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1. Introduction

Computer simulations of macroscopic physical systems inevitably depend on the materials
involved, and good theoretical models of the materials themselves are essential in providing
quantitative accuracy from these simulations.

Computational modelling techniques based on the numerical solution of approxima-
tions to the Schrödinger equation, in particular density functional theory (dft), have
been developed over the last few decades into mature, practical theories for computing
ground-state properties of systems containing, at present, around a thousand atoms. This
has been further aided by the parallel and continuing increases in computing power. Peri-
odic boundary conditions along with Bloch’s theorem allow the simulation of crystalline
materials, and the determination of their bulk properties. For a variety of materials,
density functional theory has proven capable of reproducing many ground state prop-
erties accurately, including lattice constants, elastic constants, phonon spectra and the
location of phase transitions in pressure and temperature. See for example the reviews of
Payne et al. (1992) and Hafner et al. (2006). It has become an important tool in physics,
chemistry and materials science. The challenges and limitations of density functional
theory are also well documented (Cohen et al., 2012).

Often effects across many disparate lengthscales or timescales, beyond the properties
that can be determined from small-scale simulations of only thousands of atoms, are
important in understanding a material’s behaviour. A particular challenge on a computer,
having finite resources of memory and time, is the presence in a problem of multiple
length and time scales that differ by many orders of magnitude. Trying to capture several
such effects at once is known as multiscale modelling. A recent review of techniques
is given by Elliott (2011). Situations where a multiscale approach is productive include
metal plasticity and hardening, surface diffusion, brittle crack propagation and many
others. There is no catch-all solution for this class of problem, and it is an active area of
research.

Macroscopic systems are typically modelled on the continuum scale, and for condensed-
matter systems, this can be appropriate for systems between micrometres and kilometres
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1. Introduction

in size. Continuum mechanics treats a material as a continuous field of macroscopic,
averaged quantities. Solutions (both analytical and numerical) to problems stated in these
terms have been remarkably successful in describing and predicting many diverse physical
phenomena, of the behaviour of fluids (Newtonian and otherwise, in various flow regimes
(Hafez et al., 2010; Shang, 2004)), solids (linear and nonlinear elastic, as well as plasticity
and fracture (Fung and Tong, 2001; Simo and Hughes, 2006)) and electrically-conducting
fluids (magnetohydrodynamics, with applications to geophysics, astrophysics and plasma
confinement (Ledvina et al., 2008; Tang and Chan, 2005)).

Constitutive relations are laws, either phenomenological or based on an underlying
physical model, that represent the detailed processes that are not contained explicitly
within a larger-scale model. They allow this model to be specialised to a particular system
or material. The canonical example of a constitutive relation is the thermodynamic
equation of state of a fluid.

Obtaining constitutive laws describing the bulk properties of crystalline materials
from molecular systems is the common theme of the three investigations presented in
this dissertation. We use ‘first-principles’ techniques where possible, an approach offering
results which are predictive, with applicability to a wide class of materials, and with a
systematic way to apply the techniques to any particular material of interest. Constitutive
relations so-obtained can then be applied to problems in a continuum setting.

We use silicon throughout as a material to demonstrate these techniques. Silicon has
long been a model material used for molecular dynamics simulations, and at the level of
density functional theory, diamond-phase silicon is very efficient to compute, particularly
for local atomic orbital based codes (such as Siesta) due to being an insulator with a
small number of valence electrons and a low coordination number. Despite this, it offers
much interest in its own right, including a rich phase diagram with a structural phase-
transition to a metallic phase, and also several challenges for its simulation, particularly
relating to long phonon relaxation times. Elemental silicon has been extensively studied
experimentally: a collection of properties is given by Hull (1999).

The first investigation (chapter 4) aims at developing an equation of state model for
temperature dependent, anisotropic non-linear hyperelasticity. A method is presented for
finding deformed states of a material on the same isentrope as a given starting configu-
ration. The energies and stresses of a number of elastic deformations are sampled from
dft molecular dynamics using this method, over a given range of the seven-dimensional
space of deformation and potential temperature. The complete energy surface within
this range can then be reliably reconstructed using the technique of Gaussian process
regression. This is a machine learning technique that has particular merit here due to its
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ability to reconstruct a smooth surface without over-fitting. An equation of state model
is then constructed for dft silicon, and demonstrated within a finite-volume continuum
elasticity simulation for several problems of interest involving shock waves, namely a
shock interacting with a thermal gradient, the transmission and reflection of a shock due
to a change in crystal orientation, and two impact test problems.

The second investigation (chapter 5) is concerned with the computation of properties
of shock waves. Shock waves are used extensively to study matter at conditions of
extreme pressure and temperature, and have been used to obtain some of the highest
laboratory-attained pressures. They are useful for equation of state determination and are
important dynamic phenomena in their own right, arising in aerodynamics, (Dolling,
2001) reactive flow (Dlott, 2011) and high-speed impact (Asay and Shahinpoor, 1993;
Duvall and Graham, 1977).

We describe a simple annealing procedure to obtain the Hugoniot locus (states acces-
sible by a shock wave) for a given material in a computationally efficient manner. We
apply this method to determine the Hugoniot locus in bulk silicon from ab initio molec-
ular dynamics with forces from density-functional theory, up to 70 GPa. In addition,
we compute the Hugoniot locus for several empirical interatomic potentials modelling
silicon. This lets us perform direct non-equilibrium molecular dynamics simulations of
shock waves (which typically demand system sizes larger than we can afford with density
functional theory), and compare with our indirect method in several circumstances
arising in these cases. We also present a direct ab initio molecular dynamics simulation of
an elastic shock wave in silicon. This gives a single, low-pressure point on the Hugoniot
locus of dft silicon, but also a profile of the shock wave, which is only available by a
direct simulation, and the first obtained ab initio, to our knowledge.

The third and final investigation is into the computation of thermal conductivity
from atomistic simulations. There are a number of established methods for thermal
conductivity calculation, with varying computational requirements. For low temper-
atures, a solution of the phonon Boltzmann equation typically provides an accurate
solution, with inputs being the second- and third-order force constants. These quantities
can be computed from density functional theory (or density functional perturbation
theory) affordably. In order to measure high-temperature conductivity, or the thermal
resistance due to defects or nanostructures in a sample, a more direct method must be
used, which precludes dft due to the requirements of simulation time and system size
for these other methods. Empirical interatomic potentials are much cheaper, and for
these a thermal conductivity value can be obtained by a direct method. However, the
thermal conductivity has proven challenging to reproduce, and a survey of potentials
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1. Introduction

for silicon reveals a spread of thermal conductivity values for several commonly-applied
silicon potentials of at least a factor of four (at the same temperature).

Here, we produce a number of model interatomic potentials for silicon, using the
Gaussian Approximation Potential (gap) approach, as originally described in the work of
Bartók et al. (2010, 2013b). This is a non-parametric technique for potential development,
using Gaussian process regression to infer the energy of a given configuration of atoms,
the means of representing and comparing atomic environments being a key component of
the method. While their computational requirements are more than typical parameterized
empirical potentials, they are several orders of magnitude less than dft calculations.

The potential itself depends on a database of training configurations, and the potential
can be improved systematically by increasing the size of the database, or including
configurations close to those explored by a simulation of the system. We make use of this
by producing several potentials from databases that are increasingly large and broad (in
terms of the types of configuration represented), and computing the thermal conductivity
from these. Each of these potentials reproduces the lattice parameter, energy minimum
and elastic constants from dft silicon, and is systematically improved such that the best
of them reproduce the dft value of phonon-Boltzmann conductivity to within a few
percent.
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2. Atomistic Modelling of Materials

The purpose of this chapter is to provide the theoretical background underpinning the
methods used in the rest of the work for the computational modelling of condensed
matter with atoms interacting through a Hamiltonian. The starting point is the quantum
many-body problem, the solution of which gives the precise description of a system
of atoms. Since this is intractable for any more than a few atoms, approximations
must be used in practice. The first such described in section 2.1 is Density Functional
Theory, as developed by Kohn and Sham (1965). We then discuss empirical potentials
(section 2.2), before introducing Gaussian Approximation Potentials in section 2.3, a
data-driven approach to potential development.

2.1. Density Functional Theory

This section is an overview of the method of Kohn–Sham Density Functional Theory
(dft), and some practicalities for using it for performing numerical simulation.

A good general reference is the textbook on electronic structure and numerical methods
by Martin (2004). The review article of Jones and Gunnarsson (1989) gives a survey of
early developments in density functional theory. The reader is referred to these sources
for more detail on the methods described here.

2.1.1. The Quantum many-body problem

The evolution in time t of a physical system described by a wavefunction Ψ is governed
by the Schrödinger equation,

i
∂Ψ

∂ t
= ĤΨ, (2.1)

where Ψ is the wavefunction of the system and Ĥ is the Hamiltonian operator. We work
in atomic (or Hartree) units, where the reduced Planck constant is unity.
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2. Atomistic Modelling of Materials

The stationary states have a definite energy E , which is an eigenvalue of the Hamilto-
nian:

ĤΨ= EΨ. (2.2)

The wave function represents our complete knowledge of a quantum system. Apart
from a handful of special choices of Hamiltonian, it cannot be solved analytically.

For a system of N particles, the wave function can be expressed in the basis of eigen-
functions of the position operator of each particle (and perhaps other quantities, such as
the particles’ spins)

Ψ=Ψ(x1, . . . , xN , s1, . . . , sN ). (2.3)

In the general case, to represent this function approximately requires an amount of storage
space that is exponential in the number of particles, before even considering how we
might compute it.

More explicitly, suppose we have a single-particle quantum system and an M element
basis {|1〉 , . . . , |M 〉} of state space,H . The state of a system of N such particles exists in
the tensor product spaceH ⊗·· ·⊗H

︸ ︷︷ ︸

N terms

, and a general state may be expressed as the sum

∑

i1,...,iN

ci1...iN
|i1〉⊗ · · · ⊗ |iN 〉 1< i1, . . . , iN ≤M . (2.4)

To represent this state, we must keep track of the M N quantities ci1,...,iN
, an amount

exponential in the number of particles.
One approach to reduce the complexity of this problem is to attempt to approximate

the full expression as a low-rank tensor. Grasedyck et al. (2013) give some ideas on
low-rank tensor approximation, and references to quantum mechanical applications.

Assuming that the particles are independent means that the Hamiltonian may be
written as a sum Ĥ =

∑M
i=1 Ĥi , and so the eigenfunctions of Ĥ can always be separated

into product states as
N
⊗

j=1

 

M
∑

i=1

ci j |i〉
!

, (2.5)

requiring merely M ×N quantities, ci j , linear in the number of particles. This would be
suitable for Bosons.

Hartree–Fock approximates the general many-Fermion state by a single state of the
form of eq. (2.4), choosing c = εi1...iN

/
p

N ! where ε is the N -dimensional Levi-Civita sym-
bol. The expression is known as a Slater determinant. This is motivated by the fact that a
wavefunction representing identical Fermions is antisymmetric under particle exchange,
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2.1. Density Functional Theory

that is, Ψ(..., xi , ..., x j ...) = −Ψ(..., x j , ..., xi ...), which is also a defining property of the
determinant. The Slater determinant is not the most general Fermionic wavefunction,
however, and it is not usually possible to express the ground state as one either.

A system of Ne electrons and Nn atomic nuclei interacting with one-another in the
non-relativistic limit has Hamiltonian (expressed in atomic units, where the electronic
mass and charge are unity)

Ĥ =−
1

2

∑

i

∇2
ri
−

1

2

∑

i

1

mi
∇2

Ri

+
1

2

Ne
∑

i

Ne
∑

j 6=i

1

|ri − r j |
−

Ne
∑

i

Nn
∑

j

Z j

|ri −R j |
+

1

2

Nn
∑

i

Nn
∑

j

Zi Z j

|Ri −R j |
. (2.6)

An important simplifying assumption is provided by the approximation of Born and
Oppenheimer (1927), which states that a molecular wavefunction can be written as a
product of independent electronic and nuclear terms. The justification for this is that the
electrons are much lighter than the nuclei (by three to five orders of magnitude), and so
in the full coupled dynamics, the dynamics of the electrons are much more rapid. The
assumption allows for the electrons to relax instantaneously to the positions of the nuclei.
Under this assumption, the Hamiltonian for the Ne electrons moving in the potential of
the nuclei is

Ĥe =−
1

2

∑

i

∇2
r +

1

2

Ne
∑

i

Ne
∑

j 6=i

1

|ri − r j |
−

Ne
∑

i

Nn
∑

j

Z j

|ri −R j |
. (2.7)

The nuclei enter only through their positions, Ri , and so this is also known as the frozen
nuclei approximation. The motions of the electrons can in this way be solved separately
from those of the nuclei, which are often treated classically (for example, by molecular
dynamics).It will prove useful to write the Hamiltonian as

Ĥe = F̂ + V̂ , (2.8)

where

F̂ =−
1

2

∑

i

∇2
r +

1

2

Ne
∑

i

Ne
∑

j 6=i

1

|ri − r j |
(2.9)
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2. Atomistic Modelling of Materials

depends only on the positions of the electrons, and

V̂ =−
Ne
∑

i

Nn
∑

j

Z j

|ri −R j |
(2.10)

is a term representing the interaction of the electrons with the nuclei.
The exchange energy Ex , can be defined as the difference between the energy of the

independent particle energy—the minimum energy obtainable from a state with the form
of eq. (2.5)—and the Hartree–Fock energy. The correlation energy Ec , is defined as the
difference between the exact energy and the Hartree–Fock energy. Sometimes it is useful
to combine these into an exchange–correlation energy, Exc = Ex + Ec . Kohn–Sham
Density Functional Theory defines its own approximation to this combined term.

2.1.2. The variational approach

The energy eigenvalues of the stationary Schrödinger equation are stationary points of
the energy, seen as a functional of the wavefunction, E[Ψ] = 〈Ψ|Ĥ |Ψ〉.

Consider the stationary points of the energy functional, under the constraint of a
normalized wavefunction 〈Ψ|Ψ〉 = 1, imposed by a Lagrange multiplier E . The first
variation operator δ vanishes:

δ
�

〈Ψ|Ĥ |Ψ〉− E 〈Ψ|Ψ〉
�

= 〈δΨ|Ĥ |Ψ〉+ 〈Ψ|Ĥ |δΨ〉− E (〈δΨ|Ψ〉+ 〈Ψ|δΨ〉) (2.11)

= 〈δΨ|
�

Ĥ |Ψ〉− E |Ψ〉
�

+
�

〈δΨ|
�

Ĥ |Ψ〉− E |Ψ〉
��∗
= 0

(2.12)

This is satisfied exactly when |Ψ〉 is an eigenstate of the Hamiltonian with eigenvalue E .
The Hellmann–Feynman theorem can be seen as a consequence of the variational

principle.

Theorem 1 (Hellmann–Feynman). Consider a Hamiltonian Ĥλ, that depends on a contin-
uous parameter λ, and suppose that for a given λ it has a stationary wavefunction |Ψλ〉 with
energy Eλ := 〈Ψλ|Ĥλ|Ψλ〉. The derivative with respect to λ is given by

dEλ
dλ
=

*

dĤλ

dλ

+

Ψλ

. (2.13)

Proof. E is a function of λ (in some parameter space) and Ψ (a functional argument).
The energy eigenvalue is Eλ = E(λ,Ψλ).

8



2.1. Density Functional Theory

We choose some particular λ= λ0 at which to evaluate the derivative. By the chain
rule,

dEλ
dλ

�

�

�

�

�

λ=λ0

=
∂E

∂λ
(λ0,Ψλ0

) +

∫

dx
δE

δΨ(x)
(λ0,Ψλ0

)
dΨλ(x)

dλ

�

�

�

�

�

λ=λ0

. (2.14)

The variational principle on the parametrized energy eigenvalues is

δE

δΨ(x)
(λ,Ψλ) = 0 (2.15)

for any λ, and so the integral on the right hand side of eq. (2.14) vanishes.

∂E

∂λ
=
∂

∂λ
〈Ψ|Ĥλ|Ψ〉=

*

Ψ

�

�

�

�

�

dĤλ

dλ

�

�

�

�

�

Ψ

+

(2.16)

since here λ is a formal argument to E , and the other formal argument Ψ has no explicit
λ dependence. �

A similar argument can be used with any variational method (such as dft) to show
that it satisfies a similar relation to eq. (2.13), but with the energy eigenvalue (typically
the ground state) arising from the Hamiltonian implied by the method, even if it is not a
true solution of the Schrödinger equation.

Atomic forces, stresses and similar quantities that are derivatives of energy can be
computed using this result.

2.1.3. Density Functional Theory

The defining notion of a density functional theory is that the total energy of the system
is expressed as a functional of the electron density (which itself is a function of only a
single position vector) rather than the wavefunction (a function of all N atomic position
vectors).

Electron density is defined from the many-particle wavefunction, expressed in terms of
the N electronic positions, as:

n(x) =N
∫

dx2 . . .
∫

dxN |Ψ(x , x2, . . . , xN )|
2. (2.17)

Suppose N electrons interact with each other and an external potential. We have the
following two theorems due to Hohenberg and Kohn (1964):

9



2. Atomistic Modelling of Materials

Theorem 2 (Hohenberg and Kohn). The electron density n(x) determines this potential
uniquely up to an additive constant.

Proof. Consider two potentials that have some spatially-varying difference, that give
rise to the same electron density, n(x). Call these v(x) and v ′(x), with ground-state
energies E and E ′, Hamiltonians Ĥ = F̂ + V̂ and Ĥ ′ = F̂ + V̂ ′, and with V̂ and V̂ ′ the
contributions to the Hamiltonian arising from the potentials, and F̂ defined as eq. (2.9).
The wavefunctions must be different, since they satisfy different Schrödinger equations.
The fact that the ground state minimizes the energy gives:

E ′ = 〈Ψ′|Ĥ ′|Ψ′〉< 〈Ψ|Ĥ ′|Ψ〉= 〈Ψ|Ĥ + V̂ ′− V̂ |Ψ〉= E +
∫

dx n(x)[v(x)− v ′(x)].

(2.18)
The second equality in the above equation arises because the Hamiltonians differ only by
the contribution from the external potential. By the symmetry of the situation, we can
exchange primed with unprimed quantities in this equation, but use the same (unprimed)
density, which is assumed the same for both wavefunctions:

E < E ′+
∫

dx n(x)[v ′(x)− v(x)]. (2.19)

Adding the resulting inequalities eqs. (2.18) and (2.19) gives the contradiction E + E ′ <
E ′+ E . We avoid this if there is a different density associated with v ′.

The electron density therefore determines both the number of electrons and the
external potential, which gives the full Hamiltonian. �

Theorem 3 (Hohenberg and Kohn). There is a functional of the density, F [n], for a given
external potential, giving the sum of the kinetic energy and interaction energy of the electrons.
The density minimizing the functional

E[n] = F [n]+
∫

dx n(x)v(x) (2.20)

corresponds to the electronic ground-state electron density.

Proof. This is an alternative proof due to Levy (1979).1 Define

F [n] =min 〈Ψ|F̂ |Ψ〉= 〈Ψmin|F̂ |Ψmin〉 , (2.21)
1Hohenberg and Kohn originally proved that there exists an F [n] that gives the kinetic energy and energy

due to the electron-electron interactions, but restricted to densities arising as the ground state of some
external potential. There are electron densities that cannot arise this way—see Levy (1979) for details. The
argument of Levy is valid for densities arising from any antisymmetric wavefunction through eq. (2.17).

10



2.1. Density Functional Theory

the last equality defining Ψmin. The minimum is over all antisymmetric wavefunctions
having a given density n. Then

EΨmin = 〈Ψmin|F̂ + V̂ |Ψmin〉= F [n]+
∫

dx n(x)v(x). (2.22)

For the ground state wavefunction ΨGS and corresponding density,

F [nGS] = 〈Ψ
nGS
min|F̂ |Ψ

nGS
min〉 ≤ 〈ΨGS |F̂ |ΨGS〉 , (2.23)

by the definition of F . Adding the contribution from the external potential, and noting
that this interacts with the system only through the density, we see that

〈ΨnGS
min|Ĥ |Ψ

nGS
min〉 ≤ EGS . (2.24)

But the ground state energy EGS is the minimum obtainable, so the above inequality must
in fact be an equality, and it follows that minimising E over n is equivalent to finding the
ground state energy. �

The second Hohenberg and Kohn theorem (thm. 3) allows the ground-state energy to
be expressed as the minimum of some functional of the density. The first theorem means
that any other ground state property is then available, in principle, since the density
determines the Hamiltonian to within an arbitrary additive constant. The usefulness
of dft comes from the ability to approximate this functional well, and to find the
minimizing density numerically.

2.1.4. Kohn–Sham Density Functional Theory

As before, the total energy functional is split into two terms, E[n] = F [n]+V [n], where
V is the external potential (depending on the positions of nuclei or any other external
effects) and F is ‘universal’ in the sense that it is the same for any system of interacting
electrons. This part of the functional can be written as the sum of several contributions,
to be treated in turn:

F [n] = T [n]+ EH [n]+ Exc[n]. (2.25)

The most straightforward term here is EH , the Hartree energy, representing the Coulomb
interaction of the electrons. Expressed in terms of the electron density this is

EH [n] =
1

2

∫∫

dxdx ′
n(x)n(x ′)

|x − x ′|
. (2.26)

11



2. Atomistic Modelling of Materials

T is the kinetic energy. The earlier Thomas–Fermi approach to dft took T as an
explicit, but approximate, functional of n. The development of Kohn and Sham was to
retain the exact expression for the kinetic energy in terms of the wavefunction, which is
some (albeit unknown) functional of the density. It is not possible to express the kinetic
energy directly in terms of the density, but under the assumption of non-interacting
single-electron states it is

T [n] =−
1

2
〈Ψ[n]|∇2|Ψ[n]〉=−

1

2

N
∑

i

〈ψi |∇
2|ψi 〉 , (2.27)

where the sum is over single electron wavefunctions. This is accomplished in Kohn–Sham
dft by diagonalizing the Hamiltonian. The meaning of the |ψi 〉, and how they are
calculated is discussed below.

The final term of eq. (2.25) is Exc , the exchange-correlation energy. This term is
unknown. It includes the difference between the Hartree energy and the true interaction
energy of the electrons, and also the difference between the true kinetic energy and the
kinetic energy in the independent electron approximation. If it were known exactly,
the Kohn–Sham equations would be equivalent to finding the exact ground state of the
many-electron, nonrelativistic Schrödinger equation, and therefore truly an ab initio
theory.

As it stands, however, since the exchange-correlation functional is unknown, we must
rely on approximations. Since these approximations are intended to work for a wide range
of systems, dft is sometimes called an ab fere initio (‘almost from the beginning’) method.
It seems unlikely that it is possible to compute this term efficiently (any more so than
solving the time-independent Schrödinger equation by some other ‘hard’ method, such
as full configuration-interaction). In any case, this functional must exhibit some exotic
features in order to describe the full range of phenomena arising in condensed matter
physics. It must be non-local and discontinuous, for example. Schuch and Verstraete
(2009) considered the problem of determining Exc from a computational complexity
aspect, and showed that if it were computable efficiently some problems considered hard
for a quantum computer would have an efficiently-computable solution on a classical
computer.

The variational principle applied to the energy (as a functional of the one-electron
wavefunctions) states that

δ
�

E −
∑

j k ε j k (〈ψ j |ψk〉−δ j k )
�

δψi
= 0, (2.28)

12



2.1. Density Functional Theory

where εi j are the Lagrange multiplier associated with the constraints on the wavefunctions

〈ψi |ψ j 〉= δi j . (2.29)

We can expand this as follows:

δT

δψi
+
δ(EH [n]+ Exc[n])

δn

δn

δψi
−

δ

δψi

∑

j k

ε j k (〈ψ j |ψk〉−δ j k ) = 0 (2.30)

−
1

2
∇2ψi + v̂KSψi +

∑

j

εi jψ j = 0 (2.31)

and through this equation we define the Kohn–Sham effective potential, v̂K S . Instead of
the full (interacting) Hamiltonian, Kohn and Sham (1965) supposed that for any external
potential vext, there is a system of non-interacting electrons in some other potential,
that has the same electron density as the interacting system in vext. The non-interacting
system has the single-electron states of eq. (2.27), |ψi 〉, and allows us to write

�

−
1

2
∇2+ vK S (x)

�

|ψi 〉= ĤK S |ψi 〉= εi |ψi 〉 (2.32)

where

vK S (x) = vext(x)+
∫

dx ′
n(x ′)

|x − x ′|
+ vxc[n](x). (2.33)

Here, vext is the potential due to the nuclei and other external effects, and

vxc[n](x) =
δExc[n]

δn(x)
(2.34)

is the exchange-correlation potential. Kohn–Sham dft is expressible as the eigenvalue
problem eq. (2.32), of independent electrons interacting via the effective potential vK S .
Since this potential itself depends on the electron density, the whole system (potential
and single-electron wavefunctions) must be solved together self-consistently, typically
with an iterative method.

The Hamiltonian, ĤK S , will typically be represented in some basis (plane waves or
localised atomic-orbital-like functions are two usual choices, see section 2.1.6). Finding
the N lowest-lying eigenfunctions2 |ψi 〉 expressed in this basis involves diagonalizing the

2We have neglected spin-degeneracy—if it is included, we are interested in the N/2 lowest-energy states,
with two electrons per state.
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2. Atomistic Modelling of Materials

Hamiltonian matrix. Without exploiting any special structure, the number of operations
required for the diagonalization is O(M 3), where M is the number basis functions.

There are several approaches to approximating vxc . Most of them rely on the observa-
tion that apart from the long-ranged Coulomb interaction of the electron density via the
Hartree term, eq. (2.26), the interaction of the electrons is often quite localized (although
there are many important exceptions).

The simplest approach, known as the local density approximation (lda), is to suppose
that

vxc[n](x) = vlda

xc (n(x)). (2.35)

The most successful approaches rely on analytic expressions for the free electron gas, and
define

Elda

xc [n] =
∫

n(x)εfegxc (n(x))dx , (2.36)

with
Efeg

x [n] =−
3

4

� 3

π

�∫

n(x)4/3 dx . (2.37)

Even for this greatly simplified case, there is not an exact expression for the electron
correlation energy. A number of approximate forms that reproduce certain known limits
(e.g. low or high density) exist (Ceperley and Alder, 1980; Perdew and Wang, 1992;
Perdew and Zunger, 1981; Vosko et al., 1980).

The generalised gradient approximation (gga) allows for vxc to be some function
of both the electron density at a point and its gradient there:

vxc[n](x) = vgga

xc (n(x),∇n(x)). (2.38)

A variety of commonly used ones can be found in: Becke (1988); Lee et al. (1988); Perdew
et al. (1992, 1996); Zhang and Yang (1998).

Functionals of either variety are by construction incapable of reproducing long-ranged
electron correlations important in some materials (for example, London dispersion or
Mott-insulator transitions).

2.1.5. Pseudopotentials

The pseudopotential approach is important for the numerical solution of the Kohn-Sham
equations. The key idea behind the pseudopotential approximation is that the core
electrons of an atom are tightly bound to the nucleus and are not involved in chemical
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2.1. Density Functional Theory

bonding, so that the potential due to the nucleus can be replaced with one due to the
combined effect of the nucleus and core electrons.

The advantage is twofold. First, it reduces the number of electrons in the system to
be solved. Second, the orbitals of the valence electrons are no longer required to be
orthogonal to the omitted core electron orbitals. This requirement is responsible for
making the valence orbitals highly oscillatory near the nucleus, which is challenging to
represent—see fig. 2.2.
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Figure 2.1.: Nuclear potential and pseudopotential for four angular momentum channels.
The norm-conserving pseudopotential was generated for lda silicon according
to the Troullier–Martins method. The dashed line is the potential for a point
nuclear charge of +4e , to which the pseudopotential is equal outside of the
cutoff radius (vertical dotted line). The dash-dotted line is the all-electron
potential for comparison.

A pseudopotential is generated by determining a cutoff radius, beyond which the
wavefunctions of the valence electrons in some reference system agree, and within which
the nuclear potential is modified to incorporate the effect of the core electrons. The
potential arising this way is non-local and may depend on the angular momentum channel.

The pseudopotential eigenvalues should agree with the all-electron Hamiltonian, in the
reference system and in other systems besides (to be transferable). Further requirements
for good accuracy and transferability are are given by Hamann et al. (1979).

15



2. Atomistic Modelling of Materials

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  1  2  3  4  5

r (a0)

l=0 all electron wavefunction
pseudized wavefunction

Figure 2.2.: The s channel (n = 3, l = 0) of the resulting wavefunction. The matching
radius is indicated by the vertical dotted line.

One such idea due to Hamann et al. (1979) to aid transferability is to make the
pseudopotential norm-conserving: the charge contained within the cutoff radius is the
same as for the all-electron system.

The original formulation of Phillips and Kleinman (1959) involved computing two-
point integrals, the cost of which scale like the square of the number of basis elements.
An alternative formulation of Kleinman and Bylander (1982) allows linear scaling.

There are several practical schemes for generating pseudopotentials (e.g. Hamann et al.,
1979; Kerker, 1980; Troullier and Martins, 1991; Vanderbilt, 1985).

2.1.6. Choice of basis

Numerically, the solution wavefunctions and density must be represented on a finite basis,
rendering eq. (2.32) a matrix equation. The choice of basis should ideally result in a small
error in ground state energy for a wide range of systems. This is always a compromise
with computational cost. The two ways of reducing the error are to choose the shapes of
the basis functions carefully, so that a good approximation can be obtained with relatively
few basis functions, or to increase the size of the basis. Having a systematic way of
improving the basis, so that it tends to a complete basis (every function is representable
in the complete basis, and the error in representing it tends to zero with the size of the
finite basis) is a valuable property.
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2.1. Density Functional Theory

A basis of plane waves is complete, so that a finite basis of plane waves can be improved
systematically by adding higher frequencies to the basis. The pseudopotential approxima-
tion reduces the extent of the potential in Fourier space. This, along with fast numerical
methods for plane wave calculations, have contributed to the success of plane-wave-based
methods. Despite this, the dense density-matrix and Hamiltonian preclude linear scaling
dft.

An alternative approach is to use a basis of numerical atomic orbitals. Here, the shapes
are chosen to represent the electronic configuration about an atom well. Because of this,
good convergence can often be obtained with quite a small set of basis functions per
atom, perhaps dozens. For example, a double-zeta polarized basis set (the nomenclature
is described in the next section) for silicon, which is already well-converged for many
purposes, has thirteen orbitals per atom. This keeps the dimensions of the Hamiltonian
manageable, improving the speed of diagonalization. Numerical atomic orbitals with
finite-support allow for linear-scaling methods to be used. A drawback in using this type
of basis is the lack of obvious systematics for convergence.

The converged KS energy is variational in the basis set, which can aid choosing a basis.

Scheme of Junquera et al.

Siesta can use local basis functions of arbitrary shape, and a basis set can be chosen to suit
the requirements of the problem or user. We have used one such scheme of soft-confined
spherical harmonics due to Junquera et al. (2001) and implemented in Siesta as described
by Soler et al. (2002). This scheme is summarized briefly below.

Each basis function (centred on atom I ) is a product of a radial function and a spherical
harmonic:

φI l mn(r ) =φI l n(rI )Yl m(r̂I ), (2.39)

where n labels the radial shape, l and m label the angular momentum, rI is the position
vector directed from atom I , rI = r −RI , rI = |rI | and r̂I = rI/rI .

The radial shapes used are the eigenfunctions of a smooth confinement potential
with V →∞ as r → rc , which ensures that the basis functions have finite support and
continuous derivatives. The confinement potential used is:

V (r ) =











0 r ≤ ri

V0

exp(− rc−ri
r−ri
)

rc − r
ri < r < rc

(2.40)
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where ri is known as the soft-confinement radius. Each angular momentum channel can
use different parameters. Multiple radial shapes per channel can be used. One way of
introducing an additional radial function based on another, is according to a split-valence
scheme. This permits some additional freedom in radial dependence. Introduce a new
radial shape by choosing a matching radius rm , beyond which the new and original
functions are identical, and defining φl (r ) = r l (a − b r 2) within the matching radius,
choosing a and b by continuity of value and first derivative of the basis function at rm .
The procedure can be repeated as many times as desired. In the language of quantum
chemistry, this gives ‘multiple-ζ ’ bases. A single radial shape is single-ζ (SZ), an additional
one double-ζ (DZ) and so on.

Additional angular freedom is afforded by polarization orbitals, which take an orbital of
the highest angular momentum l in the basis, and generate a new one by applying a small
electric field along the z direction. The polarized shape is determined from first-order
perturbation theory. It can be shown that this contains an additional angular component
of l+1 (and no higher), and has a radial shape obtained by solving an ordinary differential
equation. Numerically, the radial basis shapes are evaluated as cubic splines interpolated
from a fine radial grid. The full procedure is described by Soler et al. (2002).

2.1.7. Discretization

The total Hamiltonian (eq. (2.7)) can be rewritten (Soler et al., 2002) with the aim of
eliminating long-range interactions, as

Ĥ = T̂ +
∑

I

V̂ KB +
∑

I

V̂ N A(r )+δV H (r )+V xc (r ). (2.41)

Here, T̂ is the kinetic operator, V̂ KB is the nonlocal part of the pseudopotential, V̂ N A
I is

the ‘neutral atom’ potential obtained by screening the local part of the pseudopotential
by an arbitrary (local) valence charge distribution, which might be obtained by filling
the first ζ atomic orbitals. The motivation for this is that this potential is exactly zero
outside the range of the valence charge distribution. The term δV H is the potential
resulting from the assumed screening charge distribution and actual charge distribution.
It integrates to zero and is typically small. The final term is the exchange-correlation. The
matrix elements of the Hamiltonian, 〈φI l mn |Ĥ |φI ′ l ′m′n′〉, are computed as follows. The
kinetic and nonlocal pseudopotential terms depend only on the distance between atomic
centres, and involve integrals over reciprocal space that can be precomputed on a fine grid.
Once again, the details of the calculation are found in Soler et al. (2002). The fineness of
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a regular k-grid is specified as the wave of highest wavenumber that can be represented
on this grid: a wavenumber in reciprocal space is a real-space length, so the cutoff is given
as a length, and this can be used to compare the quality of grids between different lattices.

The choice of grid for sampling over reciprocal space is addressed by Monkhorst
and Pack (1976), who considered k-grids with their origin displaced with respect to the
reciprocal-space lattice. Such a grid with n points along one dimension is able to compute
the exact integral of functions which have up to the first n Fourier coefficients non-zero.
In addition, for grids of even dimension, the number of points in the irreducible part of
the Brillouin zone is smaller than a grid of the same dimension containing the origin.
Calculation of the integrand need only be done at the points of the irreducible region,
and the remaining points calculated by symmetry, reducing the computational cost of the
calculation. Sometimes a good result can be obtained with a small number of k-points,
or even a single k-point, if chosen carefully: the mean-value point of Baldereschi (1973) is
such a choice. See fig. 2.3.
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Figure 2.3.: The effect of the choice of k-grid on the lattice-parameter dependence of
pressure in bulk silicon. Shown are several calculations of bulk silicon, using
several special points around the Brillouin zone, and a highly converged grid.
The point (0.25,0.25,0.25) is the Baldereschi point.

The remaining matrix elements are evaluated on a three dimensional grid in real space,
the fineness of which is measured by the energy cutoff: the highest energy plane-wave
that can be resolved by the grid. The δV H term is found by solving Poisson’s equation
on the grid, using either a fast Fourier transform or a multigrid solver. Once the potential
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2. Atomistic Modelling of Materials

has been tabulated on the grid, the term V (r )φ∗I l mn(r )φI ′ l ′m′n′(r )∆r 3 is accumulated
into the matrix element for the Hamiltonian.

The issues of real- and reciprocal-space mesh generation is considered by Moreno and
Soler (1992).

2.2. Empirical Interatomic Potentials

An alternative approach is to leave out the electrons from the calculation, and instead
fit the total energy to an analytic expression, depending on pairs or otherwise small
collections of neighbouring atoms. Once this is done, the resulting problem is greatly
simplified, since the energy and forces are now evaluations of a simple analytic expression
instead of the solution to a variational problem for the ground state of the electron
density.

The clear advantage is that much larger systems can be considered, and when computing
molecular dynamics trajectories, far longer times can be simulated. The drawback is that
the models are less predictive and transferable, since a simple functional form forces strong
assumptions to be made about the potential energy surface. Interatomic potentials are
often fit to data for some specific systems of interest and break down for systems in other
configurations. They can still be used to simulate many physical effects to qualitative
accuracy.

There have been many empirical potentials developed for specific domains. The
empirical potentials used in this work are described in detail in appendix C.

2.3. Gaussian Approximation Potentials

2.3.1. Introduction

Analytic interatomic potentials are computationally cheap to evaluate, while ‘quantum-
chemistry’ methods, with their explicit treatment of electrons, are accurate, but pro-
hibitively expensive for systems containing more than at most a few thousand atoms. A
favourable feature of treating the electrons explicitly is that this tends to result in a more
transferable method: it can be used to make predictions of systems different to the data
(if there are any at all) used to parameterize it.

The development of Gaussian Approximation Potentials (gap) was motivated by two
considerations. First, that there exists a gap in accuracy between traditional interatomic
potentials and models treating the electrons explicitly. Second, that it is possible to use an
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accurate, quantum-mechanical method to obtain data from many small systems of atoms,
that can then be fit by an analytic functional form to give an interatomic potential that is
cheap to evaluate. The functional forms imposed by traditional interatomic potentials are
often too restrictive to represent the energy landscape realistically.

Generating a useful potential from this process relies on being able to apply knowledge
gained from simulating small systems over short timescales to the problem of describing
much larger systems for longer times. This can be seen as a consequence of locality. In
many cases, despite the ‘global’ nature of the Schrödinger equation, with each particle
interacting with every other, long-ranged effects are unusual, and the behaviour of
electrons (and therefore the atoms that interact with them) is determined by their
immediate environment.

The gap approach is driven by the wealth of data available from dft, and other first
principles simulation methods. By choosing a suitable way of representing local atomic
environments, these can be used directly as training inputs for a potential based on
Gaussian-process regression.

The potentials were first described in Bartók et al. (2010). A subsequent paper (Bartók
et al., 2013b) reviewed ways of representing atomic environments, including bispectra
and bond-order parameters, and introduced the Smooth Overlap of Atomic Positions
(soap) method. Section 2.3.3 provides more detail.

The work cited so far is focused on developing improved interatomic potentials. The
general approach of gap can be applied to improve the accuracy of any one method based
on a more accurate but more expensive method. Bartók et al. (2013a) applied a gap

method as a correction for dft water, with the accurate calculations provided by coupled
cluster calculations.

A related approach is that of Behler and Parrinello (2007), who used neural networks
trained on dft energies, with a local description of the atomic environment as input,
based on radial Gaussians and cosines of bond angles.

2.3.2. Representing atomic environments

When fitting an interatomic potential that depends only on nuclear positions, we must
choose a set of descriptors for the atomic configuration. For example, in a central-
force pair-potential, the descriptors are the pairwise distances between the atoms, ri j =
|xi − x j |, 1 ≤ i , j ≤ N . For this kind of potential we have the further restriction that
the total energy is the sum of individual pairwise bonding energies (a term in the sum
depending on both r1,2 and r3,4, for example, is not permitted, although it may be for
a more general potential). A pairwise term involving a given atom m depends only on
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2. Atomistic Modelling of Materials

rm j , 1 ≤ j ≤ N (excluding ri j , i 6= m). We divide each pairwise contribution to the
energy between the two involved atoms somehow, perhaps equally, although the choice
is arbitrary.

The descriptors rm j , 1≤ j ≤N are for the local environment, or atomic neighbour-
hood, of atom m, and after choosing a partitioning of atomic energies between these
environments, we may write:

E =
N
∑

m=1
Em(rm1, . . . , rmN ). (2.42)

We could impose a further restriction, that the local environment consists of only nearby
atoms:

∂Em

∂ rmi
= 0, rmi > rcut. (2.43)

We are interested in choosing descriptors for atomic neighbourhoods on which to base
an interatomic potential. This is based on the observation that it is often possible to
split the energy of a configuration up into local contributions. This is computationally
useful because for a large system it leads to a tractable number of short-ranged descriptors,
preferably linear in the system size.

A complete set of descriptors suffices to uniquely describe an atomic environment.
That is, if the set of descriptors is not complete, there are some genuinely different
configurations (perhaps with different energies) that have the same descriptors associated
with them. For example, the pairwise distances between atoms do not comprise a
complete set: Bartók et al. (2013b) give as an example two tetrahedra with the same edge
lengths but different face angles.

It is clear that the atomic coordinates themselves provide a complete description of
the configuration, but this description suffers from being overcomplete: there are sets of
coordinates that describe equivalent atomic configurations. Equivalent configurations are
invariants of the symmetries of the potential energy, since the potential energy surface
completely determines the dynamics of the problem. That is, if for all collections of
atomic positions (xi)

N
i=1 we have that

E(x1, . . . , xN ) = E(S(x1, . . . , xN )), (2.44)

then (x1, . . . , xN ) and S(x , . . . , xN ) are equivalent configurations. The set of such trans-
formations consists of uniform translations, (improper) rotations, spatial inversion and
permutations of the coordinates. While this is true for the total energy as a function of
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2.3. Gaussian Approximation Potentials

all the atomic positions, the invariants should also hold for every local environment, for
any reasonable definition of local energy.

It is desirable to avoid overcomplete descriptors because the fitting process itself does
not enforce these invariants, leading to spurious minima, as well as extra computational
work due to the increase in the size of the training set required by the inclusion of many
configurations that are otherwise known to be equal in energy. The dimensionality of
the domain may also be larger.

2.3.3. The SOAP descriptor and kernel

This approach provides a measure of the similarity between two atomic environments
given their positions, through a kernel. That is, instead of some descriptor values
representing an atomic position, it allows us to determine whether two configurations are
similar, and by how much. This is a different approach to first computing an intermediate
descriptor to pass as an argument to a potential energy fitting function, and exploits
the use of Gaussian process regression, where it can be used as the covariance kernel for
potential energy.

First, define the atomic local neighbour density as

ρ(x) =
N
∑

i

δ(x − xi ). (2.45)

A measure of the similarity of two atomic environments ρ and ρ′ is

S[ρ,ρ′] =
∫

dx ρ(x)ρ′(x). (2.46)

It is straightforward to see that this is invariant under permutations of atoms, but not
rotations. Integrating over all possible rotations leads to

k[ρ,ρ′] =
∫

dR̂
�∫

dx ρ(x)ρ′(R̂x)
�n

. (2.47)

The power n ≥ 2 is to preserve the angular information in the kernel. Taking n = 1
would allow the order of the integrals to be exchanged, giving

k[ρ,ρ′] =
∫

dx ρ(x)
∫

dR̂ρ′(R̂x). (2.48)

The inner integral discards all of the angular information available from ρ′.
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2. Atomistic Modelling of Materials

This kernel involves Dirac delta functions, and is therefore not suitable for numerical
use. It is also not smooth as one atomic environment is varied. To correct these deficien-
cies, we can instead define the local atomic density in terms of Gaussians centred on each
atom, as

ρ(x) =
N
∑

i

exp
�

−α|x − xi |
2
�

, (2.49)

where α is chosen so that the Gaussians have a width of some fraction of the atomic
spacing.

First, expand this in a basis of spherical harmonics and orthonormal radial functions,
with coefficients cnl m ,

ρ(x) =
∑

n,l ,m

cnl m gn(x)Yl m(x̂), (2.50)

and define the power spectrum coefficients by

pnn′ l :=
∑

m
cnl m c∗

n′ l m
. (2.51)

The integral eq. (2.47) is evaluated by Bartók et al. (2013b) for n = 2 as

k[ρ,ρ′] =
∑

n,n′,l

p
nn′ l

p ′
nn′ l

, (2.52)

and converges to the correct value rapidly with the size of the basis.
The kernel is normalized and can be raised to a ‘sensitivity’ parameter ζ , that sharpens

the overlap integral, making similar atomic environments relatively more significant to
the prediction. The soap kernel is then

K soap[ρ,ρ′] =







k[ρ,ρ′]
Æ

k[ρ,ρ]k[ρ′,ρ′]







ζ

. (2.53)

We choose a cutoff radius to make the environment short-ranged. The Gaussians can
be weighted with a smooth transition function fcut(xi ) so that atoms enter and leave the
local environment without a discontinuity in the kernel, and so that nearby atoms are
given more importance when computing the similarity between atomic environments
about a point. The per-atom density is then computed as

ρ(x) =
N
∑

i

fcut(xi )exp
�

−α|x − xi |
2
�

, (2.54)
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2.3. Gaussian Approximation Potentials

2.3.4. Multiple atomic species

We have so far assumed that all of the atoms are identical. The descriptor can also contain
information about the species of the atom (atomic number), although we do not need
this facility for the potentials considered later.

The idea is to modify the density, so it retains knowledge of the neighbouring species,
represented as |Ti 〉:

ρ(x) =
N
∑

j

fcut(x j )exp
�

−α|x − x j |
2
�

|T j 〉 . (2.55)

The similarity measure is computed as before, via eq. (2.46) and 〈Ti |T j 〉= δTi T j
. This

reduces to the same value if there is a single atomic species. If there are several species
present, the Dirac delta function means that environments are similar only when the
same species are present at each location. Permitting cross-terms 〈Ti |T j 〉 6= 0, i 6= j ,
would allow for a measure of similarity between different atomic species.

2.3.5. Gaussian processes

The use of Gaussian processes in regression is discussed for a general situation in ap-
pendix B. The soap kernel described in the previous section is used as the covariance
kernel on the training inputs.

Implementations of Gaussian process regression and gap are included in the libAtoms
and QUIP software packages (Bartók-Pártay et al., 2006–).

2.3.6. Local energy prediction

The training data consist of total energies, atomic forces and stresses of configuration,
typically computed with dft. Quantum mechanical methods do not provide a convenient
local energy, so instead we must train on configurational total energies.

The total energy is the sum of atomic contributions

E (i) =
Ni
∑

α=1
E (i)α =

Ni
∑

α=1
ε(q (i)α ), (2.56)

where ε(q) is the energy of a particular atomic environment q , and α ranges over the
atoms in a particular configuration labelled with i .
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Covariance is bilinear, so the covariance of two total energy observations is

Ci j =Cov(E (i), E ( j )) =Cov







Ni
∑

α=1
ε(q (i)α ),

N j
∑

β=1

ε(q ( j )
β
)






=

N j
∑

β=1

Ni
∑

α=1
Cov

�

ε(q (i)α ),ε(q
( j )
β
)
�

.

(2.57)
That is, an element of the covariance matrix between two total energy observations can
be computed as a sum over the covariance kernel (e.g., the soap kernel) computed for the
environments of each pair of atoms present in the configurations.

Predictions are made using the expression for the mean of a Gaussian process, eq. (b.12)
from appendix B:

ε̂(q ′) = kTC−1E , (2.58)

where q ′ is the new environment for which a predicted energy is sought, C and E are
the covariance matrix and total energy training observations as in eq. (2.57), and the
ith component of k is ki =Cov(E (i),ε(q ′)). The predicted mean from a reduced-rank
process, eq. (b.19), can be calculated in a similar way.

2.3.7. Atomic forces and the virial stress

The force on an atom is the derivative of total energy with respect to position. The force
on an atom is by assumption only due to atoms in its local environment,

fβ =−
N
∑

α=1

∂Eα
∂ xβ

. (2.59)

The covariances between forces and local energies can be computed as derivatives of the
energy covariance function, via eqs. (b.7) and (b.8).

An observed value of a component of the virial stress (times volume) is a linear
combination of forces

V σi j =
N
∑

α=1
x i
α f j
α , (2.60)

with spatial indices 1≤ i , j ≤ 3, and α an index over the atoms in a configuration. The
required covariance matrix elements once again follow from the bilinearity of covariance.

The derivative covariances for the soap kernel are quite complicated and are not given
here. They can be found readily with computer algebra software.
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2.4. Molecular Dynamics

2.4. Molecular Dynamics

The idea of a molecular dynamics (MD) method is to integrate Newton’s equations
of motion for the motion of atoms (or larger structural units of several atoms in the
case of coarse grained methods—a recent review is given by Saunders and Voth (2013)),
calculating the interatomic forces and thereby gaining knowledge about a system, either in
a statistical sense (using an average over time or several replicas of the system to measure
thermodynamic quantities) or in microscopic detail.

It is a good approximation to treat atomic nuclei as classical particles with the possible
exceptions of hydrogen and deuterium (Bunker and Moss, 1977). The interatomic forces
may be obtained from a number of techniques that differ greatly in cost and accuracy,
including dft and empirical potentials, discussed in the preceding sections.

Molecular dynamics is a mature field, and an overview of many techniques can be
found in Allen and Tildesley (1987) and Frenkel and Smit (2002).

2.4.1. Velocity Verlet

For Hamiltonian systems, including systems of molecules, a numerical integrator is
desired to conserve the Hamiltonian over times long compared to the integration timestep.

Trajectories in the interesting regions of phase space often have sensitive dependence
on initial conditions. This ensures that any numerical errors due to the integrator will
at first grow exponentially, and the accurate long-time prediction of atomic trajectories
is impossible. This same feature is responsible for the rapid ‘decoupling’ of knowledge
about the present and future configurations of a system, on which the results of statistical
physics depend for justification. Rather than attempting the impossible task of finding
accurate trajectories, it is more important that the integrator produces a trajectory that is
a representative sample of phase space.

These properties (near-conservation of first integrals, realistic sampling) can be related
to how well the numerical integration retains certain geometric features of the underlying
differential equations, including time reversibility and symplecticity. See, for example,
Hairer et al. (2003); Leimkuhler and Reich (2004).

Equation (2.61) is the velocity Verlet algorithm, which is a symplectic, time-reversible,
second-order method that depends only on the atomic forces and no higher derivatives of
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2. Atomistic Modelling of Materials

energy, which is used here and widely in md simulation.

xi+1 = xi + vi δt +
1

2m
Fi δt 2

vi+1 = vi +
1

2m
(Fi +Fi+1)δt

(2.61)

Fi is the force on the particle at the ith timestep, which we suppose depends only on the
positions of the other particles, and not their velocities. In practice, for each particle, the
position and velocity are updated in place, the forces are updated between the position
and velocity update step, and the value of the force for the previous timestep retained, to
minimise storage requirements.

It may be shown (Hairer et al., 2003) that for velocity Verlet, the Hamiltonian at the
nth timestep (Hn ) is approximately conserved, and satisfies

|Hn −H0|=C h2+CN hN t for 0≤ t ≤ h−N . (2.62)
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3. Continuum Modelling of Solids

In the previous chapter, we summarized the atomistic approaches that we use, of micro-
scopic particles interacting via a Hamiltonian. In this chapter, we turn to the macroscopic,
finite-deformation, continuum-mechanical viewpoint, and give an overview of the back-
ground theory and relate quantities between the two viewpoints.

3.1. Basic Notions

In continuum mechanics, a body is made up of material points. Each is identified with
the average position of a fixed collection of atoms, small enough that the change in shape
of the region of space that they occupy is much smaller than the bulk motion of the
material, but large enough that local equilibrium thermodynamic quantities may be
defined there. That is, on the lengthscales typical of continuum simulation, a material
point may be treated as a mathematical point, but on an atomic lengthscale, enough
atoms are present that they may be treated according to statistical mechanics. This allows
the definition of energy (and similar quantities, such as entropy and temperature) as a
function of the material point, which are, strictly, global properties of the system as a
whole.

Spatial or Eulerian quantities are those defined at fixed locations in space. Material
or Lagrangian quantities are defined at a material point. In keeping with the literature,
variables representing an Eulerian quantity are (with some exceptions) written in lower
case, and those representing a Lagrangian quantity in upper case.

Let a material point in some reference configuration (typically the undeformed config-
uration of vanishing stress in solid mechanics) be denoted X . The location of a material
point depends on its initial location in the reference configuration according to the mo-
tion: x = x(X , t ). The local deformation of the material is described by the deformation
gradient tensor

F =∇X x . (3.1)
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3. Continuum Modelling of Solids

The determinant expresses the volume change of the deformation, so that

ρ= ρ0/detF . (3.2)

To ensure a bijection between Lagrangian and Eulerian coordinates, we require that F is
invertible at every X . The inverse deformation gradient is just

F−1 =∇x X . (3.3)

dX dx

F

X
x

Figure 3.1.: Relationship between Lagrangian coordinate X , Eulerian coordinate x , and
deformation gradient F .

An elastic strain energy exists for each material point, and is given by

E el(x) := E el(F (x), S(x)), (3.4)

where F and S are the local deformation and entropy, and we will write E(F , S), with the
spatial dependence implied, dropping the ‘el’ label where there are no other contributions
to the strain. The important idea is that the local energy is a function of local deformation
and entropy only.

We can relate the stress to the derivative of the strain energy with respect to deforma-
tion. There are several common measures of stress. We use the Cauchy stress throughout
the thesis, but we first consider briefly the Piola stress. This has the simple definition of

Pi j =
∂E

∂ F j i
. (3.5)

Note that the derivative is conventionally with respect to the transpose of F .
The Piola stress relates forces on the deformed configuration to material area elements

in the reference configuration. This is because the deformation gradient relates a dis-
placement in the deformed configuration with the corresponding displacement in the the
reference configuration.
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The Cauchy stress appears naturally in many contexts because it relates quantities
entirely in a material’s current, deformed state, and does not rely on a reference configu-
ration.

To compute it from the Piola stress, we must relate an area in the deformed configura-
tion to the corresponding area in the reference configuration.

A small volume element dv in the deformed configuration is related to its correspond-
ing volume element dV in the reference configuration as

dv = (detF )dV . (3.6)

A line element dl is related to the reference configuration line element dL as

dl = F dL. (3.7)

To see how an area element in the deformed configuration da is related to a reference area
element dA, consider a volume element in the material configuration made from an area
element da and a line element dl :

dai dli = dv. (3.8)

dai Fi j dL j = (detF )dV (3.9)

= (detF )dAkdLk , (3.10)

and
dai Fi j = (detF )dAk . (3.11)

Finally, we obtain the expression relating area elements, as

da = (detF )F−TdA. (3.12)

The Cauchy stress relates the traction τ through a (real or imaginary) surface of a
material body to the normal vector through the surface n, as

τ = nTσ . (3.13)
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The corresponding expression for the Piola stress is

τ =NTP , (3.14)

where N is the normal to the area element in the reference configuration. From eq. (3.12),
we see that the stresses are related as

P = (detF )σF−T. (3.15)

Conservation of angular momentum implies that σ is symmetric. It can be shown
(appendix D) that the Cauchy stress is the continuum limit of the atomistic virial stress.

The second law of thermodynamics for a material supporting general stress configura-
tions, expressed in terms of a finite deformation, F , is

dE =V σ
i k

F −1
j k

dFi j +T dS. (3.16)

The first term is analogous to ‘−P dV ’ in a fluid, and is equal to it if the material can
support only hydrostatic stress.

Since the strain energy of a material does not depend on body rotations performed
after a deformation, specifying E = E(F , S) is redundant. A polar decomposition allows
any invertible matrix to be written as the product F = RU of an orthogonal matrix
R and a symmetric matrix U , known as the stretch tensor. This can be seen as first
applying uniform stretches along three orthogonal axes (represented by U ) before an
arbitrary rotation of R. Since any deformation can be described this way, without loss of
generality E depends on F only through components of U .

In practice, it is computationally cheaper to define the Cauchy–Green tensor, which is
also symmetric,

C = FTF =UTRTRU =UTU =U 2. (3.17)

Alternatively, and equivalently, we could use the Finger tensor

G =C−1 = F−1F−T. (3.18)

The Cauchy stress cannot be uniquely expressed in terms of either U or C however, since
a body rotation of R after (an arbitrary) deformation has the effect of reorienting the
stress, according to

σ̃ =RTσR, (3.19)

even though both configurations are represented by the same right stretch tensor U .
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For an equation of state dependent on G , as we will use later, we use eq. (3.16) and the
chain rule to obtain

σi j =
ρ0

detF
Fi k

∂E

∂Gl m

∂Gl m

∂ F j k
, (3.20)

and
∂Gi j

∂ Fpq
=−Giq F −1

j p −G jq F −1
ip . (3.21)

The symmetry of σ is most easily shown in terms of C,

σi j = 2ρFi l
∂E

∂Cl m
F j m , (3.22)

which is symmetric provided ∂E
∂Cl m

is also symmetric. This does not follow from the
symmetry of C, but since E depends on a symmetric argument, there is always a choice
of E where this is true, 1

2 (E(C)+ E(CT)).
For the special case of an isotropic material, both pre- and post-deformation rotations

leave the strain energy invariant. Note that pre-deformation rotations also leave the stress
invariant. In this case, we can express energy as a function of the left Cauchy–Green
tensor

B = F FT (3.23)

or its inverse. A post-deformation rotation has the effect of a similarity transformation
on B. The invariants under this transformation are all functions of

IB = tr B (3.24)

IIB =
1

2

�

(tr B)2− tr(B2)
�

(3.25)

IIIB = det B, (3.26)

which are themselves known as the tensor invariants of a 3× 3 symmetric matrix, and so
E must take the form

E = E(IB , IIB , IIIB , S). (3.27)

In this case, we also have

σ = 2ρB

�

∂E

∂B

�

S

, (3.28)
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where in terms of B,
ρ= ρ0/

p

det B. (3.29)

3.2. Conservation Laws for Nonlinear Elasticity

Equations representing conservation of momentum and energy in an elastic material
with no viscosity are

∂t (ρvi )+ ∂k (ρvi vk −σi k ) = 0 (3.30)

∂t (ρE) + ∂k (ρEvk − viσi k ) = 0. (3.31)

Equations (3.30) and (3.31) are very similar to those appearing in the Euler equations of
fluid dynamics, and can be derived in a similar manner; see Plohr and Sharp (1988). We
have in addition the conservation of mass, giving an equation for the density,

∂tρ+ ∂k (ρvk ) = 0. (3.32)

Together, eqs. (3.30) to (3.32) with an equation of state E(p,ρ), and σi j =−pδi j would
specify a fluid system.

In a solid system, the equation of state has one of the more general forms discussed in
the previous section, and we must introduce an equation for the time dependence of the
deformation gradient (or one of its analogues), which can be seen as a generalization of
the density, found via eq. (3.2). We obtain such an equation from the symmetry of mixed
partial derivatives:

d

dt
F (X , t ) =

∂

∂ t
F (X , t ) =

∂

∂ t

�

∂ x

∂X

�

=
∂

∂X

�

∂ x

∂ t

�

=
∂ v

∂X
, (3.33)

and we obtain a conservation law for the inverse deformation gradient:

dF

dt
=−F

dF−1

dt
F =

∂ v

∂X
=
∂ v

∂ x
F (3.34)

⇐⇒
dF−1

dt
=−F−1 ∂ v

∂ x
(3.35)

⇐⇒
∂F−1

∂ t
=−

∂F−1

∂ x
v −F−1 ∂ v

∂ x
(3.36)

=−
∂

∂ x
(F−1v), (3.37)
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or in index notation, with g = F−1, as

∂t (gi j )+ ∂ j (gi k vk ) = 0. (3.38)

The conservation law may may alternatively be written in terms of F as

∂t (ρFi j )+ ∂k (ρFi j vk −ρFk j vi ) = 0. (3.39)

This can be proved using the conservation of mass, the Eulerian form of eq. (3.33) and
Piola’s identity (Plohr and Sharp, 1988),

∂i (Ai j/detA) = 0. (3.40)

A compatibility condition is required so that for each i , Fi j is genuinely the gradient
of (one component of) some deformation. A zero curl is sufficient to ensure this,

∇×Fi = 0 (3.41)

where Fi is the ith row of F . A non-zero value could correspond either to regions with
voids, or material volumes that unphysically interpenetrate each other. If eq. (3.41) holds
initially, it is true for all subsequent time. This is not necessarily the case for a numerical
solution however, and the numerical method used should ensure that this quantity does
not deviate much from zero. This can be achieved by using a source term in the evolution
(as e.g. Miller and Colella, 2001).

An alternative statement, and appropriate for weak solutions in F , is that following a
closed loop in material coordinates should make a closed loop in spatial coordinates as
well, so that the line integral of F should vanish around the curve. For differentiable F ,
this is equivalent to eq. (3.41) by Stokes’ theorem.

Equation (3.39) is in conservative form for each component i j , and strict conservation
can be maintained with a suitable conservative numerical method (see below). There is
no reason for the density itself to be conserved by a numerical method however, since
errors in each component may not cancel. Miller and Colella (2001) solve this problem
by explicitly including an equation for the density (eq. (3.32)) and enforcing consistency
of the overdetermined system.

We now discuss the character of the solutions of this system of equations.
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3.2.1. The Riemann problem

Similarity solutions (constant along paths of constant x/t ) arise from Riemann problem
initial conditions, consisting of two regions of piecewise-constant data separated by a
discontinuity. The time evolution of this initial data comprises a number of separated,
propagating waves, equal in number to the distinct characteristic speeds (fig. 3.2 shows an
example). There are two possibilities for the shape of these waves.

A fan is an expanding similarity structure propagating at the local characteristic speed
everywhere. The front propagates at the characteristic speed of the material ahead of
it, and the characteristic speed decreases across it. These are normally associated with
rarefaction waves since physically, decreasing the sound speed is achieved by lowering the
density.

A shock is a steady similarity solution. With no higher order terms, these necessarily
consist of discontinuities moving at a speed higher than the characteristic speed ahead of
the shock and lower than behind it.

In addition, a contact is a wave with a jump in solution across the wave that does not
change the characteristic speed, and they propagate at exactly the characteristic speed.
Contact waves can be degenerate (multiple linearly independent wave-jumps with the
same speed) without affecting the desirable strong hyperbolic property of the system
(LeVeque, 2002, §16.2).

Figure 3.2.: Schematic of waves arising from one possible Riemann problem for the
hyperelastic system. There is one rarefaction fan (second left-going wave,
shown with many lines), five shock waves (solid lines) and a contact wave
(the dotted line).

3.2.2. Characteristic structure of the solutions

A general hyperbolic system can be written in quasi-linear form as

wt +A (x)wx = 0 (3.42)
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where w is the vector of primitive variables, andA = ∂ f /∂w is the Jacobian, with f
the vector of conservative fluxes.

It can be demonstrated that the system of equations comprising eqs. (3.30), (3.31)
and (3.39) is hyperbolic by showing that the eigenvalues ofA are real. The vector of
primitive variables in this case is w = (v,F , S). At this point, we switch to using full
tensor notation, but only because it is more compact, and the discussion holds equally
well for Cartesian tensors.

This system may be written compactly as follows











v̇ l

Ḟ m
n
Ṡ











=











vαδ l
i −Aαl k

j −Bαl

−F αn δ
m
i vαδm

j δ
k
n 0

0 0 vα





















v i
;α

F j
k ;α

S;α











(3.43)

where Ai j l
k
= 1

ρ
∂σ i j

∂F k
l

, B i j = 1
ρ
∂σ i j

∂ S , and the ‘0’ elements of the matrix are zero tensors of

the correct type (that is, with the correct number and placement of indices, and every
component equal to zero).

This matrix equation should be interpreted as follows. Each tensor appearing as an
element of the above matrix is a submatrix of an overall 13× 13 matrix. Each index ranges
over each spatial coordinate direction, 1≤ i , j , k , l , m, n,α≤ 3. The overall matrix-vector
product can be computed term by term, summing over repeated indices. The free indices
then match those on the left-hand side of the equation. We should emphasize that this
compact notation can always be written in the more conventional way of an explicit
matrix by writing out each component, with the i , j , k appearing in the matrix indexing
rows of a submatrix, and l , m, n indexing columns. The indices i , j , k appearing in the
vector on the right-hand side, and l , m, n on the left-hand side would all index rows in the
expanded form. When more than one index appears for a row index on a given term, they
are ‘flattened’ in a consistent order, and treated as a row of length nine. The remaining
index α is normally fixed along one axis and summed over explicitly when written in the
expanded form.

The index α refers to a component in one direction of propagation. Henceforth, we
consider a one-dimensional system along a direction n, and we omit the index ‘α’ in the
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above system for brevity, writing instead

v = nαvα

Ai j
k
= nαAαi j

k

Fi = nαF αi
etc.

The eigenvalues of the Jacobian are the linearized wave speeds. The characteristic
equation is

det











(v −λ)δ l
i −Al k

j −B l

−Fnδ
m
i (v −λ)δm

j δ
k
n 0

0 0 v −λ











= 0. (3.44)

Expanding the determinant in the last row, this becomes

(v −λ) det







(v −λ)δ l
i −Al k

j

−Fnδ
m
i (v −λ)δm

j δ
k
n






= 0. (3.45)

It is useful to note the following identity for a block-partitioned n× n matrix:

det

 

A B
C D

!

= det(A−BD−1C) det(D ), (3.46)

where A is k× k, B is k× (n− k), C is (n− k)× k and D is (n− k)× (n− k). From this
identity, eq. (3.45) becomes

(v −λ) det






(v −λ)δ l

i −
Al k

i Fk

(v −λ)






det
�

(v −λ)δm
j δ

k
n

�

= 0, (3.47)

and
(v −λ)7 det

�

(v −λ)2δ i
j −Ω

i
j

�

= 0 (3.48)

where the acoustic tensor is defined as

Ωi
j =Ai k

j Fk . (3.49)

We see that there is a sevenfold degenerate wave, with wave speed λ= v , and the remaining
waves have speeds such that (v−λ)2 is an eigenvalue of the acoustic tensor. This admits six
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3.3. The Equation of State

waves, with three either side of the wave with λ= v, provided that the three eigenvalues
of the acoustic tensor are real and positive.

For the system to remain strongly hyperbolic, the waves with repeated eigenvalue
should be linearly degenerate: a change in the solution parallel to an eigenvector r
therefore should not affect the corresponding eigenvalue λ to first order:

(r (q) · ∇q )λ(q) = 0. (3.50)

To show this, note that the repeated eigenvalue is just v , so look for eigenvectors of the
form (0,F , S). Since a change in the solution by this amount does not affect the velocity,
neither does it affect the wave speed. These must satisfy

Al k
j F j

k
+B l S = 0, (3.51)

which is the kernel of a linear system of three equations in ten variables, which in the
general (full rank) case, has seven dimensions, so seven eigenvectors of this form can
indeed be found in general.

A sufficient condition for hyperbolicity is for

∂σαi

∂ F j
β

> 0 (3.52)

for all i , j ,α and β, which is just the condition of convexity on the equation of state.
The full set of eigenvectors are not given here, but are derived analytically in terms of

the acoustic tensor for this system by Barton et al. (2009), and for a similar elastic-plastic
system by Miller and Colella (2001).

3.3. The Equation of State

We have considered here an elastic formulation with an energy function, from which we
can obtain stresses (and therefore the dynamical behaviour of the material) via eq. (3.20)
or similar. The existence of such a strain energy function makes this a hyperelastic
constitutive model. Several popular choices of constitutive model for nonlinear elasticity
have used a hypoelastic formulation, where no such strain energy function exists. This is
problematic because the energy of a deformed configuration depends on the precise path
of deformation, which seems contrary to experience, even if Cauchy elasticity permits it.
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3. Continuum Modelling of Solids

Moreover, it is possible to find a closed cycle of deformation that results in a net increase
in strain energy (Carroll, 2009, citing Rivlin).

For an anisotropic equation of state, the initial orientation of the material is important.
This orientation is built into the equation of state.

F = F elF orient (3.53)

where F orient is a rotation matrix. F el is maintained by the system (that is, it is the ‘F ’
appearing in eq. (3.39)), and satisfies the compatibility constraint, but the energy and
stress depend on F .

We do this by introducing the orientation as an advected quantity,

∂t (ρF orient
i j )+ ∂k (ρvk F orient

i j ) = 0. (3.54)

The orthogonality of F orient is preserved by the flow, since from the continuity equation,
eq. (3.54) can be expressed, dropping the ‘orient’ label for brevity, as:

∂t Fi j + vα∂αFi j = 0, (3.55)

so that

∂t (Fki Fk j ) = Fki∂t Fk j + Fki∂t Fk j (3.56)

=−vα(Fki∂αFk j + Fk j∂αFki ) (3.57)

=−vα∂α(Fki Fk j ). (3.58)

If Fki Fk j = δi j everywhere initially, then the final expression is zero, so it remains
orthogonal at all later times. This constraint can be strongly enforced in a numerical
scheme by mapping back to a nearby orthogonal matrix, to remove any drift from
orthogonality (Higham, 2008, §2.6).

In a one-dimensional problem, with two crystal orientations present, we can keep
track of a single scalar quantity representing the crystal orientation at a given location as
a fractional rotation between the two orientations, in lieu of eq. (3.54).

This is a particularly simple special case of an interface problem in a multi-material
system. The above description treats interfaces between orientations as diffuse, with a
mixture model provided by the equation of state itself.
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3.4. Eulerian finite-volume methods

3.4. Eulerian finite-volume methods

In solid mechanics problems, the preferred way of representing the domain has tradi-
tionally been in the Lagrangian frame (computational cells deforming with the material)
rather than the Eulerian frame (a grid of cells at fixed positions in space). There are a
number of reasons to favour a finite-volume method in an Eulerian frame for certain
solid problems, however.

First, the method does not break down under large deformations due to a highly
distorted mesh, which can be a problem in a Lagrangian formulation. This can mean that
a simulation domain contains cells with a small length along one or more dimensions, lim-
iting the timestep and therefore reducing the accuracy and increasing the computational
cost of the simulation.

Second, the field of shock-capturing methods in an Eulerian, finite-volume setting is
mature and well-understood, and we are partly motivated by the solution to problems
containing shock-waves. The principal advantage of a finite-volume scheme in this
situation is that it is conservative and therefore the shock jump conditions are guaranteed
to be satisfied. Non-conservative formulations suffer from incorrect wave speeds.

Third, simulations of fluids typically are solved in an Eulerian frame for the reasons
given above. Using the same frame for the solid makes simulations of coupled fluid-solid
problems convenient, although we do not consider this here.

The equation of state model developed in chapter 4 is independent of the method used
to represent the domain or solve the hyperelastic system, and could also be used with a
Lagrangian representation, but we assess the performance of the equation of state model
using an Eulerian finite-volume code.

A general conservation law has form

qt + f (q)x = 0 (3.59)

where q is a vector of conserved variables and f is the vector of fluxes. To admit weak
solutions (shock waves), where the derivatives are undefined, we instead write this as

∫ x2

x1

[q(x, t2)− q(x, t1)] dx +
∫ t2

t1

[f (q(x2, t ))− f (q(x1, t ))] dt = 0 (3.60)

in any region [x1, x2] and [t1, t2].
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3. Continuum Modelling of Solids

In a finite-volume representation (with a uniform grid ∆x and timestep ∆t ) our data
represent averages over the whole cell. At timestep n, and for cell i centred on xi ,

Qn
i =

1

∆x

∫ xi+∆x/2

xi−∆x/2
q(x, t n)dx. (3.61)

A forward-Euler update step for a finite-volume representation of eq. (3.59) is

Qn+1
i =Qn

i −
∆t

∆x
(f n

i+1/2− f n
i−1/2). (3.62)

The numerical fluxes f n
i±1/2

= f (q(xi±∆x/2, t n)) are evaluated at the cell interfaces. This
guarantees q is conserved over the whole domain.

Since the value of q is not known at the cell interfaces, only its average over the whole
cell, the fluxes must be approximated there. The first-order centred (force) numerical
flux is defined as

f force

i+1/2 (Qi ,Qi+1) =
1

2
(f ri

i+1/2+ f lf

i+1/2) (3.63)

where the Lax-Friedrichs flux is

f lf

i+1/2 =
1

2

�

f (Qi )+ f (Qi+1)+
∆x

∆t
(Qi −Qi+1)

�

(3.64)

and the Richtmyer flux is
f ri

i+1/2 = f (Qn+1/2
i+1/2

), (3.65)

where,

Qn+1/2
i+1/2

=
1

2

�

Qi +Qi+1+
∆t

∆x

�

f (Qi )− f (Qi+1)
�

�

. (3.66)

The motivation for defining a flux in this way is that while still first order accurate in
space, the error has been reduced by a constant factor in combining first and second
order fluxes—equal weighting is the greatest reduction in error while still avoiding
the undesirable feature of using a linear second-order method, of spurious oscillations
introduced around large gradients in the solution. See Toro (2013, §§7.4.3, 18.2.1).

The flux depends on the state immediately to the left and right of the interface between
cells i and i +1. In the expressions above, these are taken as the averages over the entirety
of the cells, Qi and Qi+1. This amounts to assuming a piecewise constant reconstruction
of the solution from the cell averages.

One approach to higher orders of spatial accuracy of the method is to perform a
higher-order reconstruction of the solution, and evaluate the fluxes at the reconstructed
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values at the cell interfaces. The numerical flux is then

fi+1/2 = f force

i+1/2 (Q̃
L
i+1/2,Q̃R

i+1/2), (3.67)

where Q̃L
i+1/2 is the reconstruction at the left-hand side of the interface.

An interface reconstruction affects only the spatial order of accuracy. Discretization
in time should have the same order of accuracy for the method to have the same overall
order.

3.4.1. WENO reconstruction

One such method of reconstruction is the weighted essentially non-oscillatory (weno)
approach described by Jiang and Shu (1996); Liu et al. (1994), a family of schemes of any
desired order of accuracy for smooth solutions. This built on the earlier eno scheme (Shu
and Osher, 1988). The idea is to perform several piecewise polynomial interpolations of
the cell-averaged solution (at different points of a stencil), before choosing the smoothest
combination of these interpolants (in a certain sense, defined below). A review of
high-order weno schemes is given by Gerolymos et al. (2009).

The resulting schemes can be shown not to suffer from Gibbs’ phenomenon at discon-
tinuities. It may still produce some spurious oscillations, however, but ones that decay
polynomially with resolution O(∆x l ), instead of the O(1) local error that characterizes
Gibbs’ ringing.

The weno-5 reconstruction takes a five point stencil centred around cell i , and produces
three reconstructions of the solution at i + 1

2 using three subsets of the stencil points:

w0 =
1

3
wi−2 −

7

6
wi−1 +

11

6
wi (3.68)

w1 =−
1

6
wi−1 +

5

6
wi +

1

3
wi+1 (3.69)

w2 =
1

3
wi +

5

6
wi+1 −

1

6
wi+2. (3.70)

The final reconstruction is a linear combination of these intermediate reconstructions,

wi+1/2 =ω0w0+ω1w1+ω2w2. (3.71)
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The ideal weights are ω̂ = (0.1,0.6,0.3), which are used for a smooth solution. These are
modified according to the smoothness indicators

β0 =
13

12
(wi−2 − 2wi−1 + wi )

2 +
1

4
(wi−2 − 4wi−1 + 3wi )

2 (3.72)

β1 =
13

12
(wi−1 − 2wi + wi+1)

2 +
1

4
(wi−1 − wi+1)

2 (3.73)

β2 =
13

12
(wi − 2wi+1 + wi+2)

2 +
1

4
(3wi − 4wi+1 + wi+2)

2 (3.74)

as
αi =

ω̂i

ε+β2
(3.75)

and the weights used are found by normalizing

ωi =
αi
∑

αi
, (3.76)

where the purpose of ε is to prevent division by zero, and can by small.
This reconstruction is nominally fifth-order accurate, but can degenerate into third-

order accuracy for some (smooth) problems—see the example below. A fix to provide a
fifth-order accurate reconstruction from the same stencil (and in general, nth order from
weno-n ) while still retaining the favourable eno property is provided by Henrick et al.
(2005). This is known as mapped-weno, or wenom.

Even though oscillations near discontinuities are not as severe as a straightforward
polynomial reconstruction, they are still present and can be intrusive. The mpweno

scheme of Balsara and Shu (2000) leaves the reconstruction on slowly varying solution
regions untouched, but limits the value of the reconstruction near sharp changes in the
solution, to obtain a monotonicity-preserving scheme.

Titarev and Toro (2004) note that for systems of equations, the reconstruction can
perform quite badly unless it is done on the characteristic variables (eigenvectors of the
Jacobian in the quasi-linear form), and not the conserved or primitive variables themselves.
Obtaining the characteristic decomposition could be quite expensive (depending on the
system) so may be not be worth the trade off. We note here that it is possible to use a
reconstruction on non-characteristic variables in the hyperelastic system provided the
limiting parameters are chosen quite conservatively. Similar conclusions were reached by
Qiu and Shu (2002).
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One advantage of using this approach is that reconstruction-based approaches to
high order do not depend on details of the hyperbolic system, although monotonicity-
preserving high-order methods are possible based on computing the fluxes.
weno requires a strong-stability-preserving time integrator to be stable. See Gottlieb

et al. (2001) for several such schemes (for linear and nonlinear problems).

3.4.2. Validation results

Several validation tests are given below for the hyperbolic solver. We use centred fluxes
with weno reconstruction.
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Figure 3.3.: Convergence of L∞ error for weno-5 and wenom-5 for linear advection of the
profile shown in the inset.

As a test of the weno scheme, an initial profile given by

sin(πx − sin(πx)/π) (3.77)

for x ∈ [0,1) and resolved with N cells is advected through a periodic domain. The
fifth-order `-ssprk timestepping described in Gottlieb et al. (2001) was used. The error
for the weno-5 and wenom-5 schemes is shown in fig. 3.3, achieving third and fifth order
accuracy, as expected for this test case.

Two tests described in Barton et al. (2009) are performed for the hyperelastic system,
using mpweno-5 reconstruction of centred force fluxes. The timestepping was third-order
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Table 3.1.: Hyperelastic test problems from Barton et al. (2009).

uL FL SL uR FR SR

(km/s) (kJ/g/K) (km/s) (kJ/g/K)

Test case 1











0
0.5
1





















0.98 0 0
0.02 1 0.1

0 0 1











10−3











0
0
0





















1 0 0
0 1 0.1
0 0 1











0

Test case 2











2
0

0.1





















1 0 0
−0.01 0.95 0.02
−0.015 0 0.9











0











0
−0.03
−0.01





















1 0 0
0.015 0.95 0
−0.01 0 0.9











0

strong stability-preserving Runge-Kutta. Both test problems have Riemann-problem
initial conditions of two uniform regions separated by a discontinuity at x = 0.5. They
are given in table 3.1, assuming the Romenski equation of state parameterized for copper
(eq. (a.5), table a.1). The results are shown in Figures 3.4 and 3.5 (pages 47 and 48).

Since the exact solutions involve discontinuities, it is possible to achieve at best globally
first-order accurate numerical results. The solutions compare favourably with the results
of Barton et al. (2009), despite using centred fluxes. For this reason, in the first test
the jumps in transverse stress (but not in longitudinal stress) are captured over 7–8 cells
instead of the six cells of Barton. The longitudinal shocks are captured equally well
in both results, over three cells (varying with the strength of the wave). A number of
artifacts due to the weno reconstruction on the primitive variables are visible, particularly
in the leftmost wave of the u1 profile of fig. 3.4, and the overshoots on the two narrow
regions between waves in the σ12 profile in the same figure.

The second test shows a strong heating effect at the central contact discontinuity, which
reduces slowly with resolution. It must be run with a low CFL number (here 0.4) to
avoid the onset of persistent oscillations in the entropy profile.
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Figure 3.4.: Test case 1 from Barton et al. (2009, fig. 2), solved using mpweno-5/force,
with a cfl number of 0.6. The black points are the solution on a 500 cell grid,
and the red line a reference calculation on a highly converged grid, shown at
time t = 0.6µs.
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Figure 3.5.: Test case 2 from Barton et al. (2009, fig. 4), solved using mpweno-5/force,
with a cfl number of 0.4. The black points are the solution on a 500 cell grid,
and the red line a reference calculation on a highly converged grid, shown at
time t = 0.6µs.
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4. An Equation of State Model from First

Principles Molecular Dynamics

4.1. Introduction and Motivation

An equation of state (eos) is a central part of any continuum mechanics simulation,
representing the properties of the specific system being simulated. For solid mechanics
simulations, there are several regimes of interest, from low-strain elasticity at constant
temperature, through to large strain and high strain-rate problems, where the material
may have yielded or fractured. Often, both kinds of behaviour are present in the same
problem. For example, a high speed impact may result in high stresses near the point of
impact, but with elastic waves of low peak stress propagating far into the surrounding
material. Beyond elasticity, effects such as plasticity and yield, work-hardening for ductile
materials and fracture can be incorporated into a continuum solid-mechanics simulation,
but a good elastic model is required upon which to build these other effects.

Coupled simulations of molecular dynamics and continuum mechanics provide another
motivation for having a consistent material description for both frames, including the
required anisotropy (Abraham et al., 1998; Curtin and Miller, 2003; Miller and Tadmor,
2009). Several of the methods described by the latter review articles can work with finite
temperatures and nonlinear elasticity.

Equations of state as used in many branches of continuum mechanics (for fluids,
elastic-solids and solids or fluids with more complex behaviour), are typically simple
analytic forms or tables. The main (and considerable) advantage of this approach is that
these forms may be evaluated quickly; even then, equation of state evaluations can still
form the bottleneck of a computation. The disadvantage of this approach is that a given
prescribed form may not be able to capture the shape of the deformation energy surface
of a material well. Likewise, a tabular approach has difficulty being extended to the
number of dimensions present for anisotropic elasticity.
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Molecular dynamics provides a way of sampling the energy of a material as a function
of, say, temperature and density, and therefore its equation of state. The material of
interest is described by atoms interacting via a given potential. It is possible to use a
first-principles technique such as density functional theory to compute the forces between
the atoms and the equation of state is then truly a predictive, first-principles result.

The relation between continuum elasticity and a deforming atomistic lattice is made
at zero temperature by the Cauchy–Born rule. This states that, for a lattice with a basis,
the elastic strain energy of a deformation is the local minimum over the configuration
of the basis atoms, for lattice vectors deformed from the original configuration by the
deformation gradient (Weinan and Ming, 2007). At finite temperature, the new lattice
vectors are obtained in the same way, but the basis atom positions are retained as degrees
of freedom.

In this chapter, we demonstrate a method for determining the temperature-dependent
hyperelastic equation of state for an anisotropic material from first-principles molecular
dynamics. A method is considered for finding deformed states of a material on the same
isentrope as a given starting configuration. The energies and stresses of a number of
points are sampled from dft molecular dynamics using this method, over a given range
of the seven dimensional space of deformation and initial energy (of the undeformed
configuration). The full energy surface within this range can then be reliably recon-
structed using Gaussian process regression and stresses also found analytically. Validation
of the reconstruction is provided by applying it to an analytic equation of state, and we
perform convergence tests with empirical interatomic potentials. An equation of state
model is constructed for dft silicon, and demonstrated within a finite-volume continuum
elasticity simulation.

We are particularly interested in applications involving shock waves, and this motivates
many of the continuum initial-value problems considered in section 4.6. Henderson
(2001) gives an overview of the effect of the equation of state on shock wave propagation,
although this work is limited to the hyperbolic, convex case.

4.2. Related Work

Swift et al. (2001) consider a quasiharmonic phonon approach to producing an isotropic
equation of state for silicon, relying on a thermodynamic integration of E(V ,T ) to obtain
the entropy for a complete eos (E(V , S)). This approach works for large temperature
and pressures (where the constant-entropy approximation of our approach would fail.)
It requires simulating isochores down to absolute zero, where the thermodynamic inte-
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grand has a (removable) singularity, perhaps creating some numerical difficulties. Their
primary consideration in producing this eos is, like us, continuum simulations involving
shock waves, to high pressures, including phase changes. A similar approach is taken
by Chentsov and Levashov (2012), who use (for a liquid) a sampling in density and
temperature before solving an ODE to find the internal energy as a function of density
and entropy. For a fluid phase, this amounts to solving
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but a similar procedure could also be used for a solid phase.

4.3. Isentropic Deformation

As discussed in chapter 3, we express deformations using the Finger tensor, G . The
Cauchy stress can be computed as a derivative of internal energy at constant entropy
(eq. (3.20)),

σi j =
ρ0

detF
Fi k

�

∂E

∂Gl m

�

S

∂Gl m

∂ F j k
. (4.4)

This suggests using E(G , S) as the most convenient form of eos. Since we have no other
need for the entropy, we do not calculate it, and instead define a reference energy E0 as
the total energy (kinetic and electronic) of the material when it is adiabatically brought
to the reference configuration from the deformed configuration. This depends only on
the entropy, so can be used to label the isentropes. The eos can then be expressed as
E(G , E0), and

�

∂E

∂G

�

E0

=
�

∂E

∂G

�

S

. (4.5)

We show that it is feasible to extract states along an isentrope directly with molecular
dynamics in a slowly deforming box.
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4. An Equation of State Model from First Principles Molecular Dynamics

4.3.1. Slow deformation isentropes with molecular dynamics simulation

Molecular dynamics can be formulated as a Hamiltonian system, with generalized po-
sitions q = (qα)Nα=1 and momenta p = (qα)Nα=1, where α is an index over the atoms
and q and p correspond to the absolute position and physical momenta of the parti-
cles. We work within periodic boundary conditions, specified by the matrix of box
vectors L = (l1, l2, l3), and allow this to vary with time, L = L(t ). This means that the
atoms interact via a periodic potential V , where for any i , and for any vector of integer
coefficients, a,

V (q1, . . . , q i−1, q i + aTL(t ), q i+1, . . . , qN ; L(t )) =V (q; L(t )), (4.6)

and a Hamiltonian involving these coordinates is

H =
N
∑

α=1

pα · pα

2mα +V (q; L(t )). (4.7)

The procedure depends on a slowly varied parameter in a Hamiltonian system preserv-
ing the entropy to first-order in the rate of variation of the parameter. To simplify the
following argument, suppose that the Hamiltonian depends on only a single parameter L
(instead of the matrix L), which is varied slowly. The rate of increase of entropy of the
system may be expressed as a series expansion in the rate of change of the parameter (see
e.g. Landau and Lifshitz, 1980):

dS

dt
= a0+ a1

dL

dt
+ a2

�

dL

dt

�2

+ . . . . (4.8)

The coefficient a0 is zero, since in thermodynamic equilibrium, the entropy will remain
constant. The crucial observation is that a1 is also zero, since if it were not, L could be
varied so as to decrease the entropy.

The conclusion is that
dS

dL
=

dS

dt

,

dL

dt
= a2

dL

dt
, (4.9)

which may be made arbitrarily small by decreasing the rate of variation of the parameter
L.

For the convenient evaluation of the potential, we wish to keep track of the location
of the atoms within a single periodic cell with 0 < (L−1qα)i < 1 for each atom α and
each spatial coordinate i , and have these interact with the atoms in a number of periodic
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4.3. Isentropic Deformation

image cells within a finite cutoff. Changing the box vectors may cause an atom to
leave this central simulation cell. It could also leave this cell due to its motion taking it
across the boundary of the cell. It is convenient, and common in molecular dynamics
codes, to remap the position of the atom back into the central simulation cell. Note
that the time evolution of the Hamiltonian system is expressed only in terms of the
unremapped positions, so any remapping must be done only for the purpose of evaluating
the potential.

Alternatively, we can use a canonical transformation to adjust the atom’s velocity when
mapping its position back into the central periodic cell, while preserving the Hamiltonian
structure (and therefore eq. (4.9)). A canonical transformation is a change of coordinates
from (q, p) to (Q,P) in the original Hamiltonian H that results in another Hamiltonian
Ĥ , and therefore the same dynamics. It can be shown that a generating function of the
form G(q,P , t ) results in a canonical transform via the implicit relations

p =
∂G

∂ q
(4.10)

Q =
∂G

∂P
(4.11)

Ĥ =H +
∂G

∂ t
. (4.12)

Consider a generating function

G(q,P , t ) = (q −R(t )) ·P , (4.13)

where R(t ) is some time dependent translation vector of the atoms. For this choice,

p = P (4.14)

Q = q −R(t ) (4.15)

Ĥ (Q,P) =H (q(Q,P), p(Q,P))− Ṙ ·P . (4.16)

The new momenta are the same as the original. Choosing

R(t ) = (aT1 L(t ), . . . ,aTN L(t )), (4.17)

with ai a vector of integers for every 1< i <N , the new positions are also the same as the
original positions, but with each atom translated by a lattice vector. This can always be
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4. An Equation of State Model from First Principles Molecular Dynamics

done to result in Qα being inside the central periodic cell. Since the potential is periodic,

Ĥ (Q,P) =H (Q,P)− Ṙ ·P . (4.18)

The system evolves in time via Hamilton’s equations

Q̇α =
Pα

mα − Ṙ(t ) (4.19)

Ṗα =−∇QαV (Q; L(t )). (4.20)

The box deformation rate L̇ (and therefore Ṙ) is time dependent. The kinetic energy
density and kinetic stress tensor are only meaningful when Ṙ = 0: these quantities should
be computed in terms of the atomic velocities under zero deformation rate, Pα/mα.

For a constant deformation rate, adjusting the velocity by the deformation rate as
described above, but not adjusting for this when computing the energy and stress results
in an energy error proportional to the deformation rate, the same order as from eq. (4.9).
For a solid undergoing elastic deformation, the number of components of atomic position
outside of the central box is small, and so too is the deformation rate of the cell, so that
the error in the kinetic energy is small.

4.3.2. Momentum scaling approach

Other approaches based on transforming a Hamiltonian are possible. In particular, the
following alternative procedure. The box vectors L are varied slowly as before. Instead of
leaving the absolute atomic positions unchanged (along with the remapping procedure if
needed), we can alternatively scale the atomic positions along with the box. By Liouville’s
theorem, adjusting the position alone in general results in a change in phase space volume,
which is proportional to the entropy. The correct way of achieving this is via another
canonical transformation, with generating function

G(P , q) =−
∑

α,i , j

Fi j q
α
j Pαi , (4.21)
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leading to

Qα =−
∂G

∂Pα = F qα (4.22)

pα =−
∂G

∂ qα
= FTPα (4.23)

Pα = F−Tpα. (4.24)

4.3.3. Numerical test cases

As discussed above, the entropy change is asymptotically linear in the box deformation
rate. In this section, we find the rate of change of entropy as a function of the deformation
rate for several silicon systems, in order to verify that we obtain linear convergence in
the entropy change when performing a numerical simulation of the deformation, and to
demonstrate that for the system of interest the error is acceptable at practical deformation
rates.

If the compression is indeed isentropic, dS = 0 for the whole of any deformation path
path, and so, by the second law of thermodynamics

dE = σF−T : dF . (4.25)

The expression above holds in equilibrium, for ensemble averages of the quantities in it.
To use it, after each small increment in box length, the stress should be allowed to relax
to its equilibrium value by running the simulation unperturbed by box deformations.

Since we have microscopic control over the particles in our simulation, we may
inadvertently cause the entropy to decrease (as a Maxwell’s Demon), so we cannot
necessarily rely on dS ≥ 0 for any conceivable process. For this reason, it is not enough
to obtain convergence in just the total energy change (∆E ), since it might be the case
that (for example) the entropy decreases under compression only to increase again on the
expansion, for zero overall change.

Rearranging eq. (3.16), the entropy change is given by

dS =
dE

T
−

1

T
(σF−T) : dF , (4.26)

where we write ’:’ to mean double tensor contraction. This is true provided that these
quantities are understood to mean ensemble averages.
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4. An Equation of State Model from First Principles Molecular Dynamics

Test case: uniaxial compression of an elastic solid

To demonstrate the consistency and numerical accuracy of the procedure, we perform
the following test. We consider uniaxial compression of a 64 atom box of Tersoff silicon
in cubic diamond structure initially at 300K and zero stress. The final strain has 0.9
relative volume. This compression is then undone at the same rate until it returns to
the starting volume. Numerically, this is done by changing the simulation box shape in
small increments, with a relaxation time between each increment of 100 fs in this example,
during which the system is evolved using Verlet integration, but is unperturbed by box
changes.
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Figure 4.1.: Convergence of the estimated isentropic energy change of Tersoff silicon
initially at 300K and zero pressure, under uniaxial elastic compression to
0.9 relative volume, with the total time of the deformation. 100 fs was left
between each box increment to allow the system to relax to equilibrium.

Figure 4.1 shows the convergence in the estimate of the energy of an isentropic uniaxial
elastic compression. Correspondingly, fig. 4.2 shows the convergence of the internal
energy change and total work performed of a complete compression/expansion cycle.
It is possible to perform the deformation using 50 box increments (corresponding to a
deformation time of 5ps) to obtain an energy difference relative to the peak of 0.5%.
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Figure 4.2.: The change in ensemble-averaged total energy and work done by the proce-
dure described in the text, after a deformation to a strained state and a release
to the starting state. For an isentropic process, this value should be zero.
In the elastic case the converged value of the energy difference at maximum
strain was 102meV/atom, and in the liquid case it was 145meV/atom.

Test case: Liquid Tersoff Silicon, 2500 K

As an additional test, starting from an undeformed configuration (which in this case
is well-equilibrated liquid Tersoff silicon at 2500K), the simulation box is uniaxially
deformed to a volume compression of 0.8 at a constant rate. This compression is then
undone at the same rate until it returns to the starting volume, as in the previous test.
As before, this is done by changing the simulation box shape in small increments, with a
relaxation time between increments of 100 fs. Note that if we are genuinely interested
in isentropic compression of a fluid, it would be more efficient to use an isotropic
compression, to avoid the artificial relaxation time to a hydrostatic stress configuration.
However, we consider this test case precisely because the relaxation time effect provides a
difficult situation for convergence. Note that long-time energy conservation from Verlet
integration under these conditions demanded a time step of 0.1 fs.

In general, the observations from this simulation are very similar to those in the
previous section, but a shorter relaxation time and overall simulation time is required for
a comparable accuracy in the final estimated isentropic energy.
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Figure 4.3.: Total energy and total work performed on the simulation box (computed
as pressure integral—see text) for a simulation with deformation time 200ps.
The relaxation time between each volume change was 100 fs.

For this case, the relaxation of the virial stress from a series of successive small incre-
ments is shown in figs. 4.3 and 4.4. In this case, the overall rate of change is consistent
with taking 2000 steps for the full deformation to 0.8 volume compression. It can be seen
that equilibration after the step happens over a timescale ∼100 fs.

Using shorter relaxation times should also eventually converge, since each box incre-
ment causes a smaller initial perturbation in the virial stress, although the meaning of the
virial stress when it has not yet converged is unclear.

The entropy rate is shown in fig. 4.5, which is roughly constant for this particular de-
formation process. The cause of the deviation from linearity for the slowest deformations
is not clear.

Figure 4.2 shows the effect of the speed of the deformation on the total energy change
and the corresponding integral of the virial stress, when 100 fs are left between successive
steps. Both can be seen to converge to zero, although to obtain a difference of 1meV/atom
(0.5 % of the total), a very slow deformation is needed (2000ps ≡ 2× 107 time steps).

To estimate the isentropic energy change from this figure, half the total energy change
is subtracted from the internal energy at maximum deformation. Another estimate is
obtained from using the total work instead of the internal energy. Both of these estimates
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Figure 4.4.: Relaxation time of stress in a fluid subject to a uniaxial compression (to a
relative volume of 0.999) over ten timesteps, starting at t = 0, according to
the procedure described in the text. The figure shows the difference between
the (negative) stress parallel to the deformation σlong = σz z and transverse to
it σtransverse =

1
2 (σx x + σyy ). This is computed as an ensemble average over

5000 independent trajectories.
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visible for the final point: the others are too small to be displayed on this plot.
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Figure 4.6.: Convergence of the estimated energy change under isentropic compression
of the fluid to 0.8 relative volume, using the method above at various rates,
always allowing 100 fs between each box increment. The box was deformed
uniaxially, although the stress was isotropic after the relaxation time used.
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are shown in fig. 4.6. Note the different scale to fig. 4.6, with generally a larger number
of box increments taken for the deformation in the liquid case.

Shock loading to the same relative volume causes an internal energy increase of
211meV/atom. This is actually slightly less than the fastest deformation used in the
above procedure here (20ps), which causes an internal energy increase of 214meV/atom.
(Note that the estimated isentropic work in this case is 153meV/atom, which is still close
to the converged value of 146meV/atom).

4.3.4. Isentropic deformation summary—expected accuracy of the procedure

The relaxation time of 100 fs used in the previous examples results in long deformation
times, suitable for empirical potentials, but too long to be practical for dft simulation.
However, we can rely on the observation that reducing the equilibration time between
steps to 10 fs does not introduce much extra error for relatively rapid deformations. It
does seem to make the method ultimately converge more slowly, for deformations over
longer times, but in practice we can apply deformations to stresses of tens of GPa over
∼1ps on 64 atom cells and achieve relative errors in the total energy of the strain of
around 1%, and error in the strain energy computed by integrating the work of 0.2%. We
observe that the behaviour is not strongly dependent on system size.

4.4. Sampling and Reconstruction

Molecular dynamics simulations allow the thermoelastic energy surface to be sampled at
a number of discrete points. These points must be interpolated to evaluate the energy of
a particular arbitrary deformation at a given temperature. This requires the choice of a
suitable interpolation method, and a procedure for choosing the sampling points.

We use Gaussian process regression for the interpolation (MacKay, 2003; Rasmussen
and Williams, 2006), motivated by a number of considerations. First, its ability to handle
multi-dimensional data. Second, the fact that (with a suitable covariance function) the
interpolated function is smooth: we require the interpolant to have continuous second
derivatives, since these appear in expressions for the wave speeds, and otherwise unphysical
wave-splitting occurs. Third, it can incorporate derivative observations (obtained from
the pressure) into the fit, and is able to conveniently predict derivatives of the interpolated
function (and therefore pressures). At additional expense, we can obtain an estimate of
the error in the prediction. We do not use this directly, but it is useful for validation
purposes.
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4. An Equation of State Model from First Principles Molecular Dynamics

The sampling is performed by choosing the Finger tensor G (eq. (3.18)), and the
uniformly at random over a problem-specific domain of interest, before converting this
to a deformation gradient F (by a Cholesky decomposition), and thence to a target
lattice (F L). Random sampling in low dimensions suffers from the drawback of unevenly
distributed points. There is a high probability of choosing two points that are too close to
one another, compared with ideally-packed points. In seven dimensions, random sampling
does not suffer as badly from this drawback, and the probability of two points being “too
close” (that is, much closer than two points picked as the centres of neighbouring spheres
from an optimal packing) is quite small (Conway and Sloane, 1995).

The sampling domain can be chosen to generously include the range over which the
deviatoric part of the strain1 is expected to be less than or equal to the yield criterion
according to, for example, a continuum plasticity model, and with the isotropic part
of the strain less than some bound. For the eos given here, we chose simply to sample
each component uniformly and independently over a range of [0.9,1.1] for the diagonal
components and [−0.3,0.3] for the off-diagonal components. The initial energy E0 was
sampled by setting an initial temperature of between 0K and 900K.

The reference energy is the dominant contribution to the energy. To improve the
fitting process, the energy is partitioned as

E(G , E0) = E0+ E ′(G , E0), (4.27)

where E0 is the energy of the undeformed configuration at the initial temperature, and
E ′ is defined as the difference between the total energy and E0 for a given G . The
interpolation is then applied to E ′.

4.4.1. Details of the Gaussian Process

An overview of Gaussian process regression is given in appendix B.
We use a squared exponential covariance function eq. (b.3), between energy obser-

vations taken at inputs consisting of pairs of Finger tensor and initial energy, x (1) =
(G (1), E (1)0 ) and x (2) = (G (2), E (2)0 ). This covariance function is:

C (x (1), x (2)) = σ2 exp









−
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∑

i , j

(G(1)i j −G(2)i j )
2

rG
2
i j

+
(E (1)0 − E (2)0 )

2

r 2
E0

















+ν2δx (1),x (2) . (4.28)

1The deviatoric part of a rank-two tensor ε is the tensor with its isotropic part subtracted:
εDev

i j = εi j −
1
3εkkδi j .
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Covariances between value and derivative observations, and between two derivative
observations, are the corresponding derivatives of this function.

The interpretation of the hyperparameters in the squared exponential covariance
function is as follows: σ sets the overall scale of the inferred function, ν represents
position-independent Gaussian noise in the outcomes that is independent of the inputs,
and ri j is the characteristic length over which the function values become decorrelated as
the distance between the i j th component of the input varies, which may differ between
components of the input. Separate noise hyperparameters are used for value and derivative
observations.

4.4.2. Inverting the equation

When solving the hyperelastic equations (eqs. (3.30), (3.31) and (3.39)) numerically, E
and F are known at a given timestep. In order to evaluate the flux, so as to determine
these quantities at the next timestep, the stress is needed, and since this is a function of F
and S (or equivalently, E0), the equation of state must be inverted to find E0(E ,F ). We
do this with a bounded Newton–Raphson method. The acceptable interval of E0 is set
as the bounds of the training data. If a Newton–Raphson step would take the iterated
solution outside of this interval, a step of bisection search is used instead. This guarantees
convergence to a solution (if it exists), and provides quadratic convergence close to it. If
no solution exists an error condition can be triggered.

The error from the reconstruction is shown in fig. 4.7, from an eos computed from
molecular-dynamics trajectories from an empirical potential, allowing many more to be
sampled. For the databases where gradient information is used, all six components of
the gradient are included for one-sixth of the points in the database. It is observed in the
figure that this is always beneficial, but much more so for small databases, where it can
reduce the error by a factor of four.

The preceding discussion made no assumption about the crystal symmetry of the
material under study. If the material has a symmetry beyond triclinic, we can make use of
this knowledge by transforming a training or sampling point to the corresponding point
in a single inequivalent region under the symmetry. This is primarily to remove from the
fitting process the freedom to produce slightly different values for identical configurations,
but also allows the domain to be sampled more densely for a given number of training
points. It does not reduce the dimensionality of the space, however, but does save a
constant factor (a factor of eight in the case of cubic symmetry). Miller (2004b) gives a
minimal set of invariants for each crystal system.
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Figure 4.7.: Errors from the reconstruction. The energy scale for typical deformations
considered here is 0.1kJ/g. The errors are computed at independent test
points not included in the training databases. These points (unlike those in
the training sets) are themselves ensemble averages. For comparison, the faint
dotted black line indicates the expected inverse square-root scaling.

4.5. Equation of state for DFT silicon

We produce an eos for silicon as described by dft-md, and use it in a numerical simulation
of a weak shock wave interacting with a change in density caused by a temperature
gradient.

The eos presented here was calculated with the Siesta method and implementation of
Density Functional Theory (Soler et al., 2002), using the gga functional of Perdew et al.
(1996).

The core electrons were described with a Troullier–Martins norm-conserving pseudopo-
tential (Troullier and Martins, 1991) with a matching radius in each angular momentum
channel of 1.89 a0. The valence electrons were described with a basis of numerical atomic
orbitals (Junquera et al., 2001) of double-ζ polarized type (representing 13 orbitals per
atom). The basis was generated by fixing the longest orbital cutoffs at 7.0 a0 and varia-
tionally optimising the other parameters in bulk diamond-phase silicon—the final basis
parameters are given in table f.1.

The mesh used for integrals in real-space was well converged at a grid cutoff of 100 Ry.
A 23 Monkhorst–Pack grid of points was used on the 64 atom simulations, to give an
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4.5. Equation of state for DFT silicon

effective cutoff length of 11 Å. We do not consider the thermal electronic contribution,
which is expected to make a small contribution at the temperatures considered. An
artificial electronic temperature of 300 K was used throughout.

Verlet integration modified as described above was used to follow an isentrope, with a
timestep of 1 fs and forces from dft. In all, 480 separate deformations of 64 atom silicon
were performed, with each run for 2ps. For each deformation, an initial configuration
close to the target temperature was obtained by equilibration of the Tersoff potential
on the intended undeformed state, before switching to dft forces and continuing the
integration. The dft forces are integrated for 250 fs before starting the deformation, and
for 250 fs afterwards, to obtain an averaged final temperature.

Table 4.1.: Maximum-likelihood hyperparameters for the Gaussian process equation of
state for silicon. The noise hyperparameters for gradient observations are the
same for each diagonal and off-diagonal component. There are no observations
of the derivative with respect to E0, so the corresponding noise term is omitted.
Characteristic lengths rGi j

are likewise the same for each diagonal component
and for each off-diagonal component.

νE (Ry) νd E/dG11
(Ry) νd E/dG12

(Ry) σ (Ry) rG11
rG12

rE0
(Ry)

7.45× 10−5 0.749 0.330 38.2 0.49 0.36 142

After maximum-likelihood optimization of a Gaussian process containing 960 training
points (all 480 energies and the full gradient for one-sixth of these points), the hyper-
parameters were as shown in table 4.1. Some curves for various paths through the eos

generated this way are shown in fig. 4.8.
Figure 4.9 shows the linear shear modulus at zero stress, as a function of temperature.

It is systematically smaller than than experiment, given by Hull (1999) as 80.36GPa at 0K
and 79.51GPa at 300K. Our value at zero temperature agrees with the gga-dft calculation
of Lazar (2006). The temperature coefficient (c−1

44 dc44/dT ) of −6.3× 10−5 K−1 is roughly
in line with the range of experimentally determined values quoted in the same reference,
of between −7.3× 10−5 K−1 and −1.0× 10−4 K−1.
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4.6. Test problems

4.6.1. Seven-wave test case

This test case is a Riemann problem with appreciable jumps in all seven waves. It is a
slightly modified version of the seven-wave test problem of Barton et al. (2009), for the
silicon equation of state. The original parameters (applying to the Romenski equation of
state for copper) are given as test case 1 in table 3.1: the only difference is that the entropy
in this equation is mapped into an initial energy. The numerical solution is shown in
fig. 4.10. The fastest rightmost wave is a shock, followed by two adjacent rarefaction waves
(the split most clearly seen in u2, and the shear components of the stress). Following this
is the contact wave and two further adjacent rarefaction waves. The final wave is a very
narrow rarefaction wave: the characteristic speed associated primarily with a longitudinal
compression does not decrease much with a reduction in density.

4.6.2. Transverse impact test case

This test case is a modified version of those described by Miller (2004a) and Barton et al.
(2009). It consists primarily of a longitudinal compressive wave, but with additional
(relatively small) shear waves.

A spike in entropy and temperature is visible at the central contact, due to start-up
error from a discontinuous initial condition. The overshoot most noticeable in the second
wave of σ13 and u3 is unphysical and due to the weno reconstruction.

4.6.3. Thermal gradient

The initial density profile for the continuum elasticity simulation is generated from a
temperature gradient from 710K to 80K over 1cm by relaxing the stress to zero in each
computational cell of the domain. A weak shock wave, with post-shock particle velocity
of 0.12kms−1 and longitudinal stress of −2.25GPa, is maintained by the boundary
condition on the left-hand side of the domain.

The density and stress profiles are shown in fig. 4.12 for times before, during and after
the interaction with the density gradient. Most of the energy of the shock is transmitted,
but a small reflected wave can be seen in this figure. The final stress state increases in
magnitude slightly. The speed of the wave increases from 8.29kms−1 to 8.46kms−1,
visible in fig. 4.13.
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Figure 4.10.: Numerical solution to the seven-wave test case, at t = 1µs.
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Figure 4.11.: Numerical solution to the transverse impact test case, at t = 1µs.
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Figure 4.12.: Wave profiles in density and stress for the case of a shock impinging on a
density gradient described in the text, at 1µs intervals of simulation time.
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4.6. Test problems
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this case the shock is not steady, its speed is defined at the location where
the particle velocity reaches half of its post-shock value. The circles are from
direct simulation, and the line is the steady shock speed computed from the
density at that shock location.

4.6.4. Grain boundary test case

The ability to simulate a polycrystalline structure is a possibility with an anisotropic
equation of state. The grain structure of a material can be important in determining its
mechanical properties (as well as other properties, including thermal conductivity where
they contribute to thermal resistance). The grain-boundary orientation distribution
for polycrystalline silicon is described by Ratanaphan et al. (2014). This motivates the
following test problem.

The initial condition has the left half of the domain oriented with [100] in the x
direction and the right half oriented as [110], achieved by choosing Forient to be a rotation
of 45° about the y-axis.

A shock of strength 3.86GPa is maintained with a left-hand boundary condition of
particle velocity 0.2km/s and uniaxial deformation Fxx = 0.976 (with the identity at the
zero stress configuration). The result of this is shown in fig. 4.14. The initial temperature
was 290K, and after the shock, this rises slightly (and nearly isentropically) to 293K.
Several artifacts are visible in the entropy and temperature panels of fig. 4.14: even though

71



4. An Equation of State Model from First Principles Molecular Dynamics

they are small, the jump in solution is also small for this problem. The leftmost artifact is
a start-up error due to the initial location of the shock.

As the shock interacts with the boundary, a small component is reflected, and the
majority of the wave energy is transmitted. A uniaxial compression in the x direction in
material oriented as [110] is not symmetric in the xy plane, and this is seen in the stress
panel of fig. 4.14.
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4.7. Conclusions

In summary,

• This procedure provides a method for reconstructing typical elastic strain-energy
surfaces, using a few hundred training points as input, to an accuracy acceptable for
continuum simulation, and introducing an error not greater than the underlying
density functional theory calculations.

• dft-md simulations were performed for silicon to obtain strain energies and stresses,
paramaterized by deformation gradient and another parameter dependent only on
entropy for elastic deformations of a single crystalline phase.

• The reconstruction is done using Gaussian Process (gp) regression. While slower to
evaluate than simple equation forms (see the note in appendix B), this is a trade-off
against the systematic ability to generate equations of state for any crystalline
material relatively simply, and with assurance that the surface from the regression
is capable of accurately representing the sampled surface, given enough sampling
points. The speed of evaluation may be improved by using a reduced-rank Gaussian
process (appendix B.5) and, where available, using a general-purpose gpu as a
co-processor to perform the equation of state evaluations (appendix B.6).

• The resulting equation of state has a complete form (energy as a function of
deformation and entropy), and the stress from the fit is consistent with the virial
stress from molecular dynamics.

4.7.1. Tabular equations of state

The equation of state we have presented here is, in a certain sense, tabular: the full data
set is available to the Gaussian process regression used for interpolation. Several popular
equations of state for fluids (for example, the extensive sesame equation of state library
(Lyon and Johnson, 1992)) are based on tabular data that are interpolated to calculate
thermodynamic functions at a specific input.

For anisotropic elasticity however, a straightforward tabulation performs poorly be-
cause of the inherent dimensionality of the data. This also restricts any reasonably simple
interpolation strategy to be multilinear, introducing discontinuities in stress, and in turn
affecting the wave speed.

Even though more robust table-based interpolation approaches are possible (e.g.
Barthelmann et al., 2000), we briefly demonstrate here why the straightforward ex-
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tension of a tabular equation of state with multilinear interpolation, as is used successfully
for fluid equations of state (or approximating a solid as such), is impractical for anisotropic
elasticity.

The performance of this approach can be seen in figs. 4.15 and 4.16. These show the
results of the initial value problem with data given as the second test case in table 3.1, using
the Romenski equation of state for copper (appendix A and table a.1 therein). Compare
with the high-resolution results of fig. 3.4. They show the numerical solution using the
analytic form of equation of state with the same equation computed from two linearly
interpolated tables: the first tabulating only the internal energy, but keeping the exact
analytic stress (although not useful for a practical application), and the second adding a
separate interpolated table for the stress. The equation of state is inverted numerically,
according to the table. The numerical results are obtained with the force flux. Even
though the numerical method is quite diffusive, there are unwanted oscillations when the
fully tabular eos is used.

For this example, a uniform grid is used between 0.85 and 1.15 for the diagonal
components of C, −0.4 and 0.4 for the off diagonal components, and between 0.0 and
2× 10−3 in entropy. The tables themselves are quite large: the ‘coarse’ tables store 157

double-precision floating point values (1GB), and the ‘fine’ tables, 207 values (10GB).
Systematic improvement with the size of the tables is also slow.
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5. Simulation of Shock Waves with Molecular

Dynamics

5.1. Introduction

Shock waves in solids show a variety of behaviours, including yield and plasticity and
structural phase transitions, which can lead to wave splitting and rarefaction shocks. Even
the propagation of elastic waves can show strong nonlinearities and crystal-orientation
dependence. Other factors, such as microstructure and porosity, complicate the behaviour
further, although we do not consider these aspects in this work.

Simulations of shock waves have a long history (Holian, 2004), and in fact were
some of the earliest to be performed on a computer. Direct simulations using empirical
interatomic potentials are now feasible on a multi-billion atom scale on present hardware,
which is large enough to observe detailed mechanisms of yield, plastic flow and shock
interaction with nanostructures, directly (Kadau et al., 2006; Shekhar et al., 2013). Work
with these potentials can give important insight and understanding, but a need for
first-principles methods such as Density Functional Theory (dft) exists in providing
predictive power and accuracy. These methods must use more modest system sizes, of
hundreds or thousands of atoms in the case of dft.

Silicon has a rich phase diagram, with dense metallic phases rather different in character
to the ambient diamond phase, making it an interesting and challenging object of simula-
tion. In total, eleven stable or metastable phases of silicon are currently known (Mujica
et al., 2003), and shock experiments have provided important data for constructing the
phase diagram. See the discussion and reference in section 5.5.

We use direct, non-equilibrium simulations (section 5.3) as well as an indirect annealing
method described in section 5.4 to give the Hugoniot loci of silicon as computed from a
number of empirical potentials, and from Density Functional Theory. The Hugoniot
locus is the set of thermodynamic states accessible from a given shock process. A single
direct shock simulation is performed from first-principles. The fact that shock waves
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5. Simulation of Shock Waves with Molecular Dynamics

can split into multiple waves due to phase transitions or yielding is taken into account
here by specifying the strength of any preceding waves explicitly based on their yield
strain. Points corresponding to uniaxial elastic compression along three crystal axes and a
number of post-shock phases are given, including a plastically-yielded state, approximated
by an isotropic stress configuration following an elastic wave of predetermined strength.
The dft results compare well to existing experimental data for shocked silicon.

5.2. Background

5.2.1. The Rankine–Hugoniot relations

Figure 5.1.: A planar shock. Us is the speed of the shock and up is the speed of the
material behind it.

The Rankine–Hugoniot relations relate the thermodynamic state of a material on either
side of a shock wave. A schematic of this situation is shown in fig. 5.1. The meanings of
the symbols throughout this section are as follows: E is the specific internal energy, U is
the velocity of the shock wave, u is the velocity of the material after the shock has passed
(the ‘particle velocity’) and v = 1/ρ is the specific volume (the reciprocal of the density).
Subscripted variables refer to the pre-shocked state (by a zero for the initial state, a one
before the second shock, etc.) and those without a subscript, to the post-shocked state.
An equation below may be found to relate any three post-shock variables. It is assumed
that u0 = 0.

There are three independent jump conditions, corresponding to the conservation laws
of energy, momentum and mass. There are five variables in a planar shock problem.
Together, these lead to ten Rankine–Hugoniot relations, each relating three shocked
variables. They are given in full below, as eqs. (5.1) to (5.10) in fig. 5.2. The equations
apply to a steady-state flow in any material described with the above variables. The
analogous equations for a solid have p replaced by the component of (the negative of)
the stress normal to the shock front.

Material-specific properties are determined by an equation of state, reducing the number
of independent quantities from two to one and giving a one-parameter family of states
that may be reached by shocking from a given initial state. This is the Hugoniot locus
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5.2. Background

(sometimes just ‘the Hugoniot’). The remaining parameter provides a measure of the
strength of the shock.

It is important to note that each point on the Hugoniot represents the result of
the passage of a shock wave independent of the other points: it does not describe the
thermodynamic path by which the material attains a particular final state, which will
usually be different, where a process is slow enough that it may be defined at all—the
strain rate due to the passage of a strong shock in a solid can be of the order of 108s−1

(e.g. Chhabildas and Asay, 1979).
The Rayleigh line is a straight line in the p–v plane, connecting the initial and final

states. It is significant for some of the analysis below.

v
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U
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Figure 5.2.: The Rankine–Hugoniot relations, relating each set of three variables.

5.2.2. Elastic shock waves

For the lowest shock pressures, the mechanism of propagation is elastic strain. In
the weak-shock limit of low particle velocity, the shock wave will be an isentropic,
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pure-longitudinal elastic wave (the material is deformed uniaxially), with corresponding
velocity

sn =
È

cn

ρ
(5.11)

where cn = c ·n is the fundamental elastic constant in the shock propagation direction, n.
At a certain shock pressure, the material will yield dynamically. The maximum shock

pressure a material may sustain without permanent deformation occurring is known as
the Hugoniot Elastic Limit (hel). The hel varies greatly with material properties and also
with microstructure. For example, in non-porous quartzite, 9GPa is typical, compared
with 0.5GPa in porous rock of the same chemical composition (Ahrens et al., 1964).
Sapphire has the largest observed hel, of between 12 and 21GPa (Graham and Brooks,
1971). Many metals have an hel of about 1GPa.

5.2.3. The Bethe-Weyl condition for the stability of a shock-wave

The argument here follows Gathers (1994, ch. 3).
We wish to determine a condition for the stability of a shock-wave, with respect to the

wave splitting up into a series of shocks of intermediate strength that together take the
material to the same final pressure. The final density and energy for a split shock and a
single shock to the same pressure will in general be different. We will see that the shock
is stable exactly when the Hugoniot locus in the p-v plane is concave upward.

Consider the shape of Hugoniot locus in the p–v plane. Its slope is −v
�

∂ p
∂v

�

H
,

which is related to the compressibility of the material on the Hugoniot, and where it is
understood that p represents the component of stress normal to the shock front, and not
necessarily the hydrostatic pressure. The compressibility tends to decrease with pressure,
so the Hugoniot represented this way is generally concave upward. An exceptional
situation may occur, in particular near phase transitions, where it is convex due to a cusp.

Suppose a shock from the initial state ‘0’ to an intermediate state ‘1’ is followed by a
second shock to a state ‘2’. Variables will be labelled according to their respective state.

For the first shock, eq. (5.4) may be written:

U1 = v0

s

p1− p0

v0− v1
(5.12)

and for the second,

U2 = u1+ v1

s

p2− p1

v1− v2
(5.13)
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Note that p1−p0
v0−v1

is just the slope of the Rayleigh line connecting state 0 and state 1.
From equation (5.6),

u1 =
Æ

(p1− p0)(v0− v1) (5.14)

and substituting into the previous equation for U2 gives

U2 =
Æ

(p1− p0)(v0− v1)+ v1

s

p2− p1

v1− v2
(5.15)

If the first wave moves more slowly than the second, then the second will overtake it
and a single shock structure will form.

Æ

(p1− p0)(v0− v1)+ v1

s

p2− p1

v1− v2
≥ v0

s

p1− p0

v0− v1
. (5.16)

This equation may be simplified to give the condition for the stability of a single shock
wave as

p2− p1

v1− v2
≥

p1− p0

v0− v1
, (5.17)

for any intermediate state ‘1’.
This is equivalent to concavity,

 

∂ 2p

∂ v2

!

H

≥ 0. (5.18)

5.2.4. Strong shock waves: plasticity and phase changes

After yielding, a material has a stress distribution closer to isotropic, although there may
be some remaining deviatoric stress. The Hugoniot locus in longitudinal stress therefore
has a lesser slope immediately after the yield than before. The above argument leads us to
conclude that a single shock wave would be unstable in this case, and it must split into
an elastic precursor and a plastic shock for at least some wave strengths, as illustrated in
figs. 5.3 and 5.4.

Similarly, for the case of a plastic shock, a pressure–volume Hugoniot is convex at the
onset of a phase transition: if the change in slope is great enough, this causes the shock to
split into a wave taking the material to the pressure at the onset of the phase transition,
and a slower wave taking the material to its final state, which could be a coexistence of the
two phases in the mixed-phase region, or existing fully in the new phase. Shock splitting

81



5. Simulation of Shock Waves with Molecular Dynamics

1

Lo
n
g
it

u
d
in

a
l 
st

re
ss

relative volume

0

Elastic

Plastic

1

Lo
n
g
it

u
d
in

a
l 
st

re
ss

relative volume

0

Elastic

Plastic

Figure 5.3.: A schematic of a convex pressure–volume Hugoniot leading to a split wave.
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82



5.2. Background

on yielding and phase transitions have long been observed and understood (Duvall and
Graham, 1977).

The plastic shock velocity–particle velocity Hugoniot locus should extrapolate to
roughly the (calculated) isotropic sound speed limit at low strains, but due to residual
stress, and the preceding elastic wave, the agreement might not hold well in all cases. The
isotropic, or bulk sound speed is given by

cbulk =

s

K0

ρ
(5.19)

where K0 is the bulk modulus in the reference configuration.
The Hugoniot locus through the mixed phase region can be constructed by considering

the jump condition in enthalpy across the shock from the point (‘1’) at the onset of the
transition to a point (‘2’) on the mixed Hugoniot

h2− h1 = E2− E1+ p2v2− p1v1, (5.20)

and on substituting eq. (5.3) for the jump in internal energy, this reduces to

h2− h1 =
1

2
(p2− p1)(V2+V1). (5.21)

The latent heat L of the phase transition results in a change in enthalpy, written according
to the Clausius–Clapeyron equation as

λL=−T
d p

dT
(V1−V2), (5.22)

where λ is the mass fraction of the second phase and the derivative is along the phase line.
Since the mixed region is not at constant pressure, there is an additional contribution

to the enthalpy change from the difference in pressure and volume between the onset of
the transition and the post-shock state. This leads to a linearized equation relating the
pressure and volume changes on the phase-transition shock (Duff and Minshall, 1957),

p2− p1 = (V1−V2)×


βv1+
�

1

2T1
(V1−V2)− 2αv1

�

dT

d p
+

cp

T1

�

dT

d p

�2



−1

, (5.23)
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where β is the isothermal compressibility, α is the volumetric thermal expansion coeffi-
cient and cp is the specific heat capacity at constant pressure. The derivative dT /d p is
once again along the phase boundary.

We require knowledge the onset of the transition in the p–v plane, which is not
available from the single phase simulations alone (the simulated materials are capable of
being superheated or supercooled substantially). This could be obtained from the point
where the Hugoniot cuts the phase boundary obtained by some other method.

5.3. Direct Simulation of Shock Waves with Non-equilibrium Molecular

Dynamics

The most direct approach to simulating a shock wave with molecular dynamics is to mimic
experiment, and collide a ‘flyer-plate’ of one material into a ‘sample’ of another material.
To simplify the situation slightly, simulating the ‘flyer-plate’ itself can be avoided by either
representing it as a reflective boundary condition moving at the intended particle velocity
relative to the sample (the momentum mirror), or by using atoms of some material
constrained to move at a certain fixed velocity (the constrained atom approach). This
latter method creates a soft potential reflecting the sample atoms, but does not allow
energy to be lost to the flyer-plate, since their positions are not integrated dynamically.
In both cases, the shock strength is maintained by moving the constraint at a constant
velocity.

The typical shape of such a simulation is a large-aspect-ratio cuboidal box, with
periodic boundary conditions in the transverse directions, and vacuum in the longitudinal
direction.

Figure 5.5 shows a schematic of the two situations. There should be no effect on
the results of a simulation due to using one method over the other for long enough
simulations, since the steady shock state should be the same, and determined by the
particle velocity. Differences at the start of the simulation could, for example, lead to
one method triggering yielding sooner than the other. Since we are interested in small
systems however, we are interested in the time it takes for the measured shock velocities
to reach their converged, steady value in either case, which is found to occur rapidly.

The main disadvantage of the method is its computational cost, due to the large number
of atoms involved. The scaling is also unfavourable, since simulating a shock for longer
involves adding additional atoms in proportion to the simulation time, resulting in O(N 2)
time complexity at a minimum, and O(N 4) time complexity in the case of cubic-scaling
dft. This method is the only way to observe time-dependent effects due to the rise of the
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Figure 5.5.: Schematic diagram of two methods for generating a shock in an md simulation.
The teal circles represent atoms in the target (a two-dimensional cross section
through a 3-d simulation). The top diagram shows ‘flyer-plate’ atoms in or-
ange; the bottom diagram shows the momentum mirror. Periodic boundaries
are used transverse to the shock direction.

shock, and its effect on, for example, nanostructures in the material, beyond the effect of
the uniform post-shock stress. It is also the only means of observing the spatial profile of
the shock wave.

A direct approach allows for spontaneous plasticity and phase transitions. As in other
molecular dynamics simulations, there is likely to be a considerable delay in the onset
of crystal plasticity or a phase transition, compared with any real sample of material,
which will be much larger and inevitably contain defects to nucleate phase transitions.
The periodicity of the domain can also restrict or inhibit plasticity or structural phase
transitions, since these must then obey the same periodicity. Both of these problems can
be resolved in part with a larger domain (since a larger region in phase space is being
sampled by the simulation, and can reduce the energy cost of forming sub-domains of
a new structure). Introducing defects by hand into the simulated domain is another
strategy, but must clearly be done with care to be physical.

5.4. Annealing to the Hugoniot Locus

While the direct method allows the detailed structure and dynamics of a shock wave to
be observed, including the detailed effects on any nanostructures present in the material,
it is expensive, and only the simplest cases can be performed using dft.
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It is simple to check that a given equilibrium state lies on or close to the (single-shock)
Hugoniot locus, which amounts to satisfying the Hugoniot relation for energy, eq. (5.3).
This is a necessary condition for the state to be an allowed post-shock state, but the
state so obtained might not be observed in a direct simulation in the case of plasticity
or a phase change, where there would exist another state satisfying a Hugoniot relation
(perhaps modified by the presence of multiple waves), but that is more favourable in free
energy.

This suggests that a Hugoniot state can be determined dynamically from within a
single molecular dynamics simulation by an annealing process, or some other modified
dynamics to constrain the state to satisfy eq. (5.3). This is the approach taken by the
Hugoniostat methods (Maillet et al., 2000; Ravelo et al., 2004) and the technique of Reed
et al. (2003) The former simulations use modified Nosé–Hoover dynamics while the latter
uses coupled dynamics of the atoms and simulation cell, whose Lagrangian involves the
computed instantaneous shock speed, and varies the simulation cell uniaxially. One aim
of these dynamics is to work on timescales comparable to shock-passage times, without
the overhead of dealing with a direct non-equilibrium simulation.

If we are interested only in the final post-shock state, and are not interested in the
(modified) dynamics while the constraint is being applied, we are free to use a method
based on simple velocity rescaling, analogous to the procedure of Berendsen et al. (1984)
which is what we propose here due to its increased efficiency in reaching the final state.
A Berendsen thermostat is used with a variable target temperature computed from the
instantaneous difference in energy between the total energy of the system, and the total
energy that would be required to satisfy the energy Hugoniot relation, eq. (5.3), exactly,
given the current instantaneous longitudinal stress.

The procedure is given explicitly below as algorithm 1. This may be combined with a
further anneal to relax the pressure to a hydrostatic configuration if desired. Optionally,
the box vectors may be gradually ramped between two states, which is most useful when
the starting state of the simulation and the initial state of the Hugoniot locus are the
same.

Even though Berendsen thermo- and barostats do not reproduce canonical statistics
(Harvey et al., 1998), it is well known that they are much more efficient in annealing
to a state at a desired temperature or pressure, compared with modified dynamics such
as Nosé–Hoover. The same applies here, compared with the related Hugoniostat for
shocks, and this justifies their use here, since we are interested only in the outcome of the
anneal, not the intermediate dynamics. After the time-averaged state of the system closely
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5.4. Annealing to the Hugoniot Locus

Algorithm 1 The Hugoniot-following procedure. The meaning of the variables used is
as follows. E denotes an energy (refer to the sub and superscripts), V is the unit cell
volume, σ the virial stress (includes a kinetic term), ς the instantaneous stress, xn , vn
and Fn the atomic positions, velocities and forces at the nth timestep (‘unc’ stands for
‘uncorrected’ and ‘sca’ for scaled), m is the mass of a given atom, τrelax is the relaxation
time described in the text, t and dt are the current time and timestep, and anything with
a subscript ‘0’ refers to its (time averaged) value in the unshocked state (which may be
different from the starting state of the simulation).

procedure HugoniotAnneal(E tot
0 ,V0,σ0)

compute E tot,ς ,Fn from atomic positions xn

for all atoms do . velocity Verlet

vn← vn−1+
dt

2m
(Fn−1+Fn)

x (unc)
n+1 ← xn + dt vn +

dt 2

2
Fn/m

end for
σ← 1

V

∑

atoms m vn ⊗ vn + ς . compute the virial stress
Ekin←

∑

atoms
1
2 m vn · vn

. compute the target energy
Ehug← E tot

0 −
1
2 (σ

33+σ33
0 )(V0−V )

Ekin
target← Ekin+ Ehug− E tot

r 2←






1+

dt

τrelax







Ekin
target

Ekin
− 1













for all atoms do
v(sca)

n ← r vn . scale the velocities
. correct positions based on the scaled velocities

xn+1← x (unc)
n+1 + dt (v(sca)

n − vn)
end for
t ← t + dt , n← n+ 1

end procedure
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satisfies the Hugoniot relation, the simulation can be restarted with Verlet dynamics to
check if eq. (5.3) is indeed satisfied.

5.5. Silicon

The phase transition in silicon from the cubic diamond structure to the beta-tin structure,
occurring at 12 GPa at room temperature, and undergoing a reduction in volume of 20%,
has been well established by static loading experiments, starting in the 1960s (Jamieson,
1963; Minomura and Drickamer, 1962). Evidence of at least one phase transition at
similar pressures was then observed in shock-wave experiments, starting with Pavlovskii
(1968). Gust and Royce (1970, 1971) found a three-wave structure for samples shocked in
the 〈100〉 crystal direction and a four-wave structure when shocked in the 〈110〉 or 〈111〉
directions. In the latter cases, these waves were attributed to: an initial elastic precursor
to the Hugoniot elastic limit of 5.5 GPa, followed by waves corresponding to a state of
plastic yield and two successive phase transitions at 10 GPa and 13 GPa. Along 〈100〉, the
higher elastic limit of 9 GPa obscures the first transition wave, and a single wave takes the
material simultaneously to a new phase and to a state of hydrostatic stress.

The work of Goto et al. (1982) largely confirmed the findings of Gust and Royce
(1971), although they observed a three-wave structure, regardless of crystal orientation,
consistent with only a single phase transition at 13 GPa. Above the Hugoniot elastic
limit, shock compression was found to result in a hydrostatic stress configuration, due to
the complete loss of strength in the material.

More recently, and contrary to the earlier experimental work, Turneaure and Gupta
(2007a,b) reported a single phase transition that is complete by 15.9 GPa. Shocks to these
pressures show a much greater volume compression than the points attributed to belong
to an extended mixed-phase region by both Gust and Royce (1971) and Goto et al. (1982)
Here the phase transition is not complete until at least 30 GPa. This is attributed by
Turneaure and Gupta (2007b) to release waves from the first two waves propagating back
into the material before the arrival of the third wave, and altering the peak state. They
avoid this eventuality by backing the silicon with a window made from lithium fluoride,
a material with a good impedance match to silicon.

The Imma phase of silicon is found intermediate between the beta-tin and simple
hexagonal phases, at low temperatures, and is stable between 13 GPa and 15 GPa at room
temperature (McMahon et al., 1994). A recent simulation of directly shocked silicon
using an empirical potential found a phase transition to a phase with Imma symmetry
(Mogni et al., 2014), and proposed a mechanism for shear-stress relief. The Erhart and
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Figure 5.6.: Response of (a) total energy and the difference with the Hugoniot energy
computed from eq. (5.3), (b) temperature and target temperature, and (c)
pressure, to the Hugoniot anneal described here with a relaxation time of
100 fs. After 2000 fs, the anneal is switched off and the dynamics continued
with Verlet integration. The response is averaged over 10000 independent
216 atom Stillinger–Weber silicon systems, starting from a 2000 K liquid and
annealed to the Hugoniot locus with an initial state of 300 K and zero stress.
For comparison, the light grey lines are taken from a single trajectory—in the
energy plot, this is indistinguishable from the mean.
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Albe (2005) modification of the Tersoff (1986, 1988) potential used by these authors work
tended to overestimate the stress in the dense phase. Theoretically, the energy and volume
of these phases are close (Mujica et al., 2003). Swift et al. (2001) mention that a stable
Imma phase is not found along the shock locus, so is not included in their equation of
state.

5.5.1. Results from first-principles: annealing to the Hugoniot locus

The ab initio md simulations described here were performed with the Siesta method
and implementation of Density Functional Theory (Soler et al., 2002), using the gga

functional of Perdew et al. (1996).
The core electrons were described with a Troullier–Martins norm-conserving pseudopo-

tential (Troullier and Martins, 1991) with a matching radius in each angular momentum
channel of 1.89 a0. The valence electrons were described with a basis of numerical atomic
orbitals (Junquera et al., 2001) of double-ζ polarized type (representing 13 orbitals per
atom). The basis was generated by fixing the longest orbital cutoffs at 7.0 a0 and varia-
tionally optimising the other parameters in bulk diamond-phase silicon—the final basis
parameters are given in table f.1.

The mesh used for integrals in real-space was well converged at a grid cutoff of 100 Ry.
The dense phases of silicon required several k-points to converge in energy, and in
particular, for the cold compression curves of the various phases to converge in energy
relative to one another. A 43 Monkhorst–Pack grid of points was used on the 64 atom
simulations, to give an effective cutoff length of 21 Å. Note that this is a finer grid than
used in the previous chapter.

The electronic temperature used in the dft calculations should be consistent with the
final temperature attained after the annealing process described below. The consistent
forces for the ab initio molecular dynamics are the nuclear-position derivatives of the
electronic free-energy as defined in Mermin’s dft (Mermin, 1965). All of the simulations
reported below are for an electronic temperature of 300 K, except for the two highest-
pressure liquid points, for which the electronic temperature was adjusted to coincide with
the final (nuclear) temperature and re-run. The effect of the electronic temperature on the
reported quantities was found to be quite small: the maximum difference in pressure for
the hottest simulation between using a consistent electronic temperature and the initial
300 K is below 5%.

The integration of the dynamics used the Born-Oppenheimer approximation with a
timestep of 1 fs. These calculations assume instantaneous equilibrium of electrons and
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ions behind the shock front. Note that this may fail behind a very strong shock wave,
according to the experimental work of Celliers et al. (1992).

The calculated pressure–volume and shock-velocity–particle-velocity Hugoniot loci for
the pure phases are compared to results from several experiments in figs. 5.9 to 5.11. The
specific volume at zero pressure and 300 K for the pbe functional is 0.421cm3/g, which
is smaller than the experimental value of 0.431cm3/g. Reduced volume is plotted in the
figures: if specific volume were plotted, the dft results would be offset by an amount
corresponding to the difference. Both particle velocity and shock velocity scale with
p

1/ρ0: the roughly 2% error in initial density results in a 1% error in both velocities.
No adjustment is made to the particle velocity–shock velocity Hugoniot figure.

The curves for the elastic shocks are computed from a uniaxial box deformation along
the indicated direction. The ‘plastic’ curve is for a split shock, with an elastic precursor
to 6GPa, taking the material to a hydrostatic stress configuration: this supposes that the
material has no residual strength. The hydrostat in fig. 5.11 is for an unphysical shock
process that relaxes the material to hydrostatic stress behind a single, unsplit shock wave.
This permits comparison with the bulk speed of sound (the shock velocity for this wave
should extrapolate to the bulk speed of sound at zero particle velocity.)

When comparing the hydrostat and the ‘plastic’ curve to the yielded phase, we assume
that the yielding serves only to remove the deviatoric stress, and that the bulk response
of the material is unaffected. We neglect the dissipative heating due to this effect.

The agreement with the experimental data for the elastic and plastic shocks is good,
with the compressibility along 〈100〉, 〈110〉 matching well in value and 〈111〉 showing
the correct trend (although underestimating the value). The close match between the
experimental plastic shock pressures and the hydrostatic plastic shock calculated here
supports the observation that the material loses all of its strength after yield.

The particle and shock velocities in fig. 5.11 are computed from the computed pressure
and volume points using the Hugoniot relations

u2
p = (p − p0)(V0−V ) (5.24)

U 2
s = v2

0 (p − p0)/(V0−V ), (5.25)

where V is the absolute volume of the simulation and v is the specific volume. A linear
fit to the elastic part of the shock-velocity–particle-velocity Hugoniot has coefficients
given in table 5.1. The extrapolated value of the bulk sound speed of 6.51 km/s agrees
very well with the value of 6.48 km/s calculated from the second order elastic constants
(Gust and Royce, 1971; Hall, 1967).
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(a) (b)

Figure 5.7.: Equivalent unit cells of the beta tin (a) and simple hexagonal (b) structures.
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Table 5.1.: Coefficients of a linear fit the shock velocity for the elastic waves computed by
the dft anneal, Us = c0+ s up .

〈100〉 〈110〉 〈111〉 Bulk

c0 s c0 s c0 s c0 s
(km/s) ( -)

This work 8.38 0.42 9.21 0.57 9.34 0.57 6.51 1.18
Goto et al. (1982) 8.42 0.32 9.24 1.01 9.39 0.98 - -
Hall (1967) 8.43 - 9.13 - 9.34a - 6.48a -

a Calculated from the given elastic constants and density.

The β-Sn and simple hexagonal (sh) curves each correspond to a three-wave split shock
structure, behind an elastic wave to the experimental elastic limit of 6 GPa,1 and a second
wave to a pressure close to the experimental location of the phase transition at 13.5 GPa.2

For both of these waves, the computed volume for the 〈100〉 direction was used for the
post-shock state. In general, it is quite insensitive to the precise location of the wave
split, particularly for the elastic case, since the contribution to the energy change is
much smaller than the 20% volume reduction across the phase change. The final stress
was hydrostatic. Since the c/a-ratio is free in the β-Sn and simple hexagonal structures,
an additional relaxation step was used on the simulation box to impose a hydrostatic
distribution of stress while simultaneously annealing to the Hugoniot. The β-Sn and
simple hexagonal curves are close in pressure, temperature and shock velocity, with
the experimental values closest to the simple hexagonal dft Hugoniot. The computed
pressures and temperatures of these points put them in stable region for the simple
hexagonal structure on the silicon phase diagram (Kubo et al., 2008).

Part of the liquid Hugoniot corresponds to a three-wave shock structure, with the
third wave reaching the final liquid state, behind a secondary wave to the onset of the
melting transition and an elastic precursor wave. For the highest pressures, where the
final wave has a velocity greater than that of the secondary wave of 6.83 km/s, it instead
corresponds to a two-wave structure (behind only the elastic precursor). The largest
shock pressures closely match the calculated liquid Hugoniot, with the simulated liquid
being systematically slightly too stiff.

1This value is in fact rather small for the 〈100〉 shock, and would be more appropriate for the 〈110〉 or 〈111〉
shocks, with a measured hel of 5.5GPa.

2This value was used as it was the closest of the simulated points to the experimental value of 13.8GPa.
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Table 5.2.: Summary of values used at the onset of the cubic diamond to liquid phase
transition. The phase line is as reported by Kubo et al. (2008). The other
values are from Hull (1999), with α and cp at 1600K and ambient pressure,
and β at 298K and 13.8GPa.

T (K) dT /d P (KGPa−1) α (K−1) β (GPa−1) cp (Jg−1K−1)

1683 62.4 4.5× 10−6 0.024 1.0

The predicted post-shock temperatures (given in fig. 5.12) indicate that these highest
pressure points are likely to be liquid phase. The sixfold coordinated liquid lies close in
p–v to the Hugoniot for the beta-tin phase, and so this phase transition does not exhibit
the large mixed phase region as for the diamond to dense-phase silicon.

There is a considerable range of relative volume between the Hugoniot loci of the pure
phases shown in fig. 5.9. The experimentally measured points in this region have a final
state that is a mixture of two phases. Points on the mixed-phase region of the Hugoniot
are on the intersection of the phase boundary for the two phases, as well as satisfying
eq. (5.3).

We consider here two possible phase transitions starting from silicon in the cubic
diamond structure: to a liquid, and to the beta-tin structure. In addition, we assume that
the onset of either transition occurs at 13.5GPa, close to the observed experimental value.
The phase lines are experimental values, obtained by Kubo et al. (2008) This gives the two
dashed lines appearing in fig. 5.9. The lower, green dashed line for diamond structure to
beta-tin is nearly at constant pressure, since its slope is dominated by the steep phase-line
of the transition dT /d p =−1426K/GPa (Kubo et al., 2008). This is consistent with the
experiment of Turneaure and Gupta (2007b) The upper, blue dashed line for melting
the diamond structure is influenced most strongly by the compressibility β of the cubic
diamond phase at the pressure and temperature of the onset. Representative literature
values for the constants appearing in the above expression for the liquid are summarized
in table 5.2. This line underestimates the experimentally observed slope seen by Gust
and Royce (1971) and Goto et al. (1982) While the simulated temperature at this pressure
is much too low for melting, the simulations of the ‘plastically-yielded’ state do not
include dissipative heating and this could cause a considerable temperature rise above
those reported in fig. 5.12.
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5.5.2. Results for the Tersoff and Stillinger–Weber potentials

Figure 5.13 shows a pressure–volume Hugoniot for silicon as described by the Tersoff
potential (Tersoff, 1986, 1988), also given in appendix C.2. Note immediately that the
dense β-Sn and liquid phases overestimate the pressure by a great deal compared with
experiment, and both are much stiffer. This is due to the dominant term in the expression
for the Tersoff potential at close range (eq. (c.7)), and with the potential far outside of
the density range for which it was parameterized. The liquid curve is a second shock,
with an initial elastic precursor. The β-Sn phase curves shown are computed for tertiary
shocks, following the elastic precursor and plastic wave.

The annealed Hugoniot for the Tersoff potential can be compared with points com-
puted directly using the same potential, in fig. 5.14. The direct points were obtained by
shocking a sample of 10× 10× 100 unit cells in the [001] direction using the flyer-plate
approach of section 5.3.

Tersoff is much softer than Stillinger–Weber silicon (Stillinger and Weber, 1985),
described below. This is especially true in the 30GPa regime, due to high pressure liquid
being denser than the diamond phase, although it is still somewhat stiffer than experiment.
The elastic points computed directly, and the points from the shocks resulting in melting,
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Figure 5.16.: Radial distribution of liquid tersoff silicon

match the annealed result. Typically for this type of simulation, the elastic precursor
drives the material to a much higher stress than its experimental hel, and this also
increases with the shock strength.

An unusual feature of Tersoff silicon apparent from these simulations is that for a
large enough shock pressure, the uniaxial elastic Hugoniot lies beneath the hydrostat.
That is, the material is softer under a uniaxial compression than an isotropic one. It is
only significant in these direct simulations because of the very large elastic limit. The
plastic split-wave profiles show a sharp elastic precursor followed by a broader yield. In
these cases, yielding resulted in a denser substance than the hydrostatically compressed
diamond phase.

Figure 5.17 is the p–v Hugoniot using the potential of Stillinger and Weber (1985)
(sw), given in appendix C.1. The potential itself is designed to favour a tetrahedral
coordination, and there are known problems with describing the liquid and amorphous
phases (Vink et al., 2001). It is nevertheless one of the most used and heavily studied
potentials, including its phase behaviour (e.g. Broughton and Li, 1987).

The annealed Hugoniot for the sw potential can be compared with points computed
directly, in fig. 5.18. The direct points were obtained by shocking a sample of 10×10×100
unit cells in the [001] direction using the flyer-plate approach, as with Tersoff described
above. The lines in this plot are the Hugoniot anneal data from fig. 5.17. The lowest
extent of the liquid line is the lowest pressure of a single-shock process where the resulting
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5. Simulation of Shock Waves with Molecular Dynamics

structure does not spontaneously solidify. Likewise, above the given extent of the
hydrostatic line the diamond structure spontaneously melted.

The data extracted from the shock md trajectory were the shock speed (as the mean
velocity of the point on the front where the mean particle velocity of a slice normal to
the shock direction was 20% of its post-shock value), the particle velocity (as its mean
value well behind the shock, and before any secondary shock), the shock stress (in a
similar way, using the virial stress, and correcting for the bulk motion behind the shock).

We can check that the shock and particle velocities computed from the stress–volume
relation and the Hugoniot relations eqs. (5.4) and (5.6) are consistent with those measured
directly in the simulation. In general, for the size of simulation used here, the elastic
shocks are consistent to within 0.5%, the strongest single shocks, involving a phase
transformation, to 1%. The worst case for the direct simulation has split waves of very
different velocities. The worst disparity was 12%, for the slowest secondary plastic wave
in Tersoff silicon.

Note that due to a slightly different specific volume used for the initial structure, the
elastic points lie just below those from the anneal (by about 0.4GPa, corresponding to a
slightly lower wave speed.

The final split wave in fig. 5.18 is the limiting case of the plastic wave travelling just
slower than the elastic one, as can be seen considering their slope, or from fig. 5.18. When
repeating this for a larger simulation (40× 40× 200 unit cells), the yielding occurred
after an initial delay, but eventually caught up with the elastic front, forming a single
extended shock front, shown in fig. 5.21. This steady shock consists of an initial sharp
front (with considerable dispersion) accounting for most of the change in particle velocity,
and leaving the material in an initial uniaxially compressed state. This is followed by a
gradual rise in particle velocity accompanied by permanent plastic deformation of the
material.

In this figure, to obtain a more resolved profile, we suppose that the average profile is
slowly evolving compared with the speed of the shock, and average the velocity across
many frames, shifted according to the average shock speed. The result is for a system of
100× 100× 200 unit cells (sixteen million atoms). This is an average over 40 frames with
250 timesteps between each frame, after the profile has been allowed to evolve for 10ps.

Some features to note:

• The hel at about 30GPa is much larger than the experimental value.
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5. Simulation of Shock Waves with Molecular Dynamics

• The shock pressure of the precursor shock varies strongly with the final shock
pressure. The range of volume compression over which a two-wave profile results
is relatively small.

• The points resulting from a yielded diamond structure lie just above the calculated
hydrostatic curve, as would be expected from both a residual shear strength and
heating from dissipative yield. The stress profile behind the stronger shocks is
completely hydrostatic.

• As the shock strength is increased, the direct locus deviates from the hydrostat, and
for the strongest shocks lies on the liquid curve.

• The point labelled ‘a’ in fig. 5.18 has a structure intermediate between a diamond
and liquid. The final structure has separated regions of yielded diamond structure
and amorphous structure very close to the liquid structure whose rdf is given in
fig. 5.20.

• The shock profile shows considerable dispersion at the elastic wave-front.

• The high pressure liquid phase of silicon shows relatively little deviation from a
tetrahedral structure, as evidenced by the rdf in fig. 5.20, although there is some
fivefold coordination.

5.5.3. Direct NEMD shock simulation from first-principles

A silicon sample, consisting of 2× 3× 20 conventional unit cells of silicon (960 atoms),
was obtained from a equilibrated Tersoff simulation, with the lattice parameter scaled
from the 5.43Å of Tersoff to 5.49Å, which was the 300K lattice parameter found from
Siesta. This was done leaving the fractional coordinates of the atoms, and their absolute
velocities, unchanged. The resulting system was found to be close to zero pressure and an
equilibrium velocity distribution in Siesta, but was further annealed using a Berendsen
thermostat for just under 500 fs, and then integrated for a further 500 fs using Verlet.

The functional, pseudopotential and basis set were as described in section 5.5.1. The
real space grid also used a cutoff of 100 Ry. However, only a Γ-point calculation was
possible (even a single non-gamma-point calculation, such as at the Baldereschi point,
would have entailed considerable extra computation).

The shock wave was then initiated in the well-equilibrated structure. To generate a
shock in the material, the first surface layers of atoms (one conventional unit cell deep,
48 atoms in total) were fixed to move at a constant velocity in the z direction (and zero
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5.5. Silicon

velocity in the transverse directions), and independently of the dynamics. The particle
velocity was chosen to be 0.36km/s, which resulted in an elastic shock of just over 8GPa
when using the Tersoff potential. The experimental Hugoniot elastic limit was found
to be 9±1GPa in the 〈100〉 direction (Gust and Royce, 1970), occurring at a volume
compression of 0.946, so this choice of shock strength for the simulation is just before
the experimental yield.

A snapshot of the simulation when the shock is about halfway through the domain
is shown in fig. 5.22. Also shown is the extracted location of the shock, taken to be
the location where the mean z-velocity in a moving window first exceeds 2nm/ps. The
shock location extracted in this way, against time, is shown in fig. 5.23, from which
the shock speed can be found to be 8.39±0.013kms−1. The shock reached the end of
the domain after a simulation time of 1.2ps. The total cpu time for the simulation was
32000 core-hours.

As before, to obtain a more resolved profile than the instantaneous snapshot of fig. 5.22,
we suppose that the average profile is slowly evolving compared with the speed of the
shock, and average the velocity across many frames, each shifted according to the average
shock speed, resulting in fig. 5.24. This means that the part of the profile closest to the
shock has smallest error, since it is present in every frame, while parts further away
consist of averages over fewer and fewer frames. Very finely resolved features, such
as those appearing in fig. 5.21, are not visible unfortunately, due to the much smaller
simulation size, although we can conclude that the shock front is less than 2nm thick,
resulting in a rise time of 0.24ps, or a strain rate of 2× 1011 s−1.

Finally, we provide fig. 5.25, combining the shock speed measurements from the direct
point with the first-principles annealing method, and the results from the empirical
potentials. Note that the value for the direct point is lower than the annealed points
due to the lack of a fully converged k-grid, although this is seen to agree with the anneal
when performed using an equivalent k-grid. The Γ point offers enough resolution in
the longitudinal direction of the simulation cell, of 20 unit cells, but not in the much
narrower transverse dimensions, of 2 and 3 unit cells.
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5.6. Conclusions

In conclusion, we have described a simple annealing method and shown that it may be
used to obtain a state on the Hugoniot locus of a pure phase of a material with several
condensed phases efficiently, from first-principles. An approximation relying on the slope
of the phase boundary can be used to obtain the part of the Hugoniot corresponding to
coexistence between two phases.

In the case of silicon, the results computed using this procedure with the forces
described using density functional theory match existing experimental data very well
for pressures up to 60GPa, the limit of available experimental data. We have provided
a prediction of the shock temperatures of silicon over this pressure range. This study
supports the conclusions of the experimental work in general, that silicon after yield
supports no deviatoric stress, and of Turneaure and Gupta (2007b) that the first observed
phase transition along the shock locus is likely to be to simple hexagonal.

The method was also applied to two empirical interatomic potentials commonly used
to simulate silicon, which can then be shocked directly. The direct method and the
anneal produce equivalent points on the Hugoniot for the pure phases, and the direct
simulations also give points in mixed-phase regions. In addition, we provided a direct-
shock calculation for dft silicon, giving a single point on the elastic part of the Hugoniot
locus, which matches an equivalent point computed by the annealing method, and also
the wave profile, which for the elastic shock is very sharp.

It was observed that the wave profile for elastic shock waves (single waves or precursor
shocks) exhibit some degree of dispersion. This can be noticed in a single frame of the
longitudinal velocity profile of the shock wave as an initial overshoot above the averaged
post-shock wave speed, but is made most visible by taking a steady time-average over
many frames of the simulation. The theory of dispersive waves in lattices is covered by
Ercolani (1994).
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6. Computation of Lattice Thermal Conductivity

from Molecular Dynamics Simulation

6.1. Introduction and Motivation

In a solid, heat is conducted by interacting lattice vibrations (phonons) and electrons. For
insulators, the electronic contribution to the thermal conductivity is negligible, while in
metals it is dominant (Ho et al., 1978; Srivastava et al., 1970). In a semiconductor, the
electronic contribution becomes important at high temperature. In silicon it contributes
around 10% of the total value at 1000K (Shanks et al., 1963), and < 0.1% under 700K.

Engineering uses of materials for their thermal conductivity are widespread and well-
known, with materials with particularly high conductivity found where required to
transmit large quantities of heat (high-power electrical components and heat sinks,
e.g. Ghosh et al. (2008)), and low values used for thermal insulation (for example,
thermal barrier coatings on gas-turbine parts, (Padture et al., 2002)), and for efficient
thermoelectrics (Tritt and Subramanian, 2006).

The aim of this chapter is to compute the temperature-dependent lattice thermal
conductivity from molecular dynamics simulation. It is found to be a demanding test
of an empirical potential, with a large variation in lattice thermal conductivity from
many existing empirical interatomic potentials that represent the same material. We
investigate the ability of a Gaussian Approximation Potential (gap) to reproduce the
thermal conductivity.

We choose silicon as a test material, due to the extensive body of work on potential
development and electronic structure calculation for silicon in general, as well as being
well studied for thermal conductivity. The high thermal conductivity of silicon makes
obtaining an accurate value difficult, since this implies long phonon mean free paths,
which must be captured in a simulation.

An overview of two methods commonly used to compute thermal transport properties
of materials is given below. Section 6.4 describes a method based on solving the Phonon
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6. Computation of Lattice Thermal Conductivity from Molecular Dynamics Simulation

Boltzmann Transport Equation (pbte). The Green–Kubo method of linear response
is considered in section 6.5. A method not considered here is a direct non-equilibrium
simulation. These are described in detail by Broido et al. (2005) and He et al. (2012).

The computational requirements for the direct non-equilibrium and linear-response
methods can be demanding for materials with high conductivity. Direct non-equilibrium
methods typically require systems with (at least) thousands of atoms, simulated for hun-
dreds of picoseconds. Methods based on linear response can use smaller systems, but often
need several nanoseconds of data. The requirements depend on the thermal conductivity
itself, with more conductive materials requiring larger and longer simulations to take into
account the longer relaxation times and lengths present. Because of this, both techniques
are currently beyond the reach of dft for silicon. First-principles forces (such as dft)
can be used to compute force constants for pbte, although this is limited to relatively low
temperatures.

Table 6.1 summarizes a selection of experimental measurements of thermal conductivity
for high temperature (>300K) silicon reported in the literature. A non-uniform isotopic
composition provides an additional mechanism for scattering phonons. Experiments for
both the natural isotopic distribution (given in table 6.2) and highly pure silicon-28 are
described. Those for naturally occurring silicon agree within around 5%, which is the
error given by Glassbrenner and Slack (1964). The results of this study were systematically
slightly larger than the others, by 5 to 10% across the whole temperature range. Ruf et al.
(2000) reported a thermal conductivity for pure silicon-28 that is anomalously large, 60%
larger than the natural distribution. This was later noted by the original authors as being
in error (Ruf et al., 2003) and confirmed by Inyushkin et al. (2004), who obtained a value
only 10± 2% larger than naturally occurring silicon. Including an extra scattering term
in Boltzmann transport equation calculations (with force constants from dft) reproduces
this 10% difference (Ward et al., 2009).

Many thermal conductivity calculations have been performed using empirical inter-
atomic potentials for silicon. He et al. (2012) offer a review of published experimental
and simulated thermal conductivities for silicon, germanium and silicon germanide, and
present simulations for the Tersoff potential from pbte, Green–Kubo md and direct non-
equilibrium md. At the level of Boltzmann transport, Broido et al. (2005) considered three
commonly used potentials for silicon (Tersoff (1986, 1988), Stillinger and Weber (1985)
and the environment dependent potential of Bazant et al. (1997) and Justo et al. (1998)).
They found that none of the three potentials reproduced the experimental conductivity
between 0 and 300K, and that in addition, agreement between Grüneisen parameters and
thermal expansion was not a good indicator of agreement between thermal conductivities.
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Table 6.1.: Summary of high-temperature experimental and first-principles thermal con-
ductivities of silicon from the literature.

Reference Method System Temp. Therm. cond.
(K) (Wm−1K−1)

Shanks et al. (1963) experiment Si nat.

300 142
400 97
600 58
800 40

1000 30

Glassbrenner and Slack (1964) experiment Si nat.

300 156±8
400 105±5
600 64±3
800 43±2

1000 31±1.5

Ho et al. (1972) experiment Si nat.

300 148
400 99
600 62
800 42

1000 31

Ruf et al. (2000) experiment Si-28 (99.86%) 300 237±8 a

Kremer et al. (2004) experiment
Si nat. 300 144±3 b

Si-28 (99.96%) 300 157±3 b

Inyushkin et al. (2004) experiment
Si nat. 300 143
Si-28 (99.98%) 300 156

Ward et al. (2009) dft lda, pbte-3rd
Si nat.

296 135
350 112

Si-28
296 146
350 119

Garg (2011) dft lda
c, pbte-3rd Si-28 300 136

a Inyushkin et al. (2004) suggest that this result is an overestimate.
b An average across three samples at three separate laboratories
c Garg, private communication
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Table 6.2.: Naturally occurring silicon nuclides

nuclide mass (u) natural abundance (%)

28Si 27.977 92.2
29Si 28.976 4.7
30Si 29.974 3.1

Schelling et al. (2002) compared direct (non-equilibrium), and Green–Kubo (equilibrium)
methods for computing the lattice thermal conductivity of Stillinger–Weber silicon at
1000K, including a consideration of finite-size scaling effects for both methods. Abs da
Cruz et al. (2011) computed the high temperature thermal conductivity (500 to 950K)
from several empirical potentials using the direct non-equilibrium method, the results
ranging over more than a factor of two between potentials at the same temperature.

Broido et al. (2007) computed an iterative solution to the exact pbte for bulk silicon and
germanium, with force constants derived from density functional perturbation theory,
and report excellent agreement with experiment for both materials, over a temperature
range of 0 to 300K. Several solutions to various levels of approximation of the pbte have
been determined in the literature. A common approach is to assume that each phonon
mode decays towards the equilibrium distribution with a characteristic relaxation time.
A number of authors have taken this approach, including Callaway (1959), and more
recently by Kazan et al. (2010).

6.2. Continuum Picture

Denote the heat flux at a point in a continuum body by q (units Wm−2). Fourier’s
law of heat conduction states that the heat flux depends linearly on the gradient of the
temperature, T , and that heat flows down temperature gradients:

qi =−ci j (∇T ) j . (6.1)

The positive quantity ci j is independent of the temperature gradient, but in general will
depend on the local temperature. For a material in which the heat conductivity is not
direction dependent, the tensor ci j may be replaced by a scalar conductivity, c. The
remainder of this chapter assumes that this is the case.
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Fourier’s law leads directly to the parabolic heat equation. From continuity of energy
at constant pressure, with h the specific enthalpy,

∂ h

∂ t
+

1

ρ
∇ · q = 0, (6.2)

and the definition of heat capacity

�

∂ h

∂T

�

p

= cp (6.3)

we obtain
∂T

∂ t
−

1

cpρ
∇ · (c∇T ) = 0. (6.4)

If c does not vary in space (other than through its dependence on temperature), then
after linearizing we can write

∂T

∂ t
−α∇2T = 0 (6.5)

with heat diffusivity α= c/(ρcp ).

6.3. Heat Conduction and Phonons

A model of interacting phonons explains many features of the temperature dependence
of thermal conductivity, especially at low temperature (Ashcroft and Mermin, 1976;
Srivastava, 1990).

Phonons are the normal modes of an infinite crystal whose internal energy is harmonic
in deviations from the equilibrium atomic positions:

U =Ueq+
1

2

∑

R,R′
µ,ν∈{x,y,z}

uµ(R)D
RR′
µν uν (R

′), (6.6)

for some constants DRR′
µν , where u(R) is the deviation of the atom whose equilibrium

position is R and Ueq is the internal energy at equilibrium.
This is often a good approximation to a real crystal, provided the deviations u are

small. The thermal conductivity in such a perfectly harmonic crystal would be infinite,1

however, and so we must also consider anharmonic terms.

1Since thermal transport would then obey a wave equation.
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Perturbing the harmonic potential (6.6) with third and fourth2 order anharmonic
terms of the form (third order)

1

6

∑

R,R′,R′′
µ,ν ,λ

E
R,R′,R′′

µ,ν ,λ
uµ(R)uν (R

′)uλ(R
′′) (6.7)

does not greatly affect normal modes of finite displacement, provided these terms are
small, but can be seen as allowing transitions to occur between different normal modes.
This is phonon scattering. Conservation of energy and crystal momentum govern the
scattering processes that can occur. In particular, conservation of crystal momentum
states that the crystal momentum before and after a scattering event must be related by

∑

nk s k =
∑

n′k s k+K (6.8)

where K is a reciprocal lattice vector. If K is zero, the analogy with real momentum is
direct and the process is said to be normal. Otherwise, it is said to be umklapp.3 It can be
shown (Srivastava, 1990) that it is only umklapp processes that disrupt any heat current
present, so without them a crystal would have infinite thermal conductivity.

In this way, phonons can be treated in the same way as gas molecules in kinetic theory
and a suitable Boltzmann equation derived whose scattering terms may be calculated
from the third-order force constants E appearing in equation (6.7), and perhaps also the
fourth-order constants. Once these are known, the linearized Boltzmann equation can be
solved iteratively to obtain the thermal conductivity. This approach is suitable for low to
moderate temperatures, and is used by Broido et al. (2005), but becomes less effective at
higher temperatures when the deviations of the atoms from their crystal lattice sites are
large and even-higher-order anharmonic terms become important.

Figure 6.1 illustrates the temperature dependence of the thermal conductivity of a
typical crystal. The peak usually appears at a temperature of several tens of Kelvin.

Phonons obey Bose–Einstein statistics:

nk s =
1

exp(ħhωs (k)/kB T )− 1
. (6.9)

At high temperatures, this is asymptotically proportional to T for any given k. The
high temperature heat capacity asymptotes to a constant value, and the mean free path

2The number of allowed scattering interactions involving fourth order phonons makes up for their smaller
magnitude, so they are often included. Also, a cubic potential results in an unstable Hamiltonian.

3Ger. umklappen, to fold down.
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Figure 6.1.: Typical temperature dependence of the lattice thermal conductivity of a
typical crystalline material.

of a phonon will vary inversely with the number of phonons present with which it
may scatter. It is found that this results in an approximate power law for the thermal
conductivity of c∝ 1/T α with 1<α < 2.

For low temperatures, atomic displacements are small and harmonic and not much
phonon scattering occurs. The conductivity is ultimately limited by the (constant) length
of the crystal, or by other constant-length effects, such as the concentration of impurities.
The low temperature heat capacity varies as T 3, and this is reflected in the thermal
conductivity.

At these very low temperatures, only low-frequency, small wave-number phonons are
present in considerable number, both before and after any collision, so umklapp processes
occur only with very small probability. As the temperature increases, the occupation
numbers of phonons able to participate in umklapp processes grows approximately as

1

exp(ΘD/T )− 1
≈ exp(−ΘD/T ), (6.10)

where ΘD is the Debye temperature, and this is reflected in figure 6.1 as the sharp drop-off
in c after the T 3 behaviour. The peak occurs where the mean free path of phonons due
to umklapp processes is of the same magnitude as the crystal dimensions.
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6. Computation of Lattice Thermal Conductivity from Molecular Dynamics Simulation

6.4. The Boltzmann Transport Equation

This section follows Ward et al. (2009) and Li et al. (2014) in expressing the linearized
Boltzmann equation iteratively. It is implemented in the latter authors’ ShengBTE code.

The Boltzmann transport equation describes how the phase-space density of a thermo-
dynamic system changes in time out of equilibrium. In general, this can be stated

d fλ
dt
=
�

∂ fλ
∂ t

�

scatter
+
�

∂ fλ
∂ t

�

diffusion
(6.11)

where λ= ( j , q) with j the branch index and q the wavenumber.
For phonons, f (λ, x , t ) is the distribution function of phonons, and for steady state,

the transport and scattering terms cancel,

�

∂ fλ
∂ t

�

scatter
+ ∇T · vλ

∂ fλ
∂T
= 0, (6.12)

where vλ is the group velocity of the phonon mode labelled by λ. For small temperature
gradients, we can express the difference from the equilibrium distribution linearly,

fλ = f 0
λ + gλ (6.13)

and

gλ =−Fλ · ∇T
∂ f 0
λ

∂T
, (6.14)

where f 0 is the equilibrium phonon distribution, and Fλ is unknown. It is useful to
express it as

Fλ = τ
0
λ(vλ+∆), (6.15)

where we define ∆ later on. The relaxation time approximation (rta) is equivalent to
setting ∆= 0 in the above equation. The relaxation times τ0

λ
are calculated in terms of

the scattering rates (calculated in the equilibrium distribution) as

1

τ0
λ

=
1

N







∑

λ′,λ′′
Γ0,+
λ,λ′,λ′′

+
1

2

∑

λ′,λ′′
Γ0,−
λ,λ′,λ′′






. (6.16)

Γ± are terms representing three-phonon scattering processes, with a single phonon λ
scattering into two others (+) and two phonons λ′ and λ′′ colliding to form a single
phonon (−), hence the factor of half multiplying this last term to avoid double counting.
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6.5. Linear Response and the Green–Kubo Relation

These are given in terms of f as

Γ+
λ,λ′,λ′′

=
ħhπ
4

fλ′ − fλ′′

ωλωλ′ωλ′′
|V +
λ,λ′,λ′′

|2δ(ωλ+ωλ′ −ωλ′′) (6.17)

Γ−
λ,λ′,λ′′

=
ħhπ
4

fλ′ + fλ′′ + 1

ωλωλ′ωλ′′
|V −
λ,λ′,λ′′

|2δ(ωλ−ωλ′ −ωλ′′), (6.18)

where the Dirac deltas serve to enforce conservation of energy.
The terms V ±

λ,λ′,λ′′
are three-phonon matrix elements. We use the notation introduced

earlier: R is the position of an atom in the unit cell, R′ and R′′ are atoms positions in
supercell. Here, u is an eigenfunction, with branch index and wavenumber λ, and α,β,γ
spatial indices. The matrix elements are computed as follows from the third order elastic
constants:

V ±
λ,λ′,λ′′

=
∑

R,R′,R′′
α,β,γ

E
R,R1,R2
α,β,γ

uλα (R)u
λ′

β
(R′)uλ

′′

γ (R
′′)

p

MR MR′MR′′
. (6.19)

The second term of eq. (6.15), ∆, is defined as

∆λ =
1

N

∑

λ′,λ′′
Γ+
λ,λ′,λ′′

�

ωλ′′

ωλ
Fλ′′ −

ωλ′

ωλ
Fλ′
�

+
1

2N

∑

λ′,λ′′
Γ−
λ,λ′,λ′′

�

ωλ′′

ωλ
Fλ′′ +

ωλ′

ωλ
Fλ′
�

. (6.20)

Additional terms can be included to represent other sources of scattering, such as
impurities, or from an isotope distribution.

This equation can be solved iteratively for F until convergence to a prescribed tolerance.
It can be shown that the lattice thermal conductivity is then given by

c=
1

kB T 2V N

∑

λ

f 0
λ ( f

0
λ + 1)(ħhωλ)

2vλ⊗Fλ. (6.21)

6.5. Linear Response and the Green–Kubo Relation

A linear transport equation is of the form

J = LF (6.22)
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6. Computation of Lattice Thermal Conductivity from Molecular Dynamics Simulation

where J is the current density of some quantity of interest and F is the thermodynamical
force conjugate to it. L is the linear transport coefficient.

The transport coefficient can be calculated from the autocovariance of the correspond-
ing current (Kubo, 1957):

L=βV
∫ ∞

0
ds 〈J (0)J (t )〉F=0. (6.23)

For the particular case of thermal conductivity, this becomes

c=
V

3kB T 2

∫ ∞

0
dt 〈q(0) · q(t )〉. (6.24)

By ergodicity of the system, we may replace the ensemble average appearing in equation
(6.24) with a time average of a single realisation of the time evolution, provided it is long
enough:

lim
T→∞

1

T

∫ T

0
dτ q(τ) · q(τ+ t ) = 〈q(0) · q(t )〉. (6.25)

We estimate these quantities by using a discrete sampling from an md simulation of the
instantaneous heat flux at equilibrium {qi}, where i labels the time step, and replacing
the integrals with finite sums

Rn =
1

3M

M
∑

i=0

qi · qi+n , (6.26)

for large M .
This requires a definition of the heat flux q in terms of the microscopic degrees of

freedom of the system, which is missing from the discussion in a continuum setting above,
where temperature is a distinct degree of freedom from local velocity (which we took to
be zero in any case).

Define

q =
1

V

d

dt

 

N
∑

i

ri Ei

!

(6.27)

where Ei is the energy of the i th particle, and

Ei = ei +
1

2
mi vi · vi . (6.28)
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6.5. Linear Response and the Green–Kubo Relation

There is no physically distinguished definition of ei : the only energy rigorously defined
is that for the whole system. For a pair potential, we might assign half of the interaction
energy of a pair of particles to each of them. For many body potentials there are several
‘reasonable’ definitions.

We now show that we can often express eq. (6.27) in terms of the local energy and a
local stress, provided that we choose a definition of local stress to be consistent with the
local energy.

To make use of eq. (6.27), apply the time derivative to obtain

q =
1

V

∑

i

�

vi Ei +mi ri (vi · v̇i )+ ri ėi
�

(6.29)

=
1

V

∑

i

�

vi Ei + ri (vi · fi )+ ri ėi
�

(6.30)

=
1

V

∑

i






vi Ei +

∑

j

ri

 

−vi ·
∂ e j

∂ ri
+ v j ·

∂ ei

∂ r j

!






(6.31)

where we used

ėi =
∑

j

v j ·
∂ ei

∂ r j
(6.32)

and

fi =−
∑

j

∂ e j

∂ ri
. (6.33)

Exchanging indices:

q =
1

V

∑

i

vi Ei −
1

V

∑

i , j

(r j − ri )

 

vi ·
∂ e j

∂ ri

!

(6.34)

=
1

V

∑

i

vi Ei −
1

V

∑

i

vi

∑

j

(r j − ri )⊗
∂ e j

∂ ri
(6.35)

The last term is a sum of a tensor product of two vectors over each atom. We now
compare this quantity to the virial stress.

Define the virial stress as

S =−
∂ e

∂F
, (6.36)

where F is the deformation gradient defined in chapter 3.
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6. Computation of Lattice Thermal Conductivity from Molecular Dynamics Simulation

L′ = F L (6.37)

In the following, the Latin indices refer to atoms and Greek to spatial coordinates.

Sαβ =−
∂ e

∂ Fαβ
(6.38)

=−
N
∑

i

3
∑

γ

∂ riγ

∂ Fαβ

∂ e

∂ riγ
(6.39)

=−
N
∑

i , j

3
∑

γ

∂ riγ

∂ Fαβ

∂ e j

∂ riγ
(6.40)

=−
N
∑

i , j

riβ

∂ e j

∂ riα
(6.41)

S =−
N
∑

i , j

ri ⊗
∂ e j

∂ ri
. (6.42)

We might also define a per-atom virial:

Si =−
N
∑

j

ri ⊗
∂ e j

∂ ri
. (6.43)

As for the local energy, this partitioning is quite arbitrary, the only requirement is that its
sum over all of the atoms in the domain is S . The way we have defined it here however, is
not consistent with the form appearing in the expression for the heat flux below.

Note that the expression for virials appearing for pair potentials is sometimes written

Si =−
1

2

N
∑

j

(ri − r j )⊗ fi j (6.44)

where fi j is the force on atom i due to atom j , and the expression relies on antisymmetric
forces:

fi j =−f j i . (6.45)

In the general situation, we can use

fi j =
∂ e j

∂ ri
, (6.46)
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6.5. Linear Response and the Green–Kubo Relation

but this does not necessarily satisfy eq. (6.45).
Returning to the fluxes, eq. (6.35) becomes

q =
1

V

 

∑

i

vi Ei +
∑

i

vi · Si

!

, (6.47)

if we define

Si =
N
∑

j

(r j − ri )⊗
∂ e j

∂ ri
. (6.48)

This quantity summed over all of the atoms in the domain gives the total virial, as is
required of a good local virial, provided that the local energy is a function only of the
vector displacements to the other atoms, ri j = r j − ri .

ei = ei ({ri j }
N
j=1, j 6=i ), (6.49)

which has one fewer degree of freedom than the general case.
To see this, consider the term of the sum,

N
∑

i , j

r j ⊗
∂ e j ({r j k})

∂ ri
=

N
∑

j

r j ⊗
N
∑

i

∂ e j ({r j k})

∂ ri
(6.50)

And (no summation unless explicit):

∑

i

∂ e j ({r j k})

∂ ri
=
∑

i j k
k 6= j

∂ e j

∂ r j k

∂ r j k

∂ ri
(6.51)

=
∑

i j k
k 6= j

∂ e j

∂ r j k

∂

∂ ri
(r j − rk ) (6.52)

=
∑

i j k
k 6= j

∂ e j

∂ r j k
(δi j −δki ) (6.53)

=
∑

i k
k 6= j

∂ ei

∂ ri k
−
∑

i j
i 6= j

∂ e j

∂ r j i
= 0 (6.54)

This is true of many potentials, but in particular it is not true for force-constant
potentials (imagine all of the atoms being shifted by the same constant amount away
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6. Computation of Lattice Thermal Conductivity from Molecular Dynamics Simulation

from their equilibrium positions: there would be no force on any atom, but the local
energy of each atom would increase by the same amount.

Equation (6.47) still holds however, provided we interpret the term Si correctly, no
longer as local virials.

6.6. The Potentials

A number of Gaussian approximation potentials were trained on databases of varying
composition, using the soap descriptor; see section 2.3. Table 6.3 gives a breakdown
of the structures contained in each database. A training configuration is a snapshot
of the system of atoms (with a pre-determined structure, or as a frame of a molecular
dynamics simulation) along with a total energy and forces. Each configuration represents
a combination of many atomic environments (for example, the two-atom unit diamond
structure cells give two environments per configuration). The k-means clustering scheme
is used to choose certain ’distinguished points’ to reduce the total of these to a managable
number, but constrained to have a minimum number of environments represented for
each configuration type.

The forces and energies of the configurations were obtained ab initio with the Castep
dft code (Clark et al., 2005), using the pw91 functional (Perdew and Wang, 1992) and
a highly converged plane-wave basis (with an energy cutoff of 250eV) and k-grid (with
a cutoff of at least 20Å). All but the single unit cell structures were sampled using
molecular dynamics, by subsampling a trajectory computed using coarser dft parameters.
The soap parameters and hyperparameters are given in table 6.4.

The ‘target’ dft value of the thermal conductivity was known when training the
potentials. To avoid cherry-picking training databases with particularly favourable values,
we kept the potentials searched systematically improving via their size and the use of
additional structures.

Table 6.5 shows the performance of the potentials compared with dft, including
the thermal conductivity from the Boltzmann transport equation at 300K. This was
calculated using the ShengBTE code (Li et al., 2014), on a converged grid of 303 k-points.
Figure 6.2 shows the temperature dependent thermal conductivity for the two most
converged potentials.

Clearly the phonon spectrum, Grüneisen parameters and thermal conductivity are
related to the accuracy to which the potential can reproduce the second- and third-order
force constants, on which they all depend. There is improvement in most of these quanti-
ties as the potential is systematically enlarged. The first potential has a very small training
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6. Computation of Lattice Thermal Conductivity from Molecular Dynamics Simulation

νenergy (eV/atom) 0.003
νforce (eV/Å) 0.2
νvirial (eV/atom) 0.2
1/α (Å) 0.5
rcut (Å) 5.0
lmax 12
nmax 10
ζ 4

Table 6.4.: Hyperparameters used for the soap kernel. The ν are the noise hyperparame-
ters, 1/α is the width of the Gaussian used to represent the atomic density in
eq. (2.54), and rcut the cutoff radius. lmax and nmax are the maximum values to
use for the sum in eq. (2.52); ζ appears in eq. (2.53).

database, and although it produces reasonable lattice parameter and elastic constants,
it cannot reproduce the other quantities accurately. The second potential has better
second- and third-order force constants overall, resulting in smaller errors in phonon
spectrum and Grüneisen coefficient, although this does not translate into a better thermal
conductivity, which is still dramatically underestimated. Introducing liquid structures
into the training database more than doubles the computed thermal conductivity, which
is improved further still by the addition of other structures (amorphous, beta-tin and
simple-hexagonal).

This addresses an important aim of this part of the project: to construct a potential
model capable of reproducing the thermal conductivity to first-principles accuracy. Even
though the conductivity obtained as a solution to the Boltzmann transport equation is
approximate, and is only applicable up to some fraction of the Debye temperature, there
is good agreement between dft and experiment over a considerable temperature range,
deviating in the expected way from experiment for temperatures of 600K and higher, and
it is possible to obtain convergence in pbte conductivity, along with other harmonic and
anharmonic properties, using this method of constructing a potential.

The restriction to low temperatures does not apply to the Green–Kubo approach,
which we now consider. At low temperatures these methods should agree when fully
converged in system size and time. In practice, it was found that it is often difficult to
observe an agreement between them, and they often differ markedly. Size scaling effects
were considered by Sellan et al. (2010), Esfarjani et al. (2011) and He et al. (2012), who
note that by using small systems, as is necessary with the Green–Kubo method, this
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Figure 6.2.: Thermal conductivity from the iterative solution to the phonon-Boltzmann
transport equation, for the two best gap potentials, the result directly from
the dft on which they were trained, and the experiment of Glassbrenner and
Slack (1964).

removes long-wavelength phonons with long mean free paths, and this could significantly
reduce the conductivity.

We now give a particularly well-converged result in time for Stillinger–Weber silicon,
with isotopically pure 28Si. A temperature of 600K was chosen as a compromise between
limiting the thermal conductivity for relatively rapid convergence of the autocorrelation,
and allowing comparison with the pbte. It is found that despite obtaining a larger value
with a smaller error bar than other reported results, it does not agree with the third-order
phonon-transport result.

We obtain 25.6µs of total simulation data, comprising 512 independent 50ns trajectories,
for both system sizes. This is considerably more than other simulations described in
the literature, and allows a converged value to be obtained for the integrated heat-flux
autocorrelation up to several nanoseconds, and allows for a more reliable fit to the
autocorrelation.

Figure 6.3 shows the heat-flux autocorrelation for the 103 unit cell system. Even though
it rapidly becomes quite small, the long-time tail is important for convergence of the
integral, shown in fig. 6.4.

It is not possible to use systems much larger than 103 for this length of simulation. This
small system discretizes the phonons that can be represented in the simulation domain,
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Figure 6.3.: The heat-flux autocorrelation for the Stillinger–Weber potential, for the 103

unit cell system at 600K.
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Figure 6.5.: The heat-flux autocorrelation for the Stillinger–Weber potential, for the 103

unit cell system at 600K. The dashed line is a power law fit to the tail, with
exponent −1.5.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  200  400  600  800  1000

H
e
a
t 
fl
u
x
 a

u
to

c
o
rr

e
la

ti
o

n

Time (ps)

Figure 6.6.: The heat-flux autocorrelation for the Stillinger–Weber potential, for the 103

unit cell system at 600K. The dashed line is an exponential fit to the tail,
with time constant 300ps.

130



6.7. Summary

and importantly, eliminates long wavelength phonons entirely. There is some reason
to believe that these contribute a lot to the heat transport, as they typically have low
scattering rates (within the relaxation time approximation), so to converge with system
size could require very large simulations indeed. We do not find a significant difference in
the final value between the 63 unit cell and 103 unit cell system.

Integrating the heat-flux autocorrelation between 0 and 1ns (and discarding the integral
of the tail after 1ns) gives an estimate for the thermal conductivity (via eq. (6.24)) as
166± 4Wm−1 K−1. After this point, the error begins to increase more rapidly than the
value, although this does not imply convergence to within the error bar.

Figures 6.5 and 6.6 show the autocorrelation fit to a power law and to an exponential.
The power law has exponent −1.5 and the exponential has a time constant of 300ps.
Adding the above estimate of the integral to 1ns to the integral (to∞) of these fitting
functions gives a thermal conductivity of 185Wm−1 K−1 for the power law of, and
175Wm−1 K−1 for the exponential. The error in the estimate in this case is determined
by the quality of this fit at long times, and is very sensitive for the power law (since the
exponent is close to −1). In either case, the additional contribution to the conductivity
from integrating the tail is significant.

We note that this value is somewhat larger than other literature values for Stillinger–
Weber silicon computed with the same method (90±20Wm−1 K−1 Volz and Chen (2000);
120Wm−1 K−1 Schelling et al. (2002, extrapolated)). This is likely to be in part because
of the longer integration time possible with our data. For comparison, the experimental
value at this temperature is 64Wm−1 K−1, although we do not expect Stillinger–Weber
to reproduce this value particularly well.

Using third-order phonon-Boltzmann transport from force constants generated with
the same system gives 300Wm−1 K−1, which is in agreement with the value of Broido
et al. (2005). The pbte solution can include contributions from very long wavelength
phonons (dependent on the k-grid), but neglects higher-order phonon scattering processes.
Both of these effects could inflate the conductivity figure over the Green–Kubo result,
only the first desirably. A similar effect was demonstrated for the Tersoff potential by He
et al. (2012), who found a conductivity from a relaxation time approximation to the pbte
to be 26% higher than the Green–Kubo method.

6.7. Summary

We have presented a Gaussian approximation potential model for silicon capable of
reproducing the low and intermediate temperature thermal conductivity of the underlying
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6. Computation of Lattice Thermal Conductivity from Molecular Dynamics Simulation

density functional theory on which it was fit, as determined by the full iterative solution
to the phonon-Boltzmann transport equation. This in turn agrees well with experiment.
It is found that including a wide enough range of structures in the training database is
essential in producing an accurate value, even if these are apparently quite different from
the structure under consideration.

The issue of using molecular dynamics simulations in equilibrium to obtain a value of
thermal conductivity was considered, although it is found to differ from the pbte solution.
A value particularly well-converged in time was given for the Stillinger-Weber potential.

132



7. Conclusions and Further Work

Below, we summarize the main conclusions of the thesis, and describe several directions
for further work.

Hyperelastic equation of state modelling from first principles

We have developed a framework for constructing a temperature-dependent, anisotropic
equation of state for hyperelasticity from first-principles calculations, accurately and
robustly. Although the computational requirements are somewhat greater than com-
monly used equations of state for nonlinear elasticity, the approach is general and could
be applied to many materials straightforwardly. The method was showcased using some
one-dimensional problems (in the full three-dimensional elastic system), including a shock
interacting with a thermal gradient, and a change in crystal orientation in the material. A
further development of the application of this method would be the extension to two or
three dimensions. A particular problem of interest where this could be applied is in the
simulation of a polycrystal under deformation.

Shock waves from first principles

We have described an annealing method well-suited to first-principles simulations to
obtain the Hugoniot locus of a material with molecular dynamics, and demonstrated
this for dft silicon. We were able to construct the Hugoniot of a number of post-shock
phases, and these compare well to experiment up to the available range of experimental
data of 60GPa. States are given for elastic shocks, an approximation to plastically-yielded
states, the simple-hexagonal phase, the beta-tin phase and a liquid. These calculations
support the experimental observations that silicon loses all strength after yielding, and
that the first phase transition along the Hugoniot locus is likely to be a simple hexagonal
phase.

In addition, we perform several direct shock simulations using empirical interatomic
potentials, obtaining a number of points in regions of the Hugoniot not accessible to the
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anneal. We have performed a direct simulation of an elastic shock wave, with forces from
dft, to just below the Hugoniot elastic limit, and observe a very short rise time for this
shock.

There is considerable interest in observing a much stronger shock wave in dft silicon
directly. The high pressure beta-tin and liquid phases of silicon are metallic, with a locally
six-fold coordination. In addition to the structural phase transformation, an electronic
structure method would allow the insulator to metal transition to be observed directly, via
the local band-structure. This system requires a k-point sampling beyond just the Γ-point
used for the elastic shock, which is crucial to simulate a metal well. This requirement
already increases the computational requirements, further complicated by the resulting
dense structure after the passage of the shock, which is more challenging to converge
in SCF than the initial diamond structure. Since the simulation domain must remain
small, a shock-wave above the split-wave limit is required. Although some effort was
made in obtaining convergence (at all, and then quickly) and running this simulation in a
reasonable time, it remains ongoing work to complete it. Along with the elastic shock,
these would be the first ab initio shock simulations we are aware of.

Thermal conductivity

We have developed a systematically-improved empirical interatomic potential model
for silicon, using the approach of Gaussian approximation potentials. This applies a
Bayesian inference technique commonly used in the machine learning community to
the development of accurate and transferable potentials from an underlying structure
database of energies and forces, which can be computed from a first-principles method.

We showed that by using this approach it is possible to obtain a potential capable of
reproducing the temperature-dependent thermal conductivity, as computed from the
phonon Boltzmann transport equation, to first-principles accuracy, but with a potential
having much lower computational cost. The advantage of this approach is that while the
thermal conductivity is important in many contexts, methods for computing the high
temperature conductivity, or the thermal resistance of atomic-scale structures, are too
demanding for first-principles methods such as density functional theory.

Even though only diamond structure silicon was considered, it was found that including
other structures in the training database, seemingly quite different from those encountered
when computing the force constants, was necessary to obtain a converged result. This
does not sacrifice other material properties computed from the potential, which can
also be seen to converge. This is already an improvement on potentials based on simple
functional forms, where once certain properties are fixed, there remains limited scope for
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improving the others. This is a benefit arising the underlying Gaussian process, whose
shape is quite arbitrary compared with parameterized forms.

Reconciling the low-temperature phonon Boltzmann approach with the Green–Kubo
method, which can be applied at any temperature, seems to be a challenging problem,
and exposes many subtleties. These are discussed in a number of places in the literature
(e.g. Esfarjani et al., 2011; He et al., 2012). An attempt at comparing the Green–Kubo
conductivity as obtained by the GAP potentials and dft, by fitting to a force-constant
potential up to fourth order, based on the work of Esfarjani et al. (2011), is currently
underway.
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A. The Romenski Equation of State

The specific internal energy is written in terms of the specific entropy and the invariants of
the inverse right Cauchy–Green tensor, as equations (a.1–3.26), but in terms of C = B−1:

IC = trC (a.1)

IIC =
1

2

�

(trC)2− tr(C2)
�

(a.2)

IIIC = detC. (a.3)

It is decomposed into two terms,

E(IC , IIC , IIIC , S) =U (IIIC , S)+W (IC , IIC , IIIC ), (a.4)

where U is the thermal and hydrostatic energy density and W is the elastic energy due to
shear deformation. These are given as

U (IIIC , S) =
K0

2α2

�

IIIα/2C − 1
�2
+ cvT IIIγ/2C (a.5)

W (IC , IIC , IIIC ) =
B0

2
IIIβ/2C (I2

C /3− IIC ), (a.6)

with T defined in terms of S assuming a constant heat capacity,

T = T0(exp(S/cv )− 1). (a.7)

Here, cv is the specific heat capacity at constant volume, K0 is the bulk modulus and B0

is the elastic P -wave modulus.
An alternative parameterization in terms of b0 and c0, the bulk and longitudinal speeds

of sound, has

B0 = b 2
0 (a.8)
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K0 = c2
0 −

4

3
b 2

0 (a.9)

Table a.1.: A parameterization of the Romenski equation of state for copper.

ρ0 b0 c0 cv T0 α β γ

(gcm−3) (kms−1) (kms−1) (kJg−1K−1) (K)

8.93 2.1 4.6 3.9× 10−4 300 1.0 2.0 3.0
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B. Gaussian Process Regression

B.1. Introduction

Here, we give an overview of Gaussian process regression, providing the details of the
methods used in section 2.3 and chapter 4, and serving to define some notation. For a
broader overview of Gaussian process regression, the reader is referred to MacKay (2003,
ch. 45). Approaches to reduced-rank regression (appendix B.5) are covered by Quiñonero
Candela and Rasmussen (2005) and Snelson and Ghahramani (2007).

A Gaussian process is a stochastic process {tn |n ∈ I }, n ranging over an index set I ,
where each finite collection of N variables t = (t (n1), t (n2), . . . , t (nN )) has a joint Gaussian
distribution

P (t |µ,C) =
1

Z
exp
�

−
1

2
(t −µ)TC−1(t −µ)

�

(b.1)

The parameters µ and C are the (vector) mean and N ×N covariance matrix of the
distribution, and Z is a normalising factor1, included so that the probability density P
integrates to one over the domain of t (Hoel et al., 1987, sec. 4.2).

Gaussian process regression is the use of a Gaussian process prior in a Bayesian
function-inference problem. Consider that when performing an interpolation of some
known data points,

¦

(x (i), t (i))
©

, to a new pair of values, (x ′, t ′), where x ′ may be different
from any of the other x (i), and t ′ is unknown, we are interested in the conditional
probability distribution

P (t ′|x ′,{(x (i), t (i))}). (b.2)

We assume that the joint probability distribution of any collection of outputs is given
by eq. (b.1), and therefore that t is a Gaussian process. We must then find the above
conditional probability distribution.

Assuming that an observation t is generated from some underlying function of the
input variables x , for another input location x ′, an estimate of the value of the function

1Given by Z = 1/
Æ

(2π)N detC.
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B. Gaussian Process Regression

there, t ′, is given by the mean of the distribution. The variance gives a measure of the
uncertainty in this estimate. The use of Gaussians makes finding explicit expressions for
the mean and variance of the above distribution straightforward, and these values also
determine the (Gaussian) distribution completely.

Whether we consider this reconstruction an interpolation or a regression depends on
whether we consider the observations t (i) exact values of an underlying function (and
therefore points that the interpolant are constrained to pass through), or whether this
function is subject to statistical noise in obtaining the output values (where there is no
such constraint).

We will sometimes write X for the collection of all of the inputs (x (i))Ni=1, and t for
the corresponding outputs (t (i))Ni=1. An individual input x (i) may be a vector. It is also
possible for the outputs ti to be vector-valued, but here we restrict them to scalars.

B.2. The covariance function

The covariance matrix determines how the outputs t depend on one another through
eq. (b.1), and is required to be positive definite. Since each output depends on a vector of
inputs, it is reasonable to assume that the elements depend on the input vectors through
a covariance kernel as Ci j =C (x (i), x ( j )). A stronger assumption is that the covariance
kernel is stationary: the correlation between two observations depends only on the
separation of their inputs, x (i j ) = x (i)− x ( j ).

A choice appropriate for many circumstances, also used for aspects of this work is the
square-exponential covariance function

C (x , y) = σ2 exp

 

−
1

2

∑

i

(xi − yi )
2

r 2
i

!

+ ν2δx ,y . (b.3)

Some others are described by Gibbs and Mackay (1997). The soap kernel, eq. (2.52), has
been discussed already. This form of kernel has a zero-mean prior on the output: far from
any input data points, the kernel will revert to predicting a value of zero for the output2.

The interpretation of the hyperparameters in the squared exponential covariance
function is as follows: σ sets the overall scale of the inferred function (σ2 is the prior
variance of the inferred function value at a point, before any noise is considered), ν
represents position-independent Gaussian noise in the outcomes that is independent of
the inputs, and ri is the characteristic length over which the function values become
2Consider two uncorrelated observations, with a large separation. Their covariance is just the square of the

mean, which for this function is zero
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B.2. The covariance function

decorrelated as the distance between two inputs along dimension i varies, which may
differ between input dimensions. A large value of ri (compared with the scale of the
inputs) indicates that the corresponding input dimension has little influence over the
function value, while a small value of ri indicates that the function is highly sensitive
to changes in the input along that dimension. The noise parameter ν has the added role
numerically of improving the condition number of the covariance matrix when all of
the inputs are highly correlated. For this reason, a small, positive value can be used for ν
when computing the covariance matrix, even when it might otherwise be zero.

In both of the applications we consider, observations of function derivatives are
available. Making use of derivative information is a matter of specifying the covariance
between pairs of derivatives, and between derivative and value measurements. For the
squared-exponential kernel, we have the following covariances: between a derivative (with
respect to the i th component) and value,

−
∂C

∂ xi
(x , y) =

∂C

∂ yi
(x , y) =

xi − yi

r 2
i

σ2 exp

 

−
1

2

∑

k

(xk − yk )
2

r 2
k

!

(b.4)

and between two derivative outcomes (with respect to xi and x j ),

∂ 2C

∂ xi∂ y j
(x , y) =







1

ri r j
−

1

2

xi − yi

r 2
i

x j − y j

r 2
j






σ2 exp

 

−
1

2

∑

k

(xk − yk )
2

r 2
k

!

. (b.5)

As the notation indicates, these are just the corresponding partial derivatives of the
covariance function. Ignoring the noise term for the time being, this follows by the chain
rule: an output t (i) depends only on x (i), so

Ci j =Cov(t (x (i)), t (x ( j ))), (b.6)

where t (x) is the random variable representing the value of the process at x . Differentiat-
ing gives

∂Ci j

∂ x (i)
=Cov

�

∂ t

∂ x
(x (i)), t (x ( j ))

�

(b.7)

∂ 2Ci j

∂ x (i)∂ x ( j )
=Cov

�

∂ t

∂ x
(x (i)),

∂ t

∂ x
(x ( j ))

�

, (b.8)

which are the required derivative covariances.
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The noise has been excluded from the above expressions. This is appropriate since
the derivative of t refers to the function underlying the value observations, and this is
assumed to be differentiable, which it is no longer if it contains inherent Gaussian noise.
The derivatives observations may be available through other means to the values, with a
different noise level.

The covariance matrix is a prior on the space of functions considered by the regression
model. It typically depends on a number of parameters. For a square-exponential kernel,
these are ri , σ , and the noise ν. These are known as hyperparameters (as distinct
from plain parameters), and affect only the prior distribution. The hyperparameters
determine the prior distribution on the space of fitting functions. As the size of the
training set increases, the prior has less influence and the posterior distribution converges
to a distribution independent of the prior, although perhaps slowly. This contrasts with
parameters in the usual sense, which are varied to best represent the data3. Gaussian
process regression is sometimes referred to as a nonparametric method, since it does not
have any variable parameters of this kind.

B.3. Inference

Given an N×N covariance matrix C , computed from the N ordinates x , we now consider
the task of inferring the output value t ′ for an input x ′. Starting from the known joint
Gaussian distribution, and using the property of the Gaussian process, we show that
the desired conditional distribution of the output value is Gaussian, with a mean and
variance that can be readily computed.

Bayes theorem applied to eq. (b.2) is

P (t ′|t ) =
P (t , t ′)

P (t )
. (b.9)

The numerator of this expression is another joint Gaussian with a (N + 1)× (N + 1)
covariance matrix, which may be written

 

C k
kT c

!

, (b.10)

where k has i th component ki =C (x (i), x ′), and c=C (x ′, x ′).

3Hyperparameters may enter into the prior as parameters on the model itself, even when not explicitly
working in a Bayesian setting as we are here. For example, in a parametric linear least-squares polynomial
fit, the degree of the polynomial could be considered a hyperparameter.
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The inverse of this block matrix (see e.g. Barnett, 1979) is

 

C−1+mC−1kkTC−T −mC−1k
−mkTC−T m

!

, (b.11)

where m = (c − kTC−1k)−1. This is the covariance matrix for the joint Gaussian
distribution of all of the observations. All of the observation values apart from t ′ are
known, and the probability distribution of t ′ given the remaining observations t is
Gaussian with mean

t̂ ′ = kTC−1 t (b.12)

and variance
Var(t ′) = c− kTC−1k. (b.13)

B.4. Choosing the hyperparameters

Denote the hyperparameters in a particular covariance model by θ. Rather than taking
them as given, fixed values, treat them as additional quantities to be inferred from the
data. We are now interested in the distribution P (θ|x , t ), and the calculation of eq. (b.2)
should be replaced by the integral

∫

θ
P (t ′|x ′,X , t ,θ)P (θ|X , t ) dθ. (b.14)

In practice, and especially for large systems, the cost of performing such an integral is
prohibitive. It is also in many cases unnecessary, since its value is dominated by the most
likely values of θ.

By Bayes’ theorem, express

P (θ|t ) = P (t |θ)P (θ) (b.15)

and find the θ that maximises the likelihood P (t |θ).
The logarithm of the likelihood is

log P (t |θ) =
1

2
tTC−1 t −

1

2
logdetC −

N

2
log2π (b.16)
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and its derivative is

∂ log P

∂θi
=

1

2
tTC−1 ∂C

∂θi
C−1 t −

1

2
trC−1 ∂C

∂θi
. (b.17)

The logarithm of the likelihood is used numerically due to the rapid decay of the
likelihood away from its maximum. Numerical computation of logdet can be achieved
directly and stably.

Knowledge of the derivative allows local maxima to be found using gradient-based
optimisation algorithms such as the method of conjugate gradients. Alternatively, to
avoid implementing an analytic gradient of each covariance function, a derivative-free
optimisation method4 can be used, at the cost of slower convergence (but only affecting
the training time).

For part of this work, we used the NLopt optimisation library (Johnson, 2014), which
implements several gradient-based and derivative-free methods.

B.5. Reduced-rank approximation

A Gaussian process with n training points has a prediction cost that is O(n), the cost of
a dot product of two vectors of length n. Variance predictions are O(n2), the cost of a
matrix-vector product, and training is Ω(n2) and in practice not much better than O(n3),
the cost of inverting the covariance matrix.

A reduced-rank Gaussian process approximates the full rank-n covariance matrix with
a matrix of lower rank, m. The motivation for this is that it reduces the value-prediction
complexity to O(m) and the variance-prediction complexity to O(m2). The training
complexity involves O(nm2) operations for the inversion, but must also take into account
the procedure used to approximate the full matrix with one of lower rank.

One particular reduced-rank approximation involves choosing m distinguished input
locations, and approximating the full matrix as

C ≈C∗ =KnmK−1
mmKmn . (b.18)

Here, Kmn is the covariance matrix involving the m distinguished inputs and the n
training points, Knm is its transpose, and Kmm is the covariance matrix involving just the
m distinguished inputs. We avoid computing all of the elements of C∗, and do not need
to so in order to make predictions.

4This is to be preferred to a finite-difference gradient used in a gradient-based algorithm.

144



B.5. Reduced-rank approximation

The noise term of eq. (b.3) is excluded when calculating the K matrices of various
shapes. The noise on the inputs introduces an additional diagonal term onto C, but a
similar term would also be desirable for stability of expressions involving K−1

mm . A small
diagonal term can be added to Kmm as well, but this can no longer be identified straight-
forwardly with input-independent Gaussian noise, and serves only to aid numerical
stability.

Under this approximation, the predicted mean of an observation at x ′ is

t̂ ′ = kmQ−1Kmn t (b.19)

and the variance is

Var(t ′) = c− (kTmK−1
mmkm − ν

2kTmQ−1km), (b.20)

where Q = ν2Kmm +KmnKnm and km has components C (x (i), x ′) with i ranging over
the indices of the m distinguished inputs. The expected errors in these predictions against
those of the full-rank process are discussed by Quiñonero Candela and Rasmussen (2005).

B.5.1. Choosing the distinguished inputs

The reduced-rank approximation with lowest elementwise error is the truncated singular-
value decomposition, obtained by leaving out the smallest elements of the diagonal
matrix in the full decomposition (the Eckart–Young theorem; see e.g. Van Huffel and
Vandewalle, 1991, p.31). The advantage of the approach described above (sometimes
known as a skeleton decomposition) over one based on singular values, is that the rows
of Kmn in the approximation are the same as rows of the full-rank matrix, and only some
of these need to be computed—a truncated singular value decomposition would require
O(n2) space.

The best approximation with the form of eq. (b.18) maximizes the determinant of
the intersection matrix Kmm (Chiu and Demanet, 2013). For a covariance matrix this is
achieved by choosing uncorrelated training points, which are usually far apart in input
space, and this admits an algorithm such as k-means clustering, described below.

B.5.2. k -means clustering

The method of k-means clustering (MacQueen, 1967) can be used with the reduced-rank
Gaussian process to find a good set of distinguished input vectors heuristically. The
algorithm partitions the n input points into m clusters whose variance is minimized. The
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means of the clusters can be used as the input points.

min
Si

m
∑

i=1

∑

x∈Si

|x −µi |
2, (b.21)

where
µi =

1

|Si |

∑

x∈Si

x (b.22)

are the means of the clusters.
The algorithm proceeds iteratively, by assigning each point to the set with the closest

mean to it at the current iteration, and then recomputing the mean for the next iteration.
The initial partitioning can be chosen randomly and the minimizer obtained from several
initial partitions used to avoid a poor local minimum.

B.6. A GPU implementation

In a continuum simulation, many independent equation of state evaluations are needed
across the domain, and these can be made in parallel for a given timestep. A Gaussian
process prediction is made by performing a predetermined number of covariance function
evaluations followed by a dot product with a fixed vector. In the dense case, this involves
computing the vector k in eq. (b.12), followed by a dot product with the precomputed
vector C−1 t (or for the reduced-rank case, with the vector Q−1Kmn t ). Since this latter
vector is the same for every prediction, several predictions can be made at once as a
matrix-vector product. These features make it a high-throughput task amenable to a gpu
implementation. This is done because a single dot product is unlikely to be able to reach
the full performance of the gpu, due to the relative cost of the transfer to and from the
device.

The idea of our implementation is to package up a number of equation of state
inputs, send them to a kernel function implementing Gaussian process prediction, which
performs the covariance function evaluations (one per thread) followed by the matrix-
vector product on the gpu. This latter step is performed by cublas, a gpu library for
performing linear algebra operations (Nvidia Corporation, 2014).

Performance data is reported in table b.1. Double precision is used throughout—single
precision gives wildly inaccurate results (>100% relative error) in realistic cases due to
the typically poor condition number of the covariance matrix C. There is a constant
overhead associated with OpenMP in the multithreaded cpu implementation, and a
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B.6. A GPU implementation

similar overhead in the gpu implementation for the launch of the kernel function which
includes transfer of data to and from the device. These overheads can be seen to become
less significant for the larger runs. For comparison, the Romenski equation of state
eq. (a.5) took 0.4µs per evaluation on the same cpu.

Table b.1.: Comparison of timing data for our cpu and gpu implementations of (full-rank)
Gaussian process regression with a Gaussian covariance function [eq. (b.3)].
Times are the best of ten runs.

Database
size

Number of
evaluations

Time per evaluation (µs)

cpu
a, single thread cpu

a, 16 threads gpu
b,c

100

1 95.1 5570 1000
10 21.9 456 100
100 14.5 50.5 10.2
1000 13.7 8.01 1.26

10000 13.6 2.32 0.360
20000 13.6 1.53 0.320

2000

1 371 4690 1080
10 284 626 108
100 274 93.2 14.3
1000 273 23.1 4.92

10000 274 19.1 4.04
20000 274 18.4 3.99

a Intel Xeon E5-2650 v2 with 16 cores at 2.60GHz, ideal double precision performance of 333
gflops

b
Nvidia K20, ideal double precision performance of 1170 gflops

c including transfer time to and from the device for the input and result but not for the (constant)

training data
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C. Empirical Interatomic Potentials

This chapter gives a detailed description of the empirical interatomic potentials used for
this thesis (gap and dft are described separately in their own chapters).

C.1. The Stillinger–Weber potential

This potential was described by Stillinger and Weber (1985), and is a three body potential,
with a term favouring tetrahedral coordination. The form is quite simple, making it
cheap to evaluate.

E/ε=
∑

i≤ j

V2(ri j/σ)+
∑

i≤ j≤k

V3(ri/σ , r j/σ , rk/σ) (c.1)

where

V2(r ) =







A(B r−p − r−q )exp[(r − a)−1], r < a

0, r ≥ a,
(c.2)

and
V3(ri , r j , rk ) =

∑

cyc(i , j ,k)

h(ri j , ri k ,θ j i k ) (c.3)

with

h(ri j , ri k ,θ j i k ) =















λexp[γ (ri j − a)−1+ γ (ri k − a)−1]

×
�

cosθ j i k +
1
3

�2
ri j < a and ri k < a

0 otherwise.

(c.4)

In the above expressions, a is a cutoff radius, and the potential tends smoothly to zero at
this distance. The form of h is chosen to favour tetrahedral angles between atoms (with
cosθ j i k =−

1
3 ). There are nine adjustable parameters including the cutoff and choice of
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C. Empirical Interatomic Potentials

energy and distance units. For silicon, we use the original parameterization of Stillinger
and Weber (1985), given in table c.1.

Table c.1.: Parameters for silicon, for the potential of Stillinger and Weber (1985).

ε (eV) σ (Å) a λ γ A B p q

2.1683 2.0951 1.80 21.0 1.20 7.049556277 0.6022245584 4 0

C.2. The Potential of Tersoff

This potential was first descibed by Tersoff (1986), and improved parameters were given
subsequently by (Tersoff, 1988, 1989), with better elastic properties and for multicom-
ponent systems. It is designed to describe tetrahedral semiconductors well, including
carbon, silicon, and germanium.

The form of the potential is

E =
1

2

∑

i 6= j

Vi j (c.5)

Vi j = fC (ri j )
�

ai j fR(ri j )+ bi j fA(ri j )
�

(c.6)

fR(r ) =Aexp(−λ1 r ) (c.7)

fA(r ) =−B exp(−λ2 r ) (c.8)

fC (r ) =















1, r ≤ R−D
1
2 −

1
2 sin

�

π
2 (r −R)/D

�

, R−D < r ≤ R+D

0, r > R+D

(c.9)

bi j = (1+β
nζ n

i j )
−1/2n (c.10)

ζi j =
∑

k 6={i , j }
fC (ri k )g (θi j k )exp[λ3

3(ri j − ri k )
3] (c.11)

g (θ) = 1+ c2/d 2− c2/[d 2+(h − cosθ)2] (c.12)

ai j = (1+α
nηn

i j )
−1/2n (c.13)

ηi j =
∑

k 6={i , j }
fC (ri j )exp[λ3

3(ri j − ri k )
3], (c.14)
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C.2. The Potential of Tersoff

where ri j is the distance between atoms i and j and θi j k is the angle between ri j and
r j k . The thirteen adjustable parameters (with units where applicable) are A (eV), B (eV),
λ1,2,3 (Å−1), α, β, n, c , d , h, R (Å) and D (Å).

We use the paramaterization for silicon of Tersoff (1989), given in table c.2.

Table c.2.: Parameters for silicon, for the potential of Tersoff (1989).

A (eV) 1.8308× 103

B (eV) 4.7118× 102

λ1 (Å−1) 2.4799

λ2 (Å−1) 1.7322

λ3 (Å−1) 0.0
α 0.0
β 1.1× 10−6

n 7.8734× 10−1

c 1.0039× 105

d 1.6217× 101

h −5.9825× 10−1

R (Å) 2.7
S (Å) 3.0
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D. The Virial Stress

We show here that the virial stress is the (equilibrium) microscopic expression for the
Cauchy stress in the thermodynamic limit. For further discussion of stress in microscopic
systems and reconciling this with the continuum expression, see Admal and Tadmor
(2010).

Consider the following time derivative

d

dt

N
∑

r p =
N
∑

v p+
N
∑

r ṗ (d.1)

=
N
∑

v p+
N
∑

r f (d.2)

= 2T +W (d.3)

where T is the kinetic tensor andW is known as the virial tensor.
Splitting the virial term into an ‘internal’ part and and ‘external’ part, we identify the

external part of the per-atom forces with a continuum traction, which it becomes in the
limit of large system size:

W ext =
∫

∂ V
rσ · dA. (d.4)

This expression is written in terms of the continuum Cauchy stress, and relies on the
result that the traction through a surface is the sum of forces on the atoms that we cannot
account for within the system.

By the divergence theorem (under the summation convention),

W ext
i j =

∫

V
∂k (riσk j )dV =

∫

V
(ri∂kσk j +σi j )dV =V σi j , (d.5)

where the last result holds in equilibrium, with the stress constant throughout the system.
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D. The Virial Stress

In the continuum limit, for a system in equilibrium, we therefore have

1

V

 

d

dt

N
∑

r p− 2T −W int

!

continuum−→ σ , (d.6)

where the limit takes V →∞ holding N/V constant.
Finally, we define the instantaneous virial stress as

σvirial =−
1

V

�

2T +W int
�

(d.7)

Taking a (finite) time average, we obtain

σvirial = σ −
1

T

 

1

V

N
∑

r p

!�

�

�

�

�

T

0

. (d.8)

In many circumstances, the averaged quantity on the right hand side of this equation
tends to zero as T grows large.

Equation (d.7) may alternately be written

σvirial =−
1

V

N
∑

α

(f αrα+mαvαvα) (d.9)

where the sum is over the atoms, indexed by α.
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E. The Pair Correlation Function

In a system of particles, the pair correlation function, or radial distribution function, g (r ),
is a measure of the average density variation with distance from a given reference particle
or species.

It is defined through
ρ(1)(r ) = ρg (r ) (e.1)

where ρ is the bulk density of the system, and

ρ(1)(r ) =
∫

|r |=r
ρ(1)(r )dr . (e.2)

ρ(1)(r ) is the distribution of density with spatial position.
In terms of the probability density of a configuration,

ρ(1)(r ) =N
∫

· · ·
∫

︸ ︷︷ ︸

N−1

P(r , r2, . . . , rN )dr2 · · ·drN , (e.3)

and for a system of particles whose potential energy depends on their configuration as
U
�

{ri}
�

,

P(r1, . . . , rN ) =
1

Z
exp

�

−
U (r1, . . . , rN )

kB T

�

, (e.4)

where Z is the usual partition function, and so, with system volume V ,

g (r ) =
V

Z

∫

|r |=r

∫

· · ·
∫

︸ ︷︷ ︸

N−1

exp

�

−
U (r , r2, . . . , rN )

kB T

�

dr2 · · ·drN dr . (e.5)

Calculation of g (r ) numerically can be done by evaluating the integral eq. (e.2)
discretely, averaging over particles and time.
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F. LCAO Basis for Silicon

Table f.1.: Basis parameters for a double-ζ polarized basis set for silicon, according to the
soft-confinement scheme of Junquera et al. (2001). The first ζ for l = 0
and l = 1 was set to 7.0 a0, and the other parameters were variationally
optimized. There are thirteen basis functions per atom. For the purposes of
basis generation, an effective ionic charge of −0.464 was used, which was also
variationally optimized. The cutoff radii of the first and second zeta functions
are r (ζ1) and r (ζ2), and ri is the confinement potential’s internal radius. V0 is
the soft-confinement prefactor.

n l ri (a0) r (ζ1) (a0) r (ζ2) (a0) V0 (Ry)

3 0 4.970 7.000 4.377 15.426
3 1 3.831 7.000 4.091 4.696
3 2 0.031 4.554 - 11.969

 0  2  4  6

l=0

ζ1
ζ2

 0  2  4  6

r (a0)

l=1

 0  2  4  6  8

l=2

Figure f.1.: The radial basis shapes resulting from the basis parameters in table f.1.
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