached to the load. 

 
 

Annotated Screenshots of the Mechanical Test for Torsional Stiffness: 
 

Model: CMB 

   
No Clamps Clamps A to G 

Figure B10. Observed torsion of CMB during the torsional stiffness mechanical test. Left: No clamps attached to the 
load. Right: Clamps A to G attached to the load. The blue line provides the height of the vertebral column and the 
purple line provides the height of the bottom gripper. The red line represents the initial position and the black line 
represents the ending position. 
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Model: NSB 

   
No Clamps Clamps A to G 

Figure B11. Observed torsion of NSB during the torsional stiffness mechanical test. Left: No clamps attached to the 
load. Right: Clamps A to G attached to the load. The blue line provides the height of the vertebral column and the 
purple line provides the height of the bottom gripper. The red line represents the initial position and the black line 
represents the ending position. 

 

Model: NPB 

    
No Clamps Clamps A to G 

Figure B12. Observed torsion of NPB during the torsional stiffness mechanical test. Left: No clamps attached to the 
load. Right: Clamps A to G attached to the load. The blue line provides the height of the vertebral column and the 
purple line provides the height of the bottom gripper. The red line represents the initial position and the black line 
represents the ending position. 

 



The Link Between Body and Behavior    64 

Model: SPB 

   
No Clamps Clamps A to G 

Figure B13. Observed torsion of SPB during the torsional stiffness mechanical test. Left: No clamps attached to the 
load. Right: Clamps A to G attached to the load. The blue line provides the height of the vertebral column and the 
purple line provides the height of the bottom gripper. The red line represents the initial position and the black line 
represents the ending position. 

 

Model: NVB 

   
No Clamps Clamps A to G 

Figure B14. Observed torsion of NVB during the torsional stiffness mechanical test. Left: No clamps attached to the 
load. Right: Clamps A to G attached to the load. The blue line provides the height of the vertebral column and the 
purple line provides the height of the bottom gripper. The red line represents the initial position and the black line 
represents the ending position. 

 
 



The Link Between Body and Behavior    65 

Model: CMS 

   
No Clamps Clamps A to G 

Figure B15. Observed torsion of CMS during the torsional stiffness mechanical test. Left: No clamps attached to the 
load. Right: Clamps A to G attached to the load. The blue line provides the height of the vertebral column and the 
purple line provides the height of the bottom gripper. The red line represents the initial position and the black line 
represents the ending position. 

 

Model: NSS 

   
No Clamps Clamps A to G 

Figure B16. Observed torsion of NSS during the torsional stiffness mechanical test. Left: No clamps attached to the 
load. Right: Clamps A to G attached to the load. The blue line provides the height of the vertebral column and the 
purple line provides the height of the bottom gripper. The red line represents the initial position and the black line 
represents the ending position. 
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Model: NPS 

   
No Clamps Clamps A to G 

Figure B17. Observed torsion of NPS during the torsional stiffness mechanical test. Left: No clamps attached to the 
load. Right: Clamps A to G attached to the load. The blue line provides the height of the vertebral column and the 
purple line provides the height of the bottom gripper. The red line represents the initial position and the black line 
represents the ending position. 

 

Model: SPS 

   
No Clamps Clamps A to G 

Figure B18. Observed torsion of SPS during the torsional stiffness mechanical test. Left: No clamps attached to the 
load. Right: Clamps A to G attached to the load. The blue line provides the height of the vertebral column and the 
purple line provides the height of the bottom gripper. The red line represents the initial position and the black line 
represents the ending position. 
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Appendix C 
 

Screenshots from the First Round of CPG Testing: 
 

Model: CMB 

   
Left Center Right 

Figure C1. Observed lateral undulation of CMB during the first round of CPG testing. The images were taken from 
the same cycle at points where the black dot was displaced furthest to the left (Left), in the middle (Center), and 
furthest to the right. 

Model: NSB 

   
Left Center Right 

Figure C2. Observed lateral undulation of NSB during the first round of CPG testing. The images were taken from 
the same cycle at points where the black dot was displaced furthest to the left (Left), in the middle (Center), and 
furthest to the right. 
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Model: NPB 

   
Left Center Right 

Figure C3. Observed lateral undulation of NPB during the first round of CPG testing. The images were taken from 
the same cycle at points where the black dot was displaced furthest to the left (Left), in the middle (Center), and 
furthest to the right. 

 
 

Model: SPB 

   
Left Center Right 

Figure C4. Observed lateral undulation of SPB during the first round of CPG testing. The images were taken from 
the same cycle at points where the black dot was displaced furthest to the left (Left), in the middle (Center), and 
furthest to the right. 
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Model: NVB 

   
Left Center Right 

Figure C5. Observed lateral undulation of NVB during the first round of CPG testing. The images were taken from 
the same cycle at points where the black dot was displaced furthest to the left (Left), in the middle (Center), and 
furthest to the right. 

 
 

Model: CMS 

   
Left Center Right 

Figure C6. Observed lateral undulation of CMS during the first round of CPG testing. The images were taken from 
the same cycle at points where the black dot was displaced furthest to the left (Left), in the middle (Center), and 
furthest to the right. 
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Model: NSS 

   
Left Center Right 

Figure C7. Observed lateral undulation of NSS during the first round of CPG testing. The images were taken from 
the same cycle at points where the black dot was displaced furthest to the left (Left), in the middle (Center), and 
furthest to the right. 

 
 

Model: NPS 

   
Left Center Right 

Figure C8. Observed lateral undulation of NPS during the first round of CPG testing. The images were taken from 
the same cycle at points where the black dot was displaced furthest to the left (Left), in the middle (Center), and 
furthest to the right. 
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Model: SPS 

   
Left Center Right 

Figure C9. Observed lateral undulation of SPS during the first round of CPG testing. The images were taken from 
the same cycle at points where the black dot was displaced furthest to the left (Left), in the middle (Center), and 
furthest to the right. 
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Appendix D 
 
Table of Code Modifications Made to the CPG Program for All Vertebral Columns 
 

Model Modifications to the Arduino Code 

 

 

 

CMB (Control) 
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NPB 

 
 

 

 

 

 

SPB 
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