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Abstract

Many assignment mechanisms appeal to a priority structure to determine how

over-subscribed indivisible goods are assigned to unit-demand individuals. We

study substitutable priorities with ties which not only nest important classes of

priorities and preferences studied in the literature, but also allow us to formal-

ize plausible priority structures not captured in previous literature. Efficiency

is typically in conflict with respecting priorities (i.e., stability), and therefore the

natural welfare objective is constrained efficiency. A generalization of the deferred

acceptance process yields a stable assignment, but this outcome is not necessar-

ily constrained efficient. We identify an easily verifiable sufficient condition for

a stable assignment to be constrained efficient, which then leads to an algorithm

to compute a constrained efficient assignment. Finally we illustrate practical ap-

plications of our framework and algorithm, including a widely studied matching

problem with distributional constraints.
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1 Introduction

Assigning indivisible goods to unit-demand agents is a classical economic problem. In

many realistic contexts, monetary transfers (as would be in an auction) are ruled out

for a variety of reasons, yet discrete resources are assigned via mechanisms which take

recipients’ preferences into account. Typically, each agent submits an ordinal prefer-

ence ranking over the available goods, whereas each object comes with its exogenously

fixed priorities which form the basis on which over-demanded objects are rationed. A

widely used interpretation of respecting priorities is formalized by the pairwise stability

property which is central to two-sided matching markets. For example, for an over-

demanded school, students who live closer to the school can be given higher priority

for that school; a criterion which can be expressed by a ranking over students. Re-

specting such priorities requires that a seat at school s can be assigned to a student

only when all students who have higher priority for s are assigned a school which they

weakly prefer to s. Note that this leads to a well-defined admission rule for the school

(say with q seats): given a set of applicants, those q students who have the highest

priority among those applicants are admitted. Abdulkadiroğlu and Sönmez (2003) show

that these strict responsive admission rules operate like college preferences in Gale and

Shapley’s (1962) two-sided matching framework. In particular, the deferred acceptance

algorithm of Gale and Shapley returns the unique constrained efficient assignment: the

stable assignment which is preferred (weakly or strictly) by every student to all other

stable assignments. However, not every plausible admission rule is a strict responsive

rule. In particular there are two different and important extensions of the strict re-

sponsive framework. Substitutability, first introduced by Roth (1984a), is an ordinal

analogue of Kelso and Crawford’s (1982) gross substitutes condition in the absence of

ties. In essence, it requires that whenever the set of applicants shrinks, those students

who were admitted from the original set of applicants should continue to be admitted.

Equivalently, whenever the set of applicants grows, those students rejected from the
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original set of applicants should still be rejected from the larger set of applicants. Strict

responsive rules are substitutable, but as Echenique (2007) shows, the class of substi-

tutable rules is much bigger than the class of responsive rules. Another direction to

extend the domain of strict responsive rules is to allow for ties in the priority orders

over students, while maintaining the responsiveness assumption. Commonly observed in

school admission programs, such ties imply the admission rules are multivalued. An im-

portant consequence is that constrained efficient assignments are not unique any more,

and the way ties are resolved in a deferred acceptance mechanism matters in terms of

welfare as well as distribution of seats (Erdil and Ergin, 2008; Abdulkadiroğlu, Pathak

and Roth, 2009). In this paper, we allow for ties and introduce the appropriate gener-

alization of substitutability for multivalued admission rules. As such, the class of rules

we explore will nest all of the above and provide the proper ordinal analogue of Kelso

and Crawford’s gross substitutes preferences without having to rule out ties.

Given any set of applicants, an admission rule is a correspondence that specifies

which subsets of the applicants are admissible. For example, suppose a school with

two seats is facing six equally qualified candidates consisting of two Asian, two black

and two white students. A natural admission rule which gives ‘diverse’ cohorts priority

over homogeneous cohorts would identify each mixed pair as an admissible subset of

students from among the six applicants. Hence this school’s admission rule will typically

involve ties between several, but not all, possible subsets of the applicants. We define an

admission rule to be substitutable if it is both admission monotonic (AM) and rejection

monotonic (RM). Whenever the set of applicants becomes smaller, AM requires that for

every admissible subset S from the original set of applicants, there must be an admissible

subset S ′ from the smaller set of applicants such that all those students in S who are still

among the applicants are in the admissible subset S ′. And whenever the set of applicants

becomes larger, RM means for every rejectable subset T (i.e., the complement of an

admissible subset) from the original set of applicants, there must exist a rejectable subset

T ′ of the larger set of applicants such that T is contained in T ′. In the absence of ties,

AM and RM are equivalent and boil down to the standard substitutability condition.

However, neither of them implies the other when we allow for ties. Together, these two

conditions are critical in ensuring that our Modified Deferred Acceptance (MDA) process

constructively establishes the existence of a stable assignment (Proposition 2).
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Our framework allows modeling admission rules which do not necessarily fit into

earlier formulations of priorities. Recall the example of a two-seat school facing six

equally qualified applicants a1, a2, b1, b2, w1, w2, where letters indicate the applicants’

types (Asian, black, and white, respectively). Prioritizing diverse cohorts over homoge-

neous cohorts, but otherwise staying indifferent between sets can be summarized by a

transitive order % over pairs of students given by

{a∗, b∗} ∼ {a∗, w∗} ∼ {b∗, w∗} � {a1, a2} ∼ {b1, b2} ∼ {w1, w2}.

Note that this plausible and simple priority order % cannot be captured within the

well-studied responsive framework, because if % were responsive1, we would necessarily

have

{a1, b1} � {a1, a2} ⇒ b1 � a2

and

{a2, b2} � {b1, b2} ⇒ a2 � b1,

yielding a contradiction. In Section 5.1, we expand on this example to combine more

general distributional constraints with priorities that can be expressed as an order over

the set of students (such as those based on walk-zone, sibling, or test-score). By showing

substitutability of such priorities, we can appeal to the MDA process to find a stable

assignment (Proposition 4). Importantly, the outcome of MDA is typically constrained

inefficient, i.e., Pareto dominated by another stable assignment. We show (Proposition

3) that we can detect any such inefficiency by checking whether the assignment admits

a potentially-stable improvement cycle (PSIC): one of our key constructions. PSIC

is similar in spirit to Erdil and Ergin’s (2008) stable improvement cycles (SIC), but

functions differently in a number of ways. Unlike a SIC, a PSIC allows multiple students

from the same school to move in the same cyclic trade, and such simultaneous moves do

not necessarily preserve stability. Still, in the context of assignment with distributional

constraints, we circumvent this issue and go on to establish an algorithm based on PSIC

which indeed finds a constrained efficient assignment in polynomial time (Corollary 1).

Another class of applications are directly motivated by admission rules in two real-life

contexts: admissions at the University of Cambridge, and course allocation in various

1Following Roth (1985), % is called responsive if for every T ⊂ N and i, j /∈ T , we have T ∪ {i} %
T ∪ {j} ⇔ i % j.
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Japanese universities. Deferring the descriptions of the actual procedures to the Ap-

pendix, we model the essential features of these mechanisms as follows: multiple referees

in an admissions committee take turns to admit students from a given pool of applicants.

Each referee i has her own ranking %i over the set of students. The referees can access

the admissions files whenever they like, and until reaching a capacity constraint, admit

as many students as they wish from the pool of remaining files according to their own

ranking. If we were to fix the order in which the referees make decisions, and the num-

bers of students chosen in each decision, the admissions procedure would boil down to

fixing a precedence order in Kominers and Sönmez’s (2016) model of matching with slot-

specific priorities. The workings of the above admissions committee, however, refrain

from fixing such an order, and therefore implies a multivalued admission rule. While

it is fairly straightforward to establish substitutability of this rule (thanks to Komin-

ers and Sönmez’ results), finding a constrained efficient assignment can be a significant

challenge. We show that our PSIC process solves this problem (Corollary 2).

In Section 2, we introduce the model including the definition of substitutable prior-

ities with ties before we formalise what we mean by respecting priorities. In Section 3,

we describe the modified deferred acceptance (MDA) process and show that it results

in a stable assignment. In Section 4, we explain why constrained efficiency is a natural

welfare benchmark, point out that the outcome of MDA is typically constrained ineffi-

cient, formally define a potentially-stable improvement cycle (PSIC), and establish its

connection with constrained inefficiency. In Section 5, we study, in detail, two applica-

tions where constrained efficiency of an assignment is equivalent to lack of PSICs, and

design a polynomial time algorithm which computes a constrained efficient assignment.

Section 6 concludes.

2 Preliminaries

Let N be a set of students, and X be a set of schools. There are qx seats at school x,

for x ∈ X. Each student can either be assigned to a school, or stay unassigned, and has

strict preferences over these alternatives. Student i’s preferences are denoted by a linear

order Ri over X ∪ {i}, where being assigned to i stands for staying unassigned (which

can also be interpreted as getting one’s outside option). Pi denotes the strict part of Ri.
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Each school x is endowed with its own priorities that help determine who can be

admitted to that school. Formally, priorities are captured by an admission rule defined

as follows. Given a set S of applicants, a subset S ′ is called an admissible subset of

S if S ′ can be the set of admitted students. An admission rule associates to each set

S of students the collection of admissible subsets of S. If Ax is the admission rule for

school x, then each S ′ ∈ Ax(S) is considered to be of highest priority among all possible

subsets of S. A priority structure A is a vector of admission rules: (Ax)x∈X . We call

A acceptant if for each x ∈ X, for each S ⊆ N , and for each S ′ ∈ Ax(S) we have

|S ′| = min{|S|, qx}.
An admission rule is called strict if it associates to each set S ⊆ N a unique subset

of S. With a slight abuse of notation, for strict admission rules Ax, we will write

Ax(S) = S ′ whenever Ax(S) = {S ′}. A strict admission rule A′x is a tie-breaking of

Ax if A′x(S) ∈ Ax(S) for every S ⊆ N .

In order to have a well-defined notion of “an admissible subset having higher priority

than those subsets which are not admissible” an admission rule must be consistent in the

following sense: (1) given a set S of applicants, if a subset A is admissible but another

subset B is not, then B is never an admissible subset of S ′ which also contains A; (2)

given a set S of applicants, if subsets A and B are both admissible, then they are either

both admissible or both not admissible whenever they are both contained in a set S ′

of applicants. Formally, Ax being consistent means: (1) If there exists S ⊆ N such

that A ∪ B ⊆ S with A ∈ Ax(S) and B /∈ Ax(S), then whenever A ∪ B ⊆ S ′, we have

B /∈ Ax(S ′); and (2) if there exists S such that A,B ∈ Ax(S), then whenever A∪B ⊆ S ′,

we have A ∈ Ax(S ′) if and only if B ∈ Ax(S ′). A reflexive and transitive (but possibly

incomplete) order %x over subsets of N is consistent with Ax if the following two

conditions hold: (1) if A ∪ B ⊆ S, A ∈ Ax(S) and B /∈ Ax(S) for some S ⊆ N , then

A �x B; (2) if A ∪ B ⊆ S, A ∈ Ax(S) and B ∈ Ax(S) for some S ⊆ N , then A ∼x B.

There are many orders consistent with a given admission rule Ax. However, for every

such %x, we have Ax(S) = {S ′ ⊆ S | S ′ %x T ′ for each T ′ ⊆ S} for each S ⊆ N .

Given an admission rule Ax, it is helpful to define its rejection rule Rx, which

associates to each S ⊆ N , the family of subsets of S each of which can be the set of

rejected students when S is the set of applicants. That is,

Rx(S) = {S ′′ ⊆ S | S ′′ = S\S ′ for some S ′ ∈ Ax(S)}.
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Each S ′′ ∈ Rx(S) is called a rejectable subset of S.

We say Ax is admission monotonic (AM) if given any S, T ⊆ N with S ⊆ T

and T ′ ∈ Ax(T ), we have T ′ ∩ S ⊆ S ′ for some S ′ ∈ Ax(S). In a similar spirit, Ax
is rejection monotonic (RM) if given any S, T ⊆ N with S ⊆ T and S ′′ ∈ Rx(S),

we have S ′′ ⊆ T ′′ for some T ′′ ∈ Rx(T ). When there are no ties, both Ax and Rx are

strict, and AM is equivalent to RM. However neither implies the other when there are

ties.2 We call an admission rule substitutable if it is both admission monotonic and

rejection monotonic. Moreover, we say a priority structure A is substitutable if Ax is

substitutable for all x ∈ X.

For an intuitive explanation of the conditions AM and RM in a concrete example,

consider a university admissions office determining who will be admitted from a given

set T of applicants. Suppose T ′ is the set of students who receive an offer conditional on

successfully graduating from secondary school. Once the final exam grades are revealed,

only a subset S of applicants meet this condition for admission. The admission rule

being admission monotonic ensures that those students who had received a conditional

offer and subsequently met the condition (T ′∩S) can be among the admitted students if

the admission rule is applied directly to the set S of eligible students. In an alternative

scenario, suppose the subset S ′′ of eligible applicants S have ultimately been rejected.

Of those applicants who failed to graduate, some successfully appeal against their exam

grades, and consequently get their names back in the set of eligible applicants. The

admission rule being rejection monotonic ensures that those students rejected from the

original set of eligible applicants can still be rejected from the new (and larger) set of

eligible applicants.

The class of admission rules which satisfy substitutability covers various environ-

ments studied in the literature.3 For example, hospitals’ strict responsive preferences

2 When there are no ties, AM reduces to the definition of substitutability in Roth and Sotomayor

(1990). In the context of matching with contracts where doctors have strict preferences over contracts,

Hatfield and Milgrom’s (2005) substitutability formulation is similar to RM: the set of rejected contracts

expands whenever the set of available contracts expands. Remark 1 in the Online Appendix proves the

equivalence [independence] of AM and RM in the absence [presence] of ties.
3Péter Biró and Paul Harrenstein brought to our attention Sotomayor’s (1999) definition of sub-

stitutability in the context of preferences with ties: player y has substitutable preferences if (i) for all

S′ ∈ Chy(F ∪ G) there is some S ∈ Chy(F ) such that S′ ∩ F ⊆ S and (ii) for all S ∈ Chy(F ) there
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Figure 1: The class of substitutable priorities with ties is strictly larger than that of both

strict substitutable priorities and responsive priorities with ties.

over sets of doctors (Roth, 1984b), the school choice formulation of Abdulkadiroğlu and

Sönmez (2003), school priorities with ties (Erdil and Ergin, 2008), and strict substi-

tutable firm preferences in Roth (1984a) are all special cases.

An assignment (i.e., a matching) µ is a function µ : N → X ∪ N such that

µ(i) ∈ X ∪ {i} for all i ∈ N , and |µ−1(x)| ≤ qx for all x ∈ X. In words, each student

is matched with a school or her outside option; and each school x is matched with at

most qx students.

Suppose a group of students prefer x to their respective matched schools, and contest

the admissions outcome at school x. Let the school’s admission rule be applied to the

combined set of currently matched students and those who contest the outcome. If the

original subset of admitted students is not an admissible subset of this combined set of

is some S′ ∈ Chy(F ∪ G) such that S′ ∩ F ⊆ S. We show in Remark 2 in the Online Appendix that

we can replace rejection monotonicity with the following condition: given any S ⊆ T , and S′ ∈ Ax(S),

we have T ′ ∩ S ⊆ S′ for some T ′ ∈ Ax(T ). By doing so, we establish the equivalence between our

formulation and Sotomayor’s (1999) formulation.
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applicants, i.e., if there is a new group of students who demand x, while having strictly

higher priority than the set originally admitted, then the original assignment violates

priorities. Respecting priorities (also known as group stability) means robustness to

claims by such groups, and is formally defined as:

• for each i ∈ N we have µ(i)Rii, and

• for each x ∈ X and S ⊆ N such that µ−1(x) ⊆ S ⊆ {i ∈ N | xRiµ(i)} we have

µ−1(x) ∈ Ax(S).

A weaker requirement is robustness to claims by individuals. Formally, an assignment

µ is pairwise stable if µ(i)Rii for all i ∈ N ; and for each x ∈ X and j ∈ N such that

xPjµ(j) we have µ−1(x) ∈ Ax(µ−1(x) ∪ {j}). When all schools have substitutable and

consistent admission rules, the two notions of stability above are equivalent.

Proposition 1 Given a substitutable and consistent priority structure, an assignment

respects priorities (i.e., is group stable) if and only if it is pairwise stable.

Thus the equivalence of pairwise stability and group stability holds in a significantly

more general environment than what was shown in earlier literature. An obvious con-

venience of this result is that verifying that an assignment respects group priorities can

be reduced to simply checking pairwise stability. From this point onward, for brevity

we will use the term stable to capture the notion of respecting priorities, i.e., group

stability.

3 The modified deferred acceptance process

We establish the existence of a stable assignment via a constructive process in the spirit

of Gale and Shapley’s Deferred Acceptance (DA) Algorithm. However, the extension

to our more general domain is not immediate. First, the priorities we consider allow

ties, and therefore, the admission rules are multivalued. Gale and Shapley (1962) note

in their original paper that when there are ties in rankings, arbitrarily breaking them

and continuing with their algorithm will result in a pairwise stable assignment.4 This

4This fact has since been invoked in Erdil and Ergin (2008) and Abdulkadiroğlu, Pathak and Roth

(2009). They maintain the environment where priorities can be expressed via rankings over individuals,
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convenience does not survive into our environment. Namely, as we illustrate in Remark

3 in the Online Appendix, breaking ties arbitrarily, and then applying DA might result

in an assignment which is not stable. Moreover, a substitutable admission rule does not

necessarily have any substitutable tie-breaking (Remark 4).

We modify the deferred acceptance process to impose a “monotonicity condition”

on the way our process selects from multivalued correspondences. More concretely, we

will make sure that those students who were rejected by school x in any round of the

process continue to be rejected in later rounds.

Modified Deferred Acceptance Process (MDA)

Round 1: All students apply to their favorite schools. For each school x,

if A1
x is the set of applicants, select a set S1

x in Ax(A1
x) to be the set of

temporarily admitted students. The rest of the applicants, denoted Z1
x =

A1
x\S1

x, are rejected.

For t ≥ 2,

Round t: Those who were rejected in round t−1 apply to their next favorite

school. For each school x, if Atx is the set of all students who have applied

to x so far, select a set of temporarily admitted students Stx ∈ Ax(Atx) such

that Zt−1
x ⊆ Atx\Stx. The rest of the applicants, denoted Zt

x = Atx\Stx, are

rejected.

When every student is either matched with a school or has been rejected by

all schools in her list, the process ends.

Note that the above process does not specify how it selects the temporarily admitted

students Stx when there is more than one subset S of Ax(Atx) such that Zt−1
x ⊆ Atx\S.

Before we turn to specifying such selections, we establish the main property of the above

class of algorithms independent of such selection.

Proposition 2 Given a substitutable priority structure A, the outcome of the Modified

Deferred Acceptance Process is stable.

so the existence of stable assignments in the presence of ties follows from Gale and Shapley (1962).
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Our ability to select a set of temporarily admitted students Stx ∈ Ax(Atx) such that

Zt−1
x ⊆ Atx\Stx relies on Ax being rejection monotonic. Selecting with this property

ensures that those applicants rejected in any round continue to be rejected in later

rounds. In particular, if all those students who prefer x to their final match were to

re-apply to x, they can all be rejected as long as all those matched with x continue to

be in the pool of applicants. In turn, Ax being acceptance monotonic ensures that the

admitted set at school x is one of the highest priority sets whenever a group of students

who prefer x to their final match contest the assignment and instead seek to be matched

with x. In other words, whichever subset of students who prefer x to their final match

re-apply to x, those who are matched to x can still form an admitted set. The above

two properties, together, ensure that the outcome of MDA is stable. The details of the

argument are in the Appendix.

MDA is closely related to Kelso and Crawford’s (1982) salary adjustment process

(SAP). Their classic model of firm-worker matching involves workers whose utilities

depend on the firm for which they work and the salary they get. These utilities are

strictly increasing in salary. The firm’s preferences over sets of workers are assumed to

satisfy the so-called gross substitutes condition which “requires that all workers be (weak)

gross substitutes to each other, in the sense that increases in other workers’ salaries can

never cause a firm to withdraw an offer from a worker whose salary has not risen.” To be

more precise, given a salary vector (which specifies a salary for each potential worker),

the firm has an “offer correspondence” which satisfies the above condition. MDA is

a student-proposing process during which the opportunity sets of schools expand. In

contrast, in Kelso and Crawford’s firm-proposing SAP, workers’ opportunity sets get

(weakly) better at each round. Since the offer correspondence specifies multiple subsets

of workers, SAP needs to select a subset at each round. And these selections are made

so that “any offer made by firm j in round t− 1 that was not rejected must be repeated

in round t.” The proper analogue of this property in our student-proposing setting is

the condition Zt−1
x ⊆ Atx\Stx which says those students rejected in round t − 1 should

continue to be rejected in round t.

The MDA process we described above is flexible as to how we select Stx from Ax(Atx)
except for ensuring Zt−1

x ⊆ Atx\Stx. By fixing these choices deterministically (e.g., by

appealing to an ex ante fixed ranking over sets) or randomly, we obtain an MDA mech-
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anism. Even though a tie-breaking rule (either an ex ante order over sets or a random-

ization protocol) can be fixed independent of revealed preferences, the way in which the

MDA process unfolds might, in principle, be dependent on the order in which applica-

tions are made. In particular, it is yet unknown whether there is a strategy-proof MDA

mechanism.

4 Efficiency and constrained efficiency

Since the problems we have in mind revolve around assigning indivisible resources (e.g.,

school seats) to unit-demand agents (e.g., students), the most basic efficiency criterion

requires not wasting resources. In particular, non-wastefulness means an unused school

seat cannot be denied to any student. Formally, an assignment µ is called non-wasteful

if no student prefers a school with unassigned seats to her match. That is, |µ−1(x)| = qx

whenever there exists i ∈ N such that xPiµ(i). It is not hard to see that if µ is stable

under an acceptant priority structure A, then it is non-wasteful. There is, of course,

more to efficiency, and Pareto efficiency is the standard welfare benchmark in assignment

problems. An assignment µ′ Pareto dominates another assignment µ if µ′(i)Riµ(i)

for all i ∈ N , and µ′(j)Pjµ(j) for some j ∈ N . An assignment is efficient if it is not

Pareto dominated by any assignment. Finally, an assignment is constrained efficient

if it is stable and is not Pareto dominated by any other stable assignment.

When all schools have strict responsive priorities, Gale and Shapley (1962) show that

the DA algorithm returns the unique constrained efficient assignment. However, this

assignment may not be efficient. In other words, given priorities and preferences, it is

possible that none of the stable assignments are efficient. In his study of this conflict

between efficiency and stability, Ergin (2002) establishes a complete characterization

of strict responsive priority structures for which the constrained efficient assignment

is efficient. A key conclusion of his analysis is that, when allocating on the basis of

priorities, for the conflict between stability and efficiency to not arise, all schools must

have “sufficiently similar” priority rankings.5 Generalizations of this finding to weak

5Ergin (2002) shows that for strict responsive priorities the unique constrained efficient assignment

is efficient for all preference profiles if and only if the priority structure satisfies a property he calls

acyclicity, which can be interpreted as all schools having “sufficiently similar” priority rankings. For
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responsive priorities also find conditions on priorities which naturally admit the same

interpretation: if priorities differ from one school to another, we cannot guarantee sta-

bility and efficiency at the same time.6 One clear message of this line of research is that

the conditions under which we can escape the conflict between efficiency and stability

are highly restrictive. When we turn to the much more general environment of sub-

stitutable priorities with ties, even having identical priorities across all schools is not

enough to avoid this conflict. We illustrate this possibility in the following example.

Example. Suppose there are two schools x and y with two seats each, and six applicants,

a1, a2, b1, b2, w1, w2, where a, b, w stand for Asian, black and white, respectively. Both

schools prioritize mixed pairs over same type pairs. Moreover, between two mixed pairs,

those with more minority (a or b) students are given priority. Hence their priorities over

student pairs can be summarized as

{a∗, b∗} � {a∗, w∗} ∼ {b∗, w∗} � {a1, a2} ∼ {b1, b2} ∼ {w1, w2}.

Suppose all students find both schools acceptable. Moreover type-a students prefer x to

y, whereas type-b students prefer y to x:

xPayPaa , yPbxPbb , xPww and yPww.

Then there are exactly four stable assignments, and at each such assignment both schools

have one type-a and one type-b student. All four assignments can be Pareto improved

by assigning both type-a students to x, and both type-b students to y. However, the

resulting Pareto efficient assignment would not be stable due to demand by w1 and w2.

an explicit example of an Ergin cycle, let i, j, k be three students, and x, y be two schools with one

seat each such that i �x j �x k �y i. If students’ preferences are yPix, xPjjPjy and xPky, the only

constrained efficient assignment is (ix, jj, ky) which is not efficient, because it is Pareto dominated by

(iy, jj, kx), and the latter assignment is not stable due to student j’s demand for school x. The source

of inefficiency in this example is due to schools x and y ranking students i and k sufficiently differently:

compared with y’s ranking, x swaps i and k, and inserts another student j in between them.
6For responsive priorities with ties, typically there are multiple constrained efficient assignments. In

this larger domain, Erdil and Ehlers (2010) characterize priority structures for which all constrained

efficient assignments are efficient. Han (2018), instead, establishes a characterization of priority struc-

tures for which a stable and efficient assignment is guaranteed to exist. The conditions obtained in

these two papers boil down to Ergin’s acyclicity when there are no ties.
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Hence, in contrast with Ehlers and Erdil (2010) and Han (2018), identical priorities for

schools do not ensure efficiency. ♦

In Remark 7 in the Online Appendix we present a necessary and sufficient condition

on priority structures so that all constrained efficient assignments are efficient. A more

permissive condition would require that at least one constrained efficient assignment

is efficient for all preference profiles. While we have not established a condition of

that sort, we know that such a condition would necessarily be at least as restrictive as

that of Han (2018) which is more demanding than Ergin acyclicity. In particular, even

identical priorities like those illustrated in the above example would be ruled out. Since

most priority structures in practice will fail the aforementioned acyclicity condition and

its various generalizations, respecting priorities (defined as stability) will imply that

our natural welfare benchmark and objective is assigning school seats as efficiently as

possible subject to stability. Thus our focus is on constrained efficiency.

Roth (1984a) shows that under strict substitutable priorities the DA algorithm re-

turns the unique constrained efficient assignment. However, DA does not lend itself to

an obvious solution when there are ties. In fact, for substitutable priorities, arbitrarily

resolving the ties and proceeding with DA might even result in an unstable assignment.7

The MDA process is careful in the way it breaks ties to make sure the final assignment

is stable, but this assignment is not necessarily constrained efficient.8 Is there a practi-

cal way to determine whether a stable assignment admits a stability preserving Pareto

improvement? And is there a practical way to discover such improvements so that we

can indeed reach a constrained efficient outcome? In exploring the nature of such im-

provements, Erdil and Ergin’s (2008) stable improvement cycles might seem like a good

candidate. While we build on their ideas, we will also explain why their constructions

and results do not readily extend to the domain of substitutable priorities. Consequently,

we will need to define a new notion of an improvement cycle for our more general setting.

Given stable µ, if j were to disappear, who could be taking j’s seat at school µ(j)

while preserving stability of the assignment? If a student i replaces j, the new set of

7Remark 3 in the Online Appendix illustrates this possibility.
8Ehlers (2007) shows how arbitrary tie-breaking leads to constrained inefficiency when priorities are

responsive with ties. Since our environment subsumes that of responsive priorities, the same inconve-

nience automatically extends to our setting.
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students assigned to µ(j) must be an admissible set in the face of those who would like

to be replacing j at µ(j). To formalize this idea, let Eµj stand for the set of students

who envy j at assignment µ, that is, Eµj = {i | µ(j)Piµ(i)}. Then, the set of students

who can replace student j at µ is defined as

Eµ
j =

{
i ∈ Eµj

∣∣ {i} ∪ [µ−1(µ(j))\{j}] ∈ Aµ(j)(Eµj ∪ [µ−1(µ(j))\{j}])
}
.

Note that j /∈ Eµ
j , and Eµ

j is not necessarily a singleton. Moreover if all students not

matched with µ(j) prefer their current match to µ(j), then Eµ
j is empty. A potentially-

stable improvement cycle (PSIC) consists of distinct students i0, i1, . . . , in−1, in = i0

such that i` ∈ Eµ
i`+1

for all ` = 0, . . . , n − 1. We denote such a cycle by i0 → i1 →
· · · → in−1 → i0. To carry out this PSIC means replacing µ with assignment ν where

ν(i`) = µ(i`+1) for each ` = 0, . . . , n − 1, and ν(i) = µ(i) for each i /∈ {i0, i1, . . . , in−1}.
We say this PSIC preserves stability if ν is stable. Unlike a stable improvement cycle in

Erdil and Ergin (2008), PSIC allows a school to appear more than once in a cycle.9

Proposition 3 Given an acceptant and substitutable priority structure, if a stable as-

signment does not admit a PSIC, then it is constrained efficient.

Given a stable assignment, determining whether it admits a PSIC is a simple exer-

cise of searching for a cycle in a directed graph. If the assignment does not admit a

PSIC, then the above proposition concludes that it must be constrained efficient. How-

ever, the converse does not necessarily hold: a constrained efficient assignment might

admit a PSIC. Put differently, a PSIC does not necessarily preserve stability.10 When

searching for a constrained efficient outcome, if the PSIC we discover preserves stability,

then carrying it out yields a new stable assignment which Pareto improves the assign-

ment. Without knowing that the converse of Proposition 3 holds, it is not clear how

9Their definition of a stable improvement cycle (SIC) does not capture all improvement cycles that

preserve stability in our environment. Remark 6 in the Online Appendix illustrates a constrained

inefficient assignment which admits a PSIC but not a SIC.
10Remark 5 illustrates the possibility that a constrained efficient assignment admits a PSIC (which

means this PSIC does not preserve stability), hence the qualifier “potentially” in PSIC. The construction

of a PSIC ensures that each student can replace the one she is pointing at without violating stability.

However, when the cycle involves two students at the same school, the two of them being replaced by

two new students might well destabilize the assignment.
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many PSICs we need to explore before we can conclude that we have indeed reached a

constrained efficient assignment. And exhausting all possible PSICs might be compu-

tationally demanding (as in requiring exponential time). In general, we do not know if

there is a polynomial time algorithm which computes a constrained efficient assignment.

When constrained efficiency is equivalent to lack of PSIC, i.e., when the converse of the

above proposition also holds, we can indeed design practical (and in particular polyno-

mial time) algorithms to compute a constrained efficient assignment. We do not have a

characterization or a suggestive description of all environments for which the converse of

Proposition 3 holds. Instead, in the next section, we present two applications for which

such an equivalence (formally expressed in Propositions 5 and 6) indeed holds. Then

we describe the PSIC algorithm, and explain why it is polynomial time.

5 Applications

We present two classes of applications where our framework goes beyond the previ-

ously studied models in answering questions involving how ties are handled and how

constrained efficiency can be recovered when arbitrary tie-breaking rules fail.

5.1 Assignment with distributional constraints

In this application, we generalize the idea of prioritizing diverse cohorts which we dis-

cussed in a simple example in the introduction. Namely, we formalize EDCR: our notion

of allocating seats as evenly as possible across different types of recipients.

When the students can be classified into different types and the policy maker primar-

ily cares about the distribution of types among those assigned to a particular school, a

common modeling approach involves type-specific reserves.11 To make things concrete,

let T = {τ1, . . . , τm} be the set of types, and τ : N → T be a function such that

τ(i) indicates student i’s type. School x has qx seats and its own vector of reserves

11This formulation of reserves is similar to the type-specific minimum quatas in Hafalir, Yenmez, and

Yildirim (2013). See also Echenique and Yenmez (2015). Our key modeling difference is to allow for ties

in priorities. By doing so, we can capture a richer space of admission rules. Moreover, by dealing with

ties in a careful way, we are able to avoid potential welfare losses associated with arbitrarily reducing

this richer environment to earlier models with strict priorities.
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qx = (qτ1x , . . . , q
τm
x ), where

∑m
k=1 q

τk
x ≤ qx. If these reserves add up qx, we can interpret

qx as the target distribution12 of types at school x. School x’s other priorities (e.g.,

walking-zone, sibling, etc.) are summarized by a weak order on N which we will refer to

as an exogenous priority ranking. In principle, each school may have its own exogenous

priority ranking, but whenever it leads to no confusion, we will suppress this ranking’s

dependence on x, and will simply denote it by %exo.

The interpretation for reserving qτx seats for type-τ students is that the school should

not assign any such seat to a student whose type is not τ unless there are less than

type-τ students interested in this school. Of course all seats at this school are identical

from the perspective of the students, and what matters is the number of reserved seats.

So respecting reserves requires admitting all type-τ students if the number of type-τ

applicants is less than qτx, and admitting at least qτx type-τ students otherwise. Formally,

we say a set S ′ ⊆ S respects reserves in S if for all τ in T , we have |S ′τ | ≥ min(|Sτ |, qτx),

where Sτ = {s ∈ S : τ(s) = τ}. An admission rule Ax respects reserves (RR) if for

all S ⊆ N , each S ′ ∈ Ax(S) respects reserves in S. Note that this property does not

put any restriction on how to assign seats which are not filled by their intended types.

Neither does it suggest which type-τ students should get the seats reserved for their

type. Hence an admission rule based purely on RR inevitably leads to vast numbers of

subsets of applicants to be deemed admissible.

By appealing to responsiveness, the exogenous priority order%exo can provide further

guidance in choosing between sets that respect reserves. To put it more concretely, we

say Ax is reserve constrained responsive (RCR) to %exo if it respects reserves and

there exists a reflexive and transitive order %x on subsets of N which is consistent with

Ax and satisfies the following property: whenever |S| = qx − 1; s′, s′′ /∈ S; and both

S ∪ {s′} and S ∪ {s′′} respect reserves in S ∪ {s′, s′′},

S ∪ {s′} %x S ∪ {s′′} ⇔ s′ %exo s′′.

If this exogenous order %exo is strict, RCR refines an admission rule which otherwise

is based purely on RR, and we obtain a strict admission rule which Echenique and

Yenmez (2015) call “generated by reserves for priority”. In practice, %exo might involve

ties (which, for example, is the case for the Boston School Choice System). How we

12Echenique and Yenmez (2015) call this “an ideal point”.
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resolve the ties in %exo will have an impact on the resulting distribution of types. For

example, consider a school with six seats and reserve vector q = (qa, qb, qw) = (2, 2, 2)

facing eight applicants four of whom are type-a, and the other four type-b. So the two

seats reserved for type-w are not demanded by any type-w students, and therefore need

to be assigned among other types. Depending on the tie-breaking, the school can end

up with either of the three type distributions: (4, 2, 0), (3, 3, 0), or (2, 4, 0). In

the absence of further criteria to promote one distribution over another, we will ask

how a “symmetric” treatment of types can be implemented. This idea of symmetry

follows the spirit of the example we gave in the introduction: surplus seats (seats

not reserved for any type or not filled by their intended types) shall be rationed evenly

among over-subscribed types.13 So, in the example above, the two seats intended for

(and not claimed by) type-w students should be allocated evenly between type-a and

type-b. As we illustrated in the introduction, such an allocation rule cannot possibly be

responsive. Below, we first formalize this rule, then show that it is substitutable, and

finally develop an algorithm to compute a constrained efficient assignment.

Given a school x with a reserve vector qx, define the distance ed(qx, S) between qx

and set S of students as

ed(qx, S) =
∑
τ∈T

(|Sτ | − qτx)2.

We say an admission rule Ax evenly distributes (ED) surplus seats if there exists

a reflexive and transitive order %x on subsets of N which is consistent with Ax and

satisfies the following property: for every S, S ′ such that |S| = |S ′| = qx,

ed(qx, S) ≤ ed(qx, S
′) ⇔ S %x S

′.

13RCR implies that when students of type-τ are being matched, they are initially assigned to seats

reserved for their type with the highest %exo priority students being assigned first. That means the

competition for surplus seats is among those students who are lower in %exo. Moreover, in our formu-

lation of a school’s admission rule, the goal is to achieve a distribution of types as close to the school’s

“target distribution” as possible. Subject to achieving that objective, other priorities (summarized by

%exo) help determine who is assigned the over-demanded schools. Dur, Kominers, Pathak and Sönmez

(2018) show that this particular design choice has significant distributional implications both in theory

and practice. In general, there is a conflict between different priorities whether they are motivated

by promoting diversity, walk-zone attendance, or rewarding higher achieving students. We are not

addressing this trade-off or alternative ways of reconciling these competing objectives.
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First note that ED implies RR. That is, ED implies a refinement of an admission

rule which only satisfies RR. However, the discrete nature of our problem will still lead

to ties between several sets. Taking ED as the leading priority, a further refinement

can be achieved by appealing, again, to an exogenous priority order %exo over the set

of students. Formally, we say Ax is ED-constrained responsive (EDCR) to %exo if

there exists a reflexive and transitive order %x on subsets of N which is consistent with

Ax and satisfies:

(i) whenever |S| = |S ′| = qx, we have ed(qx, S) < ed(qx, S
′) ⇒ S �x S ′, and

(ii) whenever |S ∪ {s′}| = |S ∪ {s′′}| = qx and ed(qx, S ∪ {s′}) = ed(qx, S ∪ {s′′}),

S ∪ {s′} %x S ∪ {s′′} ⇔ s′ %exo s′′.

Proposition 4 An acceptant admission rule which satisfies EDCR is substitutable.

Thus, for such priority structures, MDA yields a stable assignment.14 However, this

stable assignment is not necessarily constrained efficient. Our first step is to provide

a characterization of constrained efficient assignments. Using this characterization, we

will next design an algorithm that solves the problem of finding a constrained efficient

assignment for any given profile of preferences.

Proposition 5 Given an acceptant priority structure which satisfies EDCR, a stable

assignment is constrained efficient if and only if it does not admit a potentially-stable

improvement cycle.

A key step in proving the above proposition is to establish that the shortest PSIC

preserves stability while Pareto improving the assignment. Deferring the details of the

14For this class of priority structures, it is actually possible to compute a stable assignment without

using the terminology of substitutability or MDA. Given a set of applicants, first admit the highest

ranked qτx students of type τ . If there are any seats and applicants remaining, then for each type τ ,

take one student who has the highest priority among the remaining type-τ applicants. From this set

of (at most m) students, accept them according to the ranking %exo up to the capacity of school x.

Repeat this procedure until the capacity of x is filled or the applicants are exhausted. We are grateful

to the referee who suggested this alternative approach. Like MDA, this alternative approach typically

fails to return a constrained efficient assignment.
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argument to the Appendix, we now use this finding to design an algorithm which always

returns a constrained efficient assignment.

Potentially-Stable Improvement Cycles Algorithm

Step 0:

Run the MDA process to obtain an initial assignment µ0.

Step t ≥ 1:

(t.a) Given µt−1, let the students stand for the vertices of a directed graph,

where for each pair of students i and j, there is an edge i→ j if and only if

i ∈ Eµt−1

j .

(t.b) If there are any potentially-stable improvement cycles in this directed

graph, select a shortest one, and carry out this cycle to obtain µt, and go to

step (t + 1.a). If there is no such cycle, then return µt−1 as the outcome of

the algorithm.

Corollary 1 If priorities satisfy EDCR, then the PSIC algorithm returns a constrained

efficient assignment.

The proof is not hard to sketch. At the end of Step 0, the MDA process, however

specified, yields a stable assignment µ0. At every step t ≥ 1 thereafter, if µt is not con-

strained efficient, we know from Proposition 3 that it must admit a PSIC. Moreover, the

shortest such cycle will Pareto improve on µt while preserving stability. Until we reach

a constrained efficient assignment, the algorithm will continue finding improvements

which preserve stability. Since there are only finitely many improvements possible, we

will end up with a constrained efficient assignment.15

The Floyd-Warshall algorithm16 is a computationally efficient way to find a shortest

cycle in a directed graph. Each such cycle improves the temporary assignment for at

15The particular outcome of the PSIC algorithm will depend on the selections made in the MDA pro-

cess in Step 0, and the specification of the cycle search in later steps. Remark 7 gives a characterization

of substitutable priority structures for which PSIC returns an efficient assignment for all preference

profiles.
16See Cormen, Leiserson, Rivest, and Stein (2001) for an exposition.
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least two students. There are |X| schools, so each student can improve at most |X| − 1

times, and therefore the total number of possible improvements is at most |N |(|X|− 1).

Finally, the number of potential edges in the graph is at most |N |(|N | − 1), so the

construction of the directed graph involves checking at most |N |(|N | − 1) pairs. Thus,

PSIC is a polynomial time algorithm.

5.2 Admissions by a committee

Our second class of applications features highly flexible and multivalued admission rules

which can be observed in real-life contexts ranging from undergraduate admissions at the

University of Cambridge to course allocation schemes in various Japanese universities.

Deferring the descriptions of these specific contexts to the Appendix, we introduce below

what we call admissions by a committee.

Suppose an admissions committee consists of multiple referees where each referee has

her own strict preference ranking (i.e., a linear order) over the set of students. When

assessing a set of applications, referees can take turns to admit applicants according

to their own ranking. For example, whenever they have time, they can access the

admissions files and make selections. Selected students are put aside, and when a referee

revisits the pool later, she will make selections from the pool of remaining applicants.

Since the order in which the referees will make such choices is not fixed, there are many

possible admissible sets.17 Is this admission procedure substitutable? If all schools have

admission rules of this sort, how can we find a constrained efficient assignment? To put

it more formally, say a school has q seats to fill. Denoting by H its set of referees, every

function π : {1, . . . , q} → H leads to an associated admission rule Aπ which selects

students by sequentially appealing to referees in H in the following fashion:

For any given S ⊆ N with |S| > q,

• let i1 be the highest ranked student in S according to π(1), and

17Alternatively, we can think of a single decision maker who can appeal to multiple criteria each

of which is expressed as a ranking of students. Our formulation allows this decision maker to be

flexible regarding the order in which she will appeal to these criteria when choosing candidates. This

flexibility would be useful from an efficiency perspective if different orders would have different welfare

consequences. While it might be difficult to know ex ante which orders would perform better, our PSIC

process will be a practical way to explore such efficiency gains.
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• for each k = 2, . . . , q, let ik be the highest ranked student in S\{i1, . . . , ik−1}
according to π(k),

and Aπ(S) = {i1, . . . , iq}.
Each function π : {1, . . . , q} → H specifies the sequence in which the school appeals

to its referees. For example if π is a constant function, a single referee will be deciding

who is admitted. Kominers and Sönmez (2016) introduce these rules in the context of

slot-specific priorities: (1) each seat has its own priority ranking, and (2) a precedence

order over slots determines in which order the slots are filled. Since Aπ is a rule of this

sort, Kominers and Sönmez’s results apply. In particular, Aπ is a strict substitutable

rule. The admissions committee, on the other hand, does not fix which priority rankings

(referees) will be used nor in which order they will be used. Allowing for all possible ways

in which the referees can take turns to select applicants means we have the multivalued

admission rule

AH(S) = {Aπ(S) | π ∈ Π }

where Π is the set of all functions π : {1, . . . , q} → H.

It is almost automatic to verify that a union of substitutable rules is substitutable.

Hence we know AH is indeed substitutable. If every school has a rule of this sort, the

MDA process would find a stable assignment, but as before, arbitrary selections in the

MDA process (or randomly fixing a particular π) can lead to the loss of constrained

efficiency. The following result allows us to recover any such welfare loss.

Proposition 6 Suppose every school has an admission rule of the kind AH . A stable

assignment is constrained efficient if and only if it does not admit a potentially-stable

improvement cycle.

Hence, once again we can use PSIC to find a constrained efficient assignment.

Corollary 2 If every school has an admission rule of the kind AH , then the PSIC

algorithm returns a constrained efficient assignment.
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6 Conclusion

Formulating substitutability for choice correspondences (i.e., multivalued choice rules)

allowed us to study the problem of priority-based assignment in an environment which

nests and goes beyond several classical settings. The first challenge in our general en-

vironment is that arbitrarily breaking ties in priorities might result in the DA process

returning an unstable assignment. The MDA process, on the other hand, always re-

turns a stable assignment. Next, the tension between stability and efficiency can be

so extreme that all stable assignments might be inefficient even when all schools have

identical priorities. Moreover, constrained efficiency (which is the obvious welfare ob-

jective) can be elusive, because there are too many ways to break ties to find a stable

assignment, and it is not obvious which of those tie-breaking procedures lead to a con-

strained efficient outcome. We found an intuitive sufficient condition for an assignment

to be constrained efficient, and showed that in two promising applications, this condi-

tion was also necessary, which in turn allowed us to design practical algorithms to find

a constrained efficient assignment. Our analysis leaves open some important questions.

Are there intuitive conditions on the priorities for which the tension between stability

and efficiency disappears? What are some general conditions under which constrained

efficiency is equivalent to lack of PSIC, so the PSIC algorithm is guaranteed to work?

Further research can help elucidate and expand the use of our results.
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Appendix

Admissions by a committee

Here we describe two real-life contexts which motivate the specific class of rules we

studied in Section 5.2.

The admissions procedures at the University of Cambridge have both decentralized

and centralized stages. The actual process is highly complex, but for our purposes,

they can be summarised as follows. For admission to an undergraduate program at

Cambridge, prospective students can either apply to one of the 31 colleges, or specify

their application as an “open application”. A significant portion of these applications

are eventually forwarded to a “pool”. Files of these applicants are available for each

college admissions officer to evaluate. These admissions officers can freely access this

pool over the course of a fixed time frame, and can “fish out” files from the pool to make

them offers. All those applicants “fished out of the pool” are admitted to the university,

and they comprise a significant portion of all students admitted. For example, in 2017

Autumn, 1075 prospective students applied to study economics at the University of

Cambridge. Of these, 126 received direct offers, 230 others were placed in the pool, and

57 candidates were fished out of that pool of 230 applicants. That is, 31% of the offers

were made through the pool, using an admission rule very much like what we called

admissions by a committee.

In Japan, each undergraduate student is affiliated with a specific department from

the beginning of their studies. In various universities, during the first two years of

their studies, students are required to take a number of liberal arts courses in addition

to department specific courses. When the demand for a particular course exceeds the

number of available places for that course, those students with higher grade point av-

erages (GPA) are given priority. However, comparing students in different departments

according to such a metric is often considered unreasonable. Therefore, when assign-

ing a place, a minimum fairness requirement is to make sure that the student who is

assigned the seat has highest GPA among those students who demand a place and is

from the same department. Since there are no requirements as to how places in a course

should be distributed across different departments, there are many different admissible

subsets. Interpreting GPA ranking in each department as the preference ranking of a
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distinct referee, the above course allocation scheme can also be seen as an example of

admissions by a committee.

Proof of Proposition 1

(⇒) This part is immediate since the conditions for pairwise stability are a special case

of the conditions for group stability.

(⇐) Denote U = µ−1(x). If µ is pairwise stable, then it must be that for any `

with xP`µ(`), we have U ∈ Ax(U ∪ {`}). Since students’ preferences over schools are

strict, we can write this in a seemingly stronger way: for any ` with xR`µ(`), we have

U ∈ Ax(U ∪{`}). Given any S ⊆ N , if xRiµ(i) for all i ∈ S, then we would like to show

that U ∈ Ax(U ∪ S). In order to conclude via induction on |S|, it is sufficient to show

that

[U ∈ Ax(U ∪ S) and U ∈ Ax(U ∪ {k})] ⇒ U ∈ Ax(U ∪ S ∪ {k}).

Now, suppose for a contradiction that U /∈ Ax(U ∪ S ∪ {k}). Then for any T ∈
Ax(U ∪ S ∪ {k}), we know that T is chosen instead of U . On the other hand, U is

chosen from among U ∪ S. Therefore consistency18 of Ax implies that T cannot be a

subset of U ∪ S, i.e., T * U ∪ S. Since T ⊆ U ∪ S ∪ {k}, we conclude that k ∈ T . On

the other hand, U ∈ Ax(U ∪ {k}) implies that {k} ∈ Rx(U ∪ {k}), which implies, due

18It is worth noting that the consistency property we assume for all of our admission rules is critical

in establishing the equivalence between pairwise stability and group stability. For example, the rule

defined as

Ax({1, 2, 3, 4}) = {1, 2}, {3, 4}

Ax({1, 2, 3}) = {1, 2}, {2, 3}

Ax({1, 2, 4}) = {1, 2}, {2, 4}

Ax({1, 3, 4}) = {1, 3}, {3, 4}

Ax({2, 3, 4}) = {2, 4}, {3, 4}

is substitutable. When the set of applicants is {1, 2, 4}, the sets {1, 2} and {2, 4} appear to be of equal

priority, but when {1, 2, 3, 4} is the set of applicants, {1, 2} appears to have strictly higher priority

than {2, 4}. Hence Ax fails to satisfy consistency. Now, the assignment ν = (11, 2x, 33, 4x) is pairwise

stable, because {2, 4} is an admissible set from both {1, 2, 4} and {2, 3, 4}. On the other hand, ν is not

group stable, because {2, 4} is not an admissible set from {1, 2, 3, 4}.
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to substitutability, {k} ⊆ (U ∪ S ∪ {k})\T for some T ∈ Ax(U ∪ S ∪ {k}). But then

k /∈ T yielding the desired contradiction. �

Proof of Proposition 2

Atx is the set of students who have applied to school x in some round k ≤ t. Hence

A1
x ⊆ A2

x ⊆ · · ·

The process requires that those students rejected in rounds k ≤ t − 1 would still be

rejected if they were considered to be among the applicants in round t. This can be

ensured thanks to Ax being rejection monotonic, because Zt−1
x = At−1x \S ′x for some

S ′x ∈ Ax(At−1x ) and At−1x ⊆ Atx together imply that there exists Zt
x = Atx\S ′′x such that

Zt
x ⊇ Zt−1

x for some S ′′x ∈ Ax(Atx).
In order to see that the process indeed ends, note that at any round if a student is not

matched, then she applies to her next favorite school in the following round. Therefore,

she either exhausts all her acceptable schools by going down all the way to the end of

her preference list, or ends up being matched with some school.

Suppose that the process ends at round m, and µ is the assignment obtained at the

end. Students only apply to schools they find acceptable, so a student i would only be

matched with a school x where xRii. Therefore µ is individually rational. Secondly,

since Amx \µ−1(x) = Zm
x ∈ Rx(A

m
x ), we have

µ−1(x) ∈ Ax(Amx ).

Those who weakly prefer x to their match under µ are either matched with x, or have

applied to x at some round of the process. Thus, Amx = {i | xRiµ(i)}. Now, since

µ−1(x) ∈ Ax({i | xRiµ(i)}), Ax being acceptance monotonic implies µ−1(x) ∈ Ax(S)

for any S such that µ−1(x) ⊆ S ⊆ {i | xRiµ(i)}. Hence µ is stable. �

Proof of Proposition 3

We will now show that if both µ and ν are stable, and if ν Pareto dominates µ, then µ

must admit a PSIC. From this, it will follow that if µ does not admit a PSIC, then it

must be constrained efficient.
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Let N ′ = {i ∈ N | µ(i) 6= ν(i)} and X ′ = {ν(i) | i ∈ N ′}. For any i ∈ N ′, we know

by the reshuffling lemma that µ(i) ∈ X ′. Let i ∈ N ′, and µ(i) = x. Denote

Dµ
x = {j ∈ N | xPjµ(j)}, D′x = {j ∈ N ′ | xPjµ(j)}, D′′x = {j ∈ N\N ′ | xPjµ(j)}

and set19

D̄x = D′x tD′′x t µ−1(x) = Dµ
x t µ−1(x).

The fact that µ is stable implies that

µ−1(x) ∈ Ax(D̄x)

Moreover, stability of ν implies that

D′′x ⊆ T ′′ for some T ′′ ∈ Rx(D
ν
x t ν−1(x)). (?)

ν Pareto dominates µ, so those who desire x at ν, desire x at µ as well. Therefore

Dν
x = {j ∈ N | xPjν(j)} ⊆ Dµ

x . Moreover, if j ∈ ν−1(x), then either j ∈ µ−1(x) or

j ∈ D′x. And finally, since µ(i) = x and i ∈ N ′, we know that i /∈ ν−1(x), and ν(i)Pix.

Therefore i /∈ Dν
x. Thus

Dν
x t ν−1(x) ⊆ Dµ

x ∪ ν−1(x) ⊆ D̄x\{i}. (??)

Now we conclude by using (?), (??), and substitutability that

D′′x ⊆ T ′ for some T ′ ∈ Rx(D̄x\{i}).

Denoting

S ′ = (D̄x\{i})\T ′,

we have

S ′ ∈ Ax(D̄x\{i}) and S ′ ∩D′′x = ∅.

Note that

D̄x\{i} = D′x tD′′x t [µ−1(x)\{i}],

and |µ−1(x)\{i}| ≤ qx − 1. Since A is acceptant, and |D̄x\{i}| ≥ qx, we must have

|S ′| ≥ qx. Because of |µ−1(x)\{i}| ≤ qx − 1 and that S ′ ∩D′′x = ∅, we have

S ′ ∩D′x 6= ∅.
19We use t to denote “disjoint union” throughout the Appendix.
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Hence, there exists i′ ∈ D′x such that {i′} ∪ [µ−1x \{i}] ∈ Ax(D̄x\{i}), i.e.,

i′ ∈ Eµ
i .

Now construct a directed graph with N ′ being its set of vertices. For any i ∈ N ′, the

above argument shows that there is i′ ∈ N ′ such that i′ ∈ Eµ
i , so draw an edge i′ → i.

Since this is a finite graph with every vertex having an incoming edge, there must be a

cycle. By construction, this is a PSIC. �

Proof of Proposition 4

Lemma 1 If an admission rule satisfies AM and RM for every pair of sets S ⊆ T with

|T\S| = 1, then it is substitutable.

Proof of Lemma 1. We will verify that AM and RM hold for every pair of sets

S ⊆ T by doing strong induction on k = |T\S|. We are given that the conditions hold

for k = 1. Now assuming they hold for k ≤ m− 1, we will verify them for k = m. Let

|T\S| = m.

(AM) Given T ′ ∈ A(T ), pick some t ∈ T\T ′, and set T̃ = T\{t}. By the induction

hypothesis, T ′ ∩ T̃ ⊆ T ′′ for some T ′′ ∈ A(T̃ ). Since T ′ ∩ T̃ = T ′ and A is acceptant,

T ′ = T ′′ and T ′ ∈ A(T̃ ).

If t /∈ S, then S ⊆ T̃ . Since |T̃\S| = m− 1, by the induction hypothesis T ′ ∩ S ⊆ S ′

for some S ′ ∈ A(S).

If, on the other hand, t ∈ S for all t ∈ T\T ′, then let T̂ = T\{t̂} for some t̂ /∈ S.

Such t̂ is necessarily in T ′. Again, by the induction hypothesis, T ′\{t̂} = T ′ ∩ T̂ ⊆ T ′′

for some T ′′ ∈ A(T̂ ).

S ⊆ T̂ , because t̂ /∈ S. Using the induction hypothesis

T ′ ∩ S ⊆ (T ′′ t {t̂}) ∩ S = T ′′ ∩ S ⊆ S ′′ for some S ′′ ∈ A(S).

(RM) Given S ′ ∈ A(S), let t ∈ T\S and T̃ = T\{t}. Then S ⊆ T̃ and |T̃\S| = k−1,

so by the induction hypothesis, there must exist T̃ ′ ∈ A(T̃ ) such that S\S ′ ⊆ T̃\T̃ ′.
T̃ ⊆ T and |T\T̃ | = 1, so again by the induction hypothesis, there exists T ′ ∈ A(T )

such that T̃\T̃ ′ ⊆ T\T ′.
Putting together the two derived inclusions, we conclude S\S ′ ⊆ T̃\T̃ ′ ⊆ T\T ′,

where T ′ ∈ A(T ). �
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Computing an EDCR admission rule

Given an EDCR admission rule, we now describe a procedure to compute the set of

admissible subsets of S for every S ⊆ N . Afterwards, we will use this procedure to help

prove Proposition 4.

The distribution of types in S is the vector v(S) = (vτ )τ∈T , where vτ is the

number of type-τ students in S, i.e., vτ = |Sτ |. A set S ′ ⊆ S is a set of top-t students

in S with respect to %exo if |S ′| = t and s′ %exo s for all s′ ∈ S ′ and s ∈ S\S ′. A

student is called a t + 1st student in S with respect to %exo if he belongs to a set

of top-(t+ 1) students in S, but does not belong to any set of top-t students in S with

respect to %exo. a = (aτ )τ∈T is called an admissible distribution from S if there

exists S ′ ∈ Ax(S) such that the distribution of types in S ′ is a. We will denote by α(S)

the set of admissible distributions from S. Hence the set of admissible subsets Ax(S) of

S can be expressed as{
S ′ ⊆ S

∣∣∣∣∣ v(S ′) = a for some a ∈ α(S), and

S ′τ is a set of top-aτ students in Sτ with respect to %exo

}
.

In order to give a more explicit description of the admission rule Ax, let us construct,

in detail, the set α(S) of admissible distributions.

Step 0: Fill as many seats as possible with the types intended for those seats, i.e., set

a0τ =

{
|Sτ | for all τ such that |Sτ | ≤ qτx

qτx for all τ such that |Sτ | > qτx

and define the number of surplus seats at the end of step 0 as e1 = qx −
∑

τ a
0
τ which is

non-negative. If e1 = 0, then there is a unique admissible distribution: qx. Otherwise,

e1 > 0, and we determine each admissible distribution by following the steps below for

k ≥ 0:

Step k for k ≥ 1: If the number of types of remaining applicants not yet assigned at

the end of step k − 1 is greater than or equal to ek, i.e., if |{τ : |Sτ | > ak−1τ }| ≥ ek,

then assign the ek surplus seats to remaining types according to the priority order %exo,

and with at most one surplus seat to each type. Formally speaking, for each τ with

|Sτ | > ak−1τ , let iτ be an akτ th student in Sτ with respect to %exo. For every U which is
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a set of top-ek students in {iτ : |Sτ | > ak−1τ } with respect to %exo, set

aUτ =

{
ak−1τ + 1 for all τ such that iτ ∈ U,
ak−1τ otherwise,

to obtain an admissible distribution aU = (aUτ )τ∈T . Thus we conclude

α(S) = {aU : U is a set of top-ek students in {iτ : |Sτ | > ak−1τ }}.

If, however, |{τ : |Sτ | > ak−1τ }| < ek, then set

akτ =

{
ak−1τ for all τ such that |Sτ | ≤ ak−1τ ,

ak−1τ + 1 for all τ such that |Sτ | > ak−1τ ,

and ek+1 = ek − |{τ : |Sτ | > ak−1τ }| = qx −
∑

τ a
k
τ > 0, and go to Step k + 1. ♦

Proof of Proposition 4. Thanks to Lemma 1, it is sufficient to verify AM and RM for

sets S and S ∪ {t}, where |S| ≥ qx. When, |S| ≤ qx, both conditions are easily verified.

Hence, we will assume below that |S| ≥ qx + 1.

Proof of AM. Let T ′ ∈ A(S∪{t}). Consider the specific steps of the procedure which

results in T ′ being chosen from S ∪ {t}. Say it took n ≥ 1 steps for this procedure to

end.

If t /∈ T ′, then t stayed in the pool of applicants until the end of the procedure,

and was not chosen. That means, in Step 0, exactly qτx students of type τ = τ(t) were

chosen, and at steps 2 to n− 1, exactly one student of type τ(t) was chosen. Moreover

all of these students are of weakly higher priority than t according to %exo. Finally,

in step n, all chosen students are of weakly higher priority than t according to %exo.

The same steps of this procedure (with exactly the same choices at each step) can be

repeated when the set of applicants is S. Hence T ′ ∩ S = T ′ ∈ A(S).

If, on the other hand, t ∈ T ′, then say she was chosen in step p of the procedure. If

p = n, that is, if t was chosen in the very last step of the procedure, the first n− 1 steps

of the procedure can be repeated (with exactly the same choices at each step) when the

set of applicants is S. Since |S∪{t}| ≥ qx+2, there were at least two students remaining

in step n. When t is removed from the original set of applicants, each student s who

had been selected in step n remains in step n, and is still selected because s %exo s′ for

every remaining s′ with τ(s′) = τ(s). Thus T ′ ∩ S = T ′\{t} ⊂ S ′ for some S ′ ∈ A(S).
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Otherwise, t ∈ T ′, and she was chosen in step p < n of the procedure. Say the last

chosen student of type τ(t) was chosen in step r. So p ≤ r ≤ n. When we apply the

procedure to S to choose an admissible set, the first p− 1 steps can be replicated from

the original procedure we had fixed for choosing from S ∪ {t}. The rest of the new

procedure will continue as follows: for each step j = p, . . . , r − 1, the type-τ(t) student

who was chosen in step j + 1 of the original procedure is chosen in step j of the new

procedure. As for students of other types, those who were chosen in steps j = 1, . . . , n

continue to be chosen in the same steps of the new procedure. In the new procedure,

there is one more remaining seat in step n. Independent of how that new surplus seat is

assigned, we have made sure that every student who was chosen from S ∪ {t} continues

to be chosen from S; which completes the proof of AM.

Proof of RM. Let S ′ ∈ A(S). We need to show that there exists T ′ ∈ A(S ∪ {t})
such that S\S ′ ⊆ (S ∪ {t})\T ′. Given the specific procedure which resulted in S ′ being

chosen from S, we will argue that there is a procedure of choice from S ∪ {t} so that

no student in S\S ′ is chosen. Note that all students in S\S ′ are among the remaining

students in step n of the original procedure. In particular, for every s ∈ S\S ′, there

exist qτx(s) + n − 1 students of type τ(s) who have weakly higher %exo priority than

s. Since all such students are also present in the new procedure, student s can still be

rejected in the first n steps of the new procedure. Having the extra applicant t will

decrease the number of steps the procedure will take, and therefore, the new procedure

will finish in at most n steps. Thus, the new procedure can be implemented so that all

those rejected from S in the original procedure are rejected in the new procedure when

choosing from S ∪ {t}. �

Proof of Proposition 5

It follows from Propositions 3 and 4 that if a stable assignment does not admit a PSIC,

then it is constrained efficient. For the other direction, we are first going to establish

that if a PSIC “cannot be shortened”, then it preserves stability. It, then, suffices to

observe that if µ is stable and admits a PSIC, then there must be a shortest of all such

PSICs, and that shortest PSIC leads to an assignment which Pareto dominates µ while

preserving stability.
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Definition 1 A PSIC

i0 → i1 → · · · → in → in+1 = i0,

is called minimal if there do not exist s < t such that

i0 → i1 → · · · → is → it+1 → · · · → in → in+1 = i0

is a PSIC.

Lemma 2 If the priority structure satisfies EDCR, then in each minimal PSIC

(a) those students who move to the same school are of distinct types,

(b) those students who leave the same school are of distinct types.

Proof of Lemma 2. Given stable µ, let ν be the assignment obtained from µ by

carrying out a minimal PSIC. Label those students matched with school x under ν as

ik1 , . . . , ikm , where PSIC looks like

i0 → i1 → · · · → ikt → ikt+1 → · · · → in → in+1 = i0.

Hence µ(ikt+1) = ν(ikt) = x for all t ∈ {1, · · · ,m}.
Proof of Part (a) We need to show that τ(ikt) 6= τ(iku) for every t, u ∈ {1, . . . ,m}

and t 6= u. Assume otherwise, and thus τ = τ(ikt) = τ(iku) for some t and u 6= t.

Since ikt ∈ Eµ
ikt+1

and iku ∈ Eµikt+1
,

[µ−1(x)\{ikt+1}] t {ikt} % [µ−1(x)\{ikt+1}] t {iku}.

In what follows, for notational convenience we will let write ed(S) instead of ed(qx, S).

Since ikt and iku are of the same type, we have

ed([µ−1(x)\{ikt+1}] t {ikt}) = ed([µ−1(x)\{ikt+1}] t {iku}),

which implies ikt %exox iku .

Using a symmetric argument, we must have iku %exox ikt , and therefore ikt ∼exox iku .

Hence iku ∈ Eµ
kt+1, allowing us to construct a shorter PSIC, which contradicts with the

minimality of the PSIC we started with.
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Proof of Part (b) Suppose, for a contradiction, that τ(ikt+1) = τ(iks+1) for some

t 6= s. Then the sets µ−1(x)\{ikt+1} and µ−1(x)\{iks+1} have the same distributions of

types. Therefore

ed([µ−1(x)\{ikt+1}] ∪ {ikt}) = ed([µ−1(x)\{iks+1}] ∪ {ikt}) (∗)

and

ed([µ−1(x)\{ikt+1}] ∪ {iks}) = ed([µ−1(x)\{iks+1}] ∪ {iks}). (∗∗)

Next, note that ikt ∈ Eµ
ikt+1

and iks ∈ Eµikt+1
together imply

ed([µ−1(x)\{ikt+1}] ∪ {ikt}) ≤ ed([µ−1(x)\{ikt+1}] ∪ {iks}). (?)

If (?) is a strict inequality, substituting (∗) and (∗∗) into (?) yields

ed([µ−1(x)\{iks+1}] ∪ {ikt}) < ed([µ−1(x)\{iks+1}] ∪ {iks}),

which, combined with ikt ∈ Eµikt+1
= Eµiks+1

, implies iks+1 /∈ Eµiks+1
, a contradiction.

Thus, (?) is an equality, and therefore we must have ikt %exox iks . Reversing the

roles of t and s above, and repeating the arguments, we then conclude iks %exox ikt , and

therefore ikt ∼exox iks .

Now, the fact that (?) is an equality and ikt ∼exox iks imply iks ∈ Eµ
ikt+1

, which leads

to a shorter PSIC than the one we started with; a contradiction. �

Proof of Proposition 5. Assume, for a contradiction, that µ is constrained efficient

but admits a PSIC. Let ν be the assignment obtained by carrying out the shortest PSIC

µ admits. Since ν Pareto dominates µ which is constrained efficient to begin with, ν

cannot be stable. EDCR admission rules are consistent, so stability (i.e., respecting

priorities) is equivalent to pairwise stability, and therefore there exist x ∈ X and j ∈ N
such that xPjν(j) and ν−1(x) /∈ Ax(ν−1(x) ∪ {j}).

Consider, now, the students involved in the above shortest PSIC and label those

students matched with x under ν as ik1 , . . . , ikm , where the PSIC looks like

i0 → i1 → · · · → ikt → ikt+1 → · · · → in → in+1 = i0.

Hence µ(ikt+1) = ν(ikt) = x for all t ∈ {1, · · · ,m}.
Since ν−1(x) /∈ Ax(ν−1(x)∪{j}), there must exist ` ∈ ν−1(x) such that (ν−1(x)\{`})∪

{j} �x ν−1(x).
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Setting A = (ν−1(x)\{`}) ∪ {j}, we must have ed(qx, A) ≤ ed(qx, ν
−1(x)), where

j �exox ` whenever equality holds.

Case 1: There are at least two types t, s 6= t such that τ(ikt) 6= τ(ikt+1) and τ(iks) 6=
τ(iks+1).

Case 1.1: τ(ikt) = τ(iks+1) or τ(iks) = τ(ikt+1).

Without loss of generality, we assume that τ(ikt) = τ(iks+1). Then since iks ∈ Eµ
iks+1

and µ is stable, we must have

ed(qx, µ
−1(x)) ≤ ed(qx, [µ

−1(x)\{iks+1}] ∪ {iks}) ≤ ed(qx, [µ
−1(x)\{iks+1}] ∪ {ikt})

= ed(qx, µ
−1(x)),

so that

iks %
exo
x ikt .

If iks ∼exox ikt , then ikt ∈ Eµ
iks+1

, a contradiction to the cycle is minimal. Therefore, we

have iks �exox ikt . Together with ikt ∈ Eµ
ikt+1

, this implies that

ed(qx, [µ
−1(x)\{ikt+1}] ∪ {ikt}) < ed(qx, [µ

−1(x)\{ikt+1}] ∪ {iks}),

thus τ(iks) 6= τ(ikt+1).

Since τ(ikt) 6= τ(ikt+1) (from Part (b) of Lemma 2) and τ(iks) 6= τ(ikt+1), ed(qx, [µ
−1(x)\{ikt+1}]∪

{ikt}) < ed(qx, [µ
−1(x)\{ikt+1}] ∪ {iks}) implies that(

|(µ−1(x))τ(ikt )|+ 1− qτ(ikt )x

)2
+
(
|(µ−1(x))τ(iks )| − q

τ(iks )
x

)2
<(

|(µ−1(x))τ(ikt )| − q
τ(ikt )
x

)2
+
(
|(µ−1(x))τ(iks )|+ 1− qτ(iks )x

)2
.

Setting a = |(µ−1(x))τ(ikt )| − q
τ(ikt )
x , we have |(µ−1(x))τ(iks )| − q

τ(iks )
x > a.

We also have ed(qx, [µ
−1(x)\{iks+1}]∪{iks}) = ed(qx, [µ

−1(x)\{iks+1}]∪{ikt}), which

implies that(
|(µ−1(x))τ(ikt )| − 1− qτ(ikt )x

)2
+
(
|(µ−1(x))τ(iks )|+ 1− qτ(iks )x

)2
=(

|(µ−1(x))τ(ikt )| − q
τ(ikt )
x

)2
+
(
|(µ−1(x))τ(iks )| − q

τ(iks )
x

)2
,

which implies that |(µ−1(x))τ(iks )| − q
τ(iks )
x = a− 1, a contradiction.
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Case 1.2: τ(ikt) 6= τ(iks+1) and τ(iks) 6= τ(ikt+1).

We claim that in this case we can find a shorter cycle. Since µ is stable, we must

have |(µ−1(x))τ(ikt )| ≥ q
τ(ikt )
x and |(µ−1(x))τ(iks )| ≥ q

τ(iks )
x .

ikt ∈ Eµ
ikt+1

and iks ∈ Eµikt+1
imply that

ed(qx, [µ
−1(x)\{ikt+1}] ∪ {ikt}) ≤ ed(qx, [µ

−1(x)\{ikt+1}] ∪ {iks}).

Since τ(ikt) 6= τ(ikt+1) 6= τ(iks),(
|(µ−1(x))τ(ikt )|+ 1− qτ(ikt )x

)2
+
(
|(µ−1(x))τ(iks )| − q

τ(iks )
x

)2 ≤(
|(µ−1(x))τ(ikt )| − q

τ(ikt )
x

)2
+
(
|(µ−1(x))τ(iks )|+ 1− qτ(iks )x

)2
.

Similarly, iks ∈ Eµ
iks+1

and ikt ∈ Eµiks+1
imply that

ed(qx, [µ
−1(x)\{iks+1}] ∪ {iks}) ≤ ed(qx, [µ

−1(x)\{iks+1}] ∪ {ikt}).

Since τ(iks) 6= τ(iks+1) 6= τ(ikt),(
|(µ−1(x))τ(ikt )|+ 1− qτ(ikt )x

)2
+
(
|(µ−1(x))τ(iks )| − q

τ(iks )
x

)2 ≥(
|(µ−1(x))τ(ikt )| − q

τ(ikt )
x

)2
+
(
|(µ−1(x))τ(iks )|+ 1− qτ(iks )x

)2
.

Thus, (
|(µ−1(x))τ(ikt )|+ 1− qτ(ikt )x

)2
+
(
|(µ−1(x))τ(iks )| − q

τ(iks )
x

)2
=(

|(µ−1(x))τ(ikt )| − q
τ(ikt )
x

)2
+
(
|(µ−1(x))τ(iks )|+ 1− qτ(iks )x

)2
,

which implies that ikt ∼exox iks . Hence iks ∈ Eµ
ikt+1

, and we find a shorter cycle

i0 → i1 → · · · → iks → ikt+1 → · · · → in → in+1 = i0,

which contradicts that the original cycle is minimal.

Case 2: There exists a unique t such that τ(ikt) 6= τ(ikt+1); for all s 6= t, τ(iks) =

τ(iks+1).

Suppose ` = ikt . Note that

ed(qx, [µ
−1(x)\{ikt+1}] ∪ {ikt}) = ed(qx, ν

−1(x)).
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Then since ikt ∈ Eµ
ikt+1

,

ed(qx, [µ
−1(x)\{ikt+1}] ∪ {ikt}) ≤ ed(qx, [µ

−1(x)\{ikt+1}] ∪ {j}).

If ed(qx, A) < ed(qx, ν
−1(x)) then

ed(qx, [µ
−1(x)\{ikt+1}] ∪ {ikt}) > ed(qx, [µ

−1(x)\{ikt+1}] ∪ {j}).

A contradiction. If instead ed(qx, A) = ed(qx, ν
−1(x)) then j �exox ikt , and

ed(qx, [µ
−1(x)\{ikt+1}] ∪ {ikt}) = ed(qx, [µ

−1(x)\{ikt+1}] ∪ {j}),

which implies that ikt 6∈ Eµ
ikt+1

.

Suppose ` 6= ikt . There are three subcases:

Case 2.1: τ(j) 6= τ(ikt), τ(ikt+1).

If τ(`) = τ(ikt) then τ(`) 6= τ(iks) for all s 6= t. This implies that µ(`) = ν(`). Since

µ is stable, we have |(µ−1(x))τ(ikt )| ≥ q
τ(ikt )
x , and

` %exox ikt .

A similar argument for ` = ikt leads to contradiction.

If τ(`) = τ(ikt+1) then clearly τ(`) 6= τ(ikt) and by the claim τ(ikt+1) 6= τ(iks) for

any s 6= t, which implies that ` ∈ {i ∈ N |µ(i) = ν(i)}. Since ed(qx, A) ≤ ed(qx, ν
−1(x)),(

|(µ−1(x))τ(`)| − 2− qτ(`)x

)2
+
(
|(µ−1(x))τ(j)|+ 1− qτ(j)x

)2 ≤(
|(µ−1(x))τ(`)| − 1− qτ(`)x

)2
+
(
|(µ−1(x))τ(j)| − qτ(j)x

)2
.

Setting a = |(µ−1(x))τ(j)| − qτ(j)x , we have |(µ−1(x))τ(`)| − qτ(`)x ≥ a + 2. On the other

hand ed(qx, µ
−1(x)) ≤ ed(qx, [µ

−1(x)\{`}]∪ {j}) implies |(µ−1(x))τ(`)| − qτ(`)x ≤ a+ 1, a

contradiction.

So we assume that τ(`) equals neither τ(ikt) nor τ(ikt+1). Since ed(qx, [ν
−1(x)\{`}]∪

{j}) ≤ ed(qx, ν
−1(x)) and ed(qx, [µ

−1(x)\{`}] ∪ {j}) ≥ ed(qx, µ
−1(x)),(

|(µ−1(x))τ(`)| − 1− qτ(`)x

)2
+
(
|(µ−1(x))τ(j)| − qτ(j)x

)2
=(

|(µ−1(x))τ(`)| − qτ(`)x

)2
+
(
|(µ−1(x))τ(j)|+ 1− qτ(j)x

)2
.

If ` = iks for any s 6= t, then iks 6∈ Eµ
iks+1

. Otherwise it contradicts the fact that µ is

stable.
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Case 2.2: τ(j) = τ(ikt)

First, consider the case τ(`) 6= τ(ikt+1). If τ(`) = τ(j), then ed(qx, A) = ed(qx, ν
−1(x))

and j �exox `. Now if ` = iks for some s 6= t, then we have iks 6∈ Eµ
iks+1

, whereas if ` 6= iks

for all s, then µ cannot be stable. Hence we must have τ(`) 6= τ(j).

We know that |(µ−1(x))τ(j)| ≥ q
τ(j)
x . Since ed(qx, [ν

−1(x)\{`}]∪{j}) ≤ ed(qx, ν
−1(x)),(

|(µ−1(x))τ(`)| − 1− qτ(`)x

)2
+
(
|(µ−1(x))τ(j)|+ 2− qτ(j)x

)2 ≤(
|(µ−1(x))τ(`)| − qτ(`)x

)2
+
(
|(µ−1(x))τ(j)|+ 1− qτ(j)x

)2
,

which implies that whenever |(µ−1(x))τ(j)| − qτ(j)x = a > 0, we must have

|(µ−1(x))τ(`)| − qτ(`)x ≥ a+ 2.

If ` = iks for some s 6= t, then

ed(qx, [µ
−1(x)\{iks+1}]∪{iks}) = C+

(
|(µ−1(x))τ(iks )| − q

τ(iks )
x

)2
+
(
|(µ−1(x))τ(j)| − qτ(j)x

)2
,

and

ed(qx, [µ
−1(x)\{iks+1}]∪{j}) = C+

(
|(µ−1(x))τ(iks )| − 1− qτ(iks )x

)2
+
(
|(µ−1(x))τ(j)|+ 1− qτ(j)x

)2
,

where C is a constant. Thus we conclude that

ed(qx, [µ
−1(x)\{iks+1}] ∪ {iks}) > ed(qx, [µ

−1(x)\{iks+1}] ∪ {j}),

which means that iks 6∈ Eµ
iks+1

.

If ` 6= iks for any s, then

ed(qx, µ
−1(x)) = C +

(
|(µ−1(x))τ(`)| − qτ(`)x

)2
+
(
|(µ−1(x))τ(j)| − qτ(j)x

)2
,

and

ed(qx, [µ
−1(x)\{`}]∪{j}) = C+

(
|(µ−1(x))τ(`)| − 1− qτ(`)x

)2
+
(
|(µ−1(x))τ(j)|+ 1− qτ(j)x

)2
,

where C is a constant. Thus we conclude that

ed(qx, µ
−1(x)) > ed(qx, [µ

−1(x)\{`}] ∪ {j}),

which contradicts the fact that µ is stable.
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Next consider τ(`) = τ(ikt+1). Since ed(qx, [µ
−1(x)\{`}]∪{j}) = ed(qx, ν

−1(x)) and

ed(qx, [ν
−1(x)\{`}] ∪ {j}) ≤ ed(qx, ν

−1(x)),(
|(µ−1(x))τ(ikt+1)

| − 2− qτ(ikt+1)
x

)2
+
(
|(µ−1(x))τ(j)|+ 2− qτ(j)x

)2 ≤(
|(µ−1(x))τ(ikt+1)

| − 1− qτ(ikt+1)
x

)2
+
(
|(µ−1(x))τ(j)|+ 1− qτ(j)x

)2
,

which implies that whenever |(µ−1(x))τ(j)| − qτ(j)x = a > 0, we must have

|(µ−1(x))τ(`)| − qτ(`)x ≥ a+
3

2
.

Then

ed(qx, µ
−1(x)) = C +

(
|(µ−1(x))τ(`)| − qτ(`)x

)2
+
(
|(µ−1(x))τ(j)| − qτ(j)x

)2
,

and

ed(qx, [µ
−1(x)\{`}]∪{j}) = C+

(
|(µ−1(x))τ(`)| − 1− qτ(`)x

)2
+
(
|(µ−1(x))τ(j)|+ 1− qτ(j)x

)2
,

where C is a constant. Thus we conclude that

ed(qx, µ
−1(x)) > ed(qx, [µ

−1(x)\{`}] ∪ {j}),

which contradicts the fact that µ is stable.

Case 2.3: τ(j) = τ(ikt+1)

Then ed(qx, µ
−1(x)) = ed(qx, [µ

−1(x)\{ikt+1}] ∪ {j}). Since ikt ∈ Eµ
ikt+1

and µ is

stable, we must have ed(qx, [µ
−1(x)\{ikt+1}] ∪ {ikt}) = ed(qx, [µ

−1(x)\{ikt+1}] ∪ {j})
and ikt %exo j. This implies that

ed(qx, µ
−1(x)) = ed(qx, ν

−1(x)).

Furthermore,

ed(qx, [ν
−1(x)\{`}] ∪ {j}) = ed(qx, µ

−1(x)),

for otherwise

µ−1(x) 6∈ Ax(µ−1(x) ∪ {ik1 , · · · , ikm} ∪ {j}).

This implies that ` = iks for some s 6= k. Thus, we have

ed(qx, µ
−1(x)\{iks+1}] ∪ {j}) = ed(qx, ν

−1(x)\{iks+1}] ∪ {iks}).
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j �exo iks implies that iks 6∈ Eµ
iks+1

.

Case 3: For all t, τ(ikt) = τ(ikt+1).

Suppose ` = ikt for some t. When ed(qx, A) = ed(qx, ν
−1(x)), j �exox ikt . Since

ed(qx, [µ
−1(x)\{ikt+1}] ∪ {ikt}) = ed(qx, µ

−1(x)) = ed(qx, ν
−1(x)) = ed(qx, A),

it must be that

ed(qx, [µ
−1(x)\{ikt+1}] ∪ {ikt}) = ed(qx, [µ

−1(x)\{ikt+1}] ∪ {j}).

ikt ∈ Eµ
ikt+1

and j ∈ Eµikt+1
imply that ikt %exox j. A contradiction.

When ed(qx, A) < ed(qx, ν
−1(x)),

ed(qx, [µ
−1(x)\{ikt+1}] ∪ {j}) < ed(qx, [µ

−1(x)\{ikt+1}] ∪ {ikt}),

which implies ikt 6∈ Eµ
ikt+1

, a contradiction.

Suppose instead that ` 6= ikt for all t. Then µ(`) = ν(`) = x. If ed(qx, A) =

ed(qx, ν
−1(x)), then ed(qx, A) = ed(qx, µ

−1(x)) = ed(qx, [µ
−1(x)\{`}] ∪ {j}). Since

j �exox ` implies that

[µ−1(x)\{`}] ∪ {j} �x µ−1(x),

contradicting the fact that µ is stable. If, on the other hand, ed(qx, A) < ed(qx, ν
−1(x)),

then ed(qx, [µ
−1(x)\{`}]∪{j}) < ed(qx, µ

−1(x)), which implies that µ is not stable; again

a contradiction. �

Proof of Proposition 6

(⇐) Already known by Proposition 3.

(⇒) Suppose µ is stable and admits a PSIC denoted by

i0 → i1 → · · · → in−1 → i0

Let ν be the assignment obtained by carrying out this PSIC. If µ(i0), . . . , µ(in−1) are

distinct, then this PSIC boils down to a SIC (in the sense of Erdil and Ergin, 2008),

and therefore ν is stable. Now, suppose there is some school x which shows up more

than once in the above PSIC. Say x appears m times in the PSIC, and enumerate the

39



students who move from their matched school under µ to x as part of this PSIC as ikt

for t ∈ {1, . . . ,m}. Thus ν(ikt) = µ(ikt+1) = x.

We will verify that ν is stable by showing that for each such x in the PSIC,

ν−1(x) is a chosen subset from S whenever ν−1(x) ⊆ S ⊆ Eνx ∪ ν−1(x).

First, stability of µ implies µ−1(x) is a chosen subset from µ−1(x)∪Eµx , and therefore

there exists π0 ∈ Π such that

Aπ0

(µ−1(x) ∪ Eµx ) = µ−1(x).

Let us enumerate the q − m elements in µ−1(x) ∩ ν−1(x) in their order of being

selected from µ−1(x) ∪ Eµx so j1 is selected earlier than j2 who was selected earlier than

j3 and so on. Let �t be the criterion used in Aπ0
when selecting jt. Then, it must be

the case that

j1 is the highest �1 ranked student in [(µ−1(x) ∩ ν−1(x)) ∪ Eµx ],

and for t = 2, . . . , q −m,

jt is the highest �t ranked student in [(µ−1(x) ∩ ν−1(x)) ∪ Eµx ]\{j1, . . . , jt−1}

Note that (µ−1(x) ∩ ν−1(x)) ∪ Eµx = ν−1(x) ∪ Eνx , so we must have

jt is the highest �t ranked student in [ν−1(x) ∪ Eνx ]\{j1, . . . , jt−1}.

Next, by the definition of PSIC, we know for each t ∈ {1, . . . ,m} that

{ikt} ∪ [µ−1(x)\{ikt+1}] is chosen from (Eµx ∪ µ−1(x))\{ikt+1}.

That is, there exists πt ∈ Π such that

Aπt

((Eµx ∪ µ−1(x))\{ikt+1}) = {ikt} ∪ [µ−1(x)\{ikt+1}]

Then, there must be a criterion � which features in πt such that

ikt � j for all j ∈ Eµx \{ikt}.

Denote that criterion by �q−m+t.

Finally define π∗ ∈ Π by setting π∗(`) =�` for each ` ∈ {1, . . . , q}. Now given any

set S of applicants with ν−1(x) ⊆ S ⊆ Eνx ∪ ν−1(x), we will have

Aπ
∗
(S) = ν−1(x).

�
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Online Appendix: Remarks

Remark 1 When Ax is strict, AM is equivalent to RM. When there are ties, i.e., when

Ax is multivalued, neither condition necessarily implies the other.

Proof. First, suppose Ax is strict.

We say Ax is admission monotonic (AM) if given any S, T ⊆ N with S ⊆ T and

T ′ ∈ Ax(T ), we have T ′ ∩ S ⊆ S ′ for some S ′ ∈ Ax(S).

In a similar spirit, we say Ax is rejection monotonic (RM) if given any S, T ⊆ N

with S ⊆ T and S ′′ ∈ Rx(S), we have S ′′ ⊆ T ′′ for some T ′′ ∈ Rx(T ).

AM ⇒ RM. Suppose S ⊆ T and S ′′ ∈ Rx(S). Then, denoting S ′ = S\S ′′, we must

have S ′ ∈ Ax(S). Since Ax is strict, we have S ′ = {Ax(S)}. Let Ax(T ) = {T ′}, so

denoting T ′′ = T\T ′, we have Rx(T ) = {T ′′}. AM implies that T ′ ∩S ⊆ S ′. Taking the

complement of this last expression in S yields S\T ′ ⊇ S ′′. Combining this with the fact

that S\T ′ ⊆ T\T ′ = T ′′ yields S ′′ ⊆ T ′′.

AM ⇐ RM. Suppose S ⊆ T and T ′ ∈ Ax(T ). Let {S ′} = Ax(S), so S ′′ = S\S ′ =

Rx(S). RM implies S ′′ ⊆ T ′′ = T\T ′. Removing both sides of this last inclusion from

S yields S ′ ⊇ S\(T\T ′) = S ∩ T ′.

Next, we show that for multivalued admission rules, neither of AM and RM implies

the other.

AM ; RM. A multivalued admission rule Ax which is admission monotonic, but

not rejection monotonic:

Suppose there are four students i1, i2, i3, i4, and a school x with two seats and the

following priority ranking: {i1, i4} �x {i1, i2} ∼x {i1, i3} ∼x {i2, i3} ∼x {i2, i4} ∼x
{i3, i4}. It is readily verified that %x leads to an admission rule Ax which is AM. To see

that Ax is not RM, note that

Rx({i1, i2, i3}) = {{i1}, {i2}, {i3}},

but

Rx({i1, i2, i3, i4}) = {{i2, i3}},

hence

{i1} 6⊆ {i2, i3}.
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AM : RM. A multivalued admission rule Ax which is rejection monotonic, but not

admission monotonic: Suppose there are five students {i1, i2, i3, i4, i5}, and a school x

with two seats and the following priority ranking: {i1, i2} ∼x {i3, i4} �x {i1, i3} ∼x
{i1, i4} ∼x {i1, i5} ∼x {i2, i3} ∼x {i2, i4} �x {i2, i5} ∼x {i3, i5} ∼x {i4, i5}.

It is straightforward to verify that %x leads to an admission rule Ax which is RM.

On the other hand AM fails, because

Ax({i1, i2, i3, i4}) = {{i1, i2}, {i3, i4}},

but

Ax({i1, i2, i3}) = {{i1, i2}},

hence

{i3} = {i3, i4} ∩ {i1, i2, i3} 6⊆ {i1, i2}.

♦

Remark 2 An acceptant admission rule A is rejection monotonic if and only if for

every S ⊆ T , and for each S ′ ∈ Ax(S), there exists T ′ ∈ Ax(T ) such that T ′ ∩ S ⊆ S ′.

Proof. In order to verify this equivalence, first recall that the rejection rule associated

with A is defined as R(S) = {S ′′ ⊆ S | S ′′ = S\S ′ for some S ′ ∈ A(S)}.
(⇒): let S ′′ ∈ Rx(S). Then S ′′ = S\S ′ for some S ′ ∈ A(S), and hence T ′ ∩ S ⊆ S ′

for some T ′ ∈ A(T ). Taking complements in T , we get

T\(T ′ ∩ S) ⊇ T\S ′ ⊇ S\S ′ = S ′′.

Set T ′′ = T\T ′. Since T\(T ′ ∩ S) = (T\T ′) ∪ (T\S), the last inclusion yields

T ′′ ∪ (T\S) ⊇ S ′′

(T ′′ ∪ (T\S)) ∩ S ⊇ S ′′ ∩ S = S ′′

T ′′ ∩ S ⊇ S ′′,

which implies T ′′ ⊇ S ′′.

(⇐): If S ′ ∈ A(S), then S ′ = S\S ′′ for some S ′′ ∈ R(S). Since we assume S ′′ ⊆ T ′′

for some T ′′ ∈ R(T ), by taking complements in T we obtain

T\S ′′ ⊇ T\T ′′ = T ′.
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Intersection with S yields

(T\S ′′) ∩ S ⊇ T ′ ∩ S

T ∩ (S ′′)c ∩ S ⊇ T ′ ∩ S

S ∩ (S ′′)c ⊇ T ′ ∩ S

S ′ ⊇ T ′ ∩ S.

♦

Remark 3 Given a substitutable priority structure, arbitrarily breaking ties and then

applying the DA algorithm does not necessarily lead to a stable assignment.

Proof. Consider four students 1, 2, 3, 4, and two schools x and y. Suppose that school

x has two seats, whereas y has one. Suppose also that school y finds only student 2

acceptable, while school x has the following acceptant admission rule Ax:

Ax({1, 2, 3, 4}) = {{1, 2}, {3, 4}}
Ax({1, 2, 3}) = {{1, 2}, {2, 3}}
Ax({1, 2, 4}) = {{1, 2}, {1, 4}}
Ax({1, 3, 4}) = {{1, 3}, {3, 4}}
Ax({2, 3, 4}) = {{2, 3}, {2, 4}, {3, 4}}

It is straightforward to verify that Ax is substitutable. One possible tie-breaking is

A′x({1, 2, 3, 4}) = {3, 4}
A′x({1, 2, 3}) = {2, 3}
A′x({1, 2, 4}) = {1, 2}
A′x({1, 3, 4}) = {1, 3}
A′x({2, 3, 4}) = {2, 4}

Suppose all students find both schools acceptable, students 1, 2, and 3 prefer x to y,

and student 4 prefers y to x. Then the deferred acceptance algorithm applied to these

preferences and the priority structure A′ results in:

µ =

(
1 2 3 4

1 x 3 x

)

46



Let us say an assignment µ is blocked by i and x if xPiµ(i), i /∈ µ−1(x), and i ∈ A
for all A ∈ Ax(µ−1(x) ∪ {i}).

First note that µ is not stable with respect to A, because it is blocked by 1 and

x. As for A′, there does not even exist a stable assignment. In order to see this, note

that stability implies that both seats at x must be occupied because all students are

acceptable to x, and three students top rank x.

If 2 is not assigned to x, then there are three possibilities as to who ends up at x:

(i) 1 and 3; (ii) 1 and 4; or (iii) 3 and 4. However, according to the admission rule A′x,
all such assignments would be blocked by 2 and x. Thus 2 must be assigned to x. Now

there are three possibilities as to who ends up at x: (i) 2 and 1; (ii) 2 and 3; or (iii) 2

and 4. The first one is blocked by 3, the second one is blocked by 4, and the third one

is blocked by 1. ♦

Remark 4 A substitutable admission rule does not necessarily have a substitutable tie-

breaking.

Proof. Suppose a school x with two seats is facing five students 1, 2, 3, 4, 5. Omitting

irrelevant sets, its admission rule Ax is described as follows

Applicants Admissible subsets

{1, 2, 3, 4, 5} {1, 2}, {3, 5}, {4, 5}
{1, 3, 4, 5} {1, 4}, {3, 5}, {4, 5}
{2, 3, 4, 5} {2, 3}, {3, 5}, {4, 5}
{3, 4, 5} {3, 5}, {4, 5}
{1, 2, 4, 5} {1, 2}, {4, 5}
{1, 2, 3, 4} {1, 2}, {1, 3}, {2, 4}
{1, 2, 4} {1, 2}, {2, 4}
{1, 2, 3, 5} {1, 2}, {3, 5}
{1, 2, 3} {1, 2}, {1, 3}

It is straightforward to verify that A is acceptant and substitutable. Now, let f be a

tie-breaking of Ax, i.e., f(S) ∈ Ax(S) for all S ⊆ N = {1, 2, 3, 4, 5}. There are three

possibilities for f(N), namely {1, 2}, {3, 5}, or {4, 5}.
(1) If f(N) = {1, 2}, then substitutability of f would imply

f({1, 3, 4, 5}) = {1, 4} and f({2, 3, 4, 5}) = {2, 3}
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Again, appealing to substitutability of f , we must have

f({3, 4, 5}) = {3, 4}

which contradicts with the fact that A({3, 4, 5}) = {{3, 5}, {4, 5}}.
(2) If f(N) = {3, 5}, then substitutability of f would imply

f({1, 2, 4, 5}) = {4, 5} and f({1, 2, 3, 4}) = {1, 3}

Again, appealing to substitutability of f , we must have

f({1, 2, 4}) = {1, 4}

which contradicts with the fact that A({1, 2, 4}) = {{1, 2}, {2, 4}}.
(3) If f(N) = {4, 5}, then substitutability of f would imply

f({1, 2, 3, 4}) = {2, 4} and f({1, 2, 3, 5}) = {3, 5}

Again, appealing to substitutability of f , we must have

f({1, 2, 3}) = {2, 3}

which contradicts with the fact that A({1, 2, 3}) = {{1, 2}, {1, 3}}. ♦

Remark 5 A PSIC might not preserve stability, even when each student in the cycle

can replace the next one while preserving stability.20

Proof. Let N = {i1, i2, i3, i4, i5}. Suppose we have two schools x and y with qx = 2,

qy=2. Students’ preferences are:

Ri1 Ri2 Ri3 Ri4 Ri5

x y x y x

y x y x

Consider the admission rules Ax and Ay implied, respectively, by %x and %y below:

%x %y

{i2, i4} {i1, i2}, {i1, i3}, {i2, i4}, {i3, i4}
{i1, i4}, {i2, i3}, {i2, i5}, {i4, i5} {i1, i4}, {i2, i3}

{i1, i5}, {i3, i5} the rest

{i1, i2}, {i1, i3}, {i3, i4}
20This is in contrast with the case of responsive priorities studied in Erdil and Ergin (2008).
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The priority structure is acceptant and substitutable. It is straightforward to verify that

µ =

(
i1 i2 i3 i4 i5

y x y x i5

)

is stable.

Now, consider the following cycle

i1 → i2 → i3 → i4 → i1,

in which each student can replace the next, because

{i1, i4} ∈ Ax({i1, i3, i4, i5})⇒ i1 ∈ Eµ
i2

{i1, i2} ∈ Ay({i1, i2, i4})⇒ i2 ∈ Eµ
i3

{i2, i3} ∈ Ax({i1, i2, i3, i5})⇒ i3 ∈ Eµ
i4

{i3, i4} ∈ Ay({i2, i3, i4})⇒ i4 ∈ Eµ
i1
.

Carrying out the above cycle yields the assignment

ν =

(
i1 i2 i3 i4 i5

x y x y i5

)

which clearly Pareto dominates µ. However, ν is not stable, because Ax({i1, i3, i5}) =

{{i1, i5}, {i3, i5}}, so (x, i5) blocks ν. In fact, µ is constrained efficient. Note that the

only Pareto improvements over µ are the following:

µ1 =

(
i1 i2 i3 i4 i5

x y y x i5

)

Ay({i2, i3, i4}) = {{i2, i4}, {i3, i4}}, so (b, i4) blocks µ1.

µ2 =

(
i1 i2 i3 i4 i5

x x y y i5

)

Ax({i1, i2, i3}) = {{i2, i3}}, so (x, i3) blocks µ2.

µ3 =

(
i1 i2 i3 i4 i5

y y x x i5

)
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Ax({i1, i3, i4}) = {{i1, i4}}, so (x, i1) blocks µ3.

µ4 =

(
i1 i2 i3 i4 i5

y x x y i5

)

Ay({i1, i2, i4}) = {{i1, i2}, {i2, i4}}, so (y, i2) blocks µ4.

ν =

(
i1 i2 i3 i4 i5

x y x y i5

)

ν is not stable as pointed out before. Hence, no stable assignment Pareto dominates µ,

so µ is constrained efficient. ♦

Remark 6 When priorities are allowed to be substitutable, the stable improvement cy-

cles as defined in Erdil and Ergin (2008) do not capture every stability preserving Pareto

improvement.

Proof. Let x, y, z, w be distinct schools with qx = qy = 2 and qz = qw = 1. We have

six students: i, j, ki, kj, `i, `j and an assignment µ:

µ =

(
i j ki kj `i `j

x x y y w z

)
.

The priority structure is such that

Ax({`i, `j, i, j}) = {{i, j}} Ax({`i, `j, j}) = {{`i, j}} Ax({`i, `j, i}) = {{`j, i}}

and

Ay({ki, kj, i, j}) = {{ki, kj}} Ay({i, j, ki}) = {{i, ki}} Ay({i, j, kj}) = {{j, kj}}

Suppose the preferences R are as below, where the boxes indicate the respective students’

assignments under µ:

Ri Rj Rki Rkj R`i R`j

y y w z x x

x x y y w z

With these preferences, µ is stable with respect to A, but obviously, letting each student

get their most preferred school preserves stability, while Pareto improving over µ. Can
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Figure 2: These cycles of schools are the only candidates for stable improvement cycles in the

sense of Erdil and Ergin (2008).

this improvement be achieved through Erdil and Ergin’s stable improvement cycles?

The only “candidates” for such cycles are shown in Figure 2.

However, none of these cycles preserves stability. The first cycle fails to preserve

stability, because Ax({`i, `j, j}) = {{`i, j}}, and thus `j cannot replace i at school x.

The second cycle also fails to preserve stability, because Ay({i, j, kj}) = {{j, kj}}, and

therefore i cannot replace ki. Likewise, the third one fails, because j cannot replace kj

at y, while for the fourth one `i cannot replace j at x.

On the other hand, if all of the students were to move to their favorite schools at

the same time, the resulting assignment would be stable. We can express this stability

preserving move as the following cycle of students (as opposed to a cycle of schools21 as

in Erdil and Ergin, 2008):

i→ kj → `j → j → ki → `i → i

which features schools x and y twice each as opposed to a stable improvement cycle (as

in Erdil and Ergin, 2008) which insists on schools being distinct.22 ♦

Remark 7 Let A be an acceptant, substitutable and consistent priority structure. For

all preference profiles, all constrained efficient assignments are efficient if and only if

21Note that this example does not rely on ties.
22Note that this example does not rely on ties.
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A does not have any generalized weak cycle, where we define a generalized weak

cycle as a sequence of distinct schools x0, x1, . . . , xn−1 ∈ X, and distinct students

j, i0, i1, . . . , in−1 ∈ N with n ≥ 2 such that

(1) x` 6= x`+1 for ` ∈ {0, 1, . . . , n− 1} (with xn = x0),

(2) there exist mutually disjoint sets of students Sx0 , . . . , Sxn−1 ⊆ N\{j, i0, i1, . . . , in−1}
such that

(C)

j /∈ CAx0(Sx0 ∪ {i0, j})
j ∈ CAx0(Sx0 ∪ {in−1, j})
in−1 /∈ CAx0(Sx0 ∪ {i0, in−1})
in−2 /∈ CAxn−1(Sxn−1 ∪ {in−1, in−2})

...

i1 /∈ CAx2(Sx2 ∪ {i2, i1})
i0 /∈ CAx1(Sx1 ∪ {i1, i0})

(S) |Sx` | = qx` − 1 for ` = 0, 1, . . . , n− 1,

where CAx(S) = {i ∈ S | i ∈ S ′ for all S ′ ∈ Ax(S)}.

Proof. (⇐): Suppose, for a contradiction, that µ is constrained efficient, yet not

Pareto efficient. Of all the Pareto improvements over µ, let ν be one which has the least

number of students improving over µ. Denote by N ′ the set of students who are better

off under ν compared with µ:

N ′ = {i | ν(i)Piµ(i)}.

Denote by Eµj the set of students who envy the student j under µ:

Eµj = {` ∈ N | µ(j)P`µ(`)}.

Set E ′j to be the set of students in N ′ who envy j. That is,

E ′j = Eµj ∩N ′ = {` ∈ N ′ | µ(j)P`µ(`)}.

Since A is acceptant, µ must be non-wasteful, and therefore the reshuffling lemma23

applies, i.e., any Pareto improvement over µ is due to reshuffling of already assigned seats

23See Erdil (2014).
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between their recipients. Therefore if j ∈ N ′, that is, if j is part of an improvement, she

must receive someone else’s seat, whereas her seat must be reassigned to another person

who necessarily is also better off. In other words we have µ(j) ∈ ν(N ′). In particular,

µ(j) is desired by some student in N ′ under µ, and hence E ′j is nonempty. Because µ is

stable, we have

µ−1(µ(j)) ∈ Aµ(j)(Eµj ∪ µ−1(µ(j))).

Furthermore, E ′j ⊆ E
µ
j and A being substitutable imply that

µ−1(µ(j)) ∈ Aµ(j)(E ′j ∪ µ−1(µ(j))).

Removing j from the choice set, we conclude, again using substitutability, that µ−1(µ(j))\{j}
is a subset of a chosen element from E ′j ∪ [µ−1(µ(j))\{j}]. In other words

µ−1(µ(j))\{j} ⊆ S ′ for some S ′ ∈ Aµ(j)(E ′j ∪ [µ−1(µ(j))\{j}]).

Any such S ′ has exactly one element from E ′j, and let E ′j be the set of those elements:

E ′j =

{
`

∣∣∣∣∣ ` ∈ E ′j, and [µ−1(µ(j))\{j}] ∪ {`} = S ′

for some S ′ ∈ Aµ(j)(E ′j ∪ [µ−1(µ(j))\{j}])

}

Thus, E ′j is a nonempty subset of N ′ for each j ∈ N ′. Consider a directed graph

whose set of vertices is N ′. For each i ∈ E ′j, let there be a directed edge from i to

j. Therefore, every vertex in this graph has an incoming edge, and since it is a finite

graph, there must be a cycle. Since ν is Pareto improvement over µ which has the least

number of students improving, all students in N ′ is in a single cycle of the above graph.

Suppose this cycle consists of students i0, i1, . . . , in−1, in = i0, where n ≥ 2, and there is

an edge from i` to i`+1 for ` = 0, 1, . . . , n− 1. Denoting µ(i`) = x`, since i` envies i`+1,

we have x` 6= x`+1 for each `. In fact, these schools x0, . . . , xn−1 must be distinct, for

otherwise we would have a shorter cycle, which would give a Pareto improvement over

µ, involving a smaller number of students improving. To be more precise, if x0 = xk for

some k ≤ n− 1, then the cyclic trade which allows i` take x`+1 for ` = 0, . . . , k− 1, and

letting ik take x0 would lead to a Pareto improvement over µ. Since k < n, this would

contradict with the assumption that ν was the “smallest” improvement over µ. Since

µ(i`) = x`, the students i0, . . . , in−1 are necessarily distinct.
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The fact that µ is stable with respect to acceptant priorities implies that it is

non-wasteful. Since each x` is desired by some student at assignment µ, all seats at

these schools must be assigned under µ. Denoting Sx` = µ−1(x`)\{i`}, we know that

Sx0 , . . . , Sxn−1 are mutually disjoint subsets ofN\{i0, i1, . . . , in−1}, because x0, x1, . . . , xn−1

are distinct schools. Moreover we have

(1) |Sx` | = qx` − 1,

(2) in−1 /∈ CAx0(Sx0 ∪ {i0, in−1})
in−2 /∈ CAxn−1(Sxn−1 ∪ {in−1, in−2})

... (*)

i1 /∈ CAx2(Sx2 ∪ {i2, i1})
i0 /∈ CAx1(Sx1 ∪ {i1, i0})

because otherwise, if student i` were to be in CAx`+1
(Sx`+1

∪ {i`+1, i`}) for some `, then

we would have Sx`+1
∪ {i`+1} /∈ Ax`+1

(Sx`+1
∪ {i`+1, i`}), contradicting the fact that µ is

stable.

Let ω be the assignment derived from µ by letting the students i0, i1, . . . , in−1 ex-

change their schools along the improvement cycle suggested above. In other words,

ω(i) =

{
µ(i) i 6= i`

µ(i`+1) i = i`

ω Pareto dominates µ, whereas µ is constrained efficient, so ω is not stable. There-

fore the cyclic trade letting i` take µ(i`+1) for ` = 0, 1, . . . , n − 1, n ≡ 0 cannot be

preserving stability. All school priorities are acceptant, and the new assignment ω is

clearly individually rational. Therefore we know from Proposition 1 that there must be

a blocking pair involving one of these schools. Suppose that j and x0 form a blocking

pair for ω, so ω−1(x0) /∈ Ax(ω−1(x0) ∪ {j}). Then x0Pjω(j) and

j ∈ CAx0(ω−1(x0) ∪ {j}) = CAx0(Sx0 ∪ {in−1, j}). (**)

First, note that j 6= in−1, because ω(in−1) = x0Pjω(j). Secondly, j 6= i0, because

ω(i0)Pi0µ(i0) = x0, while x0Pjω(j). And lastly if j = ik for some k ∈ {1, . . . , n − 2},
then we have an envy cycle

i0 → i1 → · · · → ik → i0
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which would allow a Pareto improvement involving only k + 1 ≤ n − 1 students,

contradicting our earlier choice of a smallest Pareto improvement over µ. Thus j /∈
{i0, . . . , in−1}.

Furthermore, the fact that µ is stable implies

j /∈ CAx0(Sx0 ∪ {i0, j}), (***)

Thus, combining (*), (**), and (***), we have a generalized weak cycle

j /∈ CAx0(Sx0 ∪ {i0, j})
j ∈ CAx0(Sx0 ∪ {in−1, j})
in−1 /∈ CAx0(Sx0 ∪ {i0, in−1})
in−2 /∈ CAxn−1(Sxn−1 ∪ {in−1, in−2})

...

i1 /∈ CAx2(Sx2 ∪ {i2, i1})
i0 /∈ CAx1(Sx1 ∪ {i1, i0})

with |Sx`| = qx` − 1 for ` = 0, 1, . . . , n− 1.

(⇒): Let N , X, and q and A be given. Assume that A has a generalized weak

cycle, that is, there exist distinct schools x0, x1, . . . , xn−1 ∈ X and distinct students

j, i0, i1, . . . , in−1 ∈ N with n ≥ 2 such that

(1) x` 6= x`+1 for ` ∈ {0, 1, . . . , n− 1} (with xn = x0),

(2) there exist mutually disjoint sets of students Sx0 , . . . , Sxn−1 ⊆ N\{j, i0, i1, . . . , in−1}
such that

(C)

j /∈ CAx0(Sx0 ∪ {i0, j})
j ∈ CAx0(Sx0 ∪ {in−1, j})
in−1 /∈ CAx0(Sx0 ∪ {i0, in−1})
in−2 /∈ CAxn−1(Sxn−1 ∪ {in−1, in−2})

...

i1 /∈ CAx2(Sx2 ∪ {i2, i1})
i0 /∈ CAx1(Sx1 ∪ {i1, i0})

(S) |Sx` | = qx` − 1 for ` = 0, 1, . . . , n− 1.
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Consider the preference profile R where students in Sx0 , · · · , Sxn−1 , respectively, rank

x0, · · · , xn−1 as their top choice, and the preferences of j, i0, i1, · · · , in−1 are such that

x0PjjPj · · · , and x`+1Pi`x`Pi`i`Pi` · · · , for ` = 0, 1, . . . , n−1. Finally, let students outside

a generalized weak cycle prefer not to be assigned to any school. Consider the assignment

µ such that µ(j) = j and for each k` ∈ Sx`∪{i`} one has µ(k`) = x` for ` = 0, 1, . . . , n−1.

Now the only candidates for blocking pairs are (j, x0) and (i`, x`+1) for ` = 0, 1, . . . , n−1.

However, the generalized weak cycle conditions are such that j /∈ CAx0(Sx0 ∪ {i0, j})
and i` /∈ CAx`+1

(Sx`+1
∪ {i`+1, i`}) for ` = 0, 1, . . . , n− 1, ensuring that µ is stable.

Moreover, there is only one assignment that Pareto dominates µ, namely the as-

signment ν obtained from µ by letting i` be assigned to µ(i`+1) for ` = 0, 1, . . . , n − 1.

Since j ∈ CAx0(Sx0 ∪ {in−1, j}), x0Pjν(j) = µ(j) = j and ν−1(x0) = Sx0 ∪ {in−1}, the

assignment ν is not stable. Thus µ is constrained efficient, but not Pareto efficient.

♦
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