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Abstract 
Structural studies of trans-translation 

Christopher D. Rae 

 Ribosomes translate messenger RNA (mRNA) into protein in all living cells. 

The faultless production of protein is critical for a vast array of catalytic and structural 

roles and is essential for the survival of the cell. Ribosomes themselves are made up of 

both RNA and protein, and are composed of two subunits, each with a separate 

function. The small subunit reads the mRNA message, directing the large subunit to 

synthesize a sequence of amino acids to form a protein. In many cases, mRNA may be 

damaged or truncated in such a way that ribosomes reach the end of the message and 

become trapped. Rescuing stalled ribosomes is essential as an otherwise lethal build-up 

of unproductive ribosomes diminishes the translation capacity of a cell. 

 This study focuses on an essential pathway called trans-translation, which 

resolves stalled ribosomes in nearly all bacteria. Two factors, transfer-messenger RNA 

(tmRNA) and small protein B (SmpB), form a complex that rescues the ribosome by 

terminating translation and releasing the ribosome from the mRNA message. In vitro 

biochemistry in conjunction with cryo-electron microscopy (cryo-EM) was used to 

visualize frozen snapshots of the ribosome undergoing trans-translation. The structures 

reveal the coordinated movement of tmRNA and SmpB through the ribosome.  

 Binding interactions between tmRNA-SmpB and the ribosome explain why 

trans-translation only begins on ribosomes that reach the end of an mRNA and not for 

actively translation ones. SmpB plays an essential role in positioning tmRNA as 

together they mimic both a tRNA and mRNA. The movement of tmRNA-SmpB results 

in a stepwise message swapping from the original mRNA to tmRNA, facilitating the 

rescue of stalled ribosomes. Overall, this structural study advances our atomic level 

understanding of the mechanism of trans-translation. 
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1 Introduction 

 

1.1 A general overview of the ribosome 

1.1.1 The ribosome translates the genetic code  
 The ribosome is responsible for the crucial task of translating one chemical 

language into another. Organic life depends on messages coded by nucleotides in the 

form of DNA and RNA to be successfully converted into a sequence of amino acids that 

forms a protein (Figure 1.1). The intricacies of this process, centered on the ribosome, 

are the focus of this thesis. Specifically, the work presented concerns a mechanism in 

bacteria that is responsible for salvaging ribosomes when aspects of translation go 

wrong. It builds on an extensive body of work examining normal and aberrant 

translation, which are reviewed briefly below.  

 Early ideas from Beadle and Tatum suggested that a single gene encodes one 

functional molecule, or enzyme (1). The molecule encoding genetic information was 

contentious until an elegant series of experiments by Avery, Hershey and Chase 

established it as DNA (2, 3). Later studies by Schramm and Williams revealed that 

RNA has a similar genetic capacity (4, 5). Their experiments showed that 

transformation of viral RNA into bacteria causes infection and results in the formation 

of new viruses. Isolated viral protein could not act in this way, however, protein was 

known to form the viral capsule surrounding RNA, suggesting a connection between 

nucleic acids and protein synthesis.  
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Figure 1.1 The flow of genetic information from nucleic acid to protein. DNA contains genes, which 

are transcribed into an RNA message that the ribosome translates into protein. (Inset) The 

ribosome synthesizes a polymer of amino acids as dictated by a sequence of RNA nucleotides. 

 In 1953, Watson and Crick used data from Franklin and Wilkins to describe the 

structure of DNA (6). The structure immediately suggested a mechanism for DNA 

replication based on a strict one-to-one nucleotide correspondence between 

complementary bases (7). Base pairing is dictated by hydrogen bonding, which had 

previously been inferred biochemically by Chargaff and Wyatt (8, 9), showing that 

adenine (A) complements thymine (T), and guanine (G) complements cytosine (C) 

(Figure 1.2). Although the structure of DNA creates an obvious template for replication, 

how the genetic information within DNA directs protein synthesis was not immediately 

apparent. One of the first steps toward understanding this was the recognition of an 

intermediary message between DNA and protein, called RNA. RNA is transcribed from 

a DNA template and has two chemical differences compared to DNA: the sugar in the 

backbone is ribose instead of deoxyribose, and the base uridine (U) replaces thymine 

(T). Validating this connection, Berg showed that when enzymatically synthesized RNA 

was added to protein synthesis reactions, there was a pronounced increase in peptide 

formation (10). In what way genetic information was encoded within nucleic acids, 

however, was still unclear. The following decades were marked by numerous theories 

addressing this problem, along with the desire to understand the machinery that 

performs the decoding process.  
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Figure 1.2 Nucleotide bases are complementary. Hydrogen bonds dictate complementarity between 

bases and this base pairing creates a template for replication.  

 We now know that four nucleic acids must encode 20 different amino acids. 

This mandates that a set of multiple nucleotides, called a codon, must specify a single 

amino acid. To adequately specify all 20 amino acids requires at least a three-nucleotide 

code, since each nucleotide can take any of four possible forms (4x4x4=64). This results 

in excess codons, meaning the genetic code is degenerate. Based solely on theory, the 

mathematician Gamow put forth one of the first possible interpretations which, though 

ultimately incorrect, assumed that the code was triplet, overlapping and degenerate (11). 

Crick later showed genetic evidence for the code’s triplet nature (12), while work by 

Brenner established that the code was not overlapping, as a triplet overlapping code 

would require more than 64 codons (13). By the 1950’s, understanding which codons 

corresponded to which amino acids, and the mechanism by which they were read was 

the focus of intense research. 

 A major breakthrough in understanding the genetic code came when Nirenberg 

and Matthaei determined experimentally that RNA composed entirely of uridine 

nucleotides encodes stretches of the amino acid phenylalanine (14). With this they 

conclusively showed that RNA containes the code for protein synthesis and uncovered 

the first codon, UUU, encoding phenylalanine. Nirenberg and Leder then used a newly 

developed translation system to further show the nucleotide triplets coding for Phe, Lys, 

and Pro (15). This study optimized a filter-binding assay for the systematic 
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determination of amino acid-codon correspondence with a sequence of repeating RNA 

nucleotides. These experiments allowed the full genetic code to be rapidly determined 

experimentally and the remaining code (Figure 1.3) was deciphered in 1966 by Khorana 

and colleagues using chemically synthesized RNA sequences that could be 

unambiguously matched to a corresponding amino acid sequence (16).  

  

Figure 1.3 The genetic code. Each amino acid is specified by one or more sets of three nucleotides 

called codons.  

 As the code was being deciphered, the mechanism by which an RNA message 

is translated into the chemical language of amino acids was of increasing interest. Given 

the relative size of a single amino acid compared to a nucleotide, Crick recognized the 

need for an adaptor molecule (17). The adaptor hypothesis was supported by Hoagland, 

Zamecnik and Stephenson’s discovery of small RNA molecules, now known as transfer 

RNA (tRNA), which were shown to be covalently bound to amino acids (18). tRNAs 

are typically about 75 nucleotides in length and form four helical domains that fold into 

a distinct L-shape (19, 20). We now know that each tRNA has a set of three nucleotides, 

called an anticodon, which is complementary to an mRNA codon, while the 3’ end is 

covalently bound to an amino acid (Figure 1.4). Aminoacyl-tRNA synthetases catalyze 

the coupling of a specific amino acid to the 3’ end of a tRNA. Some aminoacyl-tRNA 

synthetases specifically recognize the anticodon of tRNA, whereas others recognize the 

acceptor stem to which the amino acid is attached. In either case, synthetases use energy 

from ATP hydrolysis to form the bond between the tRNA and its corresponding amino 

acid. This bond is broken during translation to fuel peptide bond formation between 
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amino acids in the growing polypeptide. Attachment of an amino acid to a tRNA is 

therefore in itself, a form of translation.  

 

Figure 1.4 tRNA acts as an adaptor between mRNA and amino acid. (A) tRNA links the code 

within RNA to the synthesis of peptides (B) tRNA folds into a distinct L-shape. On one end an 

anticodon pairs with the mRNA codon and on the 3’ end an amino acid is attached. 

 The macromolecule responsible for decoding an mRNA message and 

catalyzing protein synthesis is the ribosome. The initial identification of the ribosome 

began with the isolation of membranous small granules called ‘microsomes’ by Claude 

(21). These were small, globular particles recognized as hubs for protein production. 

Peterman and Hamilton were able to isolate specific, smaller granules from these 

microsomal fractions and show that these particles had a distinct sedimentation 

coefficient (22). Those particles were first visualized in mammals by George Palade and 

colleagues using electron microscopy (Figure 1.5) (23) and were later observed in plants 

(24). This was made possible by advances in cell culture, plastic embedding and knife 

design that allowed visualization of thin sections of the cell by electron microscopy. 

Specifically, they saw round granules of high-density contrast that were attached to the 

endoplasmic reticulum. Later work established that these granules were composed 

primarily of RNA and protein (25, 26), and were responsible for protein syntheses (27).     

 At the time, the particles were referred to as “ribonucleoprotein particle of the 

microsome fraction”, however this was replaced by the less cumbersome name 

“ribosome” proposed by Roberts in 1958. That year, the first prokaryotic ribosomes 

were characterized in E. coli by Tissieres and Watson (28). All ribosomes have a similar 

design and are often referred to by their sedimentation coefficient (S). The complete 

bacterial ribosome (70S) is made of approximately two-thirds RNA and one-third 

protein, and is composed of two subunits, the large subunit (50S) and the small subunit 



Structural studies of trans-translation 

6  Christopher D. Rae – April 2019 

(30S) (28, 29). Despite these early important discoveries, the ribosome field was 

relatively stagnant in the decades immediately following the 1950s. Why the ribosome 

was composed of RNA was especially unclear at the time as proteins were thought to be 

the most important catalysts within a cell. 

  

Figure 1.5 First EM visualization of the ribosome by George Palade. (A) Electron micrograph of a 

thin section of the endoplasmic reticulum within pancreatic cells of guinea pig. (B) Multiple rounds 

of pelleting endoplasmic reticulum by ultracentrifugation isolated small dense particles, which were 

visualized by electron microscopy. Figure adapted from (A) figure 1 and (B) figure 18 of Palade 

and Siekevitz 1956 (26). 

 Then in 1982 the discovery of RNA enzymes reinvigorated the field. Cech and 

colleagues showed for the first time that RNA could act as an enzyme, capable of 

breaking and forming covalent bonds (30). They characterized a sequence in the 26S 

rRNA of Tetrahymena thermophila and demonstrated that it could self-splice; remove 

parts of itself, circularize, and then join the neighboring ends. Around the same time, 

Altman and Pace discovered that RNA also provides the catalytic function of the 

ribonuclease RNaseP (31). These studies motivated the idea that the ribosome was a 

ribozyme (RNA enzyme) and could therefore be responsible for the catalysis of protein 

synthesis. It became apparent that if RNA was the active component of the ribosome, 

ribosomal proteins may not play individual catalytic roles. To understand the concerted 

function of all the pieces of the ribosome, it was clear that detailed structural 

information would be required.  

1.1.2 Structural biology of the ribosome 
 Initial structural work with neutron scattering (32, 33), cross-linking, and 

immune electron microscopy (34) was focused on establishing the relative positions of 

ribosomal proteins within the subunits. However, it was soon realized that spatial 
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arrangement alone would be insufficient to determine the mechanism of translation. 

Thus, work began on the structures of individual ribosomal proteins. Although high-

resolution structures of ribosomal proteins would eventually be useful, in isolation they 

too were ultimately insufficient for understanding the function of the ribosome. For this, 

an atomic resolution structure of the entire ribosome would be needed.  

 X-ray crystallography was the first technique used to this end. As implied in 

the name, a necessary step for this technique is to crystallize one’s sample, an inherently 

difficult process for a large, asymmetric molecule like the ribosome. By the late 1980’s, 

significant developments allowed larger molecules to be crystallized and analyzed, (35, 

36) and in 1991 Yonath obtained the first potentially useful crystals of the 50S subunit, 

diffracting below 3 Å (37). A well diffracting crystal is not sufficient to determine the 

arrangement of molecules in a protein, as one must first solve the ‘phase problem’. 

When x-rays diffract, the intensity of the signal (related to the wave’s amplitude) is 

detected, but the phase is lost. The problem then is how to recover the lost information. 

The phase problem remained outstanding for the ribosome, whose complexity dwarfed 

all previously determined structures, making its phase determination all the more 

difficult. 

 An alternative approach toward determining the structure of the ribosome was 

electron microscopy (EM). In EM, instead of a diffraction pattern, an image is detected 

that contains both the amplitude and phase information. Although the technique doesn’t 

suffer from the phase problem, at the time, EM technology was insufficient for 

determination of structures at high-resolution. EM could, however, be used to visualize 

the general shape of a macromolecule. A big step toward understanding the structure of 

the ribosome came from EM studies of ribosomes frozen in vitreous ice. Two ~ 25 Å 

reconstructions of the ribosome by Frank and Stark first described its three-dimensional 

architecture (Figure 1.6) (38, 39). These maps showed a channel in the small subunit 

and a tunnel in the large subunit, speculated to coordinate the mRNA and the 

polypeptide chain, respectively. They also showed how the L-shaped tRNA could fit 

into the space between the small and large subunits. 

 At the time, atomic resolution structures had only been achieved by 

crystallography, and therefore most structural biologists attacked the phase problem. It 

was first solved for the ribosome in 1998 by Frank, Moore and Steitz, with their 

determination of a 9 Å resolution reconstruction of the large subunit from Haloarcula 

marismortui (40). 
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Figure 1.6 Initial EM reconstruction of the ribosome. Figure adapted from figure 1 of Stark et al. 

1995 (39) showing micrographs averaged into 2D classes and multiple views of the map formed by 

reconstructing those projections in three-dimensions.  

 The breakthrough came by exploiting an EM map to first determine initial 

phases for low-resolution information, which were then used as a template to locate 

heavy atom clusters for high-resolution refinement. This study showed key structural 

elements at yet-unseen resolution, and maybe more importantly, showed that the 

structure of the ribosome could be solved. This instigated two years of intense 

competition as groups rushed to solve a high-resolution structure of the entire ribosome. 

 By 1999, Moore and Steitz had improved the resolution of the large subunit to 

5 Å (41). At the same time, the Ramakrishnan group obtained a 5.5 Å resolution map of 

the small subunit from Thermus thermophilus (42), and simultaneously a 7.5 Å map of 

the entire T. thermophilus 70S ribosome was solved by Noller, showing the position of 

tRNAs in the three binding sites (43). The race came to an end in 2000, when a 2.4 Å 

structure of the large subunit of H. marismortui from Steitz was published (44). Within 

a month, the structure of the small subunit was published by Yonath at 3.3 Å resolution 

(45) and then three weeks later a more precise structure by Ramakrishnan at 3.1 Å 

resolution (46). These structures, as well as the full 70S ribosome (47) and two other 

70S ribosomes in complex with mRNA and tRNA (48, 49), were the founding models 

for ribosome structure and function, ushering in a new era of understanding the 

mechanism of translation.  

1.1.3 An overview of translation 
 Ribosome structures confirmed extensive biochemical evidence suggesting that 

rRNA carries out the critical catalytic steps of translation. The ribosome is comprised of 
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roughly 2/3 rRNA, which makes up the central core and subunit interface of the 

ribosome, with ribosomal proteins primarily scattered around the outside. Though 

important, proteins are thought to mainly provide structural integrity to the complex and 

perform supporting functions.  

 Like all ribosomes, the bacterial 70S ribosome is composed of two subunits, 

the small subunit (30S) and the large subunit (50S) (Figure 1.7A). The 30S subunit 

contains a ~1500 nucleotide-long 16S rRNA and some 20 proteins that together form 

two major domains, known as the ‘body’ and ‘head’, which are connected by an RNA 

double helix called the ‘neck’ (Figure 1.7C). The gap between the head and the body 

forms a channel that holds mRNA during translation. Two closely associated areas 

situated between the head and body, resembling latches, prevent the mRNA from 

leaving the channel. The beginning of translation therefore mandates that the mRNA 

bypass these latches when it is loaded into the ribosome.  

 The 50S subunit is made of a ~2900 nucleotide-long 23S rRNA, the shorter 

~120 nucleotide 5S RNA and some 31 proteins. It contains the catalytically active site 

of the ribosome called the peptidyl transferase center (PTC) (50). The 23S rRNA forms  

 

Figure 1.7 High resolution structure of the ribosome. (A) Cartoon schematic of the 70S ribosome 

showing the small (30S) and large (50S) subunits carrying an mRNA and nascent peptide with 

three tRNAs bound. (B) The structure of the 50S from the Steitz group, Ban et al. 2000 (PDB 

1FFK) (44). (C) The structure of the 30S from the Ramakrishnan group, Wimberly et al. 2000 

(PDB 1J5E) (46). 
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the PTC, a pocket where the peptide bond between subsequent amino acids is formed 

(Figure 1.7B). The synthesized polypeptide extends out of the peptide exit tunnel 

leading from the PTC to the solvent side of the 50S. The 50S also contains two stalks of 

RNA and protein (the L1 stalk and the L7/L12 stalk), as well as two protrusions [the A-

site finger (ASF) and the central protuberance (CP)]. This architecture plays important 

roles in the coordination of translation, and will be discussed in more detail in section 

1.2.  

 As translation begins, the ribosomal subunits join on an mRNA, forming the 

70S complex. Ribosomes read mRNA from 5’ to 3’ ends, synthesizing peptide chains 

from the amino end (N-terminus) to the carboxyl end (C-terminus). The ribosome has 

three tRNA binding sites at the interface between the subunits: the aminoacyl (A) site, 

peptidyl (P) site and exit (E) site (Figure 1.7A) (51). During translation, tRNAs move 

successively from one binding site to another, from A to P to E, as the mRNA slides 

through the ribosome. As tRNA is covalently linked to the C-terminus of an amino acid, 

it is the N-terminus that is conjugated to the available C-terminus of the peptide chain. 

The ribosome therefore synthesizes proteins from the N- to C-terminus. 

   

Figure 1.8 Basic overview of translation. (i) Aminoacyl-tRNA (red) enters the A site, then (ii) a 

peptide bond is formed with the nascent peptide bound to tRNA in the P site and (iii) the ribosome 

shifts by exactly one codon, and the process can repeat. 

 The location of a tRNA in either the A, P or E site is sufficient to know the 

stage of peptide synthesis in which it is participating. The first tRNA binding site, the A 

site, is where an incoming tRNA is first delivered and verified to match the codon 

specified by mRNA (52). The large subunit then catalyzes the formation of a peptide 

bond in the PTC (53, 54). During catalysis, the nascent chain is transferred from 

peptidyl-tRNA in the P site to the aminoacyl-tRNA in the A site. The mRNA and 

tRNAs then shift relative to the ribosome, revealing the next codon in the A site and 

translation continues. The details of this process in bacteria are explored in the 

following section.  
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1.2 Translation in bacteria 
  

 Translation proceeds in three main stages (i) initiation, (ii) elongation and (iii) 

termination/ribosome recycling. Initiation is the process by which the ribosomal 

subunits join at the correct starting position on an mRNA. Elongation proceeds as the 

ribosome reads an mRNA, connecting successive amino acids to form a polypeptide. 

Termination marks the end of translation and releases the completed protein from the 

ribosome. The ribosome is then separated into its subunits and removed from the 

mRNA, allowing it to begin another round of translation.  

1.2.1 Initiation 
 To begin translation, the ribosome must first bind an mRNA at the start of a 

protein coding sequence. Correctly positioning the first aminoacyl-tRNA on the mRNA 

sets the reading frame, and is the main determinant for the ensuing amino acid 

sequence. As codons are composed of three-nucleotide repeats, mRNA contains three 

possible reading frames. Selecting the correct frame is therefore critical as only one will 

result in the desired protein product. To ensure fidelity in this respect, the genetic code 

has evolved a signal, the start codon, to indicate the beginning of a message. A set of 

initiation factors (IFs) coordinates the position of aminoacyl-tRNA on this signal to 

initiate translation. 

 In bacteria, the typical start codon is AUG, which is recognized by fMet-

tRNAfMet, a special initiator tRNA charged with a formylated methionine (fMet). All 

polypeptides in bacteria initiate with fMet-tRNAfMet as the N-terminal modification 

ensures that the amino acid cannot be incorporated within a protein coding sequence 

outside of the start position. To position the ribosome correctly on the mRNA, the start 

codon is preceded by a ribosome binding sequence called the Shine-Dalgarno (SD) (55). 

The Shine-Dalgarno sequence pairs with a complementary sequence in the 16S rRNA 

(the anti-SD) of the 30S subunit to place the start codon in the P site. With the help of 

initiation factors, fMet-tRNAfMet binds to the 30S in the P site such that it pairs with the 

start codon (Figure 1.9). 

 Three specialized initiation factors (IF1, IF2, and IF3) position initiator tRNA 

on the 30S and assist in selection of the cognate start codon. IF1 binds in and blocks the 

A site (56), acting as an anchor for IF2 and IF3, stabilizing them in their positions on 
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the 30S (57). IF2 is a GTPase that binds to initiator tRNA (58, 59), and is thought to 

specifically recognize the fMet group (57). Like other translational GTPases, IF2 binds 

tRNA and acts as a switch for an irreversible step in translation. IF3 takes on multiple 

conformations (57) to monitor the position of the start codon (60, 61) and selects for 

initiator tRNA (62, 63). IF3 is a dynamic, dumbbell shaped protein consisting of two 

globular termini connected by a mostly helical linker. One domain binds near the P site, 

possibly probing the codon:anticodon interaction between the mRNA and initiator 

tRNA, while the other domain binds to initiator tRNA directly. 

  

Figure 1.9 Translation initiation in bacteria. Initiation factors coordinated the assembly of mRNA 

and initiator tRNA (fMet-tRNAfMet) on the 30S subunit. The Shine-Dalgarno (SD) sequence 

coordinates the position of the mRNA, placing the AUG start codon in the P site. The 50S subunit 

then joins and the initiation factors leave, forming the 70S initiation complex. (Inset) Structure of a 

70S initiation complex from Jenner et al. 2010 (PDB 4V6G) (64). 

 The three initiation factors assemble with initiator tRNA onto the 30S subunit 

while mRNA is loaded into the mRNA channel. This permits initiator tRNA to interact 

with the start codon after both are correctly positioned in the P site. Initiation culminates 

in the 50S subunit docking onto the 30S complex and triggering GTP hydrolysis by 

EF2, resulting in an irreversible dissociation of the IFs followed by the formation of the 

full 70S ribosome (65). Here, with mRNA loaded into the mRNA channel and fMet-

tRNAfMet bound to the start codon in the P site, elongation is ready to begin.  
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1.2.2 Elongation 
 Translation elongation happens in three key steps: (i) decoding, (ii) peptidyl 

transfer, and (iii) translocation (Figure 1.10). Elongation factor Tu (EF-Tu) bound to 

GTP delivers aminoacyl-tRNA to the codon in the A site, where the ribosome ‘decodes’ 

the codon:anticodon interaction. EF-Tu is the first of two translational GTPases that act 

 

Figure 1.10 Translation elongation in bacteria. Translation elongation is a repeating cycling of 

decoding, accommodation, peptidyl transfer and translocation.  

as switches during elongation. If a cognate codon:anticodon pair is recognized, EF-Tu 

hydrolyzes GTP and dissociates, licensing the accommodation of aminoacyl-tRNA into 

the A site. Immediately upon accommodation, the 3’end of the aminoacyl-tRNA is 

positioned within the peptidyl-transferase reaction center (PTC) next to the peptidyl-

tRNA. Here, the nascent chain from the peptidyl-tRNA is transferred to the aminoacyl-

tRNA in the A site, elongating the polypeptide by one amino acid. Subsequent 

movement, or translocation, of the ribosome by exactly one codon is facilitated by 

another GTPase, elongation factor G (EF-G). After translocation, the next codon is 

available in the A site and the steps of the elongation cycle repeat.  
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1.2.2.1 Decoding 
 EF-Tu delivers aminoacyl-tRNA to the ribosome in an mRNA-independent 

manner, binding the 50S to position aminoacyl-tRNA in close proximity to the A site 

(Figure 1.11A,B) (66, 67). Aminoacyl-tRNA reversibly samples mRNA in the A site 

until a cognate codon:anticodon interaction is detected by the ribosome. The ribosome 

decodes the interaction by assessing base pair complementarity using three highly 

conserved nucleotides: A1492, A1493 and G530 of the 16S rRNA (Figure 1.11C). 

These ‘decoding nucleotides’ contact the minor groove of the codon:anticodon 

interaction to assess whether the geometry of the base pair is correct (68).  

 Cognate codon:anticodon base pairing induces domain closure within the 

ribosome (69), bringing the head of the 30S subunit closer to the body, which 

subsequently triggers GTP hydrolysis by EF-Tu. Codon recognition and ribosomal 

domain closure initiates a cascade of conformational changes within EF-Tu leading to 

GTPase activation, GTP hydrolysis and finally dissociation from the ribosome. This 

represents an important stage of translational fidelity as EF-Tu prevents tRNA from 

fully entering the ribosome until after GTP hydrolysis. A highly conserved domain of 

EF-Tu performs catalysis. When activated, a catalytic histidine residue (His 84) thought 

to coordinate a water molecule necessary for GTP hydrolysis rotates into an active 

conformation within the catalytic center (Figure 1.11D). Indeed, mutations of His84 

have a deleterious effect on GTPase activation (70). After GTP hydrolysis, phosphate is 

released, causing a large movement of the catalytic domain of EF-Tu as it adopts a GDP 

bound conformation (Figure 1.11E). This movement weakens the interactions of EF-Tu 

with the ribosome and tRNA, ultimately inducing dissociation and permitting the 

accommodation of tRNA into the A site.   

 Following decoding, a second proofreading step occurs, increasing 

translational fidelity. After EF-Tu leaves, the tRNA can either enter the ribosome or 

dissociate. Biochemical studies suggest that accommodation is more favorable for 

cognate tRNA, as it requires less GTP hydrolysis than incorporating a non-cognate 

tRNA (73, 74). Accommodation of tRNA ultimately points the amino acid on its 

acceptor stem into the PTC, leading to peptide bond formation.  
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Figure 1.11 Aminoacyl-tRNA delivery and decoding. (A) Overview of a ribosome in the pre-

accommodated state from Voorhees et al. 2010 (PDB 4V5L) (71). (B) EF-Tu (pink) interacts with 

the Sarcin-Ricin loop (SRL; light blue) when delivering aminoacyl-tRNA (red) to the A site where 

the anticodon interacts with the mRNA (orange) in the decoding center (light yellow).  (C) Decoding 

center nucleotides assess the geometry of the codon:anticodon interaction. (D) Catalytic His84, 

oriented by A2662, coordinates a water molecule in the active site of EF-Tu. (E) The catalytic 

domain of EF-Tu rotates after GTP hydrolysis and phosphate release [gray, PDB 1TUI (72)]. 
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1.2.2.2 Peptidyl transfer 
 Biochemical and structural evidence suggest that rRNA plays the catalytic role 

in peptide bond formation (49, 54), increasing the reaction rate to ~106 times that in 

solution (75, 76). Accommodation of the 3’CCA of aminoacyl-tRNA into the PTC 

(Figure 1.12A-C) exposes the ester bond that links the amino acid to the tRNA. This 

ester bond undergoes nucleophilic attack by the alpha-amino group of aminoacyl-tRNA, 

transferring the nascent chain from P-site tRNA to A-site tRNA (Figure 1.12D).  

   

Figure 1.12 Mechanism of peptidyl transfer. (A) Overview of a non-rotated 70S ribosome with 

mRNA and tRNA in all three binding sites [PDB 4V5D; (78)]. (B) The acceptor stems of A-site (red) 

and P-site tRNA (purple) point into the peptidyl transferase center (PTC; light blue). (C) The 3’ 

CCAs of A- and P-site tRNA are covalently linked to an amino acid. Peptidyl transfer shuttles the 

peptide bound to P-site tRNA to aminoacyl-tRNA in the A site. (D) General chemical mechanism of 

peptidyl transfer showing nucleophilic attack by the alpha-amino group of aminoacyl-tRNA, 

adapted from figure 4a of Schmeing and Ramakrishnan 2009 (79). 

 The exact catalytic mechanism of peptide bond formation is unclear, however, 

entropic effects and substrate-assisted catalysis have been proposed to influence this 
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process. Many nucleotides within the PTC are highly conserved, particularly A2602, 

which is within catalytic distance from the tRNA ester bond; however mutations of this 

nucleotide have little effect on the rate of peptidyl transfer. This is consistent with 

biochemical and molecular modelling evidence suggesting that substrates are positioned 

in the ribosome such that water is excluded. Apart from the entropic effects of the 

ribosome alone, the tRNAs themselves could participate in substrate-assisted catalysis. 

This is thought to occur via the coordination of the nucleotide A76 of peptidyl-tRNA as 

it is in a position that could participate in peptide bond formation. A proton shuttle 

mechanism for substrate assisted catalysis (77) has been proposed, however exactly 

how A76 plays a role in the shuttling and where the proton goes is unclear. In any case, 

the reaction within the PTC is clearly different from that in solution and the ribosome 

therefore plays a critical role catalyzing peptide bond formation. 

1.2.2.3 Translocation 
 For elongation to continue after peptidyl transfer, the peptidyl-tRNA in the A 

site must move into the P site while deacylated tRNA in the P site shifts into the E site. 

This movement occurs in two main steps: first the ribosome rotates, and second EF-G 

hydrolyzes GTP to catalyze the translocation of tRNAs and mRNA relative to the 

ribosome during back rotation (Figure 1.13). The resulting ratcheting motion slides the 

mRNA and tRNA by exactly one codon relative to the ribosome, making the next codon 

available in the A site.  

 

Figure 1.13 Translocation occurs in two steps. (i) Ribosome rotation forms the hybrid state, with 

tRNAs tilted toward their ultimate destination, followed by (ii) EF-G catalyzed motion of the 

tRNAs and mRNA relative to the ribosome during subunit back-rotation. Adapted from figure 6 of 

Voorhees and Ramakrishnan 2013 (84). 

  In the first step of translocation, the small and large subunits adopt a 

rotated conformation, in which the tRNAs take on a ‘hybrid state’ where they partially 

occupy two tRNA binding sites (80, 81). The acceptor stem of each tRNA shifts within 

the 50S toward the site of the ribosome it will ultimately occupy after translocation (82, 
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83). In the hybrid state, the acceptor stem of the P-site tRNA is held by the L1 stalk in 

the E site of the 50S, a conformation only possible for deacylated tRNA. Likewise, the 

acceptor stem of peptidyl-tRNA in the A site tilts toward the P site.  

 EF-G binds the rotated state of the ribosome and catalyzes translocation in a 

GTP dependent manner. The shape of EF-G mimics delivery of tRNA to the A site, as 

its GTPase domain is analogous to that of EF-Tu. By hydrolyzing GTP (85), EF-G 

locks the tRNAs in the hybrid state (86–89). Biochemical studies suggest that 

translocation slides the tRNAs bound to mRNA simultaneously within the ribosome 

(85). The rotation of the ribosome back to the canonical state causes a shift by one 

codon. After translocation, the next codon is available in the A site and the elongation 

cycle repeats. Eventually, a signal at the end of the protein coding sequence is reached, 

marking the completion of elongation. 

1.2.3 Termination and recycling 
 Termination requires a stop codon, encoded by the mRNA, to mark the end of 

translation. Stop codons are not typically decoded by a tRNA but are instead recognized 

by proteins called release factors (RFs). After termination, recycling factors are 

responsible for disassembling the translation complex, allowing the ribosome to initiate 

another round of translation (Figure 1.14). 

 Release factors terminate translation by hydrolyzing the peptide from the tRNA 

and thereby releasing it (90–92). The genetic code has three codons (UAG, UAA, and 

UGA) that typically function as stop signals. In bacteria, these are recognized by two 

class I release factors, RF1 and RF2. Recognition is redundant for the UAA stop codon, 

whereas RF1 uniquely recognizes UAG and RF2 recognizes UGA (92). Both release 

factors have a loop with a recognition motif consisting of three amino acids: Pro-Ala-

Thr in RF1 and Ser-Pro-Phe in RF2 (93). The first and third amino acids of the 

recognition motif recognize, the second and third nucleotides of the stop codon, 

respectively. Upon initial binding to the ribosome, the RF extends from its compact 

conformation (94–97) to point its catalytic motif into the PTC (98–100). Class I release 

factors contain a catalytic GGQ motif that fits into the PTC and hydrolyzes the ester 

bond joining the peptide to P-site tRNA (101).  

 After termination, the release factor dissociates, allowing the ribosome to be 

recycled.  In some species, the GTPase RF3, a class 2 release factor, removes the class I 

release factor from the A site. RF3 binds the ribosome with RF1 or 2 in the A site, 
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Figure 1.14 Translation termination and ribosome recycling in bacteria. A class I release factor 

(RF1 or 2, red) recognizes a stop codon and hydrolyzed the completed protein from tRNA in the P 

site. A class II release factor (RF3, gray) dislodges the class I release factor followed disassembly of 

the 70S involving ribosome release factor (RRF, teal) and EF-G (dark gray).  

inducing ribosome rotation (102, 103) and hydrolyzing GTP to stimulate dissociation of 

the release factors. Ribosome recycling proceeds as ribosome release factor (RRF) and 

EF-G bind and split the ribosomal subunits (104).  RRF binds the ribosome in the A and 

P sites and destabilizes inter-subunit bridges via the GTP dependent action of EF-G 

(105). The exact mechanism of ribosome splitting is unclear, as sufficient structures of 

RRF and EF-G bound to the 70S ribosome remain outstanding.  

 Many species may recycle ribosomes without the help of additional factors. For 

instance, RF3 is not essential for survival (106, 107) and is absent entirely in many 

species. Though not essential, in vitro studies suggest that RF3 and RRF increase the 

rate of ribosome turnover (108). The efficiency of recycling factors may therefore 

provide an advantage as the ribosome spends less time in an unproductive state.  

 Translation is an essential and complicated process, with the propensity for 

problems to arise at multiple steps. Organisms have evolved numerous pathways to deal 

with such issues. The specifics of translational stalling and the corresponding fail-safe 

mechanisms in bacteria are the subject of the subsequent sections.   
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1.3 Translational stalling and rescue 
 

 In bacterial cells, ribosomes begin translating mRNA prior to the completion of 

transcription. In some cases, incomplete mRNA synthesis or damage may result in the 

absence of a stop codon. The lack of a signal denoting the end of translation leads to a 

ribosomal stall upon reaching the end of such a message.  Since bacterial cells have 

minimal mRNA quality control pathways prior to translation, stalling on faulty mRNA 

is a constant problem. Alleviating this problem is then essential for maintaining cellular 

function and so, bacterial cells have evolved multiple pathways to rescue stalled 

ribosomes. 

1.3.1 Formation of a nonstop translation complex 
 When ribosomes reach the 3’ end of an mRNA without encountering a stop 

codon, they get trapped as a ‘nonstop’ translation complex (Figure 1.15). Ribosomes in 

this state lack a codon in the A site but contain an mRNA and a P-site tRNA bound to 

the nascent peptide. Here, neither tRNAs nor release factors alone are sufficient to 

recognize the empty A site, leaving the ribosome in an assembled, but inactive state. 

     

Figure 1.15 Anatomy of a nonstop ribosome. A nonstop ribosome is one that has reached the 3' end 

of an mRNA. The A site is therefore empty and peptidyl-tRNA occupies the P site. 

 The formation of a nonstop ribosome often occurs due to mRNA truncation 

from premature transcription termination, mRNA damage or inappropriate RNase 

activity. Alternatively, ribosomes can stall at the end of full-length transcripts if they 

accidentally frame-shift or read though the in-frame stop codon (Figure 1.16). For 

instance, miscoding antibiotics, like kanamycin and streptomycin, cause conformational 

changes in the 30S subunit which permit non-cognate tRNAs to decode stop codons 

(109), potentially causing the ribosome to reach the end of an mRNA. Likewise, 
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biochemical evidence shows that cells overexpressing suppressor tRNAs, which decode 

stop codons, consequently experience increased levels of nonstop stalling (110). 

 

Figure 1.16 Formation of a nonstop translation complex. A variety of causes result in a ribosome 

translating an mRNA without detecting a stop codon.  

 Ribosomes that pause in the middle of a transcript may also become nonstop 

complexes if endonucleolytic cleavage of mRNA occurs in the A site. Pausing is 

usually a result of stochastic delays in translation due either to nutrient starvation, large 

mRNA secondary structure, restricted movement of the nascent peptide, or inefficient 

stop codons (111–116). Irrespective of cause, if the stall is not resolved these paused 

ribosomes become substrates for ribosome dependent endonucleases. One such nuclease 

is RelE, a subunit of the RelBE toxin-antitoxin heterodimer. A crystal structure of RelE 

bound to the ribosome shows that RelE interacts with 16S rRNA to position the mRNA 

into its catalytic center in the A site, inducing a conformational change that initiates 

mRNA cleavage (117). Stress conditions can also stimulate mRNA cleavage within the 

ribosome, acting as a form of translational regulation. For example, thermal stress 

activates YoeB, which cleaves mRNA in a ribosome dependent manner and creates a 

nonstop complex that is targeted by ribosome rescue pathways (118).  

1.3.2 Rescue pathways 
 Trapped nonstop ribosomes must be rescued and released from the 3’ end of an 

mRNA. Ribosomes may detach from the tRNA and mRNA by way of drop-off (119, 

120) if stalled shortly after initiation, while the nascent polypeptide is only two or three 

amino acids long. Drop off is not possible once the peptide extends through the exit 

tunnel and out of the ribosome. As neither tRNAs nor canonical release factors 

recognize the empty A site of nonstop ribosomes, dedicated pathways with specific 

rescue factors are required to resolve these ribosomal stalls. 
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 Trans-translation is the primary rescue mechanism for nonstop ribosomes, 

existing in >99% of all sequenced bacteria (121). Trans-translation functions to (i) 

target the aberrant mRNA for degradation (ii) tag the nascent polypeptide for  

 

Figure 1.17 Trans-translation rescues nonstop ribosomes. Two key factors, tmRNA and SmpB enter 

the ribosome resulting in three useful outcomes for the cell. (i) The original mRNA, which is often 

damaged, is degraded in a tmRNA dependent manner. (ii) Translation of an RNA sequence in 

tmRNA adds a polypeptide tag to the nascent peptide, which not only releases the polypeptide but 

also targets it for degradation by cellular proteases. (iii) Because translation could terminate on the 

message within tmRNA, the ribosome is released and recycled. 

degradation by cellular proteases, and (iii) terminate translation and release the 

ribosome (Figure 1.17). The pathway is constantly active in dividing bacterial cells, 

with 2-4% of translational events resulting in stalls (122) and 0.5–1.0% of ribosomes 

undergoing trans-translation at any one time (123, 124).  

 Trans-translation involves two factors that hijack the stalled ribosome: 

transfer-messenger RNA (tmRNA, from the gene ssrA) and small protein B (SmpB). 

tmRNA functions as both a tRNA and an mRNA at different steps during the rescue 

process, whereas SmpB binds to tmRNA and anchors the complex on the ribosome. 

tmRNA-SmpB enters the ribosome by first mimicking a tRNA and then functions as an 

mRNA, tricking the ribosome into translating an encoded message for a short peptide. 

When this peptide is appended to the end of the incomplete protein it acts to target the 

protein for degradation. Translation then terminates at a stop codon within tmRNA, 

allowing the ribosome to be released.   

  Cell survival requires at least one rescue mechanism to promote ribosome 

recycling and maintain sufficient translation capacity within the cell (125). Many 
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species contain backup mechanisms that release nonstop ribosomes in the absence of 

trans-translation. These include alternative ribosome release factor A (ArfA) or ArfB. 

ArfA is a short peptide that enhances peptidyl-tRNA hydrolysis by binding to nonstop 

ribosomes. Screens for synthetic lethality identified arfA as essential in the absence of 

ssrA (126). However, it can be shown that the antibiotic puromycin promotes the 

growth of arfA ssrA double mutants. Puromycin dissociates nonstop ribosomes by 

stimulating peptide release in a codon independent manner (127–129), and therefore 

ArfA too was expected to play a role in peptide release. This was verified directly when 

overexpression of ArfA from a plasmid was shown to complement arfA ssrA double 

mutants.  

 ArfA’s peptide release activity is integral to its role on the ribosome. ArfA not 

only fractionates with ribosomes in pelleting assays, but also co-purifies with ribosomal 

proteins when isolated by affinity purification (126). In vitro experiments with crude E. 

coli extracts initially confirmed the rescue activity of ArfA (126). Purified ArfA was 

seen to hydrolyze peptidyl-tRNA in vitro on ribosomes stalled when translating a model 

mRNA lacking a stop codon. This assay suggests that there is a competition between 

ArfA’s peptide release activity and the tagging and degradation activity of tmRNA. 

Cumulatively, these results show that ArfA participates in peptide release and promotes 

rescue of nonstop ribosomes in the absence of trans-translation (130).  

 However, ArfA does not contain the catalytic GGQ motif typically found in 

release factors (131–133). This suggests that like tmRNA, ArfA cooperates with a 

release factor to stimulate peptide release and ribosome recycling. Indeed, RF2 was 

found to bind nonstop ribosomes only in the presence of ArfA (134). Hydroxyl radical 

probing experiments suggested that ArfA binds in the decoding center and mRNA 

channel (135) possibly replacing a stop codon. The molecular mechanism of ArfA-

dependent peptide release was determined when a surprising series of five back-to-back 

papers showed the structure of ArfA bound to the ribosome with RF2 (136–140). ArfA 

was shown to recruit RF2 to the empty A site of a nonstop ribosome where RF2 can 

then release the stalled nascent chain (Figure 1.18). ArfA substitutes for a stop codon in 

the A site as its unstructured C-terminal tail anchors it in the mRNA channel (136). The 

N-terminal region of ArfA forms a β-strand that interacts with RF2, stabilizing a switch 

loop in RF2 that controls the catalytic GGQ motif, positioning it into the peptidyl-

transferase reaction center. 
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Figure 1.18 Mechanism of nonstop ribosome rescue by ArfA. ArfA mediated ribosome rescue uses 

RF2 to release the nascent chain. (A) Overview of the first stage of ArfA mediated rescue [PDB 

5MDW; (136)]. (B) ArfA occupies the A site and mRNA channel, providing a surrogate stop codon 

that is recognized by RF2. The release factor takes on a pre-catalytic state. (C) overview of the 

second stage of ArfA mediated rescue [PDB 5MDV; (136)]. (D) The catalytic domain of ArfA 

swings upward into the PTC to release the polypeptide. 

 Interestingly, ArfA expression is regulated by tmRNA. An RNaseII cleavage 

site in the arfA coding sequence produces a transcript that mandates ribosomal stalling 

by cleavage prior to the stop codon. Release of these nonstop ribosomes produces 

truncated, but active, ArfA that supports the growth of cells lacking tmRNA. When 

tmRNA activity is depleted, ArfA is not tagged for degradation and cellular levels of 

ArfA increase. Basal levels of ArfA or the presence of additional alternative release 

factors, like ArfB, may permit the initial release of ArfA in the absence of tmRNA. 

 An additional nonstop ribosome rescue factor, ArfB, supports the growth of 

ssrA arfA double mutants and rescues stalled ribosomes (141). ArfB is a 140 amino acid 

long release factor homolog containing a GGQ catalytic motif. However, unlike RF1 or 

2, it lacks a stop codon recognition motif and therefore functions independently from 

stop codons. ArfB plays only a minor role in normal cellular function, as it is 

dispensable for E. coli growth (142), however it is required in the absence of both ssrA 

and arfA. Neither ssrA arfB nor arfA arfB double mutants are lethal, but growth of ssrA 

arfA arfB triple mutants with an arabinose inducible plasmid containing ssrA, stop 



Chapter 1: Introduction 

Christopher D. Rae – April 2019   25 

growing in arabinose deficient media. To verify whether ArfB acts as a release factor, 

the catalytic GGQ was mutated to a GAQ sequence. This rendered ArfB incapable of 

supporting life in an ssrA arfA double mutant, suggesting that peptide release by ArfB 

may support viability in cases of tmRNA or ArfA inactivation.  

 Apart from the catalytic GGQ motif, ArfB has an unstructured C-terminal tail 

that is also required for ribosome rescue. C-terminal tail mutants of ArfB could not 

suppress lethality of ssrA arfA double mutants and fractionated less with the ribosome 

in pelleting assays compared to full length ArfB. The mechanism of ArfB interaction 

was revealed by a crystal structure of ArfB bound in the otherwise vacant A site of the 

ribosome (Figure 1.19). The structure shows that the C-terminal tail of ArfB forms an 

alpha helix in the empty mRNA channel, explaining how it specifically recognizes a 

stalled ribosome. Furthermore, the N-terminal domain of ArfB occupies the A site, 

positioning the catalytic GGQ motif into the PTC to promote hydrolysis of peptidyl-

tRNA (143). This agrees with in vitro experiments suggesting ArfB rescues ribosomes 

stalled at the 3’ end of mRNA (144). 

 Although ArfA and ArfB are essential for the survival of bacteria in the 

absence of tmRNA-SmpB, trans-translation is the primary mechanism used to release 

stalled ribosomes. Trans-translation is the preferred rescue mechanism as it not only 

releases the polypeptide, but also targets the incomplete protein for degradation and 

facilitates decay of the faulty mRNA. 

  
Figure 1.19 Mechanism of nonstop ribosome rescue by ArfB. (A) Overview of ArfB binding a 

nonstop ribosome [PDB 4V95; (143)]. (B) ArfB binds in the A site of a nonstop ribosome. Its C-

terminal tail forms an alpha helix in the mRNA channel anchoring the N-terminal catalytic domain 

in position to hydrolyze peptidyl tRNA and release the nascent chain.  
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1.4 Trans-translation 

1.4.1 A brief history and general overview of trans-translation 
 tmRNA, formerly known as 10S or 10Sa RNA, was initially observed as an 

unidentified band of radiolabelled cellular RNA on a polyacrylamide gel (145). This 

RNA species was small, stable and estimated to be present at about 1000 molecules per 

haploid genome. Purification of 10S RNA showed that it was composed of two 

dissimilar sequences, named 10Sa and 10Sb (146). 10Sb was later identified as RNaseP, 

while 10Sa was identified as a new gene and named ssrA (small stable RNA), later 

found to encode tmRNA (147). Early on, ssrA was also observed in M. tuberculosis 

(148), M. capricolum and B. subtilis (149) and then later characterized in nearly all 

sequenced bacterial genomes (150).  

 Initial observations gave some hints as to the importance and function of 10Sa 

RNA. Genetic experiments showed that ssrA knockout mutants in E. coli grow more 

slowly than parental strains (151) and had increased temperature sensitivity (152). A 

folded pre-tRNAAla-like structure in the termini of E. coli 10Sa RNA was noticed after 

sequence comparison to other tRNAs (Figure 1.20) (153). Further experiments showed 

that alanyl-tRNA synthetase (AlaRS) charges the tRNA-like structure of 10Sa RNA 

with alanine and that a G-U base pair in the acceptor stem region was critical for this 

alanylation event, similarly for tRNAAla. 

   

Figure 1.20 Secondary structure comparison of tRNAAla to tmRNA. (A) The acceptor stem and D-

loop of tRNAAla resemble the secondary structure of the joined 3’ and 5’ ends of tmRNA, called the 

tRNA-like domain (TLD). 

 The connection between 10Sa RNA and a role in peptide tagging was first 

observed when mouse derived interleuken-6 (mIL6) expressed in E. coli showed a 

series of peptides with the same C-terminal modification. The modification, or ‘tag’, 
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was identical to a peptide sequence encoded within 10Sa RNA and was not observed in 

cells devoid of ssrA. At this time, the tagging function of 10Sa RNA was not yet 

associated with defective translation. There were contradicting reports on 10Sa RNA 

binding ribosomes in vivo (149, 151, 154, 155) and therfore it was unclear how the 

chimeric mIL6-tag peptides were formed.  

 These observations were connected in a landmark paper in 1996 (156) which 

proposed the first mechanism of trans-translation. 10Sa RNA was renamed to transfer-

messenger RNA (tmRNA) after it was discovered to act as both tRNA and mRNA when 

interacting with the ribosome. Sauer and colleagues described how tmRNA tags nascent 

peptides from transcripts lacking stop codons, which then allows proteases to recognize 

the nascent peptide and degrade it. Alanine-charged tmRNA first enters the A site of a 

ribosome stalled on the 3’ end of an mRNA. After peptidyl transfer of the nascent chain 

to alanine on the 3’CCA of tmRNA, the ribosome switches from translating the original 

mRNA to a reading frame within tmRNA encoding a polypeptide tag. This study 

showed the first definitive link between the ribosome and tmRNA-dependent 

polypeptide tagging activity, and that specific proteases degrade the tagged proteins 

initially translated from faulty mRNAs. Message swapping was thought to be a process 

like frame-shifting, but would instead involve two different molecules in trans, giving 

the mechanism its name. 

 A critical co-factor, small protein B (SmpB), was later discovered to be 

essential for trans-translation. The smpB gene was first identified as one of two open 

reading frames neighboring ssrA (157). Although the function of smpB was still 

unknown at the time, proximity to ssrA suggested an interaction with tmRNA. It would 

take another eight years before SmpB was shown to be essential for the peptide-tagging 

activity of tmRNA (158). In vivo, nonstop transcripts are only tagged by tmRNA when 

SmpB is co-expressed. Also, strains lacking smpB have identical phenotypes to those 

lacking ssrA. Gel shift assays confirm that SmpB binds tightly to tmRNA and binding 

studies showed that SmpB is required for tmRNA binding to the ribosome. 

 Over the subsequent twenty years, there were a number of studies that 

furthered our understanding of trans-translation. tmRNA was found to undergo 

extensive processing prior to its binding with SmpB and interaction with the ribosome. 

Additionally, structural studies described the conformation of tmRNA-SmpB on the 

ribosome, while mutational analysis determined essential components of the complex 

required for trans-translation.  
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1.4.2 tmRNA-SmpB before the ribosome 
 The ssrA gene encodes a primary transcript that is processed to yield a mature 

tmRNA molecule (159). A pre-tmRNA precursor approximately 100 nucleotides longer 

than the mature RNA is first produced (147, 160). RNaseP trims the 5’ terminus of 

tmRNA (153), while RNaseIII or RNaseE cleaves the 3’ terminus which is then 

trimmed by exonucleases RNaseT or RNasePH (161, 162). In E. coli, RNA processing 

results in a 363 nucleotide-long mature tmRNA. Individual nucleotides of tmRNA are 

also post-transcriptionally modified. Three uridine residues in the T-loop are altered, 

one catalyzed by TrmA into 5-methyl uridine (5-MU) (163) and two catalyzed by TruB 

into pseudouridine 5-monophosphate (PSU) (163, 164). These modifications are the 

same as those in the acceptor branch of E. coli tRNAAla and may be important for the 

downstream function of tmRNA (Figure 1.20). 

 tmRNA was suggested to have a tRNAAla-like structure (149, 153), which was 

supported by secondary structure predictions (Figure 1.21) by chemical probing (165),  

   

Figure 1.21 Secondary structure of E. coli tmRNA. The two ends of tmRNA join to form the tRNA-

like domain (TLD; dark blue), which connects to a loop of pseudoknots (PKs) 1-4. Between PK1 



Chapter 1: Introduction 

Christopher D. Rae – April 2019   29 

and PK2 is the mRNA-like domain (MLD) with is part of helix 5 (H5). The first codon decoded by 

the ribosome (the resume codon) and the stop codon, is underlined.  

phylogenetic analysis (166) and comparative sequence analysis (150). Indeed, tmRNA 

has three domains, a tRNA-like domain (TLD) formed by the acceptor-stem region 

from tRNAAla, a single stranded mRNA-like domain (MLD) that encodes the peptide 

tag, and a ring of four pseudoknots (PKs) that complete the loop. 

 The TLD has a characteristic acceptor arm conformation resembling that of 

tRNA, but lacks the traditional anticodon stem loop (167). Instead, the corresponding 

stem extends to join the ring of pseudoknots harboring the MLD. During trans-

translation, the ribosome restarts translation on the MLD which is often described as 

containing an ‘open reading frame’. However, this peptide coding sequence lacks a start 

codon and an upstream SD and therefore is technically not an open reading frame but 

more accurately called the ‘tag-reading frame’.  

 In E. coli, four pseudoknots flank the MLD, forming a loop joined by short 

single stranded RNA segments. The pseudoknot (PK) loop stabilizes tmRNA but was 

not known to have a direct role in interacting with the ribosome, neither contacting the 

ribosome or other elongation factors (168). The number of pseudoknots varies in 

tmRNA depending on species (169, 170). For instance, plastid tmRNA lacks 

pseudoknot structures altogether (121). In E. coli, three of the four pseudoknots are 

dispensable for trans-translation in vitro and can be replaced with single stranded RNA 

(169). Indeed, the existence of two piece tmRNAs that lack all but one pseudoknot 

supports the minimal functional importance of the PK loop (159, 171, 172).  

 As described, small protein B (SmpB) is also required for trans-translation 

(173–175). SmpB is an approximately 18 kDa protein that is highly conserved in most 

bacterial species (159). SmpB binds to tmRNA (176–179), occupying the space 

normally taken by the anticodon stem loop of a tRNA. Initial structural studies showed 

that SmpB consists of an oligo-nucleotide binding fold with a β-barrel core surrounded 

by three α-helices (180, 181). The binding fold was later found to interact with the TLD 

of tmRNA (Figure 1.22), binding the elbow region and stabilizing the acceptor stem in 

an extended conformation (167, 182). SmpB binds with high affinity (183) which is 

important for tRNA mimicry and its function within the ribosome.  
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Figure 1.22 TLD-SmpB has the same shape as tRNA. (A) A tRNA has a similar overall shape to (B) 

the TLD of tmRNA bound to SmpB (PDB 6Q95). 

 Prior to ribosome binding, SmpB stabilizes the acceptor stem of tmRNA and 

enhances its interactions with alanyl-tRNA synthetase (AlaRS) (184). AlaRS is a class 

II synthetase that catalyzes the esterification of alanine onto tRNAAla. The enzyme also 

charges tmRNA with alanine on its 3’ CCA (153). A highly conserved G-U wobble 

base pair at the discriminator position in the acceptor stem of tmRNA is key to 

recognition of tmRNA by AlaRS (185). Interestingly, SmpB binding enhances 

aminoacylation, possibly because it stabilizes the shape of tRNA when bound in place 

of the anticodon stem loop (173, 176, 177, 186).  

 After alanylation of tmRNA, GTP-bound EF-Tu forms a complex with Ala-

tmRNA-SmpB (176, 187–189). EF-Tu typically forms a complex with aminoacyl-tRNA 

and brings the tRNA to the ribosome. Analogously, EF-Tu binds the acceptor stem of 

tmRNA while SmpB binds in place of the anticodon stem loop (176, 189, 190) and the 

entire complex mimics a tRNA prepared for delivery to the ribosome. 

1.4.3 Mechanism of trans-translation  
 Trans-translation rescues nonstop ribosomes using tmRNA and SmpB. tmRNA 

binds SmpB and with the guidance of EF-Tu, they enter the empty A site of a nonstop 

ribosome. SmpB distinguishes between stalled and actively translating ribosomes by 

probing whether there is mRNA in the A site and downstream mRNA channel. 

Translation then switches from the original mRNA to a reading frame within tmRNA 

that encodes a short polypeptide, which when added to the end of the nascent chain, 

targets the incomplete peptide for degradation by proteases. tmRNA-SmpB binding on 

the ribosome also recruits RNaseR, which degrades the original mRNA as it is released 
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during trans-translation. The reading frame within tmRNA ends in a stop codon, 

resulting in the release and recycling of the ribosome.  

 During recognition of nonstop ribosomes, Ala-tmRNA-SmpB is delivered to an 

empty A site as a complex with EF-Tu-GTP and binds analogously to canonical tRNA 

(191). The first steps towards understanding the structural details of this process came 

from a 14 Å cryo-EM map of the complex in a pre-accommodated state, with tmRNA-

SmpB bound partially in the A site and the antibiotic kirromycin blocking the 

dissociation of EF-Tu. This showed how the tmRNA-SmpB-EF-Tu complex mimics a 

tRNA being delivered to the ribosomes, but with a ring of pseudoknots forming a loop 

around the small subunit. Much later, a seminal paper in 2012 by Neubauer et al. 

showed a 3.2 Å crystal structure of the ribosome in the pre-accommodated state with a 

fragment of tmRNA bound to SmpB and EF-Tu blocked by kirromycin (Figure 1.23) 

(190). As anticipated by previous crystal structures of SmpB (167), the structure of the 

pre-accommodated complex shows that the core of SmpB occupies the position 

normally bound by the anticodon stem loop of tRNA. 

  

Figure 1.23 A high-resolution structure of the first stage of trans-translation. (a) Overview of the 

ribosomal pre-accommodated complex [PDB 4V8Q; (190)]. (b) The C-terminal tail forms an alpha 

helix in the mRNA channel, detecting a nonstop ribosome. EF-Tu is bound to TLD-SmpB (c) like it 

would to tRNA [PDB 4V5L; (71)].  

 Although the globular core of SmpB was known to bind to the TLD of 

tmRNA, the role of the C-terminal tail was unclear until the Neubauer et al crystal 

structure (190). Sensitivity to trypsin suggested that the tail of SmpB is exposed and 

flexible. Therefore, previous isolated crystal structures had the C-terminal tail either 
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cleaved off or unstructured in solution. tmRNA tagging activity however, requires the 

C-terminal tail of SmpB (180, 181, 192–194). The most highly conserved residues are 

at the start of the tail, one of which was a glycine. It was suggested that these residues 

are necessary for the flexibility of the tail and to ensure its positioning within the 

ribosome (195). The crystal structure from Neubauer et al. confirmed the role of the tail 

of SmpB as critical for anchoring tmRNA-SmpB on the ribosome (190). 

 The C-terminal tail of SmpB forms an alpha helix in the empty mRNA 

channel, which is essential for recognition of nonstop ribosomes. Binding of the tail in 

the channel requires highly conserved, positively charged residues (190, 196). 

Additionally, conserved residues at the base of SmpB’s tail interact with decoding 

center nucleotides A1493 and G530. Interestingly, mutations of decoding center 

nucleotides that normally affect peptidyl transfer and GTP hydrolysis rates in canonical 

decoding are less detrimental for trans-translation. This suggests a decrease in 

specificity for these nucleotides by SmpB compared to the precise conformational 

requirements for detecting cognate codon:anticodon geometry (197). Nevertheless, the 

decoding-like interactions ultimately result in a closed 30S conformation that triggers 

GTP hydrolysis in EF-Tu (71). 

 EF-Tu departs after hydrolysis of GTP, leaving tmRNA-SmpB to 

accommodate into the A site of the ribosome. Accommodation requires SmpB and 

results in peptidyl transfer of the nascent peptide to the alanine on tmRNA (156, 193, 

196, 197). SmpB crystal structures fit into low resolution EM maps suggest that SmpB 

interacts with the decoding center similarly to the anticodon stem loop (ASL) in 

canonical tRNA (Figure 1.24A) (198). During accommodation, SmpB is suspected to 

move deeper into the decoding center (199), and the TLD swings by 30 degrees to point 

into the peptidyl transferase center where it accepts the nascent polypeptide. After 

accommodation, tmRNA-SmpB must vacate the A site for translation to continue. 

 As for canonical elongation, EF-G translocates tmRNA-SmpB from the A site 

into the P site. A low resolution cryo-EM structure of tmRNA-SmpB bound to the 

ribosome at an intermediate state of translocation suggests analogous activity of EF-G 

for tmRNA-SmpB (Figure 1.24B), contacting the base of SmpB as it would the 

anticodon stem loop of tRNA (200). Additionally, a large 30S head movement seen in 

this structure suggests that translocation opens a latch in the A site of the ribosome (A-

site latch) which permits the loading of the MLD into the A site. Low-resolution 

structures of tmRNA-SmpB bound in the P site suggest that SmpB continues to mimic a 
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tRNA (Figure 1.24C), with SmpB remaining bound to tmRNA. Biochemical evidence 

lend support to the interpretations of these low resolution structures, suggesting SmpB 

functions at various stages of trans-translation and not just during accommodation (158, 

178, 186). 

 EF-G catalyzed translocation stimulates the dissociation of deacylated tRNA 

and mRNA (201). The original mRNA is thought to be degraded by RNaseR, a 

sequence-independent 3’ to 5’ exonuclease that is recruited to stalled ribosomes in a 

tmRNA-dependent manner (202–205). Although there is limited evidence for how 

tmRNA may recruit RNaseR to nonstop ribosomes, trans-translation is correlated with 

RNaseR activity in many species. For instance, in Caulobacter crescentus, SmpB 

regulates the action of RNaseR important for cell cycle degradation of tmRNA. In 

Streptococcus pneumonia, SmpB and RNaseR are co-transcribed and cross regulated 

(206). Additionally, tmRNA-dependent degradation of mRNA has also been shown to 

facilitate mRNA quality control in E. coli (207).  

 

  

Figure 1.24 Low-resolution EM reconstructions show the general architecture of tmRNA-SmpB in 

and between the A and P sites. (A) tmRNA-SmpB accommodated into the A site at 13 Å resolution 

(168). (B) Post translocational hybrid state of tmRNA-SmpB in the P site with EF-G bound at 8 Å 

resolution. (C) tmRNA-SmpB occupying the P site after translocation at 13 Å resolution. Panels A 

and C are adapted from Weis et al. 2010 (168) and panel B adapted from Ramrath et al. 2012 (200). 

(D) Cartoon representation of tmRNA-SmpB translocation and MLD loading into the mRNA 

channel at the A site.  

 The ribosome, no longer bound to the original mRNA, switches to the MLD of 

tmRNA as EF-G catalyzes translocation into the P site (Figure 1.24D). Message 
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swapping in this way requires the connection of the TLD-SmpB (upon which EF-G is 

acting) to the MLD. Pseudoknot 1 (PK1) makes this connection, transmitting the 

movement of translocation to shift the MLD. Studies show that deletion of PK1, or 

replacement with a structured but shorter RNA sequence, shuts down tagging activity 

(169). However, other studies suggest the opposite, showing that the substitution of PK1 

with an RNA hairpin, or even lacking PK1 altogether, permits trans-translation (208, 

209). Although the structured element of PK1 may not be important, a unifying theory 

could be that the distance connecting the TLD to the MLD is the critical factor for 

successful message swapping.  

 Message swapping results in translation of the tag-reading frame within the 

MLD of tmRNA. The five nucleotides upstream of the resume codon of the tag-reading 

frame are critical for positioning it correctly in the A site (210–212). In vitro trans-

translation experiments confirm the specific starting point of the tag-reading frame 

(174, 211, 213), placing the first codon (GCA, encoding alanine in E. coli) in the 

decoding center (201). To complete trans-translation, the ribosome terminates at a stop 

codon at the end of the tag-reading frame (156), and is released and recycled. Without 

correct positioning of the MLD, the ribosome may translate tmRNA out of frame and 

therefore stall again after failing to reach another stop codon. 

 Successful translation of tmRNA adds a peptide tag to the nascent chain, which 

targets the aberrant protein for degradation by ATP-dependent proteases. These 

proteases recognize the last few hydrophobic amino acids (AA in E. coli) encoded by 

tmRNA (Figure 1.25A) (214–217). The ClpXP protease is the primary protease that 

degrades tmRNA-tagged peptides (184, 214, 218). For this, stringent starvation protein 

B (SspB) initially binds the tagged peptide (Figure 1.25B), increasing the peptide’s 

affinity to the ClpX ATPase (219). ClpX then binds the C-terminal AA residues and 

unfolds the tagged protein in an ATP-dependent manner (216). Finally, the ClpP 

peptidase subunit binds and degrades the aberrant peptide (Figure 1.25C). Tsp protease 

performs this task in the periplasm, while, cytosolic but membrane associated tmRNA 

tagged products are degraded by FtsH protease (215). 

 Interestingly, tmRNA mutants engineered to encode a polypeptide tag that does 

not target nascent chains for proteolysis still complements ssrA knockout mutants. 

When not lethal, removal of ssrA usually causes adverse effects including temperature 

sensitivity and enhanced repressor activity (153, 220). Since tmRNA-dependent peptide 
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Figure 1.25 Proteases degrade tmRNA-tagged nascent peptides. (A) The polypeptide tag encoded 

within the MLD of tmRNA has two key binding positions used for targeted degradation. (B) 

Stringent starvation protein B (SspB) binds the first seven residues of the tag (PDB 1OU8), 

delivering the peptide to (C) ClpX which recognizes the last two hydrophobic residues. ClpX 

unfolds the peptide and transfers it directly to the ClpP protease.  

release maintains cell survival, these defects are attributed primarily to the build up of 

stalled ribosomes and the consequently decreased translation capacity of the cell (221, 

222). 

 

1.5 Project aims 
 

 Although trans-translation is generally well understood, there is limited 

understanding of the process at atomic detail. Apart from the single high-resolution 

structure of a fragment of tmRNA bound to SmpB during delivery to the ribosome by 

EF-Tu (190), high-resolution structures of intermediates of trans-translation 

downstream from initial binding are yet to be determined. The current high-resolution 

crystal structure truncated the large flexible tmRNA so as to be compatible with 

crystallization. Full-length tmRNA has been visualized by a handful of low-resolution 

reconstructions that provide only general information about the conformation of 

tmRNA-SmpB on the ribosome.  

 The recent revolution in cryo-EM technology, including detector design and 

image processing software, now make determining high-resolution structures of large, 
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flexible macromolecular complexes potentially feasible. We therefore set out to trap 

intermediates of trans-translation using full-length tmRNA-SmpB. A structure of  

tmRNA-SmpB bound in the A site was needed to understand how tmRNA-SmpB 

accommodates into the ribosome during the first stage of trans-translation. To 

understand the subsequent movement of tmRNA-SmpB through the ribosome and how 

message swapping occurs, we also sought to solve structures of downstream trans-

translation intermediates. In particular, we wanted to understand the role of SmpB in 

binding tmRNA on the ribosome during the later stages of trans-translation, to see how 

SmpB and such a large circularized tmRNA navigates through the ribosome, and how 

this movement loads the MLD into the mRNA channel. Finally, we were interested in 

determining the previously unattempted structure of tmRNA-SmpB after translocation 

past the P site.  
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2 tmRNA-SmpB recognizes 
nonstop ribosomes 

2.1 Introduction 
  

 Trans-translation begins when elongation factor-Tu (EF-Tu) delivers tmRNA-

SmpB to a ribosome (191). A decoding-like event triggers the dissociation of EF-Tu, 

after which tmRNA-SmpB is accommodated into the A site. The resulting peptidyl-

transferase reaction transfers the nascent peptide to the alanine-bound tRNA-like 

domain (TLD) of tmRNA (156) (Figure 2.1).  

  

Figure 2.1 Cartoon schematic of tmRNA-SmpB accommodation into a nonstop ribosome. (A) A 

nonstop ribosome lacks mRNA in the A site. (B) EF-Tu delivers tmRNA-SmpB to the nonstop 

ribosome in a state called pre-accommodation. (C) EF-Tu hydrolyzes GTP and dissociates. tmRNA-

SmpB then accommodate into the A site and the nascent peptide is transferred to alanine on 

tmRNA.  
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 In order for trans-translation to initiate successfully, tmRNA must therefore be 

charged with alanine. Alanyl-tRNA synthetase (AlaRS), an enzyme that normally 

charges tRNAAla, catalyzes the covalent attachment of alanine to tmRNA (223). A G-U 

base-pair in the acceptor arm of tmRNA is critical for enzyme specificity, similar to the 

determinant G3-U70 pair in tRNAAla (185, 223–226). Importantly, the anticodon of 

tRNAAla is not required for recognition by AlaRS (227) as tmRNA lacks an anticodon 

stem loop, which is instead replaced by SmpB. After aminoacylation, EF-Tu binds the 

acceptor stem of tmRNA and stabilizes the charged state (187, 228).  

 EF-Tu delivers tmRNA-SmpB to the ribosome in a manner analogous to the 

delivery of tRNA. The interactions of EF-Tu with the acceptor stem of tmRNA and the 

factor binding site on the ribosome, including the sarcin-ricin loop, are nearly identical 

to canonical tRNA (229, 230). As further evidence of this similarity, a previous 

structural study shows that the antibiotic kirromycin, which prevents EF-Tu from 

leaving the ribosome after GTP hydrolysis, can be used to trap a fragment of tmRNA 

bound to SmpB and EF-Tu on the ribosome (230, 231). Given these parallels, it is 

difficult to explain other studies claiming that delivery and accommodation of tmRNA-

SmpB is not coupled to GTP hydrolysis by EF-Tu (Miller 2014; Kurita 2014). Either 

the interaction of tmRNA secondary structure elements with the head of the ribosome, 

or the lack of canonical decoding center interactions in the A site could play a role in 

this discrepancy.  

 Although delivery of tmRNA occurs regardless of the translation state of the 

ribosome (66), initiation of trans-translation only occurs on stalled ribosomes  (232) and 

is more efficient on ribosomes that have reached the 3’ end of an mRNA. tmRNA-

SmpB must therefore distinguish these stalled, or ‘nonstop’, ribosomes from actively 

translating ones. The primary difference between nonstop and translating ribosomes is 

that nonstop ribosomes lack mRNA in the A site and downstream mRNA channel. A 

mechanism for discriminating between stalled and translating ribosomes was first 

visualized by Neubauer and colleagues (229). Their structure of a fragment of tmRNA 

bound to SmpB and EF-Tu on the ribosome shows how the unstructured C-terminal tail 

of SmpB detects a nonstop ribosome by forming an alpha helix in the mRNA channel. 

This alpha helix fills the space otherwise occupied by mRNA in actively translating 

ribosomes. Ribosomes with mRNA extending past the A site are therefore poor 

substrates for trans-translation. Specifically, long mRNA extending past the A site has 

been shown to block peptidyl-transfer to tmRNA, however, it does not block the 
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activation of EF-Tu (233). This suggest that tmRNA-SmpB samples the A site in a way 

that permits the release of EF-Tu, while ultimately rejecting tmRNA-SmpB from the 

ribosome due to the presence of mRNA in the channel.  

 Prior to the study presented here, the work of Neubauer et. al. represented the 

first and only high-resolution structure of tmRNA-SmpB bound to the ribosome. 

However, this structure includes only a fragment of tmRNA. A structure of full-length 

tmRNA-SmpB bound in the A site was needed to understand how tmRNA-SmpB 

accommodates into the ribosome during the first stage of trans-translation. Here, cryo-

electron microscopy was used to determine the structure of T. thermophilus 70S 

ribosomes assembled with tmRNA-SmpB in the A site. We show that during 

accommodation, the conformational change of tmRNA-SmpB is analogous to canonical 

tRNA. Additionally, the alpha helix in the C-terminal tail of SmpB remains bound while 

tmRNA makes important contacts on the solvent side of the ribosome, through a loop of 

RNA from pseudoknot 2 (PK2).  

 

2.2 Results and discussion 

2.2.1 Preparation of T. thermophilus tmRNA-SmpB bound to the 
ribosome 
 Thermus thermophilus ribosomes, tmRNA and SmpB were purified in an 

attempt to assemble a complex representing the accommodation of tmRNA-SmpB into 

the A site of the ribosome. tmRNA was transcribed in vitro with T7 RNA polymerase 

and purified on a denaturing polyacrylamide gel. Because tmRNA was not purified 

from an in vivo sample, it is not charged with alanine. To remedy this, AlaRS was used 

in vitro to attach an alanine residue to the 3’ CCA of the acceptor stem of tmRNA 

(223). tmRNA must be charged with alanine for trans-translation to initiate and 

therefore a method of detecting successful aminoacylation was a necessary precedent 

for complex assembly. 

 A filter-binding assay was developed to quantify 14C-radiolabeled alanyl-

tmRNA. This was done using an automated scintillation counting system permitting 

high-throughput testing and optimization. Initially, using a previously described 

method, reactions yielded only 10% of tmRNA which was aminoacylated (229). This is 

less than the expected 28% reported to be achievable in vitro for the aminoacylation of 



Structural studies of trans-translation 

40  Christopher D. Rae – April 2019 

T. thermophilus tmRNA with E. coli AlaRS (234). To help us understand why the 

reactions were inefficient, E. coli tRNAAla was prepared and aminoacylated as a control. 

A variety of conditions were systematically tested including buffer composition, order 

of addition of components, and tmRNA folding methods. Ultimately, increasing the 

concentration of AlaRS led to an improved aminoacylation of 24%, or 31% as efficient 

as charging of E. coli tRNAAla (Figure 2.2). Interestingly, aminoacylation of E. coli 

tmRNA by AlaRS showed similar results with a total of 23% of tmRNA being 

aminoacylated, 33% as efficient as for E. coli tRNAAla. These results suggest that 

tmRNA-SmpB is not an ideal substrate for AlaRS. Determining the efficiency of 

aminoacylation of tmRNA was important for the preparation of ribosome-bound 

complexes, as only charged Ala-tmRNA is functional for trans-translation.  

  

Figure 2.2 Optimization of tmRNA amioacylation. Alanyl-tRNA synthetase (AlaRS) was used to 

aminoacylate tRNAAla and tmRNA with 14C-alanine. tRNAAla control reactions were conducted 

simultaneously for both tmRNA species. Reactions were precipitated onto glass microfiber filters, 

washed, dried, and disintegrations per minute (DPM) counted by liquid scintillation. Values were 

corrected for background and compared to a hypothetical maximum defined by calculating the 

expected DPM were aminoacylation 100% efficient for the total amount of RNA added. Error bars 

represent the standard deviation of triplicates.  

 Initial attempts to purify charged Ala-tmRNA by polyacrylamide gel 

electrophoresis or reverse phase HPLC failed (data not shown), though these 

approaches were previously used successfully for the purification of aminoacyl-tRNA 

(235–237). It’s possible that these purification methods lacked the resolution required to 

discriminate between charged and uncharged tmRNA species, as tmRNA is much 

larger, containing nearly five times as many nucleotides as tRNA. Purification of Ala-
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tmRNA from tmRNA was ultimately abandoned and aminoacylation reactions were 

used directly for the initiation of trans-translation on nonstop ribosomes. 

 Nonstop translation complexes were assembled by mixing aminoacyl-tRNA, a 

short mRNA and T. thermophilus 70S ribosomes. Trans-translation was initiated by 

adding Ala-tmRNA-SmpB with EF-Tu-GTP to promote its delivery to the ribosome. 

The formation of stalled ribosomes as substrates for trans-translation was tested using 

both P-site fMet-tRNAfMet or Phe-tRNAPhe, with short mRNAs containing a ribosome 

binding site and the corresponding P-site codon.  

 Aminoacylated tmRNA-SmpB was delivered to stalled ribosomes and binding 

was verified by sucrose gradient centrifugation. Both tRNA-mRNA pairs used to 

assemble nonstop ribosomes showed a peak shift relative to empty 70S ribosomes, as 

well as an additional peak corresponding to excess factors (Figure 2.3A).  

   

Figure 2.3 Verification of tmRNA-SmpB occupancy on the ribosome. (A) Reactions assembling 

nonstop ribosomes with tmRNA-SmpB bound in the A site were fractionated by sucrose gradient 

centrifugation. T. thermophilus 70S ribosomes were tested alone (black) or in complex with 

tmRNA-SmpB, mRNA lacking a codon in the A site, and fMet-tRNAfMet (red) or Phe-tRNAPhe 

(blue). (B) Pooled sucrose gradient fractions were analyzed for the presence of tmRNA on 

denaturing polyacrylamide-urea gels. 

 These interpretations are based on the fact that shifting of the 70S ribosome 

peak into heavier sucrose fractions is indicative of a change in ribosome mass, density, 

or shape, likely due to factor binding. Additionally, tmRNA co-migrated with the 

ribosome-containing fractions, suggesting that it was bound to the ribosome (Figure 
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2.3B). More tmRNA co-migrated with stalled ribosomes when assembled with Phe-

tRNAPhe, and so these complexes were chosen for preparation of cryo-EM grids. 

 Cryo-EM samples were prepared on copper quantifoil grids coated with a ~50 

Å thick layer of amorphous carbon as a support. Grid conditions and alternate supports 

including graphene oxide or thin ice alone were tested using empty T. thermophilus 70S 

ribosomes. Copper carbon coated grids gave a reproducible distribution of ribosomal 

particles and consistent ice thickness suitable for cryo-EM data collection (Figure 

2.4A). After optimization of ribosome concentration and ice thickness, a dataset was 

collected on a 300 kV Polara microscope. Initial two-dimensional class averages, 

processed in RELION, show the presence of a variety of views of the ribosome, 

suggesting a good distribution of particle orientations and the potential for high-

resolution structure determination (Figure 2.4B). 

  

Figure 2.4 Cryo-EM data collection and processing of T. thermophilus ribosomes with tmRNA-

SmpB bound in the A site. (A) Representative micrograph taken at 75k magnification on a 300 kV 

Polara cryo-TEM (FEI). (B) Representative two-dimensional classes. (C) Three-dimensional 

classification workflow in RELION and resulting electron density maps. (D) Superimposition of 

maps showing different tmRNA pseudoknot loop conformations (blue, red). 

 Our dataset contained 188,000 particles after initial 2D classification. After 3D 

classification, 81,000 particles appeared to contain tmRNA-SmpB bound in the A site 

of the ribosome. However, the map showed density for tmRNA at lower occupancy than 

the ribosome. To remove empty ribosomes and select for particles containing tmRNA, 

focused classification with signal subtraction (FCwSS) was performed with a mask over 

tmRNA-SmpB in the A site. This resulted in 24,000 particles containing tmRNA-

SmpB. Three-dimensional classification indicates that in this sample only about half of 
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all ribosomes formed a nonstop complex and only a third of those were loaded with 

tmRNA (Figure 2.4C). This clearly shows that the in vitro assembly of this trans-

translation intermediate is inefficient. Despite this, particle numbers were sufficient for 

near-atomic resolution structure determination.  

 Two maps were obtained at resolutions of 3.8 Å and 4.1 Å from approximately 

16,000 and 9,000 particles, respectively. Three-dimensional classification reveals that 

the pseudoknot loop of tmRNA occupies a continuum of conformations, which were 

averaged into two main classes (Figure 2.4D). The range of motion was confirmed by 

joining particles in the final maps and re-classifying with either three or four available 

classes. The classes obtained from this test contained tmRNA-bound ribosomes with 

conformations of the pseudoknot loop intermediate to those previously observed (data 

not shown).  

 With the exception of the movement seen for the pseudoknot loop, the two 

maps were otherwise identical. To maximize the quality of the density, the maps were 

joined and the first high-resolution structure of full-length tmRNA bound to the 

ribosome was built (Figure 2.5). Although the overall map quality was adequate for 

building an atomic model, the tmRNA was especially flexible and of lower local 

resolution. Secondary structural elements of tmRNA, primarily the highly flexible 

pseudoknot loop, were unable to be unambiguously built and were instead homology 

modelled based on secondary structure predictions (165, 166) and initial 3D predictions 

of the structure of tmRNA (200).  

 

Figure 2.5 Structure of T. thermophilus tmRNA-SmpB bound in the A site of the ribosome. (A) 

Overview of the structure of tmRNA-SmpB occupying the A site of a nonstop ribosome. (B) 

Electron density map colored by local resolution ranging from 3.5 Å to 18 Å. (C) Fourier shell 

correlation (FSC) curve showing map resolution of 3.7 Å with dashed line at FSC=0.143. 



Structural studies of trans-translation 

44  Christopher D. Rae – April 2019 

 The structure shows that the TLD of tmRNA points into the A site, below 

which SmpB binds the decoding center and downstream mRNA channel. Nearby, 

mRNA and tRNA are bound in the P site and E site, respectively. The pseudoknot loop 

of tmRNA wraps around the beak of the 30S subunit where it is anchored on the solvent 

side of the ribosome. 

2.2.2 The structure of tmRNA-SmpB bound in the A site 
 tmRNA-SmpB contacts the ribosome in two places when occupying the A site 

of a nonstop ribosome. In the first position, SmpB binds in the decoding center, 

mimicking a codon:anticodon interaction and filling the downstream mRNA channel. 

At a second position, pseudoknot 2 (PK2) of tmRNA binds to the solvent side of the 

ribosome while helix 5 (H5) crowds the entrance of the mRNA channel near the tail of 

SmpB.  

 SmpB is ‘decoded’ by the ribosome in a manner analogous, but not identical 

to, the usual codon:anticodon interaction in the A site. Trp126 of SmpB stacks with 

G530 as in the pre-accommodated state (229), which is consistent with previous studies 

showing that tmRNA-SmpB binds poorly when Trp126 is mutated to alanine (238). 

Additionally, the conserved aromatic residue His12 of SmpB is seen to stack with 

A1493 (Figure 2.6A). Although A1493 plays a critical role in canonical decoding, the 

mutation of His12 to cysteine has been shown to have little effect on the overall activity 

of trans-translation (233). The binding of SmpB agrees with biochemical experiments 

showing that decoding center nucleotides are protected upon SmpB binding in the A site 

(239). However, unlike canonical decoding of tRNA, A1492 does not participate in 

decoding SmpB and remains only partially flipped out as seen in Neubauer et al. 2012. 

Nevertheless, the head and body of the 30S subunit are in a closed conformation, 

resembling that of canonical decoding. 

 SmpB also mimics an mRNA in the downstream mRNA channel (Figure 

2.6A). Conserved positively- and negatively-charged residues in the tail of SmpB 

(Figure 2.6B) interact with the mRNA channel to stabilize the TLD-SmpB in the A site. 

Previous studies have shown that at least one positively charged residue in the tail is 

required for trans-translation (195). Comparing the position of the tail of SmpB to that 

in the pre-accommodated state crystal structure shows that it remains in a nearly 

identical position after accommodation (Figure 2.6C).   
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 Trans-translation activity is shown to be reduced on ribosomes that contain 

mRNAs with ≥9 nucleotide extensions downstream from the P-site codon (232). An 

extension of this length corresponds to the distance at which the mRNA would clash 

with H5 at the entrance of the mRNA channel (Figure 2.6D).  

   

Figure 2.6 SmpB initially binds in the A-site decoding center and downstream mRNA channel.  (A) 

Conserved aromatic residues (teal) interact with decoding center nucleotides (gold) while conserved 

positively (blue) and negatively charged (red) residues mimic an mRNA in the channel. (B) 

Sequence logo from multiple sequence alignment of SmpB showing conserved residues.  (C) Global 

superimposition of T. thermophilus ribosome complexes showing the tail of SmpB when it is bound 

in the A site (blue) compared to when it is bound in a pre-accommodated state (gray, PDB 4V8Q, 

Neubauer et. al. 2012). (D) Superimposition of the A-site structure with a structure containing 

mRNA (gray, PDB 4V6F, Jenner et. al. 2010). 

 H5 of tmRNA, a highly conserved segment of secondary structure, crowds the 

entrance of the mRNA channel as it is in close proximity with the tail of SmpB. 

Arginine 132, 136 and 143 of protein uS3 make electrostatic interactions that stabilize 

the phosphate backbone of H5 (Figure 2.7). Other structures containing mRNA hairpins 

at the entrance of the mRNA channel interact with arginine residues of uS3 in a way 

that may stabilize their positions as well, however, the conformation of these hairpins is 
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entirely different to that of H5 of tmRNA (240, 241). Additionally, protein uS3 can 

similarly stabilize mRNA on the solvent side of the ribosome (242).  

 H5 is ultimately positioned by the neighboring secondary structural element 

PK2, binding to the solvent side of the ribosome. tmRNA is anchored to the small 

subunit by an interaction between PK2 and ribosomal protein uS3 (Figure 2.7). A single 

stranded RNA loop of PK2 is sandwiched in a pocket of uS3 formed by a loop joining 

two alpha helices and a beta strand. Binding of PK2 may explain why tmRNA-SmpB 

can be delivered to a nonstop ribosome in the absence of the C-terminal tail of SmpB 

(193). Binding of PK2 and H5 may therefore play a role in initial recognition of a 

nonstop translation complex. 

 Additionally, the binding of PK2 to the solvent side of the ribosome during the 

early stages of trans-translation may explain why the tail of SmpB is dispensable for the 

activation of GTP hydrolysis by EF-Tu. The decoding-like interactions with  SmpB 

would still be possible if the position of tmRNA were maintained by interactions 

between PK2 and uS3. However, without the alpha helix of the C-terminal tail of SmpB 

in the mRNA channel, entrance of tmRNA-SmpB into the A site is prevented. Indeed, 

removal of the tail has been shown to prevent peptidyl transfer in vitro (195). 

    

Figure 2.7 Pseudoknot 2 of tmRNA binds protein uS3 on the solvent side of the ribosome. A single 

stranded RNA loop from PK2 of tmRNA binds protein uS3 while arginine residues of protein uS3 

interact with the phosphate backbone tmRNA’s H5. 

 As tmRNA-SmpB enters the A site of the ribosome, it undergoes a 

conformational change analogous to tRNA. This change includes two similarly flexible 

regions: (i) the conserved Gly122 (Gly132 in E. coli) at the beginning of the tail of 

SmpB bends to allow the body of SmpB to fully rotate into the A site, and (ii) the elbow 

of the TLD acts as a hinge around which the acceptor arm swings into the 
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peptidyltransferase reaction center (PTC) (Figure 2.8). These movements are similar to 

those of the anticodon stem loop (ASL) and elbow of tRNA, respectively (84).  

 The alanine-bound 3’CCA of tmRNA is positioned into the PTC and the 

nascent peptide is transferred to tmRNA through a peptidyltransferase reaction. 

Consistent with this, density for the nascent di-peptide is observed in the peptide exit 

tunnel (data not shown). In this conformation tmRNA-SmpB mimics a tRNA ready to 

be translocated into the P site by elongation factor G (EF-G). 

   

Figure 2.8 TLD-SmpB mimics the flexibility of a tRNA as it accommodates into the A site of the 

ribosome. Local superimposition of the tRNA-like domain (TLD) of tmRNA bound to SmpB (left) 

in the A site (red, blue) or pre-accommodated (gray) compared to canonical tRNA (right) in the A 

site (purple) or pre-accommodated (gray). 

 

2.3 Conclusions 
 

 The structure of full-length tmRNA-SmpB bound in the A site of the ribosome 

shows important binding interactions between tmRNA-SmpB and the ribosome. By 

comparing this structure with the crystal structure of the pre-accommodated state (229), 

we can now describes the initial stages of trans-translation in atomic detail.  

 Analogous to a tRNA, the initial delivery of tmRNA-SmpB to the ribosome is 

coordinated by EF-Tu. EF-Tu simultaneously binds tmRNA and the ribosome to 

position SmpB near the A site. If the ribosome detects correct codon:anticodon 

interactions in the A site, EF-Tu hydrolyzes GTP and subsequently dissociates. 

However, since the substrate for trans-translation is a ribosome specifically lacking 

mRNA in the decoding center, correct codon:anticodon interactions are inherently 

impossible for nonstop ribosomes. Instead, tmRNA-SmpB mimics a codon:anticodon 
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interaction in the A site and stimulates decoding-like interactions in a non-canonical 

way. SmpB is a protein and therefore has no structural similarity to the cognate mRNA-

tRNA normally decoded in the A site, nevertheless, it takes the place of both mRNA 

and tRNA in the decoding center. This is possible due to aromatic residues, which 

interact with the decoding center nucleotides, and thereby trick the ribosome into 

‘decoding’ what is actually a protein. This decoding event causes the ribosome to take 

on a closed conformation and results in the dissociation of EF-Tu.  

 Although delivery of tmRNA-SmpB to the ribosome involves interactions 

between EF-Tu and the ribosome analogous to canonical translation, the structure of 

full-length tmRNA-SmpB bound in the A site shows additional interactions that are not 

possible for tRNA. Along with indirect binding to the ribosome through EF-Tu, tmRNA 

binds directly to the solvent side of the ribosome. Specifically, pseudoknot 2 and helix 5 

of tmRNA interact with protein uS3 to anchor tmRNA to the ribosome. This direct 

binding may represent an initial function of tmRNA-SmpB in identifying nonstop 

ribosomes and explain why there are specific mRNA length dependencies for trans-

translation. Indeed, binding of PK2 to uS3 on the solvent side of the ribosome positions 

H5 of tmRNA at the entrance of the mRNA channel. This position is incompatible with 

actively translating ribosomes that typically contain mRNAs extending out of the 

mRNA channel. Therefore, even before the C-terminal tail of SmpB binds in the A site, 

direct binding of tmRNA may be limited to nonstop ribosomes.  

 Although we suspect binding of PK2 to the ribosome occurs prior to tmRNA-

SmpB accommodation, without a structure of the full-length tmRNA-SmpB trapped 

with EF-Tu we cannot claim precisely when discrimination of nonstop ribosomes by H5 

occurs. However, tmRNA binding as the first step in the discrimination of nonstop 

ribosomes would explain why the C-terminal tail of SmpB is dispensable during the 

early stages of trans-translation (193). Additionally, without direct interactions between 

tmRNA and the ribosome, the large pseudoknot loop would be even more mobile and 

could interfere with accommodation of tmRNA-SmpB into the A site. Instead, when 

tmRNA is anchored to the ribosome, SmpB can probe the A site during what could be 

considered a second, although potentially simultaneous, step in discriminating nonstop 

ribosomes. If SmpB occupies an A site with an empty mRNA channel, the C-terminal 

tail of SmpB forms an alpha helix in place of mRNA and therefore confirms that the 

channel lacks mRNA. 
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 In this way, a two-step discrimination process begins with initial positioning of 

tmRNA-SmpB on the ribosome by EF-Tu, permitting tmRNA-SmpB to probe the 

ribosome at two positions; (i) H5 at the entrance of the mRNA channel and, (ii) SmpB 

inside the mRNA channel. Ultimately, alpha helix formation by the tail of SmpB 

stabilizes it in a position favorable for decoding-like interactions. The ribosome is 

tricked into decoding SmpB, acting as a switch that causes dissociation of EF-Tu, 

licensing entry of tmRNA-SmpB into the ribosome. 

 It is not surprising that the decoding-like interactions seen in the pre-

accommodated state are maintained after tmRNA-SmpB is accommodated. The same 

overall pattern is seen during canonical translation elongation, as cognate 

codon:anticodon base-pairing interactions are maintained after EF-Tu dissociates. 

Overall, tmRNA-SmpB accommodates into the A site in a manner remarkably 

analogous to tRNA. It is striking that a large RNA-protein complex can so effectively 

mimic a tRNA and trick the ribosome into decoding in the absence of an A-site mRNA 

or tRNA. 

 The methodology used to assemble the ribosomal complex and determine its 

structure gives us confidence in our overall conclusions. Importantly, using T. 

thermophilus, the same species as the previously determined crystal structure of the pre-

accommodated state, guarantees that differences between the two structures were not 

species specific, but instead represent mechanistic function. Additionally, new image 

processing techniques in RELION allow for the unambiguous separation of particles to 

guarantee a homogeneous complex in silico. In particular, a systematic classification 

approach using FCwSS gives us confidence that our structure contains only ribosomes 

with tmRNA bound, and that of those tmRNA-bound ribosomes, only those containing 

tRNA and mRNA were selected.  

 Although state-of-the-art techniques in cryo-EM were used to determine this 

structure, the inherent mobility of tmRNA resulted in only moderate resolution of the 

factor, and especially poor resolution in regions of the pseudoknot loop. We therefore 

cannot confirm the complete secondary structure of tmRNA using our current data set. 

However, tmRNA as homology modelled (200) in accordance with secondary structure 

predictions, fits remarkably well into the overall shape of the density. Additionally, the 

nature of our claims regarding tmRNA avoid requirements for nucleotide level 

resolution apart from the well defined regions such as the loop of PK2 and H5, and the 

acceptor stem of tmRNA. Additional datasets were collected attempting to improve this 



Structural studies of trans-translation 

50  Christopher D. Rae – April 2019 

resolution (Table 5.2, #3-5), however, considerable resolution gains were never 

achieved. Indeed, the native structure of the trans-translation intermediate may be 

unlikely to reach high-resolution using current techniques due to the flexibility of 

tmRNA. 

 Determining the structure of full-length tmRNA-SmpB bound in the A site of 

the T. thermophilus 70S ribosome represents a critical advancement in our 

understanding of the initial stages of trans-translation. Ultimately, binding of tmRNA-

SmpB in the A site results in domain closure between the head and body of the small 

subunit, and peptidyl transfer to tmRNA. After this handover event, tmRNA is bound to 

the nascent peptide and is poised to become the new template for translation. To 

understand the subsequent movement of tmRNA-SmpB through the ribosome and how 

message swapping from the original mRNA to tmRNA occurs, structures of 

downstream trans-translation intermediates were also required.  

 The next chapter will discuss an exciting series of three structures of trans-

translation intermediates, assembled for the first time using a physiologically relevant 

nonstop ribosome containing a full-length nascent polypeptide chain. An E. coli in vitro 

transcription and translation system was adapted for in vitro trans-translation. 

Selectively removing required translation factors from this system made it possible to 

capture downstream intermediates in the absence of any antibiotic or stalling factor.  

 

2.4 Materials and methods  
 

Protein and RNA purification  

 Thermus thermophilus HB8 70S ribosome (49), tmRNA (191), SmpB (229), 

and E. coli alanyl tRNA synthetase (243) were purified as previously described. The 

mRNA sequences used GGCAAGGAGGUAAAAAUGUA and 

AGGAGGUGAGGUUUU, with the Shine-Dalgarno sequence underlined and the P-site 

codon in bold, were synthesized by Integrated DNA Technologies. fMet-tRNAfMet (237) 

and Phe-tRNAPhe (236) were prepared as described. 

 

 



Chapter 2: tmRNA-SmpB recognizes nonstop ribosomes 

Christopher D. Rae – April 2019   51 

tmRNA Aminoacylation  

 tmRNA was refolded by heating at 90°C for 1 min in folding buffer (5 mM 

MgCl2, 20 mM NH4Cl, 10 mM Hepes-KOH pH 7.5) and cooled at room temperature for 

30 min before placing on ice. Aminoacylation reactions (50 mM K-HEPES pH 7.5, 60 

mM NH4Cl, 7 mM MgCl2, 1 µM tmRNA, 1.5 µM SmpB, 30 µM Alanine, 4 mM ATP, 

0.2 µM Alanine-tRNA ligase, 2 U/ml inorganic pyrophosphatase) were incubated at 

37°C for 30 min. For filter binding assays, 14C-alanine was used. The reaction was 

spotted in triplicate on glass microfiber filters. The filters were washed once with ice-

cold 10% trichloroacetic acid/50% ethanol to precipitate the tmRNA and then washed 

three times with ice-cold 70% ethanol to remove unbound 14C-Alanine. Filters were 

dried at 60°C for 1 h and disintegrations per minute counted by liquid scintillation. 

Ribosome Complex Formation 

 Nonstop ribosome reactions [Buffer G (50 mM KCl, 10 mM NH4Cl, 10 mM 

Mg-acetate, 5 mM HEPES, pH 7.5) 400 nM Thermus thermphilus 70S, 1.6 µM mRNA, 

1.6 µM tRNA] were incubated at 55°C for 15 min. Accommodated state complexes 

were then formed by adding aminoacylated tmRNA-SmpB (400 nM final) followed by 

an additional incubation at 55°C for 15 min.  

 Ribosome complexes were analyzed by sucrose gradient fractionation (15-40% 

sucrose, Buffer G) with an ultracentrifuge (Beckman SW40-Ti rotor, 22000 rpm, 16 h, 

4°C). Fractions were collected from bottom to top with absorbance at 260 nm monitored 

and used to indicate the presence of ribosomes. Peaks were pooled, concentrated, acidic 

phenol:chloroform extracted and ethanol precipitated. Isolated RNA from the peaks was 

analyzed on a 6% polyacrylamide gel with 8M urea.  

Electron Microscopy  

 Ribosome complex reactions were diluted to 70 nM ribosome concentration in 

Buffer G and 3 µl was incubated for 30 s on glow-discharged R2/2 carbon Quantifoil 

grids, coated with an ~50 Å-thick amorphous carbon film. The grids were blotted for 

4.5 s in 100% humidity at 4 °C and then flash-frozen in liquid ethane using a Vitrobot 

MKII (FEI). 

 A Polara microscope (FEI) operated at 300 kV was used with a 1.5 s exposure 

and total dose of 35 e−Å-2 and a defocus range of −2.0 to −3.5 µm in 0.3 µm increments. 
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Images were recorded using EPU automated data acquisition software with a Falcon III 

direct electron detector (FEI) at a pixel size of 1.34 Å.  

Image Processing 

 All image processing was completed using Relion 2.0 software (244). The 

frames of the micrographs were aligned using motion correction (245) and then contrast 

transfer function parameters were calculated using Gctf (246). Relion manual picking 

mode was used to define a subset of particles. After two-dimensional (2D) 

classification, class averages were then used as a template for automatically picking the 

entire set of micrographs (247). After particle extraction, an initial 2D classification was 

used to remove all non-ribosomal particles. Ribosomal particles underwent an initial 

three-dimensional (3D) refinement using a template map (EMD-3493) low pass filtered 

to 40 Å. An initial 3D classification was used to select only tmRNA-containing 

particles. This subset of particles went through another round of 3D refinement along 

with movie-refinement, post processing, particle polishing and then a third round of 3D 

refinement. Focused classification with signal subtraction (FCwSS) was conducted with 

a mask over tmRNA-SmpB followed by another round of 3D refinement and post 

processing to produce the final maps.  

Model Building, Refinement and Validation 

 A starting model of a T. thermophilus 70S ribosome (PDB 4V51) was docked 

into the post-processed maps using Chimera (248). Protein and RNA chains were fitted 

to the density using rigid-body fit in Coot (249). SmpB from T. thermophilus [(190); 

PBD 4V8Q] and homology-modelled E. coli tmRNA [(200); PDB 4V6T] were used as 

starting models. tmRNA was broken into major helical or pseudoknot domains, rigid-

body fit to the density using Chimera and reattached in Coot. To adjust the structure of 

tmRNA to more closely fit the shape of the density while maintaining the base-pairing 

as predicted, morph chain and real space refinement in coot were repeated iteratively 

with libg generated restraints (165, 166, 250). Figures were created using Pymol (251) 

or Chimera (248). 

 Models were refined in real space with Phenix (252). FSCaverage was monitored 

during refinement and the final models were assessed with MolProbity (253). Cross 

validation to prevent overfitting was performed as previously described (250). 
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3 The movement of tmRNA-
SmpB through the ribosome 

3.1 Introduction  
 

 Ribosomes translate mRNA through a repeating cycle of codon recognition and 

protein chain extension events cumulatively called elongation. Both canonical 

translation elongation and trans-translation share key aspects of this process. First, an 

elongation factor, EF-Tu, delivers tRNA to the ribosome where it pairs with the mRNA. 

During decoding, the ribosome verifies that the correct tRNA anticodon is bound to the 

mRNA codon, after which the protein chain is transferred to the tRNA via a peptidyl 

transfer reaction. Lastly, during translocation, the peptide-bound tRNA shifts by one 

codon relative to the ribosome, allowing decoding and peptidyl transfer to repeat. 

During translocation, the peptidyl-tRNA bound in the A site slides into the P site and 

consequently causes the deacylated tRNA in the P site to move into the E site. Like 

decoding, translocation requires a protein elongation factor to proceed, which in 

bacteria is EF-G. Translocation proceeds in two steps, involving both the rotation of the 

ribosome and an EF-G catalyzed reaction dependent on GTP hydrolysis (Figure 3.1).  

 Translocation starts with the intrinsic oscillation of the ribosome between 

either a canonical or rotated state (86, 254). In the rotated state, the small and large 

subunits twist relative to one another, and the tRNAs take on a so called ‘hybrid state’. 

In general, ribosomal subunit rotation causes the tRNAs to tilt within the 50S subunit 

toward the position they will ultimately occupy after translocation. In the hybrid state 



Structural studies of trans-translation 

54  Christopher D. Rae – April 2019 

conformation, the acceptor stem of deacylated tRNA in the P site tilts toward the E site 

while the anticodon stem loop remains bound in the P site. The acceptor stem is trapped 

by the L1 stalk, a binding interaction possible only for deacylated tRNA (255). 

Likewise, peptidyl-tRNA bound in the A site, tilts toward the P site. 

 

Figure 3.1 The mechanism of canonical translocation. A ribosome with a tRNA bound in the A site 

undergoes peptidyl transfer. The 30S subunit rotates, and the tRNAs take on hybrid state 

conformations. EF-G catalyzes the shifting of mRNA-tRNAs relative to the 30S subunit during 

rotation back to the canonical state. The A site is now occupied by a new codon.  

 During the second step of translocation, EF-G binds the ribosome, contacting 

tRNA in the A site and hydrolyzing GTP to catalyze the movement of the mRNA and 

tRNAs by one codon. The GTP bound form of EF-G stabilizes the rotated state (86–89) 

and subsequent GTP hydrolysis leads to a rate-limiting step which permits ribosome 

rotation back to the canonical conformation (256). This ‘back-rotation’ in the presence 

of EF-G causes the tRNAs and mRNA to slide relative to the ribosome. mRNA and 

tRNA are shown to move at the same rates relative to the ribosome, suggesting that they 

move as a unit during translocation, with codon:anticodon base pairing maintained 

(256–258).  

 For elongation to continue during canonical translation, peptidyl-tRNA must 

move from the A site into the P site, shifting the ribosome by exactly three nucleotides 

to reveal the next codon. Likewise, successful trans-translation is dependent on EF-G-

catalyzed translocation. Peptidyl-tmRNA-SmpB bound in the A site of the ribosome is 

translocated into the P site, vacating the A site and consequently permitting the mRNA-

like domain (MLD) of tmRNA to load into the A site. The ribosome begins translation 

on tmRNA by decoding the first codon of the tag-reading frame harbored within the 

MLD. The tag-reading frame encodes a polypeptide that is recognized by proteases and 

terminates with a stop codon, allowing the ribosome to be released and the aberrant 

protein to be degraded.  
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 EF-G translocates tmRNA-SmpB in a manner analogous to that of tRNA. 

Although a rotated state has not yet been observed for ribosomes bound by tmRNA-

SmpB, the antibiotic fusidic acid has been used to trap EF-G on the ribosome after 

translocation of tmRNA-SmpB into the P site. A low-resolution cryo-electron 

microscopy (cryo-EM) structure of this complex suggests that the body of SmpB 

replaces the canonical binding surface of EF-G (259), which normally contacts the 

anticodon stem loop of tRNA (260). This study also shows how an extreme swivel and 

tilt of the head of the 30S subunit may create space essential for the movement of 

tmRNA between the ribosomal subunits. Additionally, this head tilt opens the latch in 

the A site between the head and the body of the 30S subunit, producing a gap of 20 Å 

through which the MLD can pass during its loading into the mRNA channel.  

 Other low-resolution cryo-EM studies show the general conformation of 

tmRNA-SmpB bound in the P site after translocation (168). When tmRNA-SmpB 

occupies the P site the MLD is only loaded into about half of the entire mRNA channel. 

The channel upstream of the A site is blocked by an additional latch in the E site which 

must be opened if the MLD is to be fully loaded into the channel. tmRNA-SmpB, 

however, has not been observed in a state translocated past the P site, therefore it is 

unclear how or when the MLD reaches this conformation. 

 To understand the movement of tmRNA-SmpB through the ribosome and how 

swapping between the original mRNA and tmRNA occurs, structures of trans-

translation intermediates are needed. After determining the structure of T. thermophilus 

tmRNA-SmpB bound in the A site of the ribosome, solving a structure of tmRNA-

SmpB translocated into the P site was the next obvious step. In particular, we wanted to 

understand the role of SmpB binding tmRNA to the ribosome, how SmpB and such a 

large circularized RNA can navigate through the ribosome, and how tmRNA-SmpB 

movement loads the MLD into the mRNA channel. Additionally, we were interested in 

observing the never-before-seen conformation of tmRNA after translocation out of the P 

site.  

3.2 Results and discussion  

3.2.1 Development of an in vitro trans-translation system 
 In an attempt to trap tmRNA-SmpB bound in the P site, Ala-tmRNA-SmpB-

EF-Tu-GTP was added to nonstop ribosomes as previously described (Chapter 2.2.1), 
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with elongation factor G (EF-G) included to promote translocation. A cryo-EM dataset 

was collected of this T. thermophilus complex and the reconstruction showed that 

instead of a ribosome with tmRNA-SmpB bound in the P site, another A-site complex 

was formed (Table 5.2, #2). In this case, there were no biochemical methods we could 

use to assay for the formation of a relevant complex and using cryo-EM for this purpose 

is time consuming and low throughput. Therefore, a rapid and high-throughput method 

was necessary to verify successful translocation of tmRNA-SmpB from the A site into 

the P site. A useful assay would need to distinguish between purely structural 

differences of the A site and P site complex. Previous low-resolution structures of 

tmRNA-SmpB bound in the A site show that for in vitro nonstop ribosomes, mRNA and 

tRNA can dissociate spontaneously after accommodation of tmRNA-SmpB (261). 

Consequently, apart from the location of tmRNA-SmpB, there may be no chemical 

difference between ribosomes with tmRNA-SmpB bound in either site. 

 To solve this problem, an in vitro transcription and translation system in E. coli 

was adapted for trans-translation, allowing us to assemble physiologically relevant 

nonstop ribosomes. The system contains all necessary components for transcription and 

translation from a DNA template (262), making it possible to control each step of trans-

translation and verify the assembly of intermediates. By translating an mRNA without a 

stop codon, we assembled nonstop ribosomes with full-length nascent chains. Our DNA 

template also contained an N-terminal FLAG tag which we could use to affinity purify 

the nonstop ribosomes, enriching for only those that would be effective substrates for 

trans-translation and removing all contaminating transcription and translation factors. 

Trans-translation was initiated as before by adding Ala-tmRNA-SmpB-EF-Tu-GTP. By 

adding back only the factors required for the next step of trans-translation, we could 

assemble complexes at each step of the process.  

 Affinity purification of these nonstop ribosomes requires the nascent peptide to 

remain bound to tRNA in the P site. While this complex rarely disassembles 

spontaneously in vivo, dissociation has been observed in vitro. We wanted to minimize 

spontaneous release in our system so as to have sufficient sample for cryo-EM grid 

preparation. To do this, both background trans-translation activity and spontaneous 

peptide release had to be controlled in our system.  

 We hypothesized that in vitro release of the nascent chain could occur due to 

either (i) the presence of tmRNA-SmpB, (ii) the presence of alternate release factors 

ArfA or ArfB or, (iii) the spontaneous hydrolysis of the tRNA-peptide ester bond under 
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neutral reaction conditions. In an attempt to alleviate this problem, total tRNA was 

purified from an E. coli strain lacking ssrA. As tmRNA is known to co-purify in total 

tRNA preparations, this removed the largest known source of background tmRNA. 

Additionally, to minimize the spontaneous release of the nascent peptide, valine was 

encoded as the C-terminal amino acid, as this residue is shown to have the least labile 

ester bond with tRNA (263). Definitively removing background trans-translation and 

alternate release factors requires a strain lacking ssrA, arfA and arfB, which is not 

viable. Instead, we proceeded cognizant that these contaminants could be present, 

causing a decrease in the yield of nonstop ribosomes. 

 Because E. coli was used in both the in vitro system (262) and in many 

previous biochemical studies of trans-translation, it was adopted in favor of T. 

thermophilus (see Chapter 2). E. coli translation factors, ribosomes and tmRNA-SmpB 

were purified and used in conjunction with purified components generously donated by 

the Hegde lab. With the components of the system in hand, we began assembling trans-

translation complexes. To assay for different intermediates, 35S-methionine was used to 

specifically track newly synthesized nascent polypeptide. By following the change in 

molecular weight of the nascent peptide we could understand whether it was bound to 

tRNA, tmRNA or nothing (Figure 3.2).  

  

Figure 3.2 Schematic cartoon of in vitro trans-translation assay. The selective addition of factors 

required for subsequent steps of trans-translation permits the accumulation of intermediates that 

can be easily purified.  
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 As no methionine is encoded in the tag-reading frame of tmRNA, the signal 

detected should therefore be proportional to the amount of nascent chain.  

 Transcription and translation of the engineered DNA template lacking a stop 

codon produced the starting material for the assay. Affinity purification using anti-

FLAG resin yielded nonstop ribosomes, verified by detecting peptidyl-tRNA with full-

length nascent chains (Figure 3.3A, lane1). RNaseA digestion confirmed that higher 

molecular weight peptides are bound to RNA (Figure 3.3A, lane 2). The presence of the 

RNA bound species suggests the successful assembly of nonstop ribosomes.  

 While the isolated nonstop ribosomes remain bound to the affinity resin, 

addition of Ala-tmRNA-SmpB-EF-Tu-GTP initiates trans-translation. A complex with 

tmRNA-SmpB occupying the A site and bound to the nascent peptide was confirmed by 

the disappearance of peptidyl-tRNA and the appearance of a higher molecular weight 

peptidyl-RNA species (Figure 3.3A, lane 3). The shifting molecular weight of the 

nascent chain is consistent with peptidyl-transfer to tmRNA.  

 

Figure 3.3 Verification of trans-translation intermediate assembly. (A) Nonstop ribosomal 

complexes were assembled in vitro by translating an mRNA template with an N-terminal FLAG tag 

and no in frame stop codon. Reactions contained 35S-methionine to track the nascent chain. 

Nonstop complexes were captured with anti-FLAG affinity resin and washed to remove translation 

factors (stalled). RNase A digestion was used to detect the presence of RNA-bound nascent chains. 

Ala-tmRNA-SmpB-EF-Tu-GTP was added to initiate trans-translation (A site). Addition of EF-G 

translocates tmRNA-SmpB into the P site, with no change to the binding state of the nascent chain 

(P site). Subsequent addition of Ala-tRNAAla-EF-Tu-GTP with EF-G restarts translation on 

tmRNA, transferring the nascent chain to tRNAAla (E site).  (B) Control reactions show that 

complete tagging of the nascent polypeptide was possible when all required trans-translation factors 

were included. 
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 The step-wise addition of factors required for trans-translation permits any 

position of tmRNA within the ribosome to be trapped and purified. Therefore, towards 

our original goal, elongation factor G (EF-G) was added to the A-site complex to 

translocate tmRNA-SmpB into the P site. As expected, no change in molecular weight 

of the peptidyl-tmRNA species was observed (Figure 3.3A, lane 4).  

 This assay suffers from similar limitations as those described for the mixing of 

T. thermophilus components (see Chapter 2), namely, it was not directly possible to 

distinguish between ribosomes containing tmRNA-SmpB bound in the A site versus the 

P site. However, the P site complex was verified indirectly by proceeding with the next 

step of trans-translation, attempting to trap tmRNA-SmpB bound in the E site. After 

addition of Ala-tRNAAla, the peptidyl-tmRNA species disappeared and peptidyl-tRNA 

re-appeared (Figure 3.3A, lane 5). This is consistent with translation beginning on the 

tag-reading frame within tmRNA, the first codon of which codes for tRNAAla. This 

intermediate was obtained in the presence of EF-G, leading us to assume that we had 

formed a complex with tmRNA-SmpB mimicking a tRNA bound in the E site.  

 The three intermediates (A-site, P-site or E-site bound tmRNA-SmpB) were 

then purified from excess trans-translation factors by washing the resin and eluting with 

FLAG peptide.  

3.2.2 Cryo-EM data collection and processing of E. coli trans-
translation intermediates  
 The structure of tmRNA-SmpB bound in the P site was not yet determined at 

high-resolution, therefore, this was the first sample prepared for cryo-EM (Figure 3.4A, 

B). Data collection resulted in two intermediates: ribosomes with tmRNA-SmpB bound 

in either the A site or P site (Figure 3.4C). The presence of the A site intermediate 

suggests translocation of tmRNA-SmpB into the P site is inefficient. Similarly, a dataset 

was collected on a second complex with tmRNA-SmpB thought to occupy the 

ribosomal E site. This sample yielded a ribosomal complex with tmRNA-SmpB bound 

in a conformation after translocation past the P site and also contained an earlier A site 

intermediate (Figure 3.4C).  

 Particles representing the same conformations in both datasets were joined and 

reprocessed. This resulted in three near-atomic resolution structures of E. coli tmRNA-

SmpB bound to the ribosome in the A site, P site and unexpectedly, in a conformation 

with tmRNA bound on the solvent side of the E site.  
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Figure 3.4 Cryo-EM data collection and processing of E. coli trans-translation intermediates with 

tmRNA-SmpB bound in three key states on the ribosome. (A) Representative micrograph taken at 

75k magnification on a 300 kV Polara Cryo-TEM (FEI). (B) Representative two-dimensional 

classes. (C) Processing workflow in RELION and resulting electron density maps. 

 Processing included three rounds of three-dimensional (3D) classification to 

separate different states of tmRNA bound to the ribosome. The cryo-EM data 

processing software, RELION was used for all reconstructions presented here. After an 

initial refinement containing all particles, 3D classification was used to separate 

ribosome complexes based on the binding position of tmRNA-SmpB. To ensure a 

homogeneous set of particles and eliminate any ribosomes not containing tmRNA-

SmpB, focused classification with signal subtraction (FCwSS) was used, masking over 

tmRNA-SmpB. FCwSS is a unique style of classification in which all signal outside of 

an area of interest is removed prior to classification. This technique is particularly 

useful when the majority of signal surrounding the area of interest is expected to be 

identical in all classes. Here, the large subunit of the ribosome, which is relatively rigid, 

contributes a large amount of signal and therefore mandates the use of FCwSS.  

 After FCwSS, factor-containing classes were pooled and refined with a mask 

around the 30S subunit. Masking around the 30S during refinement improves the local 

resolution within that region, where we anticipated most of the interesting contacts 

between tmRNA-SmpB and the ribosome would take place. A final 3D classification 

was used to remove any remaining poorly aligned particles, after which the final 

reconstruction was refined with a mask around the 30S subunit. 
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 The three high-resolution structures of E. coli tmRNA-SmpB bound to the 

ribosome show the movement of tmRNA-SmpB through the ribosome and explain the 

importance of the C-terminal tail of SmpB during the later stages of trans-translation. 

Additionally, we observe a novel structure of tmRNA-SmpB bound on the solvent side 

of the E site of the ribosome, showing the complete loading of the MLD of tmRNA into 

the mRNA channel. These structures are described in detail in the following sections. 

3.2.3 Structures of trans-translation intermediates in E. coli 
 The structure of tmRNA-SmpB bound in the A site shows that in the in vitro 

system, washing the complex removes the original tRNA and mRNA from the 

ribosome. In this state, the P-site tRNA is no longer bound to the nascent peptide but is 

bound to the mRNA by base pairing interactions. Trapping a physiologically relevant E. 

coli structure of tmRNA-SmpB bound in the A site therefore required a modification to 

the protocol to maintain tRNAs and mRNA bound in the P and E site. For this, the step 

in which the A-site complex is washed was eliminated. Instead, nonstop ribosomes were 

first eluted from the affinity resin after which Ala-tmRNA-SmpB-EF-Tu-GTP was 

added to initiate trans-translation without any further purification. A dataset was 

collected on a 300kV Titan Krios microscope and showed that the adjusted purification 

method was able to trap the desired structure which we could resolve at 3.7 Å (Figure 

3.5 A, B, C).  

 Determining the structure of E. coli tmRNA-SmpB bound in the A site was 

important for two reasons. First, it could be compared to the analogous structure in T. 

thermophilus. Global superposition of the two structures shows that the tail of SmpB in 

E. coli is in a very similar position to that in T. thermophilus but forms a longer alpha 

helix (Figure 3.5D). This suggests that trans-translation initiates similarly between the 

two organisms. Second, the movement of tmRNA-SmpB from the A site into the P site 

is best understood by comparing complexes from the same species. This way any 

differences between the A and P site complexes represent mechanism rather than 

species-specific conformational nuances. 

 After accommodation of tmRNA-SmpB and peptidyl-transfer of the nascent 

chain to alanine on tmRNA, EF-G translocates tmRNA-SmpB into the P site and the 

mRNA is released and degraded (264). In agreement with this, mRNA and tRNA are 

absent in the 4.4 Å structure of tmRNA-SmpB bound in the P site (Figure 3.6). 
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Figure 3.5 Structure of E. coli tmRNA-SmpB bound in the A site of the ribosome. (A) Overview of 

the ribosomal complex with tmRNA-SmpB occupying the A site of a nonstop ribosome. The TLD 

(red) points into the peptidyl-transferase center (PTC) where it is joined to the nascent peptide 

(gray). (B) Electron density map colored by local resolution ranging from 3.5 Å to 18 Å. (C) Fourier 

shell correlation (FSC) curve showing map resolution of 3.9 Å with dashed line at FSC=0.143. (D) 

Global superposition of tmRNA-SmpB bound in the A site showing the tail of SmpB for T. 

thermophilus (gray) or E. coli (blue). 

   

 

Figure 3.6 Structure of E. coli tmRNA-SmpB bound in the P site of the ribosome. (A) Overview of 

the structure of tmRNA-SmpB bound in the P site of the ribosome with the mRNA-like domain 

(MLD) occupying the A site. (B) Electron density map colored by local resolution. (C) Fourier shell 

correlation (FSC) curve showing map resolution of 4.4 Å with dashed line at FSC=0.143. 
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 As EF-G translocates tmRNA-SmpB from the A site into the P site, the 

ribosome switches messages from the original mRNA to tmRNA (259). The tail of 

SmpB and H5 of tmRNA vacate their previous positions which blocked the A site so 

that the MLD of tmRNA can pass through the A-site latch and occupy the mRNA 

channel. For this, the C-terminal tail of SmpB remains alpha-helical but flips, binding 

the mRNA channel in the E site and therefore anchors tmRNA-SmpB in the P site 

(Figure 3.7A). The highly conserved Gly132 (Gly122 in T. thermophilus) facilitates 

helix flipping by acting as a flexible joint between the body and tail of SmpB. This is 

consistent with biochemical analysis describing the role of the C-terminal tail in 

positioning the tag-reading frame (265).  

 In addition, helix H5 of tmRNA moves to unblock the entrance of the mRNA 

channel, permitting access for the MLD (Figure 3.7B). This movement supports the 

previous claim that the initial position of H5 (of the A-site complex) clashes with the 

space normally occupied by an mRNA. Indeed, we would not expect a change in the 

position of H5 were adequate space available for the MLD to extend from the mRNA 

channel. 

 

Figure 3.7 Movement of the tail of SmpB and H5 of tmRNA vacates the mRNA channel in the A 

site. (A) Global superposition of ribosomes with SmpB occupying the A-site (gray) or P-site (blue) 

with conserved glycine residues highlighted (red). (B) Helix 5 of tmRNA changes position from the 

A site complex (gray) to the P site complex (red), allowing the MLD to pass through the mRNA 

channel in the space previously occupied by the tail of SmpB. (C) The MLD bypasses the latch in 

the A site (inset) and contacts the junction of the body and tail of SmpB to set the tag-reading 

frame. 

 Loading the MLD through the A-site latch and into the mRNA channel is 

necessary but not sufficient for translation to accurately restart on tmRNA. The tag-

reading frame within the MLD must also be correctly positioned for translation of the 

polypeptide tag and termination at an in-frame stop codon. For this, the MLD interacts 

with the base and tail of SmpB. Indeed, we can trace otherwise unassigned density 
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leading to the base of SmpB, across the A site and out the mRNA channel, confirming 

that the MLD interacts with SmpB (Figure 3.7C). This is consistent with biochemical 

evidence suggesting that the five nucleotides upstream of the tag-reading frame are 

critical for correctly positioning the first codon in the A site (211, 213).  

 Physical obstacles imposed by the 50S subunit must be circumvented by 

tmRNA as it moves through the ribosome. During translocation of tmRNA-SmpB from 

the A site into the P site, helix 2 (H2) of tmRNA must bypass the A-site finger (Figure 

3.8A, B).  

 

Figure 3.8 Obstacles in the 50S subunit physically separate translocation of tmRNA-SmpB. (A) 

Comparison of the A site finger when tmRNA-SmpB is bound in the A site versus after 

translocation into the P site. (B) Superimposition of A-site finger showing the conformational 
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change observed.  (C) Superimposition of 30S from the P-site structure with 30S from the A-site 

structure. (D) Measured gap between the central protuberance (CP) and the head of the 30S 

subunit when tmRNA-SmpB binds the P site. 

 H2 is a conserved element of tmRNA that connects the acceptor stem to the 

pseudoknot loop and protrudes from the tRNA-binding sites to the outside of the 

ribosome. It is expected that H2 must travel between the ribosomal subunit interface. 

The A-site finger is a helix of 23S rRNA that nearly connects this interface, extending 

from the 50S subunit toward the head of the 30S subunit. In the P-site structure, the A-

site finger binds in a bent position on the opposite side of H2 compared to the A-site 

structure. The flexibility of the A-site finger suggests that it may move, perhaps by 

force, out of the way during EF-G catalyzed translocation.  

 Likewise, during translocation of tmRNA-SmpB out of the P site, H2 of 

tmRNA must circumvent another even larger obstacle, the central protuberance (CP). 

This RNA-protein feature of the 50S typically contacts the head of the 30S subunit. In 

the structure of tmRNA-SmpB bound in the P site, the head of the 30S is observed in an 

extremely tilted conformation, with a ~13 Å gap (Figure 3.8C). The diameter of H2 is 

larger, spanning ~17 Å at its most narrow point. It is unclear how H2 passes between 

the head of the 30S and the CP of the 50S. However, binding of tmRNA in the P site 

begins inducing conformational changes on the ribosome that may be permissive for 

passage between the subunit interface. 

 After tmRNA-SmpB is positioned in the P site, Ala-tRNAAla decodes the first 

codon, or ‘resume codon’, of the tag-reading frame in the MLD in the A site. EF-G then 

translocates peptidyl-tRNAAla into the P site, consequently forcing tmRNA-SmpB 

toward the E site. Unexpectedly, tmRNA-SmpB does not mimic a tRNA binding in the 

E site. Instead, tmRNA-SmpB shifts past the E site to the solvent side of the ribosome 

as seen here in the 3.7 Å structure (Figure 3.9A, B, C). 

 To complete loading into the mRNA channel, the MLD must bypass another 

latch that joins the head and body of the small subunit, this time located in the E site. 

We see the MLD loaded through the E-site latch and into the mRNA channel after the 

second translocation step, which is analogous to the first step (Figure 3.9D). PK1 and 

H5 flank the single-stranded MLD, and continuous density is seen running through the 

mRNA channel. The position of H5 is approximately the same as that of tmRNA-SmpB 

occupying the P site, thus continuing to provide room for the MLD to exit the channel. 
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Figure 3.9 Structure of tmRNA-SmpB translocated from the P site past the E site. (A) Overview of 

the ribosomal complex with tmRNA-SmpB bound on the solvent side of the E site and the MLD 

fully loaded into the mRNA channel. (B) Electron density map colored by local resolution. (C) 

Fourier shell correlation (FSC) curve showing map resolution of 3.7 Å with dashed line at 

FSC=0.143. (D) Both latches blocking the mRNA channel have been bypassed by the MLD. 

 During movement of tmRNA-SmpB between all three states, the single 

stranded loop of RNA from PK2 remains bound to protein uS3, anchoring tmRNA to 

the solvent side of the small subunit. In this way, PK2 acts as a hinge around which 

tmRNA bends and pivots (Figure 3.10A). Indeed, the anchoring interactions of PK2 

coordinate the different positions of H5 seen during trans-translation. PK2 is highly 

conserved (266) and its interactions with uS3 may therefore represent a function of 

tmRNA in most species. 

  It was surprising we did not find tmRNA-SmpB to occupy the E site and 

instead observed what could be considered a structure one step further along in trans-

translation.  Although it is technically possible that an intermediate E-site tmRNA-

SmpB complex was skipped in the in vitro trans-translation system, superimposing 

tmRNA-SmpB from our structure onto a model of canonical tRNA in the E site induces 

severe clashes with the ribosome that make a stable E site complex unlikely (Figure 

3.11 A, B). If tmRNA-SmpB were to occupy the E site in a manner that mimics a 

tRNA, three points of contact are expected: (i) the PK2 loop with uS3, (ii) the acceptor 

arm of the TLD with the L1 stalk, and (iii) the codon:anticodon interaction between the 

MLD and tRNA in the P site. Without conformational changes to tmRNA, PK1 would 

clash with the central protuberance if all three binding interactions are satisfied. 
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Figure 3.10 Pseudoknot 2 binds protein uS3 during the entire movement of tmRNA-SmpB through 

the ribosome. (A) Three E. coli trans-translation intermediates determined in this study are 

separated translocation events. tmRNA-SmpB bound in the A site is (1) first translocated into the P 

site, after which translation restarts as a tRNA decodes tmRNA and a (2) second translocation 

shifts tmRNA-SmpB past the E site, to the outside of the ribosome. (B) Global superimposition of 

all three structures, showing only tmRNA (grays) and a consensus protein uS3 (yellow).  

  Even though conformational changes to tmRNA are possible and even likely, 

tmRNA bends primarily at junctions between its pseudoknot domains, which are made 

of single stranded RNA. Indeed, both the observed movements of PK1 and PK2-H5 are 

pivots around such points. At a third point of flexibility, bending at the elbow region 

permits the movement of the acceptor arm during accommodation. tmRNA must 

therefore either bend within helical region H2 or unravel PK1 to occupy the E site and 

maintain the three expected binding points. Both of these changes would require base 

pair disruption and are expected to be less favourable than simply vacating the E site. 

Additionally, tRNA-mimicry by tmRNA-SmpB may in this case not be sufficient for 

the specific interactions between the L1 stalk and the acceptor stem. For this, we would 

expect the C-terminal tail of SmpB to maintain its alpha helical form and bind in the 

place of mRNA upstream of the E site. However, if this interaction were not to occur, a 

stable E site complex would be even less likely.  
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Figure 3.11 Docking tmRNA-SmpB into the E site. (A) tmRNA-SmpB superimposed into a 

hypothetical E-site conformation with minimal conformational changes required shows a clash 

(inset) between tmRNA and the central protuberance (CP).  (B) Docking tmRNA for the 

hypothetical E-site conformation. tmRNA-SmpB superimposed onto an E-site tRNA (dark gray, 

from the A-site structure) and PK2 (light gray, from the P-site structure). tmRNA from the P-site 

structure determined in this study was used as a starting model. The TLD was superimposed onto 

the acceptor arm of E-site tRNA while contacts between PK2 and protein S3 were maintained. H2, 

PK1, PK2 and PK3 were adjusted to connect the domains without any conformational changes 

within the domains. 

 Lastly, an extreme head movement is needed to open the E-site latch to load 

the MLD into the mRNA channel. Such a movement must occur during the second 

translocation event if tmRNA is to pass along the interface between the 50S and 30S 

subunits. Translocation of tmRNA into the E site is therefore an ideal time to load the 

MLD into the E site. However, this is only possible if TLD-SmpB does not bind in the 

E site. The structures determined here suggest a translocation-mediated two-step 

mechanism as the simplest explanation for loading of the MLD in to the mRNA 

channel. 
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3.3 Conclusions  
 

 Both tmRNA and SmpB mimic parts of a tRNA and mRNA during their 

movement though the ribosome, ultimately tricking the ribosome into continuing an 

otherwise atypical form of elongation. Initial delivery by EF-Tu depends on tmRNA-

SmpB mimicking a tRNA while accommodation into the ribosome requires SmpB to 

mimic an mRNA to recognize the empty mRNA channel. Simultaneously, during trans-

translation, SmpB acts as the anticodon stem loop of a tRNA by binding to the acceptor 

stem of tmRNA. Similarly, as tmRNA-SmpB moves through the ribosome, the C-

terminal tail of SmpB continues mimicking an mRNA, binding in the space 

subsequently occupied by an actual piece of RNA, the MLD, after translocation.  

 Two translocation events move tmRNA-SmpB through the ribosome, resulting 

in complete loading of the MLD into the mRNA channel. After EF-G translocates 

tmRNA-SmpB from the A site into the P site, the tail of SmpB flips and binds in the E 

site, anchoring the factors in position. SmpB also interacts with the MLD to position it 

in the now empty A site for translation to restart on tmRNA. Thus, SmpB identifies 

legitimate nonstop ribosomes by verifying that the mRNA channel is empty, and then 

vacates that space to make way for the MLD. A second translocation event catalyzed by 

EF-G forces tmRNA-SmpB past the E site and to the solvent side of the ribosome, 

loading the MLD fully into the mRNA channel. It is here that tmRNA-SmpB deviates 

from tRNA-mimicry, as it is not seen to bind in the E site after translocation out of the P 

site like in canonical translocation.  

 Loading the MLD into the mRNA channel is necessarily mediated by a looping 

mechanism that bypasses two latches, one during each translocation event. The MLD 

bypasses the first latch as tmRNA-SmpB is translocated from the A site into the P site. 

Likewise, the second latch is bypassed during translocation of tmRNA-SmpB out of the 

P site, toward the E site. This mechanism is likely applicable for two-piece tmRNAs as 

well, since large secondary structures flank the MLD in many bacteria (172). The 

secondary structure elements make a threading mechanism unlikely. To thread tmRNA 

into the mRNA channel requires extensive unwinding of tmRNA, followed by 

coordinated passage into the mRNA channel and then reformation of secondary 

structure. These rearrangements seem unfavorable and as of yet, there is no evidence for 

how threading would be coordinated. Alternatively, the looping mechanism does not 
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requireunwinding of tmRNA and takes advantage of translocation, an already energy 

dependent process, to circumvent the latches otherwise blocking entrance into the 

mRNA channel.  

 Although the structures of these intermediates reveal a great deal of atomic 

detail about the mechanism of trans-translation, two important structural questions 

remain to be answered. First, what are the specific interactions between the MLD and 

SmpB in the P site that coordinate the correct reading frame on the MLD in the A site? 

And second, what does tmRNA-SmpB translocation from the P site to the E site look 

like? We attempted to trap structures that could help address questions. However, in 

both cases, cryo-EM data collection revealed only the previously determined 

intermediates. We collected data for a complex of tmRNA-SmpB bound in the P site 

with tRNAAla decoding the MLD in the A site complex (Table 5.2, #11). However, 

again obtained a reconstruction with tmRNA-SmpB bound past the E site, possibly due 

to contaminating EF-G in the system.  

 Trapping an EF-G-bound intermediate during translocation of tmRNA-SmpB 

from the P site toward the E site could provide insight into why tmRNA-SmpB was not 

observed to mimic a tRNA binding in the E site as anticipated. Using the antibiotic 

fusidic acid, we attempted to trap EF-G after it has catalyzed translocation, but prior to 

dissociation from the ribosome. However again data collection revealed a strangely 

inseparable mixture of more of the previously determined complexes (Table 5.2, #9). 

This dataset must be processed further to understand the strange classification 

phenomenon. Additionally, as no EF-G was detected on the ribosome, the complex 

must be optimized and crosslinking agents may be required to further prevent EF-G 

dissociation. We suspect the three structures determined in this study might be the 

lowest energy states, making transition state intermediates more challenging to trap. 

 Although these gaps in our understanding of trans-translation remain open, 

determining the structures of E. coli tmRNA-SmpB bound in three different states on 

the ribosome describes for the first time the movement of tmRNA-SmpB at near-atomic 

resolution. The structures reveal new details about tmRNA-SmpB binding to the 

ribosome and represent a critical advancement in our understanding of the mechanism 

of trans-translation.  
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3.4 Materials and methods 
 

Purification of components for the in vitro trans-translation system 

 The ssrA gene from E. coli MG1655 was cloned into pUC19 under the control 

of a T7 promoter followed immediately after the 3’CCA by a BsmBI cleavage site. The 

plasmid was linearized using BsmBI (NEB) as per the manufacturer’s instructions, 

extracted using phenol-chloroform, ethanol-precipitated and resuspended in water. 

tmRNA was produced by run-off transcription (40 mM Tris-HCl pH 8, 1 mM 

spermidine, 0.01 % Triton X100, 5 mM DTT, 5 mM NTPs, 30 mM MgCl2, 0.0025 

U/ml inorganic pyrophosphatase, 40 U/ml RNAsin Plus RNase Inhibitor (Promega), 

0.01 mg/ml T7 RNA polymerase), and purified by gel filtration (10 mM ammonium 

acetate pH 5.0, 150 mM KCl, 5mM MgCl2) on a HiLoad 16/600 Superdex 200 column. 

The purified sample was concentrated by ethanol precipitation in the presence of 1 M 

ammonium acetate pH 5.0 and resuspended in 10 mM HEPES.KOH pH 7.5, 20 mM 

NH4Cl, 5 mM MgCl2. 

 The smpB gene from E. coli MG1655 was cloned into pET28a (Novagen), 

generating a plasmid for a construct with an N-terminal 6xHis-tag followed by a SSG 

flexible peptide linker, a PreScission Protease cleavage site and finally wild-type E. coli 

smpB. Transformed E. coli Rosetta DE3 cells (Novagen) were induced with 1 mM 

IPTG and grown for 4 h at 37°C with 34 µg/ml Chloramphenicol and 30 µg/ml 

Kanamycin. The protein was purified in batch with Ni-NTA beads (Roche) following 

lysis in 50 mM Tris-HCl pH 7.4, 1 M KCl, 5 mM imidazole and 2 mM DTT. SmpB was 

eluted in lysis buffer containing 750 mM imidiazole and dialyzed overnight with 

Prescission Protease (1.4 mg/L) in dialysis buffer (50 mM Tris-HCl pH 7.4, 500 mM 

KCl, and 2 mM DTT) at 4°C to cleave the tag. The sample was concentrated to 20 

mg/ml, aliquoted and stored at -80°C.  

 Nonstop template DNA was created by PCR from plasmid pNAT21 containing 

dnaX with an N-terminal FLAG tag in pIDT vector under control of a T7 promoter. 

Forward primer 5’ ATAGCGATTCATCGATGAGCTGACCCG 3’ and reverse primer 

5’ GACCATCAACTGCTGGCGCGCCG 3’ were used, flanking the promoter region 

and the first 91 amino acids encoded by dnaX. This template DNA codes for a nascent 

peptide with an N-terminal FLAG tag and no in-frame stop codons. 
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 Total tRNA was isolated from E. coli W3110ΔssrA (153) by acidic phenol-

chloroform extraction with 25:24:1 phenol:chloroform:IAA, purified using HiTrap 

DEAE Sepharose FF (in 20 mM Tris 7.4, 100 mM KCl, 1 mM DTT) and eluted with 1 

M NaCl. Total tRNA was concentrated by ethanol precipitation and resuspended in 

water. All remaining PURE system components were purified as described (262).   

Sample preparation for E. coli complexes 

 The PURE system was used to in vitro-transcribe and translate the nonstop 

DNA template to produce stalled ribosome complexes. Reactions were prepared as 

described (262) but with 4.75 mg/ml ribosomes, 7.5 ng/µl nonstop DNA template and 

using the total tRNA prepared from E. coli W3110ΔssrA. Reactions were incubated at 

37°C for 1 h with shaking. 

 tmRNA was aminoacylated (50 mM K-HEPES pH 7.5, 60 mM NH4Cl, 7 mM 

MgCl2, 4 mM ATP, 0.002 U/ml inorganic pyrophosphatase, 20 µM AlaRS, 15 µM EF-

Tu, 15 µM SmpB, 10 µM tmRNA, 30 µM alanine) by incubating for a minimum of 1 h 

at 37°C with shaking, then mixed with 1 mM GTP at room temperature prior to 

incubation with nonstop ribosomes. Alanyl-tRNAAla was prepared similarly (50 mM K-

HEPES pH 7.5, 60 mM NH4Cl, 7 mM MgCl2, 4 mM ATP, 0.002 U/ml inorganic 

pyrophosphatase, 20 µM AlaRS, 15 µM EF-Tu, 10 µM Ala-tRNA, 30 µM Alanine). 

 While incubating the tmRNA aminoacylation reactions, completed nonstop 

ribosome reactions were incubated with anti-FLAG resin for 1 h at 4°C. Resin was then 

washed twice each with Buffer A (50 mM HEPES pH 7.4, 100 mM KOAc, 5 mM 

Mg(OAc)2, 0.1% Triton X-100), Buffer B (50 mM HEPES pH 7.4, 250 mM KAc, 5 

mM Mg(OAc)2, 0.5% Triton X-100, 1 mM DTT) and Buffer C (50 mM HEPES pH 7.4, 

100 mM KOAc, 5 mM Mg(OAc)2). This produced a complex of nonstop ribosomes 

bound to anti-FLAG resin via the nascent chain.  

 The complex of tmRNA-SmpB bound in the A-site was obtained by adding 

Ala-tmRNA aminoacylation reactions to the washed, nonstop ribosome bound beads 

and further incubation at 37°C shaking for 30 minutes to initiate trans-translation. 

Beads were washed three times with Buffer C and the ribosomes eluted with Elution 

Buffer (50 mM HEPES pH 7.4, 100 mM KOAc, 5 mM Mg(OAc)2, 0.2 mg/ml FLAG 

peptide) twice for five minutes each at room temperature. This preparation produced a 

complex with tmRNA-SmpB occupying the A-site. However, the wash steps after Ala-

tmRNA incubation caused the complex to lose the original mRNA and tRNA. To trap 
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an A-site complex containing both mRNA and tRNA, nonstop ribosomes were prepared 

as above but were instead eluted from beads prior to mixing with Ala-tmRNA 

aminoacylation reactions at 37°C shaking for 30 minutes, after which no further 

purification was performed.  

 The complex of tmRNA-SmpB bound in the P-site was produced by adding 5 

µM elongation factor G (EF-G) to the completed tmRNA aminoacylation reaction 

above and then incubating with nonstop ribosome bound beads, washing and eluting as 

already described. 

 To trap the complex of tmRNA-SmpB bound in the E-site, P-site complexes 

were produced as above and washed three times with Buffer C after which an Ala-

tRNAAla aminoacylation reaction mixed with 1 mM GTP and 5 µM EF-G was added 

and incubated at 37°C for 30 min before final elution.  

Electron microscopy  

 Quantifoil Cu R2/2 400 mesh grids were coated with a thin sheet (~60 Å) of 

amorphous carbon and glow discharged for 15 s at 7 V. Eluted trans-translation 

intermediates were diluted to a ribosome concentration of 100 nM in Buffer C and 3 ul 

aliquots were applied to grids, incubated for 30 s at 4°C and 100% humidity, blotted for 

4.5 s and frozen in liquid ethane using a Vitrobot Mark III (FEI).  

 Micrographs of the E. coli A-site complex were collected on a Titan Krios 

microscope whereas P- and E-site complexes were collected on a Polara, all at 300 keV 

with a Falcon II detector and automated data collection with EPU (FEI). Movies were 

collected on the Krios at 75 k magnification, a pixel size of 1.07 Å, a dose of 26.5 eÅ-2s-

1, 1.67 s exposures, and totalling 67 frames. Movies were collected on the Polara at 93 k 

magnification, a pixel size of 1.15 Å, a dose of 60 eÅ-2s-1, 1 s exposures, and totalling 

43 frames. Micrographs of the T. thermophilus A-site complex were collected on a 

Polara at 300 keV with a Falcon II detector and automated data collection with EPU 

(FEI). Movies were collected at 75 k magnification, a pixel size of 1.34 Å, a dose of 28 

eÅ-2s-1, 1.5 s exposures and a total of 60 frames. All collections used defocus values of -

3.2, -2.9, -2.6, -2.3, -2.0, -1.7 µm. 

Image processing  

 Micrograph movies were processed using RELION-2.1 (244). Frames were 

aligned with Motioncorr (245) and contrast transfer functions calculated using Gctf 
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(246). After movie alignment, ribosome particles were picked semi-autonomously (247) 

and selected using reference-free two-dimensional classification to remove ice and other 

nonribosomal particles. Initial three-dimensional refinement used an E. coli 70S 

ribosome (EMD-3493) low-pass filtered to 40 Å as a reference. Initial three-

dimensional refinement was used as input for a first round of three-dimensional 

classification without alignments (Fig S6). Further separation was done by focused 

classification with signal subtraction on the tmRNA-SmpB (267). Maps were refined 

again with a mask over the small subunit. Another round of three-dimensional 

classification without alignment was then used to remove any remaining poorly aligned 

particles. Finally, maps were refined once more with a mask around the entire ribosome. 

Final maps were then post-processed using a mask around the entire complex. 

Model building 

 A starting model of an E. coli 70S ribosome (PDB 5MDZ) was docked into the 

post-processed maps using Chimera (248). Protein and RNA chains were then fitted 

more closely to the density using rigid-body fit in Coot (249). SmpB from T. 

thermophilus (190) was used as a starting model (PDB 4V51) and mutated to 

correspond to the purified E. coli protein. tmRNA as homology-modelled in Ramrath et. 

al. 2012 was used as a starting model, broken into major helical or pseudoknot domains, 

rigid-body fit to the density using Chimera and reattached in Coot. An iterative process 

of morph chain and real space refinement in coot with libg generated restraints (250) 

was used to adjust the structure of tmRNA to more closely fit the shape of the density 

while maintaining the base-pairing as predicted (165, 166). Figures were created using 

Pymol (251) or Chimera (248). 

Model refinement and validation  

 Models were refined in reciprocal space using REFMAC v5.8 optimized for 

cryo-EM maps using restraints generated by ProSMART and LibG (250).  FSCaverage 

was monitored during refinement and the final models were assessed with MolProbity 

(253) with data shown in Table 5.1. Cross validation to prevent overfitting was 

performed as described (250).  
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4 Summary and future 
direction 

4.1 The mechanism of trans-translation 
 

 This work has revealed new atomic details about tmRNA-SmpB that allows us 

to form a more complete picture of trans-translation. Here I summarize our current 

understanding of the mechanism (Figure 4.1). 

 A 70S ribosome forms a nonstop translation complex when translation stalls at 

the 3′ end of a messenger RNA (Figure 4.1A). Nonstop ribosomes do not contain a 

codon in the A site and therefore neither tRNAs nor release factors can recognize this 

conformation. 

 Elongation factor Tu (EF-Tu) delivers Ala-tmRNA-SmpB to the ribosome 

(Figure 4.1B). When trapped in this conformation the state of the ribosome is termed 

‘pre-accommodated’. Contacts between EF-Tu, tmRNA and the ribosome, as well as 

contacts between pseudoknot 2 (PK2) of tmRNA and ribosomal protein uS3, likely 

coordinate the position of SmpB in the A site. The binding of PK2 coordinates helix 5 

(H5) in a position incompatible with mRNA extending out of the channel. The C-

terminal tail of SmpB forms an alpha helix in the empty A site and downstream mRNA 

channel, further verifying a nonstop ribosome complex and triggering a decoding-like 

event. 
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Figure 4.1 The mechanism of trans-translation. Cartoon representation of the mechanism of 

tmRNA-SmpB binding and movement through the ribosomes during trans-translation.  

 Decoding stimulates EF-Tu to hydrolyze GTP and dissociate from the 

ribosome, permitting tmRNA-SmpB to accommodate into the A site (Figure 4.1C). The 

tail of SmpB remains in the same alpha-helical conformation as in the pre-

accommodated state. Analogous to canonical tRNA, the TLD-SmpB points the alanine 

on its 3′CCA into the peptidyl transferase reaction center (PTC) where it accepts the 

nascent peptide.  

 Elongation factor G (EF-G) translocates tmRNA-SmpB from the A site into the 

P site and expels the original mRNA and tRNA (Figure 4.1D). Translocation causes 30S 

subunit head movements to open a latch in the A site (A-site latch), through which the 

MLD is passed. Large, stable secondary structures flank either side of the single 
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stranded MLD and therefore the MLD must laterally enter the mRNA channel between 

the head and body of the 30S. 

 After tmRNA-SmpB are translocated into the P site, the MLD occupies the 

space in the A site and mRNA channel previously occupied by the tail of SmpB (Figure 

4.1E). To avoid clashing while maintaining its role in anchoring tmRNA within the 

ribosome, the tail of SmpB flips to the opposite side of the mRNA channel, binding in 

the E site. SmpB also interacts with the MLD to position the tag-reading frame in the 

now empty A site for translation to restart on tmRNA. 

 Canonical translation resumes on the MLD as Ala-tRNAAla decodes the first 

codon of the tag-reading frame (Figure 4.1F) and a peptidyl transferase reaction 

transfers the peptide from tmRNA to tRNAAla (Figure 4.1G). EF-G then translocates 

peptidyl-tRNAAla into the P site and consequently shifts tmRNA-SmpB toward the E 

site (Figure 4.1H). 

 Translocation appears to move tmRNA-SmpB through the E site to the solvent 

side of the ribosome (Figure 4.1I).  During this second translocation event, the MLD is 

again loaded into the mRNA channel, passing through a latch this time in the E site (E-

site latch). tmRNA-SmpB deviate from tRNA-mimicry as they do not bind in the E site 

like a canonical tRNA. However, tmRNA-SmpB must cross the E site and therefore, 

likely passes through a transition state resembling canonical E site tRNA (Figure 4.1H). 

After this second translocation event, the MLD is fully loaded into the mRNA channel.  

 During the entire process of MLD loading, PK2 interacts with protein uS3, 

binding tmRNA to the outside of the ribosome and coordinating the position of tmRNA 

as it moves through the ribosome. Translation continues on the MLD until terminating 

at a stop codon at the end of the tag-reading frame where the peptide and the ribosome 

are released (Figure 4.1J). The incomplete protein is targeted for degradation by 

proteases that recognize the polypeptide tag appended by tmRNA-SmpB during trans-

translation (Figure 4.1K). 

 

4.2 Future direction 
 

 Although the work presented here advances our atomic-level understanding of 

the mechanism of trans-translation, important questions remain unanswered. Four 
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structures, if trapped, would answer many of the remaining structural questions 

regarding the mechanism of trans-translation in E. coli.  

 Understanding the timing of PK2 binding to the ribosome is still unclear. 

Although we suspect binding of PK2 to the ribosome occurs prior to tmRNA-SmpB 

accommodation, without a structure of the full-length tmRNA-SmpB trapped with EF-

Tu we cannot claim precisely when helix 5 (H5) of tmRNA discriminates nonstop 

ribosomes. To trap this complex, kirromycin could be used as in a previous structure of 

a fragment of tmRNA (lacking H5) with SmpB bound in the pre-accommodated state 

(190).  

 After accommodation and translocation, SmpB bound in the P site coordinates 

the position of the MLD in the A site. A structure of tmRNA-SmpB bound in the P site 

with improved resolution around the SmpB-MLD interactions, would be required for 

understanding exactly how SmpB establishes the correct reading frame on tmRNA. One 

possible approach for improving the resolution may be to include tRNAAla to decode the 

MLD in the A site. Bound A-site tRNAAla could decrease the range of motion of the 

MLD near SmpB and therefore improve the electron density in this region. 

Additionally, to avoid capturing an already determined structural intermediate, the 

antibiotic kirromycin could be used to trap EF-Tu delivering Ala-tRNAAla to the MLD.  

 After translation restarts on the MLD, peptidyl-tRNAAla is translocated into the 

P site, forcing tmRNA-SmpB out of the P site to the solvent side of the ribosome. How 

tmRNA moves between the subunits during this step is still unclear, as the central 

protuberance appears to physically block translocation. Additionally, deviation from 

tRNA mimicry after this second translocation event must be investigated further to 

understand why tmRNA-SmpB does not occupy the E site. Trapping an EF-G-bound 

intermediate during translocation of tmRNA-SmpB from the P site toward the E site 

could show how tmRNA moves through the gap between the small and large subunit 

and provide insight into why tmRNA-SmpB was not observed to mimic a tRNA binding 

in the E site. Using the antibiotic fusidic acid could trap EF-G after it has catalyzed 

translocation, but prior to dissociation from the ribosome [as in (259)]. Alternatively, 

using a GTP analogue, like GDPCP, to prevent GTP hydrolysis by EF-G is another 

possible means of trapping a translocation intermediate.  

 After complete loading of the MLD into the mRNA channel, translation 

continues canonically until the end of the tag-reading frame. An aspect of trans-
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translation not addressed in this study is the termination of translation on tmRNA. After 

several rounds of translocation on the MLD, H5 must completely unravel for the 

ribosome to access the stop codon at the end of the tag-reading frame. The interaction 

between the single stranded RNA loop of PK2 and uS3 may also begin destabilizing 

once the stop codon reaches the A site. The destabilization of PK2 during termination 

would certainly be timely and could be important for subsequent ejection of tmRNA 

from the ribosome. Without a structure of the ribosome bound with tmRNA during 

termination, we cannot know whether the PK2-uS3 interaction is destabilized and 

whether or not this is part of the mechanism of trans-translation. To trap such a 

complex would be possible using the in vitro trans-translation system described here. 

All required tRNAs could be included for trans-translation along with a mutant release 

factor that recognizes the stop codon but cannot hydrolyze peptidyl-tRNA. Under these 

conditions, the ribosome could translate the entire peptide tag encoded by tmRNA but 

then be trapped during termination.  

 Determining these structures will almost inevitably use cryo-EM. Indeed, the 

revolution of cryo-EM technology along with the outstanding support of the scientists 

and staff at the LMB are the reason the work presented here was possible. This being 

said, cryo-EM of course does have limitations. Indeed, we were unable to verify the 

exact secondary structure of tmRNA by cryo-EM. Flexible regions of a reconstruction 

are difficult to resolve using the existing software and even in cases where this is 

possible, extremely large datasets are often required. Fortunately, these limitations are 

more often being overcome as data collection becomes streamlined. Cryo-EM has the 

advantage of determining high-resolution structures of complicated, often flexible 

macromolecules in a near-solution state. The tmRNA bound ribosomes represent just 

that sort of assembly, which previously would have been difficult to solve by 

crystallography. Only a small amount of sample is required for cryo-EM, making it 

possible to run complicated reactions at a scale that is financially feasible. In this study 

the use of a precious in vitro system was possible due to the minimal scale of reactions 

required. Lastly, cryo-EM sample preparation does not require a perfectly homogeneous 

solution. Indeed, we took advantage of sample heterogeneity and fortuitously obtained a 

conformational state we had not expected.  

 In summary, this work has advanced our atomic-level understanding of trans-

translation but interesting structures remain to be determined to complete a full picture 

of the mechanism. 
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5 Appendices  

5.1 Stapled ribosomes 

5.1.1 Introduction 
 Bioengineering ribosomes for the incorporation of multiple non-natural amino 

acids could lead to more advanced probing systems or even synthetic polypeptide 

production in cells. Such ribosomes would require specificity for a single mRNA and 

potentially mutated catalytic centers such as the peptidyl transferase center (PTC), as 

well as connectivity between the modified functions of the large and small subunits. 

Mutations in the ribosome are often lethal (268) and therefore evolution of these 

functions requires orthogonal ribosomes. Thus the ribosomes would function parallel to, 

but separate from, endogenous ribosomes within the cell. Gene duplication allows for 

the independent evolution of progeny from a parent. The progeny, or orthogonal, 

molecule can take on unique functions simultaneously, but separately, from the parent. 

In this way, duplication of ribosomal rRNA allows the orthogonal copy to be mutated 

and evolved (269) while the endogenous ribosomes maintain cell viability by 

synthesizing the proteome.  

 Directing the incorporation of non-natural amino acids into proteins requires 

orthogonal ribosome-mRNA pairs. A selection approach was previously used to design 

ribosomes that uniquely recognize orthogonal mRNA (O-mRNA) (270). The Shine-

Dalgarno (SD) sequence and its proximity to the start codon in an mRNA transcript are 

important determinants of the efficiency of translation initiation (271, 272). Orthogonal 

ribosomes were engineered to contain a mutated anti-Shine-Dalgarno (ASD) sequence 
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at the end of 16S rRNA that specifically recognizes the mutated Shine-Dalgarno of O-

mRNA. Additionally, the SD of O-mRNAs can’t be recognized by endogenous 30S. 

The mRNA-ribosome pair acts independently from endogenous translation and 

therefore does not mis-regulate translation in the cell.  

 Ribosomes that recognize only a single mRNA of interest are a critical starting 

point for the engineering of non-natural polypeptides, however, the building blocks of 

those polymers must also function orthogonally. Unique tRNA/synthetase pairs and 

unique codons recognized by those tRNA’s are therefore needed. Inefficiencies in cross-

species aminoacylation have been exploited to create orthogonal tRNA/synthetase pairs 

(273). Orthogonal synthetases selectively aminoacylate orthogonal tRNA’s, and 

likewise, O-tRNA is not aminoacylated by natural tRNA synthetases. (273–276). 

Additionally, for the system to be entirely orthogonal, the endogenous tRNA 

synthetases do not recognize the non-natural amino acid (273).  

 These non-natural amino acid adaptor molecules are only useful if a 

corresponding but independent genetic code is used for O-mRNA. Therefore, unique 

codons are also required for efficient site-specific non-natural amino acid incorporation 

by orthogonal tRNA. All 64 naturally occurring codons are recognized by tRNA or 

release factors and therefore endogenous factors will inevitably compete with non-

natural tRNAs for codon usage. Previous studies exploited stop codons as a useful 

starting point due to their minimal number of interacting partners. 

 For instance, amber stop codons are only recognized by RF1 and a unique aa-

tRNA counterpart, the amber suppressor tRNA. The CUA anticodon of amber 

suppressor tRNA recognizes the UAG amber stop codon, however, RF1 also competes, 

decreasing non-natural amino acid incorporation by catalyzing the formation of 

truncated products. RF1 knockouts are lethal and therefore not a viable option, however, 

decreasing RF1 activity could be sufficient for maintaining cell viability while 

increasing the efficiency of non-natural amino acid incorporation. The unique 

specificity of O-ribosomes for O-mRNA allows for the mutation of the 30S subunit. O-

ribosomes were evolved to have diminished ability to recognize RF1 (277). Decreasing 

the functional interaction with RF1 increases the efficiency of amber decoding from 

20% to 60%. Although improved, non-natural amino acid incorporation at stop codons 

is still limited by competition with release factors (277). Furthermore, with this 

approach only two unique codons can be utilized, the third required for termination.  
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 Exploiting amber codons is useful for incorporation of non-natural amino acids 

at single sites, however, synthetic protein synthesis would require an entire genetic code 

independent from that used in the cell. For this purpose, a ribosome was engineered to 

decode quadruplet codons (278), establishing a new set of blank codons for which 

tRNA/synthetase pairs could be assigned. These extended anticodon tRNAs have a 

bump corresponding to a hole in the orthogonal ribosome that allows for its 

accommodation. The quadruplet anticodon tRNAs are incompatible with endogenous 

ribosomes and therefore minimally interfere with endogenous translation. Pyrrolsyl-

tRNA synthetase (PylRS) was exploited for the creation of non-natural aa-

tRNA/synthetase pairs for quadruplet codons as it does not recognize the anticodon 

stem loop of tRNA and the quadruplet anticodons could therefore be tolerated (279). 

 Expanding the functionality of the quadruplet-decoding O-30S to the 

development of an entirely orthogonal 70S ribosome (O-70S) allows the large subunit 

to be evolved. In an O-70S, areas of particular functional interest, like the PTC or exit 

tunnel, can be mutated without affecting endogenous translation. An O-70S requires the 

50S to be selectively recruited to the same message as the O-30S. Additionally, an 

orthogonal 50S ideally binds only to O-30S subunits and likewise, an O-30S should not 

bind to endogenous 50S. Attempts to control 50S-30S binding through non-covalent 

interactions have been unsuccessful. Alternatively, covalently linking the 50S to the 

already orthogonal 30S achieved this specificity.  

 The 23S rRNA was linked to the 16S through an RNA hinge (Figure 5.1A), 

physically bridging the subunits. Previous studies show that a circularly permuted 23S 

rRNA can be inserted into 16S rRNA and stapled together using an RNA hinge (280, 

281). To join the rRNA of both subunits, the original termini of 23S rRNA was closed 

and new 5’ and 3’ ends at the point of hinge attachment were opened. This modification 

is possible because the 23S rRNA can tolerate circular permutation (282), and insertions 

into the 16S rRNA are also possible (283, 284). The circularly permuted 23S rRNA was 

inserted into the 16S rRNA and attached with an RNA hinge (Figure 5.1B).  

 Potential locations for hinge insertion were determined by examining structures 

of E. coli ribosomes for areas between the subunits that are in close proximity and that 

tolerated mutation based on phylogenetic analysis. Ends of helices H101 and h44 fit 

these criteria and were additionally chosen because they are distant from the 

mechanistic centers and translation factor binding sites of the ribosome. The J5/J5a 

region from the Tetrahymena group I self-splicing intron was used as a hinge to connect 
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h44 to H101 (Figure 5.1B). This RNA hinge is known to have two distinct 

conformations, an extended form and a U-shaped form (285). The structure of this hinge 

suggested it might be compatible for joining h44 and H101 (PDB 1GID) (Figure 5.1C). 

 

Figure 5.1 Staple design is based on a ribozyme hinge. (A) Cartoon of stapled ribosome with hinge 

in purple and orthogonal anti-Shine Dalgarno (O-ASD) in green. (B) Overview of E. coli rRNA 

secondary structure showing old 3' and 5' termini of the 23S rRNA connected and h44 connected to 

H101 by the RNA hinge. Sequence of the hinge is shown with deletion or insertion mutations 

labeled below each base pair. (C) Original crystal structure (PDB 1GID) of Tetrahymena group I 

self-splicing intron showing the J5/J5a region used as the hinge highlighted in purple. 

 Unfortunately, the concentration of ribosomes in the cell is such that linking 

the 30S to the 50S is unlikely to be sufficient for increasing the specificity of these two 

subunits. Expression of a mutated 23S of the stapled ribosome decreases growth rates, 

suggesting that endogenous 30S interact with stapled 50S (286). Indeed, nothing 

prevents the stapled 50S from binding endogenous 30S. The pool of large subunits is 

shared with stapled ribosomes and therefore the stapled ribosome is not entirely 

orthogonal (Figure 5.2A). Cross assembly was determined by purifying stapled 

ribosomes via an MS2 hairpin and measuring the co-purification of endogenous 

subunits (286). Cross assembly coefficients near one show that the stapled ribosome 

interacts extensively with endogenous subunits.  

 Additionally, stapled ribosomes can interact in trans if two ribosomes are in the 

open conformation (Figure 5.2B). Until now, no evidence suggests that intra-ribosome 

interactions (subunits joining in cis) are responsible for translation. Sucrose gradient 
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centrifugation showed that stapled ribosomes in trans dominate and likely support 

growth of strains containing only stapled ribosomes with an endogenous SD sequence 

(286). The stapled ribosome was further engineered to minimize recognition of 

endogenous subunits and promote self-assembly in cis over trans. 

 

Figure 5.2 Stapled and endogenous ribosome assemblies. (A) Cartoon representation of possible 

cross assemblies of stapled ribosomes with native ribosomes. (B) Cartoon representation of cis and 

trans assembly of stapled ribosomes.   

 To do this, the RNA hinge was optimized in an effort to develop a large 

subunit that specifically interacts with O-30S and not with endogenous 30S or 50S of 

other stapled ribosomes. Base pairs on either side of the hinge were systematically 

inserted or deleted to change the distance and tilt between the subunits (286). One 

variant of stapled ribosome, O-d2d8, having two base pairs deleted from h44 and eight 

bases pairs deleted from H101, showed substantial reduction in cross assembly with 

other stapled ribosomes, and maintained activity when endogenous subunits were 

selectively inhibited with antibiotics for which the stapled ribosome is resistant. 

Additionally, cross-assembly analysis showed that d2d8 has minimal trans-associated 

stapled ribosomes. These results suggest that translation is mediated by subunits of a 

cis-70S stapled ribosome.  

 To validate the orthogonal nature of the optimized stapled ribosome, the 50S 

subunit was evolved to synthesize long stretches of poly-proline sequences. Proline is a 

secondary amine and therefore may occupy conformations that are unproductive for 

peptidyl-transferase. Bacterial ribosomes typically struggle to synthesize poly-proline 
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sequences in the absence of EF-P, a conserved translation factor that promotes 

elongation by binding between the P and E site near the PTC (287–289). Nucleotide 

mutations in the PTC and exit tunnel of the stapled ribosome were randomized and 

ribosomes were selected for successful translation of poly-proline sequences via a 

chloramphenicol resistance assay. One variant was selected that could translate poly-

proline sequences nearly as efficiently as native ribosomes in the presence of EF-P. The 

variant has fifteen mutations, many of which are purine to pyrimidine mutations, which 

may alleviate steric clashes otherwise preventing the movement of the poly-proline 

peptide through the exit tunnel. This study is the first example of the synthetic evolution 

of a new function for the large subunit (286).   

 The structural study of stapled ribosomes presented below was in collaboration 

with the Jason Chin lab at the MRC-LMB. Wolfgang Schmied, Zakir Tnimov, and 

Chayasith Uttamapinant performed the biochemistry and optimized the stapled 

ribosome (286). I joined the project to visualize the nature of stapled ribosome 

interactions. Cryo-EM was used to observe the conformation of both the 70S stapled 

ribosome and stapled di-ribosome. In particular we were interested in how the 

conformation of the staple permits normal ribosome function.  

5.1.2 Results and discussion  

5.1.2.1 70S stapled ribosome structure  
 The most efficient stapled ribosome with the least cross-assembly, d2d8, was 

prepared for observation by cryo-EM. Pelleting and sucrose gradient centrifugation 

were used to purify d2d8-stapled ribosomes from a strain of E. coli containing stapled 

ribosomes as the sole means of growth. Ribosomes were prepared on copper grids 

coated with a thin layer of carbon and a dataset was collected on a 300 kV Krios cryo-

electron microscope. Three-dimensional classification revealed two main classes. As 

anticipated, the hinge can form two different conformations, the open and the closed 

conformation (Figure 5.3).  

 The hinge occupies an open conformation in approximately half of the 

ribosomes. Open and closed conformations would be expected to be in natural 

equilibrium within the cell, however, it is unclear whether under these conditions the 

exact ratio is due to sample preparation. Under similar purification conditions, 

ribosomes remain as 70S on the grid and rarely dissociated into subunits. Magnesium is 

known to stabilize 70S ribosomes and higher concentrations may be needed to stabilize 
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stapled 70S ribosomes. The hinge may therefore have an adverse effect, actually 

preventing subunit joining which would also be consistent with the inefficiencies of the 

stapled ribosome relative to wild type. 

 

Figure 5.3 In silico classification of E. coli d2d8-stapled ribosome. Two rounds of three dimensional 

classification without alignments were followed by per particle contrast transfer function 

correction and a final focused classification with signal subtraction masking over the hinge 

(RELION 3.0). Two main classes were observed, representing stapled 70S ribosomes in the opened 

or closed conformation. 

 The closed 70S was pursued for further classification and refinement, 

producing a 3.0 Å resolution reconstruction (Figure 5.4). The map reveals that the 

subunits are in nearly identical conformations to those in native E. coli ribosomes. This 

suggests d2d8 ribosomes can translate as a 70S assembly in cis, and supports previous 

findings showing a lack of cross-assembly. It is possible that the other less efficient 

stapled ribosome mutants with different hinge variants may in fact be preventing 

subunit joining in cis. The d2d8 mutations may therefore minimize the adverse 
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conformations generated by the hinge. Indeed, the hinge of stapled ribosomes with high 

cross-assembly coefficients could be limiting the interaction of the adjoining subunits.  

  

Figure 5.4 Structure of E. coli stapled ribosome. (A) Overview of the E. coli d2d8-stapled ribosome 

structure. (B) Electron density map colored by local resolution ranging from 2.2 Å to 8.8 Å. (C) 

Fourier shell correlation (FSC) curve showing map resolution of 3.0 Å with dashed line at 

FSC=0.143. 

 The hinge of the d2d8 stapled ribosome covalently links the large and small 

subunits. Continuous density can be seen connecting h44 to H101, and the previous 

crystal structure of the J5/J5a RNA hinge can be docked into the map (Figure 5.5). The 

hinge adopts the expected U-turn conformation when the ribosome is in the closed state, 

largely similar to the conformation in the original crystal structure. However, to connect 

the hinge requires rearrangement of both termini, suggesting inherent flexibility.  

 This study shows how the structure based design of a stapled ribosome and 

further optimization of the hinge can produce an engineered ribosome in a near native 

conformation. Cryo-EM was a useful tool in validating the biochemical evidence as 

well as understanding the effect of the hinge on the overall conformation of the 

ribosome. 

 

Figure 5.5 The unmodifed hinge fits the density. (A) Closeup of rRNA with unmodified hinge 

docked in. (B) Adjustment of the ends of the hinge and helix are necessary for attachment. (C) 

Original unmodified hinge shown fit into density. 
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5.1.2.2 Towards a di-ribosome structure 
 Cross-assembly of stapled ribosomes in trans was also investigated by cryo-

EM. A different mutant stapled ribosome, d4d7, was more prone to cross-assembly and 

therefore chosen for purification of the disome species in the cell. Disomes were 

purified through a sucrose cushion and followed by sucrose gradient centrifugation. 

Initial maps suggest the disome functions in trans with the attached subunits occupying 

unique spaces adjacent to a central 70S assembly (Figure 5.6).  

 

Figure 5.6 Initial maps of the stapled di-ribosome suggests the binding in trans of two 70S 

ribosomes in open conformations. (A) Cartoon representing possible trans stapled di-ribosome 

conformation. (B) Initial reconstruction of stapled di-ribosomes. The hinge connecting to h44 or 

H101 in the small or large subunits, respectively, are highlighted purple. 

 Superposition of maps of the d2d8 open conformation shows that the position 

of putative subunits in the disome species are different than those seen in d2d8 stapled 

ribosomes. This is likely due to the differences in the hinge and could be a reason why 

cross-assembly is more likely for d4d7 ribosomes. The hinge appears to rotate subunits 

in a position that is incompatible with binding when the hinge takes on the closed, U-

shape, conformation. The formation of a trans 70S ribosome supports the data 

suggesting cross-assembled stapled ribosomes are capable of translation, and in fact, 

may be the primary source of activity for variants with high levels of cross-assembly. 

 

5.1.3 Conclusions  
 

 Stapled ribosomes with near O-ribosome activity and minimal cross-assembly, 

take two major forms: opened 70S or closed 70S. A structure of the closed form reveals 

a ribosome in a conformation identical to native ribosomes, suggesting that the 

optimized hinge has minimal interference in translation. Similarly, the map of a cross-
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assembled disome shows a 70S with subunit appendages, likely the stapled subunits. 

These stapled ribosomes may be prohibited from binding in cis due to the angle at 

which the hinge orients the subunits.  

 This structural study highlights the use of cryo-EM as a means of observation 

and support for biochemical analysis. Although from a structural perspective, the 

sample under investigation was not particularly different from native ribosomes, the 

structure validated biochemical data and confirmed the structure-guided approach for 

choosing the hinge location. The use of cryo-EM as an auxiliary technique in the 

broader investigation and manipulation of biochemical systems is likely to become 

more common, particularly for large, globular, and stable macromolecules such as the 

ribosomes. This structural study gives confidence to the biochemical approach used in 

the Chin lab and generally informs us that the optimization efforts for O-70S ribosomes 

are moving in the right direction. 

 

5.1.4 Materials and methods  
 

Electron cryo-microscopy  

 Quantifoil Cu R2/2 400 mesh grids were coated with a thin sheet (~60 Å) of 

amorphous carbon and glow discharged for 5 s at 5 mA. Purified E. coli 70S d2d8 

ribosomes were diluted to 100 nM in 50 mM HEPES pH 7.4, 100 mM KOAc, 5 

mM Mg(OAc)2 and applied to grids in 3 µl aliquots. Grids were incubated for 30 s at 

4ºC and 100% humidity, blotted for 4.5 s and frozen in liquid ethane using a Vitrobot 

Mark III (FEI). Micrograph movies of E. coli d2d8 70S ribosomes were collected on a 

Titan Krios microscope at 300 keV with a Falcon III detector using automated data 

collection with EPU software (all FEI). Movies were collected at a pixel size of 1.06 Å 

with a dose rate of 15 e.Å-2.s-1 over a 1.79 s exposure, consisting of 71 total frames. 

Defocus values ranging of -3.2, -2.9, -2.6, -2.3, -2.0, -1.7 µm were used. 

Image processing 

 All processing was done using RELION-2.1. Micrograph movie frames were 

aligned using Motioncorr and contrast transfer functions calculated using Gctf. Aligned 

movies were removed after manual inspection if micrographs contained ice particles or 

if contrast transfer functions failed to calculate. Ribosome particles were picked semi-
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autonomously and incorrectly picked non-ribosomal particles were identified and 

discarded by reference-free two-dimensional classification. The resulting 306214 

particles were used for initial three-dimensional refinement with an E. coli 70S 

ribosome (EMD-3493) low-pass filtered to 40 Å as a reference. Three-dimensional 

classification of the initial reconstruction was performed without alignments to discard 

poorly aligned particles. Two major classes were obtained, one of closed 70S ribosomes 

(94461 particles) and another containing ‘opened’ 70S ribosomes (128436 particles). 

The closed ribosomes were selected and refined. Focused classification with signal 

subtraction on the RNA hinge gave the final primary class (94371 particles). The 

quality of the density in the hinge region is lower than in other parts of the structure. 

However, classification focused on the staple revealed a single class, demonstrating 

sample homogeneity. This indicated that the lower density in this region is not due to a 

mixture of particles and it may therefore reflect flexibility in the hinge and/or local 

variation in the conformation of the hinge.  

Model building, refinement and validation 

 A model (PDB 5MDZ) of the E. coli 70S ribosome (136) was docked into the 

reconstruction in Chimera (248), and individual RNA and protein chains were rigid 

body fitted using Coot (249). Portions of h44 of 16S rRNA and H101 of 23S rRNA 

were deleted or added according to the sequence of the d2d8 ribosomal RNA. The RNA 

hinge, from a group I ribozyme domain (PDB 1GID), was then docked into the 

remaining, unaccounted for density. An iterative process of morph fit, and real-space-

refinement in Coot was used to connect the RNA hinge to the original ribosomal RNA. 

Real space refinement was carried out in Phenix (252) and the model was validated 

using MolProbity (253).  Figures were created using Pymol (251) or Chimera (248). 

 

5.2 Supplemental material for Cryo-EM data collection  
 

 Eleven cryo-EM datasets were collected over the course of the tmRNA project. 

Four datasets (Table 5.1, #1-4) (Table 5.2, tmRNA #1, 6, 7, 10) resulted in models of 

interesting trans-translation intermediates used for publication. The remaining seven 

datasets were collected in an effort either to reach higher resolution (Table 5.2, tmRNA 

#3-5), or to trap different trans-translation intermediates (Table 5.2, tmRNA #2, 8, 9, 
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11). These datasets neither improved the resolution nor were successful in trapping new 

complexes.  

 Additionally, two datasets were collected for the stapled ribosome project 

described in Chapter 5.1 (Table 5.2, stapled #1-2) and one was used to build a model for 

publication (Table 5.1, #5). All datasets were collected at 300 kV with defocus values 

ranging from -2.0 to -3.5 µm 

 

 

Table 5.1 Collection, refinement and validation of Cryo-EM data for published models. 
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Table 5.2 Cryo-EM data collection attempts. Classes from data collections resulting in published 

structures are highlighted in red.  
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