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ABSTRACT 

Reef corals are threatened by climate change.  Increasing atmospheric CO2 has resulted in ocean 

acidification (OA) and ocean warming, which contribute to reductions in coral growth and to 

widespread coral bleaching events.  The resilience of coral reef ecosystems to climate change 

fundamentally relies on the physiological resilience of reef corals to environmental change.  

Coral resilience may be supported by (i) biomass reserves, (ii) the capacity to switch feeding 

modes from autotrophy to heterotrophy, and (iii) the flexibility to associate with stress tolerant 

endosymbionts (Family: Symbiodiniaceae).  To better understand the physiological response of 

corals to natural and human-induced environmental stress, I used a combination of laboratory 

and field studies to examine the tradeoffs in these three aspects of coral physiological resilience 

under ocean acidification stress, bleaching and post-bleaching recovery, and light limitation. 

 

First, under ecologically relevant irradiances, the coral Pocillopora acuta does not exhibit OA-

driven reductions in calcification as reported for other corals. Instead, reductions in biomass 

reserves suggest that OA induced an energetic deficit and contributed to the catabolism of tissue 

biomass.  Second, coral bleaching had extensive effects on the biomass of Montipora capitata 

and Porites compressa, and isotope mass balance revealed that changes in coral δ13C values were 

best explained by changes in tissues (proteins:lipids:carbohydrates) not a greater reliance on 

heterotrophy during bleaching or recovery.  Finally, M. capitata-Symbiodiniaceae holobionts 

exhibited distinct traits and δ13C isotope values that differed between seasons and were 

modulated by light-availability.  δ13C isotopic values did not reveal changes in nutritional modes, 

but instead suggest lower rates of carbon fixation/translocation by the symbiont Durusdinium, in 

agreement with laboratory studies identifying Durusdinium as an opportunist symbiont providing 
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less nutritional benefit to the host.  Together, my research provides insights into the complex 

consequences of environmental change on reef-building corals.  Moreover, physiological 

tradeoffs that underlie coral resilience may mask the full effects of climate stressors on coral 

reefs.  My work highlights the need for future research to consider (i) energetic costs and growth 

tradeoffs, (ii) biomass compound-specific isotope values, (iii) and the role of seasonality and (iv) 

symbiont community effects. 
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Introduction 

The coral-algal symbiosis and environmental stress 

Coral reefs are among the most biologically diverse and productive ecosystems on Earth, 

providing habitat for a multitude of marine organisms including those of high commercial value 

and cultural significance, as well as threatened and endangered species (Wilkinson 2008).  Reef 

corals (Order: Scleractinia) and their symbiont algae (formerly, Symbiodinium spp.) (Division: 

Dinophyceae, Family: Symbiodiniaceae) function as autogenic and allogenic ecosystem 

engineers (Jones et al. 1994) of coral reef ecosystems by modifying the chemistry of reef 

seawater, contributing to the architectural complexity of the benthos, transforming organic and 

inorganic nutrients through primary productivity and excretory processes (Wild et al. 2011).  In 

the oligotrophic tropical and subtropical seas (30°N – 30°S latitude) (Sheppard et al. 2010), reef 

corals and Symbiodiniaceae have thrived as a result of nutrient recycling within the symbiotic 

partnership (Porter 1976), wherein photosynthetically fixed carbon and nitrogen compounds are 

translocated and conserved within the coral holobiont (i.e., animal + alga + assorted microbes) 

(Muscatine and Porter 1977; Rahav et al. 1989; Tanaka et al. 2006).  However, resource 

assimilation and utilization, as well as the level of resource sharing among symbiotic partners, is 

shaped by environmental conditions (Tremblay et al. 2012b, 2013).   

 

Coral reefs worldwide are in a state of decline due to direct human impacts (e.g., nutrient 

pollution) and global climate change (GCC).  Reef corals are sensitive to changing 

environmental conditions, including elevated sea surface temperatures, terrigenous pollutants 

(e.g., dissolved nutrients, coastal runoff, sewage), and reduced ocean pH (Lesser et al. 1990; 

Glynn 1993; Hoegh-Gulberg 1999; Kleypas et al. 1999).  Such abiotic stressors have the 



	

	 3 

potential to reduce the ecosystem function of reef corals, destabilize the coral-algal symbiosis, 

disrupt symbiont photosynthesis and the transfer of symbiont-derived metabolites to the coral 

host, and cause coral mortality (Lesser 1990; Hughes et al. 2010).  At the local level point source 

nutrient pollution (e.g., sewage outfall) and land-based runoff (e.g., agriculture and urban runoff, 

sediment discharge) degrade the quality of reef habitat by increasing seawater turbidity and the 

concentration of dissolved nutrients and contributing to macroalgal proliferation (Fabricius 2005; 

Friedlander et al. 2005).  At larger spatial scales GCC and the burning of fossil fuels are 

increasing sea surface temperatures (SST) and perturbing the chemical composition and pH of 

seawater, a process termed ocean acidification (OA).   

 

Increased pCO2 in the atmosphere and seawater is projected to increase from current pCO2 (ca. 

400 µatm; NOAA) to 490 µatm – 850 µatm pCO2 (RCP 2.6 and 6.0, respectively) (Moss et al. 

2010; van Vuuren et al. 2011) commiserate with a 0.1 – 0.3 unit decrease in ocean pHT and a 1.8 

– 4.0 °C increase in global temperatures (IPCC 2007).  Corals live near their upper thermal limit 

during summer months (Coles 1976), and abrupt or prolonged exposure to elevated temperatures 

initiate a stress response that results in the quantitative reduction in symbiont cells within coral 

tissues (i.e., coral bleaching).  Thermal bleaching can negatively affect numerous aspects of coral 

performance and cause reductions in coral tissue biomass, altered metabolic states and nutritional 

modes, attenuated reproductive investments (Porter et al. 1989; Szmant and Gassman 1990; 

Hughes et al. 2010), and cause widespread mortality (Glynn and D’Croz 1990; Loya et al. 2001).  

Additionally, OA reduces the rates of biomineralization in marine calcifiers and may exacerbate 

the effects of thermal stress on reef corals (Kleypas et al. 1999; Anthony et al. 2008).  Together 

changes in the thermal content and carbonate chemistry of seawater will interact with direct 
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human impacts (e.g., nutrient enrichment) to have profound affects on the physiology of reef 

corals and will challenge the capacity for coral reefs to remain in coral-dominated states 

(Kleypas et al., 1999; Silverman et al. 2009).   

 

Reef corals resilient to multiple (local and global) environmental stressors will dominate the 

reefs of the future.  This acknowledgement has led to considerable research effort identify factors 

contributing to stress resilience in reef corals.  Corals show considerable variation in their 

response to environmental stress as a result of a matrix of host and symbiont traits, as well as 

abiotic factors contributing to stress acclimatization and adaptation (i.e., thermal history, 

environmental variability).  In particular, coral physiological resilience associates with the 

following factors: high energy reserves concentrations (i.e., lipids) (Rodrigues and Grottoli 2007; 

Anthony et al. 2009); the ability to opportunistically transition from autotrophy to heterotrophy 

(i.e., nutritional flexibility) (Grottoli et al. 2006); and the association with stress-tolerant 

Symbiodiniaceae genotypes (Rowan et al. 1997; Baker 2003).  Increased lipid biomass and 

heterotrophic feeding have been hypothesized as pathways for the resilience (Hughes and 

Grottoli 2013) and attenuation (Edmunds 2011; Towle et al. 2015) of climate change stressors 

and coral mortality (Anthony et al. 2009), including ocean warming and acidification. The 

energy content of coral biomass (i.e., energetics) and lipid content has long been considered a 

proxy for coral fitness (Anthony 2006; Anthony et al. 2009) and can support physiological 

recovery from bleaching (Rodrigues and Grottoli 2007).  Therefore, evaluating factors affecting 

the nutritional modes and energetics of corals has the potential to inform the physiological 

resilience of reef corals in an uncertain world shaped by climate change. 
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Nutritional modes: Autotrophic and heterotrophic nutrition 

Corals are mixotrophic organisms that rely on symbiont-derived metabolites and exogenous 

materials to fuel growth and metabolism (Muscatine et al. 1981).  While autotrophic nutrition is 

the status quo in reef coral metabolism, it is becoming clear that corals exist along a continuum 

of autotrophic and heterotrophic nutritional states.  The degree to which corals exhibit either 

opportunistic or obligate nutritional flexibility is affected by a matrix of biological, 

environmental, and genetic effects only beginning to be understood.  However, reef corals are 

generally thought to rely more heavily on heterotrophic nutrition in conditions where symbiont 

photosynthesis is reduced, such is the case with increasing depth or water turbidity (Muscatine et 

al. 1989; Palardy et al. 2005), in response to environmental disturbance (i.e., thermal stress and 

bleaching recovery) (Grottoli et al. 2006), and may be affected by the genetic diversity of a 

coral’s Symbiodiniaceae community (Leal et al. 2015).  

 

i.  Autotrophic nutrition 

Corals are reliant on their symbiont algae (Symbiodiniaceae) for autotrophic nutrition to support 

growth and metabolism.  The fixation and release of photosynthates from symbiont to host is 

stimulated under light exposure (Muscatine and Cernichiari 1969; Trench 1971a; Muscatine et al. 

1984) and by the presence of host tissues (Muscatine 1967; Trench 1971b, Trench 1971c) 

through the action of a low molecular weight compound(s) termed the “host factor” (Gates et al. 

1995; Grant et al. 1998).  Under conditions optimum for photosynthesis, > 90% of 

photosynthetically fixed carbon may be translocated to the coral host forms including simple, 

low molecular weight compounds (i.e., glycerol and glucose, amino acids, organic acids) and 

complex high molecular weight compounds (i.e., free fatty acids, lipids) (Muscatine and 
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Cernichiari 1969; Patton et al. 1977; Papina et al. 2003). Translocated products may meet the 

majority (~ 90 – 100%) of a coral’s daily metabolic costs, and translocated metabolites may be 

used as respiratory substrate, become incorporated into tissue biomass, contribute to skeletal 

calcification and reproduction, or may be excreted from the association as mucus (Trench 1971a; 

Muscatine et al. 1984).  The products of photosynthesis, however, are deficient in nitrogen, 

phosphorous and amino acids essential for the production of tissue biomass (Falkowski et al. 

1984), requiring corals to obtain exogenous nutrients through heterotrophic feeding or the uptake 

of dissolved compounds in seawater. 

 

Carbon translocated to the coral host may is ultimately affected by the photosynthetic capacity 

(net photosynthesis per unit area and per algal cell) and the photoacclimatory state of its 

symbiont community and the health of the holobiont (Anthony and Hoegh-Guldberg 2003; 

Tremblay et al. 2012b, 2014).  High carbon translocation rates relate to nutrient limitations in the 

coral-Symbiodiniaceae association, where fixed carbon is released to the coral host and 

incorporated into algal biomass.  However, changes in the availability of organic and inorganic 

nitrogen from heterotrophic feeding or exogenous seawater conditions can affect symbiont 

photosynthesis as well as the retention, translocation, and utilization of carbon in the symbiotic 

association (Davy and Cook 2001; Tanaka et al. 2007; Tremblay et al. 2012a, 2012b, 2014).  

Carbon translocation also differs among host species, Symbiodiniaceae genotypes, the 

interaction of environmental conditions altering symbiont productivity (i.e., temperature, 

irradiance), and the nutritional status of the coral holobiont (Falkowski et al. 1984; Davy and 

Cook 2001; Loram et al. 2007: Stat et al. 2008).  For instance, temperature and photo-stress 

reduce autotrophic nutrition available and increase the loss of total organic carbon to the 
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environment (Tremblay et al. 2012).  Similarly, shade-adapted corals receive less autotrophic 

carbon than sun-adapted corals, and require heterotrophic nutrition to cover energetic costs of 

growth and metabolism (Muscatine et al. 1984).  However, light and temperature alone do not 

offer a complete explanation for coral bioenergetics. For instance, in the absence of heterotrophic 

feeding carbon translocated was not affected by irradiance (120 vs. 250 µmol photons m-2 s-1), 

however heterotrophic feeding affected carbon translocation rates in a light dependent fashion, 

reducing translocation by ~ 20% at low irradiances relative to high irradiances (Tremblay et al. 

2014).  However, high rates of autotrophic nutrition do not necessarily equate to greater biomass 

or skeletal production, and surplus translocated carbon may be excreted.  Therefore, 

heterotrophic nutrition appears to be an important input for the bioeconomy of corals even under 

conditions of replete autotrophic nutrition.  

 

ii.  Heterotrophic nutrition 

Heterotrophic feeding represents an important nutritional constituent in the diet of reef coals.  

Corals are voracious predators capable of the capture of living organisms (e.g., microbes, 

plankters), filter feeding on detritus or suspended particulates, and utilizing dissolved 

organic/inorganic compounds from seawater (collectively, “heterotrophy”) (Davies 1984; 

McCloskey and Muscatine 1984; Houlbrèque and Ferrier-Pagès 2009).  Heterotrophy can supply 

15 – 60% of a healthy coral’s daily metabolic energy demand >100% of energy requirements in 

bleached corals (Muscatine et al. 1981; Grottoli et al., 2006; Palardy et al. 2008).  In laboratory 

feeding experiments, heterotrophy stimulates coral calcification, tissue growth, symbiont and 

photopigment density, and symbiont photosynthesis (Ferrier-Pagès et al. 2003; Houlbreque et al. 

2003; Tolosa et al. 2011). 
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Rates of heterotrophic feeding vary among coral taxa due to biological factors—such as feeding 

effort (Palardy et al. 2005; Ferrier-Pagès et al. 2010), zooplankton concentrations (Palardy et al. 

2006), corallum morphology (Porter 1976; Palardy et al. 2005), polyp size (Porter 1976; 

Alamaru et al. 2009) and environmental conditions such as, water temperature (Palardy et al. 

2005), flow (Sebens et al. 1998) light levels (Ferrier-Pagès et al. 1998) and depth (Palardy et al. 

2005; Alamaru et al. 2009; Lesser et al., 2010). Further, heterotrophic feeding may be stimulated 

during periods of environmental stress where symbiont photosynthesis and autotrophic nutrition 

contributing to animal respiration is reduced (Grottoli et al. 2006; Ferrier-Pagès 2010).  The 

degree of heterotrophic nutrition in corals may be dynamic and regulated by the coral animal’s 

feeding effort and not by feeding capacity.  However, the ability to opportunistically exploit 

heterotrophic feeding in response to environmental stress is largely species-specific.  For 

instance, feeding rates increased in the corals Turbinaria reinformis and Galaxea fasciularis at 

31 °C relative to 26 °C but heterotrophic feeding declined in thermally stressed Stylophora 

pistillata (Ferrier-Pagès 2010).  Similarly, feeding rates increased in bleached Montipora 

capitata relative to non-bleached controls, but feeding was reduced in bleached Porites 

compressa and unchanged in bleached Porites lobata (Palardy et al. 2008).  The disparity in 

feeding responses may reflect coral metabolic needs or demands and associated costs of prey 

capture and digestion and the relative disruption of carbon fixation and translocation in 

Symbiodiniaceae.  Using the sea anemone, Aiptasia pallida, Leal and colleagues demonstrated 

the cnidarian’s trophic plasticity was affected by its Symbiodiniaceae community, and the 

disruption of carbon fixation and translocation and reductions in symbiont density positively 

correlated with reduced prey capture and digestion (Leal et al. 2015).  
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iii.  Functional and genetic diversity of Symbiodiniaceae 

Reef corals associate with distinct genotypes of Symbiodiniaceae that differ in their evolutionary 

relatedness (hereafter, clades) (Baker 2003).  Previously, clades – now genera (LaJeunesse et al. 

2018) – identified as A – I were annotated by either small subunit (18S) or large subunit (5.8S, 

28S) ribosomal nuclear DNA (rDNA), with further evolutionary distinctions at the species 

(previously, sub-clade) level using the internal transcribed spacer (ITS2) region of rDNA (Stat et 

al. 2006, 2009).  Symbiodiniaceae genera and species show functional differences, both in their 

capacity to tolerate environmental stress (Rowan 1997; Jones et al. 2008) and to supply 

autotrophic nutrition (Stat et al. 2008; Leal et al. 2015).  The quality and quantity of carbon 

translocated to coral is affected by symbiont genotype, the genetic composition of the symbiont 

community and may also be affected by host-symbiont combinations (Loram et al. 2007; Stat et 

al. 2008; Starzak et al. 2014; Leal et al. 2015).  The ability for thermotolerant Symbiodiniaceae 

genotypes to confer tolerance to environmental stress has gained much attention (Rowan et al. 

1997), however the nutritional and functional performance of Symbiodiniaceae at the genus and 

species (i.e., previously clade and subclade) level is not well understood (Starzak et al. 2014; 

Leal et al. 2015).  

 

Environmental disturbances disrupt the exchange of nutrients in the coral-algal symbiosis and 

may drive shifts in a reef coral’s symbiont community over time (Baker 2003).  However, corals 

hosting stress sensitive clades and subclades may also suffer mortality and be progressively 

removed from the population gene pool (Sampayo et al. 2008).  According to the adaptive 

bleaching hypothesis (Buddemeier and Fautin 1993), corals will bleach and expel temperature 
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sensitive symbionts and retain (or uptake) temperature labile genotypes thereby gaining 

temperature resilience. However, thermotolerant symbionts, such as those in clade D, appear less 

nutritionally beneficial to the growth and metabolism of their coral hosts (Cantin et al. 2009; 

Jones and Berkelmans 2010), potentially harming coral performance and acting as parasites 

under non-stressful conditions (Cunning et al. 2014, 2015; Lesser et al 2013).  Considering the 

differences in the nutrient transfer and autotrophic capacity of Symbiodiniaceae genotypes (Leal 

et al. 2015), shifts in coral-algal associations may have unforeseen tradeoffs affecting ecological 

outcomes for reef corals under environmental stress and climate change.   

 

Recent works have significantly contributed to the understanding of the functional diversity of 

Symbiodiniaceae as it pertains to the coral ecology, carbon and nitrogen assimilation and 

translocation from symbiont to host, and the nutritional (i.e., trophic) flexibility of reef corals.  

For instance, reef corals and sponges associating with Cladocopium spp. symbionts (e.g., ITS2 

types C1, C3) poses higher rates of carbon fixation and translocation, ammonium and nitrate 

translocation, and stimulate the growth of their coral hosts to a greater degree than Durusdinium 

spp. symbionts (formerly clade D) (Baker et al., 2013; Pernice et al., 2014).  Furthermore, 

Cladocopium spp. symbionts (e.g., ITS2 types C1 and C2) have greater photosynthetic 

performance and have been shown to contributed more to coral growth, energetics and egg 

production and than Durusdinium spp. symbionts (Cantin et al., 2009; Jones and Berkelmans 

2010, 2011). Similarly, adult corals hosting Durusdinium spp. symbionts grew ~ 30% slower 

than Cladocopium sp. (ITS2 type C2) hosting conspecifics in laboratory and the field settings 

(Jones and Berkelmans 2010).  In cultures, Cladocopium spp. symbionts in the presence of 

synthetic host factor showed carbon fixation and carbon release (a proxy for translocation) 
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relative to purportedly less mutualistic Symbiodinium spp. (formerly clade A) symbionts (Stat et 

al. 2008).  

 

The autotrophic performance of a coral’s symbionts also appears to be affected by the 

composition of the resident community (Loram et al. 2007), which may consist of several clades 

and subclades genotypes within a single colony.  Using the giant sea anemone, Loram et al. 

(2007) found Symbiodinium sp. (clade A) and Brevolium sp. (formerly clade B) symbionts to 

translocate ~ 30 and 40% of fixed carbon to the animal, respectively, while mixed communities 

of (Symbiodinium sp. + Brevolium sp.) symbiont released intermediate percentages (~ 35% of 

fixed carbon) to the animal.  Furthermore, a larger percentage of translocated carbon was stored 

in the lipid fraction of the host’s biomass in anemones associating with Symbiodinium relative to 

Brevolium (Loram et al. 2007).  The genetic identity of a coral’s Symbiodiniaceae community 

may also influence the reliance of corals on different modes of nutrition (i.e., heterotrophy) and 

may provide an evolutionary context for the disparate nutritional strategies utilized among coral 

species in response to stress (Leal et al. 2015).  A coral’s symbiont community may affect the 

utilization and storage of materials relevant to the health and function of the coral animal and 

may also impact the degree to which corals are nutritionally flexible.  Investigating the role of 

the functional diversity in Symbiodiniaceae may offer insight into the anabolism and catabolism 

of energy reserve and the requirement for select coral taxa to exhibit greater nutritional plasticity 

under normal and stressful conditions. 

 

Conclusions 

The maintenance of nutrient exchanges in reef corals is critical to the function of both symbiotic 
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partners and identifies nutritional interactions within the coral holobiont as a focal point to 

provide insight on the success and failures of this symbiotic system in response to environmental 

change.  However, there is a need to better understand the role of abiotic and biotic factors 

affecting the partitioning of autotrophic and heterotrophic nutrients within the holobiont across 

symbiotic states and environmental conditions.  Indeed, the need for such research is supported 

by new evidence of the functional diversity of Symbiodiniaceae in affecting both autotrophic and 

heterotrophic nutrition of reefs corals—a previously unknown property of reef coral 

performance—and in modulating coral’s response to GCC.   

 

This dissertation seeks to test for the effects of changing environmental conditions and host-

symbiont combinations on the nutrition of corals.  This will be accomplished by using a series of 

field collections and laboratory experimentation to evaluate autotrophic and heterotrophic 

nutrition, coral tissue energetics, and the functional diversity of Symbiodinium genera in 

Hawaiian corals (1) in response to changing light conditions and ocean acidification, (2) during 

and following a regional bleaching event, (3) and within and among reef habitats across a light-

resource gradient in two seasons. 
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CHAPTER 2 

ELEVATED pCO2 AFFECTS TISSUE BIOMASS COMPOSITION, BUT NOT 

CALCIFICATION, IN A REEF CORAL UNDER TWO LIGHT REGIMES  
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Abstract 

Ocean acidification (OA) is predicted to reduce reef coral calcification rates and threaten the 

long-term growth of coral reefs under climate change.  Reduced coral growth at elevated pCO2 

may be buffered by sufficiently high irradiances, however, the interactive effects of OA and 

irradiance on other fundamental aspects of coral physiology, such as the composition and 

energetics of coral biomass, remain largely unexplored.  This study tested the effects of two light 

treatments (7.5 vs. 15.7 mol photons m-2 d-1) at ambient- or elevated-pCO2 (435 vs. 957 µatm) on 

calcification, photopigment and symbiont densities, biomass reserves (lipids, carbohydrates, 

proteins), and biomass energy content (kJ) of the reef coral Pocillopora acuta from Kāne‘ohe 

Bay, Hawai‘i.  While pCO2 and light had no effect on either area- or biomass-normalized 

calcification, tissue lipids gdw-1 and kJ gdw-1 were reduced 15% and 14% at high pCO2, and 

carbohydrate content increased 15% under high light.  The combination of high light and high 

pCO2 reduced protein biomass (per unit area) by ~ 20%.  Thus, under ecologically relevant 

irradiances, P. acuta in Kāne‘ohe Bay does not exhibit OA-driven reductions in calcification 

reported for other corals; however, reductions in tissue lipids, energy content, and protein 

biomass suggest OA induced an energetic deficit and compensatory catabolism of tissue biomass.  

The null effects of OA on calcification at two irradiances support a growing body of work 

concluding some reef corals may be able to employ compensatory physiological mechanisms 

that maintain present-day levels of calcification under OA.  However, negative effects of OA on 

P. acuta biomass composition and energy content may impact the long-term performance and 

scope for growth of this species in a high pCO2 world.	
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Introduction 

Scleractinian corals are engineers of tropical coral reef ecosystems, directing the architecture and 

bioenergetics of these communities (Wild et al. 2011).  These ecosystems are, however, 

threatened by rapid seawater warming and ocean acidification (OA) associated with increasing 

concentrations of carbon dioxide (pCO2) in the atmosphere (Raven 2005), which is predicted to 

double by the end of the century (650 – 850 µatm pCO2) (Moss et al. 2010).  Dissolution of 

atmospheric CO2 in the upper-ocean alters the carbonate chemistry of seawater and reduces 

seawater pH and the saturation state of aragonite (Ωarag) (Gattuso et al. 1999).  These changes in 

seawater chemistry negatively impact many marine organisms, for example, by reducing rates of 

biogenic calcification in ecologically and economically important marine calcifiers (Kroeker et 

al. 2010; Chan and Connolly 2013).  The magnitude of OA effects on coral calcification, 

however, may be buffered by biological mechanisms (e.g., upregulation of internal pH) 

(McCulloch et al. 2012), environmental conditions (e.g., light, temperature, water motion) 

(Reynaud et al. 2003; Dufault et al. 2013; Comeau et al. 2014c; Bahr et al. 2016) and increasing 

energy available for metabolism (e.g., heterotrophy) (Edmunds 2011; Towle et al. 2015). 	

 

Light availability impacts reef corals by modulating Symbiodiniaceae photosynthesis, which 

influences both the formation of skeleton (Gattuso et al. 1999) and the generation of lipid 

biomass (Patton et al. 1977) from translocated photosynthates (Crossland et al. 1980; Stimson 

1987).  Despite the importance of light to coral biology, the role of light in modulating coral 

responses to elevated pCO2 has only recently been considered (Dufault et al. 2013).  Many OA 

experiments have been performed under low light levels (Table 2.1) that likely do not saturate 

photosynthesis and calcification rates, which may increase OA-sensitivity.  Indeed, low light 

exacerbates the negative effects of high pCO2 on the growth of at least some corals (Dufault et al. 
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2013; Vogel et al. 2015), whereas increased light availability can mitigate negative effects of OA 

on growth observed at lower irradiances (Suggett et al. 2013).  The role of light in modulating 

OA effects on skeletal growth is gaining attention, however, few studies have addressed whether 

other equally important aspects of coral physiology—such as tissue biomass growth and 

composition, and the allocation of energy resources—are impacted by pCO2 (Schoepf et al. 

2013; Comeau et al. 2014a; Hoadley et al. 2015) and its interaction with light availability.	

 

Understanding the interactive impacts of OA and light availability on coral tissue biomass is 

critically important, given that the quantity (Fitt et al. 2000) and biochemical composition (e.g., 

lipids, carbohydrates, proteins) of biomass has important ecological implications for corals, 

including their response to environmental stress.  In particular, lipids, which comprise ~ 30 – 

45% of dry biomass (Stimson 1987), are a critical energy source in the early life history of reef 

corals (Harii et al. 2010), for parental provisioning of brooded larvae (Ward 1995), and in adult 

corals recovering from bleaching (Grottoli et al. 2004).  Indeed, corals with greater lipid content 

(Anthony et al. 2007) and/or tissue biomass (Thornhill et al. 2011) may avoid post-bleaching 

mortality.  	

 

The quantity and quality (e.g., lipid proportion or energy content) of tissue biomass may be 

impacted by OA as a response to altered metabolic demands or resource allocation.  For instance, 

physiological stress from OA may increase the energetic costs of calcification and cellular 

homeostasis (e.g., ion transport, protein turnover) (Allemand et al. 2011; Pan et al. 2015), and in 

turn promoting the catabolism of lipid energy reserves to meet these demands (Vidal-Dupiol et al. 

2013).  Indeed, OA produces both positive and negative effects on coral biomass.  Tissue 
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biomass (Comeau et al. 2013b, 2013c) (and lipid content [Schoepf et al. 2013]) can increase in 

some corals under elevated pCO2, while in other corals, tissue carbohydrates, proteins, and lipids 

decline (Hoadley et al. 2015).  Despite mixed pCO2 effects (< 2,000 µatm) on coral respiration 

and photosynthesis (Kaniewska et al. 2012; Suggett et al. 2013; Wall et al. 2014; Comeau et al. 

2017), multiple lines of evidence indicate high pCO2 can affect resource allocation (Comeau et al. 

2014a), anabolic and catabolic processes (Edmunds and Wall 2014), and gene expression in 

corals indicative of changing metabolic demands (Kaniewska et al. 2012; Vidal-Dupiol et al. 

2013).  For instance, elevated pCO2 can increase photosynthetic and heterotrophic energy 

acquisition (Suggett et al. 2013; Tremblay et al. 2013; Towle et al. 2015), and may also alter the 

allocation of resources to growth (e.g., tissue and skeletal) or maintenance (Anthony et al. 2002; 

Pan et al. 2015).  Such changes in resource acquisition or allocation may therefore influence 

biomass quantity (Comeau et al. 2013c) and composition (Schoepf et al. 2013; Hoadley et al. 

2015) with concomitant consequences for coral physiology.  However, OA effects on coral 

biomass observed to date appear complex and non-linear (Schoepf et al. 2013; Hoadley et al. 

2015; Comeau et al. 2013c), and effects vary (i.e., positive, negative, or null effects) with light 

availability (Comeau et al. 2014a) and across species (Schoepf et al. 2013; Hoadley et al. 2015).  

Considering the importance of tissue biomass to coral performance, the uncertainty of OA effects 

on coral biomass represents a significant knowledge gap that we aim to address here. 	

 

We tested the effects of pCO2 and light on the calcification, tissue biomass (total biomass, lipids, 

carbohydrates, proteins), energy equivalents (kiloJoule (kJ) or energy content), and densities of 

symbiont cells and concentrations of chlorophylls (a and c2) in the coral Pocillopora acuta 

(Lamarck, 1816) (Schmidt-Roach et al. 2014).  We address the following questions: (1) Does 
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elevated pCO2 affect calcification, coral biomass and tissue energy content, symbiont cell density, 

and chlorophyll concentration? (2) Are the effects of pCO2 on coral biomass and calcification 

modulated by light availability?  We reasoned high pCO2 effects on energy reserves and 

calcification would be attenuated by increased light availability (Suggett et al. 2013) due to 

stimulatory effects of light on coral tissue and skeletal growth (Chalker 1981; Stimson 1987; 

Gattuso et al. 1999).  We also normalized energy reserves and calcification at two levels 

(Edmunds and Gates 2002)—the surface area of the skeleton and the quantity of tissue 

biomass—to evaluate the scale at which these responses were affected by pCO2 and light. 	

 

Material and Methods 

Taxonomic identification	

Coral samples were identified as Pocillopora acuta rather than the morphologically similar P. 

damicornis (Schmidt-Roach et al. 2014).  Our laboratory has performed molecular identifications 

of pocilloporid colonies at Moku o Lo‘e Island (Hawai‘i Institute of Marine Biology, HIMB) and 

within the larger Kāne‘ohe Bay reef system that revealed that P. acuta is overwhelmingly the 

dominant coral of the two species at our sampling location.  We also consulted several scientists 

at HIMB regarding species identifications at our collection site. 

 

Experimental Design 

Four experimental treatments of low and high light (LL and HL) fully crossed with ambient and 

high pCO2 (ACO2 and HCO2) were produced in 24 flow-through aquaria (45 L; Aqualogic, Inc., 

USA) (n = 6 tanks treatment-1) receiving sand-filtered natural seawater (ca. >100 µm) and 

maintained at seasonally ambient seawater temperatures (24.94°C ± 0.05) (mean ± SE, n = 680).  

pCO2 treatments reflected ambient Kāne‘ohe Bay seawater (ACO2; ca. 440 µatm pCO2), and 
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elevated levels (HCO2; ca. 900 µatm pCO2) projected for the end of the century (RCP 6.0) (Moss 

et al. 2010).  Light treatments were created by suspending a 75 W light emitting diode module 

over each tank (AI Sol White, Blue, Royal Blue; Aqua Illuminations, USA), calibrated with a 4π 

quantum sensor (LI-193, Li-Cor, USA) connected to an LI-1400 light meter (Li-Cor).  Lights 

were programmed to increase each day from 0500 – 1000 hrs, sustain maximum (400 or 800 

µmol photons m-2 s-1) for 2 h, and decrease to darkness by 1700 hrs, resulting in a 12h light : 12h 

dark diel cycle.  Light treatments were programmed to a ramping 12 : 12 h light : dark diel cycle 

that contrasted high light (HL; 800 µmol photons m-2 s-1 daily maximum) and 50% 

light attenuation conditions (LL; 400 µmol photons m-2 s-1 daily maximum) equivalent to 15.7 

and 7.5 mol photons m-2 d-1.  These light treatments are ecologically relevant to reef corals on 

Kāne‘ohe Bay patch reefs, where daily integrated light intensities at 1 m depth near our 

collection site range from 10 – 20 mol photons m-2 d-1 and ~ 300 – 1,100 µmol photons m-2 s-1 

maximum daily irradiance for the period of November – January (Cunning et al. 2016).	

 

pCO2 treatments were maintained by bubbling either ambient air (i.e., ACO2) or CO2-enriched 

air (i.e., HCO2) into four header tanks (n = 2 header tanks per pCO2 treatment).  pCO2 in each 

header tank was controlled by a pH-stat system (Apex AquaController, Neptune Systems, USA) 

that dynamically regulated the flow of air or CO2 gas through a solenoid based on a static set-

point for each seawater treatment (ACO2 or HCO2).  Seawater in each header tank was delivered 

to six flow-through treatment tanks at ca. 1.5 l min-1.  Seawater temperature, salinity, pHT (pH on 

the total scale) and total alkalinity (AT) were measured in all tanks every third day of the 

experiment.  Seawater temperature (24.59˚C  ± 0.06) (mean ± SE, n = 153) during the 32 d 

experimental period was independently maintained in each treatment tank using digital 
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temperature controllers (Model TR115DN; Aqualogic Inc., USA) and submersible heaters.  

Temperature in tanks was monitored using a certified digital thermometer (5-077-8, +/- 0.05°C, 

Control Company, USA), and the salinity of incoming seawater (ca. 34 salinity) was monitored 

using a conductivity meter (YSI 63, YSI Inc., USA); pHT was measured using a benchtop pH 

meter (Orion 3-Star, Thermo Fisher Scientific, USA) and pH probe (DG115-SC, Mettler-Toledo, 

LLC, USA) calibrated against certified Tris standard at a range of temperatures (Dickson Lab, 

UCSD) (Dickson et al. 2007).  Titrations were performed using an open-cell, potentiometric 

automatic titrator (T50, Metler-Toledo, USA) filled with certified acid titrant (Dickson Lab, 

UCSD).  Titrations of certified reference materials of known AT (Batch 137 and 140) provided by 

A.G. Dickson (UCSD) were titrated prior to and alongside treatment seawater titrations, with our 

analyses differing on average < 0.8% or 17 µmol kg-1 (n = 21) from certified values.   Final 

values for seawater carbonate chemistry were calculated using the seacarb package (Gattuso et 

al. 2015) in R (R Core Team 2016). 

 

Coral collection  

Seven adult colonies of Pocillopora acuta were collected on 13 and 29 October 2014 at ~ 1 m 

from windward facing reefs of Moku o Lo‘e (Coconut Island) in Kāne‘ohe Bay on the island of 

O‘ahu, Hawai‘i, USA (21°26’08.9”N, 157°47’12.0”W).  Twenty-four ramets (≤ 4 cm height) 

from each coral colony were attached to PVC-bases with Z-spar (A-788) and hot-glue, and 

allowed to recover for 3 – 5 weeks in outdoor flow-through tanks (1,300 l) under attenuated 

natural sunlight (≤ 6 mol photons m-2 d-1) receiving sand-filtered seawater and maintained at 

26.05 °C ± 0.01 (mean ± SE, n = 4,869) using a chiller (Model MT3, Aqualogic, Inc.).  

Subsequently, one fragment from each of the seven colonies was assigned to each of the twenty-
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four indoor treatment aquaria (n = 7 colony fragments tank-1) and allowed to acclimate for 25 d 

to treatment irradiances (7.5 and 15.7 mol photons m-2 d-1), acclimation-period temperatures 

25.73 ± 0.03 °C (mean ± SE, n = 192), progressively increasing pCO2 (for HCO2 tanks), and 

flow.  Supplemental heterotrophic feedings were not provided during acclimation or 

experimental periods, however, corals had access to heterotrophic food sources in the form of 

microbes, dissolved organic matter, and < 100 µm plankters.  Corals were exposed to pCO2 and 

light treatments for 32 d from 16 December 2014 – 16 January 2015 and frozen (-80 °C) until 

further processing.   

 

Physiological parameters 

All coral fragments (n = 7 tank-1) were analyzed for net calcification, photopigment densities, 

carbohydrates, proteins, and total biomass.  Quantification of symbiont cell densities, lipid 

biomass, and tissue energy content was performed on four fragments in each tank.  Net 

calcification was determined by the change in buoyant weight (Davies 1989) (converted to dry 

weight using a density of aragonite of 2.93 g cm-3) and standardized to both skeletal surface area 

determined by wax dipping (Stimson and Kinzie 1991) and coral biomass determined by ash-free 

dry weight (AFDW).  To quantify tissue biomass characteristics, tissues were removed from the 

skeleton using an airbrush filled with filtered seawater (0.2 µm).  The host and symbiont extract 

(hereafter, tissue slurry) was briefly homogenized, subsampled, and frozen at -20 °C.  Symbiont 

cell densities were determined from replicate counts (n = 6 – 8) of tissue slurry on a 

haemocytometer and normalized to surface area.  The concentration of chlorophyll a and c2 was 

quantified following a modified protocol from (Fitt et al. 2000).  An aliquot of homogenized 

tissue slurry (1 ml) was centrifuged (1,600 × g for 3 min), pelleting symbiont cells.  The 
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supernatant was decanted and 1 ml of 100% acetone was added to the pellet and allowed to 

incubate in darkness at -20 °C for 36 h.  Chlorophyll concentrations were calculated using 

trichromatic equations for dinoflagellates (Jeffrey and Humphrey 1975) and normalized to both 

surface area and symbiont cells.	

 

Total biomass was measured from the difference in dried (60 °C) and burned (4 h at 450 °C) 

masses of an aliquot of tissue slurry, and the ash-free dry weight of biomass was expressed as mg 

biomass cm-2.  Total lipid biomass (hereafter, lipids) was measured by lyophilizing a subsample 

of the coral slurry (host + symbiont) for 12 h, and extracting lipids from the freeze-dried tissue in 

2:1 chloroform:methanol, following (Schoepf et al. 2013).  The lipid extract was filtered through 

a GF/F filter (0.7 µm), washed with 0.88% KCl, followed by 100% chloroform and 0.88% KCl 

washes, evaporated to dryness under nitrogen gas (5.0 purity grade), and quantified 

gravimetrically on a microbalance.  Carbohydrates were determined spectrophotometrically 

using the phenol-sulfuric acid method with glucose as a standard (Dubois et al. 1956).  Total 

soluble and insoluble protein (hereafter, proteins) was determined by adding 0.1 M NaOH to the 

tissue slurry, heating (90 °C for 1 h), and using the bicinchoninic acid method (Pierce BCA 

Protein Assay Kit, Thermo Fisher Scientific) with a bovine serum albumin standard.  The 

equivalent energetic value of biomass (i.e., energetic content) was determined by summing the 

specific enthalpy of combustion (kJ g-1) lipids (−39.5 kJ g−1), proteins (−23.9 kJ g−1), and 

carbohydrates (−17.5 kJ g−1) biomass (Gnaiger and Bitterlich 1984).  Biomass energy reserves 

(lipids, carbohydrates, proteins) and energy content were each normalized to skeletal surface area 

and tissue AFDW. 	
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Statistical analyses 

Studies of coral physiology commonly standardize response variables to either skeletal area or 

biomass units (e.g., dry weight, protein) (Edmunds and Gates 2002).  In scleractinian corals, 

tissue biomass can vary across the surface of individual coral colonies (Oku et al. 2002) and 

among colonies differing in size (Anthony et al. 2002).  In some cases, normalizing 

physiological metrics to a quantity reflecting the amount of live material (i.e., biomass) may be 

preferable (Edmunds and Gates 2002) in order to account for effects of colony size or if metrics 

are not rate-limited by metabolite flux across coral tissues (e.g., respiration, photosynthesis).  

However, the mass of tissue energy reserves has been normalized to skeletal surface area 

(Anthony et al. 2002), and sometimes to biomass (Grottoli et al. 2004), with one recent outcome 

being that the trends as a function of pCO2 treatment conditions are inconsistent (Schoepf et al. 

2013; Hoadley et al. 2015).  In order to evaluate treatment effects on coral biomass and 

calcification, and address the potential role of normalization (i.e., surface area vs. grams of dry 

weight) in the interpretation of treatment effects, we took the following approach.  First, we 

tested the broad hypothesis that corals responded to treatments by using a multivariate principal 

component (PC) analysis that included coral calcification and biomass metrics normalized to 

either surface area or biomass.  This approach provided a test of the overall treatment effect 

without inflated Type I error rate.  Second, to evaluate which variables were most influential in 

driving multivariate effects, we applied univariate hypothesis tests on individual metrics to 

determine where treatment effects existed. 

 

A principal component analysis (PCA) using a scaled and centered correlation matrix was used 

to test the relationship among net calcification, total biomass, tissue reserves and energy content 
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among data normalization approach (area-normalized vs. biomass-normalized response 

variables) and experimental treatments.  The PCA data matrix included those fragments where 

all tissue biomass metrics and calcification had been measured (n = 4 fragments tank-1); total 

biomass from AFDW (mg cm-2) was included in both data matrices.  The multivariate 

relationship between the two principal components (PC) explaining the greatest variance (PC1 

and PC2) was graphically examined for area- and biomass-normalized response variables. 

Correlations between PCs and response variables were tested using Pearson's correlation 

coefficient using cor.test in R.  To interpret treatments effects on PCs, component loadings with 

eigenvalues > 1.0 were tested to meet assumptions of ANOVA and examined using linear mixed 

effect models.	

 

Analyses of seawater carbonate chemistry among replicate treatment tanks were examined using 

separate one-way ANOVAs with tank as a predictor and pCO2, pHT and AT as explanatory 

variables.  pCO2 and light effects on biological response variables and multivariate PCs were 

analyzed using a linear mixed-effect model in the lme4 package in R (Bates et al. 2015).  pCO2 

and light treatments were treated as fixed effects, colony as a random effect (1|Colony), and tank 

as a random effect nested within pCO2 × light treatment (1|Treatment:Tank).  The decision to 

retain or exclude random effects in models was determined by sequentially dropping random 

effects and performing likelihood ratio tests among models.  Assumptions of normality and 

homoscedasticity of response variables and principal components were confirmed by graphical 

analysis of residuals; data transformations were applied when assumptions were violated.  

ANOVA tables were generated for fixed effects using Type II sum of squares with Satterthwaite 

degrees of freedom using lmerTest (Kuznetsova et al. 2016).  Significant interactive effects (p < 
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0.05) were examined by least-square means with a Tukey adjustment in the lsmeans package 

(Lenth 2016).  All analyses were performed using R version 3.2.1 (R Core Team 2016).  Raw 

data and code to reproduce this work is archived at Dryad (doi.org/10.5061/dryad.5vg70) (Wall 

et al. 2017a). 

 

Results 

Treatment conditions 

Experimental treatments were precisely regulated at target levels (Table 2.2).  Mechanical issues 

in two replicate HL–HCO2 tanks towards the end of the experiment led to the a priori removal of 

these tanks and constituent corals from further analyses.  Therefore, final replication for HL–

HCO2 treatments was four tanks per treatment and for all other treatments, six.  Corals were 

maintained under mean pCO2 treatments of 435 ± 8 µatm pCO2 (ACO2) and 957 ± 30 µatm 

pCO2 (HCO2) equivalent to a pHT of 8.00 ± 0.01 and 7.71 ± 0.01 (± SE, n = 84 and 69) (Table 

2.2).  Seawater treatments differed in pCO2 (p < 0.001) and pHT conditions (p < 0.001) and AT 

was not affected by CO2-treatment (p = 0.110).  pCO2 and pHT did not differ among replicate 

CO2-treatment tanks (p ≥ 0.060). 

 

Multivariate response analysis 

Complete outputs from all statistical models can be found in Appendix Table 2.S1 – 2.S4; 

summarized model outputs are displayed in Table 2.3.  Two principal components with 

eigenvalues > 1.0 explained 62% and 72% of observed variance for area- and biomass-

normalized variables, respectively (Table 2.3; Appendix Table 2.S1).  Graphical inspection of 

PC-biplots for area-normalized responses showed poor separation according to experimental 
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treatments (Figure 2.1a), and PC1 and PC2 were not affected by light or pCO2 (p ≥ 0.114) (Table 

2.3; Appendix Table 2.S1).  Area-normalized PC1 (41.0% variance explained) was positively 

correlated with all responses (p < 0.001), except calcification (p = 0.105).  PC2 negatively 

correlated with lipids and energy content (p ≤ 0.008) and positively correlated with all other 

metrics (p ≤ 0.019).  Conversely, PC-biplots for biomass-normalized responses showed the 

greatest degree of divergence between ambient and high pCO2-treatments along PC2 (Figure 

2.1b), and PC2 was affected by CO2 treatment (p = 0.028) (Table 2.3).  PC1 was not affected by 

light or pCO2 (p ≥ 0.269) (Table 2.3).  Biomass-normalized PC2 was positively correlated with 

lipids and tissue energy content (p < 0.001), and negatively correlated with calcification (p = 

0.015) (Figure 2.1b).  Hence, elevated pCO2 conditions had significant effects on corals when 

skeletal and biomass energy reserve metrics were normalized to tissue biomass, and pCO2 

treatments best explained the opposing relationship of biomass quality (lipids, energy content) 

and calcification.  

 

Net calcification rates, symbiont densities, and chlorophylls  

pCO2 and light treatments had no effect on net calcification rates normalized to skeletal area (p ≥ 

0.605; Figure 2.2a) or biomass (p ≥ 0.210; Figure 2.2c) (Table 2.3; Appendix Table 2.S2, 2.S3).  

However, biomass-normalized calcification tended to be 15% higher at high light relative to low 

light conditions.  Symbiont cell density cm-2 was not affected by treatments (p ≥ 0.124) (Table 

2.3, Figure 2.2d), but chlorophyll a and c2 cm-2 declined by 28% and 25% at high light relative to 

low light treatments (p < 0.001) (Table 2.3, Figure 2.2e).  However, photopigment 

concentrations per symbiont cell were not affected by treatments (p ≥ 0.109) but tended to be 

lower under high light conditions (Table 2.3, Figure 2.2f). 
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Tissue energy reserves and normalization approaches 

Treatments had no effect on total biomass cm-2 (p ≥ 0.210) (Table 2.3, Figure 2.2b) or protein 

per gram of dry coral tissue (gdw-1) (p ≥ 0.415) (Table 2.3, Figure 2.3a).  Carbohydrate gdw-1 

increased 15% in corals at high light relative to low light conditions (p = 0.040) (Figure 2.3b), 

and corals exposed to 957 µatm pCO2 had 15% less lipid gdw-1 (p = 0.040) (Figure 2.3c) and 

14% less biomass energy content gdw-1 (p = 0.041) than corals at 435 µatm pCO2 (Figure 2.3d) 

(Table 2.3; Appendix Table 2.S3). 

 

The effects of treatments on area-normalized energy reserves differed from effects on biomass-

normalized energy reserves.  No effect of pCO2, light, or their interaction was observed for 

carbohydrate cm-2, lipid biomass cm-2, or tissue energy content cm-2 (p ≥ 0.132) (Table 2.3, 

Figure 2.4b-d; Appendix Table 2.S2).  However, protein biomass cm-2 was affected by the 

interaction of pCO2 × light (p  = 0.038) and light (p = 0.010) but not pCO2 alone (p  = 0.270) 

(Table 2.3, Figure 2.4a).   Mean protein (mg cm-2) was 17 – 23% lower at HL–HCO2 relative to 

other treatments (post hoc: p ≤ 0.017) but was not significantly different from the HL–ACO2 

treatment (post hoc: p = 0.157) (Figure 2.4a). 

 

Discussion 

OA and light effects on calcification 

Our results demonstrate calcification in Pocillopora acuta was not affected by pCO2 (435 and 

957 µatm) or light availability (7.5 vs. 15.7 mol photons m-2 d-1).  The lack of an effect of pCO2 

on calcification contrasts with the majority of studies showing OA reduces calcification rates in 

corals and other marine calcifiers (Kroeker et al. 2010; Chan and Connolly 2013), but is 
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consistent with previous work showing net calcification in Pocillopora spp. is insensitive to 

elevated pCO2 (≤ 1,970 µatm pCO2) (Schoepf et al. 2013; Comeau et al. 2014b, 2014d) (but see 

[Bahr et al. 2016]).  Corals from Kāne‘ohe Bay experience significant diel variability in pCO2 

(Drupp et al. 2011) and have been hypothesized to exhibit varying degrees of acclimation or 

local adaptation to high pCO2.  However, a pan-Pacific collection (including Kāne‘ohe Bay) of 

the congener Pocillopora damicornis revealed this species was resistant to elevated pCO2 effects 

on calcification across geographic locations (Comeau et al. 2014b).  This finding suggests pCO2 

history alone does not completely explain the resistance of Pocillopora spp. calcification to OA, 

but rather a combination of physiological and/or genetic factors may also underpin OA resistance 

in P. acuta and related pocilloporids. 	

    

The interactive effects of pCO2 and light on coral calcification varies among coral species 

(Suggett et al. 2013; Enochs et al. 2014) and life-history stages (Dufault et al. 2013; Comeau et 

al 2013b), and may depend on the mechanism and/or rate by which species calcify (Rodolfo-

Metalpa et al. 2011; Comeau et al. 2013a, 2014d) as well as their capacity to regulate internal pH 

(Venn et al. 2013; Allison et al. 2014; Cai et al. 2016; Comeau et al. 2017).  While light-

availability modulates OA effects on calcification in some corals (Dufault et al. 2013; Suggett et 

al. 2013; Vogel et al. 2015), meta-analysis reveals the heterogeneous response of coral 

calcification to declining Ωarag is not well explained by light intensity (Chan and Connolly 2013).  

The absence of pCO2 or light effects on P. acuta calcification in the current study has also been 

reported in other corals.  For instance, Porites rus calcification was similarly unaffected by pCO2 

(400 vs. 700 µatm) at 6.2 and 28.7 mol photons m-2 d-1 (Comeau et al. 2013b), and light 

availability (3.5 – 30.2 mol photons m-2 d-1) did not influence the response of Porites compressa 
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to decreasing Ωarag (2.48 vs. 5.05) (Marubini et a. 2001) (Table 2.1).  In part, the observation in 

some corals of light intensity mitigating OA effects on calcification may be linked to light-

dependent usage of dissolved inorganic carbon substrates (e.g., HCO3
- or CO3

2-) in calcification 

(Comeau et al. 2013a) and/or stimulatory effects of light availability on symbiont photosynthesis, 

coral metabolism, ion regulation, and the synthesis of organic matrix at the calcifying surface 

(Muscatine et al. 1981; Gattuso et al. 1999; Muscatine et al. 2005).  In the present study, the lack 

of pCO2 effects on P. acuta calcification at both light treatments suggests beneficial effects of 

light availability on coral performance (Suggett et al. 2013) were realized at both light-saturating 

treatments (7.5 vs. 15.7 mol photons m-2 d-1), or this coral species possesses mechanisms 

enabling it to maintain comparable rates of calcification at both 435 and 957 µatm pCO2, 

potentially through pH regulation at the site of calcification (Holcomb et al. 2014).  

 

The sensitivity of coral calcification to OA may reflect the differential capacity of coral species 

to up-regulate extracellular pH in the calcifying fluid at the site of calcification (Venn et al. 

2011; McCulloch et al. 2012; Holcomb et al. 2014; Cai et al. 2016) Ca2+/H+ ATPases exchange 

ions across the calicoblastic epithelia to produce locally high pH in the calcifying fluid (ca. 0.5 – 

2.0 pH units above external seawater) (Ries 2011; Venn et al. 2011; Cai et al. 2016).  

Alkalinization of the calcifying fluid shifts the chemical equilibrium of dissolved inorganic 

carbon in favor of CO3
2- and facilitates the diffusion of molecular CO2 into the calcifying fluid 

(Allison et al. 2014), thereby increasing [DIC] and Ωarag (i.e., 15 – 22) and promoting the 

precipitation of aragonite (McCulloch et al. 2012; Cai et al. 2016).  Under OA, a higher H+ 

concentration in seawater may challenge the capacity for corals to export H+ from tissues (Jokiel 

2011), which is hypothesized to increase the metabolic costs of up-regulating calcifying fluid pH 
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and Ωarag and cause reductions in CaCO3 precipitation rates (Ries 2011).  On the other hand, 

corals can compensate for declining Ωarag in the calcifying fluid by increasing the incorporation 

of organic matrix proteins into the skeleton (Tambutté et al. 2015) which act to increase the 

nucleation of aragonite crystals (Mass et al. 2013).  A more organic-rich skeleton may reduce the 

sensitivity of corals (and other marine calcifiers) to OA by reducing the free energy required for 

calcification (Spalding et al. 2017), although the synthesis of organic skeletal material requires 

significantly more energy than inorganic CaCO3 production (Palmer 1992) and additional energy 

inputs may be necessary.  In corals, calcification accounts for 30% of energy demand (Allemand 

et al. 2011).  Thus, thermodynamically unfavorable conditions (low Ωarag) causing greater 

energetic expenditures for calcifying fluid regulation and/or organic matrix synthesis (Von Euw 

et al. 2017) may additively influence the capacity of corals to maintain high calcification rates, or 

otherwise impact their energy balance, under OA.  

 

OA and light effects on coral biomass 

In agreement with previous laboratory and field studies (Wall et al. 2014; Noonan et al. 2016) 

(but see [Anthony et al. 2008]), elevated pCO2 did not lead to coral bleaching or reductions in 

symbiont densities and/or chlorophyll concentration in low or high light treatments.  Instead, 

corals photoacclimated (Hoogenboom et al. 2009) to increasing light levels by reducing 

concentrations of chlorophylls (a and c2 cm-2), although without appreciable loss of symbiont 

cells.  However, exposure to 957 µatm pCO2 altered the composition of P. acuta biomass relative 

to corals maintained at 435 µatm pCO2 regardless of light conditions.  Declining lipid biomass at 

high pCO2 suggests lipid reserves were either catabolized to meet energetic demands (Vidal-

Dupiol et al. 2013) and/or lipid-precursors were allocated to processes other than the formation 
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of lipid biomass.  Under OA conditions corals may require greater energy investments in the 

process of calcification in order to maintain high rates of aragonite precipitation (Allemand et al. 

2011; Von Euw et al. 2017).  For instance, greater energy inputs from dissolved nutrients 

(Holcomb et al. 2010) and heterotrophic feeding (Edmunds 2011) can lessen negative effects of 

high pCO2 (≤ 830 µatm) on calcification in some corals.  While heterotrophic food sources 

available to corals in the present study were restricted (<100 µm, sand-filtrated seawater), it is 

likely that natural nutrient sources in seawater (e.g., dissolved inorganic and organic nutrients, 

pico- and nanoplankton, small zooplankton) supplemented symbiont-derived nutrition 

(Houlbrèque and Ferrier Pagès 2009).  The ability for corals to increase heterotrophic feeding in 

response to changes in photoautotrophic nutrition or energy demand contributes to physiological 

resilience (Grottoli et al. 2006), yet the capacity for many corals, including P. acuta, to be 

nutritionally flexible under normal and stressed physiological states has yet to be quantified.  

Recent evidence suggests some corals may increase rates of heterotrophic feeding in response to 

elevated pCO2 (Towle et al. 2015).  However, in situ elevated pCO2 reduces the abundance of 

zooplankton on corals reefs (Smith et al. 2016) and may reduce heterotrophic nutrition and/or 

increase metabolic costs associated with prey capture.  Therefore, while a combination of 

zooplanktivory and biomass catabolism may be employed by corals as an acclimation response 

to physiological stress (Grottoli et al. 2004, 2006)—including elevated pCO2 (Towle et al. 

2015)—OA effects on coral biomass (this study) and zooplankton availability (Smith et al. 2016) 

may negatively impact coral performance and their response to physiological challenges 

(Anthony 2006; Thornhill et al. 2011; Hughes and Grottoli 2013).	
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In corals, tissue growth is sensitive to changing resource availability and physiological stress 

(Stimson 1987; Fitt et al. 2000; Anthony et al. 2002).  Under these conditions, skeletal growth 

may come at the expense of reduced tissue growth (Anthony et al. 2002) and biomass may be 

broken down to support metabolism (Grottoli et al. 2004).  Consistent with this hypothesis are 

observations that low pH (7.4 – 7.7) causes an upregulation of coral genes involved in lipolysis 

and beta-oxidation pathways, suggesting tissue reorganization and the catabolism of fatty-acid 

reserves (Kaniewska et al. 2012; Vidal-Dupiol et al. 2013).  Such changes in gene expression 

could explain the reduction in lipid biomass observed here, as well as the negative relationship 

between elevated pCO2 and coral tissue biomass (Pocillopora damicornis, [Comeau et al. 

2013c]) and lipids cm-2 (Acropora millepora, Montipora monasteriata [Hoadley et al. 2015]).  In 

contrast, Porites rus and Acropora pulchra tissue biomass (Comeau et al. 2013c, 2014a) and A. 

millepora and P. damicornis lipids gdw-1 (Schoepf et al. 2013) displayed a positive parabolic 

relationship with elevated pCO2.  These effects may be explained by elevated [DIC] stimulating 

symbiont productivity and carbon translocation (Brading et al. 2011; Suggett et al. 2013; 

Tremblay et al. 2013) with downstream effects on biomass synthesis.  Alternatively, 

supplemental heterotrophic feedings (Schoepf et al. 2013) may overcome OA-induced energy 

deficits and replenish lipid reserves (Towle et al. 2015).  Together, these examples illustrate that 

pCO2 is likely to have non-linear and heterogeneous effects on coral biomass, as has been noted 

for OA effects on calcification (Chan and Connolly 2013; Comeau et al. 2014d).  Nonetheless, 

our finding that lipid biomass and energy content gdw-1 declined in P. acuta following one 

month at 957 µatm pCO2 supports the hypothesis that OA affects energetic requirements in 

corals, potentially related to metabolic costs or the acquisition and allocation of resources. 	
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At the organismal level, elevated pCO2 (< 2,000 µatm) has negligible effects on aerobic 

respiration (Comeau et al. 2017), however, elevated pCO2 can elicit compensatory changes at the 

cellular level that affect energy allocation, gene expression, and physiological resilience 

(Kanieska et al. 2012; Vidal-Dupiol et al. 2013).  For instance, sea urchin larvae responded to 

OA with a 30% increase in the metabolic energy allocated to protein synthesis and ion transport 

(Pan et al. 2015).  Such flexibility in energy allocation may be critical for organisms to respond 

to environmental stress when metabolic demands exceed metabolic capacity.  In the present 

study, it is uncertain whether longer duration exposures to 957 µatm pCO2 would result in further 

reductions (or stabilization) of P. acuta lipid biomass and eventually cause skeletal and biomass 

growth to decline.  In any case, decreased biomass quality may have wide reaching effects on 

coral performance, including the susceptibility to post-bleaching mortality and reproduction 

(Anthony et al. 2002; Grottoli et al. 2004; Harii et al. 2010).  Therefore, unraveling the long-term 

consequences of OA on biomass energetics at the organismal and cellular level should be a 

priority for future research. 	

 

Previous studies have observed mixed responses of total biomass to high pCO2.  For example, 

biomass was not affected by pCO2 (≤ 741 µatm) in four Indo-Pacific corals (including P. 

damicornis) (Schoepf et al. 2013), and P. rus total biomass at two irradiances was insensitive to 

changes in pCO2  (≤ 1,100 µatm) (Lenz and Edmunds 2017).  However, high pCO2 has been 

shown to increase total biomass in some coral species when maintained under high light 

conditions (Comeau et al. 2013c, 2014a).  In the present study, total biomass (mg AFDW cm-2) 

was not affected by treatments, yet area-normalized protein (a common proxy for biomass; 

[Edmunds and Gates 2002]) was reduced ~ 20% under 957 µatm pCO2 and 15.7 mol photons m-2 
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d-1.  Together, high light and high pCO2 may interfere with aspects of protein metabolism 

(Edmunds and Wall 2014) or turnover (Pan et al. 2015) in P. acuta manifesting in reduced 

protein per skeletal surface (Edmunds et al. 2013; Hoadley et al. 2015).  However, in our study 

the total organic fraction of P. acuta biomass (i.e., AFDW cm-2) appears less sensitive to pCO2 

and light effects, potentially due to dynamic changes in the concentration of other tissue 

macromolecules aside from proteins. 

 

Finally, the interpretation of responses to OA effects was dependent on the approach used to 

normalize response variables.  Multivariate tests on biomass-normalized responses revealed 

significant effects of pCO2 on P. acuta with an opposing relationship between net calcification 

rates and biomass quantity and quality (i.e., per cent lipid and energy content).  This finding was 

supported by univariate tests where pCO2 reduced biomass lipid and energy content.  Conversely, 

pCO2 did not affect responses normalized to skeletal area (except for protein biomass).  Area- 

and biomass-normalizations are often used interchangeably, yet these normalizations are not 

equivalent due to allometric growth in corals and variability in the quality and quantity of tissue 

biomass over the coral skeleton (Anthony et al. 2002; Oku et al. 2002).  Such factors may 

confound area-normalized physiological responses not directly related to skeletal area (Edmunds 

and Gates 2002).  Indeed, the differences observed here between area- and biomass-normalized 

metrics suggest disparate trends in pCO2 effects on biomass observed in other studies may in part 

reflect normalization approaches (Schoepf et al. 2013; Hoadley et al. 2015) and/or sampling 

techniques (e.g., tip subsampling vs. whole fragment tissues).  We recommend future studies 

consider the significance of normalization approaches in representing physiological data 

(Edmunds and Gates 2002; Cunning and Baker 2014), and suggest that energy reserve-specific 
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metrics be normalized to biological units (i.e., living tissue biomass) so that the physiological 

implications of environmental change on coral tissues may be clarified without the potential 

confounding effects of skeletal area. 	

 

This study demonstrates that one-month exposure to OA conditions predicted for the year 2100 

did not affect Pocillopora acuta calcification rates, but elevated pCO2 reduce lipid biomass gdw-

1 and energy content gdw-1 and interacted with high light to reduce protein cm-2.  Considering the 

significance of lipid biomass for coral performance (e.g., post-stress physiology, reproduction), 

reduction in lipid biomass (and biomass energy content) may negatively affect P. acuta and 

reduce its physiological resilience to rising seawater temperatures.  Our findings raise a testable 

hypothesis for P. acuta: that maintenance of present-day calcification rates under OA incurs an 

energetic cost, which is met through catabolism of, or diversion of energy that otherwise would 

have been stored as, tissue lipids.  Finally, we report the interpretation of pCO2 effects on tissue 

biomass were dependent on whether energy reserves were normalized to tissue biomass or 

skeletal area.  We propose data normalization to be an overlooked aspect of coral physiology that 

may be contributing to the observed variance in OA effects on corals.   

 

Funding 

This work was funded by grants from the Linnaean Society of New South Wales, the 

International Phycological Society, the Australian Wildlife Society and a Fulbright Scholarship 

to R.A.B.M.  C.B.W. was supported by an UH Graduate Opportunity Grant, the UH Edmondson 

Research Fund, and Environmental Protection Agency (EPA) STAR Fellowship Assistance 

Agreement (FP-91779401-1).  The views expressed in this publication have not been reviewed or 



	

	 36 

endorsed by the EPA and are solely those of the authors.  R.C. was supported by a NSF 

Postdoctoral Fellowship in Biology (NSF-DBI-1400787).  This is HIMB contribution number 

1702, and School of Ocean and Earth Science and Technology (SOEST) contribution number 

10242. 

 

Acknowledgements 

Biological collections were performed in accordance with permitting guidelines of the state of 

Hawai‘i Department of Land and Natural Resources Division of Aquatic Resources under 

Special Activity Permit 2015-8.  We thank H. Putnam, A. Moran, M. Donahue, and A. Grottoli 

for insightful discussions, J. Davidson for laboratory and logistical support, P.J. Edmunds, E.A. 

Lenz, and three anonymous reviewers for comments on an earlier version of the manuscript.  

This manuscript is dedicated to the memory of our friend and colleague Dr. Paul Jokiel.   

 

	 	



	

	 37 

 

 

Table 2.1.  Summary of selected works testing pCO2 and light treatments on coral 

calcification using single irradiances (top panel) and multiple irradiances (lower panel) 

Species Life stage µatm pCO2 Daily PAR OA effect on growth Reference 

pCO2 effects under single light level 
   

Porites astreoides recruit 480, 560, 720  0.5 50 – 78% decline 
skeletal extension 

Albright et al. 2008 

Favia fragum recruit 421, 1311  2.7 37% decline  
corallite mass 

Drenkard et al. 2013 

Astrangia poculata  adult 390, 780 3.3 66% decline GN Holcomb et al. 2013 

Acropora cervicornis adult 385, 800 5.8 14% decline GN Towle et al. 2015 

Stylophora pistillata adult 385, 1904, 3970 7.2 18% decline GN Krief et al. 2010 

Stylophora pistillata adult 460, 760 15.1 26% decline GN Reynaud et al. 2003 

Porites spp. adult 411, 804 25.9 no effect of OA Edmunds et al. 2012 

Porites rus adult 411, 804 25.9 28% decline GN Edmunds et al. 2012 

pCO2 effects under multiple light levels     
Pocillopora damicornis recruit 490, 900  1.0, 3.5, 9.5 0%, 32%, 12% decline 

in GN  under OA with 
increasing light 

Dufault et al. 2013 

Acropora millepora adult 427, 1073  1.5, 6.5 no light × pCO2 
interaction; 48% and 
144% decline in GN  
and GD under OA 

Vogel et al. 2015 

Porites compressa adult 336, 641 4.0, 6.0, 
12.6, 23.3 

0%, 44%, 27%, and 10% 
decline in GN under OA 
with increasing light 

Marubini et al. 2001 

Acropora horrida 
 

adult 
 

390, 725  4.3, 17.3 50% (LL) and 10% (HL) 
decline in GL under OA; 
40% decline in GD at LL 
and HL under OA 

Suggett et al. 2013 

Porites cylindrica adult 390, 725 4.3, 17.3 80% (LL) and 50% (HL) 
decline in GL under OA; 
80% decline in GD at LL 
and HL under OA 

Comeau et al. 2014a 

Acropora pulchra adult  400, 750, 1100 4.3, 18.7 no effect of OA; 55% 
decline GN  at LL 

Comeau et al. 2014a 

Porites rus adult 375, 710 6.2, 28.8 no effect of OA or PAR Comeau et al. 2013a 

OA = ocean acidification conditions of low–pH, high–pCO2, and/or low aragonite saturation state (Ωarag); PAR = 
photosynthetically active radiation; Daily PAR = mol photons m-2 d-1 integrated over the light period in the reference 
study; recruit = newly settled or post-settlement juvenile corals; adult = fragments collected from adult colonies; GN 
= net calcification; GL = calcification in light; GD = calcification in dark; LL = low–light; HL = high–light. 
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Table 2.2.  Summary of environmental conditions in the experimental treatment tanks between 16 

December 2014 and 16 January 2015.  Seawater total alkalinity (AT), pH on the total scale (pHT), 

along with seawater temperature (ca. 25 °C) and salinity (ca. 34) were used to calculate the partial 

pressure of carbon dioxide (pCO2), concentrations of dissolved inorganic carbon species, and the 

aragonite saturation state (Ωarag) using the package seacarb in R. 

Treatment PAR  pHT AT 
(µmol kg-1) 

pCO2 
(µatm) 

HCO3
- 

(µmol kg-1) 
CO3

2- 

(µmol kg-1) Ωarag 

LL–ACO2 7.5 7.99±0.01 (42) 2177±3 (42) 451±11 (42) 1733±8 (42) 179±3 (42) 2.84±0.06 (42) 
LL–HCO2 7.5 7.71±0.02 (41) 2184±4 (41) 957±39 (41) 1917±12 (41) 108±5 (41) 1.72±0.07 (41) 
HL–ACO2 15.7 8.01±0.01 (42) 2179±3 (42) 420±11 (42) 1714±9 (42) 187±4 (42)  2.97±0.06 (42) 
HL–HCO2 15.7 7.71±0.02 (28) 2184±4 (28) 957±47 (28) 1920±12 (28) 106±5 (28) 1.69±0.08 (28) 
LL–ACO2 = Low light–Ambient pCO2; LL–HCO2 = Low light–High pCO2; HL–ACO2 = High light–Ambient pCO2; 
HL–HCO2 = High light–High pCO2; PAR = photosynthetically active radiation, integrated over 12 h (mol photons m-

2 d-1); n = 6 replicate tanks treatment-1, except HL–HCO2 n = 4 replicate tanks.  Values are mean ± SE (n). 
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Table 2.3.  Summary of p-values for pCO2 and light effects on principal component loadings 

and response variables normalized to skeletal area and tissue biomass. 

 Area-normalized (cm-2)    Biomass-normalized (gdw-1) 

Response variables Effect  Effect 
pCO2 Light     pCO2 × Light pCO2 Light   pCO2 × Light 

Multivariate models        
PC1 0.493 0.624 0.856 0.689 0.269 0.777  
PC2 0.114 0.562 0.359 0.028 0.718 0.919  

Univariate models        
calcification 0.605 0.793 0.861 0.586 0.277 0.879  
total biomass 0.950 0.210 0.677 -- -- --  
proteins 0.270 0.010 0.038 0.415 0.702 0.492  
carbohydrates 0.351 0.505 0.132 0.342 0.040 0.297  
lipids  0.145 0.751 0.683 0.040 0.436 0.917  
energy content 0.201 0.543 0.891 0.041 0.445 0.952  
symbiont cells 0.338 0.124 0.483 -- -- --  
chlorophyll a 0.993 <0.001 0.144 -- -- --  
chlorophyll c2 0.961 <0.001 0.114 -- -- --  

†chlorophyll a cell-1 0.886 0.109 0.587 -- -- --  
†chlorophyll c2 cell-1 0.765 0.217 0.449 -- -- --  

Summarized output from linear mixed effect models; full models can be found in the electronic supplemental 
material. † = photopigment concentrations normalized to symbiont cell; PC = principal component; bold p-
values represent significant effects < 0.05; dashed lines are present where responses were not measured.  
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Figure 2.1.  Principal component analyses (PCA) for energy reserves and net calcification 
normalized to (a) skeletal surface area (cm-2) and (b) tissue biomass (gdw-1), with total biomass 
(mg AFDW cm-2) present in each data matrix.  Axis values in parentheses represent proportion 
of total variance associated with the respective PC. Arrows represent correlation vectors for 
response variables, and ellipses represent 90% point density according to treatments.  Treatment 
details can be found in Table 2.2. 
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Figure 2.2.  Net calcification, total biomass, photopigment concentrations, and symbiont 
densities in Pocillopora acuta corals exposed to light treatments (7.5 and 15.7 mol photons m-2 
d-1) and ambient pCO2 (ACO2) and high pCO2 (HCO2) (Table 2.1). (a) Area-normalized net 
calcification rates, (b) total tissue biomass, (c) biomass-normalized net calcification rates, (d) 
symbiont cell densities, and (e) chlorophyll a (circles) and chlorophyll c2 (squares) densities 
normalized to skeletal area and (f) symbiont cells. Values displayed are means ± SE; n = 28 
(HL–HCO2) and n = 39 – 41 (all other treatments), except (d, f) n = 16 (HL–HCO2) and n = 24 
(all other treatments). Asterisks indicate a statistical difference (p < 0.05) between light 
treatments. 
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Figure 2.3.  Biomass-normalized (gdw-1) (a) proteins, (b) carbohydrates, (c) lipids, and (d) 
tissue energy content in Pocillopora acuta corals to light treatments (7.5 and 15.7 mol photons 
m-2 d-1) and ambient pCO2 (ACO2) and high pCO2 (HCO2) (Table 2.1). Values displayed are 
means ± SE; n = 16 – 24 for lipid biomass and energy content, for other variables n = 28 (HL–
HCO2) and n = 41 – 42 (all other treatments). Symbols indicate statistical differences (p < 0.05) 
between light (*) or pCO2 (‡) treatments. 
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Figure 2.4. Area-normalized (cm-2) (a) protein, (b) carbohydrates, (c) lipid biomass, and (d) 
tissue energy content in Pocillopora acuta corals exposed to ambient pCO2 (ACO2) and high 
pCO2 (HCO2) and light treatments (7.5 and 15.7 mol photons m-2 d-1) (Table 2.1).  Values 
displayed are means ± SE; n = 16 – 24 for lipid biomass and energy content, for other variables n 
= 28 (HL–HCO2) and n = 41 – 42 (all other treatments).  Asterisks indicate a statistical 
difference (p < 0.05) between light treatments, and letters indicate results of post-hoc multiple 
comparisons where pCO2 × light interactions were observed. 
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CHAPTER 3: 

SPATIAL VARIATION IN THE BIOCHEMICAL AND ISOTOPIC COMPOSITION OF 

CORALS DURING BLEACHING AND RECOVERY 
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Abstract 

Ocean warming and the increased prevalence of coral bleaching events threaten coral reefs.  

However, the biology of corals during and following bleaching events under field conditions is 

poorly understood.  We examined bleaching and post-bleaching recovery in Montipora capitata 

and Porites compressa corals that either bleached or did not bleach during a 2014 bleaching 

event at three reef locations in Kāne‘ohe Bay, O‘ahu, Hawai‘i.  We measured changes in 

chlorophylls, tissue biomass, and nutritional plasticity using stable isotopes (δ13C, δ15N).  Coral 

traits showed significant variation among periods, sites, bleaching conditions and their 

interactions.  Bleached colonies of both species had lower chlorophyll and total biomass, and 

while M. capitata chlorophyll and biomass recovered three months later, P. compressa 

chlorophyll recovery was location-dependent and total biomass of previously bleached colonies 

remained low.  Biomass energy reserves were not affected by bleaching, instead M. capitata 

proteins and P. compressa biomass energy and lipids declined over time and P. compressa lipids 

were site-specific during bleaching recovery.  Stable isotope analyses did not indicate increased 

heterotrophic nutrition in bleached colonies of either species, during or after thermal stress.  

Instead, mass balance calculations revealed variations in δ13C values reflect biomass 

compositional change (i.e., protein:lipid:carbohydrate ratios).  Observed δ15N values reflected 

spatiotemporal variability in nitrogen sources in both species, and in P. compressa, bleaching 

effects on symbiont nitrogen demand.  These results highlight the dynamic responses of corals to 

natural bleaching and recovery and identify the need to consider the influence of biomass 

composition in the interpretation of isotopic values in corals.  
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Introduction 

Scleractinian corals in association with dinoflagellate endosymbiont algae (Family: 

Symbiodiniaceae, formerly Symbiodinium spp.) (LaJeunesse et al. 2018) are important primary 

producers on coral reefs, which through biogenic processes create the complex calcium 

carbonate framework of the reef milieu.  The coral-algae symbiosis can be disturbed under 

environmental stress, leading to the reduction of symbiotic algae in coral tissue (i.e., coral 

bleaching) (Weis 2008).  Depending on the severity or duration of stress, bleaching causes coral 

mortality, although some corals survive and recover their symbionts post-bleaching (Fitt et al. 

1993; Cunning et al. 2016).  The strength and frequency of bleaching events has increased over 

the last three decades from a combination of progressive seawater warming (Heron et al. 2016) 

and climatic events (i.e., ENSO) (Hughes et al. 2017).  It is therefore critical to advance an 

understanding of the environmental conditions and biological mechanisms that underpin the 

physiological resilience of corals to thermal stress. 

 

The resistance and recovery of corals from bleaching stress is influenced by associations with 

thermally tolerant symbionts (Sampayo et al. 2008), tissue biomass abundance (Thornhill et al. 

2011) and energetic quality (i.e., lipid content), and the capacity to maintain positive energy 

budgets through nutritional plasticity (Anthony et al. 2009).  Coral nutrition is largely supported 

by fixed-carbon derived from endosymbiont algae, however, particle feeding (Mills et al. 2004), 

plankton capture (Sebens et al. 1998), and the uptake of dissolved compounds from seawater and 

sediments (Mills and Sebens 2004; Grover et al. 2006) (collectively, ‘heterotrophy’) can account 

for < 15 – 50% of energy demands (Porter 1976; Houlbrèque and Ferrier-Pagès 2009) and > 

100% of respiratory carbon demand in bleached corals (Grottoli et al. 2006; Palardy et al. 2008; 
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Levas et al. 2016).  Facultative shifts from autotrophic to heterotrophic nutrition are often linked 

to reduced symbiont photosynthesis in response to periodic light attenuation (i.e., turbidity) 

and/or environmental stress (Houlbrèque and Ferrier-Pagès 2009).  As such, nutritional plasticity 

is an important acclimatization mechanism shaping the physiological niche of corals (Anthony 

and Fabricius 2000) and supporting the resilience of reef-building corals to changing 

environments and resource availability (Grottoli et al. 2006; Ferrier-Pagès et al. 2010; Connolly 

et al. 2012; Hughes and Grottoli 2013). 

 

Heterotrophic nutrition is a fundamental process in the metabolism and growth of corals (Palardy 

et al. 2008; Houlbrèque and Ferrier-Pagès 2009; Hughes and Grottoli 2013).  In some corals, 

thermal stress and bleaching results in an increased feeding on zooplankton (Grottoli et al. 2006; 

Ferrier-Pagès et al. 2010; Hughes and Grottoli 2013; Levas et al. 2013) and suspended particles 

(Anthony and Fabricius 2000), and stimulates coral uptake of diazotroph-derived nitrogen 

(Bednarz et al. 2017) and dissolved organic carbon (Levas et al. 2016).  Periods of stress or 

resource limitation, however, do not facilitate shifts towards heterotrophic nutrition in all corals 

(Anthony and Fabricius 2000; Schoepf et al. 2015); instead, energetic demands are met by the 

catabolism of energy-rich biomass (i.e., proteins, lipids, carbohydrates) (Fitt et al. 1993; Grottoli 

et al. 2006; Schoepf et al. 2015).  Considering the limited size of biomass reserves, corals 

capable of increasing the acquisition of heterotrophic energy may experience a fitness advantage 

during times of stress and symbiosis disruption, as well as increased rates of physiological 

recovery (Rodrigues and Grottoli 2007; Connolly et al. 2012; Grottoli et al. 2014). 
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Elevated temperature effects on corals are also mediated by co-occurring environmental factors, 

including: ultraviolet (UV) (Shick et al. 1996) and photosynthetically active radiation (PAR) 

(Coles and Jokiel 1977), the concentration (Vega-Thurber et al. 2014) and stoichiometry of 

dissolved nutrients (e.g., nitrogen, phosphorous) (Wiedenmann et al. 2012), and water motion 

(Nakamura and van Woesik 2001).  For instance, elevated light levels and chronic nutrient 

loading can exacerbate thermal stress (Coles and Jokiel 1977; Vega-Thurber et al. 2014), while 

high water motion and seawater turbidity can reduce bleaching severity and mortality (Nakamura 

and van Woesik 2001; Anthony et al. 2007).  In addition, enhanced nutrition from heterotrophic 

feeding preceding and following thermal stress can replenish lipid biomass (Baumann et al. 

2014), reduce bleaching severity and coral mortality (Anthony et al. 2009; Ferrier-Pagès et al. 

2010) and promote post-bleaching recovery of the host and symbiont (Marubini and Davies 

1996; Connolly et al. 2012).  Spatiotemporal variation in abiotic conditions that affect coral 

performance and resource availability/demand, therefore, can influence coral holobiont response 

trajectories and outcomes to physiological stress (Hoogenboom et al. 2011; Connolly et al. 2012; 

Scheufen et al. 2017).  Considering reef corals may experience bleaching effects > 12 months 

following initial thermal stress and well beyond the return of normal tissue pigmentation (Fitt et 

al. 1993; Baumann et al. 2014; Grottoli et al. 2014; Levitan et al. 2014; Schoepf et al. 2015), it is 

important to consider the environmental effects and physiological mechanism(s) that facilitate or 

hinder post-bleaching recovery.  

 

The occurrence of large-scale coral bleaching episodes has been historically rare in the Main 

Hawaiian Islands, being limited to 1996 (Jokiel and Brown 2004).  However, coastal seawater in 

Hawai‘i is warming (0.02 °C y-1, annual mean 1956–2014; Bahr et al. 2015) and the frequency 
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and severity of global bleaching events is increasing (Hughes et al. 2017).  From September – 

October 2014, the Hawaiian Archipelago experienced a protracted period of elevated sea surface 

warming.  Degree heating weeks (DHW) for the Main Hawaiian Islands began to accumulate on 

15 September, peaking at 7 DHW on 20 October, and declining below < 7 DHW after 08 

December (NOAA Coral Reef Watch 2018).  Water temperatures (29 – 30.5 °C) (Bahr et al. 

2015) exceeded O‘ahu mean summertime maximum temperatures (ca. 28 °C) (Jokiel and Brown 

2004) and resulted in a rare coral bleaching event spanning the archipelago (Bahr et al. 2017; 

Couch et al. 2017) with extensive bleaching in Kāne‘ohe Bay, O‘ahu (62 – 100% of coral cover 

across reef habitats; Bahr et al. 2015).  This event provided a rare opportunity to track the 

biology of bleaching resistant and susceptible corals during and after thermal stress under natural 

field conditions, with the potential to monitor the mechanisms of bleaching recovery among reef 

habitats.   

 

In this study, the physiology underpinning two different phenotypes of bleaching response 

(bleached vs. non-bleached) were examined for two dominant Kāne‘ohe Bay coral species 

(Montipora capitata and Porites compressa) (Figure 3.1). M. capitata and P. compressa can 

differ in the physiological responses to experimental bleaching and recovery, with M. capitata 

increasing heterotrophic feeding and P. compressa catabolizing tissue reserves (Grottoli et al. 

2006; Rodrigues and Grottoli 2007).  Coral fragments were collected from bleached and non-

bleached individuals of each species during peak bleaching and three months following thermal 

stress (Figure S1a) from three patch reefs within an environmental gradient of decreasing 

oceanic influence (Lowe et al. 2009) and terrigenous nutrient perturbations (Smith et al. 1981), 

which allowed an examination of the spatial variance and environmental influence (temperature, 
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light, sedimentation, dissolved nutrients) on corals after thermal stress.  We tested (1) whether 

photopigments, coral biomass (total biomass, protein, lipid, and carbohydrate concentration and 

energy content), and contributions of heterotrophic nutrition (δ13C and δ15N values) differed 

among time periods, reef sites, or bleaching conditions and (2) whether environmental conditions 

influenced bleaching severity and mechanisms of physiological recovery. 

 

Materials and Methods 

Site description 

Naturally bleached and non-bleached corals were identified from three patch reefs (Figure 3.1a): 

one in northern (Reef 44: 21°28’36.4” N, 157°50’01.0” W), central (Reef 25: 21°27’40.3” N, 

157°49’20.1” W), and southern (Hawai‘i Institute of Marine Biology (HIMB): 21°26’06.0” N, 

157°47’27.9” W) Kāne‘ohe Bay, Oʻahu, Hawaiʻi (see Cunning et al. 2016 for more detail).  Reef 

sites were identified for their location within the longitudinal axis of Kāne‘ohe Bay, which spans 

a north-south hydrodynamic gradient of seawater residence times (north: < 2 d; south: 30 – 60 d) 

and oceanic influence (high in north, low in south) (Lowe et al. 2009).   

 

Environmental data 

Dissolved inorganic nutrients in seawater were measured on samples collected (ca. 100 ml) from 

surface waters (< 1 m) at each reef site once every two weeks from 04 November 2014 to 04 

February 2015.  In total, ten seawater samples were analyzed for each reef site over the study 

period.  Additional samples were also collected to determine the δ15N value of seawater nitrate 

using the bacterial denitrifier method.  All seawater samples were filtered (0.7 µm) and stored in 

0.1 N HCl-washed bottles and frozen at -20 °C until analyzed.   



	

	 52 

 

Analysis of δ15N-nitrate in seawater was performed following the bacterial denitrifier method, 

where the bacterial strain Pseudomonas aurofaciens converts nitrate to nitrous oxide (N2O) 

without changes in nitrogen isotopic composition (Sigman et al. 2001; McIlvin and Casciotti 

2011).  The nitrogen isotopic composition of N2O was measured at the University of Hawai‘i at 

Mānoa Biogeochemical Stable Isotope Facility on a ThermoFinnigan Gasbench II with a 

Finnigan MAT 252 isotope ratio mass spectrometer.  Isotope values are reported in permil (‰) 

relative to atmospheric N2 standards (air).  Analysis of δ15N-nitrate requires sufficient 

concentrations of nitrate+nitrite (NO3
- + NO2

-) (i.e., N+N) in seawater, and δ15N-nitrate values 

are not reported where N+N µmol L-1 was below limit for analysis. 

 

Dissolved inorganic nutrients (ammonium [NH4
+], nitrate + nitrite [NO3

- + NO2
-] or [N+N], 

phosphate [PO4
3-], and silicate [Si(OH)4]) in seawater were measured by the University of 

Hawai‘i at Mānoa SOEST Laboratory for Analytical Biogeochemistry using a Seal Analytical 

AA3 HR nutrient autoanalyzer and expressed as µmol L-1.  Photosynthetic active radiation 

(PAR) and temperatures data were continuously recorded at 15 min intervals at 2 m depth at each 

reef site.  PAR was recorded using a cosine-corrected Odyssey PAR loggers (Dataflow Systems 

Limited, Christchurch, New Zealand) cross calibrated to a cosine quantum sensor (LI-192, Li-

Cor Biosciences, Lincoln, NE) and Li-Cor quantum meter (LI-1400) (Long et al. 2012).  

Temperatures were recorded using Hobo Pendant UA-002-08 loggers (±0.53 °C accuracy, Onset 

Computer Corp., Bourne, MA) that were cross-calibrated across a range of temperatures (18 – 40 

°C).  PAR and temperature loggers at Reef 25 experienced mechanical errors; therefore, only 

data from Reef 44 and HIMB are presented.  Instantaneous PAR values were used to calculate 



	

	 53 

the daily light integral (DLI) for each site (mol photons m-2 d-1).  Rates of sedimentation at each 

site were measured using sediment traps by weighing the mass of suspended particles falling into 

a polyvinylchloride tube (5 cm × 42 cm) capped at the base and held vertical to a cinder block at 

each reef site at a depth of 2 m.  Large debris (e.g., invertebrate carapaces) was removed from 

collected sediments.  Sediment traps were collected each month, filtered through pre-weighed 

commercially available coffee filters, ddH2O rinsed, dried at 60 °C, and weighed to nearest 

0.0001 g.  Sedimentation rates were expressed as mg sediment d-1. 

 

Coral collection and tissue analysis 

During peak bleaching in October 2014, colonies of Montipora capitata (Dana, 1846) and 

Porites compressa (Dana, 1846) exhibiting different bleaching conditions – tissue paling 

(bleached) and fully pigmented (non-bleached) (Figure 3.1b-c) – were identified and tagged 

(depth: <1 – 3 m) with cattle tags and zip ties.  In each species, neighboring colonies of each 

condition (bleached and non-bleached) were selected and are referred to as conspecific colony 

pairs (Figure 3.1b-c).  Fragments (4 cm in length) from each conspecific colony pair (5 pairs per 

species) were collected from the three reefs sites (detailed above) during bleaching (24 October 

2014) and ca. 3 month following peak seawater temperatures during post-bleaching recovery (14 

January 2015) (Figure S1).  Fragments were immediately frozen in liquid nitrogen and stored at -

80 °C until processing. 

 

All biomass assays were performed on holobiont tissues (host + symbionts), following 

established procedures (Wall et al. 2017b).  Coral tissues were removed from skeletons using an 

airbrush filled with filtered seawater (0.2 µm).  The tissue slurry was briefly homogenized and 
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stored on ice.  Total chlorophyll (a+c2) was used as a metric of bleaching (Grottoli et al. 2006) 

and symbiont densities (symbiont:host cell ratio) were measured in a parallel study (Cunning et 

al. 2016).  Chlorophylls were measured by concentrating algal symbiont cells through 

centrifuging the coral tissue slurry (13,000 rpm × 3 min) and subsequently extracting 

chlorophylls in 100% acetone for 36 h in darkness at -20 °C (Wall et al. 2017b).  Extract 

absorbance were measured at two absorbances (λ = 630 and 663 nm) with a 750 nm internal 

blank on a spectrophotometer (Jeffrey & Humphrey, 1975) using a glass 96-well microtiter plate.  

Concentrations for chlorophyll a and c2 were summed to obtain total chlorophyll (µg ml tissue 

slurry-1) and final concentrations were standardized to coral surface area determined by the wax-

dipping technique (Stimson and Kinzie 1991).  

 

 Total tissue biomass was determined from the difference of dry (60 °C) and combusted (4 h, 450 

°C) masses of an aliquot of tissue extract and expressed as the ash-free dry weight (AFDW) of 

biomass cm-2.  Total protein (soluble + insoluble) was measured spectrophotometrically 

following the Pierce BCA Protein Assay Kit (Pierce Biotechnology, Waltham, MA) using a 

spectrophotometer (λ = 562 nm) against a bovine serum albumin standard curve (Smith et al. 

1985).  Total lipids were quantified by lyophilizing 3 ml of the tissue slurry and extracting lipids 

in a 2:1 chloroform:methanol solution for 1 h in darkness at -20 °C.  The extracted fraction was 

filtered through a pre-combusted (450 °C, 4h) GF/F filter (0.7 µm), rinsed with 0.88% KCl and 

100% chloroform, and evaporated under low heat (< 50 °C) in pre-combusted aluminum pans.  

Lipid biomass was measured gravimetrically to the nearest 0.0001 g (Schoepf et al. 2013) and 

normalized to total extracted tissue biomass, determined as the sum of the ash-free dry weight of 

debris retained on the GF/F filter during lipid extraction and the mass of extracted lipids.  
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Carbohydrates were measured using the phenol-sulfuric acid method using a spectrophotometer 

(λ = 585 nm) with glucose as a standard (Dubois et al. 1965).  Finally, changes in tissue biomass 

reserves were assessed energetically (Lesser 2013) using compound-specific enthalpies of 

combustion for lipid (-39.5 kJ g−1), protein (-23.9 kJ g−1), and carbohydrate (-17.5 kJ g−1) 

biomass (Gnaiger and Bitterlich 1984); tissue kJ values were summed and expressed as energy 

content per gram of AFDW biomass (kJ g-1).  Proteins, lipids, carbohydrates, and biomass 

kilojoules (i.e., energy content) were normalized to g AFDW of the tissue slurry. 

 

Stable isotope analysis 

An aliquot of the tissue slurry (ca. 5 ml) was filtered through a 47 mm 20 µm nylon net filter 

(EMD Millipore Corp., Burlington, MA) to remove inorganic carbonate and skeletal debris 

(Maier et al. 2010).  Host and symbiont tissues were separated by centrifugation (2000 g × 3 

min) and filtered seawater rinses (Muscatine et al. 1989; microscopy confirmed the efficient 

separation of the two tissue fractions).  Tissues were filtered using a vacuum pump at low 

pressure onto pre-combusted 25 mm GF/F filters (450 °C, 4h), rinsed with ddH2O to remove 

salts, dried at 60 °C, and packed in tin capsules.  Carbon (δ13C) and nitrogen (δ15N) isotopic 

values and molar ratios of carbon:nitrogen (C:N) for coral host (δ13CH, δ15NH, C:NH) and algal 

symbiont (δ13CS, δ15NS, C:NS) tissues were determined using a Costech elemental combustion 

system coupled to a Thermo-Finnigan Delta Plus XP Isotope Ratio Mass-Spectrometer.  

Analytical precision of δ13C and δ15N values of samples was < 0.2 ‰ determined by analysis of 

laboratory reference material run before and after every 10 samplesIsotopic data are reported in 

delta values (δ) using the conventional permil (‰) notation and expressed relative to Vienna 
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Pee-Dee Belemnite (V-PBD) and atmospheric N2 standards (air) for carbon and nitrogen, 

respectively, using the following equation:  

δ13C or δ15N  = [(Rsample/Rstandard) – 1] × 1000 

where R is the ratio of 13C:12C or 15N:14N in the sample and its respective standard.  The relative 

differences in isotopic values in the host and symbiont for carbon (δ13CH-S = δ13CH - δ13CS) and 

nitrogen (δ15NH-S) were calculated to evaluate changes in the proportion of heterotrophic carbon 

to coral host nutrition (i.e., δ13CH-S) and changes in trophic enrichment among host and symbiont 

(i.e., δ15NH-S) (Rodrigues and Grottoli 2006; Reynaud et al. 2009). 

 

An isotope mass balance was used to model the effect of changes in tissue biomass composition 

on holobiont (host + symbiont) δ13C values during bleaching recovery, following Hayes (2001).  

First, the isotopic composition of the holobiont (δ13CHolobiont) was modeled for each time period: 

δ13CHolobiont = (mH * δ13CH) + (mS * δ13CS) 

where m is the estimated proportion of host (mH) and symbiont (mS) tissues in holobiont biomass 

(g AFDW), and δ13C (defined above) are measured isotopic values of tissues.  Symbiodiniaceae 

account for 3 – 10% of coral biomass (Muscatine et al. 1981; 1984; Porter et al. 1989; Thornhill 

et al. 2011); however, the influence of bleaching on this percentage is uncertain, therefore an 

average value of 5% total biomass was used (Thornhill et al. 2011).  Second, the δ13C value of 

biomass reflects the distribution of 13C among the major classes of compounds:  

δ13Cbiomass ~ Xproteins δ13Cproteins + Xcarbohydrates δ13Ccarbohydrates + Xlipids δ13Clipids 

where X refers to the mole fraction of carbon in proteins, carbohydrates, and lipids.  Therefore, 

biomass composition (i.e.,% of proteins, lipids, carbohydrates) and δ13CHolobiont values were used 
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to estimate compound class-specific isotopic values (δ13CCompound) for each compound class in 

corals during the bleaching period of October 2014, using eqn. 5 in Hayes (2001):  

δ13Ccarbohydrates = δ13Cproteins + 1 ‰ 

δ13Clipids = δ13Ccarbohydrates – 6 ‰ 

We assume the δ13C value of proteins is 1 ‰ higher that the δ13C value of carbohydrates and 

lipids are depleted in 13C by 6 ‰ relative to carbohydrates (see Hayes 2001 and references 

therein).  δ13CCompound values for each colony were then applied to the same colonies in January 

2015 using measurements of tissue composition and δ13CHolobiont values (i.e., observed-

δ13CHolobiont) to calculate expected-δ13CHolobiont values – representing the predicted value of the 

holobiont as a product of a fixed, colony-specific δ13CCompound value applied to a new biomass 

composition.  The relationship between observed and expected δ13CHolobiont was evaluated using a 

linear regression. 

 

Statistical analysis 

A matrix of all biological response variables for M. capitata and P. compressa was first analyzed 

using a permutational multivariate analysis of variance (PERMANOVA) with periods (October 

2014, January 2015), sites (Reef 44, Reef 25, HIMB), and colony-level physiological condition 

observed in October 2014 (i.e., bleached or non-bleached) as main effects.  δ13C values were 

incorporated into the data matrix by transforming to absolute values (i.e., |δ13C|).  Sum of squares 

were partitioned according to Bray-Curtis dissimilarity matrix and sequential tests were applied 

on 1000 model permutations using adonis2 in R package vegan (Oksanen et al. 2017; R 

Development Core Team 2018), with pairwise comparisons over an additional 1000 

permutations in RVAideMemoire.  Results of PERMANOVA were applied to distinguish the 
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hierarchy of main effects between coral species and to holistically evaluate post-bleaching 

recovery.  Multivariate relationships between periods, sites, and bleaching conditions were 

visualized for each species separately using nonmetric multidimensional scaling (NMDS) plots 

with ellipses representing standard errors of point means.  NMDS plots were used to visualize 

differences among reefs and bleaching conditions (i.e., site × condition), and among bleached 

and non-bleached corals across all sites with vectors representing significant biological responses 

(p ≤ 0.05).  

 

Environmental data (temperature, light, dissolved nutrients, sedimentation) from each reef were 

analyzed to test for site-specific conditions influencing bleaching and recovery responses.  

Environmental data was analyzed using a linear mixed effect model using lmer in package lme4 

(Bates et al. 2015) with reef site as a fixed effect and date of sample collection as a random effect.  

Biological response variables for individual species were used to test for differences among time 

periods, reef locations, and bleaching conditions.  Physiology and isotopic data were analyzed 

using three-way linear mixed effect models in lme4 with period, site, and condition as fixed 

effects and coral colony and colony-pairs as random effects.  Model selection was performed on 

candidate models using a combination of AIC and likelihood ratio tests (Akaike 1978).  Where 

significant interactions were observed, pairwise post hoc slice-tests of main effects by least-

square means were performed in package lsmeans (Lenth 2016).  Analysis of variance tables for 

all environmental and biological metrics were generated using type II sum of squares with 

Satterthwaite approximation of degrees freedom using lmerTest (Kuznetsova et al. 2017).  

Environmental data from these reefs are publically available (Ritson-Williams and Gates 2016a; 

2016b; 2016c; Ritson-Williams et al. 2018).  All analyses were performed in R version 3.4.3 (R 
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Development Core Team 2018); materials (data, R code) to reproduce tables, figures, and 

analyses are archived at Zenodo (Wall 2019).   

   

Results 

Environmental data 

Kāne‘ohe Bay reef flats sustained a maximum seawater temperatures of ca. 31 °C (Bahr et al. 

2015).  Peak seawater warming at HIMB spanned 15 – 24 September 2014 with temperatures 

ranging from 29.8 – 30.2 °C (± 0.2 °C accuracy, ± 0.1 °C resolution; NOAA 2017) (Appendix 

Figure 3.S1).  Seawater temperatures at Reef 44 and HIMB declined from peaks in mid-October 

(≤ 29.2 ± 0.5 °C) declining thereafter, and seawater temperatures from October 2014 to January 

2015 (mean, maximum, minimum) were comparable, with among sites differences (ca. 0.01 °C) 

below logger resolution (± 0.14 °C) and accuracy (± 0.53 °C) (Table 3.1).  Light values 

integrated over 24 h (i.e., DLI mol photons m-2 d-1) were 4.5 mol photons m-2 d-1 greater at 

HIMB compared to Reef 44 (p < 0.001) (Table 3.1; Appendix Figure 3.S1). 

 

The concentrations of dissolved inorganic nutrients were low during most of the study, but 

differences among the three reefs were detected (Figure 3.2a-d, Table 3.1).  Phosphate was 

lowest at Reef 25 (p = 0.019) although this effect was small (difference < 0.02 µmol L-1).  

Ammonium concentrations were equivalent among reefs (p = 0.161) (ca. 0.5 µmol L-1) but most 

variable at Reef 44 (transient increases of up to 2.0 µmol L-1), and nitrate + nitrite concentrations 

at Reef 44 were two-fold higher than other sites (p = 0.002) (0.35 – 0.42 µmol L-1).  Silicate (p = 

0.724) and short-term sedimentation rates (p = 0.161) (Figure 3.2e) did not differ among sites; 

however, silicate tended to be higher at Reef 44 and an extended monitoring of sedimentation 
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rates (December 2014 – January 2016) show annual sedimentation rates at Reef 44 and HIMB 

were greater and more variable than rates at Reef 25 (p = 0.041) (Figure 3.2f).  δ15N values for 

nitrate ranged from 3.8 to 4.9 ‰ (Table 3.2), however, low [N+N] reduced sample sizes for 

δ15N-nitrate analysis (n = 1 – 2 samples per site).     

 

Coral physiology 

Multivariate analysis of sixteen response variables in Montipora capitata and Porites compressa 

revealed significant changes in corals among time periods (p <0.001), between bleached and 

non-bleached corals (p ≤ 0.004) and in response to the period × condition interaction (p ≤ 0.029) 

(Table 3.3).  Reef sites significantly influenced M. capitata condition (p = 0.006), especially 

during October 2014 (Figure 3.3a), whereas P. compressa colonies were less influenced by site 

(p = 0.099) and instead predominantly affected by bleaching condition (Figure 3.4a).  NMDS 

plots showed differences in bleached and non-bleached colonies of both species during October 

2014 (post-hoc: p ≤ 0.008) where bleaching correlated with reductions in chlorophyll 

concentration (chl) and biomass (Figure 3.3b, 4b) and lower host and symbiont C:N in P. 

compressa (Figure 3.4b).  By January 2015, the physiological condition of previously bleached 

M. capitata (post-hoc: p = 0.337) and P. compressa colonies (post-hoc: p = 0.125) were 

indistinguishable from non-bleached conspecifics, indicating a convergence of physiological 

properties in corals across bleaching histories and a rapid physiological recovery from bleaching 

(Figures 3.3c-d, 3.4c-d).  A summary of significant effects for all response variables can be 

found in Table 3.4. 

 

Montipora capitata total chlorophyll (p = 0.041) and tissue biomass (p = 0.011) were affected by 
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the interaction of period × condition (Appendix Table 3.S3), and these responses did not vary 

among sites (p ≥ 0.222).  In October 2014 bleached M. capitata had 63% less chlorophyll and 

30% less tissue biomass than non-bleached phenotypes (Figure 3.5a-b).  By January 2015, 

however, M. capitata chlorophyll and tissue biomass were equivalent among bleached and non-

bleached corals, having increased 255% and 95% in bleached phenotypes and 54% and 37% in 

non-bleached colonies, respectively, from October 2014 levels (Figure 3.5a-b).  Over the 

recovery period, M. capitata protein biomass (g gdw-1) declined by 20% (p = 0.010) but did not 

differ among sites (p = 0.461) or between bleached and non-bleached colonies (p = 0.267) 

(Figure 3.6a; Appendix Table 3.S3).  M. capitata tissue lipids, carbohydrates and energy content 

did not differ among periods (p ≥ 0.073), sites (p ≥ 0.065) or between bleached and non-bleached 

colonies (p ≥ 0.291) (Figure 3.6b-d). 

 

Porites compressa chlorophyll content differed according to period × condition (p <0.001) and 

site × condition (p = 0.011) interactions (Figure 3.5c, Appendix Table 3.S2).  In October 2014, 

chlorophyll in bleached P. compressa was 84% (Reef 44), 78% (Reef 25), and 92% (HIMB) 

lower than non-bleached colonies.  By January 2015, chlorophyll was equivalent between all P. 

compressa at Reef 25 and Reef 44, but chlorophyll recovery was suppressed in colonies at HIMB, 

with 25% less chlorophyll in previously bleached colonies.  P. compressa total biomass was on 

average 19% higher in non-bleached relative to bleached colonies (p = 0.025) but did not differ 

among periods or sites (p ≥ 0.173) (Figure 3.5d).   

 

Porites compressa protein biomass (g gdw-1) was affected by period × condition (p = 0.011) 

(Figure 3.6e; Appendix Table 3.S2), but in post-hoc tests protein was not different among 
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bleached and non-bleached colonies during October 2014 or January 2015.  Tissue lipids and 

energy content were affected by the period × site interaction (p ≤ 0.008), but not bleaching 

conditions (p ≥ 0.179).   At the time of bleaching in October 2014, P. compressa lipids and 

biomass energy content was equivalent among sites (Figure 3.6f, h), but by January 2015 tissue 

lipids and energy content declined by ca. 27% and 18%, respectively, from October 2014 levels.  

In particular, declining lipid biomass in recovering P. compressa was limited to Reef 44 and 

Reef 25 colonies, whereas lipids in HIMB corals remained high.  Carbohydrate biomass showed 

no significant differences (p ≥ 0.114) (Figure 3.6g).   

 

Tissue isotopic compositions 

Differences in the carbon isotopic composition of M. capitata host (δ13CH) tissues varied 

according to bleaching condition (p = 0.022), with higher values in bleached colonies, although 

these differences were small (0.7 ‰) (Figure 3.7a; Appendix Table 3.S3).  Symbiont δ13C values 

varied over time, being lower (0.7 ‰) during bleaching in October 2014 compared to January 

2015 (p = 0.001) (Figure 3.7b).  The relative difference in M. capitata host and symbiont δ13C 

values (δ13CH-S) – a metric for greater proportion of autotrophic (positive values) and 

heterotrophic (negative values) derived carbon – changed over time, with higher δ13CH-S values 

in October 2014 and a decline in δ13CH-S values in January 2015 (p = 0.001) (Figure 3.7c); δ13CH-

S were slightly higher in bleached colonies (0.3 ‰) (p = 0.050).  Nitrogen isotopic composition 

of M. capitata host (δ15NH) tissues differed among reef sites (p = 0.043), being 15N-enriched 

(1 ‰) at HIMB (5.4 ± 0.1 ‰, mean ± SE) relative to other sites (Figure 3.7d).  Symbiont δ15N 

and δ15NH-S values showed no statistically significant effects (p ≥ 0.066) (Figure 3.7e-f).  M. 

capitata C:NH increased over time (p <0.001) and was higher in bleached relative to non-
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bleached colonies in January 2015 (p = 0.046), but differences across time and conditions were 

small (< 8% change).  C:NS (p ≥ 0.060) was unaffected across the study (Appendix Table 3.S3, 

Appendix Figure 3.S2).  

 

Porites compressa host δ13C values were comparable among all colonies in October 2014.  In 

January 2015, effects on δ13CH values were limited to HIMB alone, where previously bleached 

colonies were 13C-enriched (2 ‰) relative to non-bleached colonies (p = 0.032) (Figure 3.7g, 

Table 3.4; Appendix Table 3.S4).  Similarly, symbiont δ13C values in January 2015 were higher 

(1 ‰) in previously bleached colonies, driven largely by higher δ13C values in colonies at HIMB 

(p = 0.048) (Figure 3.7h).  P. compressa δ13CH-S values did not differ over the study (p ≥ 0.136) 

(Figure 3.7i).  P. compressa δ15NH values were slightly lower (0.4 ‰) in October 2014 (p = 

0.014) but were largely spatially influenced (p = 0.002), being 15N-enriched (1 ‰) in colonies 

from HIMB compared to other sites (Figure 3.7j).  Interactive effects of period × condition on 

δ15NH (p = 0.033) were not significant in a priori post-hoc contrasts (p ≥ 0.078).  Similarly, P. 

compressa symbiont δ15N became progressively 15N-enriched (ca. 1.2 ‰) from northern Reef 44 

to southern HIMB (p = 0.024) (Figure 3.7k).  Additionally, δ15NS was higher (1.1 ‰) in bleached 

relative to non-bleached P. compressa in October 2014, but not January 2015 (p = 0.009), 

corresponding to lower δ15NH-S values (p = 0.001) for bleached relative to non-bleached P. 

compressa (p = 0.001) in October 2014 during thermal stress (Figure 3.7l).  P. compressa C:NH 

increased over time (p < 0.001) and was lower (October 2014) and higher (January 2015) in 

bleached relative to non-bleached colonies (p <0.001) (Appendix Table 3.S4), although these 

effects were small (< 10% change); C:NH site × condition effects (p = 0.004) were not significant 
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in post-hoc contrasts. C:NS showed no significant effects (p ≥ 0.085) (Appendix Table 3.S4, 

Appendix Figure 3.S2).  

 

To reconcile small changes in tissue δ13C values in host and symbiont fractions across the three 

scales tested here (i.e., period, site, condition) an isotope mass balance was used. Measurements 

of total biomass and compound class concentrations (i.e., proteins, lipids, carbohydrates) (Hayes 

2001) were used to estimate compound class-specific δ13C values (i.e., δ13CCompound) for all coral 

holobionts (i.e., δ13CHolobiont) at the time of thermal stress in October 2014 (Appendix Figure 

3.S3).  Using colony-specific δ13CCompound estimates for corals in October 2014 and applying 

these estimates to the measured proportion of tissue compounds produces an expected-

δ13CHolobiont, which should explain observed-δ13CHolobiont if δ13CCompound values have not been 

substantially altered by the incorporation of different carbon sources or changes in residual 

δ13CCompound from metabolic effects.  Expected-δ13CHolobiont values provided a good estimate of 

observed- δ13CHolobiont, which ranged from δ13C of -19 to -13 ‰ (Table 3.8).  The range in δ13C 

values is important, as it shows a considerable range in holobiont δ13C from biological and 

environmental effects on corals and Symbiodiniaceae.  The relationship between the expected-

δ13CHolobiont and the observed-δ13CHolobiont values in all corals (i.e., those recovered from 

bleaching and non-bleached) was significant for both M. capitata (R2 = 0.88, p <0.001) and P. 

compressa (R2 = 0.56, p <0.001) (Figure 3.8), indicating a significant influence of 

protein:lipid:carbohydrate ratios in explaining variance in δ13C values in both species during 

bleaching recovery. 
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Discussion 

Few studies have monitored changes in coral physiology and nutritional plasticity during and 

after large-scale natural bleaching events (Fitt et al. 1993; Edmunds et al. 2003; Rodrigues et al. 

2008; Grottoli and Rodrigues 2011) or evaluated local environmental effects on physiological 

conditions that shape bleaching recovery (Cunning et al. 2016).  Using Montipora capitata and 

Porites compressa colonies from three reefs spanning 6.3 km along Kāne‘ohe Bay, we observed 

variable tissue biomass and chlorophylls among bleaching conditions and through time, but 

energy reserves were unaffected by bleaching stress.  Furthermore, evidence suggests relatively 

small changes in coral tissues composition across space and time, and not changes in 

heterotrophic nutrition, explain patterns in δ13C values of both coral species during bleaching 

recovery.  Taken together, these results shed light on coral physiology during and after thermal 

stress and identify the need to quantity tissue composition effects on isotopic values in corals, as 

this may provide insight into the performance of corals across a continuum of physiological 

conditions and ecological scales. 

 

Environmental context, bleaching, and recovery 

Seawater temperatures during and after bleaching in October 2014 were comparable among the 

three reefs, but light availability was lower and dissolved nutrients and sedimentation tended to 

be higher at Reef 44 in northern Kāne‘ohe Bay (Figure 3.1a).  These observations correspond 

with a combination of greater discharge of subterranean groundwater, watershed/stream inputs, 

and the unique hydrology (short seawater residence) at this location (Drupp et al. 2001; Dulai et 

al. 2016).  While physiological stress from high light (Anthony et al. 2007) and nutrient 

enrichment (Wiedenmann et al. 2012) can exacerbate thermal stress, bleaching severity (assessed 
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from chlorophyll density) was similar among the three reef sites, and N:P ratios (range: 0.6 – 

10.5) were below those reported in cases where nutrients negatively affected corals (i.e., 

bleaching, tissue loss) (N:P of 255:1 [Rosset et al. 2017], 22:1 and 43:1 [Wiedenmann et al. 

2012]).  Excess nutrient enrichment is detrimental to coral reefs (Silbiger et al. 2018 Vega-

Thurber et al. 2014), yet moderate nutrient enrichment and stochastic nutrient perturbations can 

benefit corals by stimulating symbiont growth (Sawall et al. 2014) and increasing concentrations 

of dissolved organic carbon (Levas et al. 2016), suspended particles and prey (Mills and Sebens 

2004; Mills et al. 2004, Selph et al. 2018) to the benefit of coral energy acquisition (Fox et al. 

2018).  Therefore, site-specific patterns in light and nutrient concentrations in the present study 

did not appear to affect bleaching responses, but may have influenced post-bleaching trajectories 

of physiological recovery and symbiont repopulation (see also Cunning et al. 2016).       

 

Three months after a regional bleaching event (i.e., January 2015) bleached colonies had 

regained photopigmentation and were indistinguishable from non-bleached conspecifics, with the 

exception of moderately lower chlorophyll in bleached P. compressa at HIMB.  Recovery from 

the 2014 bleaching event may have been hastened by seawater cooling initiated by the passage of 

Hurricane Ana by the Hawaiian Islands (ca. 17 – 23 October 2014; NOAA 2018) days before our 

sampling (24 October 2014), serving to mitigated further physiological thermal stress in October 

2014 (Figure S1a) (Manzello et al. 2007).  Rapid recovery rates observed here over short periods, 

however, do not negate possible long-term effects of bleaching.  For instance, in many coral 

species bleaching effects can reduce long-term reproductive capacity (Levitan et al. 2014), alter 

tissue biochemistry (Rodrigues and Grottoli 2007; Baumann et al. 2014; Schoepf et al. 2015), 

and alter gene expression for several months (Pinzón et al. 2015) to a year after the onset of 
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thermal stress (Thomas and Palumbi 2017).  Moreover, effects of repeat bleaching events can be 

complex and multiplicative, reducing the physiological resilience of corals in the long-term 

(Grottoli et al. 2014).  Therefore, it is important to recognize short-term recovery of 

pigmentation and biomass (Figure 3.5) as one part of the bleaching condition, while 

acknowledging the uncertainty in long-term effects of bleaching on coral biology after symbiont 

repopulation. 

 

Physiological impacts of bleaching and recovery 

Bleaching sensitivity is affected by the capacity for cellular and genetic properties of 

Symbiodiniaceae and host genotypes to mitigate cellular damage (Weis 2008; Kenkel et al. 

2013).  P. compressa is a symbiont-specifist, hosting only one species of Cladocopium sp. 

(formerly, clade C) symbionts (ITS2 type C15) (LaJeunesse et al. 2004). M. capitata, however, 

exhibits flexible symbiont partnerships that partition across habitats (Innis et al. 2018) and 

influence bleaching responses (Cunning et al. 2016).  In a parallel study of M. capitata in 

Kāne‘ohe Bay following the 2014 bleaching event, bleached colonies were always dominated by 

Cladocopium sp. symbionts (ITS2 type C31), whereas non-bleached colonies could be 

dominated by Cladocopium sp. or Durusdinium glynnii (formerly, Symbiodinium glynii [ITS2 

type D1-4-6]) (Cunning et al. 2016).  Thus, symbiont communities alone cannot explain the 

distinct bleaching phenotypes observed in either M. capitata or P. compressa during the 2014 

bleaching event, but instead point to physiological acclimatization (Kenkel and Matz 2016) or 

genetic mechanism(s) (Palumbi et al. 2014) on behalf of host and symbiont genotypes, or their 

combination as supporting holobiont thermal tolerance (Sampayo et al. 2008). 
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Coral host biomass quantity (i.e., total biomass), quality (i.e.,% lipids, energy content) and 

thickness are important determinants for stress resilience and post-bleaching survival (Loya et al. 

2001; Anthony et al. 2009; Thornhill et al. 2011).  In the present study, bleached colonies of both 

species had between 25 – 30% less biomass than non-bleached corals, and during post-bleaching 

recovery changes in tissue biomass were species-specific and dependent on bleaching history.  In 

previous studies, tissue biomass (i.e., mg AFDW cm-2) has been shown to decline 34 – 50% 

during and after thermal stress (Porter et al. 1989) as a result of tissue catabolism (Fitt et al. 

1993; Grottoli et al. 2006; Rodrigues and Grottoli 2007) and/or cellular detachment during 

bleaching (Gates et al. 1992).  Post-bleaching, M. capitata recovered biomass quickly (< 3 

months) (Figure 3.5); in contrast, biomass in previously bleached P. compressa colonies 

remained low (17% less than non-bleached colonies) at both time periods.  These results agree 

with laboratory experiments, where bleaching quickly reduced M. capitata and P. compressa 

biomass, but P. compressa tissues took much longer to recover (4 – 6 months post-bleaching) 

compared to M. capitata (1.5 months) (Grottoli et al. 2006; Rodrigues and Grotolli 2007).  The 

cause for different biomass recovery rates is uncertain, but can indicate the extent of 

physiological stress, energetic demands, and differences in rates of tissue growth and metabolism 

between the two species (Coles and Jokiel 1977). 

 

During the natural bleaching event and subsequent recovery, changes in the biomass composition 

were independent of bleaching history, and instead varied according to periods in both M. 

capitata (proteins) and P. compressa (energy content) and among sites during recovery for P. 

compressa (lipids) (Figure 3.6).  Bleaching-independent changes in biomass composition and 

energy observed here (Figure 3.6, Figure S2) can also relate to shared physiological challenges 
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confronting both bleaching susceptible and resistant corals (i.e., gene regulation, stress protein 

synthesis) (Kenkel et al. 2013) and complex seasonal (Fitt et al. 2000) and site-specific 

environmental contexts (i.e., light availability) (Patton et al. 1977; Anthony 2006) juxtaposed 

atop bleaching stress.  Indeed, while tissue composition (i.e.,% proteins, lipids, carbohydrates) 

did not differ among bleached and non-bleached colonies at either time point, total biomass (mg 

cm-2) was lower in all colonies in October 2014 regardless of bleaching condition (Figure 3.5).  

Therefore, thermal stress may reduce the total biomass production in both bleaching susceptible 

and resistant corals, and tissue biomass in bleached corals may remain low for several months 

post-bleaching.   

 

Nutritional plasticity and tissue isotopic composition 

The isotopic values of an organism are linked to the constitutive biochemical composition of the 

tissues and substrates acquired through its diet and broken down in metabolism (Minagawa and 

Wada 1984; Hayes 2001).  Isotopic inferences on nutritional plasticity in corals are also 

complicated by the translocation/recycling of metabolites between symbiotic partners (Reynaud 

et al. 2002; Einbinder et al. 2009), kinetic isotope fractionation in biological reactions (i.e., 

metabolic isotope effects) (Land et al. 1975), and the isotopic composition of internal and 

external nutrient pools (Swart et al. 2005b) which are influenced by rates of production and 

growth, among other processes.  For instance, in Symbiodiniaceae and other microalgae, 

elevated rates of photosynthesis and growth produce carbon limitations (Laws et al. 1995; Swart 

et al. 2005a) that reduce isotopic discrimination and increase δ13C values.  Conversely, light 

attenuation and low rates of photosynthesis (Muscatine et al. 1989; Laws et al. 1995; Swart et al. 

2005b; Maier et al. 2010) can decrease both δ13C and δ15N values in corals (but see also, Rost et 
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al. 2002).  Lower δ13C values can also result from greater feeding on particles (i.e., plankton, 

organic particles) (Levas et al. 2013; Grottoli et al. 2017) and the preferential utilization of 

heterotrophic nutrition in lipid biosynthesis (Alamaru et al. 2009; Baumann et al. 2014).  Short-

term increases in heterotrophic nutrition can be difficult to verify, however, due to uncertainty in 

rates of tissue turnover and changes in tissue composition, especially following physiological 

stress (Rodrigues and Grottoli 2006; Logan et al. 2008).  For instance, the recovery of tissue 

biomass reserves in bleached corals is compound specific (Rodrigues and Grottoli 2007; Schoepf 

et al. 2015) and the nutritional inputs (i.e., autotrophy vs. heterotrophy) responsible for biomass 

growth can differ among species and according to time post-bleaching (Baumann et al. 2014).   

 

Throughout the study M. capitata δ13CH values were higher in bleached corals, whereas 

symbiont δ13C values were lower in October 2014 during bleaching relative to January 2015 

during recovery (Figure 3.7a-b).  M. capitata δ13CH-S values were also consistently higher in 

October 2014 relative to January 2015, and slightly more positive in bleached corals.  Effects on 

P. compressa δ13C values were limited to post-bleaching recovery in January 2015, where 

previously bleached colonies had higher δ13CS values at all sites and higher δ13CH values at 

HIMB alone, although the differences were very small (< 1 ‰).  In all these cases, host and 

symbiont δ13C and δ13CH-S values do not support a greater reliance on heterotrophy in bleached 

corals.  Lower δ13CH values in non-bleached colonies (M. capitata overall, P. compressa at 

HIMB in January 2015) instead can be explained by changes in host biomass properties (i.e., 

protein:lipid:carbohydrate ratios) and not greater feeding on 13C-depleted prey.  In contrast, 

bleaching-independent effects on M. capitata δ13CS values related to temporal changes, perhaps 

from temperature effects on symbiont production and growth.  Similarly, thermal effects, 
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seasonality, and/or symbiont repopulation may explain higher δ13CS values in previously 

bleached P. compressa in January 2015.  In total, δ13C values provided poor support for 

nutritional plasticity in both species in this study, while changes in biomass properties may offer 

a unifying hypothesis to explain variance in δ13C values at the multiple scales within this study 

(period, site, condition). 

 

Organism bulk δ13C values are affected by their biochemical compositions (Logan et al. 2008; 

Alamaru et al. 2009).  Isotope mass balance calculations show that the majority of variance in M. 

capitata and P. compressa δ13CHolobiont values (88% and 55%, respectively, Fig 8) can be 

explained by changes in the relative proportions of compounds (i.e., proteins, lipids, 

carbohydrates), despite individual compounds not differing among bleaching and non-bleached 

colonies of either species.  However, it should be acknowledged that δ13C values of compounds – 

particularly, lipids – in corals may change in response to physiological stress (Grottoli and 

Rodrigues 2011) and are shaped by biosynthesis sources and rates of tissue growth/metabolism 

(Alamaru et al. 2009; Baumann et al. 2014).  Reef corals are considered lipid rich (ca. 30% of 

biomass; Patton et al. 1977), and lipids are depleted in 13C relative to bulk tissues (Hayes 2001) 

(Figure S3).  The breakdown of lipids, therefore, is expected to lead to small increases in δ13C 

values of remaining lipid fraction and organism δ13C values (DeNiro and Epstein 1977).  

However, corals can catabolize isotopically light lipids during bleaching, resulting in residual 

lipid 13C-enrichment (Grottoli and Rodrigues 2011).  Should tissue lipids in bleached colonies 

depart from predicted isotopic relationships (Hayes 2001) – being either 3 ‰ lower or higher 

than lipids in non-bleached colonies – the predictive power of our modeled relationship in 

observed- versus expected-δ13C values for corals during the recovery period in January 2015 is 
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lessened (48 and 67% [M. capitata] and 27 and 36% [P. compressa] variance explained, 

respectively).  Therefore, using a constant relationship of compound class-specific δ13C values 

relative to whole tissue δ13C values, we infer changes in the relative proportions of proteins, 

lipids, and carbohydrates and not their isotopic composition best explain patterns in the bulk δ13C 

values of corals in this study.  While few examples of compound-class or compound-specific 

isotope values for coral tissues exist (lipids [Alamaru et al. 2009; Grottoli and Rodrigues 2011], 

coral skeletal organic matrix [Muscatine 2005]), changes in biomass composition can effectively 

explain the patterns in δ13C values of both species used in this study, albeit an understanding of 

baseline isotopic values for coral tissue compounds is needed to better discern effects of habitat, 

environment, and nutrition in reef corals. 

 

Unlike most predator-prey relationships (Minagawa and Wada 1984), greater heterotrophic 

nutrition in corals does not lead to appreciable higher δ15N values in coral tissue relative to its 

symbiont algae (Reynaud et al. 2009); instead, coral δ15N values often relate to sources at the 

base of the food web (Heikoop et al. 2000; Dailer et al. 2010).  M. capitata and P. compressa 

δ15N values were within the range of δ15N-nitrate values in Kāne‘ohe Bay (4 – 5 ‰) (Table 3.3) 

and higher at HIMB relative to other sites.  Similar patterns of higher δ15N values in southern 

Kāne‘ohe Bay were also seen in juvenile brown stingray (Dasyatis lata) known to have a fairly 

constant diet (Dale et al. 2011), indicating spatial variability in the sources and isotopic values of 

DIN δ15N values that permeate the food web of Kāne‘ohe Bay (Heikoop et al 2000; Nahon et al. 

2013).  These spatial effects are expected to result from a combination of greater subterranean 

groundwater discharge in northern Kāne‘ohe Bay (Dulai et al. 2016), high stream input (30% of 

bay total), and legacy effects of sewage dumping (1951 – 1978) in southern Kāne‘ohe Bay 
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(Smith et al. 1981).  Higher δ15NH values in all P. compressa in January – driven largely by 

corals at HIMB – may also be influenced by nitrogen acquisition deficits, as well as changes in 

amino-acid synthesis/deamination and nitrogen concentration of heterotrophic (Haubert et al. 

2005) and autotrophic resources (Tanaka et al. 2006).   

 

P. compressa δ15NS values differed from the host, being higher in October 2014 relative to 

January 2015, and in particular 2 ‰ higher in non-bleached Reef 25 P. compressa relative to 

bleached colonies in October.  At the same time, the predicted +1.5 ‰ enrichment (i.e., δ15NH-S) 

for consumers relative to their food source reversed and was negative for bleached P. compressa 

at Reef 25 and HIMB colonies (October 2014), suggesting disruption of nitrogen recycling 

(Wang and Douglas 1998) in bleached colonies and/or contributions of nitrogen not originating 

from animal metabolism.  These low δ15NS values may indicate a greater utilization of a 15N-

depleted DIN source, possibly from N2-fixation by coral-associated diazotrophs (Bednarz et al. 

2017) or decreased rates of growth and nitrogen demand in non-bleached coral symbionts 

(Heikoop et al. 1998; Baker et al. 2013).  δ15N values of Symbiodiniaceae are predicted to 

increase when growth rates are elevated and nitrogen availability is limited (Rodrigues and 

Grottoli 2006), although this depends on whether rates of photosynthesis and growth are 

balanced (Granger et al. 2004).  Increased δ15NS values in bleached P. compressa agrees with 

other studies (Rodrigues and Grottoli 2006; Bessell-Browne et al. 2014; Schoepf et al. 2015) 

suggesting elevated rates of mitotic cell division and photopigment synthesis post-bleaching 

increase symbiont nitrogen demand, thereby reduced nitrogen isotope fractionation (Heikoop et 

al. 1998).  An increase in δ15NS values at the time of bleaching is intriguing, as this suggests 

symbiont repopulation proceeds rapidly following peak thermal stress.  The capacity for rapid 
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nitrogen assimilation in symbionts post-bleaching may be an important factor in physiological 

resilience of corals, and may be shaped by the functional diversity of Symbiodiniaceae (Baker et 

al. 2013), properties of the coral host (Loya et al. 2001), and the extent of physiological stress. 
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Table 3.1.  Analysis of environmental variables (dissolved inorganic nutrients, 

sedimentation rates, daily light availability, and temperature) at three Kāne‘ohe Bay 

patch reefs*.  

Environmental variable Effect SS df F p 
aTemperature (°C)      
     daily mean Site 0.045 1, 129 1.717 0.192 
     daily maximum Site 0.738 1, 129  13.134 †<0.001 
     daily minimum Site 0.011 1, 129  0.163 0.687 
      
bDaily light integral (mol photons m-2 d-1) Site 636.960 1, 61 130.520 <0.001 
      
cDissolved inorganic nutrients      

phosphate (PO4
3- µmol L-1) Site 0.003 2, 18 5.016 0.019 

      

ammonium (NH4
+ µmol L-1) Site 0.414 2, 18 2.023 0.161 

      

nitrate + nitrite (NO3
- + NO2

- µmol L-1) Site 0.785 2, 18 9.314 0.002 
      

silicate (Si(OH)4 µmol L-1) Site 10.577 2, 18 0.329 0.724 
      

Sedimentation       
     dshort-term (g d-1) Site 0.001 2, 2 5.221 0.161 
     eannual (g d-1) Site  0.006 2, 24 3.667 0.041 
      
*Data collected at Reef 44, Reef 25, and HIMB, except light and temperature (Reef 44 and HIMB alone).   
SS = sum of squares; df = degrees of freedom in numerator and denominator; bold p values represent 
significant effects (p < 0.05).  
† Temperature difference (0.01 °C) below logger resolution (± 0.14 °C) and accuracy (± 0.53 °C) 
Data collection periods are indicated by superscripts (a-e): 
a 10 October 2014 – 17 February 2015   
b 18 December 2014 – 17 February 2015  
c 04 November 2014 – 04 February 2015 
d 20 December 2014 – 17 February 2015 
e 20 December 2014 – 14 January 2016 
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Table 3.2.  δ15N-nitrate values of seawater collected from three 

patch reefs in Kāne‘ohe Bay, O‘ahu, Hawai‘i.  

Site Date δ15N-nitrate 
 (‰ vs. air) 

Reef 25 28 Oct 2014 3.8 
Reef 44 09 Dec 2014 4.2 
HIMB 20 Jan 2015 4.6 
Reef 44 20 Jan 2015 4.9 
Values are means of two technical replicates. Low [NO3

- + NO2
-] prevented δ15N-

nitrate analysis of some samples.  
	

 

  



	

	 77 

 

 
 

 

  

Table 3.3.  Permutational multivariate analysis of variance (PERMANOVA) of 

bleached and non-bleached Montipora capitata and Porites compressa at three reefs 

during bleaching and recovery.   

Species Effect SS df F p 
Montipora capitata Period 0.561 1 11.714 <0.001 
 Site 0.221 2 2.303 0.006 
 Condition 0.149 1 3.113 0.004 
 Period × Site 0.088 2 0.920 0.510 
 Period × Condition 0.109 1 2.271 0.029 
 Site × Condition 0.102 2 1.060 0.352 
 Period × Site × Condition 0.062 2 0.652 0.880 
 Residual 2.204 46   
      
Porites compressa Period 0.497 1 10.024 <0.001 
 Site 0.141 2 1.426 0.099 
 Condition 0.190 1 3.840 <0.001 
 Period × Site 0.145 2 1.459 0.094 
 Period × Condition 0.143 1 2.883 0.007 
 Site × Condition 0.133 2 1.344 0.133 
 Period × Site × Condition 0.090 2 0.912 0.573 
 Residual 2.331 47   
SS = sum of squares; df = degrees of freedom; bold p values represent significant effects (p < 0.05). 
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Table 3.4.  Statistical analysis of bleached and non-bleached Montipora capitata and Porites 

compressa at three Kāne‘ohe Bay patch reefs during bleaching and recovery*. 

Response variable        Species 
 Montipora capitata Porites compressa 
 Oct ’14: Bleaching Jan ’15: Recovery Oct ’14: Bleaching Jan ‘15: Recovery 
chlorophylls B < NB — B < NB HIMB: B < NB 
biomass B < NB —     B < NB 
proteins 2014 > 2015 — — 
lipids      — — HIMB > R44 = R25 
carbohydrates      —             — 
energy content      —     2014 > 2015 
δ13CH     B > NB — HIMB: B > NB 
δ13CS    2014 < 2015 — B > NB 
δ13CH-S    2014 > 2015   — 

δ15NH     HIMB > R25     2014 < 2015 
     HIMB > R44 = R25 

δ15NS      — HIMB > R44 
B > NB — 

δ15NH-S      — B < NB — 

C:NH 
2014 < 2015 2014 < 2015 

— B > NB B < NB B > NB 
C:NS       — — 
Table information shows significant model effects and post-hoc comparisons (p < 0.05); dashed lines indicate 
no significant effects (p > 0.05). *Periods are October 2014 bleaching and January 2015 recovery. Sites (north 
to south) are Reef 44 (R44), Reef 25 (R25) and the Hawai’i Institute of Marine Biology (HIMB).  Corals are 
described according to their physiological condition in October 2014, being bleached (B) or non-bleached 
(NB); condition designators from October (i.e., B/NB) were retained in January after corals regained 
pigmentation.  Subscripts indicate either host (H) or symbiont (S) tissues, or their relative difference (H-S).  
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Figure 3.1.  (a) Map of Kāne‘ohe Bay on the windward side of O‘ahu, Hawai‘i, USA, showing 
study sites Reef 44, Reef 25, and HIMB (Hawai’i Institute of Marine Biology).  Bleached and 
non-bleached (b) Montipora capitata and (c) Porites compressa during a regional thermal stress 
event in October 2014.  Photo credit (b-c): CB Wall 
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Figure 3.2. Dissolved inorganic nutrient concentrations (November 2014 – February 2015) and 
sedimentation rates (January 2015 – January 2016) at Reef 44, Reef 25, and HIMB in Kāne‘ohe 
Bay.  (a) Phosphate (PO4

3-), (b), ammonium (NH4
+), (c) nitrate + nitrite (NO3

- + NO2
-), and (d) 

silicate (Si(OH)4) concentrations in seawater, and the (e) short-term and (f) annual sedimentation 
rates at the three reef sites.  Symbols (*) indicate significant site effects (p ≤ 0.05). 
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Figure 3.3.  Multivariate non-metric multidimensional scaling (NMDS) plots for bleached (B) 
and non-bleached (NB) Montipora capitata at three reefs (Reef 44 [R44], Reef 25 [R25], HIMB) 
during bleaching (left panel) and recovery (right panel) a regional bleaching event.  Polygons are 
standard error of point means (x symbols). (a, c) NMDS with site × condition effect. (b, d) 
NMDS with condition effect alone, with vectors showing significant responses (p ≤ 0.05) among 
bleached and non-bleached corals. 
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Figure 3.4.  Multivariate non-metric multidimensional scaling (NMDS) plots for bleached (B) 
and non-bleached (NB) Porites compressa at three reefs (Reef 44 [R44], Reef 25 [R25], HIMB) 
during bleaching (left panel) and recovery (right panel) a regional bleaching event.  Polygons are 
standard error of point means (x symbols). (a, c) NMDS with site × condition effect. (b, d) 
NMDS with condition effect alone, with vectors showing significant responses (p ≤ 0.05) among 
bleached and non-bleached corals. 
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Figure 3.5.  Chlorophyll and total biomass in bleached (gray) and non-bleached (black) 
Montipora capitata (left panel) and Porites compressa (right panel) at three reefs (Reef 44 [R44], 
Reef 25 [R25], HIMB) during bleaching and recovery.  Area-normalized (a, c) chlorophyll (a + 
c2) and (b, d) ash-free dry weight of tissue biomass. Values are mean ± SE (n = 5).  Symbols 
indicate significant differences (p ≤ 0.05) between periods (‡) and bleached and non-bleached 
corals within a period (*') and within a site (*). 
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Figure 3.6. Biomass composition and energy content in bleached (gray) and non-bleached 
(black) Montipora capitata (left panel) and Porites compressa (right panel) at three reefs (Reef 
44 [R44], Reef 25 [R25], HIMB) during bleaching and recovery.  (a, e) Proteins, (b, f) lipids, (c, 
g) carbohydrates, (d, h) energy content (kJ) normalized to grams of ash-free dry weight (gdw-1).  
Values are mean ± SE (n = 4 – 5).  Symbols indicate significant (p ≤ 0.05) period effects (‡); 
letters indicate differences between sites within periods of bleaching (lowercase) or recovery 
(uppercase).   
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Figure 3.7. Isotopic analysis of bleached (gray) and non-bleached (black) Montipora capitata 
(left) and Porites compressa (right) host and symbiont tissues at three at three reefs (Reef 44 
[R44], Reef 25 [R25], HIMB) during bleaching and recovery. Carbon (δ13C) and nitrogen (δ15N) 
isotopic values for (a, g, d, j) coral host (δ13CH, δ15NH) (b, h, e, k) symbiont algae (δ13CS, δ15NS) 
and (c, i, f, l) their relative difference (δ13CH-S, δ15NH-S).  Values are permil (‰) relative to 
standards for carbon (Vienna Pee Dee Belemnite: v-PDB) and nitrogen (air).  Values are mean ± 
SE (n = 5); small SE may be masked by points.  Symbols indicate significant (p ≤ 0.05) period 
(‡) and site effects (*S), and differences among bleached and non-bleached corals within a 
period (*') or a site (*). 
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Figure 3.8.  Relationship between observed and expected δ13CHolobiont for Montipora capitata 
(black circles) and Porites compressa (gray triangles) during post-bleaching recovery.  Lines 
represent linear regression for M. capitata (solid line) and P. compressa (dotted line). 
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CHAPTER 4 

DIVERGENT SYMBIONT COMMUNITIES DETERMINE THE PHYSIOLOGY AND 
ISOTOPE VALUES OF A REEF CORAL ACROSS A LIGHT AVAILABILITY GRADIENT  
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Abstract 

Reef corals are mixotrophic organisms that meet metabolic demands through symbiont-derived 

photoautotrophy and the capture of particles and prey from seawater (collectively, heterotrophy). 

However, some symbiont genotypes (Family: Symbiodiniaceae) display environmentally 

mediated or genetically fixed opportunistic tendencies to the detriment of host nutrition and 

growth.  In addition, the capacity for corals to exploit heterotrophy under normal or stressed 

conditions varies among species and is dependent on the composition and physiology of the 

symbiont community.  To better understand the influence of the symbiont community on the 

biology and nutrition of reef corals, we sampled a single coral species (Montipora capitata) from 

a Hawaiian coral reef ecosystem (Kāne‘ohe Bay) across depth (< 10 m) in two seasons, where M. 

capitata is dominated by Durusdinium and Cladocopium Symbiodiniaceae endosymbionts 

(hereafter, C- or D-colonies) at shallow and deeper depths, respectively.  We observed symbiont 

community significantly influenced the physiology and δ13C isotopic values of host and 

symbiont tissues and these effects were modulated by season and light availability across depths.  

D-colonies had higher symbiont densities, lower photopigments per symbiont cell and lower 

δ13C values in host and symbiont tissues, consistent with lower carbon fixation rates and/or 

greater isotope fractionation.  δ13C values declined with depth; however, neither C- nor D-

colonies showed signs of greater heterotrophy or nutritional plasticity.  Changes in δ13C values 

instead related to photoacclimation strategies that differed between symbiont communities. 

Together, these results reveal that the genetic composition and physiological properties of a 

coral’s symbiont community influences holobiont δ13C values and agree with laboratory studies 

suggesting Durusdinium symbionts being opportunists with reduced autotrophic potential. 
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Introduction 

Nutrient exchanges between scleractinian corals and dinoflagellate symbionts (Symbiodiniaceae, 

formerly Symbiodinium spp.) (LaJeunesse et al. 2018) underpin the success of hermatypic reef 

corals as habitat engineers and energy transformers in coral reef ecosystems (Wild et al. 2011).  

Reef corals are reliant on the translocation of symbiont-derived compounds (i.e., glucose, amino 

acids, organic acids, free fatty acids) (Muscatine and Cernichiari 1969; Papina et al. 2003) to 

support respiratory demands (> 90%, Muscatine et al. 1984), skeletal growth (Gattuso et al. 

1999) and the storage of high-energy compounds (i.e., lipids) (Baumann et al. 2014).  In 

exchange, symbiont algae residing within host cells receive metabolic waste products (i.e., CO2, 

NH4
+) required for growth and photosynthesis (Rahav et al. 1989).  However, climate change 

and local stressors can destabilize the coral-algae symbiosis, contributing to the decline of reef 

corals and the degradation of coral reef habitats (Vega-Thurber et al. 2014; Hughes et al. 2017).  

The persistence of reef corals into the future will depend on the capacity for corals and their 

symbionts to prevent symbiosis disruption and maintain energy acquisition under changing 

resource availability and stressful environmental conditions.  Associations with stress tolerant 

symbiont genotypes may impart stressor resistance; however, the nutritional and energetic 

consequences of alternative host-symbiont associations in reef corals are not fully understood. 

 

The genetic and functional diversity of Symbiodiniaceae shapes the energy balance and stress 

tolerance of reef corals.  Molecular advances in the study of Symbiodiniaceae (Sampayo et al. 

2009; Pochon et al. 2014) have revealed distinct symbiont genera and species (formerly clades 

and subclades) (LaJeunesse et al. 2018) each with different capacities to support coral nutrition 

(Stat et al. 2008; Pernice et al. 2014) and tolerate environmental stress (Baker 2003).  For 
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instance, Durusdinium (formerly clade D) symbionts observed in human-impacted and/or 

thermally stressed reefs (Glynn et al. 2001; van Oppen et al. 2001; Baker et al. 2003; Stat et al. 

2013) and Symbiodinium (formerly clade A) common on shallow reef zones of Red Sea and 

Caribbean (Ezzat et al. 2017; Baker et al. 2018) are tolerant of light and temperature stress but 

are generalist endosymbionts, assimilating and transferring less nutrition (carbon and nitrogen) to 

their coral hosts compared to common specialist endosymbionts, Cladocopium and Brevolium 

(formerly clade C and B, respectively) (Stat et al. 2008; Baker et al. 2013; Pernice et al. 2014; 

Ezzat et al. 2017; Matthews et al. 2017).  As a consequence, opportunistic symbionts reduce 

coral tissue and skeletal growth and reproductive output compared to mutualistic symbionts (i.e., 

Cladocopium and Brevolium) (Cantin et al. 2009; Jones and Berkelmans 2010, 2011; Cunning et 

al. 2015).  In order to cope with less autotrophic nutrition, coral’s may require greater particle 

feeding to meet metabolic needs, as has been observed in corals under thermal stress (Grottoli et 

al. 2006) and high turbidity (Anthony 2006).  Tradeoffs associated with harboring opportunistic 

symbionts, however, can be environmentally mediated and diminished under conditions of 

thermal stress (Baker et al. 2013; Cunning et al. 2015) or high light (Cooper et al. 2011c; Ezzat 

et al. 2017).  Moreover, ecological selection and niche partitioning of Symbiodiniaceae and coral 

hosts among reef habitats (Sampayo et al. 2007; Bongaerts et al. 2010) can optimize coral 

performance despite symbioses dominated by less mutualistic symbionts (Cooper et al. 2011b, 

2011c; Ezzat et al. 2017).    

 

Environmental factors such as light availability/depth (Sampayo et al. 2007; Cooper et al. 2011c; 

Innis et al. 2018), water quality (Cooper et al. 2011a), temperature (Oliver and Palumbi 2011) 

and bleaching history (Jones et al. 2008; Lewis et al. 2019) play an important role in shaping 
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intraspecific changes in symbiont communities.  The ability for corals to adapt to changes in 

photosynthetically active radiation (PAR, hereafter ‘light’) influence the ecological niche of reef 

corals (Hoogenboom et al. 2009), and many coral species exhibit shallow-to-deep transitions in 

symbiont communities.  For example, shallow colonies of Seriatopora hystrix in Western 

Australia (Cooper et al. 2011b) and Montipora capitata in Kāne‘ohe Bay, Hawai‘i (Innis et al. 

2018) are dominated by Durusdinium symbionts, whereas deeper colonies are more often 

dominated by Cladocopium symbionts; similar shallow-to-deep transitions from Symbiodinium 

(shallow) to Cladocopium (deep) have also been observed for Stylophora pistillata (Ezzat et al. 

2017) in the Red Sea and Caribbean Orbicella faveolata (Baker et al. 2018).  Where depth and 

turbidity attenuates light, corals can rely on the photoacclimatization potential of their 

endosymbionts (Cooper et al. 2011b) and/or particle feeding (collectively, ‘heterotrophy’) to 

meet metabolic demands (Anthony 1999, 2006).  Stable isotope analyses are a useful tool in 

assessing the trophic ecology and nutrient fluxes in mutualistic symbiosis, such as reef corals 

(Ferrier-Pagès and Leal 2018).  Carbon stable isotopes have shown a trend for greater 

heterotrophic capacity in some corals with increasing depth (Muscatine et al. 1989); however, 

the capacity for nutritional plasticity depends on the coral host (Alamaru et al. 2009) and the 

symbiont genotypes residing in tissues (Leal et al. 2015; Ezzat et al. 2017).  The influence of 

symbiont community composition on the biology and nutrition of corals across natural 

environmental gradients has rarely been tested (but see Cooper et al. 2011b, 2011c), but is 

central to the understanding of the response of the coral holobiont to changing resource 

conditions.   
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Here, we examine the changes in the physiology and heterotrophic capacity of a Hawaiian reef 

coral (Montipora capitata) dominated by Cladocopium spp. or Durusdinium glynnii (Wham et al. 

2017) symbionts (hereafter, C- and D-colonies) across a light-resource gradient (< 10 m) during 

summer and winter seasons.  M. capitata shows depth-dependent shifts in symbiont communities 

(Innis et al. 2018), stress-induced changes in nutritional modes (Grottoli et al. 2006), and 

environmental stress resilience (Cunning et al. 2016; Wall et al. 2019); therefore, we predicted 

greater heterotrophic feeding would occur in this coral at environmental extremes (e.g., high- and 

low-light environments) or in response to opportunistic symbiont associations (i.e., 

Durusdinium).  We observed distinct traits of symbionts in C- and D-colonies, which impacted 

carbon isotopic values but did not indicate changes in nutrition in either holobiont across space 

or time.  These results are first evidence of in situ interactions of environmental and symbiont 

community composition effects on the physiology and isotope values in a single coral species 

over a small spatial gradients.	

 

Materials and Methods 

Site information 

Montipora capitata (Dana, 1846) colonies were sampled from four reefs in the northern and 

southern lagoon of Kāne‘ohe Bay on the windward side of the island of O‘ahu, Hawai‘i, USA; 

one patch reef in the lagoon and one fringing reef adjacent to the shoreline were sampled in both 

the northern and southern regions of the bay (Figure 1).  Reef locations were in northwest (NW) 

(21°28'46.5"N, 157°50'08.7"W), northeast (NE) (21°28'36.5"N, 157°49'33.1"W), southwest 

(SW) (21°26'40.3"N, 157°48'21.6"W), and southeast (SE) (21°26'14.9"N, 157°47'21.3"W) at 

Moku o Lo‘e and the Hawaiian Institute of Marine Biology (Figure 4.1).  Inshore Kāne‘ohe Bay 
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is shallow (< 15 m) with high coral cover on near shore reef fringes and lagoon patch reefs (Bahr 

et al. 2015; Neilson et al. 2018).  However, coral colonies are rare at >6 m in most locations and 

the as the benthos becomes dominated by fine-silt/mud (Smith et al. 1981). 

 

Sampling periods were defined as “summer” and “winter”, historically corresponding to periods 

of low and high seasonal rainfall (PACIOOS 2018).  Summer coral samples were pooled from 

coral collections made in 2016 by Innis and colleagues (June 8, July 11 and 29, August 3 and 9), 

which have been previously used in describing the ecology of M. capitata symbiont community 

composition (Innis et al. 2018); winter samples were collected on December 19, 2016.  While 

seawater temperatures in 2014 and 2015 were unseasonably warm due to El Niño conditions, 

causing bleaching across the Hawaiian archipelago (Bahr et al. 2017; Couch et al. 2017), 

seawater temperatures in 2016 did not deviate from historical averages (PACIOOS 2018) and 

bleaching was not observed in Kāne‘ohe Bay.   

 

Environmental conditions 

To describe the light environments across the four locations photosynthetic active radiation 

(PAR) light loggers (Odyssey, Dataflow Systems Limited, Christchurch, New Zealand) were 

deployed at each of the four collection locations at 2 m depth from 10 June 2016 – 11 January 

2016 recording every 15 min.  Loggers were cross-calibrated using a LI-1400 quantum meter 

(Li-Cor, Lincoln, Nebraska, USA) attached to a cosine LI-192 underwater quantum sensor. 

 

To compare light availability across depth, additional PAR loggers were deployed at three depth 

(< 1 m, 2 m, 8 m) during two deployment periods (9 – 17 October 2016 and 9 – 19 November 
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2016).  These data were used to calculate attenuation coefficients (kdx) and to estimate daily light 

integrals (DLI) at each site across colony depth ranges. At each site, light (DLI) and depth for 

logger at < 1 m and 8 m was relativized to the logger at 2 m (i.e.,  ΔDLI = DLI2m – DLId and 

Δdepth = depth2m – depthd).  The log(ΔDLI) was analyzed in a no-intercept linear model with the 

predictor Δdepth as a continuous numeric variable.  Model coefficients were saved and represent 

site-specific kdx.  We estimated the seasonal DLI for each sampled colony by calculating the 

mean DLI at 2m for summer months (June, July, August) and winter months (November, 

December, January), and then adjusting for colony-specific depth using the site-specific 

attenuation coeffeicient following a modified Beer-Lambert equation for light attenuation in 

water: 

Ezd = Ez2m
-kdx*(Δdepth) 

where Ezd is DLI in mol photons m-2 d-1 at depth d in meters, Ez2m is the mean seasonal DLI at 2 

m depth, kdx is the site-specific attenuation coefficient, and Δdepth is the difference in depth at 2 

m and depth d.   

 

Dissolved inorganic nutrients and SPM for isotope analysis 

An analysis of seawater dissolved inorganic nutrients and the isotope values of plankton food 

sources (i.e., isotope end-members) were performed to account for site and/or seasonal 

differences in nutrient loading and heterotrophic food sources among reefs and between seasons.  

Seawater (ca. 25 L) was collected at each site on 10 August and 19 December 2016 to analyze 

dissolved inorganic nutrient concentrations.  For nutrient analysis, 100 ml of seawater was 

immediately filtered (0.7 µm) through an acid-washed (0.1 N HCl) syringe into acid-washed 

Nalgene bottles.  Samples were kept on ice and then frozen at -20 °C until analyzed.  Molar 
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concentrations (µmol L-1) of ammonium (NH4
+), nitrate+nitrite (NO3

- + NO2
- or N+N), 

phosphate (PO4
3-) and silicate (Si(OH)4) were analyzed using a Seal Analytical AA3 HR nutrient 

autoanalyzer at the University of Hawai‘i at Mānoa SOEST Lab for Analytical Biochemistry.   

 

Plankton sampling was performed at the four locations where corals were collected (detailed 

above), as well as two locations where corals were not collected in central Kāne‘ohe Bay 

(21°27'28.7"N, 157°49'37.5"W, and 21°27'35.2"N, 157°49'23.7"W) to increase spatial resolution 

of suspended particulates and sample sizes.  At each location, plankton was sampled by pooling 

a vertical tow (< 10 m) and surface horizontal tows (63 µm mesh), visible debris or plant 

materials were removed, and plankton were size-fractioned with nylon mesh in two size classes: 

100 – 243 µm and > 243 µm.  Seawater samples (10 L) collected at 3 m depth were fractioned 

with nylon mesh into three size classes: < 10 µm, 10 – 100 µm, < 243 µm.  All samples were 

filtered onto GF/F filters (0.7 µm) using a vacuum pump at low pressure, rinsed with ddH2O, and 

dried at 60 °C overnight.  Plankton samples were removed from filters and ground to a powder 

with mortar and pestle; seawater fractioned materials were left on the GF/F filter, which was 

subsampled for isotope analysis (detailed below).  Samples were not acidified prior to analysis as 

this alters nitrogen isotope values (Schlacher and Connolly 2014).  

 

Coral sampling and tissue analysis 

In summer and winter, branch tip fragments (4 cm2) were collected from Montipora capitata 

colonies at each reef locations chosen at random within three depth strata (< 2, 2 – 5, >5 m) that 

spanned the depth gradient where colonies were observed, with ca. 5 fragments per depth stratum 

(n = 15 samples site-1).  Depth and time of day were recorded for each colony with a submersible 
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depth gauge, and final depths were corrected to mean seawater height using NOAA tide data at 

6-min intervals for Moku o Lo‘e (Station ID: 1612480) from CO-OPS API in a custom R code 

(Innis et al. 2018).  Immediately after collection, corals were flash frozen in liquid nitrogen, 

transported to HIMB, and stored at -80 °C until processed for tissue analysis and DNA 

extraction.  

 

Coral tissues were removed from the skeleton using an airbrushed connected to a SCUBA tank 

and supplied with filtered seawater (0.7 µm).  The coral slurry was briefly homogenized, and 

aliquots were taken for physiology and isotopic analysis.  Concentrations of symbiont cells were 

determined by microscopy using replicate counts (n = 4 – 8) of the tissue slurry on a 

haemocytometer.  Photopigments chlorophyll a and c2 were quantified by centrifuging an aliquot 

of the tissue slurry to isolate symbiont cells (13,000 rpm × 3 min), re-suspending the pellet in 

100 % acetone, and extracting pigments at -4 °C for 24 h in darkness (Fitt et al. 2000).  

Chlorophyll concentrations were measured on a spectrophotometer using a glass 96-well plate at 

630 nm and 663 nm on a spectrophotometer, and chlorophyll a concentrations quantified using 

equations for dinoflagellates (Jeffrey and Humphrey 1975).  Total biomass of the holobiont 

tissue slurry was quantified as the difference between the dried (60 °C, 24 h) and combusted 

(450 °C, 4 h) masses, and quantified as the ash-free dry weight (AFDW) of coral biomass (Wall 

et al. 2019).  All physiological metrics (cell densities, chlorophyll concentration, total biomass) 

were standardized to the surface area of the coral skeleton, measured using the wax-dipping 

technique (Stimson and Kinzie 1991), and chlorophyll was additionally normalized to symbiont 

cell abundance. 
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Stable isotope analysis 

Stable isotope analysis was performed on suspended particles and plankton (collection methods 

detailed above), coral and symbiont tissues, and coral skeleton material were analyzed to 

examine the trophic ecology and nutrient exchanges between host and symbiont.  To separate 

coral host and symbiont tissues, an aliquot of tissue slurry was filtered to remove carbonates (20 

µm nylon mesh) (Maier et al. 2010) and then separated by centrifugation (2000 g × 3 min) with 

sequential filtered seawater (0.2 µm) rinses (Muscatine et al. 1989).  Separated tissue fractions 

were lyophilized, ground with a mortar and pestle, and packed in tin capsules for analysis.  

Isotope values for carbon (δ13C) and nitrogen (δ15N) and tissue molar C:N ratio for coral host 

(δ13CH, δ15NH, C:NH) and algal symbiont (δ13CS, δ15NS, C:NS) were determined with a Costech 

elemental combustion system coupled to a Thermo-Finnigan Delta Plus XP Isotope Ratio Mass 

Spectrometer (IRMS) at the University of Hawai‘i at Mānoa SOEST Biochemical Stable Isotope 

Facility.  Sample analytical precision of δ13C and δ15N was < 0.2 ‰ as determined by analysis of 

laboratory reference material run before and after every 10 samples, with coral/algae technical 

replicates deviating by < 0.1 ‰. 

 

Coral skeleton samples were collected by shaving the uppermost layers of the coral skeleton (ca. 

1 mm) using a Dremel tool equipped with a diamond-tip and ground to a powder with a mortar 

and pestle (Rodrigues and Grottoli 2006).  Collected skeletal material (2 g) was stored in pre-

cleaned and weighed glass vials with teflon lids; samples were not pre-treated in bleach prior to 

analysis (Grottoli et al. 2005).  The carbon isotope values of coral skeletal carbonates (δ13CSk) in 

ca. 80 µg of skeletal material was acidified (100 % orthophosphoric acid) under vacuum at 90 °C 

in a common acid bath system where released CO2 from reaction vessels analyzed by a GVI 



	

	 98 

Optima Stable Isotope Ratio Mass Spectrometer; carbonate analyses were performed by the 

University of California at Davis Stable Isotope Laboratory.  Laboratory carbonate reference 

materials and technical replicates of coral skeleton deviated by 0.02 ‰ and < 0.2 ‰ for oxygen 

and carbon isotope values, respectively.  To examine metabolic and kinetic isotope effects (KIE) 

on skeletal carbonates estimates for carbon and oxygen isotope equilibrium (δ13Ceq and δ18Oeq, 

respectively) for skeletal aragonite were estimated using values from Schoepf et al. (2014), 

which calculated average Kāne‘ohe Bay seawater δ13Ceq values of +2.82 ‰ (δ13CDIC values of 

+0.12 ‰ [analyzed 2006 and 2007]) and estimated an average δ18Oeq value of -1.24 ‰ for the 

range of temperature seen in Kāne‘ohe Bay (23.0 – 28.0 °C) (δ13Cseawater estimated at +0.4 ‰ 

[SMOW]) (Schoepf et al. 2014).  A 0.33 slope was applied to isotope equilibrium to plot the KIE 

line, reflecting the simultaneous depletion in heavy isotopes of oxygen and carbon during kinetic 

and metabolic isotope effects, respectively (McConnaughey 2003).  Carbon and nitrogen stable 

isotope ratios are reported using delta values (δ) in permil (‰) notation relative Vienna Pee-Dee 

Belemnite [V-PBD]) and atmospheric N2 (air) for carbon and nitrogen, respectively.  The 

relative differences of host and symbiont carbon (δ13CH-S) and nitrogen (δ15NH-S) isotope values 

were calculated as metrics for heterotrophic capacity (i.e., δ13CH-S) and changes in trophic 

enrichment (i.e., δ15NH-S) (Rodrigues and Grottoli 2006; Reynaud et al. 2009).   

 

DNA extraction and symbiont community analysis 

Symbiont communities in M. capitata were quantified by extracting DNA from whole corals or 

tissue slurry using DNA buffer (0.4 M NaCl, 0.05 M EDTA) with 1 or 2 % (w/v) sodium 

dodecyl sulfate, following a modified CTAB-chloroform protocol (Cunning et al. 2016; 

dx.doi.org/10.17504/protocols.io.dyq7vv).  qPCR of extracted DNA consisted of quantifying 
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specific actin genes corresponding to internal transcribed spacer (ITS2) region of rDNA for 

Cladocopium spp. (ITS2 type C31) and Durusdinium glynnii (ITS2 type D1-4-6) (Wham et al. 

2017), which are numerically dominant in Kāne‘ohe Bay M. capitata (Cunning et al. 

2016).  Symbiodinium ITS2 and actin gene sequencing have previously validated the specificity 

of these symbiont-specific primers to the genera level (Cunning and Baker 2013).  Two qPCR 

reactions (10 µl) were run for each coral sample using a StepOnePlus platform (Applied 

Biosystems) set to 40 cycles, internal cycle baseline of 3 – 15, and a relative fluorescence (ΔRn) 

threshold of 0.01.  Symbiont genera present in only one technical replicate were considered 

absent.  In each sample, relative symbiont abundance (i.e., C:D ratio) was determined from 

amplification threshold cycles (CT) for Cladocopium and Durusdinium (i.e., CT
C, CT

D) according 

to the formula C:D = 2^(CT
C - CT

D).  Gene locus copy number and fluorescence intensity were 

used to normalize symbiont-specific CT values (Cunning et al. 2016).  Cladocopium- or 

Durusdinium-dominated symbiont communities were determined for each colony (i.e., C- or D-

colonies) based on the numerical abundance of Symbiodiniaceae measured in qPCR (threshold: 

symbiont proportion > 0.5) (Innis et al. 2018). 

 

Statistical analysis  

Discrete environmental data (dissolved inorganic nutrient analysis, plankton) were analyzed with 

a linear model with reef locations and seasons as fixed effects.  Due to seasonal changes in solar 

insolation and to compare previous reports of Symbiodiniaceae depth distribution in M. capitata 

(Innis et al. 2018) a generalized linear model (GLM) with a binomial distribution and logit link 

function was used with colony depth, season, and location treated as main effects.  Best-fit 

GLMs were selected by AIC (Akaike 1978) and effects evaluated using Chi-square tests.  
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Biological response variables (physiology and isotope values) were analyzed in three-way linear 

mixed effect (LME) model (lmer in package lme4 [Bates et al. 2018]) with season (winter vs. 

summer), light at depth (continuous variable), and dominant symbiont (Cladocopium- vs. 

Durusdinium-dominance) as fixed effects; reef location was treated as a random effect.  Pairwise 

post hoc slice-tests of main effects were performed using estimated marginal means (EMMs) in 

package emmeans (Lenth 2019).  Analysis of variance tables were generated using type II sum of 

squares for linear models in the package car (Fox and Weisberg 2011) and LME models in the 

package lmerTest (Kuznetsova et al 2017).  Principal components analyses (PCA) of a scaled 

and centered correlation matrix was performed to examine the larger relationships of 

physiological and isotope response metrics and their clustering among spatiotemporal factors 

(i.e., season, location, colony depth-bins) and symbiont community.  All statistical analyses were 

performed in R version 3.5.2 (R Core Team 2018).  Data and scripts to reproduce analyses and 

figures are available at Github (github.com/cbwall/Coral-isotopes-across-space-and-time).   

 

Results 

Environmental conditions 

Light availability—expressed as the daily light integral (DLI) at 2 m—from June – August 2016 

(mean ± SE, n = 66 – 82) was highest in locations away from shore (NE and SE) and lowest at 

SW location (Figure 4.2).  DLI from November 2016 – January 2017 was reduced compared to 

summer, but winter DLI values were similar among the four locations except for SW where light 

values were low.  Using light attenuation coefficients for June 2016 – January 2017, estimated 

DLI values for < 1 m ranged from 17.3 – 21.3 ± 0.6 mol photons m-2 d-1 at all locations, except at 
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SW (9.8 ± 0.5 mol photons m-2 d-1) and was attenuated by 61 % and 82 % at 2 m and 8 m, 

respectively (Figure 4.2).  

 

Phosphate, N+N, and ammonium concentrations at all locations were higher in winter sampling 

(December 2016) compared to summer sampling (August 2016) (p ≤ 0.046) (Table S1, Figure 

S2); silicate concentration showed no significant effects (p > 0.323).  N+N was consistently 

higher in northern Kāne‘ohe Bay (NW, NE) (p < 0.001), and in the winter phosphate increased at 

NE and NW locations.   

 

Carbon and nitrogen isotope values of suspended particles and plankton did not differ between 

locations (p ≥ 0.146) and seasonal effects were negligible (δ15N enriched by 0.3 ‰ in winter 

relative to summer) (p ≥ 0.049) (Table S1).  Therefore, isotope values were pooled among the 

locations and seasons to generate isotope end member plots (Figure S3).  Particle size fraction 

influenced both carbon and nitrogen isotope values (p < 0.001).  Mean δ13C value were similar 

for all samples (-21.1 to -20.4 ‰) but were 2 ‰ higher in the 10 – 100 µm fraction (-18.1 ‰).  

Mean δ15N values were lowest in < 10 µm (5.3 ‰), intermediate in 100 – 243 µm (6.5 ‰), and 

highest in 10 – 100 µm fractions (7.4 ‰).  In pooled fractions, small particles (< 243 µm) were 

ca. 1 ‰ depleted in 15N relative to large particles (> 243 µm) (5.9 and 6.8 ‰, respectively). 

 

Symbiont community, physiology, and isotope measurements 

Corals were collected over comparable depth ranges in summer (0.2 – 9.4 m) and winter (0.2 – 

7.7 m) (Figure S4).  The distribution of dominant Symbiodiniaceae genera in Montipora capitata 

(C- vs. D-colonies) was depth-dependent in both seasons (p < 0.001), with a greater number of 
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D-colonies at shallow depths and greater C-colonies with increasing depth (Figure 4.3).  

Colonies with Durusdinium dominated symbiont communities ranged from 0.4 – 3.3 m depth 

(summer) but occasionally deeper (7.7 m, winter), although at lower frequencies (Figure 4.3).  

Durusdinium was also observed as a background symbiont member (proportion ≤ 0.35) across 

depths in summer (0.8 – 7.8 m) and winter (0.2 – 6.5 m). 

 

A summary of physiology and isotope model effects can be found in Table 4.1.  Total biomass 

(mg cm-2) did not vary between seasons, across light environments, or between corals C- or D-

colonies (p ≥ 0.109) (Figure 4.4a).  Symbiont densities (cells cm-2) were lower in C-colonies 

relative to D-colonies (p < 0.001).  Symbiont densities increased with light availability (p = 

0.013) and were influenced by the season × light interaction (p = 0.005), where the positive 

relationship between light and symbiont density was lessened in the summer relative to the 

winter (Figure 4.4b).  Total chlorophyll (µg a + c2) was higher in winter (p < 0.001) and 

increased as light availability decreased (p = 0.004) (Figure 4.4c).  C-colonies had more 

chlorophyll than those D-colonies (p < 0.001), although this effect varied by season × symbiont 

(p = 0.022).  Chlorophyll concentrations were equivalent between C- and D-colonies in the 

summer; in winter months chlorophyll concentrations increased in C-colonies but not D-colonies 

(Figure 4.4c).  Chlorophyll a per symbiont cell (pg cell-1) did not differ significantly between 

seasons (p = 0.098), but decreased in response to high DLI (p < 0.001) and was higher in C-

colonies (p < 0.001) (Figure 4.4d).  As a random effect, location was a significant factor in 

models of physiological responses, accounting for 9 – 32 % of model variance (Figure 4.S5). 
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The carbon isotope composition of M. capitata tissues became progressively 13C-enriched with 

increasing light availability for both coral host (δ13CH) and the symbiont algae (δ13CS) (p < 

0.001) (Figure 4.5a-b).  Host and symbiont δ13C values in C-colonies were 13C-enriched relative 

to D-colonies (p < 0.001), and these effects were seasonally dependent (p ≤ 0.031).  In host 

tissues, δ13C values were 1.6 ‰ higher (summer) and 0.8 ‰ higher (winter) in C-colonies 

relative to D-colonies (Figure 4.5a).  Similarly, δ13CS values were 1.5 ‰ higher in C-colonies in 

summer, but no difference was detected between C- or D-colonies in the winter (Figure 4.5b).  

The difference in host and symbiont carbon isotope values (δ13CH-S) did not differ between C- or 

D-colonies (average ±0.2‰) and showed no interaction with light in summer.  However, in 

winter δ13CH-S progressively increased as light decreased (p = 0.040) and was lower in D-

colonies (p = 0.037) (Figure 4.5c).  Carbon isotope values of coral skeletal carbonates (δ13CSk) 

were not affected by light availability (p = 0.736) but were affected by season (p  = 0.009), being 

0.4 ‰ enriched in the winter relative to summer (Figure 4.S6).  Location accounted for 17 – 27 

% of carbon isotope model variance (Figure 4.S5). 

 

Host and symbiont δ13C values were closely matched (Figure 4.5c) and attributes of the symbiont 

(i.e., symbiont densities and photopigments) showed the clearest statistical effects.  Therefore, 

we examined the relationship between symbiont physiology and carbon isotope values (Figure 

4.S7a-c).  δ13CS values were positively related to symbiont densities in the winter, but not 

summer, for both C-colonies (p < 0.001, R2 = 0.360) and D-colonies (p = 0.007, R2 = 0.708).  All 

colonies showed no relationship between δ13CS values and areal-chlorophyll concentrations in 

either season (p ≥ 0.414); however, δ13CS values in C-colonies became 13C-enriched (higher) as 

chlorophylls per symbiont cell declined in both summer (p = 0.004, R2 = 0.173) and winter (p = 
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0.030, R2 = 0.115).  δ13CH values for C- and D-colonies exhibited identical effects as observed 

for δ13CS (data not shown).  δ13CH-S values were only influenced by symbiont densities and 

became more positive with declining symbiont densities in summer D-colonies (p = 0.004, R2 = 

0.478) and in both C-colonies (p = 0.014, R2 = 0.145) and D-colonies in winter (p = 0.007, R2 = 

0.361) (Figure 4.S8). 

 

The nitrogen isotope composition of the coral host (δ15NH) decreased with increasing light 

availability (p = 0.045) and did not change in response to seasons or symbiont communities (p ≥ 

0.293) (Figure 4.S9).  Symbiont algae δ15NS values in C- and D-colonies were equivalent in 

summer, but marginally increased (0.3 ‰) in D-colonies relative to C-colonies in the winter 

months (p = 0.017) (Figure 4.S9).  The difference between host and symbiont nitrogen isotope 

values (δ15NH-S) was lowest in colonies under high light conditions and δ15NH-S increased as light 

declined (p = 0.018).  δ15NH-S was equivalent among all colonies during summer but δ15NH-S 

increased (C-colonies) and decreased (D-colonies) in winter according to symbiont community 

(p < 0.001) (Figure 4.S9).  Molar ratios of carbon:nitrogen (C:N) in host and symbionts showed 

no significant effects (p ≥ 0.134) (Figure 4.S10).  Location explained a large portion of variance 

for δ15NH (75 %) and δ15NS (80 %) models but less (< 20 %) in δ15NH-S and C:N models (Figure 

4.S5).   

 

Principal component analysis of biological responses 

Data clustering revealed spatiotemporal trends in coral data among seasons, locations, symbiont 

communities, and colony depths (Figure 4.6) with two principal components (PCs) explaining 56 

% of the variance in response metrics.  Overall, PC1 separates corals with higher tissue δ13C 
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values from corals with high δ15N values, and PC2 separates corals with high tissue biomass and 

symbiont density from those with high chlorophylls.  Seasonal effects on colony responses were 

similar; however, greater shifts in chlorophylls and nitrogen isotope values were observed in the 

winter compared to the summer (Figure 4.6a).  Corals showed limited clustering by location, 

with the exception of the NE location, which had higher PC1 values associated with δ13C values 

(Figure 4.6b).  Symbiont clustering reflected relationships along PC2 with D-colonies being 

associated with high symbiont densities and coral biomass and C-colonies having greater 

chlorophylls concentrations (total and per symbiont cell) (Figure 4.6c).  Vertical zonation across 

depths showed corals at < 2 m depth were most distinct from other depths, and this mirrored 

effects of symbiont community in addition to a positive correlation with PC1 and δ13C values 

(Figure 4.6d).  In addition, there was less variation between corals with increasing depth, 

indicated by reduced ellipse area in deeper colonies relative to those at the surface. 

 

Discussion 

The combination of light stress at reef pinnacles and rapid attenuation of light with increasing 

depth contributes to the structure of Symbiodiniaceae and Montipora capitata in Kāne‘ohe Bay 

(Innis et al. 2018).  The functional significance of these different symbiont communities has 

implications for symbiont niche partitioning, nutrient exchange in the holobiont (Ezzat et al. 

2017), and thermal stress sensitivity (Cunning et al. 2016). 

 

Environmental contexts  

Light attenuation was rapid across the narrow depth gradient (0.5 – 8 m); the maximum PAR at 8 

m in summer (100 – 350 µmol photons m-2 s-1) and winter (50 – 200 µmol photons m-2 s-1) in 
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Kāne‘ohe Bay was equivalent to the maximum PAR observed at 40 – 70 m in coral reefs of the 

Red Sea (Mass et al. 2007) and 20 – 40 m in Caribbean (Frade et al. 2007).  This rapid light 

attenuation can in part be explained by the fine-grained particles that dominate inshore Kāne‘ohe 

Bay reefs (Smith et al. 1981), which settle slowly and are easily re-suspended, resulting in 

significant magnitude and duration of light attenuation (Storlazzi et al. 2015).  Lower light 

intensities in winter relate to solar insolation and cloud cover; however, proximity to shoreline 

and stream runoff may also influence the overall lower light intensities at the SE location 

compared to other sites.  Changes in nutrient concentrations were relatively small (< 0.5 – 1.0 

µmol nutrients L-1) and our sampling did not reveal large changes in nutrient enrichment among 

sites or seasons.  Nevertheless, model results of reef location indicated a significant effect of 

location on response metrics, explaining between 9 – 32 % (physiology) and 17 – 80 % (isotope 

values) of model variation, indicating a degree of site-specific influence in our analyses, 

particularly for δ15N values (discussed below).  The limited replication at the reef scale (n = 4) 

limits our inference in interpreting spatial effects (i.e., reef type, bay region, proximity to shore), 

yet these factors are relevant and may be particularly important in considering effects of coastal 

biogeochemistry on corals in future studies.  

 

Symbiont community effects on physiology and isotope composition 

Symbiont communities in M. capitata were depth-dependent, and in both summer and winter 

months Durusdinium was the dominant symbiont in shallow M. capitata (< 2 m), with greater 

probability of Cladocopium-dominance with increasing depth.  However, Durusdinium was not 

solely restricted to shallow depths and was observed as a dominant (at low frequency) and as a 

background symbiont (< 1 – 35 % of community) in corals down to 8 m depth.  Intraspecific 
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shifts in symbiont communities generally occur over large depth ranges, for instance, Stylophora 

pistillata transitions from Symbiodinium microadriaticum (ITS2: A1) (< 10 m) to Cladocopium 

spp. (> 40 m) in the Red Sea (Ezzat et al. 2017), and Seriatopora hystrix transitions from 

Durusdinium spp. (< 23 m) to Cladocopium spp. (> 23 m) in western Australia (Cooper et al. 

2001c).  At the genus level, symbiont-specificity also occurs among closely related coral hosts, 

and this drives vertical zonation in symbiont genotypes (i.e., formerly subclades) over 10s of 

meters (Frade et al. 2007).  However, rapid light attenuation and high turbidity along Kāne‘ohe 

Bay’s inshore reefs, has compressed a vertical zonation in M. capitata symbiont communities to 

within a few meters (< 2 m) of the surface (Innis et al. 2018; this study).   

 

Globally, the prevalence of Durusdinium increases in corals from human-impacted reefs, 

including locations that experience higher temperatures and/or recent thermal stress, as well as 

high levels of sedimentation (reviewed in, Stat and Gates 2011).  The high probability of shallow 

(ca. < 3 m) M. capitata being dominated by Durusdinium in Kāne‘ohe Bay likely reflects the 

greater capacity for Durusdinium to tolerate environmental stress, including high temperatures 

(Cunning et al. 2016), high light (Cooper et al. 2011c), poor water quality and high 

sedimentation compared to Cladocopium (Cooper et al. 2011a).  The rarity of D-colonies at 

depth may also be explained by niche partitioning and poor performance of Durusdinium to 

under broad conditions of light intensity and quality (Mass et al. 2007, 2010).  However, 

considering M. capitata symbionts are vertically transmitted, post-settlement selection of host-

symbiont genotypes and their influence on holobiont population structure (Bongaerts et al. 2010) 

may also support spatial distribution of Durusdinium in Kāne‘ohe Bay M. capitata colonies. 
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Changes in symbiont densities and photopigmentation therefore are important to light-use 

efficiency and photoacclimation in reef corals.  Across our study the density of M. capitata 

symbionts increased with light availability, whereas areal and cell-specific chlorophylls 

concentrations declined as light increased.  Light effects on symbiont density were influenced by 

the high abundance of shallow colonies harboring Durusdinium, which had 54 – 58 % greater 

symbiont densities compared to C-colonies.  Lower symbiont densities in C-colonies were 

matched with nearly double the concentration of chlorophylls per-symbiont-cell compared to D-

colonies, which showed limited potential to regulate both areal and cell-specific chlorophyll 

concentrations in response to changing environmental conditions between seasons.  

 

 The inverse relationship between symbiont densities and chlorophylls (per cell) is indicative of 

photoacclimation driven by dynamic regulation of symbiont photomachinery (i.e., number of 

photosynthetic units [PSUs], photosystem II [PSII] turnover time, PSII functional absorption 

cross-section) (Falkowski and Raven 2007) that maximize light capture while mitigating 

photodamage through photoprotective mechanisms (i.e., nonphotochemical quenching).  The 

increase in photopigmentation (areal and per cell) at low DLI/depth did not drive bleaching 

responses, which are observed in corals at extreme light limitations (Bessel-Browne et al. 2017).  

In Western Australia, shallow (< 23 m) Seriatopora hystrix harboring Durusdinium spp. also 

showed high symbiont densities with low chlorophyll cell-1 compared to deeper colonies (> 23 

m) harboring Cladocopium (Cooper et al. 2011c).  Therefore, differences in symbiont 

community composition produce distinct holobiont traits that relate to symbiont-driven 

mechanisms for photoacclimation under contrasting light regimes.  
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Photoacclimation to periodic and annual changes in light availability is integral to maintaining 

positive energy budgets in photoautotrophs, especially in turbid near shore environments where 

light conditions can change dramatically over short periods.  The kinetics of photoacclimation in 

response to changing light can be swift (5 – 10 d) (Anthony and Hoegh-Guldberg 2003a) and can 

buffer changes in photosynthesis in response to variable light conditions.  Ultimately, the 

regulation of symbiont photopigments and cells optimizes photochemical efficiency at a given 

light environment.  Therefore, the very high symbiont abundance in shallow M. capitata with 

Durusdinium symbionts is intriguing.  While differences in symbiont densities could be a result 

of different sizes of algal cell, the range in coccoid cell sizes in described Cladocopium and 

Durusdinium species overlap (LaJeunesse et al. 2018) and attributing individual cell sizes to 

genotypes in mixed symbiont communities in hospite is problematic.  Regulating symbiont 

abundance is important for many aspects of coral performance, including photosynthetic 

performance (Dennison and Barnes 1988) and stress responses.  For instance, high densities of 

opportunistic symbionts correspond to greater respiratory costs that reduce overall 

photosynthesis:respiration and nutritional potential (Starzak et al. 2014).  In addition, corals with 

high symbiont densities are more sensitive to stressful conditions that lead to symbiosis collapse 

(Cunning and Baker 2014) from a greater production of reactive chemical species (Weis 2008).  

High Durusdinium densities in M. capitata hosts, therefore, may relate to the photophysiology of 

this symbiont and its ability to avoid cellular mechanisms of symbiont expulsion relative to 

Cladocopium, although this may come at the expense of net productivity and autotrophic 

nutrition.   
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Alternatively, differences in symbiont densities may be driven by Symbiodiniaceae growth rates 

and/or responses to nutrient availability (Bayliss et al. 2019).  The host controls symbiont 

population densities by limiting symbiont access to nitrogen (Falkowski et al. 1993), and excess 

nutrient availability in seawater (Ezzat et al. 2015) or from metabolism (i.e., heterotrophic 

feeding) increases symbiont densities (Houlbrèque et al. 2003).  High Durusdinium densities 

may then also be attributed to changes in host metabolism, possibly stimulating ammonium 

production in the urea cycle and increasing nitrogen available to the symbiont (Matthews et al. 

2018).  For example, Aiptasia anemones infected with Durusdinium trenchii symbionts exhibited 

high rates of translocated products and/or derivatives being shuttled to the host’s urea cycle, 

whereas this urea cycle feedback was not seen in anemones in symbiosis with Brevolium 

minutum (Matthews et al. 2018).  Durusdinium does not appear more competitive for carbon or 

nitrogen assimilation compared to Cladocopium (Baker et al. 2013), and indeed shows reduced 

contribution of assimilated compounds to host growth and nutrition (Cantin et al., 2009; Pernice 

et al. 2014).  Therefore, the retention of nutrients by Durusdinium in support of symbiont energy 

demands provides a testable hypothesis to explain high symbiont stocking in this coral-

Durusdinium holobionts.  Such metabolic tradeoffs with hosting opportunistic symbionts require 

further study, but may prove to be unexplored mechanism by which these symbiont benefit while 

imparting a metabolic cost to the coral host.   

 

Stable isotope analysis 

Coral trophic plasticity, or increases in heterotrophic derived nutrition, relate to periods of 

attenuated photoautotrophic nutrition as a result of environmental change, light availability, or 

physiological stress (Muscatine et al. 1989; Anthony and Fabricius 2000; Grottoli et al. 2006).  
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The isotopic composition of an organism’s tissues reflects their food source and the 

discrimination of isotopically enriched compounds in metabolic reactions.  We did not observe 

substantial variance in host or symbiont carbon isotope values that indicate heterotrophic 

plasticity over seasons, light environments, or symbiont community (discussed below).  

However, substantial and persistent effects of symbiont community on isotope values were 

observed, which in conjunction with physiological responses of holobionts, reveals unique 

differences among Cladocopium and Durusdinium harboring corals.  We hypothesize that these 

differences correspond to the functional diversity and biology of and their influence on the coral 

host. 

 

Our analyses of isotope values of M. capitata tissues (host, symbionts, skeleton) showed a 

decline in host and symbiont δ13C with low-light/depth, in agreement with increased carbon 

isotope fractionation (i.e., reduced metabolic isotope effects) and reduced rates of carbon fixation 

in deep or low-light environments (Muscatine et al. 1989; Maier et al. 2010).  Spatiotemporal 

changes in δ13C values were reflected in both the host and symbiont, resulting in limited relative 

differences in carbon isotope values (i.e., δ13CH-S)—a commonly applied metric for greater 

heterotrophy (δ13CH-S values < 0) relative to autotrophy (δ13CH-S values > 0) (Muscatine et al. 

1989; Rodrigues and Grottoli 2006; Fox et al. 2018).  Moreover, δ13CH-S values were generally 

positive in low-light corals (except for two C-colonies in summer) and became more positive 

with low-light in winter months.  In addition, isotope analyses did not support the hypothesis that 

M. capitata responds to energetic consequences of hosting more opportunistic Durusdinium 

symbionts with greater heterotrophic nutrition.  Furthermore, M. capitata did not show signs of 

changes its nutrition or trophic ecology as a response to changing light conditions or seasons, and 
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instead photoacclimatory mechanisms maintained autotrophic nutrition in corals, although these 

mechanisms appeared to be differ between symbiont communities. In Mo‘orea, French 

Polynesia, a similar lack of nutritional plasticity was observed in ten coral species among 

habitats of ranging human impacts in wet and dry seasons (Nahon et al. 2013).  In Mo‘orea and 

Kāne‘ohe Bay, changes in host and symbiont δ13C values appear related to differences in rates of 

isotopic fractionation and/or isotopic values of inorganic carbon sources used by symbionts in 

photosynthesis and not greater heterotrophic feeding (Nahon et al. 2013, this study).   

 

Skeletal carbonate δ13C values (i.e., δ13CSk) varied by 4 ‰ across all samples (-4 to -0.4 ‰), and 

this may reflect a combination of changes in light and nutrition (Grottoli and Wellington 1999), 

changing photosynthesis to respiration ratios (Maier et al. 2003), or dissolve inorganic carbon 

sources (Swart et al. 1996).  However, the range and average δ13CSk values (ca. -2.5 ‰) were 

consistent among seasons (< 0.5 ‰ among seasons) and did not decline with reduced DLI.  

Lower δ13CSk values might be expected under conditions with declining symbiont productivity 

and greater metabolic fractionation and/or contributions of respiratory-derived 13C-depleted 

carbon to the internal carbon pool used in biomineralization (Grottoli and Wellington 1999).  

Nevertheless, the relatively small differences in coral skeletal carbonates and δ13CH-S values 

across light environments and seasons suggest continued nutrient recycling among symbiotic 

partners, where photosynthesis dominated energy acquisition and autotrophy remained a 

principle source of coral nutrition even under extreme low-light conditions.  Our analyses of M. 

capitata, therefore, reinforce the conclusion that facultative shifts in heterotrophic nutrition are 

species-specific (Palardy et al. 2005) and limited to extreme physiological conditions (i.e., 
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bleaching [Grottoli et al. 2006], particle loading [Anthony and Fabricius 2000]) or geographic 

locations favoring mixotrophy (i.e., high near-shore productivity [Fox et al. 2018]).   

 

Symbiont community determined δ13C values in both the host and the symbiont tissues.  In both 

C- and D-colonies, symbiont and host tissues became 13C-depleted as light availability declined 

and symbiont community effects were seasonally dependent.  δ13C values in D-colonies values 

were on average 1.5 ‰ lower in summer (δ13CH and δ13CS) and 0.8 ‰ lower (δ13CH) in winter 

relative to C-colonies.  Ultimately, these effects drove significant differences in δ13CH-S among 

C- and D-colonies in winter months, although responses to changing light availability were 

conserved in both holobionts and seasonally dependent.  The significantly lower carbon isotope 

values in D-colonies may be the result of greater isotope fractionation and/or lower rates of 

growth and/or photosynthesis (Laws et al. 1995) in Durusdinium symbionts.  For example, 

symbiont communities influence holobiont metabolism and production (Starzak et al. 2014).  In 

laboratory experiments opportunistic symbionts such as Durusdinium and Symbiodinium had 

reduced carbon and nitrogen assimilation rates compared to Cladocopium (Stat et al. 2008; 

Pernice et al. 2014).  Lower rates of nutrient assimilation and transfer may provide greater 

isotope discrimination and increase the incorporation of 12C relative to 13C during photosynthesis 

that are preserved during translocation where isotope effects are absent.  In addition, symbiont 

communities influence metabolic processing of translocated products (Loram et al. 2007), and 

distinct metabolite profiles relating to organic carbon production and lipid metabolism have been 

reported for corals and anemones hosting different symbiont genotypes (Sogin et al. 2017; 

Matthews et al. 2018).  Therefore, differences the functional diversity of symbiont genotypes 
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influences the production and biochemical processing of nutrition in corals that may have carry 

over effects on tissue isotope values.  

 

Differences in coral tissue composition also contribute to changes in carbon isotope values 

(Tolosa et al. 2011).  The isotopic composition of an organism relates to the relative proportion 

of lipids:proteins:saccharides and higher lipid-content relative to other compounds lead to lower 

tissue δ13C values, and lipids are 13C-depleted relative to other proteins and saccharides due to 

fractionation during lipid synthesis (Hayes 2001). We did not observe changes in the total 

biomass of M. capitata tissue or molar ratios of C:N in host or symbionts among symbiont 

communities, seasons or in response to light availability.  However, the composition of coral 

tissue may have changed over time in response to changing resources (Anthony 2006; Leuzinger 

et al. 2011), stress and recovery (Rodrigues and Grottoli 2007; Wall et al. 2019), and symbiont 

community (Cooper et al. 2011c) along habitat gradients (Alamaru et al. 2009).  In a flexible 

symbiont partnership, shallow Pachyseris speciosa harboring Durusdinium symbionts had 

double the concentration of storage lipid relative to structural lipids compared to deep colonies in 

symbiosis with Cladocopium (Cooper et al. 2011c).  Also, changes in the contribution of 

autotrophic or heterotrophic carbon to lipid production change in response to symbiotic 

instability or depth (Alamaru et al. 2009; Baumann et al. 2014) that in turn influence tissue 

isotope values.  Therefore, greater lipid biomass and/or heterotrophic carbon sources for lipid 

production may influence lower δ13C values with decreasing light and these effects may be more 

pronounced in D-colonies relative to C-colonies.  Conversely, the breakdown of 13C depleted 

lipids (low δ13C values) would increase the δ13C values of residual tissues.  Swart and colleagues 

(2005b) evaluated the temporal variability in δ13C of respired CO2 in M. faveolata over twelve 
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months and reported seasonality in δ13C values of respired CO2, ranging from high δ13C values 

(ca. -9 ‰) in late spring (May – June) and low δ13C values (ca. -17 ‰) in autumn (September – 

December), suggesting greater lipid catabolism in autumn months.  Therefore, seasonally 

dependent isotopic enrichment in host tissues may be an effect of changes in energy reserve 

storage and catabolism.  It is also possible that seasonal changes in metabolism relate to both 

dominant and background symbionts.  This may be particularly true for D-colonies, which often 

have background Cladocopium symbionts in low abundance and also exhibited greater change in 

δ13C values among seasons.  Symbiont communities and metabolism are central to the 

physiological ecology and resilience of reef corals, however, these questions are often explored 

using gene expression and metabolomics approached (Matthews et al. 2018; Helmkampf et al. 

2019).  Identifying symbiont-driven effects on coral metabolism, energy storage and nutriton at 

the physiological level (Cooper et al. 2011a) are needed to supplement “–omics” approaches in 

order better understand and identify tradeoffs in host-symbiont interactions. 

 

Nitrogen isotope values in the host and symbiont showed limited statistical effects relative to 

carbon.  Where significant effects were observed for δ15N values, effect sizes were small (< 0.5 

‰).  Overall, slight increases in δ15NH values were observed as light-availability declined, and 

winter C-colonies had lower δ15NS and higher δ15NH-S.  δ15N values showed a large range but 

were similar in both symbiotic partners (ca. 2.7 – 6.0), and the pattern in trophic enrichment 

followed predictions of greater 15N-enrichment in the host compared to its symbiont, although 

this is well below the 1.5 – 3.0 ‰ enrichment seen non-symbiotic food webs (Minagawa and 

Wada 1984).  The absence of clear effects of light or symbiont community on δ15N values can 

indicate high rates of photosynthesis and nitrogen-limitations in the holobiont (Maier et al. 
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2010).  However, light effects on δ15N values in corals in the lab and field are variable and 

inconsistent (Heikoop et al. 1998; Reynaud et al. 2009), and we observed poor relationships 

between δ15N values and physiological metrics related to photosynthesis and photoacclimation.  

Photoacclimation, however, had a clear influence on M. capitata host and symbiont δ13C values, 

which showed significant negative relationships with photopigmentation (pg cell-1) and to a 

lesser extent a positive relationships to symbiont densities (Figure 4.3; Figure 4.S7), and these 

effects were more pronounced in C-colonies.  Light-dependent fractionation predicts shared 

expression of 13C and 15N discrimination (i.e., greater fractionation) as photosynthesis becomes 

light-limitations (Granger et al. 2004); thus, trends in 13C and 15N depletion in host and symbiont 

are expected with increasing depth (Muscatine and Kaplan 1994; Heikoop et al. 1998).  Yet, we 

observed the opposite: when light was abundant δ15N values were low when δ13C values were 

high.  In other words, when photosynthesis was high and carbon isotopic fraction reduced, 

nitrogen isotope fractionation appeared minimal.  The cause for this trend in carbon and nitrogen 

isotope values and light-independent patterns in δ15N values is unclear, but may relate to changes 

in internal or external nitrogen pools as a result of photoacclimation-driven processes, increased 

nitrogen recycling during high rates of photosynthesis/growth (and δ13C value high), or greater 

utilization of 15N-enriched nitrogen sources under conditions where δ13C values (and 

photosynthesis rates) are low.  

 

An additional explanation for the large range in δ15N values is linked to spatiotemporal 

variability in the nitrogen sources available to corals.  For instance, reef location explained 75 – 

80 % of δ15NH and δ15NS model variance, and differing proximities to terrigenous nutrient 

sources (i.e., shoreline, watersheds, subterranean groundwater discharge) relative to oceanic 
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inputs (Dailer et al. 2010), and the removal (denitrificaiton) and addition (fixation) of 

isotopically light nitrogen to the dissolved nitrogen pool influence δ15N values at the base of the 

food web (Sigman and Casciotti 2001).  The average nitrogen isotope values in plankton and 

suspended particles ranged by 2 ‰ (5.5 – 7.5 ‰) and average δ15N-nitrate values in Kāne‘ohe 

Bay (winter 2014) range from 3.8 – 4.9 ‰ (Wall et al. 2019).  While our limited sampling of the 

carbon and nitrogen isotope values did not reveal substantial spatiotemporal effects on size-

fractioned plankton/suspended particles, spatial effects on δ15N values have been previously 

reported in corals (Wall et al. 2019) and stingrays (Dale et al. 2008) within Kāne‘ohe Bay in 

relation to oceanic and terrestrial nutrient inputs.  Considering the values of heterotrophic 

sources in seawater, corals and their symbionts most resemble the δ15N isotopic composition of 

dissolved inorganic nitrogen (DIN), which through the coral-symbiont nitrogen cycle is 

assimilated by the symbiont and transferred to the coral host (Kopp et al. 2013) to be 

metabolized and excreted into the internal nitrogen pool once more available to the symbiont.  

This forward- and back-translocation of nitrogen products among symbiotic partners and the 

diverse nitrogen end members available for corals (Houlbrèque and Ferrier-Pagès 2009) 

minimizes trophic enrichment and complicates nutritional inferences based on coral δ15N values 

(Reynaud et al. 2009).   

 

The genetic and functional diversity of Symbiodiniaceae genotypes influences the energetics and 

performance of reef corals.  Environmental pressures (e.g., light, temperature, sedimentation) can 

lead to shifts in coral-Symbodiniaceae communities that allow for opportunistic, symbiont 

generalists to persist in coral populations with consequences for stress tolerance, nutrient 

exchanges, and holobiont physiology.  Environmental effects on coral metabolism and nutrition 
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have been widely studied using stable isotope, but rarely have these studies accounted for 

symbiont community effects in situ.  Discounting or ignoring the diversity in symbiont 

communities and their influence on the holobiont, therefore, has the potential to confound 

isotopic inferences in reef corals.  Our results show substantial effects of symbiont community 

on the physiology and isotope values (δ13C) in a single coral species that occurs over narrow 

habitat range across a light/depth gradients. Importantly, we show symbiont communities (C vs. 

D-colonies) produced distinct patterns in the cell densities and chlorophylls per symbiont cell 

and these properties of the symbiont predicted changes in δ13C, but not δ15N, isotope values.  

These results indicate environmental and symbiont community effects on photoacclimation and 

symbiont standing stock are driving changes in δ13C values in the holobiont.  However, neither 

environment nor symbiont communities indicated greater reliance on heterotrophic nutrition.  

Together, these findings show symbiont diversity and function (i.e., photoacclimation, nutrient 

transfer) produce discrete patterns in stable isotope values in reef corals, and these patterns relate 

to niche partitioning in response to environmental pressure.  Finally, we identify symbiont 

community effects as an important, yet often overlooked, component to isotopic investigations 

into coral physiological ecology.  There is a need to unravel ecological implications of symbiont 

functional diversity on coral nutritional plasticity, host-symbiont nutrient exchanges, and coral 

biomass properties (i.e., tissue composition) in order to accurately quantify costs and benefits of 

symbiont communities now and into the future.  
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Table 4.1.  Statistical analysis of Montipora capitata host and symbiont 

physiology and tissue isotope values from four locations in Kāne‘ohe Bay along a 

depth gradient in summer and winter. 

Response variable Effects        

 Season Light Symbiont 
Season 
× 

Light 

Season 
× 

Symbiont 
biomass -- -- -- -- -- 
symbionts -- 0.010 <0.001 0.004 -- 
total chlorophylls <0.001 0.004 <0.001 -- 0.022 
chlorophyll per cell -- <0.001 <0.001 -- -- 
δ13CH -- <0.001 <0.001 -- 0.031 
δ13CS -- <0.001 <0.001 -- 0.001 
δ13CH-S 0.002 -- <0.001 0.040 0.037 
δ13CSk 0.009 -- -- -- -- 
δ15NH -- 0.040 -- -- -- 
δ15NS -- -- 0.008 -- 0.017 
δ15NH-S -- 0.018 0.002 -- <0.001 
C:NH -- -- -- -- -- 
C:NS -- -- -- -- -- 

Table information shows significant model effects (p < 0.05); dashed lines indicate no significant 
effects (p > 0.05). Season = summer or winter, Light = light at depth of collection, Symbiont = 
Cladocopium spp. (formerly clade C) or Durusdinium glynnii (formerly clade D)-dominated 
symbiont community. Subscripts indicate either host (H) or symbiont (S) tissues, or their relative 
difference (H-S), and skeletal carbonates (Sk). 



	

	 121 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1.  Map of Kāne‘ohe Bay on the windward side of O‘ahu, Hawai‘i.  Circles indicate the 
two fringing reef and two patch reef where corals were collected: the Northwest (NW), Northeast 
(NE), Southwest (SW) and Southeast (SE) locations.  
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Figure 4.2.  Daily Light Integral (DLI) at four reef locations where corals were collected, 
averaged over the study period (10 June 2016 – 12 January 2017) at  <1 m, 2 m and 8 m depth.  
Values are mean ± SE (n = 163 – 202).  
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Figure 4.3.  Symbiont community in Montipora capitata colonies collected in summer (dark 
gray) and winter (light gray) as a function of the proportion of Durusdinium relative to 
Cladocopium across (a) depth of collection and (b) light availability, represented as the daily 
light integral (DLI).  Lines represent logistic regression models by each season (solid lines) and 
the combined summer plus winter dataset (dotted line).  
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Figure 4.4. Physiological metrics for Montipora capitata colonies dominated by C 
(Cladocopium spp.) or D (Durusdinium spp.) symbionts.  Colonies were collected from four 
Kāne‘ohe Bay reef locations in summer (left) and winter (right) spanning a light availability 
gradient across <1 m – 9 m depth.  Area-normalized (a) total tissue biomass, (b) symbiont cell 
densities, (c) total chlorophylls (a + c2), and (d) chlorophylls per symbiont cell. Solid lines 
represent linear mixed effect model fits.  Symbols indicate significant differences (p < 0.05) 
between symbiont communities (*), in response to light (†), and between seasons (*s). 
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Figure 4.5.  Carbon stable isotope values for Montipora capitata colonies dominated by C 
(Cladocopium spp.) or D (Durusdinium spp.) symbionts.  Colonies were collected from four 
Kāne‘ohe Bay reef locations in summer (left) and winter (right) spanning a light availability 
gradient across <1 m – 9 m depth.  Values are for (a) coral host (δ13CH) (b) symbiont algae 
(δ13CS) and (c) their relative difference (δ13CH-S) in permil (‰) relative to carbon standards 
(Vienna Pee Dee Belemnite: V-PDB) and nitrogen (air).   Solid lines represent linear mixed 
effect model fits.  Symbols indicate significant differences (p < 0.05) between symbiont 
communities (*), in response to light (†), and between seasons (*s). 
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Figure 4.6.  Principal component analyses (PCA) on a matrix of physiological responses and 
isotope values in the coral Montipora capitata evaluating the influence of (a) season, (b) location, 
(c) symbiont community, and (d) depth bin.  Axis values in parentheses represent proportion of 
total variance associated with the respective PC.  Arrows represent correlation vectors for 
response variables, and ellipses represent 90% point density according to treatments. See Table 1 
for response metric details. 
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CHAPTER 5 

CONCLUSION 
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Conclusion 

Climate change is an existential threat to the survival of reef corals and their dominance on coral 

reefs (Hoegh-Guldberg et al. 2017).  However, the responses of reef corals to local and global 

environmental change—including ocean acidification and warming—are not uniform, suggesting 

some coral holobionts (i.e., coral animal, endosymbiont Symbiodiniaceae, and associated 

microbes) are capable of withstanding current and near-future environmental change (Strahl et al. 

2015).  However, stress tolerance may come at a cost to overall coral performance and the 

capacity for coral reefs ecosystems to provide essential services in the forms of fisheries, coastal 

protection, and net accretion (Pandolfi et al. 2011; Wild et al. 2011; Eyre et al. 2018).  

 

The role of tissue abundance and composition has wide ranging implications for the function and 

biology of reef corals. Soft tissues are energetic stores that represent sources of autotrophic and 

heterotrophic nutrition (Baumann et al. 2014), and are important in the reproduction and post-

stress survival of corals (Ward et al. 1995; Grottoli et al. 2004; Leuzinger et al. 2012).  In the 

context of environmental change, coral tissues respond to changes in light availability, pCO2 and 

temperature, and nutritional states such as greater feeding on plankton (Houlbrèque et al. 2003; 

Anthon et al. 2007; Schoepf et al. 2013).  Importantly, it is not only the quantity of tissues but 

also tissue quality (e.g., energy content and lipid composition) that can change in response to 

environmental contexts and physiological conditions (Anthony et al. 2009).  As energy stores, 

changes in the abundance and composition of tissues shift energetic landscapes for metabolism 

and the potential for physiological resilience.  
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Energetic approaches to physiological challenges may hold the key to understanding climate 

change effects on marine organisms and the implication of these effects at ecosystem scales 

(Anthony et al. 2009; Kroeker et al., 2012; Lesser 2013; Pan et al. 2015).  In reef corals, the 

symbiosis between cnidarian host and endosymbiont Symbiodiniaceae algae is underpinned by 

nutritional exchanges, which support metabolism and the growth in both partners.  Climate 

change in the form of ocean acidification (OA) and rising ocean temperatures will disrupt the 

coral-Symbiodiniaceae and may alter the function of reef corals by influencing the acquisition 

and allocation of resources to meet metabolic demands.  However, flexibility in nutrition, energy 

allocation, and symbiotic partnerships can contribute to the capacity for corals to withstand a 

range of environmental stressors, including those occurring from anthropogenic climate change 

(Anthony et al. 2009).  Resistance to OA effects may originate from energetic investments in the 

regulation of pH and dissolved organic carbon (DIC) species at the site of calcification (Holcomb 

et al. 2014), possibly through changes in metabolism, lipid biosynthesis, and gene regulation 

(Vidal-Dupiol et al. 2013) or greater nutrient availability (Holcomb et al. 2010; Edmunds 2011). 

Similarly, corals with greater tissue biomass are less likely to suffer mortality from bleaching 

(Thornhill et al. 2011), and the use of tissue energy reserves (primarily lipids and proteins) or 

heterotrophy are important determinates of coral physiological recovery from bleaching 

(Anthony et al. 2009). These examples identify the existence of energetic bases of OA and 

bleaching effects on corals.  Although, mechanisms for these effects may differ among species 

and in concert with other factors (i.e., light, water motion), and therefore require further 

clarification.  
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In my results, I show the coral Pocillopora acuta experiences changes in coral biomass-

normalized lipids and energy content and area-normalized proteins when exposed to elevated 

pCO2 under two saturated irradiance treatments.  However, P. acuta did not show signs of 

reduced skeletal growth in response to OA.  Therefore, our results point to changes in resource 

allocation in favor of skeletal growth at the expense of tissue energy and composition as a 

mechanism for coral calcification resistance to OA.  However, the catabolism of tissues and/or 

the shuttling of energy to maintain skeletal growth instead of tissue growth may not be observed 

in all corals and may be subject to unidentified tradeoffs, dependent on morphological traits, 

environmental conditions, and site-specific histories (Comeau et al. 2014; Strahl et al. 2015; 

Bahr et al. 2016).  For instance, fast growing corals like P. acuta may be more sensitive to OA 

effects on calcification (Comeau et al. 2014d); however, P. acuta in Kāne‘ohe Bay may 

experience end-of-century pCO2 values (RCP 6.0 ca. 850 µatm pCO2 [Moss et al. 2010]) on a 

daily basis due to a combined action of reef metabolism and seawater residence (Drupp et al. 

2011, 2013).  Therefore, this coral species may be acclimatized and/or locally adapted to changes 

in pCO2 and possess mechanisms to attenuate OA effects on skeletal growth not expressed in all 

coral taxa (Schoepf et al. 2013; Comeau et al. 2014b; Drenkard et al. 2018).   

 

Putative energetic mechanisms for dealing with OA effect may be characterized by tipping 

points.  Under this framework, elevated pCO2 first solicits changes in resource allocation, but as 

pCO2 rises to an ultimate threshold concentration further increases in pCO2 result in soft tissues 

losses and/or increased feeding efforts are unsustainable and physiological function declines.  

Clearly, a knowledge gap exists in the understanding of pCO2 effects on the tissues and energy 

investments in corals and other organisms (Edmunds et al. 2013; Pan et al. 2015; Spalding et al. 
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2017), and understanding how energetic consequences OA propagate through individuals and 

influence community processes (Kroeker et al. 2012) should be a priority of future research.     

 

In contrast to effects of pCO2 on P. acuta, the tissue composition bleached and non-bleached 

colonies of Montipora capitata and Porites compressa did not change during or after thermal 

stress in situ.  Instead, bleaching reduced total tissue biomass and spatiotemporal factors (i.e., 

seasons, sites, and their interactions) influenced biomass composition—specifically lipids and 

proteins.  These findings support other studies that have identified an important role of tissue 

biomass in coral physiology and in determining post-bleaching survival (Thornhill et al. 2011), 

but also that tissue biomass composition responds to changes in environmental conditions that 

occur among reef habitats and across seasons (Anthony 2006; Hoogenboom et al. 2011).  

Interestingly, we also observed a pattern of lower tissue biomass in all colonies of both species 

regardless of bleaching responses following peak thermal stress compared to three months of 

recovery when waters had cooled.  It is possible that regardless of symbiont expulsion that coral 

colonies sensitive and resistant to thermal stress undergo tissue loss during bleaching, and this 

may relate to the balance of energy availability and metabolic costs/demands, including changes 

in the production and composition of coral mucus (Wright et al. 2019).  Wholesale losses of 

coral tissue, however, may not result in large changes in tissue composition among bleached and 

non-bleached colonies, as has been reported in some corals.  However, the onset of changes in 

tissue quantity and composition can proceed at different rates and may manifest at different 

periods post bleaching (Rodrigues and Grottoli 2007).  
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The contrasting patterns of elevated pCO2 effects on P. acuta biomass composition and the 

effects of thermal bleaching and recovery on M. capitata and P. compressa tissue quantity 

indicate opposing forces responsible for shaping coral tissues.  For instance, OA does not appear 

to disrupt the function of the coral holobiont to the point where symbiont photosynthesis, host 

respiration, or total tissue biomass changes and corals do not undergo appreciable losses in 

symbiont abundance or photopigmentation (Wall et al. 2014; Comeau et al. 2017, but see 

Anthony et al 2008; Noonan and Fabricus 2016).  Tissue biomass stores, such as lipids and 

proteins are useful in maintaining coral function during periodic energy deficits (Rodrigues and 

Grottoli 2007) and may be particularly important under chronic stressors that proceed gradually, 

such as OA or seasonal changes.  Indeed, my results showed P. acuta lipids, tissue energy, and 

proteins to all changed in response to pCO2, while M. capitata (protein) and P. compressa (lipids 

and energy) responded to spatiotemporal effects but not bleaching.  In each case tissue 

compositions changed in response to gradual changes in environmental conditions that affect 

coral function but are not drivers of coral mortality and did not lead to changes in total coral 

biomass.  In contrast, the high temperature anomaly experienced by Hawaiian corals in 2014 lead 

to extensive disruption of the coral-Symbiodiniaceae mutualism causing bleaching (Bahr et al. 

2017), symbiont and tissue losses, and coral mortality but no consistent effects on coral tissue 

composition.  These findings reveal the importance of coral tissues in shaping stress effects on 

coral performance, albeit how tissues energy is mobilized and allocated may depend on stressor 

duration, magnitude, and type. 

 

Despite the significance of biomass composition in organism performance, the role of compound 

classes (i.e., lipids, carbohydrates, proteins) has received limited attention in the interpretation 
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and understanding of tissue δ13C analysis.  Relatively small changes in the ratios of 

lipids:carbohydrates:proteins can influence carbon stable isotope values of bulk tissues, which is 

fundamentally a product of the biochemical pathways from which compounds originate and the 

relative proportion of compounds in tissues (Hayes 2001).  In my results, I show that considering 

the role of compound-class specific isotope values and lipids:carbohydrates:proteins in tissues 

can use useful in disentangling effects of tissue level changes from changes in nutrition.  

Accounting for changes in tissue composition—but also changes in specific compounds—is an 

important consideration in the inferences from carbon isotope data, as changes in relative 

proportions of compound classes and the composition of each compound pool (i.e., lipid classes) 

affects bulk isotope values and can influence inferences on coral nutritional modes and plasticity.  

While there are limited examples in the coral literature where isotope values have been measured 

in specific compounds or in classes of compounds (i.e., lipids, carbohydrates, and proteins), 

advancing this understanding is vital in reducing uncertainty in stable isotope studies.   

 

The analysis of carbon and nitrogen stable isotopes in tissues has contributed to our 

understanding of the physiological ecology and nutrition of reef corals.  However, fundamental 

questions remain in our understanding of the mechanisms governing patterns of stable isotope 

values in the corals-Symbiodiniaceae symbiosis among coral species and across environmental 

conditions.  For this reason, greater attention should be devoted to identifying the influence of 

tissue composition, tissues turnover rates, and the role of cryptic symbiotic partners (i.e., 

nitrogen fixers, endolithic algae) and alternative Symbiodiniaceae communities on coral host and 

symbiont algae.  Pairing of tissue isotope analysis with biochemical and physiological assays has 

also proven useful in contextualizing changes in coral isotope values (Rodrigues and Grottoli 



	

	 135 

2006) and niche partitioning of Symbiodiniaceae (Ezzat et al. 2018), as well as determining the 

mechanisms, tipping points, and processes that lead to changes in isotope values across spatial 

scales and environmental regimes (Maier et al. 2010; Fox et al. 2018; Radice et al. 2019).  For 

instance, my findings on C- and D-dominated M. capitata show that Symbiodiniaceae diversity 

has a considerable influence on carbon isotope values, but corals of either symbiont community 

showed no change in heterotrophic feeding, tissue C:N, or nitrogen values despite considerable 

changes in light availability and seasonal effects.  Despite knowledge of functional differences in 

the carbon fixation and thermal tolerance of Symbiodiniaceae species, the influence of symbiont 

genetic diversity on coral nutrition and baseline physiological processes has been much less 

explored.  Distinctions symbioses attributes (i.e., cell densities, photopigments, 

fixation/translocation rates) have clear implications for coral energy budgets and tissue isotope 

values.  Yet, paired analyses of coral genetics, physiology, and isotope values are rare and 

dominated by laboratory studies.  My in situ analyses of isotope values in M. capitata emphasize 

the need for greater attention to in situ variance in isotope values among corals with different 

symbiont communities and highlight the need to better understand how symbiont community and 

environment affect the trophic ecology and nutritional exchanges in the coral-Symbiodiniaceae 

symbiosis.  

 

A path forward in using stable isotopes to disentangle biological changes in an organism’s 

nutrition (or metabolism) from unconstrained variance in the form of fractionation-mediated 

effects may be in the development of compound specific isotope analyses (CSIA).  CSIA are 

analyses of individual compounds and their propagation through food webs/organisms and 

include such compounds as fatty acids (FA) and amino acids (AA) (see review by Ferrier-Pagès 
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and Leal 2018).  CSIA approaches have advanced in recent years and their application in 

ecological studies (particularly in food webs) is increasing.  The acceptance of CSIA 

techniques—despite their significantly greater investments in costs and labor—is due to the 

greater resolution these technique afford, along with the capacity for these tools to 

simultaneously provide information on dietary food sources, nutrition, and physiology of an 

organism (Whiteman et al. 2019).  While limited, the analysis of FA-CSIA in reef corals has 

been applied to determine the source of FA in the diets different corals among reef locations 

(Teece et al. 2011).  Similarly, the application of CSIA of carbon and nitrogen in individual AA 

may be useful in clarifying the origin and cycling of AA in mixotrophic mutualistic symbiosis 

(Ferrier-Pagès and Leal 2018), and examples of these tools in the study of reef corals are 

forthcoming.   

 

Identifying the traits and mechanism of coral physiological resilience are vital to coral 

conservation.  Energetics provides a framework to understand how reef corals and other diverse 

marine species cope with changing energetic demands and disrupted symbiotic states.  My 

research identifies unique pathways by which corals may survive and maintain important 

functions during physiological challenges, while also identifying unique attributes between 

distinct symbiont communities within a single coral species.  While technological advances have 

been made in understanding the consequences of climate change on individual organisms, future 

challenges will be integrating these findings into ecological theory in order to gain an ecosystem 

perspective of climate change effects (Gaylord et al. 2015).  In this undertaking, there is an 

expanding niche for stable isotope ecology and the application of bulk and compound-specific 

biomass analyses to understand organism and ecosystems.  Stable isotope tools may provide 
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unique perspectives that supplement physiology, genetic and –omic approaches in quantifying 

the consequences of changing environments on species-species interaction (including 

competition and symbioses) and mechanisms underlying biological processes (i.e., calcifying 

fluid pH, resource allocation).  Together, embracing new approaches in the study of earth’s 

biodiversity may provide actionable evidence to aid conservation and restoration efforts, 

providing near-term lifelines to coral reefs in the face of humanity’s reluctance to address the 

climate crisis. 
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Appendix Table 2.S1.  Principal component loadings with 

eigenvalues > 1.0 analyzed in linear mixed effect models.  

 Effect SS  df F  p 
Area-normalized 

     
PC1 (41.0%) pCO2 1.004 1,21 0.488 0.493 

 Light 0.510 1,21 0.248 0.624 
 pCO2 × Light 0.070 1,21 0.034 0.856 
      

PC2 (20.5%) pCO2 2.899 1,22 2.704 0.114 
 Light 0.372 1,22 0.347 0.562 
 pCO2 × Light 0.940 1,22 0.877 0.359 

Biomass-normalized      
PC1 (38.3%) pCO2 0.279 1,23 0.164 0.689 

 Light 2.185 1.22 1.285 0.269 
 pCO2 × Light 0.139 1,22 0.082 0.777 
      

PC2 (34.1%) 
 

pCO2 9.726 1,22 5.502 0.028 
Light 0.236 1,22 0.133 0.718 

 pCO2 × Light 0.019 1,22 0.011 0.919 
Values in parentheses represent percentage of variation explained for 
each principal component (PC).  SS = sum of squares; df = degrees of 
freedom in numerator and denominator; bold values represent 
significant effects (p < 0.05). 
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Appendix Table 2.S2.  Statistical analysis of pCO2 and light effects on area-

normalized net calcification, biomass energy reserves, symbiont cell density, and 

photopigment concentrations of the reef coral Pocillopora acuta.   

Dependent variable Effect SS   df F p 
calcification  pCO2 0.004 1, 22 0.275 0.605 
mg CaCO3 cm-2 d-1 Light 0.001 1, 22 0.070 0.793 
 pCO2 × Light 4.808 × 10-4 1, 22 0.031 0.861 
      
biomass mg cm-2 
 

pCO2 0.030 × 10-4 1, 22 0.004 0.950 
Light 0.001 1, 22 1.667 0.210 

 pCO2 × Light 1.316 × 10-4 1, 22 0.178 0.677 
      
proteins mg cm-2 pCO2 0.004 1, 22 1.279 0.270 
 Light 0.024 1, 22 7.940 0.010 
 pCO2 × Light 0.015 1, 22 4.850 0.038 
      
carbohydrates mg cm-2 pCO2 0.002 1, 22 0.909 0.351 
 Light 0.001 1, 22 0.459 0.505 
 pCO2 × Light 0.005 1, 22 2.453 0.132 
      
lipids mg cm-2 pCO2 0.402 1, 22 2.283 0.145 
 Light 0.018 1, 22 0.104 0.751 
 pCO2 × Light 0.030 1, 22 0.171 0.683 
      
energy content kJ cm-2 pCO2 0.010 1, 22 1.740 0.201 
 Light 0.002 1, 22 0.382 0.543 
 pCO2 × Light 1.072 × 10-4 1, 22 0.019 0.891 
      
symbiont cells cm-2 pCO2 1.798 × 104 1, 22 0.962 0.338 
 Light 4.791 × 104 1, 22 2.563 0.124 
 pCO2 × Light 0.953 × 104 1, 22 0.510 0.483 
      
chlorophyll a cm-2 pCO2 1.000 × 10-4 1, 21 1.000 × 10-4 0.993 
 Light 25.085 1, 21 31.055 <0.001 
 pCO2 × Light 1.860 1, 21 2.302 0.144 
      
chlorophyll c2 cm-2 pCO2 0.130 × 10-4 1, 22 0.002 0.961 
 Light 0.104 1, 22 18.894 <0.001 
 pCO2 × Light 0.015 1, 22 2.711 0.114 
      
chlorophyll a cell-1 pCO2 0.755 × 10-4 1, 22 0.021 0.886 
 Light 0.010 1, 22 2.786 0.109 
 pCO2 × Light 0.001 1, 22 0.305 0.587 
      
chlorophyll c2 cell-1 pCO2 4.362 × 10-4 1, 22 0.092 0.765 
 Light 0.008 1, 22 1.618 0.217 
 pCO2 × Light 0.003 1, 22 0.594 0.449 
SS = sum of squares; df = degrees of freedom in numerator and denominator; bold P values represent 
significant effects (p < 0.05) 
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Appendix Table 2.S3.  Statistical analysis of pCO2 and light effects on biomass-

normalized net calcification and biomass energy reserves of the reef coral Pocillopora 

acuta.   

Dependent variable Effect SS df F p 
calcification  pCO2 0.235 1, 22 0.306 0.586 
mg CaCO3 gdw-1 d-1 Light 0.958 1, 22 1.243 0.277 
 pCO2 × Light 0.018 1, 22 0.024 0.879 
      
proteins g gdw-1 pCO2 0.680 × 10-4 1, 22 0.692 0.415 
 Light 0.148 × 10-4 1, 22 0.150 0.702 
 pCO2 × Light 0.480 × 10-4 1, 22 0.488 0.492 
      
carbohydrates g gdw-1 pCO2 1.993 × 10-4 1, 22 0.943 0.342 
 Light 0.001 1, 22 4.747 0.040 
 pCO2 × Light 2.411 × 10-4 1, 22 1.141 0.297 
      
lipids g gdw-1 pCO2 0.051 1, 22 4.762 0.040 
 Light 0.007 1, 22 0.630 0.436 
 pCO2 × Light 1.200 × 10-4 1, 22 0.011 0.917 
      
energy content kJ gdw-1 pCO2 80.984 1, 22 4.721 0.041 
 Light 10.385 1, 22 0.605 0.445 
 pCO2 × Light 0.062 1, 22 0.004 0.952 
      
SS = sum of squares; df = degrees of freedom in numerator and denominator; bold P values represent 
significant effects (p < 0.05). 
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Appendix Table 3.S1.  Statistical analysis of bleached and non-bleached Montipora 

capitata at three reefs during bleaching and recovery.   

Dependent variable Effect SS df F p 
chlorophyll (a + c2) (µg cm-2) Period 235.380 1, 28 65.245 <0.001 
 Site 12.354 2, 12 1.712 0.222 
 Condition 54.080 1, 14 14.990 0.002 
 Period × Condition 16.541 1, 28 4.585 0.041 
      
biomass (mg cm-2) Period 2912.240 1, 28 55.484 <0.001 
 Site 145.006 2, 26 1.381 0.270 
 Condition 103.915 1, 26 1.980 0.171 
 Period × Condition 394.610 1, 28 7.518 0.011 
      
proteins (g gdw-1) Period 0.003 1, 28 7.689 0.010 
 Site 0.001 2, 26 0.798 0.461 
 Condition 0.001 1, 26 1.289 0.267 
      
lipids (g gdw-1) Period 0.001 1, 27 0.163 0.690 
 Site 0.021 2, 25 2.611 0.093 
 Condition 0.005 1, 25 1.163 0.291 
      
carbohydrates (g gdw-1) Period 0.003 1, 28 3.481 0.073 
 Site 0.003 2, 26 2.021 0.153 
 Condition 1.583 × 10-4 1, 26 0.195 0.662 
      
energy content (kJ gdw-1) Period 0.039 1, 27 0.006 0.937 
 Site 37.867 2, 25 3.059 0.065 
 Condition 5.666 1, 25 0.916 0.348 
SS = sum of squares; df = degrees of freedom in numerator and denominator; bold p values represent 
significant effects (p < 0.05). 
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Appendix Table 3.S2.  Statistical analysis of bleached and non-bleached Porites 

compressa at three reefs during bleaching and recovery.   

Dependent variable Effect SS df F p 
chlorophyll (a + c2) (µg cm-2) Period 1641.570 1, 24 258.386 <0.001 
 Site 61.579 2, 12 4.846 0.029 
 Condition 257.599 1, 12 40.547 <0.001 
 Period × Site 39.845 2, 24 3.136 0.062 
 Period × Condition 187.462 1, 24 29.507 <0.001 
 Site × Condition 86.012 2, 12 6.769 0.011 
 Period × Site × Condition 8.942 2, 24 0.704 0.505 
      
biomass (mg cm-2) Period 248.036 1, 55 1.910 0.173 
 Site 74.351 2, 55 0.286 0.752 
 Condition 691.067 1, 55 5.321 0.025 
      
proteins (g gdw-1) Period 0.891 × 10-4 1, 28 0.086 0.772 
 Site 0.003 2, 26 1.422 0.259 
 Condition 0.761 × 10-4 1, 26 0.073 0.789 
 Period × Condition 0.008 1, 28 7.378 0.011 
      
lipids (g gdw-1) Period 0.064 1, 52 12.184 <0.001 
 Site 0.005 2, 52 0.451 0.639 
 Condition 0.010 1, 52 1.856 0.179 
 Period × Site 0.059 2, 52 5.620 0.006 
      
carbohydrates (g gdw-1) Period 0.001 1, 29 2.653 0.114 
 Site 0.001 2, 26 0.593 0.560 
 Condition 0.001 1, 26 2.344 0.138 
      
energy content (kJ gdw-1) Period 92.140 1, 52 14.071 <0.001 
 Site 4.004 2, 52 0.306 0.738 
 Condition 8.596 1, 52 1.313 0.257 
 Period × Site 69.078 2, 52 5.275 0.008 
SS = sum of squares; df = degrees of freedom in numerator and denominator; bold p values represent significant 
effects (p < 0.05). 
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Appendix Table 3.S3.  Statistical analysis of bleached and non-bleached Montipora 

capitata at three reefs during bleaching and recovery.   

Dependent variable Effect SS df F p 
δ13CH Period 0.600 1, 29 1.108 0.301 
 Site 3.547 2, 12 3.276 0.073 
 Condition 3.561 1, 14 6.578 0.022 
      
δ13CS Period 6.208 1, 29 14.169 <0.001 
 Site 2.723 2, 12 3.108 0.082 
 Condition 1.641 1, 24 3.745 0.073 
      
δ13CH-S Period 2.752 1, 29 12.705 0.001 
 Site 0.452 1, 12 1.044 0.381 
 Condition 0.996 1, 14 4.598 0.050 
      
δ15NH Period 0.002 1, 29 0.753 0.393 
 Site 0.025 2, 12 4.150 0.043 
 Condition 0.204 × 10-4 1, 14 0.007 0.935 
      
δ15NS Period 0.005 1, 43 0.785 0.381 
 Site 0.027 2, 12 2.283 0.145 
 Condition 0.002 1, 43 0.379 0.541 
      
δ15NH-S Period 1.601 1, 29 1.774 0.193 
 Site 0.809 2, 24 0.448 0.644 
 Condition 0.395 1, 24 0.438 0.514 
 Site × Condition 5.492 2, 24 3.044 0.066 
      
C:NH Period 3.194 1, 26 24.610 <0.001 
 Site 0.375 2, 12 1.445 0.274 
 Condition 0.471 1, 14 3.627 0.078 
 Period × Site 0.854 2, 26 3.288 0.053 
 Period × Condition 0.568 1, 26 4.377 0.046 
      
C:NS Period 0.053 1, 43 3.724 0.060 
 Site 0.048 2, 12 1.658 0.231 
 Condition 0.014 1, 43 0.982 0.327 

SS = sum of squares; df = degrees of freedom in numerator and denominator; bold p values represent 
significant effects (p < 0.05). Subscripts indicate coral host (H), symbiont algae (S), or the differences between 
host and symbiont (H-S) isotopic values. 
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Appendix Table 3.S4.  Statistical analysis of bleached and non-bleached Porites 

compressa at three reefs during bleaching and recovery.   

Dependent variable Effect SS df F p 
δ13CH Period 0.028 1, 24 0.111 0.742 
 Site 0.136 2, 12 0.269 0.769 
 Condition 1.291 1, 12 5.091 0.043 
 Period × Site 0.320 2, 24 0.631 0.540 
 Period × Condition 2.204 1, 24 8.689 0.007 
 Site × Condition 1.446 2, 12 2.849 0.097 
 Period × Site × Condition 2.014 2, 24 3.970 0.032 
      
δ13CS Period 1.014 1, 28 1.632 0.212 
 Site 0.180 2, 12 0.145 0.867 
 Condition 2.294 1, 14 3.691 0.075 
 Period × Condition 2.646 2, 28 4.258 0.048 
      
δ13CH-S Period 0.693 1, 54 2.287 0.136 
 Site 0.529 2, 54 0.872 0.424 
 Condition 0.126 1, 54 0.416 0.522 
 Period × Condition 0.015 1, 54 0.050 0.825 
      
δ15NH Period 2.774 1, 28 6.795 0.014 
 Site 8.481 2, 12 10.390 0.002 
 Condition 0.099 1, 14 0.241 0.631 
 Period × Condition 2.054 1, 28 5.031 0.033 
      
δ15NS Period 2.440 1, 28 2.655 0.114 
 Site 9.459 2, 12 5.145 0.024 
 Condition 1.452 1, 14 1.579 0.229 
 Period × Condition 7.142 1, 28 7.770 0.009 
      
δ15NH-S Period 10.292 1, 28 7.844 0.009 
 Site 0.606 2, 12 0.231 0.797 
 Condition 0.876 1, 14 0.668 0.428 
 Period × Condition 16.485 1, 28 12.564 0.001 
      
C:NH Period 5.874 1, 26 33.869 <0.001 
 Site 0.150 2, 12 0.433 0.658 
 Condition 0.040 1, 14 0.228 0.640 
 Period × Site 2.324 2, 26 6.702 0.004 
 Period × Condition 3.470 1, 26 20.007 <0.001 
      
C:NS Period 3.203 1, 42 2.589 0.115 
 Site 0.209 2, 12 0.085 0.919 
 Condition 3.847 1, 42 3.110 0.085 
 Period × Condition 2.010 1, 42 1.625 0.209 
SS = sum of squares; df = degrees of freedom in numerator and denominator; bold p values represent 
significant effects (p < 0.05). Subscripts indicate isotopic values of coral host (H), symbiont algae (S), and 
their relative difference (H-S). 
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Appendix Table 4.S1.  Model analysis of environmental variables (daily light 

availability, dissolved inorganic nutrients, suspended particulate matter, and isotopic 

values of size fractioned plankton and particles) at four reefs in Kāne‘ohe Bay*.  

Environmental variable Effect SS df F p 
aDaily light integral (DLI)† Location 4378.754 3,530 134.674 <0.001 
     (mol photons m-2 d-1) Season 1040.907 1,210 96.043 <0.001 
 Location × Season 490.862 3,531 15.097 <0.001 
      
bDissolved inorganic nutrients      

phosphate  Location 0.005 4 1.218 0.426 
(PO4

3- µmol L-1) Season 0.009 1 8.182 0.046 
 Residual 0.004 4   
      

ammonium Location 0.090 4 5.696 0.060 
(NH4

+ µmol L-1) Season 1.325 1 336.712 <0.001 
 Residual 0.018 4   
      

nitrate + nitrite Location 0.488 4 294.012 <0.001 
(NO3

- + NO2
- µmol L-1) Season 0.067 1 162.024 <0.001 

 Residual 0.002 4   
      

silicate  Location 21.495 4 1.629 0.324 
(Si(OH)4 µmol L-1) Season 3.612 1 1.095 0.354 
 Residual 13.194 4   

      
bSize fractioned plankton and particles       
     carbon isotope values (δ13C) Location 17.926 5 1.342 0.263 
      Season 7.921 1 2.965 0.914 
 Size fraction 76.419 4 7.150 0.001 
 Residual 130.920 49   
      
     nitrogen isotope values (δ15N) Location 2.326 5 1.729 0.146 
 Season 1.094 1 4.065 0.049 
 Size fraction 30.377 4 28.234 <0.001 
 Residual 13.180 49   
* Model outputs are linear models with Type II analysis of variance tables, except for †, where model outputs is 
linear mixed effect model with Date as a random effect.  SS = sum of squares; df = degrees of freedom; for † df is 
degrees of freedom in numerator and denominator; bold p values represent significant effects (p < 0.05).  
Data collection periods are indicated by superscripts (a-c): 
a 10 June 2016 – 12 January 2017   
b 20 August 2016 and 19 December 2016 
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Appendix Table 4.S2.  Statistical analysis of Montipora capitata physiology from 

four locations in Kāne‘ohe Bay along a depth gradient in summer and winter. 

Dependent variable Effect SS df  F   p 
biomass (mg cm-2) Season 0.159 1,116 0.003 0.959 
 Light 4.358 1,108 0.072 0.789 
 Symbiont 162.958 1,116 2.690 0.104 
      
symbionts (cells cm-2) Season 0.008 1,112 0.133 0.716 
 Light 0.392 1,115 6.866 0.010 
 Symbiont 3.133 1,113 54.830 <0.001 
 Season × Light 0.481 1,113 8.411 0.004 
      
total chlorophyll Season 45.581 1,114 25.545 <0.001 
(a + c2 µg cm-2) Light 16.042 1,110 8.990 0.004 
 Symbiont 31.622 1,115 17.721 <0.001 
 Season × Symbiont 9.718 1,113 5.411 0.022 
      
chlorophyll per cell Season 0.147 1,114 2.825 0.096 
(a + c2 pg symbiont cell-1) Light 2.387 1,116 43.977 <0.001 
 Symbiont 5.125 1,114 98.716 <0.001 
Season = summer or winter, Light = light at depth of collection, Symbiont = Cladocopium spp. 
(formerly clade C) or Durusdinium glynnii (formerly clade D)-dominated symbiont community. SS 
= sum of squares; df = degrees of freedom in the numerator and denominator; bold p values 
represent significant effects (p < 0.05). 
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Appendix Table 4.S3.  Statistical analysis of Montipora capitata tissue isotope composition 

from four locations in Kāne‘ohe Bay along a depth gradient in summer and winter. 

Dependent variable Effect SS df F p 
δ13CH Season 1.032 1,111 1.398 0.240 
 Light 23.638 1.114 32.005 <0.001 
 Symbiont 27.456 1.112 37.174 <0.001 
 Season × Light 0.170 1,112 0.231 0.632 
 Season × Symbiont 3.523 1,112 4.770 0.031 
      
δ13CS Season 0.002 1,113 0.002 0.962 
 Light 35.816 1,115 44.529 <0.001 
 Symbiont 12.375 1,113 15.386 <0.001 
 Season × Symbiont 8.757 1,113 10.887 0.001 
      
δ13CH-S Season 1.320 1,111 9.931 0.002 
 Light 0.360 1,113 2.712 0.102 
 Symbiont 2.291 1,113 17.243 <0.001 
 Season × Light 0.574 1,113 4.322 0.040 
 Season × Symbiont 0.590 1,112 4.441 0.037 
      
δ13CSkel Season 4.888 1,115 6.961 0.009 
 Light 0.155 1,115 0.221 0.639 
 Symbiont 0.002 1,115 0.003 0.953 
      
δ15NH Season 0.109 1,113 1.132 0.290 
 Light 0.418 1,114 4.327 0.040 
 Symbiont 0.038 1,113 0.392 0.532 
      
δ15NS Season 0.001 1,112 0.014 0.907 
 Light 0.002 1,113 0.022 0.882 
 Symbiont 0.790 1,112 7.241 0.008 
 Season × Symbiont 0.644 1,112 5.903 0.017 
      
δ15NH-S Season 0.104 1,114 1.849 0.177 
 Light 0.323 1,115 5.767 0.018 
 Symbiont 0.538 1,114 9.588 0.002 
 Season × Symbiont 0.963 1,113 17.173 <0.001 
      
C:NH Season 0.369 × 10-3 1,115 0.070 0.792 
 Light 0.004 1,114 0.703 0.403 
 Symbiont 0.001 1,115 0.155 0.695 
      
C:NS Season 0.021 1,115 2.281 0.134 
 Light 0.344 × 10-3 1,115 0.037 0.847 
 Symbiont 0.016 × 10-3 1,115 0.002 0.967 
Season = summer or winter, Light = light at depth of collection, Symbiont = Cladocopium spp. (formerly clade C) 
or Durusdinium glynnii (formerly clade D)-dominated symbiont community. SS = sum of squares; df = degrees of 
freedom in numerator and denominator; bold p values represent significant effects (p < 0.05). Subscripts indicate 
coral host (H), symbiont algae (S), or their relative difference (H-S), and skeletal carbonates (Sk). 
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Appendix Figure 3.S1. (a) Seawater temperature at the NOAA Moku o Lo‘e weather station 
located at the Hawai‘i Institute of Marine Biology.  Horizontal dashed line indicates bleaching 
threshold for reef corals in Hawai‘i (28.5 °C); vertical yellow lines indicate coral collections 
after peak bleaching (October 2014) and during post-bleaching recovery (January 2015). (b) 
Daily light integral (DLI), (c) daily mean, (d) daily maximum (Max) and minimum (Min) 
temperatures at Reef 44 (blue) and HIMB (red).  Symbols (*) indicate significant site effects (p < 
0.05). 
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Appendix Figure 3.S2. Biomass carbon:nitrogen (C:N) molar ratios in (a,c) host (C:NH) and 
(b,d) symbionts (C:NS) from bleached (gray) and non-bleached (black) Montipora capitata (left) 
and Porites compressa (right) at three reefs [Reef 44 (R44), Reef 25 (R25) and HIMB] during 
(October 2014: Bleaching) and after (January 2015: Recovery) a regional bleaching event.  
Values are mean ± SE (n = 4 – 5).  Symbols indicate significant differences (p < 0.05) between 
periods (‡) and between bleached and non-bleached corals within a period (*’). 
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Appendix Figure 3.S3. Modeled relationship between δ13C of the coral holobiont and 
constituent tissue compounds (Hayes 2001) for Montipora capitata (circles) and Porites 
compressa (triangles) pooled among sites and time periods for bleached colonies (open symbols) 
and non-bleached colonies (filled symbols).  Lines represent linear regression of δ13CCompound and 
δ13CHolobiont for data pooled across all levels.  
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Appendix Figure 4.S1.  Light availability (daily light interval [DLI]) at four Kāne‘ohe Bay reefs 
from June – January 2016.  DLI values are based on measured values at 2 m depth and 
calculating light at <1 m and 8 m according to a modified Beer-Lambert equation for light 
attenuation in water, described in Materials and Methods.  
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Appendix Figure 4.S2. Molar concentrations of the dissolved inorganic nutrients (µmol L-1) 
phosphate (PO4

3-), ammonium (NH4
+), nitrate+nitrite (NO3

- + NO2
- or N+N) and silicate 

(Si(OH)4) in seawater (points, n = 1) collected during two sampling periods in summer and 
winter 2016 from four reef locations, described in Figure 1.  Symbols indicate significant 
differences (p < 0.05) between seasons (*s) and among locations (‡). 
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Appendix Figure 4.S3.  Size fractioned organic materials and plankton in seawater.  Values are 
mean ± SE (n = 12) in permil (‰) relative to standards for carbon (Vienna-Pee Dee Belemnite: 
V-PDB) and nitrogen (air).  
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Appendix Figure 4.S4.  The daily light integral (DLI) and the depth (m) where Montipora 
capitata coral fragments were collected during two periods (summer and winter) in 2016 in 
Kāne‘ohe Bay, Hawai‘i. Solid lines represent model fit to log(DLI) and depth relationship.  
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Appendix Figure 4.S5. Proportion of linear mixed effect model variance explained by the 
random effects of Location for each response metric.  N/A represents models where variance 
proportion was not different from zero.  
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Appendix Figure 4.S6.  Stable isotope values skeletal carbonates from Montipora capitata 
colonies dominated by C (Cladocopium spp.) or D (Durusdinium spp.) symbionts.  (Top) The 
relationship between oxygen δ18O and carbon isotopes δ13CSk, and (bottom) carbon isotopes in 
skeletal material across seasons in response to light availability. Letters P and R represent carbon 
isotope offset from metabolic effects of photosynthesis and respiration, respectively. Slow and 
fast refer to skeletal growth effects (CaCO3 rate) effects on δ18O; Kinetic Isotope Effect (KIE) is 
line where kinetic isotope effects occur, departing from seawater isotopic equilibrium (approx. -
1.24 ‰ δ18O and 2.85 ‰ δ13C).  Values are permil (‰) relative to standards for carbon and 
oxygen (Vienna-Pee Dee Belemnite: V-PDB).  Solid lines represent linear mixed effect model 
fits.  Asterisk-letter (*s) indicates significant differences (p < 0.05) between seasons. 
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Appendix Figure 4.S7.  The relationship between symbiont isotope values (δ13CS) and (a) 
symbiont densities, (b) total chlorophyll, and (c) chlorophyll per symbiont cells and for 
Montipora capitata colonies dominated by C (Cladocopium spp.) or D (Durusdinium spp.) 
symbionts collected in summer (left) and winter (right).  Solid lines represent linear model fits.  
Asterisk-letters represent significant relationship (p < 0.05) for C- or D-colonies (*c or *d, 
respectively). 
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Appendix Figure 4.S7.  The relationship between the relative differences in host and symbiont 
isotope values (δ13CH-S) and symbiont densities for Montipora capitata colonies dominated by C 
(Cladocopium spp.) or D (Durusdinium spp.) symbionts collected in summer (left) and winter 
(right).  Solid lines represent linear model fits.  Asterisk-letters represent significant relationship 
(p < 0.05) for C- or D-colonies (*c or *d, respectively). 
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Appendix Figure 4.S9. Nitrogen stable isotope values for Montipora capitata dominated by C 
(Cladocopium spp.) or D (Durusdinium spp.) symbionts.  Colonies were collected from four 
Kāne‘ohe Bay reef locations in summer (left) and winter (right) spanning a light availability 
gradient across <1 m – 9 m depth.  Values are for (a) coral host (δ15NH) (b) symbiont algae 
(δ15NS) and (c) their relative difference (δ15NH-S) in permil (‰) relative to nitrogen standards 
(Air).  Lines represent linear mixed effect model fits.  Symbols indicate significant differences (p 
< 0.05) between symbiont communities (*) or in response to light. 
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Appendix Figure 4.S10.  Biomass molar carbon:nitrogen (C:N) ratios in host and symbiont 
tissues as a function of symbiont community (C-colonies vs. D-colonies) and season (summer vs. 
winter). 
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