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Abstract 
The animal mitochondrial genome, although small, can have a big impact on health and disease. Non-
pathogenic sequence variation among mitochondrial DNA (mtDNA) haplotypes influences traits 
including fertility, healthspan and longevity, whereas pathogenic mutations are linked to incurable 
mitochondrial diseases and other complex conditions like ageing, diabetes, cancer and 
neurodegeneration. However, we know very little about how mtDNA genetic variation contributes to 
phenotypic differences. A low frequency of recombination, the multicopy nature and nucleic acid-
impenetrable membranes present significant challenges that hamper our ability to precisely map 
mtDNA variants responsible for traits, and to genetically modify mtDNA so that we can isolate specific 
mutants and characterise their biochemical and physiological consequences. Here, we summarise the 
past struggles and efforts in developing systems to map and edit mtDNA. We also assess the future of 
performing forward and reverse genetic studies on animal mitochondrial genomes.  
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Introduction 
Understanding how a genome instructs the phenotypic characteristics of an organism is one of the 
major scientific endeavours of modern molecular genetics. This is largely achieved by a combination 
of forward genetic studies, which use phenotypic traits to unbiasedly map the genetic basis of defined 
biological phenomena, and reverse genetics studies, which analyse the phenotypic effects of 
modifying a given genetic element. For the nuclear genome, our ability to perform forward and 
reverse genetics has been established for several decades [1]. The recent advances in sequencing 
technologies and the CRISPR-Cas9 revolution have further enhanced our capacity for mapping and 
editing nuclear genes with unprecedented efficiency in a multitude of organisms [2], leading to 
plentiful applications in research, industry, medicine and agriculture. 
 
In contrast, the mitochondrial genome has been left behind in this genetic engineering era. 
Infrequent recombination and the multicopy nature of mtDNA present many challenges that prevent 
us from mapping the genetic underpinnings of phenotypic traits. Moreover, the lack of a robust 
method to genetically modify mtDNA in nearly all species leaves us little power to study various 
aspects of mtDNA biology and to model disease progression caused by pathogenic mutations. Given 
the essential functions of mtDNA and its link to incurable diseases, there is increasing pressure for the 
development of genetic tools to dissect the complex roles mtDNA plays in development, ageing, 
disease and evolution. In this article, we discuss the motivation and challenges of mapping and editing 
animal mtDNA.  
 
Why do we want to link mtDNA genotypes to phenotypes? 
With few exceptions, the mitochondrial genome is found in the matrix of the dynamic mitochondrial 
network of all eukaryotic cells in multiple copies. There is a vast diversity in mtDNA structure and 
composition among species of different kingdoms [3,4]. Generally speaking, yeast and plant mtDNA 
are large in size (e.g.  ~76 to 86 kb in different Saccharomyces cerevisiae strains [5,6]  and ~367 kb in 
Arabidopsis thaliana [7]), owing to an increased number of non-coding elements, such as introns and 
repeat sequences. The genome organisation and gene content is also more variable [3,8]. In contrast, 
most bilaterian mitochondrial genomes tend to be a compact circular molecule of less than 20 kb, 
carrying 37 intron-less genes encoding 13 proteins, 2 ribosomal RNAs (rRNAs) and 22 transfer RNAs 
(tRNAs) [9,10]. Besides the coding region with all the genes aligned one after the other, there is also a 
non-coding region (or control region) that contains elements important for replication and 
transcription [11]. 
 
Despite the simple composition of animal mtDNA, variations in its sequence can have broad and 
significant phenotypic consequences (figure 1a). Within a species, multiple mtDNA variants, known as 
haplotypes, exist. This is largely a consequence of uniparental inheritance, as different genotypes 
isolated in individual lineages evolve independently based on the demands from the local 
environment and the paired nuclear genome. Human haplotypes often differ for less than 0.3% of the 
16.5 kb genome - usually fewer than 50 single nucleotide polymorphisms (SNPs) [12]. However, these 
minor differences have been associated with differences in longevity [13-17], spermatozoa motility 
[18-20], risk of multiple sclerosis [21,22], type 2 diabetes [23] and certain cancers [24,25]. Some 
haplotypes can even impact a repertoire of phenotypes (i.e. pleiotropism) [26]. More direct 
evidence that mtDNA sequence variation affects complex traits comes from studies in which 
numerous backcrosses were performed to generate strains that have the same nuclear background 
but different mitochondrial genotypes. For example, 9.3% of nuclear genes showed differential 
expression between males of five Drosophila lines that differed only by their mtDNA sequence, and 
one mtDNA genotype even led to male sterility [27]. In another study, mouse strains with different 
mitochondrial genotypes that differ for only 39 SNPs in the coding region showed differences in 
lifespan, insulin regulation, body weight and signs of ageing including telomere shortening, tumour 



incidence and ovarian function [28]. In some cases, mismatches between mitochondrial and nuclear 
genome can even result in embryonic lethality [29-31]. 
 
Differences in organismal traits and physiology caused by mtDNA sequence variation could simply be 
a result of differences in respiratory competence, or other factors that are less well defined. For 
instance, impaired oogenesis and embryonic lethality results from incompatibility between a tRNA 
polymorphism in Drosophila simulans (simw501) mtDNA and a polymorphism in the corresponding 
tRNA synthetase gene in Drosophila melanogaster strain Oregon-R nuclear DNA [30,31]. Mutations 
that do not affect the function of canonical mtDNA genes can also cause differences in organismal 
traits and physiology. Recently, over 8 novel mitochondrial-derived peptides, encoded by small open 
reading frames identified in human and rodent mitochondrial genomes, have been shown to have 
retrograde signaling functions that lead to systemic effects [32-35]. One such peptide is MOTS-c, 
which is encoded within the mitochondrial 12S rRNA gene and has been shown to protect against 
age- and diet-induced insulin resistance [35]. Many long and small noncoding RNAs have also been 
shown to be encoded in mammalian mtDNA, but their mode of action is currently unknown [36-39]. 
Furthermore, human mtDNA-coding sequences contain binding sites for nuclear transcription factors 
(e.g. c-Jun and CEBPb), and this may endow regulatory potential to these sequences [40]. Therefore, 
mtDNA can influence animal physiology, development and ageing in complex ways beyond our 
current understanding. Mitochondrial genotypes often differ for multiple SNPs, and a system to map 
the causative SNP(s) of phenotypic variation will help elucidate the underlying mechanism of how 
non-pathogenic mitochondrial genetic variations attribute to organismal traits.  
 
In addition to linking non-pathogenic sequence variations to phenotypic differences, there is also a 
need to study pathogenic mutations and how they cause disease. Pathogenic mtDNA variants can be 
inherited or acquired due to mutations or replication errors [41,42]. They often co-exist with wild-
type genomes within an individual (called heteroplasmy), and their abundance can change as the 
mtDNA divides and segregates during development and ageing. To date, over 350 mutations in 
mtDNA have been reported to cause a spectrum of incurable mitochondrial diseases that affect 1 in 
5,000 individuals in the UK [12,43]. Mitochondrial diseases caused by mtDNA mutations present 
diverse symptoms across individuals and tissues. Some pathogenic mtDNA mutations have pleiotropic 
effects, with different mutation loads causing different phenotypes (figure 1a). For instance, 3243A>G 
is a common pathogenic mutation in the tRNALEU gene that is associated with autism and diabetes 
when at low levels (~10-30% of total mtDNA) [44,45], encephalomyopathies at medium levels (50-
90% of total mtDNA [46]) and perinatal lethality at high levels (>90% of total mtDNA). In addition, 
mtDNA mutations can have different biochemical and pathological consequences in different tissues 
[47] and individuals with different nuclear backgrounds or mitochondrial haplotypes. For instance, 
Leber Hereditary Optic Neuropathy (LOHN) is an inherited form of vision loss that has an acute onset 
of symptoms that usually begin in early adulthood. It is primarily due to one of the three homoplasmic 
mtDNA mutations (3460G>A in ND1, 11778G>A in ND4 or 14484T>C in ND6  [48-50]) that affect 
complex I activity, but there is an increased risk of developing LOHN for males [51,52], for those with 
mtDNA haplotype J [53,54] or those who smoke or have excessive alcohol consumption [55]. 
Understanding how the nuclear genome and environmental conditions impact penetrance will help us 
gain more insights on disease prevention and treatment options. However, without being able to 
isolate specific mitochondrial mutants and model their effects under different conditions, our 
knowledge on these aspects is very limited.   
 
To be able to fully understand how mtDNA influences health and disease, systems are required that 1) 
can genetically unlink mitochondrial SNPs, therefore allowing separation of neutral polymorphisms 
from the causative SNPs; and 2) can isolate specific mitochondrial mutants for functional studies. 
However, multiple challenges hold us back from developing tools for mapping and editing animal 
mtDNA, which will be addressed in this prospective review. 



 
What are the challenges to mapping mtDNA? 
Many aspects of the mitochondrial genome and mitochondrial biology have made genetic mapping 
difficult. For instance, the effect of a mtDNA haplotype on a phenotype will depend strongly on the 
nuclear background [51,52,56-62]. However, the main challenges are infrequent recombination and 
the multicopy nature of mtDNA.  
 
For nuclear genes, naturally-existing variations or mutations induced by radiation, chemical or 
insertional mutagenesis (e.g. transposable elements) can be used for linkage mapping. SNPs are then 
genetically unlinked through recombination during meiosis. Subsequently, strains with different 
genotypes are assayed for a particular phenotype to link the phenotype to certain SNPs. A similar 
forward genetic approach could not be easily applied to study mitochondrial genes (figure 1b). First, 
recombination is rare in animal mitochondria, if occurring at all. Most observations of mtDNA 
recombination are one-off events in only a handful of species with few details of the two parental 
genomes [63-71]. Second, as each cell contains many copies of mtDNA, it is difficult to create random 
mutations for linkage mapping. While mitochondrial mutations can be induced by chemicals, such as 
bleomycin [72-74], or in strains with reduced mtDNA polymerase proof reading capacity (known as 
mutator strains) [75-78], these approaches will generate heteroplasmic cells with individual genomes 
mutated at different loci and the genetic composition of each cell will be vastly different. 
Heteroplasmy prevents accurate linking of genotype to phenotype as the effects of individual variants 
are masked. This means that we can only use naturally-existing mitochondrial genotypes with defined 
impacts on a given phenotype. We then need to mix them together to generate a heteroplasmic 
organism, so that they can recombine. Artificial heteroplasmy is often achieved by mitochondrial 
transfer between two homoplasmic eggs, which could be problematic for certain species. Third, even 
if recombination can be induced to occur at a relatively high frequency, different recombinants from 
the two defined parental genomes can be generated within the same cell or organism. In this case, 
the functional consequences of a recombinant genome will be masked by other recombinants or the 
parental genomes in the same cell. Hence, we have to find ways to select for organisms carrying only 
one type of recombinant. 
 
Can we develop a system to map animal mtDNA? 
Despite the above complications, linkage mapping has been made possible with Drosophila mtDNA. In 
a number of lineages of a heteroplasmic setting, recombinant mitochondrial genomes were isolated 
due to rare spontaneous recombination. Each recombinant had a strong selective advantage over the 
two parental genomes, and thus reached homoplasmy after a few generations. They were used to 
map mtDNA sequences that give one of the parental genomes a selfish transmission advantage [69]. 
What is more exciting, the same study also generated a system to induce recombination and select 
for individuals homoplasmic for recombinant genomes (figure 1c). In this setup, cytoplasmic transfer 
was performed to generate heteroplasmic fruit flies containing two parental genomes. This was 
followed by expression of mitochondrially targeted restriction enzyme(s) (mitoREs) to cut the parental 
genomes at different positions [69]. The double strand break in one genome was efficiently repaired 
based on the homologous sequences presented in the other genome, and this generated a 
recombinant mtDNA that lacks recognition sites for the mitoREs. Use of mitoREs also selects against 
the parental genomes as they are linearized and degraded, whereas the recombinant mtDNA will be 
resistant to cutting. This system is very efficient for isolating recombinants, even if the two parental 
genomes are highly diverged, including genomes from different species where the sequence 
homology is less than ~92%. Isolation of homoplasmic recombinant genomes in this way opens up the 
exciting possibility of precisely defining trait-associated mtDNA SNPs.  
 
There is no doubt much will be learnt from mapping Drosophila mtDNA, and a similar mitoRE system 
could also be applied to other animals. However, much optimisation is required to increase the 



flexibility and efficiency of mtDNA mapping. The availability and location of recognition sites 
presented in the two parental genomes limits the mitoRE system by constraining which genomes can 
be studied and where crossovers will occur. This shortfall may be rescued by using other 
mitochondrially targeted nucleases (mito-nucleases) that can be engineered to target more 
sequences of choice. Mitochondrially targeted zinc finger nucleases (mitoZFNs) and transcription 
activator-like effector nucleases (mitoTALENs) consist of a customisable DNA binding domain fused 
with a nuclease domain and a mitochondrial localisation signal. In mitoZFNs, each zinc finger domain 
recognises a 3 or 4 nucleotide sequence and several domains can be engineered in an array to target 
longer sequences [79-81].  mitoTALENs provide increased sequence targeting flexibility as each 
transcription activator-like effector consist of an array of 34 amino acid repeats that each bind a 
single DNA base and can be engineered to target almost any sequence [82-88]. mitoZFNs and 
mitoTALENs have been used to eliminate pathogenic mtDNA that differs from the co-existing wild-
type genome by only a single point mutation in rodent germ cells [86] and somatic tissues [89-91], 
and in patient-derived cells [87,92]. Therefore, it is feasible that they can replace mitoREs to achieve 
more flexible mapping in Drosophila and other animal models.  
 
Of note, mitoZFNs/mitoTALENs can be difficult to implement. The importing efficiency of 
mitoTALENs/mitoZFNs into mitochondria can vary depending on the targeted sequence, which 
determines the protein properties of the DNA binding domain [93]. Since mitoZFNs/mitoTALENs work 
as heterodimers, both monomers need to be present in a sufficient amount inside mitochondria to 
function. This can be challenging if the monomers have different importing efficiencies. Furthermore, 
being heterodimers requires the design of two independent DNA-binding modules to target a single 
sequence [93]. Hence, the plasmid constructs are usually large, which can impede their in vivo 
delivery.  To overcome some of these shortfalls, ZF and TALE-targeted monomeric nucleases have 
recently been developed [94,95] and tested in mitochondria [96]. With a smaller construct and 
simplification of importing only one type of DNA binding domain into mitochondria, the monomeric 
versions present a promising alternative that allow more efficient delivery and increased flexibility of 
target sequences [96]. 
 
In addition, to achieve efficient mtDNA mapping, future research in species where there is active 
mitochondrial recombination may help us develop ways to increase recombination frequency in 
animal mitochondria. For instance, key components for recombination, including RecA homologs in A. 
thaliana and Rad52-like proteins in S. cerevisiae, have been identified [97-100]. These and other 
supplementary components can be targeted to animal mitochondria to induce recombination. 
Proteins mediating recombination in bacteria, bacteriophages and even metazoan nuclear genomes 
can also be targeted to achieve the same aim. 
 
What are the challenges to editing animal mtDNA? 
Whilst mapping enables detangling of the functional consequences of individual SNPs, mtDNA editing 
is required to verify mapping by generating specific mutations. To date, a transformation system for 
mtDNA editing has been established in S. cerevisiae (baker’s yeast) [101,102]  and Chlamydomonas 
reinhardtii (green algae) [103]. Both are unicellular organisms with active recombination in 
mitochondria, allowing desired changes in a donor template to be introduced into the genome. 
Delivery of donor DNA was accomplished using biolistic bombardment into mitochondria of 
respiration-defective mutant strains, followed by selection of successful transformants based on 
respiratory function. In yeast, integration of ARG8m has also been used to select for transformed cells 
with a mutated nuclear ARG8 [104]. ARG8 is required for arginine biosynthesis, so the selection is 
independent of respiratory function. Although the delivery of donor DNA is inefficient, and a large 
starting population is required to select transformants, the transformation system has made the two 
species very tractable models to study mitochondrial dynamics and the physiological consequences of 
mitochondrial mutations. For example, yeast mutants have been used to model human pathogenic 



mtDNA mutations [105-108]. Integration of ARG8m has been used to disrupt mitochondrial genes and 
to study mitochondrial gene expression [104,109,110]. Moreover, visible reporters have been 
inserted into the yeast mtDNA, including GFP added after the start of the mt:Cox3 gene to study 
mitochondrial gene expression [111] and adaptation of the LacO-LacI-GFP system to visualize mtDNA 
[112]. Similarly, expression of GFP or the zeomycin resistance gene ble from mtDNA has been 
achieved in C. reinhardtii [113,114]. 
 
In animals, mitoREs have been expressed in the germline to isolate inheritable homoplasmic mtDNA 
mutants in Drosophila [115]. This method relies on selection of pre-existing mtDNA variants that lack 
the recognition site of the expressed mitoRE. The isolated mt:ND2 and mt:Cox1 mutants have been 
useful for disease modeling [116,117]. Several groups have also used them to study how transmission 
of co-existing mitochondrial genomes is influenced by selection [118]. However, this is the only 
approach that allows isolation of homoplasmic mitochondrial mutants in a metazoan, and the site of 
mutations is restricted to sequences proximal to or at the recognition site of the restriction enzyme 
used.  
 
A transformation system to edit animal mtDNA in a more desired manner has not yet been 
established, and the challenges come in multiple ways (figure 1d). First, transformation of the 
germline mtDNA is required to edit mitochondrial genomes of multicellular animals, which scales up 
the difficulty of this endeavor. Moreover, in yeast and algae, mtDNA loss is not lethal because this can 
be rescued by supplementary factors or compensatory cellular mechanisms (e.g. glycolysis or 
photosynthesis). However, in animals, we cannot isolate mtDNA mutants that are homoplasmic lethal 
at the organismal level. A system to isolate and maintain lethal mutations, for example by expression 
of nuclear-encoded version of mitochondrial proteins, is far from being established in animals. 
Second, the rarity of recombination in animal mitochondria impedes the exchange between a donor 
DNA template and the endogenous genome, which is key to introduce specific mutations and precise 
tagging. Third, there is no efficient method to deliver donor DNA into mitochondria. There has been a 
great abundance of research on this topic with many exciting reports, including electroporation, 
protein-DNA conjugates, bacterial conjugation and nanocarriers like MITO-porter and adeno-
associated virus-mediated transfer [119-130]. Nevertheless, few, if any, of these methods have been 
reproduced by independent laboratories, even at the cell level. One reason for this may be that it is 
very difficult to test for mitochondrial import definitively [131]. Most studies rely on sub-fractionation 
and the generation of mitoplasts (isolated mitochondria with outer membrane removed) to show 
uptake into the matrix. However, such methods are vulnerable to false positives caused by 
contamination. Success in delivery of foreign genetic materials can be verified if there is a strong 
selection in favour of the transformed genome. Therefore, the fourth challenge is the lack of ways to 
select for transformants. Successful transformation often only occurs to a very small population, so 
the ability to select for homoplasmic transformants is incredibly important. 
 
Can we edit animal mtDNA in the near future?  
Whilst we currently have no system to edit animal mtDNA, advances in mito-nucleases have helped 
solve some of the challenges we mentioned above. For example, mitoREs have been used to induce 
recombination [69]. Importing recombination machinery from other species into animal mitochondria 
(see our discussion earlier) might also increase the basal recombination frequency. Alternatively, in 
vitro modified mtDNA could be directly delivered, so that recombination is not required to 
incorporate specific alterations. For instance, the first transformation of algae used mtDNA purified 
from C. reinhardtii or Chlamydomonas smithii [132]. 
 
The challenge of selection for transformants obtained by either recombination-based repair or 
delivery of in vitro modified mtDNA could also be overcome by using mito-nucleases, which can be 
engineered to cut the endogenous genome to cause their subsequent degradation. In such systems, 



one can construct the donor template or modified genome to lack the recognition site, so that any 
transformants will be resistant to the cut and thus be selected for. For example, mitoREs have already 
been used be to create D. melanogaster flies homoplasmic for very diverged Drosophila yakuba 
mtDNA by eliminating the endogenous genomes after mitochondrial transfer [133]. Similarly, 
engineered mitoTALENs and mitoZFNs are effective at selecting against mutant genomes that differ 
from the co-existing wild-type genome by just one nucleotide [86,87,89,90,92]. Therefore, mito-
nucleases represent powerful tools to selectively eliminate untransformed genomes.  
 
Whilst the use of mito-nucleases enables screening of many embryos for successful mtDNA 
manipulation in species like Drosophila, it will be difficult and expensive to implement this in other 
animals like rodents. Editing mtDNA for these species can be first considered in cultured cell lines. A 
cell model will also be feasible for creating mutants that would otherwise be homoplasmic lethal at 
the organismal or tissue level. For instance, lethality due to reduced respiratory function could be 
overcome by additional supplements in the cell culture medium. In this case, cells completely lacking 
mtDNA (p0 cells) can be utilised to protect the introduced in vitro modified mtDNA from competition 
with endogenous genomes.  
 
Overall, some of the challenges holding back animal mtDNA editing may be overcome using mito-
nucleases. However, not being able to reliably deliver nucleic acids into animal mitochondria still 
presents as a huge barrier. This prevents us from importing not only donor template or in vitro 
modified mtDNA for transformation, but also RNA for CRISPR-mediated mtDNA editing [134,135]. A 
mitochondria-adapted CRISPR-Cas9 platform, if established, could prompt a revolution in 
mitochondrial genome engineering and our biological understanding of mitochondria and mtDNA.  
 
Concluding remarks  
Significant obstacles must be overcome to achieve forward and reverse genetic studies for 
mitochondrial genomes. To date, there has been only one published case where homoplasmic 
recombinants were successfully isolated and used for functional mapping [69]. Moreover, no mtDNA 
transformation system has been established in any metazoan. These shortfalls hinder our 
understanding of how mtDNA impacts health and disease. However, there are exciting new 
possibilities to induce and select for mtDNA recombinants using mito-nucleases. As we learn more 
about mtDNA repair mechanism and mitochondrial nucleic acid import strategies, other advances are 
yet to come to allow us to pass through the current technical bottlenecks and revolutionize mtDNA 
engineering. 
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Figure legend 
 
Figure 1: Motivation, challenges and opportunities for mapping and editing animal mtDNA.  
A) Animal mtDNA can impact health and disease. Sequence variation in mtDNA haplotypes is linked to 
phenotypic variation. The level of pathogenic mtDNA mutations determines the pathogenicity and 
severity of symptoms. B) Mapping of animal mtDNA can be achieved by mixing two mtDNA genotypes 
with defined phenotypic differences to generate heteroplasmic individuals. Homoplasmic 
recombinant genomes are then isolated based on spontaneous or induced recombination. 
Subsequently, individuals carrying different recombinant genomes are assayed for a given phenotype 
to define trait-associated SNP(s). Current challenges holding back our mapping capacity is the low rate 
of recombination in animal mitochondria and lack of a system to isolate and select individuals that are 
homoplasmic for only one type of recombinant genome. C) Expression of mito-nucleases in 
heteroplasmic lines can be used to induce and isolate organisms that are homoplasmic for a certain 
recombinant mtDNA. Expression of chosen mito-nucleases (e.g. mitoRE, mitoTALEN and mitoZFN) 
introduces double strand break(s) at different positions of the two parental genomes. The break in 
each genome will be repaired based on the homologous sequence in the other genome, resulting in 
the generation of recombinant genomes lacking recognition sites of the targeted nucleases. The mito-
nucleases also select against the parental genomes to allow the recombinant mtDNA to take over. 
The black stop symbol indicates the lack of a recognition site for the expressed mito-nucleases. D) 
Multiple challenges remain in order to transform animal mtDNA, including the delivery of external 
DNA into mitochondria, the low frequency of recombination and the inability to select for 
transformed genomes. The latter two challenges may be overcome by expression of mito-nucleases, 
which induces recombination to promote the incorporation of the desired modification(s) into the 
donor template, and selects against the parental genomes to allow the takeover by the transformant. 
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