
Symmetric Circuits and
Model-Theoretic Logics

Gregory Wilsenach

University of Cambridge

This thesis is submitted for the degree of
Doctor of Philosophy

Peterhouse February 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Apollo

https://core.ac.uk/display/231904694?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

To my parents, grandparents, and brother.

Declaration

This thesis is the result of my own work and includes nothing which is the outcome of work
done in collaboration except as declared in the Preface and specified in the text. It is not
substantially the same as any that I have submitted, or, is being concurrently submitted
for a degree or diploma or other qualification at the University of Cambridge or any other
University or similar institution except as declared in the Preface and specified in the text. I
further state that no substantial part of my thesis has already been submitted, or, is being
concurrently submitted for any such degree, diploma or other qualification at the University
of Cambridge or any other University or similar institution except as declared in the Preface
and specified in the text. It does not exceed the prescribed word limit for the relevant Degree
Committee.

Gregory Wilsenach
February 2019

Acknowledgements

I would first like to thank my supervisor, Anuj Dawar. Anuj has been unendingly supportive
throughout my time in Cambridge, and has been both an incredible teacher and a wonderful
mentor. I am so lucky to have benefited from his seemingly unlimited patience and encour-
agement. I continue to be in awe of his keen insight and ability to clearly understand and
explain complex ideas. I am exceedingly grateful to have had Anuj as a supervisor.

I should also like to thank many people in my research group. I would like to mention:
Arno Pauly, Pengming Wang, Jannis Bulian, Danny Vagnozzi, Adam ó Conghaile, and
Abhisekh Sankaran. I would especially like to mention my long-suffering office mate, Mathew.
I have really enjoyed my meetings with Wied Pakusa, who is always both kind and eager to
teach. I am also very grateful to have met Joanna Ochremiak, Nathanael Fijalkow, Anupam
Das, and many others in the logic community.

I would like to thank the Gates Cambridge Trust for their financial support. I would also
like to thank the Gates Cambridge community more broadly. I have enjoyed getting to know
this wonderful group of people, and I hope to keep in contact in the years to come. I would
especially like to mention my friends from the Gates Room. So many late nights!

I would like to thank my college, Peterhouse, for their financial support and general
kindness. The MCR has been wonderful and I have thoroughly enjoyed my time.

I am so grateful for the incredible friends I have been fortunate enough to have here. I
would especially like to mention Amandla, Arif, Bhasi, Jon, Taskeen, and Tariq.

To my parents, grandparents, and brother, of course, without you all I certainly wouldn’t
be here. I owe everything to you.

Lastly, to Aulia, my partner, whose been so supportive and has been making trips to
Cambridge for what seems like forever in order to give me time to work. You have been so
patient and utterly wonderful. I will always be so grateful.

Abstract

The question of whether there is a logic that characterises polynomial-time is arguably the
most important open question in finite model theory. The study of extensions of fixed-point
logic are of central importance to this question. It was shown by Anderson and Dawar that
fixed-point logic with counting (FPC) has the same expressive power as uniform families of
symmetric circuits over a basis with threshold functions.

In this thesis we prove a far-reaching generalisation of their result and establish an
analogous circuit characterisation for each from a broad range of extensions of fixed-point
logic.

In order to do so we fist develop a very general framework for defining and studying
extensions of fixed-point logics, which we call generalised operators. These operators generalise
Lindström quantifiers as well as the counting and rank operators used to define FPC and
fixed-point logic with rank (FPR).

We also show that in order to define a symmetric circuit model that goes beyond FPC
we need to consider circuits with gates that are allowed to compute non-symmetric functions.
In order to do so we develop a far more general framework for studying circuits. We also
show that key notions, such as the notion of a symmetric circuit, can be analogously defined
in this more general framework. The characterisation of FPC in terms of symmetric circuits,
and the treatment of circuits generally, relies heavily on the assumption that the gates in
the circuit compute symmetric functions. We develop a broad range of new techniques and
approaches in order to study these more general symmetric circuit models.

As a corollary of our main result we establish a circuit characterisation of FPR. We also
show that the question of whether there is a logic that characterises polynomial-time can
be understood as a question about the symmetry property of circuits. We lastly propose
a number of new approaches that might exploit this new-found connection between circuit
complexity and descriptive complexity.

Table of contents

1 Introduction 1
1.1 A Logic for P? . 2
1.2 Symmetric Circuits and Fixed-Point Logic . 3
1.3 The Contributions and Structure of this Thesis 4
1.4 Previously Published Work . 6

2 Preliminaries 9
2.1 Basic Notation . 9
2.2 Group Theory . 10
2.3 Logic . 10

2.3.1 Vocabularies . 10
2.3.2 Structures . 11
2.3.3 First-Order Logic . 11
2.3.4 Assignments and Models . 12
2.3.5 Fixed-Point Logic . 13
2.3.6 Logics with a Number Sort . 13
2.3.7 Logics with Counting . 15
2.3.8 Logics with Rank . 16
2.3.9 Queries and Classes . 16
2.3.10 Interpretations . 17
2.3.11 Lindström Quantifiers . 18
2.3.12 Infinitary Logics . 18

2.4 Complexity Theory and Logic . 19
2.4.1 Basic Notions and Complexity Classes 19
2.4.2 Capturing Complexity Classes . 19
2.4.3 Vectorised Families of Quantifiers . 20

2.5 Circuits and Logic . 20
2.5.1 Boolean Functions . 20
2.5.2 Circuits . 21
2.5.3 Circuits on Structures and Symmetric Circuits 22

xii Table of contents

3 Generalised Operators 23
3.1 Structures with Number-Valued Functions . 24
3.2 Generalised Operators . 26
3.3 Many-Sorted Quantifiers . 41
3.4 Translating Formulas to Substitution Programs 44
3.5 Infinitary Logics . 51

4 Symmetric Circuits 53
4.1 Structured Functions and Symmetry . 54
4.2 Symmetric Circuits . 58
4.3 Limitations of Symmetric Bases . 66

5 Translating Formulas to Circuits 71

6 The Support Theorem 83
6.1 Supports and Supporting Partitions . 84

6.1.1 Group Action on Supports . 86
6.2 The Support Theorem . 87
6.3 Supports on Indexes . 92

7 Transparent Circuits 95
7.1 Tractable Properties of Transparent Circuits 96
7.2 The Necessity of Transparency . 108

8 Translating Circuits to Formulas 117
8.1 Defining a Structure at Each Gate . 118
8.2 Constructing a Formula . 126

9 The Main Result 135

10 Conclusions and Future Work 139
10.1 Summary and Discussion . 139
10.2 Future Work . 142

References 145

Index of Terminology 149

Chapter 1

Introduction

The P vs NP conjecture is arguably one of the deepest open problems in mathematics and
theoretical computer science. The class P can be informally understood to consist of all those
problems that are computationally “easy” to solve and the class NP all those problems with
the property that any potential solution is “easy” to verify for correctness. The conjecture is
that there exists a problem with the property that any potential solution is easy to verify
but the problem itself is hard to solve, i.e. is there problem in NP that is not in P?

The formal definitions of P and NP are given in terms of time-bounded Turing machines.
The class P consists of all those decision problems decidable by a polynomial-time bounded
deterministic Turing machine and the class NP consists of those problems with the property
that a certificate can be verified by a polynomial-time bounded deterministic Turing machine.
In order to prove this conjecture we would need to establish some useful characterisation of
polynomial-time decidability. The difficulty is that the given definition in terms of machine
models is hard to analyse and offers little insight.

There are numerous approaches to complexity theory that try to avoid machine models
altogether. The field of descriptive complexity studies the expressive power of logics and
aims to classify complexity classes, or fragments of them, in terms of these logics. This
logical approach offers us some insight into what sort of “abstract machinery” is needed to
solve those problems in a class (e.g. do we need recursion, counting, etc.). The foundational
result in this field was proved by Fagin who established a characterisation of NP in terms
of existential second-order logic [18]. More formally, he showed that a class of structures is
definable in existential second-order logic if, and only if, the corresponding decision problem
is in NP. Fagin’s theorem has led to similar logical characterisations for a variety of other
complexity classes, such as coNP, PH, PSPACE, and EXP [32]. The question of whether
there is a similar logical characterisation for polynomial-time is arguably the single most
important open problem in descriptive complexity.

2 Introduction

1.1 A Logic for P?

The question of whether there is a logic for polynomial-time was originally posed in database
theory in a slightly different form. In response to the observation that many standard query
languages could not express every polynomial-time decidable query, Chandra and Harel [10]
asked whether there exists a recursive enumeration of those classes of structures decidable in
polynomial-time. This was later reformulated by Gurevich [26] in descriptive complexity as
the question of whether there is a logic that decides exactly those classes of structures that
can be decided in polynomial time (with some computational caveats). In this case we say
that the logic captures polynomial-time.

The search for a logic that captures P has focused on extensions of first-order logic (FO).
It can be shown that each class of structures definable in FO is decidable in polynomial-time.
However, it is also easy to show that FO cannot decide the class of structures with an
even size domain or the class of connected graphs, both of which are obviously decidable
in polynomial-time. Fixed-point logic (FP) extends FO with a mechanism for recursively
defining a predicate. This allows FP to define, for example, the transitive closure of a relation.
It follows that FP can decide the class of connected graphs and so the expressive power of
FP properly extends FO. Moreover, it was shown by Immerman and Vardi [30, 42] that
FP captures polynomial-time on the class of ordered structures. In other words if a class of
structures C is polynomial-time decidable and is defined over a vocabulary including a binary
symbol ≤ that is always interpreted as a linear order then C is definable in FP. However,
despite these strengths, FP cannot define the class of even size structures.

Immerman [31, 30] proposed extending FP in order to add mechanisms for reasoning
about quantities and for defining the cardiniality of a definable set. This extension is called
fixed-point logic with counting (FPC) and it has become one of the most well-studied logics
in descriptive complexity. It has been shown that FPC captures polynomial-time over a
number of natural graph classes (e.g. [23, 25]) and, most generally, it was shown by Grohe
that FPC captures polynomial-time over any class of graphs defined by excluded minors [24].
In fact, it was shown by Hella et al. [28] that FPC captures polynomial-time on “almost all
structures” in some precise sense. The centrality of FPC has led to it being considered the
logic of reference in the search for a logic for P [12].

Despite this, it was shown by Cai, Fürer, and Immerman [9] that FPC does not capture
polynomial-time. Their proof involved constructing a class of graphs for which the isomor-
phism problem is polynomial-time decidable but not expressible in FPC. This construction
has become standard and has spawned numerous variants that have been used to establish
other inexpressibility results (e.g. [22, 29]). It was shown by Atserias et al. [5] that in each
of these cases the problem can be reduced to a question about the solubility of a system of
linear equations over a finite field.

1.2 Symmetric Circuits and Fixed-Point Logic 3

This observation led Dawar et al. [13] to introduce fixed-point logic with rank. This logic
is defined by extending FP with a family of rank operators each of which define the rank of a
definable matrix over a particular finite field. It was shown by Grädel and Pakusa [22] that
this logic does not capture polynomial-time, and they proposed an alternative formulation
with a single rank operator that takes a prime as a parameter. We call this logic FPR. Since
FPR can express the rank of a matrix, and hence the solubility of systems of linear equations
over finite fields, the usual variants of Cai, Fürer, and Immerman, cannot be used to separate
FPR from P. It remains an open question whether FPR captures all of polynomial-time and,
given the inapplicability of standard graph constructions, new approaches are needed.

1.2 Symmetric Circuits and Fixed-Point Logic

The field of circuit complexity similarly avoids machine models and attempts to address
complexity-theoretic questions by framing them in terms of Boolean circuits. A Boolean
circuit is a directed acyclic graph with a designated set of input gates each labelled by a
variable, with all other gates labelled by the elements from some basis, and with a designated
output gate. The basis is often taken to consist of the familiar Boolean functions AND,
OR and NOT. We call this basis the standard basis. A circuit with n input gates defines a
function f : {0, 1}n → {0, 1} for each input x⃗ ∈ {0, 1}n by setting the input gates in accord
with x⃗ and then recursively evaluating the gates of the circuit.

It can be shown that the behaviour of any algorithm on inputs of a fixed size can be
described by a Boolean circuit. The behaviour of an algorithm on arbitrary size inputs
can thus be characterised by a family of circuits (Cn)n∈N, where each Cn describes the
computation for inputs of size n. This description of an algorithm exposes the combinatorial
structure of the computation being performed, and offers means of proving impossibility
results. This approach has yielded numerous lower bounds for circuit families of bounded
depth [19, 40] and restricted monotone gates [2].

We can instead consider circuits that take structures as input, rather than strings. In
this case the input gates of the circuit are labelled by the potential elements of the relations
of a structure. For example, a circuit that takes as input a directed graph of size n has
n2 input gates each labelled by some (i, j) ∈ [n]2. For a particular graph the input gate
labelled by (i, j) is set to one if, and only if, there is an edge between the vertices i and j

in the graph. We say a circuit is invariant if the function it computes in invariant under
isomorphism. It can be shown that a class of structures is decidable in polynomial-time
if, and only if, it is definable by a polynomially-uniform family of invariant circuits. We
recall that a family of circuits (Cn)n∈N is polynomially-uniform (or P-uniform) if the function
n 7→ Cn is computable in time polynomial in n.

We say a circuit C is symmetric if any permutation on the n elements extends to an
automorphism of C. This is intended to formalise the notion of a circuit that is not just

4 Introduction

invariant, but whose structure ensures isomorphism-invariance at each step. The restriction
to symmetric circuits arises naturally in the study of logics and has appeared previously
under the names “regular circuits” in the work of [17] and “explicitly symmetric circuits” in
the work of Otto [39]. In particular, there is a natural way of translating any formula in FO
or FP into an equivalent polynomially-uniform family of symmetric circuits[32]. Similarly,
the formulas in FPC can be translated to polynomially-uniform families of symmetric circuits
over the extension of the standard basis with threshold functions [32]. In this way we can
think of the formulas in these logic as defining inherently symmetric algorithms.

Anderson and Dawar [3] showed that, in fact, these families of symmetric circuits are
exactly characterised by these logics. In particular, they showed that a class of structures is
definable by a polynomially-uniform family of symmetric circuits defined over the standard
basis with threshold functions if, and only if, it is definable in FPC. They also establish a
similar characterisation for the extension of FP with a number sort in terms of symmetric
circuits defined over the standard basis. These results establish an interesting relationship
between two well-known fields in complexity theory and allow us to understand inexpressibility
results for logics as lower-bounds for symmetric circuits.

1.3 The Contributions and Structure of this Thesis

The computational power of polynomially-uniform families of invariant circuits is the same
no matter if we consider circuits defined over the standard basis or over the basis with
threshold functions. In contrast, it follows from the characterisations given by Anderson
and Dawar that the choice of basis does affect the expressive power of families of symmetric
circuits. In this thesis we study a generalisation of the usual notion of a symmetric circuit
that allows for circuits to be defined over a much broader range of bases. We establish a
far-reaching generalisation of the characterisation of FPC and show that any from a large
class of extensions of fixed-point logic can be characterised by families of symmetric circuits
over an appropriate basis. Importantly, previous circuit characterisations (including those
in [3] and [39]) rely fundamentally on the assumption that the circuits are defined over a
basis of symmetric Boolean functions. This assumption is not particular to them, but is
pervasive in circuit complexity (see [43, 33]). In order to prove this characterisation in a
more general setting we first need to develop an entirely novel framework for circuits. We
now give a brief overview of the approach taken in this thesis.

We first develop a general framework for defining and studying extensions of model-
theoretic logics. We note that while there is a general notion of a quantifier by Lindström
that generalises the usual existential and universal quantifiers, there is no corresponding
notion of operators that generalises the counting or rank operators. In Chapter 3 we develop
a framework of generalised operators and show that both counting and rank operators can
be defined in this framework. In Chapter 4 we discuss symmetric circuits. We begin by

1.3 The Contributions and Structure of this Thesis 5

discussing a crucial, and often unstated, assumption imposed by the structure of a circuit. In
particular, since a circuit is a directed acyclic graph, there is no structure imposed on the
inputs of any internal gate. It follows that, in order to ensure unambiguous evaluation of any
gate, the basis must be comprised of symmetric functions, i.e. functions invariant under any
permutation of the input string. We also show in Chapter 4 that any polynomially-uniform
family of symmetric circuits over a basis of symmetric functions can only express queries in
FPC.

As such, in order to extend these circuit characterisations and go beyond FPC, we need
to be able to define symmetric circuits over bases that include non-symmetric functions. This
requires developing a general framework of structured functions. These functions, while not
necessarily symmetric, can be associated with an appropriate weaker notion of symmetry.
We show that any set of generalised operators defines a corresponding basis of structured
functions. We generalise the notion of a Boolean circuit in order to allow for bases of
structured functions. We correspondingly generalise the important symmetry-related notions.

While we do generalise many of the important results proved by Anderson and Dawar [3],
the proof methods they use crucially rely on the symmetry assumption on the basis functions.
In Chapter 4 we discuss this point and note that many algorithmic properties of symmetric
circuits do not hold in our more general setting (unless the graph-isomorphism problem is in
polynomial-time). We introduce the notion of a transparent circuit and, in order to ensure
these algorithmic properties hold, we restrict our attention to transparent circuits.

We earlier discussed the fact that there is a standard approach for translating formulas
from fixed-point logic to polynomially-uniform families of symmetric circuits. However, this
translation does not, in general, produce transparent symmetric circuits. In Chapter 5 we
present a new, more technically involved, translation that takes formulas in an extension of
fixed-point logic to polynomially-uniform families of transparent symmetric circuits.

The translation in [3] from families of symmetric circuits to FPC relies on the support
theorem. This result establishes that for any polynomial-size family of symmetric circuits
there exists k ∈ N such that for every gate g in the symmetric circuit Cn (the circuit in the
family that takes n-size input structures) there exists a set X ⊆ [n] such that |X| ≤ k and
any permutation that fixes X pointwise extends to a permutation that fixes g. In order to
establish a translation from our more general symmetric circuits to extensions of fixed-point
logic we similarly need a support theorem. However, Anderson and Dawar’s proof uses in an
essential way the fact that the functions computed at each gate in the circuit are symmetric.
In Chapter 6 we develop new machinery in order to overcome this difficulty and prove the
support theorem in our more general setting. We also define a group action on the labels
introduced in our more general circuit model and show that the support theorem can be
extended so as to apply to these labels as well.

In Chapter 7 we establish that a number of circuit properties (e.g. the orbits, the action
of an automorphism, etc.) are polynomial-time decidable for transparent circuits. We

6 Introduction

prove that many of these properties are at least as hard to decide over arbitrary circuits as
the graph-isomorphism problem. We use these observations to motivate the restriction to
transparent circuits.

Finally, with all of the tools in place, in Chapter 8 we formally prove the translation
from polynomially-uniform families of transparent symmetric circuits to extensions of fixed-
point logic, and hence complete the characterisation. The approach taken by Anderson and
Dawar [3] makes crucial use of the symmetry of the functions computed by the gates in
the circuit. To be precise, they use the fact that to evaluate a gate g it suffices to count
the number of inputs to g that evaluate to true and the fact that for each gate g there is a
bijection between the orbit of a g and the set of assignments from the universe of the input
structure to the support of g. In our more general context counting the number of true inputs
does not suffice to determine the evaluation of a gate. We develop a novel approach that
allows us to recursively define the structure on the inputs of each gate, which can then be
used to recursively evaluate the gates in the circuit. This new approach requires developing
a complete new set of technical tools.

In Chapter 9 we state and prove the main result formally and discuss a few specific cases
and corollaries.

1.4 Previously Published Work

The mathematical content presented in many of the chapters in this thesis is based on work
done in collaboration with Anuj Dawar. The work done with Anuj Dawar concerned the
special case of transparent symmetric circuits defined over an extension of the standard basis
with rank threshold gates, and established a characterisation FPR in terms of polynomially-
uniform families of these circuits. The main result of this thesis is far more general and
establishes circuit characterisations for extensions of fixed-point logic by a very broad range of
operators. However, there are many theorems and ideas that carry over to our more general
setting and are presented in this thesis. The work done with Anuj Dawar was presented at
the 27th annual EACSL conference in Computer Science Logic [16]. A more complete version
of this paper is available as a preprint [15]. We briefly describe the relationship between
these papers and the work in this thesis.

The work in Chapter 3 is not contained in any of these papers. With the exception of the
discussion of generalised operators and bases, most of Chapter 4 is based on work presented
in [15]. The translation from formulas to circuits in Chapter 5 is structurally similar to the
corresponding translation in [15], but the approach presented here differs significantly. It
also establishes a translation for a broad range of extensions of fixed-point logic, not just
FPR. The proof of the support theorem in Chapter 6 is similar to the proof of the support
theorem in [15], but with some changes in notation and in some of the preceding lemmas.
The results in Chapter 7 are all closely based on work presented in [15]. The translation from

1.4 Previously Published Work 7

circuits to formulas in Chapter 8 uses similar ideas as the corresponding translation in [15],
but the translation presented here is far more general and is suited to a much broader range
of circuits.

Chapter 2

Preliminaries

In this chapter we provide a brief introduction to the relevant background material from
mathematical logic, complexity theory, and algebra. We also define terms and introduce
notation that will be used throughout this thesis. These definitions are, for the most part,
considered standard. The more expert reader may prefer to refer back to this chapter as
needed. We refer the reader to the following sources [31, 20, 29] for a more detailed discussion
of many of the topics briefly introduced here.

2.1 Basic Notation

Let N = {1, 2, . . .} and N0 = {0, 1, 2, . . .} be the positive and non-negative integers, respec-
tively. For each a, b ∈ N0 let [a, b] := {x ∈ N0 : a ≤ x ≤ b}. For each n ∈ N0 let [n] = [1, n]
and let [n]0 = [0, n].

Let X be a set and k ∈ N. A k-tuple in X is a function v⃗ : [k] → X. We denote v⃗ by
v⃗ = (v1, . . . , vk) where for each i ∈ [k], vi = v⃗(i). We abuse notation and write x ∈ v⃗ if, and
only if, there exists i ∈ [k] such that v(i) = x. We let |v⃗| = |Dom(v⃗)| and call |v⃗| the length
of v⃗. If v⃗ = (v1, . . . , vn) and u⃗ = (u1, . . . , um) are tuples we write v⃗ ∪ u⃗ to denote the set
{v1, . . . , vn, u1, . . . , um}.

Let X and Y be sets. If X ⊆ Y we write idX to denote the identity function idX : Y →
{0, 1} defined for all x ∈ Y such that idX(x) = 1 if, and only if, x ∈ X. We say that a
relation R ⊆ X × Y is trivial if R = X × Y . We write XY to denote the set of all functions
from Y to X and XY to denote the set of injections in XY . For k ∈ N0 we write Xk to
denote X [k] and Xk to denote the set of injections from [k] to X. If a relation R ⊆ Xk for
some k ∈ N0 we say that R has arity k and say that R is a k-ary relation. If R is a 0-ary
relation we say that R is a nullary relation. We similarly say that a function f : Xk → X

has arity k and call f a k-ary function. If f is a 0-ary function we call f a nullary function.
If f : X → Y is a function and ≈ is an equivalence relation on Y we write f/≈ to denote the

10 Preliminaries

function f/≈ : X → Y/≈ defined such that f/≈(x) = [f(x)] for all x ∈ X. We write P(X) to
denote the powerset of X.

2.2 Group Theory

We assume a some basic knowledge of group theory. For an introduction to group theory
please see [41]. We now review some group-theoretic notation that will be used in this thesis.

Let X be a set. We write SymX to denote the symmetric group on X. For n ∈ N we
write Symn to abbreviate Sym[n]. If G and H are groups we write H ≤ G to denote that
H is a subgroup of G.

Let G be a group. Let X be a set on which a group action of G is defined. For
S ⊆ X let StabG(S) := {σ ∈ G : ∀x ∈ S , σx = x} be the (pointwise) stabiliser of
S with respect to G. We can lift the action of G on X to an action on the powerset
of X by letting σS := {σx : x ∈ S} for each σ ∈ G and S ⊆ X. For S ⊆ X let
SetStabG(S) := StabG({S}) = {σ ∈ G : σS = S} be the set-wise stabiliser of S with
respect to G. Let OrbG(S) := {σS : σ ∈ G} be the orbit of S with respect to G. If S is
a singleton we omit the set braces, e.g. we write StabG(x) for StabG({x}). If G = Symn

for some n ∈ N we replace the subscript with the number n, e.g. we write Orbn(x) for
OrbSymn

(x), and if the group G is obvious from context we omit the subscript entirely.

2.3 Logic

In this section we introduce some of basic concepts and notion from mathematics generally
and finite model theory in particular.

2.3.1 Vocabularies

A vocabulary τ is a set of relation and function symbols. Each relation or function symbol
T in τ is associated with number arty(T) ∈ N0 called the arity of the symbol. We write
τ = (R,F) where R is a set of relation symbols and F is a set of function symbols to denote
the vocabulary consisting of those symbols in R and F . We usually denote a relation symbol
by R and a function symbol by F . We denote the arity of a relation symbol R by rR and
the arity of a function symbol F by fF . If a relation or function symbol has arity 0 we say
it is a nullary symbol. We call a nullary function symbol a constant symbol. We often use
lower case letters to denote constant symbols. We say that a vocabulary τ is relational if
every symbol in τ is a relation symbol. Unless otherwise stated we assume all vocabularies
are finite. A many-sorted vocabulary τ is a sequence (R,F ,S, ζ) where R is a set of relation
symbols, F a set of function symbols, S a set of sort symbols, and ζ is a function that maps
each symbol T ∈ R ∪ F to a tuple ζ(T) ∈ Sarty(T). We call the tuple ζ(T) the type of T .

2.3 Logic 11

We say τ is relational if F = ∅. We call a set X a τ -set if X = ⊎s∈SXs where each Xs is a
non-empty set. In other words X is a τ -set if X is the universe of some τ -structure. We can
view a vocabulary as a many-sorted vocabulary with a single sort.

2.3.2 Structures

Let τ = (R,F) be a vocabulary. A τ -structure A = (A, (RA)R∈R, (FA)F∈F) consists of a
non-empty set A called the domain or universe of A together with relations RA ⊆ ArR for
each R ∈ R and functions FA : AfF → A for each F ∈ F . The size or cardinality of A is the
cardinality of the universe A and is denoted by |A|. We write U(A) to refer to the universe of
A. We use A,B, . . . to denote structures and A,B, . . . to denote their universes, respectively.
We write fin[τ] to denote the set of all finite τ -structures. For n ∈ N we write fin[τ, n] to
denote the set of all finite τ -structures of size n. For a finite set A we write fin[τ,A] to denote
the set of τ -structures with universe A. In this thesis all structures are assumed to be finite
unless explicitly stated otherwise.

Let τ = (R,F ,S, ζ) be a many-sorted vocabulary. A τ -structure

A = (
⊎
s∈S

As, (RA)R∈R, (FA)F∈F)

is defined such that for each s ∈ S we have that As is a non-empty set, for each R ∈ R we have
RA ⊆ Aζ(R)(1) × . . .×Aζ(R)(rR), and for each F ∈ F we have FA : Aζ(F)(1) × . . .×Aζ(F)(fF) →
A.

For a relational vocabulary (many-sorted or otherwise) τ and a τ -set X the complete
structure on X is the τ -structure with universe X and each relation being trivial. We denote
this structure by Kτ,X .

2.3.3 First-Order Logic

Let τ = (R,F) be a vocabulary. First-order logic (FO) is defined as follows. The set of
FO[τ]-terms is the smallest set containing all (first-order) variables and such that if F ∈ F
and t1, . . . , tfF are terms then F (t1, . . . , tfF) is a term. The set of FO[τ]-formulas is the
smallest set containing the atomic formulas s1 = s2 and R(t1, . . . , trR) where R ∈ R and
s1, s2, t1, . . . , trR are FO[τ]-terms, and is closed under taking conjunctions, disjunctions as
well as under applications of universal and existential quantifiers. Let FO[τ] be the set of
FO[τ]-formulas.

We use lower-case letters x, y, . . . to denote first-order variables. We also allow for first-
order formulas that contain second-order variables. We use upper-case letters V,W,X, Y, . . .
to denote second-order variables. Each second-order variable V is associated with an arity
arty(V) ∈ N0. We write free(ϕ) denote the free variables of the FO-formula ϕ. Let x⃗ be a
vector of first-order variables and V⃗ a vector of second-order variables. We write ϕ(x⃗; V⃗)

12 Preliminaries

to denote that the free first-order variables that appear free in ϕ are among x⃗ and the
second-order variables that appear free in ϕ are among V⃗ . We always assume that the
variables in a sequence of first-order or second-order variables are distinct.

The width of a formula ϕ is the maximum number of variables that appear free in any
particular subformula of ϕ. We write cl(ϕ) to denote the set of all subformulas of ϕ. For a
more careful definition of these terms see [36]

In this chapter we define a number of extensions of fixed-point logic. The notation used
here extends to these logics as well.

2.3.4 Assignments and Models

Let τ be a vocabulary and let A be a τ -structure. We say α is an assignment in A if α is a
function with domain X, where X is a set of first-order and second-order variables, and is
such that for each first-order variable x ∈ X we have α(x) ∈ A and for each second-order
variable V ∈ X we have α(V) ⊆ Aarty(V). If we would particularly like to emphasise the
domain of α we instead say that α is an assignment to X in A. For a sequence of variables
x⃗ = (x1, . . . , xn) and a sequence (a1, . . . , an) in A we write a⃗

x⃗ to denote the assignment that
maps xi to ai for each i ∈ [n]. For an assignment α with domain X we let α a⃗x⃗ denote the
assignment with domain X ∪ x⃗ such that if y = xi for some i ∈ [n] then y is mapped to ai
and otherwise y is mapped to α(y).

Let L be a logic. Let A be a τ -structure and let α be an assignment in A. We write
A |=L ϕ[α] to denote that A satisfies ϕ under the assignment α. This definition, of course,
depends on the particular logic chosen. If the logic is obvious from context we omit the
subscript and just write A |= ϕ[α].

Let ϕ(x⃗; V⃗) be a formula where x⃗ = (x1, . . . xn) and V⃗ = (V1, . . . , Vm). For each i ∈ [n]
let ai ∈ A and for each j ∈ [m] let Rj ⊆ Aarty(Vj). We write A |=L ϕ[⃗a; R⃗] to abbreviate
A |=L ϕ[α] where α(xi) = ai for all i ∈ [n] and α(Vj) = Rj for all j ∈ [m].

Let ϕ(x⃗; V⃗) be a formula where x⃗ = (x1, . . . xn) and V⃗ = (V1, . . . , Vm). Let x⃗1 =
(xi1 , . . . , xik) be a subsequence of x⃗ and let x⃗2 = (xj1 . . . , xjl) be the subsequence of x⃗
consisiting of all those variables that do not appear in x⃗1. Let α be an assignment to x⃗1 ∪ V⃗

in A. Let ϕ(A,α) := {a⃗ ∈ Al : A |= ϕ[α a⃗
x⃗2]}. We write ϕA to denote ϕ(A,α) when α is the

empty function. We notice that if every free variable in ϕ appears in the domain of α then
ϕ(A,α) = {∅} if A |= ϕ[α] and otherwise ϕ(A,α) = ∅.

Let t(x⃗) be a term and α be an assignment to x⃗ in A. We write t(A,α) to denote the value
of t for the assignment α.

2.3 Logic 13

2.3.5 Fixed-Point Logic

In this thesis we are particularly interested in fixed-point logics and their extensions. We
now define the inflationary fixed-point of a formula. For a more detailed introduction please
see Libkin [36], Immerman [32], or Grädel et al. [20].

Let τ be a vocabulary. Let ϕ(x⃗;V) be a τ -formula where x⃗ is a k-ary tuple of first-order
variables and V is a k-ary second-order variable. Let A be a τ -structure and let α be an
assignment in A. We inductively define a sequence of k-ary relations as follows:

X0 := ∅

Xi+1 := Xi ∪ {a⃗ ∈ Ak : A |= ϕ[αa⃗
x⃗

Xi

V
]}.

We notice that if A has size n then for all j ≥ nk we have that Xj = Xnk . In other words,
this sequence converges to a limit after at most nk stages. Let ifp(A, α, ϕ) ⊆ Ak be the limit
of this sequence.

We now define (inflationary) fixed-point logic (FP). This logic is defined from FO by
extending formula formation rules with the following:

Let ϕ(x⃗;V) be an FP-formula where x⃗ is a k-ary tuple of first-order variables and V
is a k-ary second-order variable. Let t⃗ be a k-tuple of terms. Then [ifpV,x⃗ϕ](⃗t) is a
formula with free variables (free(ϕ) \ (x⃗ ∪ {V })) ∪

⋃
i∈[k] free(ti).

The semantics for FP is defined by extending the semantic rules of FO such that

A |= [ifpV,x⃗ϕ](⃗t)[α] if, and only if, (t(A,α)
1 , . . . , t

(A,α)
k) ∈ ifp(A, α, ϕ),

for any structure A and assignment α to X in A, where X is a set of variables containing all
variables that appear free in [ifpV,x⃗µ⃗ϕ](⃗t).

2.3.6 Logics with a Number Sort

In this subsection we define two-sorted extensions of first-order and fixed-point logic with a
number sort. For an a more detailed introduction please see [29, 38].

We first define first-order logic with a number sort (FON). This logic is a two-sorted
extension of FO. Let τ be a vocabulary that does not contain any symbol in {≤,+, ·, 0N , 1N}.
Each first-order variable in FON is either an element variable or a number variable. The
element variables range over the domain of the structure and the number variables over a
corresponding number domain. We use Latin lower-case letters x, y, . . . to denote element
variables and Greek lower-case letters µ, ν, . . . to denote number variables. The formulas
of FON may contain mixed-sort second-order variables. This means that each second-order

14 Preliminaries

variable V is associated with a type (k1, k2) ∈ N2
0 such that k1 + k2 is equal to the arity

of V . Let A be a τ -structure. We say that a function α is an assignment to X in A if X
is a set consisting of element and number variables and mixed-sort second-order variables
such that for all x ∈ X if x is an element variable then α(x) ∈ A, if x is a number variable
then α(x) ∈ [|A|]0, and for every second-order variable V ∈ X of type (k1, k2) we have
α(V) ⊆ Ak1 × [|A|]k2

0 .
We now give a brief description of the logic. Since the logic is two sorted there are two

sorts of terms, element terms (which we often just call terms) and number terms. The set of
element terms is equal to the set of FO[τ]-terms. We now define the set of number terms
recursively as follows. The constant symbols 0N and 1N are number terms. Each number
variable is an number term. If s and t are-number terms then s + t and s · t are number
terms. The FON[τ]-formulas are defined by extending the formula formation rules of FO
such that if ϕ is an FON-formula then ∀µϕ and ∃µϕ are FON[τ]-formulas and if s and t are
number terms then s = t and s ≤ t are FON[τ]-formulas.

The semantics of FON is defined by extending the semantic rules for FO as follows. Let
A be a τ -structure and α be an assignment in A. Let s be a number term. We now define
the semantics of s for a structure A and assignment α, which we denote by s(A,α), recursively
as follows. If s = 0N then s(A,α) = 0 and if s = 1N then s(A,α) = 1. If s is some number
variable µ then s(A,α) = α(µ). If ∗ ∈ {·,+} then if s = s1 ∗ s2 then s(A,α) = s

(A,α)
1 ∗ s(A,α)

2 . If
ϕ ≡ s = t then A |= ϕ[α] if, and only if, s(A,α) = t(A,α). If ϕ ≡ ∀µψ then A |= ϕ[α] if, and
only if, for every a ∈ [|A|]0 we have A |= ψ[α aµ]. If ϕ ≡ ∃µψ then A |= ϕ[α] if, and only if,
there exists a ∈ [|A|]0 such that A |= ψ[α aµ].

Remark 2.1. It follows from the above definition that the evaluation of a number variable
in a structure of size n is always an element of the set {0, . . . , n}. We can use sequences of
number variables in order to encode larger numbers in base n+ 1. With this in mind, when
defining a number term we often abuse notation and write µ⃗ to abbreviate Σi∈[|µ⃗|]µi(ϵ+ 1)i−1,
where ϵ is a number term evaluating to the size of the universe. For example, if t is a number
term we may write µ⃗ ≤ t to denote the formula ∃ϵ [∀λ (λ ≤ ϵ) ∧ ((Σi∈[|µ⃗|]µi · (ϵ+ 1)i−1) ≤ t)],
where ϵ is a number variable that does not appear free in t.

We now define fixed-point logic with a number sort (FPN). This logic is defined by
extending FON with a fixed-point operator in a similar way as we defined FP by extending
FO with a fixed-point operator. In this case we allow for mixed-sort second-order variables.
Given the central importance of this logic in this thesis we now explicitly define the inflationary
fixed-point of a formula with a number-sort and then formally define FPN.

Let τ be a vocabulary. Let ϕ(x⃗, µ⃗;V) be a τ -formula where x⃗ is a k1-ary tuple of element-
sort first-order variables, µ⃗ is a k2-ary tuple of number-sort first-order variables, and V is a
second-order variable with type (k1, k2). Let A be a τ -structure and let α be an assignment
in A. We inductively define a sequence of (k1 + k2)-ary relations as follows:

2.3 Logic 15

X0 := ∅

Xi+1 := Xi ∪ {(⃗a, m⃗) ∈ Ak1 × [|A|]k2
0 : A |= ϕ[αa⃗

x⃗

m⃗

µ⃗

Xi

V
]}.

Let N = nk1(n+ 1)k2 . We notice that if A is a structure of size n then for all j ≥ N we have
that Xj = XN . It follows that this sequence converges to a limit after at most nk steps. Let
ifp(A, α, ϕ) ⊆ Ak1 × [|A|]k2

0 be the limit of this sequence.
We now are now ready to formally define FPN. This logic is defined from FON by

extending formula formation rules with the following:

Let ϕ(x⃗, µ⃗;V) be an FPN-formula where x⃗ is a k1-length tuple of element-sort first-
order variables, µ⃗ is a k2-length tuple of number-sort first-order variables and, V is a
second-order variable of type (k1, k2). Let t⃗1 be a k1-tuple of element terms and t⃗2 be
a k2-tuple of number-terms. Let t⃗ be the concatenation of the tuples t⃗1 and t⃗2. Then
[ifpV,x⃗µ⃗ϕ](⃗t) is a formula with free variables (free(ϕ) \ (x⃗∪ µ⃗∪ {V })) ∪

⋃
i∈[k] free(ti).

The semantics for FPN is defined by extending the semantic rules of FO such that

A |= [ifpV,x⃗µ⃗ϕ](⃗t)[α] if, and only if, (t(A,α)
1 , . . . , t

(A,α)
k) ∈ ifp(A, α, ϕ),

for any structure A and assignment α to X in A, where X is a set of variables containing all
variables that appear free in [ifpV,x⃗µ⃗ϕ](⃗t).

2.3.7 Logics with Counting

In this subsection we briefly define logics with both a number-sort and a counting operator
that allows them to define the cardinality of a definable set. For a detailed introduction to
these logics please see [38].

We define fixed-point logic with counting (FPC) by extending FPN with the following
formula formation rule:

Let ϕ be an FPC-formula. Let x⃗ be a sequence of element variables and µ⃗ be a
sequence of number variables. Then #x⃗µ⃗ϕ is a number term with free variables
free(ϕ) \ (x⃗ ∪ µ⃗).

The semantics of FPC is defined by extending the semantic rules for FPN such that for a
number-term of the form s = #x⃗µ⃗ϕ, a structure A, and an assignment α to the free variables
of s in A we have

s(A,α) = |{(⃗a, m⃗) ∈ A|x⃗| × [|A|]|m⃗|
0 : A |= ϕ[αa⃗

x⃗

m⃗

µ⃗
]}|.

16 Preliminaries

We can define first-order logic with counting (FOC) from FON by similarly extending
FON with a counting operator. We omit the details here and direct the reader to [38] for a
more detailed discussion.

2.3.8 Logics with Rank

We define fixed-point logic with rank (FPR) by extending the formula formation rules of FPN

as follows:

Let η be an FPR-formula. Let x⃗ and y⃗ be sequences of element variables and let µ⃗ and
ν⃗ be sequences of number variables. Let π be a number term. Then rk[π][(x⃗µ⃗, y⃗ν⃗) η]
is a number term with free variables free(π) ∪ free(η) \ (x⃗ ∪ y⃗ ∪ µ⃗ ∪ ν⃗).

The semantics of FPR is defined by extending the semantic rules for FPN as follows. Let
s := rk[π][(x⃗µ⃗, y⃗ν⃗)ϕ] and let A be a structure and α be an assignment to the free variables
of s in A. If π(A,α) is not prime let s(A,α) = 0. Otherwise let p := π(A,α), I := A|x⃗| × [|A|]|µ⃗|

0 ,
J := A|y⃗| × [|A|]|µ⃗|

0 , and M : I × J → Fp be defined such that M (⃗am⃗, b⃗n⃗) = η(A,β) mod p

where β := α a⃗x⃗
m⃗
µ⃗
b⃗
y⃗
n⃗
ν⃗ for each a⃗m⃗ ∈ I and b⃗n⃗ ∈ J . Let s(A,α) be the rank of M understood as

a matrix over the finite field with characteristic p.
We can define first-order logic with rank by similarly extending the formula formation

rules of FON with rank operators as above.
We should note that this formulation of a rank logic is due to Grädel and Pakusa [22].

The first rank logic was introduced by Dawar et al. [13]. The logic they introduced was
defined by extending FPN by a family of rank operators each of which computed the rank
of the matrix over the field of characteristic p. In contrast the rank logic introduced here
extends FPN with a single rank operator that takes the characteristic as a parameter. It was
shown in [22] that FPR is strictly more expressive than the rank logic introduced by Dawar
et al. [13].

2.3.9 Queries and Classes

Let ρ be a vocabulary. Let C ⊆ fin[ρ]. We say that C is a class of structures if C is closed
under isomorphism, which means that for each A,B ∈ fin[ρ] if A ∈ C and A ∼= B then B ∈ C.
Let L be a logic and ϕ ∈ L[ρ].

Definition 2.2. (Query [20]) Let m ∈ N. Let ρ be a vocabulary. Let C be a class of
ρ-structures. An m-ary query on C is a function Q with domain C such that for each A

• Q(A) is an m-ary relation on A for each A ∈ C,
• Q is preserved under isomorphism, i.e. for each A,B ∈ C, if h : A → B is an isomorphism

then Q(B) = h(Q(A)).

2.3 Logic 17

A Boolean query on a class C is a mapping Q : C → {0, 1} that is preserved under isomorphism.
We can identify each Boolean query with a class of structures CQ := {A ∈ C : Q(A) = 1}.
We omit any mention of C when C = fin[ρ] or C is clear from context.

Let τ be a vocabulary and let ϕ be a sentence in τ . Let

Mod(ϕ) := {A ∈ fin[τ] : A |= ϕ}

be the class of (finite) models of ϕ. Let L be a logic. We say a class of structures C ⊆ fin[τ]
is L-definable if there exists ϕ ∈ L[τ] such that Mod(ϕ) = C. We say that an m-ary query
Q on τ -structures is L-definable if there exists ϕ(x⃗) ∈ L[τ] such that |x⃗| = m and for any
A ∈ fin[τ] we have Q(A) = {a⃗ ∈ Am : A |= ϕ[⃗a]}.

Let L1 and L2 be logics. We say that L1 is at least as expressive as L2 if every L2-definable
query is L1-definable. In this case we write L2 ≤ L1. If L1 ≤ L2 and L2 ≤ L1 we write
L1 ≡ L2.

2.3.10 Interpretations

Let L be a logic. Let ρ and τ be relational vocabularies and let w⃗ be a sequence of variables.
A L[ρ, τ]-interpretation with width k and parameters w⃗ is a sequence of L[ρ]-formulas
I := ⟨ϕD, ϕ≈, (ϕR)R∈ρ⟩ such that

• ϕD has free variables among (x⃗, w⃗) where x⃗ is a k-tuple of variables;
• ϕ≈ has free variables among (x⃗, y⃗, w⃗) where x⃗ and y⃗ are k-tuples of variables;
• for each R ∈ R the free variables in ϕR are among (x⃗R1 , . . . , x⃗RrR , w⃗) where for each
i ∈ [rR], x⃗Ri is a k-tuple of variables.

We call ϕD the domain formula and ϕ≈ the equality formula. Let A ∈ fin[ρ] and let α be an
assignment to w⃗ in A. Let B be a τ -structure. We say that I interprets B in (A, α) (and
write B = I(A, α)) if there exists a surjection h : (ϕD)(A,α) → B, called the coordinate map,
such that

• for all a⃗, b⃗ ∈ (ϕD)(A,α) we have

A |= ϕ≈[αa⃗
x⃗

b⃗

y⃗
] ⇐⇒ h(⃗a) = h(⃗b) and

• for all R ∈ ρ, i ∈ [rR], and a⃗i ∈ (ϕD)(A,α) we have

(⃗a1, . . . , a⃗rR) ∈ ϕ
(A,α)
R ⇐⇒ (h(⃗a1), . . . , h(⃗arR)) ∈ RB

We say that I(A, α) is defined if there exists a τ -structure B such that B = I(A, α). It follows
that I interprets B in (A, α) if, and only if, the binary relation ≈ defined by ϕ≈ is a congruence

18 Preliminaries

on the structure ((ϕD)(A,α), (ϕ(A,α)
R)R∈ρ) and there exists a function h : (ϕD)(A,α) → B such

that h is an isomorphism from the quotient structure ((ϕD)(A,α), (ϕ(A,α)
R)R∈ρ)/ ≈ to B.

2.3.11 Lindström Quantifiers

The generalised quantifiers introduced by Lindström provide a mechanism for studying
extensions of a logic that add the ability to express a particular query [37]. Let ρ be a

relational vocabulary. Let G be a class of ρ-structures. We associate G with a Lindström
quantifier QG . For a logic L the extension L(QG) is defined by extending the definition of L

with the following formula formation rule:

For each R ∈ ρ let ϕR be an L(QG)-formula and let x⃗R := (xR1 , . . . , xRrR) be a
sequence of variables. Let ϕD(x, w⃗) and ϕ≈(x, y, w⃗) be L(QG)-formulas. Then
QG [ϕD, ϕ≈][x⃗R ϕR]R∈ρ is an L(QG)-formula with free variables (free(ϕD) \ {x}) ∪
(free(ϕ≈) \ {x, y}) ∪

⋃
R∈ρ(free(ϕR) \ x⃗R).

The semantics of L(QG) is defined by extending the semantics of L such that for any finite
structure A and an assignment α in A we have that if I = ⟨ϕD, ϕ≈, (ϕR)R∈ρ⟩ then

A |= QG [ϕD, ϕ≈][x⃗R ϕR]R∈ρ[α] if, and only if, I(A, α) is defined and I(A, α) ∈ G

Example 2.3. Let ρ = {U} where U is a unary relation. Let i ∈ N and Gi be the class of
ρ-structures such that for all A ∈ fin[ρ], A ∈ Gi if, and only if, |UA| ≥ i. Then the Lindström
quantifier QGi is the counting quantifier usually denoted by ∃≥i. For an introduction to
counting quantifiers see [38].

2.3.12 Infinitary Logics

We also define infinitary logics. We direct the reader to [38] for a more detailed discussion
of these logics. For k ∈ N let FOk be the fragment of FO where each formula only use the
variables x1, . . . , xk. Let Lk be the closure of FOk under infinite conjunctions and disjunctions.
Let Lω := ⋃

k≤ω Lk.
We can define an extension for each of these finite-variable infinitary logics by counting

quantifiers. We let FO+C be the extension of FO with the counting quantifiers mentioned in
Example 2.3. For each k ∈ N let FO+Ck be the fragment of FO+C where each formula only
uses the variables x1, . . . , xk. Let Ck be the corresponding infinitary logic and let Cω be the
union of these logics.

There is an interesting relationship between these infinitary logics and fixed-point logics.
It can be shown that FP ≤ Lω [35] and FPC ≤ Cω (see [38] for details).

2.4 Complexity Theory and Logic 19

2.4 Complexity Theory and Logic

In this section we review common concepts in complexity theory and descriptive complexity
theory. We direct the reader to [4] for a more thorough introduction to complexity theory
and to [32] for a thorough introduction to descriptive complexity theory.

2.4.1 Basic Notions and Complexity Classes

We write P to denote the set of languages decidable by a deterministic Turing machine with a
polynomial bound on its running time. We write NP to denote the set of languages decidable
by a non-deterministic Turing machine with a polynomial bound on its running time.

2.4.2 Capturing Complexity Classes

We now review some basic definitions and results in descriptive complexity. We note that
there is a natural way of encoding a relational structure as a binary string. We first recall that
for each order on the vertices of a graph G there is a binary encoding of G by its adjacency
matrix. It follows that we can associate a graph G with the set of all possible encodings,
enc(G), one for each possible order on the vertices of G. For a class of graphs C we can define
a corresponding a language enc(C) := ∪G∈Cenc(G). This approach to encoding graphs can
be generalised in an obvious way to finite relational structures. For more details see [36]. In
this way we can define for each class of relational structures C over a relational vocabulary ρ
a language enc(C) ⊆ {0, 1}∗. We say that C is in P if enc(C) ∈ P.

We will formally state the question of whether there is a logic for P. In order to do so we
need a formal definition of a logic.

Definition 2.4. A logic L consists of:

• a decidable set L[ρ], whose elements we call L-sentences, for each relational vocabulary
ρ; and

• a binary relation |=L between finite structures and L-sentences such that for each
vocabulary ρ and each ϕ ∈ L[ρ] the set {A ∈ fin[ρ] : A |=L ϕ} is closed under
isomorphism.

We now formally define the notion of a logic capturing polynomial-time. We informally
understand it as asserting that such a logic must define exactly those classes of structures that
are decidable in P, with the additional requirement that the function that maps a formula of
the logic to a Turing machine computing the corresponding algorithm must be computable.
This formulation is due to Gurevich [26].

Definition 2.5. We say a logic L captures P if for every vocabulary ρ

• every Boolean query decidable in P is definable in L;

20 Preliminaries

• there is a computable function that associates with every L-sentence ϕ ∈ L[ρ] a pair
(p(x),M) where p(x) is a polynomial and M is a Turing machine such that M decides
mod ϕ in time p(n)

We now state the Gurevich conjecture [26].

Conjecture 2.6. There is no logic that captures P.

We lastly note a fundamental result proved Immerman and Vardi [30, 42] that establishes
that over ordered structures any polynomial-time decidable query is FP-definable.

Theorem 2.7 (Immerman-Vardi Theorem). Let ρ be a relational vocabulary such that there
is some binary relation symbol ≤ in ρ. Let C be a class of ρ-structures such that for each
A ∈ C, ≤A is a linear order on the universe of A. Let Q be a query on C. Then Q is
polynomial-time decidable if, and only if, Q is FP-definable.

2.4.3 Vectorised Families of Quantifiers

We review the notion of a vectorised family of quantifiers introduced by Dawar [11] and
discuss a result, also proved by Dawar, establishing that if there is a logic that captures P
then there an extension of FO by a vectorised family of quantifiers that captures P.

Definition 2.8. Let ρ be a relational vocabulary. Let C be a class of ρ-structures. Let n ∈ N.
Let Un be a relation symbol of arity n and for R ∈ ρ let Rn be a distinct relation symbol with
arity rR · n. Let ρn = {Un} ∪ {Rn : R ∈ ρ}. Let Cn be the class of ρn-structures such that
A ∈ Cn if, and only if, there exists A∗ ∈ C such that A∗ has universe UA

n and for each R ∈ ρ,

RA∗ = {(⃗a1, . . . , a⃗rR) : for each j ∈ [rR], a⃗j = (aj,1, . . . , aj,n) ∈ UA
n

and (a1,1, . . . , arR,n) ∈ RA
n }.

For each n ∈ N let Qn be the Lindström quantifier associated with Cn. We call the set
Q = {Qn : n ∈ N} a vectorised family of quantifiers (or just a vectorised quantifier) and say
that Q is generated by C.

Theorem 2.9 (Dawar [11]). There is a logic that captures P if, and only if, there exists a
vectorised quantifier Q such that FO(Q) captures P.

2.5 Circuits and Logic

2.5.1 Boolean Functions

A (finite) Boolean function is a function of the form f : {0, 1}X → {0, 1}, for some finite
index set X. We call a Boolean function f : {0, 1}X → {0, 1} symmetric if for all σ ∈ SymX

2.5 Circuits and Logic 21

and a⃗ ∈ {0, 1}X , f (⃗aσ) = f (⃗a). In other words a Boolean function is symmetric if, and only
if, the output of the function is entirely determined by the number of ones in the input. We
say a Boolean function f : {0, 1}∗ → {0, 1} is symmetric if each restriction to strings of size
n is symmetric for all n ∈ N. For a more detailed discussion of Boolean functions we direct
the reader to [43] and [4].

2.5.2 Circuits

In this section we briefly introduce Boolean circuits. We direct the reader to [43] and [4] for
a more detailed introduction.

A basis is a set of Boolean functions. The standard basis Bstd consists of the functions
AND, OR, and NOT. The majority basis Bmaj is the extension of the standard basis with
the majority function MAJ. This majority function evaluates to one if, and only if, at
least half the input string consists of ones. Let n ∈ N. We write AND[n] to denote the
restriction of the function AND to the set of all n-length binary strings. In other words,
AND[n] : {0, 1}n → {0, 1} is defined such that for all x⃗ ∈ {0, 1}n we have AND[n](x⃗) = 1 if,
and only if, there exists xi ∈ x⃗ such that xi = 1. We similarly define OR[n], MAJ[n].

A Boolean circuit C of order n is a labelled directed acyclic graph (DAG) with a designated
set of input gates each labelled by a variable x1, . . . , xn, and each with in-degree 0, a set of
internal gates labelled by elements from some Boolean basis, and a single internal gate with
out-degree 0 designated as the output gate. The evaluation of circuit C of order n for an input
a⃗ ∈ {0, 1}n is denoted by C [⃗a] and computed by assigning the input gates accordingly and
recursively evaluating the gates in the circuit. We denote the evaluation of a gate g in C for
the input a⃗ by C [⃗a](g). If g is an input gate, then g = xi for some i ∈ [n], and C [⃗a](g) = ai.
If g is an internal gate then g is labelled by a symbol denoting a Boolean operation, and
C [⃗a](g) is the result of applying that operation to the string formed from the evaluations of
those gates input to g. If g is the output gate, let C [⃗a] = C [⃗a](g).

The size of a circuit C, denoted by |C|, is the number of gates in the circuit. The depth
of a gate g is the longest path from an input gate to g, and the depth if the circuit is the
depth of the output gate. The width of a circuit is the maximum size of a set of gates with
the same depth.

If C is a circuit of order n, then C computes a Boolean function fC : {0, 1}n → {0, 1}
defined by fC (⃗a) = C [⃗a]. Let (Cn)n∈N be a family of circuits, where Cn has order n. We say
(Cn)n∈N decides a language L : {0, 1}∗ → {0, 1} if for all a⃗ ∈ {0, 1}∗, C|⃗a| [⃗a] = L(⃗a). We say
that a family of circuits (Cn)n∈N has polynomial size if the function that maps n 7→ |Cn| is
bounded by a polynomial in n. We say that a family of circuits is P-uniform if the function
n 7→ Cn is computable in time bounded by a polynomial in n.

22 Preliminaries

2.5.3 Circuits on Structures and Symmetric Circuits

The usual definition of a circuit has input gates labelled by variables and takes as input
a binary string. A circuit on structures, as defined by Anderson and Dawar [3], takes as
input an encoding of a τ -structure and outputs a set of tuples from that structure. More
formally, for a relational vocabulary τ , a basis B of symmetric functions, and q, n ∈ N, a
circuit on structures is a DAG with (i) a designated set of input gates, each labelled by a
relation symbol R ∈ τ and a tuple a⃗ ∈ [n]arty(R) or either 0 or 1, (ii) a set of internal gates,
each labelled by an element of B, and (iii) a designated set of output gates each labelled by
an element of [n]q.

Let A be a τ -structure of size n and γ be a bijection from the universe of A to [n]. The
bijection γ defines an encoding of A as a τ -structure with universe [n]. The input gate
labelled by the relation symbol R and tuple a⃗ is assigned to one if, and only if, a⃗ is an
element of the interpretation of R in the encoding of A. The circuit may then be recursively
evaluated, in a similar way as for conventional circuits, and the evaluation of the output
gates is taken as the output of the circuit. Since each output gate is labelled by an element
of [n]q, the output of the circuit is an element of {0, 1}[n]q .

A circuit is called invariant if its output does not depend on the choice of γ. In this case
the circuit of order n defines a q-ary query for structures of size n and a family (Cn)n∈N

of invariant circuits defines a q-ary query. If C is an invariant circuit with q = 0, i.e. C
defines a Boolean query, then the circuit has a single output gate and C decides a property of
τ -structures. A circuit is called symmetric if every permutation on the universe [n], each of
which induces a permutation on the input gates, extends to an automorphism of the circuit.
A symmetric circuit is necessarily invariant. Anderson and Dawar showed that P-uniform
families of symmetric circuits over the majority basis have exactly the same expressive power
as FPC and that P-uniform families of symmetric circuits over the standard basis have
exactly the same expressive power as FPN [3].

We direct the reader to [3] for a much more detailed introduction to symmetric circuits.

Chapter 3

Generalised Operators

The study of extensions of fixed-point logics plays an essential role in the field of descriptive
complexity. In particular, FPC has been shown to capture polynomial-time over numerous
graph classes (see [24]) and has become so central to the field that it is has been described as
‘the logic of reference’ [12] in descriptive complexity. The logic FPR is one of the strongest
logics known to be contained in P but not known to be properly contained, and is a logic
of fundamental interest. In this chapter we introduce the notion of a generalised operator
and show that these operators generalise Lindström quantifiers, counting operators, and rank
operators. We use these operators to develop a unified framework for studying extensions of
fixed-point logics.

We can think of generalised operators as the natural generalisation of Lindström quantifiers
for logics capable of defining number-terms. We recall that a Lindström quantifier is defined
by a class of relational structures. An application of a Lindström quantifier is applied
to a sequence of formulas which together define a relational structure. The meaning of
an application of a quantifier is determined by whether this structure is a member of the
associated class or not. In contrast, an application of a generalised operator binds sequences of
formulas and number-terms which together define a structure with both relations and number-
valued functions. The meaning of an application of a generalised operator is determined by
an evaluation function that maps the class of structures with number-valued functions to
either a Boolean domain or the natural numbers. These two choices correspond to generalised
operators that define number-terms or formulas.

The focus on fixed-point logics and the restriction to finite structures means that most
of the results from classical model theory, e.g. the compactness theorem, used for proving
inexpressibility results are unavailable. Instead, a standard approach has been to establish
a translation from a given fixed-point logic to a bounded-variable infinitary logic. These
infinitary logics often admit pebble game characterisations which have proven very useful
for establishing inexpressibility results for fixed-point logics (e.g. [9]). The translations from
FP to Lω [35] and from FPC to Cω [38] have proved particularly crucial. In this chapter we

24 Generalised Operators

generalise these translations for extensions of fixed-point logics by generalised operators. We
show that a family of generalised operators Ω can be associated with a family of quantifiers
QΩ and that each formula in the extension of FPN by Ω can be translated to a formula in
the extension of Cω by QΩ. As an intermediate step we introduce the notion of a substitution
program. We think of a substitution program as a means of more compactly representing the
unrolling of a fixed-point operator. We use substitution-programs again in Chapter 5 when
we define a translation from extensions of fixed-point logics to families of symmetric circuits.

This chapter is organised as follows. In Section 3.1 we formally introduce number-extended
structures and correspondingly generalise the notion of an interpretation. In Section 3.2 we
introduce generalised operators and discuss extensions of logics by generalised operators.
We also prove many useful normal forms for logics extended by generalised operators. In
Section 3.3 we introduce many-sorted quantifiers, a generalisation of Lindström quantifiers,
and show how to associate a family of generalised operators with a family of many-sorted
quantifiers. In Section 3.4 we introduce substitution programs and show that a formula
of a fixed-point logic extended by a family of generalised operators can be translated to a
P-uniform family of substitution programs. In Section 3.5 we establish a translation from a
fixed-point logic extended by a family of generalised operators to a bounded-variable infinitary
logic extended by the corresponding family of many-sorted quantifiers.

3.1 Structures with Number-Valued Functions

A Lindström quantifier is defined by a class of single-sorted relational structures. An
application of a quantifier QG in a formula defines an interpretation I and evaluates to true
if, and only if, the structure defined by the I is in G. We aim to define a generalised operator
using a similar approach. However, unlike quantifiers, generalised operators should be allowed
to operate on formulas and number terms. As such, we define a generalised operator from a
class of many-sorted structures consisting of both relations and number-valued functions. In
this section we generalise the notion of a structure and correspondingly generalise the notion
of an interpretation.

Definition 3.1. Let τ := (R,F ,S, ζ) be a many-sorted vocabulary. A number-extended
τ -structure is a structure of the form A = (⊎s∈SAs, (RA)R∈R, (FA)F∈F) where

• for each s ∈ S, As is a non-empty set;
• for each R ∈ R, RA ⊆ Aζ(R)(1) × . . .×Aζ(R)(rR); and
• for each F ∈ F , FA : Aζ(F)(1) × . . .×Aζ(F)(fF) → N0.

Let A and B be number-extended τ -structures. We write h : A → B to denote a function
from the universe of A to the universe of B such that (i) h preserves sorts, (ii) for all
R ∈ R and a⃗ ∈ RA we have h(⃗a) ∈ RB, and (iii) for all F ∈ F and a⃗ ∈ Dom(FA) we have

3.1 Structures with Number-Valued Functions 25

FA(⃗a) = FB(h(⃗a)). In this case we call h a homomorphism. If h is also a bijection and h−1

is a homomorphism then we call h an isomorphism.

A many-sorted vocabulary may contain 0-arity (i.e. nullary) relation or function symbols.
We call 0-arity function symbols constant symbols. We follow the convention of using upper-
case letters to denote relation and function symbols (we usually use R, F , or T) and lower-case
letters to denote constants. Let τ be a many-sorted vocabulary. Let finN[τ] denote the set of
all number-extended τ -structures.

An interpretation consists of a sequence of formulas and defines a relational structure. In
the context of logics with a number sort we can generalise the notion of an interpretation
so as to include both formulas and number-terms. In this case each number-term defines a
number-valued function, and as such the interpretation defines a number-extended structure.
We call an interpretation of this sort a number-extended interpretation.

Definition 3.2. Let L be a logic with a number sort. Let ρ be a relational vocabulary and
let τ = (R,F ,S, ζ) be a many-sorted vocabulary. Let ar : S × [2] → N0 and let w⃗ be a
sequence of mixed-sort variables. A number-extended L[ρ, τ]-interpretation with dimension ar
and parameters w⃗ is a sequence of L[ρ]-formulas I := ⟨(ϕDs)s∈S , (ϕ≈

s)s∈S , (ϕR)R∈R, (ηF)F∈F⟩
such that:

• for each s ∈ S the free variables in ϕDs are among (x⃗sµ⃗s, w⃗) where x⃗s is an ar(s, 1)-tuple
of element variables and µ⃗s is an ar(s, 2)-tuple of number variables;

• for each s ∈ S the free variables in ϕ≈
s are among (x⃗s1µ⃗s1, x⃗s2µ⃗s2, w⃗), where x⃗s1 and x⃗s2

are ar(s, 1)-tuples of element variables and µ⃗s1 and µ⃗s2 are ar(s, 2)-tuples of number
variables;

• for each R ∈ R the free variables in ϕR are among (x⃗R1 µ⃗R1 , . . . , x⃗RrR µ⃗
R
rR
, w⃗) where for each

i ∈ [rR], x⃗Ri is an ar(ζ(R)(i), 1)-tuple of vertex variables and µ⃗Ri is an ar(ζ(R)(i), 2)-tuple
of number variables; and

• for each F ∈ F the free variable in ηF are among (y⃗F1 ν⃗F1 , . . . , y⃗FfF ν⃗
F
fF
, w⃗) where for each

i ∈ [fF], y⃗Ri is a ar(ζ(F)(i), 1)-tuple of vertex variables and ν⃗Fi is an ar(ζ(F)(i), 2)-tuple
of number variables.

We call (ϕDs)s∈S the domain formulas and (ϕ≈
s)s∈S the equality formulas. Let A ∈ fin[ρ] and

let α be an assignment to w⃗ in A. Let B be a number-extended τ -structure. Let B = ⊎s∈SBi
be the universe of B. We say that I interprets B in (A, α) (and write B = I(A, α)) if there
exists a surjection h : ⊎s(ϕDs)(A,α) → ⊎s∈SBs, called the coordinate map, such that

• for all s ∈ S and a⃗m⃗ ∈ (ϕDs)(A,α) we have h(⃗am⃗) ∈ Bs;
• for all s ∈ S and a⃗1m⃗1, a⃗2m⃗2 ∈ (ϕDs)(A,α)

(⃗a1m⃗1, a⃗2m⃗2) ∈ (ϕ≈
s)(A,α) ⇐⇒ h(⃗a1m⃗1) = h(⃗a2m⃗2);

26 Generalised Operators

• for all R ∈ R, i ∈ [rR], a⃗im⃗i ∈ (ϕDζ(R)(i))(A,α)

(⃗a1m⃗1, . . . , a⃗rRm⃗rR) ∈ ϕ
(A,α)
R ⇐⇒ (h(⃗a1m⃗1), . . . , h(⃗arRm⃗rR)) ∈ RB; and

• for all F ∈ F , i ∈ [fF], a⃗im⃗i ∈ (ϕDζ(F)(i))(A,α)

η
(A,α a⃗1

y⃗1
m⃗1
ν⃗1
...
a⃗fF
y⃗fF

m⃗fF
ν⃗fF

)

F = FB(h(⃗a1m⃗1), . . . , h(⃗afF m⃗fF)).

We say that I(A, α) is defined if there exists a structure B such that B = I(A, α).

Hence I interprets B in (A, α) if, and only if, the binary relation ≈:= ⊎s∈Sϕ≈
s is a

congruence on the structure (⊎s∈S(ϕDs)(A,α), (ϕ(A,α)
R)R∈R, (η(A,α)

F)F∈F) and there exists a
function h : ⊎s∈S(ϕDs)(A,α) → ⊎s∈SBs such that h is an isomorphism from the quotient
structure (⊎s∈S(ϕDs)(A,α), (ϕ(A,α)

R)R∈R, (η(A,α)
F)F∈F)/ ≈ to B.

3.2 Generalised Operators

In this section we introduce the notion of a generalised operator and define what it means to
extend a logic by a generalised operator. We also introduce some notation and terminology for
generalised operators and prove a normal form for logics extended by generalised operators.

Remark 3.3. We have from Lindström a general approach for extending logics without an
assumption the syntax of those logics (for a review of this work see [6]). However, in this
chapter we restrict our attention to a particular class of logics that have a syntax ‘similar to
that of first-order logic’. When, in this chapter we say that L is a logic we mean that L is FO,
FON, FP, or FPN, or any extension of these logics by any family of Lindström quantifiers,
many-sorted quantifiers, or generalised operators (we define the latter two terms in the course
of this chapter). Many results proved in this chapter hold more generally, but this restriction
suffices for our purposes.

Let τ = (R,F ,S, ζ) be a many-sorted vocabulary. Let E : fin[τ] → N0 be closed under
isomorphism, i.e. for all A,B ∈ fin[τ], if A ≃ B then E(A) = E(B). Let ar : S × [2] → N0 be
a function. We associate with the pair (E, ar) a number-valued generalised operator Ω(E,ar).
We say the vocabulary of the operator is τ , the arity is ar, and the evaluation function is
E. For a logic L the extension L(ΩE,ar) is the closure of the set of formulas in L under the
following number-term formation rule:

3.2 Generalised Operators 27

Let w⃗ be a tuple of mixed-sort variables. For each s ∈ S let ϕDs (x⃗sµ⃗s, w⃗) ∈ L(ΩE,ar)
let ϕ≈

s (x⃗s1µ⃗s1, x⃗s1µ⃗s1, w⃗) ∈ L(ΩE,ar). For each R ∈ R let ϕR(x⃗R1 µ⃗R1 , . . . , x⃗RrR µ⃗
R
rR
, w⃗) ∈

L(ΩE,ar). For each F ∈ F let ηF (y⃗F1 ν⃗F1 , . . . , y⃗FfF ν⃗
F
fF
, w⃗) be a number term in L(ΩE,ar).

Let I := ⟨ϕDs)s∈S , (ϕ≈
s)s∈S , (ϕR)R∈R, (ηF)F∈F ⟩ be a number-extended interpretation

with dimension ar and parameters w⃗. Then

γ(w⃗) ≡ ΩE,ar[(ϕDs)s∈S , (ϕ≈
s)s∈S][(x⃗R1 µ⃗R1 , . . . , x⃗RrR µ⃗

R
rR

)ϕR]R∈F [(y⃗F1 ν⃗F1 , . . . , y⃗FfF ν⃗
F
fF

) ηF]F∈F

is a number term in L(ΩE,ar). We have

free(γ) :=
⋃
s∈S

(free(ϕ)Ds \ (x⃗s ∪ µ⃗s)) ∪
⋃
s∈S

(free(ϕ)≈
s \ (x⃗s1 ∪ µ⃗s1 ∪ x⃗s1 ∪ µ⃗s1))∪

⋃
R∈R

(free(ϕR) \ (x⃗R1 ∪ µ⃗R1 ∪ . . . ∪ x⃗RrR ∪ µ⃗RrR))∪

⋃
F∈F

(free(ϕF) \ (x⃗F1 ∪ µ⃗F1 ∪ . . . ∪ x⃗FfF ∪ µ⃗FfF)).

The semantics of γ is defined as follows. Let A be a structure and α be an assignment to w⃗
in A. Let

γ(A,α) :=

E(I(A, α)) if I(A, α) is defined

0 otherwise.

We also introduce the notion of a Boolean-valued generalised operator. The definition is
almost identical except that the evaluation function is Boolean-valued rather than number-
valued and an application of a Boolean-valued generalised operator defines a formula rather
than a number term. The extension of a logic by a Boolean-valued generalised operator is
defined similarly and if γ(w⃗) is an application of a Boolean-valued generalised operator the
semantics of γ is defined such that A |= γ[α] if, and only if, E(I(A, α)) = 1. We use the
term generalised operator to refer to either a number-valued or Boolean-valued generalised
operator.

We are often interested in families of generalised operators generated by a single evaluation
function. Let E be an evaluation function. Let ΩE denote the set of all operators ΩE,ar for
every function ar : S × [2] → N0. We call ΩE a vectorised family of generalised operators (or
just a vectorised operator) and say it is generated by E. When a generalised operator appears
in a formula the arity of the operator can be deduced from the sequences of bound variables.
As such, when an operator in ΩE appears in a formula or number term we often denote
it by ΩE instead of writing ΩE,ar for some arity ar. The vectorised operator ΩE contains
an operator of every possible arity. We are sometimes interested only in those generalised
operators that exclusively bind either element variables or number variables. Let ΩE be
a vectorised operator. For each i ∈ [2] let Ωi

E ⊆ ΩE consist of all ΩE,ar such that for all

28 Generalised Operators

j ∈ [2] \ {i}, s ∈ S we have ar(s, j) = 0. We call Ω1
E an element-domain vectorised family of

generalised operators and Ω2
E a number-domain vectorised family of generalised operators.

Let Ω be a set of generalised operators and ρ be a relational vocabulary. Let L(Ω̃)[ρ]
be the set of all formulas and number-terms in L(Ω)[ρ] such that each application of a
generalised operator in Ω that appears as a subformula or sub-number-term has trivial
domain and equality formulas (i.e. the domain formulas are valid and equality formulas define
equality between tuples). In other words, each application of a generalised operator defines
an interpretation that involves no restriction of the domain and no quotienting. In this case,
since the domain and equality formulas have no effect on the semantics, we omit them when
applying the generalised operator.

Definition 3.4. Let Ω be a set of operators. We say a logic L(Ω) is closed under Ω-quotients
if for any finite relational vocabulary ρ we have L(Ω̃)[ρ] ≡ L(Ω)[ρ]. If the set of operators Ω
is clear from context we say that L(Ω) is closed under operator quotients.

We now discuss the relationship between generalised operators and other means of
extending logics. We first show that generalised operators generalise Lindström quantifiers.
Let Q be a Lindström quantifier defined by a class of ρ-structures C for some relational
vocabulary ρ. We think of ρ as a many-sorted vocabulary with a single sort. Let EC : finN[ρ] →
{0, 1} be the characteristic function of C and let arQ : {s} × [2] → N0 be defined such that
arQ(s, 1) = 1 and arQ(s, 2) = 0. We identify Q with the Boolean-valued generalised operator
ΩEC ,arQ and note that for any logic L we have L(Q) ≡ L(ΩEC ,arQ). In particular it follows
that the universal, existential, and counting quantifiers can all be thought of as generalised
operators. Furthermore, a similar argument can be used to show that any vectorised family of
quantifiers Q = (Qn)n∈N generated by a class of structures C can be identified with an element-
domain vectorised family of generalised operators Ω1

EC
. The ‘element-domain’ restriction

is important as Lindström quantifiers can only bind element-sort variables. The counting
operator can be understood as a number-valued generalised operator. Let τset := (R,F ,S, ζ),
where R = {U}, F = ∅, and S = {s}, and ζ(U) = (s). Let Ecnt : fin[τset] → N0 be defined
for each A ∈ fin[τset] by Ecnt(A) = |A|. We identify the counting operator # with the
vectorised operator ΩEcnt . It can be shown that FPC ≡ FPN(Ω̃Ecnt) and FOC ≡ FON(Ω̃Ecnt).
The rank operator can also be understood as a number-valued vectorised operator. Let
τrk := (R,F ,S, ζ), where R = ∅, S = [2], F = {M,p}, and ζ(M) = (1, 2) and ζ(p) = ().
We think of a τrk-structure B as a number-valued matrix MB together with a constant pB

intended to denote the characteristic of a finite field. Let Erk : finN[τrk] → N0 be defined for
each B ∈ fin[τrk] such that

Erk(M) =

rk(MB mod pB) if pB is prime

0 otherwise,

3.2 Generalised Operators 29

where ‘MB mod pB’ is the matrix with entries in FpB defined by taking the residue of each
entry in the matrix MB modulo pB. We identify the rank operator with the vectorised
operator ΩErk . It can be shown that FPR ≡ FPN(Ω̃Erk) and FOR ≡ FON(Ω̃Erk).

It is known that FPC is closed under operator quotients. To see this it suffices to show
that for any FPN(Ω̃Ecnt)-definable congruence ≈ it is possible to count the number of ≈-
equivalence-classes in FPN(Ω̃Ecnt). This can be shown by first noting that it is possible to
define a number term in FPN(Ω̃Ecnt) that for a given natural number k (from a bounded set)
denotes the cardinality of the set of all tuples contained in some ≈-equivalence-class with
exactly k elements. We can then divide by k in order to define a number term that denotes
the number of ≈-equivalence-classes of size k and use the fixed-point operator to sum over all
relevant values of k and hence define a number term in FPN(Ω̃Ecnt) that denotes the total
number of ≈-equivalence-classes. For a complete proof please see [38]. We now show that
FPR is also closed under operator quotients.

Lemma 3.5. FPC ≡ FPN(Ω̃Ecnt) ≡ FPN(ΩEcnt) and FPR ≡ FPN(Ω̃Erk) ≡ FPN(ΩErk).

Proof. Let θ be a FPN(ΩErk)-formula. We aim to prove by structural induction on θ that
there exists some FPN(Ω̃Erk)-formula θ′ that defines the same query as θ. The only interesting
case is for an application of the rank operator. Let γ be a sub-number-term of θ of the form

γ ≡ ΩErk [(ϕDs1 , ϕ
D
s2), (ϕ≈

s1 , ϕ
≈
s2)][π][(x⃗R1 µ⃗R1 , x⃗R2 µ⃗R2) ν],

where ϕD1 and ϕD2 are the domain formulas, ϕ≈
1 and ϕ≈

2 are the equality formulas, and ν and
π are number terms. Let Iγ be the interpretation defined by these formulas and number
terms. From the induction hypothesis there exist corresponding formulas and number terms
ψD1 , ψD2 , ψ≈

1 , ψ≈
2 , ν ′, and π′ definable in FPN(Ω̃Erk). Let I ′ be the interpretation defined by

these formulas and number terms. Let ψchk be the first-order formula with no free variables
that checks whether I ′ is defined for a given structure and assignment (i.e. whether ψ≈

1 , ψ≈
2

define a congruence on the domain). Let

ν :≡ #η[(η = 1) ∧ ψchk] · ν ′

and let

γ′ ≡ ΩErk [π′][(x⃗R1 µ⃗R1 , x⃗R2 µ⃗R2) ν].

Let Iγ′ be the interpretation defined in γ′. Let A be a structure with the same vocabulary as
θ and let α be an assignment to the free variables in γ. Note that if Iγ(A, α) is not defined
then I ′(A, α) is not defined and so A ̸|= ψchk[α] and (γ′)(A,α) = 0 = γ(A,α). Suppose Iγ(A, α)
is defined. Let Mγ be the matrix defined by Iγ(A, α) and let Mγ′ be the matrix defined by
Iγ′ . Note that since Iγ(A, α) and I ′(A, α) are defined, the pairs of equality formulas in these

30 Generalised Operators

interpretations each define a congruence. It can be shown that Mγ′ is definable from Mγ by
adding for each row (resp. column) in Mγ a copy of that row (resp. column) for each member
of the equivalence class of that row (resp. column) index. Since rank is preserved under the
addition of copies of rows or columns to the matrix it follows that Mγ′ and Mγ have the
same rank, and hence γ(A,α) = (γ′)(A,α). The result follows by induction.

It is often necessarily to restrict our attention to generalised operators defined by polyno-
mially bounded evaluation functions. We define this property formally now.

Definition 3.6. Let ΩE,ar be a generalised operator. Let τ be the vocabulary of ΩE,ar. We
say that ΩE,ar is P-bounded if there is a polynomial p such that for any number-extended τ -
structure A we have that E(A) < p(|A|). We say a vectorised family of generalised operators
is P-bounded if every generalised operator in the family is P-bounded.

We can also speak of number terms, formulas, and logics being P-bounded.

Definition 3.7. Let L be a logic and let ρ be a relational vocabulary. Let θ ∈ L[ρ]. We say
that θ is P-bounded if there is a polynomial p such that for any number-term γ appearing in
θ, any ρ-structure A, and any assignment α in A to the free variables of γ, it follows that
γ(A,α) < p(|A|). We say a logic L is P-bounded if for any relational vocabulary ρ and any
θ ∈ L[ρ] we have that θ is P-bounded.

It can be shown that if L is a P-bounded logic and Ω is a family of P-bounded operators
then L(Ω) is a P-bounded logic. An important property of P-bounded logics is that for any
formula θ in L(Ω) there is some k ∈ N such that any number-term γ appearing in θ denotes
a number that can be ‘stored’ in a k-tuple of number variables (in other words, if µ⃗ is a
k-sequence of number variables then ‘∃µ⃗ (µ⃗ = γ)’ holds for every finite structure).

It can be shown that every Boolean-valued generalised operator is P-bounded. The
counting vectorised operator (ΩEcnt) and rank vectorised operator (ΩErk) are also P-bounded.
It is known that FON and FPN are P-bounded. We can conclude the following.

Lemma 3.8. The logics FON, FPN, FOC, FOR, FPC, and FPR are P-bounded.

We now introduce some useful terminology for generalised operators.

Definition 3.9. Let Ω be a generalised operator. Let τ and ar be the vocabulary and arity
of Ω. We say Ω is relational if the vocabulary of τ does not contain any function symbols.
We say Ω is almost relational if all the function symbols in τ are constants. We say Ω has
no constants if τ does not contain any constant symbols. We say that Ω quantifies over
the universe if ar(s, 2) = 0 for every sort symbol in τ . We say that Ω quantifies over the
number-sort if ar(s, 1) = 0 for every sort symbol in τ . We say Ω is single-sorted if τ has
a single sort symbol. For each property defined above we say that a vectorised family of
operators has that property if every generalised operator in the family has that property.

3.2 Generalised Operators 31

We aim to define a translation for each extension of a fixed-point logic to either an
infinitary logic (see Section 3.5) or to families of symmetric circuits (see Chapter 8). In
order to define this translation we need to restrict our attention to logics extended by almost
relational generalised operators. But this poses a problem as many logics of interest (e.g.
FPR) would be excluded by this restriction. We now show that in many cases these logics
are equivalent to a logic defined in terms of almost relational generalised operators. Before
we formally state this result we first introduce a way of comparing the expressive power of
two logics that takes into account both the queries expressible by formulas and the functions
definable by number-terms.

Definition 3.10. Let L and L′ be logics. We say L ≤N L
′ if L ≤ L′ and for any relational

vocabulary ρ and any mixed sort sequence of variables w⃗ and any number-term γ(w⃗) definable
in L[ρ] there exists a number-term γ′(w⃗) definable in L′[ρ] such that for any ρ-structure
A and any assignment α to w⃗ in A we have that γ(A,α) = (γ′)(A,α). We write L ≡N L′ if
L ≤N L

′ and L′ ≤N L.

We note that if both L and L′ do not have a number sort then L ≤ L′ if, and only if,
L ≤N L

′ and if both do have a number sort then L ≤N L
′ implies L ≤ L′ and L ≡N L

′ implies
L ≡ L′. If L is a logic with a number sort and L ≡N L(ΩEcnt) we say that L can simulate
counting. We have that FPR can simulate counting. If L can simulate counting we often
abuse notation and use counting operators when defining a number-term as any application
of a counting operator can be replaced by an equivalent number-term definable in L.

We now show that if a logic L can simulate counting and Ω is a P-bounded vectorised
operator then we can define an equivalent P-bounded almost relational vectorised operator Ω′

such that L(Ω) ≡N L(Ω′). We define Ω′ by adding a new sort and replacing each non-nullary
function with a relation so that the value of the function for a given tuple is given by the
number of elements in the new sort that relate to that tuple. In other words, we replace each
non-constant function F with arity f with a (f + 1)-ary relation RF defined such that for
each a⃗ ∈ Dom(F) it follows that F (⃗a) is precisely equal to the number of elements c in the
(f + 1)th sort of RF such that (⃗a, c) ∈ RF . The proof of this result is mostly straightforward,
but the introduction of a new sort does require a somewhat non-obvious construction in
order to establish one direction of the equivalence. In order to illiterate the idea behind this
construction we first consider the special case of the rank operator ΩErk and show how we
can construct a corresponding almost relational vectorised operator ΩErk′ .

Example 3.11. We now explicitly define the P-bounded almost relational vectorised operator
ΩE′

rk
. We now define E′

rk. Let τ ′
rk := ({R}, {p}, [3], ζ) be defined such that ζ(R) = (1, 2, 3)

and ζ(p) = (). Let E′
rk : finN[τ ′

rk] → N0 be defined as follows. Let B ∈ finN[τ ′
rk] and let

B1 ⊎ B2 ⊎ B3 be the universe of B. If pB is prime let MB : B1 × B2 → Fp be defined such

32 Generalised Operators

that MB(b1, b2) = |{b3 ∈ B3 : (b1, b2, b3) ∈ RB}| mod pB for all (b1, b2) ∈ B1 ×B2. Then

E′
rk(B) =

rk(MB) if pB is a prime

0 otherwise.

It can be shown that FPR ≡ FPN(ΩE′
rk

).

Proposition 3.12. Let ΩE be a P-bounded vectorised operator. There exists an almost
relational vectorised operator ΩE′ such that for any P-bounded logic L with a number sort we
have that

1. L(ΩE) ≤N L(ΩE′),
2. if L(ΩE) can simulate counting then L(ΩE′) ≤N L(ΩE),
3. L(Ω̃E) ≤N L(Ω̃E′), and
4. if L(Ω̃E) ≡N L(Ω̃E)(Ω̃Ecnt) then L(Ω̃E′) ≤N L(Ω̃E).

Proof. Let τ := (R,F ,S, ζ) be the vocabulary of ΩE . Let τ ′ := (R′,F ′,S′, ζ ′) where

• R′ = R ⊎ {RF : F ∈ F , fF ≥ 1},
• F ′ = {F ∈ F : fF = 0},
• S′ = S ⊎ {sc} (where sc is some sort symbol),
• for all F ∈ F ′, ζ ′(F) = ζ(F) = (), and
• for all R ∈ R′ if R ∈ R then ζ ′(R) = ζ(R) and otherwise there exists F ∈ F such that
R = RF and ζ ′(R) = (s1, . . . , sfF , sc), where (s1, . . . , sfF) = ζ(F).

Let T : finN[τ ′] → finN[τ] be defined as follows. Let B′ ∈ finN[τ ′] and let B′ := ⊎s∈S′B′
s be

the universe of B′. Let T (B′) be the number extended τ -structure with universe ⊎s∈SB′
s and

such that for all R ∈ R, RT (B′) = RB′ and for all F ∈ F if F is a constant symbol then
F T (B′) = FB′ and otherwise F T (B′)(b1, . . . , bfF) = |{b ∈ B′

sc : (b1, . . . , bfF , b) ∈ RB′
F }|. Let

E′ := E ◦ T .
Let L be a P-bounded logic with a number sort. Let ρ be a relational vocabulary. We now

prove Statement 1. Let θ(x⃗) ∈ L(ΩE)[ρ]. Let t ∈ N be such that p(n) = nt is a polynomial
witnessing the fact that θ is P-bounded. We aim to prove by induction on the structure
of the formula that for each subformula (resp. sub-number-term) γ(w⃗) of θ(x⃗) there is a
corresponding formula (resp. number-term) γ′(w⃗) in L(ΩE′) such that for any ρ-structure A
and assignment α to w⃗ in A we have that γ(A,α) = (γ′)(A,α). We say that γ′ is a translation
of γ. The only non-trivial case in this induction is when γ is an application of a generalised
operator. Suppose

γ(w⃗) ≡ ΩE,ar[(ϕDs)s∈S , (ϕ≈
s)s∈S][(x⃗R1 µ⃗R1 , . . . , x⃗RrR µ⃗

R
rR

)ϕR]R∈R[(y⃗F1 ν⃗F1 , . . . , y⃗FfF ν⃗
F
fF

) ηF]F∈F ,

3.2 Generalised Operators 33

where for each s ∈ S the free variables in ϕDs are among (x⃗sµ⃗s, w⃗), the free variables in
ϕ≈
s are among (x⃗s1µ⃗s1, x⃗s2µ⃗s2, w⃗) and ⟨(ϕDs)s∈S , (ϕ≈

s)s∈S , (ϕR)R∈R, (ηF)F∈F ⟩ defines a number-
extended L(ΩE)[ρ, τ]-interpretation with dimension ar and parameters w⃗. From the inductive
hypothesis there is a translation for each subformula and sub-number-term of γ. Let
ar′ : S′ × [2] → N0 be such that ar′(s, i) = ar(s, i) for all (s, i) ∈ S × [2], ar′(sc, 1) = 0, and
ar′(sc, 2) = t. For each s ∈ S′ if s ∈ S let ψDs be a translation of ϕDs and ψ≈

s be a translation
of ϕ≈

s and otherwise let ψDs be a valid formula and let ψ≈
s ≡ (µ⃗s1 = µ⃗s2). For each F ∈ F

let χF be a translation of ηF . For each R ∈ R′ \ R and each i ∈ [rR] let x⃗Ri be a fresh
ar′(ζ ′(R)(i), 1)-sequence of element variables and let µ⃗Ri be a fresh ar′(ζ ′(R)(i), 2)-sequence
of number variables. For each R ∈ R′ if R ∈ R let ψR be a translation of ϕR and otherwise
there exists F ∈ F such that R = RF and let

ψR((x⃗R1 µ⃗R1 , . . . , x⃗RrR µ⃗
R
rR
, w⃗)) ≡ µ⃗RrR < χF (x⃗R1 µ⃗R1 , . . . , x⃗RrR−1µ⃗

R
rR−1, w⃗)).

We have defined ψR using an abbreviation introduced in Remark 2.1. Let

γ′(w⃗) ≡ ΩE′,ar′ [(ψDs)s∈S′ , (ψ≈
s)s∈S′][(x⃗R1 µ⃗R1 , . . . , x⃗RrR µ⃗

R
rR

)ψR]R∈R′ [(y⃗F1 ν⃗F1 , . . . , y⃗FfF ν⃗
F
fF

)χF]F∈F ′ .

Note that if ΩE is a Boolean-valued vectorised operator then ΩE′ is also Boolean-valued
and both γ and γ′ are formulas. Otherwise ΩE′ is number-valued and both γ and γ′ are
number-terms. Let A ∈ fin[ρ] and let α be an assignment to w⃗ in A. Let n be the size
of A. Let I := ⟨(ϕDs)s∈S , (ϕ≈

s)s∈S , (ϕR)R∈R, (ηF)F∈F ⟩ be the number-extended L(ΩE)[ρ, τ]-
interpretation defined in γ and let I ′ := ⟨(ψDs)s∈S′ , (ψ≈

s)s∈S′ , (ψR)R∈R′ , (χF)F∈F ′⟩ be the
number-extended L(ΩE′)[ρ, τ ′]-interpretation defined in γ′.

Claim 3.12.1. If I(A, α) is defined then I ′(A, α) is defined and there exists B′ ∈ finN[τ ′]
such that B′ = I ′(A, α) and I(A, α) = T (B′).

Proof. Suppose I(A, α) is defined and let B = I(A, α). Let h be the witnessing coordinate
map. Let B = ⊎s∈SBs be the universe of B. Let B′ be the number-extended τ ′-structure
such that

• B′ has universe B′ = ⊎s∈S′B′
s where for all s ∈ S′ if s ∈ S then B′

s = Bs and otherwise
B′
s = [(n+ 1)t − 1]0;

• for each R ∈ R′ if R ∈ R then RB′ = RB and otherwise there exists F ∈ F such that
R = RF and RB′ = {(b1, . . . , bfF , b) ∈ Dom(FB) ×Bsc : b < FB(b1, . . . , bfF)}; and

• for each F ∈ F ′ we have FB′ = FB.

Let h′ : ⊎s∈S′(ψDs)(A,α) → ⊎s∈S′B′
s be defined such that for each a⃗m⃗ ∈ ⊎s∈S′(ψDs)(A,α) if

a⃗m⃗ ∈ Bs for some s ∈ S then h′(⃗am⃗) = h(⃗am⃗) and otherwise h′(⃗am⃗) is an element of B′
sc

and h′(⃗am⃗) = ∑
l∈[|m⃗|]ml · (n+ 1)l−1. It can be shown that h′ is surjective.

34 Generalised Operators

We aim to show that B′ = I ′(A, α) with coordinate map h′. Let s ∈ S′ and let
a⃗1m⃗1, a⃗2m⃗2 ∈ (ψDs)(A,α). Suppose s ∈ S. Then h′(⃗a1m⃗1) = h′(⃗a2m⃗2) if, and only if,
h(⃗a1m⃗1) = h(⃗a2m⃗2) if, and only if, (⃗a1m⃗1, a⃗2m⃗2) ∈ (ϕ≈

s)(A,α) if, and only if, (⃗a1m⃗1, a⃗2m⃗2) ∈
(ψ≈

s)(A,α). Otherwise s = sc and |⃗a1| = |⃗a2| = 0 and, since ψ≈
s defines equality and h′ is injec-

tive on (ψDsc)(A,α), it follows that (⃗a1m⃗1, a⃗2m⃗2) ∈ (ψ≈
s)(A,α) if, and only if, h′(m⃗1) = h′(m⃗2).

Let R ∈ R′ and for each i ∈ [rR] let a⃗im⃗i ∈ (ψDζ′(R)(i))(A,α). Suppose R ∈ R. Then RB = RB′

and so (h′(⃗a1m⃗1), . . . , h′(⃗arRm⃗rR)) ∈ RB′ if, and only if, (h(⃗a1m⃗1), . . . , h(⃗arRm⃗rR)) ∈ RB

if, and only if, (⃗a1m⃗1, . . . , a⃗rR , m⃗rR) ∈ ϕ
(A,α)
R if, and only if, (⃗a1m⃗1, . . . , a⃗rR , m⃗rR) ∈ ψ

(A,α)
R .

Otherwise R ̸∈ R and so R = RF for some F ∈ F and

(h′(⃗a1m⃗1), . . . , h′(⃗arRm⃗rR)) ∈ RB′

⇐⇒ (h(⃗a1m⃗1), . . . , h(⃗afF m⃗fF), h′(⃗arRm⃗rR)) ∈ RB′

⇐⇒ h′(⃗arRm⃗rR) < FB(h(⃗a1m⃗1), . . . , h(⃗afF m⃗fF))
⇐⇒

∑
l∈[|m⃗rR |]

m⃗rR(l) · (n+ 1)l−1 < FB(h(⃗a1m⃗1), . . . , h(⃗afF m⃗fF))

⇐⇒ (⃗a1m⃗1, . . . , a⃗rRm⃗rR) ∈ ψ
(A,α)
R .

For all F ∈ F ′, F (B′,α) = F (B,α) = η(A,α) = χ(A,α). It follows that B′ = I ′(A, α) with
coordinate map h′. We have B = T (B′) as

• ⊎s∈SBs is the universe of both B and T (B′);
• for each R ∈ R, RB = RB′ = RT (B′);
• for each F ∈ F ′, FB = FB′ = F T (B′); and
• for each F ∈ F \ F ′ we have for all (b1, . . . , bfF) ∈ Dom(FB) and b ∈ B′

sc that
b < FB(b1, . . . , bfF) if, and only if, (b1, . . . , bfF , b) ∈ RB′

F , and so, since B′
sc is an initial

segment of N0 and FB(b1, . . . , bfF) ∈ B′
sc , it follows that FB(b1, . . . , bfF) = |{b ∈ B′

sc :
b < FB(b1, . . . , bfF)}| = |{(b ∈ B′

sc : (b1, . . . , bfF , b) ∈ RB′
F }| = F T (B′)(b1, . . . , bfF).

This completes the proof of Claim 3.12.1.

Claim 3.12.2. If I ′(A, α) is defined then I(A, α) is defined.

Proof. Suppose I ′(A, α) is defined and let B′ := I ′(A, α). Let h′ be the witnessing coordinate
map. Let B′ = ⊎s∈S′B′

s be the universe of B′. Let B := T (B′) and let B = ⊎s∈SBs be the
universe of B. Note that for all s ∈ S, (ϕDs)(A,α) = (ψDs)(A,α) and Bs = B′

s. Let h be the
restriction of h′ to ⊎s∈S(ϕDs)(A,α). It remains to check that B = I(A, α) with coordinate map
h. We omit the details here. The argument is similar to the one used in Claim 3.12.1.

3.2 Generalised Operators 35

Suppose I(A, α) is not defined. It follows from Claim 3.12.2 that I ′(A, α) is not defined. If
ΩE is number-valued then γ(A,α) = 0 = (γ′)(A,α). Otherwise ΩE is Boolean-valued and A ̸|=
γ[α] and A ̸|= γ′[α]. Suppose instead that I(A, α) is defined. It follows from Claim 3.12.1 that
I ′(A, α) is defined and there exists a number-extended τ ′-structure B′ such that B′ = I ′(A, α)
and T (B′) = I(A, α). If ΩE is number-valued then (γ′)(A,α) = E′(B′) = E(T (B′)) = γ(A,α).
Otherwise ΩE is Boolean-valued and A |= γ′[α] if, and only if, E′(B′) = 1 if, and only if,
E(T (B′)) = 1 if, and only if, A |= γ[α]. It follows by induction that each subformula and
sub-number-term of θ(x⃗) has a translation in L(ΩE′) and, in particular, there exists θ′(x⃗) in
L(ΩE′) such that θ′(x⃗) is a translation of θ(x⃗). Each number term γ(w⃗) definable in L(ΩE)
appears in some formula θ(x⃗) ∈ L(ΩE). This concludes the proof of Statement 1.

We now prove Statement 2. Suppose L(ΩE) can simulate counting. Let θ′(x⃗) be a formula
in L(ΩE′). Let t ∈ N be such that p(n) = nt is a polynomial witnessing the fact that θ′(x⃗)
is P-bounded. We use an argument similar to that for Statement 1. We aim to prove by
induction on the structure of θ(x⃗) that for each subformula (resp. sub-number-term) γ′(w⃗) of
θ′(w⃗) there is a formula (resp. number-term) γ(w⃗) in L(ΩE) such that for any ρ-structure A
and assignment α to w⃗ in A it follows that γ(A,α) = (γ′)(A,α). We say that γ is a translation
of γ′. Again, the only interesting case is the application of an operator. Suppose

γ′(w⃗) ≡ ΩE′,ar′ [(ψDs)s∈S′ , (ψ≈
s)s∈S′][(x⃗R1 µ⃗R1 , . . . , x⃗RrR µ⃗

R
rR

)ψR]R∈R′ [(y⃗F1 ν⃗F1 , . . . , y⃗FfF ν⃗
F
fF

)χF]F∈F ′

where for each s ∈ S the free variables in ψDs are among (x⃗sµ⃗s, w⃗), the free variables in
ψ≈
s are among (x⃗s1µ⃗s1, x⃗s2µ⃗s2, w⃗) and ⟨(ψDs)s∈S , (ψ≈

s)s∈S , (ψR)R∈R, (χF)F∈F ⟩ defines a number-
extended L(ΩE′)[ρ, τ]-interpretation with dimension ar′ and parameters w⃗. From the induc-
tive hypothesis there is a translation for each subformula and sub-number-term of γ′(w⃗). We
aim to define a formula or number term γ(w⃗) in L(ΩE) (as appropriate) such that γ(w⃗) is
a translation of γ′(w⃗). There is a small complication that should be discussed. A natural
approach might involve translating the domain and equality formulas in γ′ and letting γ be
an application of ΩE,ar′ with these translations as domain and equality formulas. However,
the vocabulary of the operator ΩE′,ar′ has one additional symbol sc not in the vocabulary of
ΩE,ar′ . We cannot just ignore the domain and equality formulas for sc as they may determine
if the interpretation in γ′ is defined. As such, when we define γ we include a gadget to
check if the equality formula for sc defines an equivalence relation and if it extends to a
congruence. We now proceed with the translation. For each s ∈ S′ let ϕDs be a translation
of ψDs and let ϕ≈

s be a translation of ψ≈
s . For each R ∈ R′ let ϕR be a translation of ψR

and for each F ∈ F ′ let ηF be a translation of χF . Let ar = ar′∣∣
S×[2]. For each F ∈ F \ F ′

and each i ∈ [fF] let y⃗Fi be an ar(ζ(F)(i), 1)-sequence of element variables and let ν⃗Fi be an
ar(ζ(F)(i), 2)-sequence of number variables. For each F ∈ F \ F ′ let R := RF and let

ηF (y⃗F1 ν⃗F1 , . . . , y⃗FfF ν⃗
F
fF
, w⃗) ≡ ΩEcnt [ϕDsc , ϕ

≈
sc][(x⃗

R
rR
µ⃗RrR)ϕR(y⃗F1 ν⃗F1 , . . . , y⃗FfF ν⃗

F
fF
, µ⃗RrR µ⃗

R
rR
, w⃗)].

36 Generalised Operators

We now define the gadgets used to check if ϕ≈
sc defines an equivalence relation and if the

equivalence relation defined in γ′ is a congruence. Let

θsc(w⃗) ≡ ∀x⃗1µ⃗1, x⃗2µ⃗2, x⃗3µ⃗3 [(ϕDsc(x⃗1µ⃗1, w⃗) ∧ ϕDsc(x⃗2µ⃗2, w⃗) ∧ ϕDsc(x⃗3µ⃗3, w⃗)) =⇒

[(ϕ≈
sc(x⃗1µ⃗1, x⃗2µ⃗2, w⃗) ⇐⇒ ϕ≈

sc(x⃗2µ⃗2, x⃗1µ⃗1, w⃗))∧
(ϕ≈
sc(x⃗1µ⃗1, x⃗2µ⃗2, w⃗) ∧ ϕ≈

sc(x⃗2µ⃗2, x⃗3µ⃗3, w⃗) =⇒ ϕ≈
sc(x⃗1µ⃗1, x⃗3µ⃗3, w⃗))∧

ϕ≈
sc(x⃗1µ⃗1, x⃗1µ⃗1, w⃗)]]

and for each R ∈ R′ \R let

θR(w⃗) ≡ ∀x⃗1µ⃗1, . . . , x⃗rR µ⃗rR , x⃗
′
1µ⃗

′
1, . . . , x⃗

′
rR
µ⃗′
rR

[(
∧

i∈[rR]
ϕDζ′(R)(i)(x⃗iµ⃗i, w⃗) ∧ ϕDζ′(R)(i)(x⃗′

iµ⃗
′
i, w⃗)) =⇒

[(
∧

i∈[rR]
ϕ≈
ζ′(R)(i)(x⃗iµ⃗i, x⃗′

iµ⃗
′
i, w⃗)) =⇒

(ϕR(x⃗1µ⃗1, . . . , x⃗rR µ⃗rR , w⃗) ⇐⇒ ϕR(x⃗′
1µ⃗

′
1, . . . , x⃗

′
rR
µ⃗′
rR
, w⃗)]].

Let θc ≡ θsc ∧ (∧R∈R′\R θR). Let γc ≡ ΩEcnt [(µ) (θc ∧ µ < 1)]. If ΩE is Boolean-valued let

γ(w⃗) ≡ θc ∧ ΩE,ar[(ϕDs)s∈S , (ϕ≈
s)s∈S][(x⃗R1 µ⃗R1 , . . . , x⃗RrR µ⃗

R
rR

)ϕR]R∈R[(y⃗F1 ν⃗F1 , . . . , y⃗FfF ν⃗
F
fF

) ηF]F∈F

and if ΩE is number-valued let

γ(w⃗) ≡ γc · ΩE,ar[(ϕDs)s∈S , (ϕ≈
s)s∈S][(x⃗R1 µ⃗R1 , . . . , x⃗RrR µ⃗

R
rR

)ϕR]R∈R[(y⃗F1 ν⃗F1 , . . . , y⃗FfF ν⃗
F
fF

) ηF]F∈F .

It remains to show that γ is a translation of γ′. Let A ∈ fin[ρ] and let α be an assignment to
w⃗ in A. Let n be the size of A. Let I = ⟨(ϕDs)s∈S , (ϕ≈

s)s∈S , (ϕR)R∈R, (ηF)F∈F ⟩ be the number-
extended L(ΩE)[ρ, τ]-interpretation defined in γ and let I ′ = ⟨(ψDs)s∈S′ , (ψ≈

s)s∈S′ , (ψR)R∈R′ , (χF)F∈F ′⟩
be the number-extended L(ΩE′)[ρ, τ ′]-interpretation defined in γ′.

Claim 3.12.3. If I ′(A, α) is defined then I(A, α) is defined and for any number-extended
τ ′-structure B′ such that B′ = I ′(A, α) it follows that T (B′) = I(A, α).

Proof. Suppose I ′(A, α) is defined. Let B′ be a number-extended τ ′-structure such that
B′ = I ′(A, α) and let h′ be the witnessing coordinate map. Let ⊎s∈S′B′

s be the universe of
B′. Let B := T (B′) and let B = ⊎s∈SBs be the universe of B. Note that for all s ∈ S we
have Bs = B′

s and (ψDs)(A,α) = (ϕDs)(A,α). Let h : ⊎s∈S(ψDs)(A,α) → ⊎s∈SBs be defined such
that h(⃗am⃗) = h′(⃗am⃗) for all a⃗m⃗ ∈ ⊎s∈S(ψDs)(A,α). It remains to check that B = I(A, α) with
coordinate map h. Since h′ is surjective it follows that h is surjective. For each s ∈ S and all
a⃗1m⃗1, a⃗2m⃗2 ∈ (ϕDs)(A,α) we have h(⃗a1m⃗1) = h(⃗a2m⃗2) if, and only if, h′(⃗a1m⃗1) = h′(⃗a2m⃗2) if,
and only if, (⃗a1m⃗1, a⃗2m⃗2) ∈ (ψ≈

s)(A,α) if, and only if, (⃗a1m⃗1, a⃗2m⃗2) ∈ (ϕ≈
s)(A,α). Let R ∈ R

and for each i ∈ [rR] let a⃗im⃗i ∈ (ϕDζ(R)(i))(A,α). Then (h(⃗a1m⃗1), . . . , h(⃗arRm⃗rR)) ∈ RB if,

3.2 Generalised Operators 37

and only if, (h′(⃗a1m⃗1), . . . , h′(⃗arRm⃗rR)) ∈ RB′ if, and only if, (⃗a1m⃗1, . . . , a⃗rRm⃗rR) ∈ ψ
(A,α)
R

if, and only if, (⃗a1m⃗1, . . . , a⃗rRm⃗rR) ∈ ϕ
(A,α)
R . Let F ∈ F \ F ′ and for each i ∈ [fF] let

a⃗im⃗i ∈ (ϕDζ(F)(i))(A,α). Then

FB(h(⃗a1m⃗1), . . . , h(⃗afF m⃗fF)) = |{b ∈ B′
sc : (h(⃗a1m⃗1), . . . , h(⃗afF m⃗fF), b) ∈ RB′

F }|

= |{h′(⃗am⃗) : a⃗m⃗ ∈ (ψDsc)
(A,α) and (h′(⃗a1m⃗1), . . . , h′(⃗afF m⃗fF), h′(⃗am⃗)) ∈ RB′

F }

= |{h′(⃗am⃗) : a⃗m⃗ ∈ (ψDsc)
(A,α) and (⃗a1m⃗1, . . . , a⃗fF m⃗fF , a⃗m⃗) ∈ ψ

(A,α)
RF

}|

= |{h′(⃗am⃗) : a⃗m⃗ ∈ (ϕDsc)
(A,α) and (⃗a1m⃗1, . . . , a⃗fF m⃗fF , a⃗m⃗) ∈ (ϕRF)(A,α)}|

= |{a⃗m⃗ ∈ (ϕDsc)
(A,α) : (⃗a1m⃗1, . . . , a⃗fF m⃗fF , a⃗m⃗) ∈ (ϕRF)(A,α)}/(ϕ≈

sc)
(A,α)|

= η
(A,β)
F where β = α

a⃗1
y⃗1

m⃗1
ν⃗1

. . .
a⃗fF
y⃗fF

m⃗fF

ν⃗fF

We note that for all F ∈ F ′, F is a constant symbol and so FB = χ(A,α) = η(A,α). It follows
that T (B′) = B = I(A, α) with coordinate map h. This completes the proof of Claim 3.12.3.

Claim 3.12.4. Suppose I ′(A, α) is not defined. If ΩE is number-valued then γ(A,α) = 0 and
if ΩE is Boolean-valued then A ̸|= γ[α].

Proof. Let us first suppose that ΩE is number-valued. We prove the contrapositive. Suppose
γ(A,α) ̸= 0. Then I(A, α) is defined and γ(A,α)

c > 0. Let B be a number-extended τ -structure
such that B = I(A, α) and let h be the witnessing coordinate map. It follows from γ

(A,α)
c > 0

that A |= θc[α] and so, from the definition of θc, the binary relation defined by (ψ≈
sc)(A,α) is an

equivalence relation on (ψDsc)(A,α). We also have for all s ∈ S that (ψDs)(A,α) = (ϕDs)(A,α) and
(ψ≈

s)(A,α) = (ϕ≈
s)(A,α) and so, since (ϕ≈

s)(A,α) defines an equivalence relation on (ϕDs)(A,α), it
follows that (ψ≈

s)(A,α) defines an equivalence relation on (ψDs)(A,α).
Let R ∈ R′. For each i ∈ [rR] let a⃗im⃗i, a⃗

′
im⃗

′
i ∈ (ψDs)(A,α) and suppose (⃗aim⃗i, a⃗

′
im⃗

′
i) ∈

(ψ≈
ζ′(R)(i))(A,α). If R ∈ R then

(⃗a1m⃗1, . . . , a⃗rRm⃗rR) ∈ (ψR)(A,α) ⇐⇒ (⃗a1m⃗2, . . . , a⃗rRm⃗rR) ∈ (ϕR)(A,α)

⇐⇒ (h(⃗a1m⃗1), . . . , h(⃗arRm⃗rR)) ∈ RB

⇐⇒ (h(⃗a′
1m⃗

′
1), . . . , h(⃗a′

rR
m⃗′
rR

)) ∈ RB

⇐⇒ (⃗a′
1m⃗

′
1, . . . , a⃗

′
rR
m⃗′
rR

) ∈ (ϕR)(A,α)

⇐⇒ (⃗a′
1m⃗

′
1, . . . , a⃗

′
rR
m⃗′
rR

) ∈ (ψR)(A,α),

and otherwise R ∈ R′ \R and so, since A |= θc[α] and hence A |= θR[α], it follows that
(⃗a1m⃗2, . . . , a⃗rRm⃗rR) ∈ (ψR)(A,α) if, and only if, (⃗a′

1m⃗
′
2, . . . , a⃗

′
rR
m⃗′
rR

) ∈ (ψR)(A,α). Let B′ be

38 Generalised Operators

the quotient of the number-extended τ ′-structure

(⊎s∈S′(ψDs)(A,α), (ψ(A,α)
R)R∈R′ , (χ(A,α)

F)F∈F ′)

by the equivalence relation ⊎s∈S′(ψ≈
s)(A,α). It follows that I ′(A, α) is defined and B′ =

I ′(A, α). We can prove the claim for the case where ΩE is Boolean-valued using an essentially
similar argument. This completes the proof of Claim 3.12.4.

Suppose I ′(A, α) is not defined. From Claim 3.12.4 it follows that if ΩE is number-valued
then (γ′)(A,α) = 0 = γ(A,α) and if ΩE is Boolean-valued then A ̸|= γ[α] and A ̸|= γ′[α].
Otherwise I ′(A, α) is defined and it follows from Claim 3.12.3 that I(A, α) is defined and
there exists a number-extended τ ′-structure B′ such that T (B′) = I(A, α) and B′ = I ′(A, α).
It follows from the fact that I ′(A, α) is defined that A |= θc[α] and so (γc)(A,α) = 1. If ΩE

is number-valued we have that γ(A,α) = (γc)(A,α) ·E(T (B′)) = E′(B′) = (γ′)(A,α) and if ΩE

is Boolean-valued then A |= γ[α] if, and only if, E(T (B′)) = 1 if, and only if, E′(B′) = 1 if,
and only if, A |= γ′[α]. It follows by induction that each subformula and sub-number-term of
θ′(x⃗) has a translation in L(ΩE)[ρ] and, in particular, there exists θ(x⃗) ∈ L(ΩE)[ρ] such that
θ(x⃗) is a translation of θ′(x⃗). We note that each number-term γ′(w⃗) definable in L(ΩE′)[ρ]
appears in some formula θ′(x⃗) ∈ L(ΩE′)[ρ]. This concludes the proof of Statement 2.

In order to prove Statement 3 it suffices to note that in the translation in the proof of
Statement 1 if γ(w⃗) has trivial domain and equality formulas (i.e. for each s ∈ S then ϕDs is
valid and ϕ≈ defines equality) then γ′(w⃗) has trivial domain and equality formulas as well.
This translation thus suffices to prove L(Ω̃E) ≤N L(Ω̃E′).

In the translation defined in the proof of Statement 2 if γ′ has trivial domain and equality
formulas then γ has trivial domain and equality formulas. Moreover, in this case for each
F ∈ F \ F ′ the counting operator appearing in ηF has trivial domain and equality formulas.
This translation thus suffices to prove Statement 4.

Corollary 3.13. Let Ω be a set of P-bounded vectorised operators. There exists a set of
almost relational P-bounded vectorised operators Ω′ such that for any P-bounded logic L

that can simulate counting it follows that (i) |Ω| = |Ω′|, (ii) L(Ω) ≡N L(Ω′), and (iii)
L(Ω̃) ≡N L(Ω̃′).

Proof. Let L be a P-bounded logic that can simulate counting. For each ΩE ∈ Ω let ΩE′

be the corresponding almost relational P-bounded vectorised operator in the statement of
Proposition 3.12 and let Ω′ be the set of all such vectorised operators. It follows from the
fact that L(ΩE′) ≤N L(ΩE) that ΩE′ is P-bounded. Statement (i) follows trivially. We can
prove Statements (ii) and (iii) when Ω is finite using a straightforward inductive argument.

3.2 Generalised Operators 39

To prove Statement (ii) and (iii) in the general case we note that each formula in a logic can
reference only a finite number of vectorised operators.

We now prove the following useful normal form for formulas in a P-bounded extension of
a logic by almost relational generalised operators.

Lemma 3.14. Let L be a logic. Let Ω be a set of almost relational generalised operators and
suppose L(Ω) is P-bounded. For each θ(x⃗) ∈ L(Ω) (resp. θ(x⃗) ∈ L(Ω̃)) there is a formula
θ′(x⃗) ∈ L(Ω) (resp. θ′(x⃗) ∈ L(Ω̃)) such that θ(x⃗) and θ′(x⃗) define the same query and such
that for every sub-number-term γ of θ′ if γ has a number-valued generalised operator at its
head then γ appears only as an immediate sub-number-term of a subformula of θ′ of the form
µ⃗ = γ, where µ⃗ is a sequence of number variables.

Proof. Let L′ be L(Ω) or L(Ω̃). Let ϕ be an L′-formula. We call a number-term γ an almost
immediate sub-number-term of ϕ if γ is a sub-number-term of ϕ but not a sub-number-term
of any proper subformula of ϕ. We say that ϕ satisfies the hypothesis if for every sub-number-
term γ of ϕ if γ has a number-valued generalised operator at its head then γ is an immediate
sub-number-term of a subformula of ϕ of the form µ⃗ = γ, where µ⃗ is a sequence of number
variables.

Let θ(x⃗) be an L′-formula and let p(n) = nt be a polynomial witnessing the fact that θ is
P-bounded. We prove by structural induction that each subformula of θ′ can be transformed
into an equivilent formula that satisfies the hypothesis. Let ϕ(y⃗) be a subformula of θ and
suppose from the induction hypothesis we have that for every subformula ψ of ϕ there exists
an L′-formula ψ′ such that ψ and ψ′ define the same query and ψ′ satisfies the hypothesis.
Let ψ1, . . . , ψk be the proper subformulas of ϕ such that each ψi is not a proper subformula
of any proper subformula of ϕ. Let ϕ0 be defined from ϕ by replacing each subformula ψi
with the equivalent formula ψ′

i satisfying the hypothesis. Notice that ϕ0 defines the same
query as ϕ. If ϕ0 satisfies the hypothesis let ϕ′ := ϕ0.

Suppose instead that ϕ0 does not satisfy the hypothesis. It follows that there exists an
immediate sub-number-term γ of ϕ0 witnessing this fact. It follows that ϕ0 does not have
at its head an existential quantifier or universal quantifier, as otherwise it has no almost
immediate sub-number-terms. Moreover, if ϕ0 has a generalised operator at its head then γ

cannot be a sub-number-term of any of the formulas that generalised operator is applied to.
It follows from the fact that all generalised operators are almost relational that the variables
that appear free in γ must appear free in ϕ0.

We now define for each j ∈ N0 a formula ϕj by induction. We have already defined ϕ0.
For each j ∈ N0 let χj1, . . . , χ

j
kj

be the sub-number-terms of ϕj such that for each i ∈ [kj],
χji has a number-valued generalised operator at its head and every other application of a
number-valued generalised operator that appears in χji appears in a subformula of χji . For

40 Generalised Operators

each i ∈ [kj] let ν⃗ji be a fresh t-length sequence of number variables. Let ϕj+1 be defined
from ϕj by replacing each χji for i ∈ [kj] with the number term ∑

l∈[t] ν⃗
j
i (l) · (ϵ+ 1)l−1.

Notice that if ϕj contains an almost immediate sub-number-term with a generalised
operator at its head then ϕj+1 contains strictly fewer almost immediate sub-number-terms
with generalised operators at their heads. If ϕj does not contain an almost immediate
sub-number-term with a generalised operator at its head then ϕj = ϕj+1. It follows that there
exists some minimum N ∈ N such that for all n > N , ϕN = ϕn and no almost immediate
sub-number-term of ϕN has a generalised operator at its head. Let ϕ′

N := ϕN . We define ϕ′
j

for each j ∈ [N − 1] by backwards induction as follows. Let

ϕ′
j ≡ ∃ν⃗j1, . . . , ν⃗

j
kj

[(
∧
i∈[kj]

ν⃗ji = χi) ∧ ϕ′
j+1]

and let

ϕ′ ≡ ∃ϵ ((∀λ (λ ≤ ϵ)) ∧ ϕ′
1).

It is easy to see that ϕ′ satisfies the hypothesis. It can be shown by induction that ϕ and ϕ′

define the same query. It follows that there exists an L′-formula θ′(x⃗) that defines the same
query as θ(x⃗) and satisfies the hypothesis.

We can associate with each number-valued generalised operator Ω a Boolean-valued
generalised operator ΩB defined by extending the vocabulary of Ω with a constant symbol
which is then used to denote a threshold. The evaluation function of ΩB is defined by
comparing the output of the evaluation function of Ω with the given threshold. We now
define this notion formally.

Definition 3.15. Let Ω be a generalised operator. We now define a Boolean-valued gen-
eralised operator ΩB. If Ω is a Boolean-valued generalised operator let ΩB := Ω. Suppose
instead that Ω is a number-valued generalised operator. Let τ = (R,F ,S, ζ) be the vocabu-
lary of Ω. Let E be the evaluation function and ar be the arity of Ω. Let τB = (R,F ⊎{t}, ζB)
be such that t is a nullary constant symbol and ζB(T) = ζ(T) for all T ∈ R⊎F and ζB(t) = ().
Let EB : finN[τB] → {0, 1} be defined for a τB-structure A such that EB(A) = 1 if, and only
if, E(A∗) ≥ tA, where A∗ is the reduct of A to τ . Let ΩB = ΩEB ,ar. We call ΩB the set of
Boolean-valued operators corresponding to Ω. Let Ω be a family of generalised operators. Let
ΩB = {ΩB : Ω ∈ Ω}. We call ΩB the set of Boolean-valued operators corresponding to Ω.

Let Ω be a P-bounded family of almost relational generalised operators. The normal form
in Lemma 3.14 allows us to transform each formula in L(Ω) to one where each number-valued
operator appears in a formula of the form ‘µ⃗ = Ω . . .’. It is easy to see that we can replace each
of these formulas with a conjunction of applications of ΩB. We can conclude the following.

3.3 Many-Sorted Quantifiers 41

Lemma 3.16. Let Ω be a family of almost relational generalised operators. Let L be a logic
and suppose L(Ω) is P-bounded. Then L(Ω) ≡ L(ΩB) and L(Ω̃) ≡ L(Ω̃B).

3.3 Many-Sorted Quantifiers

In this section we show how to associate a generalised operator with a family of quantifiers
so as to enable the translation from fixed-point logics to infinitary logics. We recall that
generalised operators are defined in terms of many-sorted structures. We now generalise the
notion of a Lindström quantifier and introduce the notion of a many-sorted quantifier.

Definition 3.17. Let τ := (R,S, ζ) be a many-sorted relational vocabulary. Let G be a
class of τ -structures and let ar : S → N0. We associate the pair (G, ar) with a many-sorted
quantifier QG,ar. We call G the class of structures and ar the arity of the quantifier QG,ar.
For a logic L the extension L(QG,ar) is defined by extending the formula formation rules for
L as follows:

For each s ∈ S let x⃗s, x⃗s1, and x⃗s2 be ar(s)-tuples of element variables and let ϕDs
and ϕ≈

s be L(QG,ar)-formulas. For each R ∈ R and i ∈ [rR] let x⃗Ri be an ar(ζ(R)(i))-
length tuple of element variables. For each R ∈ R let ϕR be an L(QG,ar)-formula.
Then

ϕ ≡ QG,ar[(ϕDs)s∈S , (ϕ≈
s)s∈S][(x⃗R1 , . . . , x⃗RrR)ϕR]R∈R

is a formula of L(QG,ar). We have

free(ϕ) =
⋃
s∈S

[(free(ϕDs) \ x⃗s) ∪ (free(ϕ≈
s) \ (x⃗1

s ∪ x⃗2
s))] ∪

⋃
R∈R

(free(ϕR) \ (
⋃

i∈[rR]
x⃗Ri)).

Let I := ⟨(ϕDs)s∈S , (ϕ≈
s)s∈S , (ϕR)R∈R⟩. The semantics of the formula ϕ is defined for a

structure A ∈ fin[ρ] and assignment α to the free variables in ψ as follows

A |= ψ[α] if, and only if, I(A, α) is defined and I(A, α) ∈ G

We note that many-sorted quantifiers can equivalently be thought of as Boolean-valued
relational generalised operators that quantify over the universe. We also note that many-
sorted quantifiers generalise Lindström quantifiers in the sense that we can identify each
Lindström quantifier with a many-sorted quantifier with a single sort.

As for generalised operators, for a family of many-sorted quantifiers Q we let L(Q̃)
be defined from L(Q) by restricting ourselves to formulas in which each application of a
many-sorted quantifier in Q has only trivial domain and equality formulas. In this case we
omit the domain and equality formulas when applying the quantifier.

42 Generalised Operators

We aim to define a general method for associating a family of generalised operators with
a family of many-sorted quantifiers. We do this in such a way as to enable a translation from
each extension of fixed-point logic by a family of generalised operators to infinite families of
first-order formulas extended by the corresponding family of many-sorted quantifiers. This
translation generalises the translation from FPC to infinite families of FO+C-formulas (or
just single Cω-formulas) given by Grädel and Otto [21]. We now review this translation and
then discuss what would be needed to generalise it.

Let θ(x⃗) be an FPC-formula. We begin by unrolling the fixed-point operators in θ(x⃗) in
order to define a sequence of FOC-formulas (θn(x⃗))n∈N, each of which capture the meaning
of θ on structures of size n and such that there is a constant bound on the width of these
formulas. For more details on this ‘unrolling’ argument please see [35]. We then aim to
define an equivalent family of FO+C-formulas by defining a translation from FOC-formulas
to FO+C-formulas. This translation involves recursively removing any reference to the
number-sort and replacing instances of universal and existential quantification over the
number domain with large disjunctions and conjunctions. To be precise, we recursively define
for each n ∈ N and each subformula ϕn(y⃗, ν⃗) of θn a formula ϕn,m⃗(y⃗) for each m⃗ ∈ N|ν⃗| such
that for any A ∈ fin[τ, n] and any assignment α to y⃗ in A we have A |= ϕn,m⃗[α] if, and only if,
A |= ϕn[α m⃗ν⃗]. In other words, we recursively define for each subformula a family of formulas,
one for each assignment to the free number variables, each of which has the same meaning as
the original subformula for the given assignment to the number variables.

We can translate a subformula with an existential or universal quantifier at its head
that binds a number variable to a large disjunction or conjunction indexed by the pos-
sible assignments to that variable. For example, we translate a formula of the form
ψn(y⃗, µ⃗) ≡ ∃ν ϕn(y⃗, ν, µ⃗) to the family of formulas (ψn,m⃗)

n∈N,m⃗∈[n]|µ⃗|
0

where each ψn,m⃗(x⃗) ≡∨
a∈[n]0 ϕn,a,m⃗(x⃗). It is crucial at this point to note that we may assume without a loss of

generality that every counting operator binds only a single element variable [21]. As such,
we do not need to consider the problem of how to translate counting operators that bind
number variables.

In contrast, an arbitrary generalised operator may bind element and number variables
(e.g. the rank operator) and there is no known normal form that would allow us to restrict
our attention to generalised operators that only bind element variables. As such, we cannot
assume that all number variables are bound by universal or existential quantifiers and so we
cannot handle the binding of number variables using disjunctions and conjunctions, and must
consider how to translate applications of generalised operators that bind number variables.
In order to address this we introduce for each operator a family of quantifiers each of which is
applied to the entire family of formulas generated by the translation. Each of these quantifiers
is defined over an extended vocabulary defined by ‘copying’ each relation symbol for each
possible assignment to the bound number variables. We now define these quantifiers formally.

3.3 Many-Sorted Quantifiers 43

Let τ = (R,S, ζ) be a many-sorted relational vocabulary. Let G be a class of τ -structures,
let n ∈ N, and let ar : S × [2] → N. We associate (G, n, ar) with the many-sorted quantifier
QG,n,ar defined as follows. Let

Rn,ar = {R
b⃗1,...,⃗brR

: R ∈ R, b⃗1 ∈ [n]ar(ζ(R)(1),2)
0 , . . . , b⃗rR ∈ [n]ar(ζ(R)(rR),2)

0 },

where each R
b⃗1,...,⃗brR

is a fresh relation symbol. Let ζn,ar be defined such that ζn,ar(Rb⃗1,...,⃗brR
) =

ζ(R) for all R
b⃗1,...,⃗brR

∈ Rn,ar. Let τn,ar := (Rn,ar,S, ζn,ar). For each τn,ar-structure A of size
n let ⊎s∈SAs be the universe of A and let A∗ be the τ -structure defined as follows. For each
s ∈ S let A∗

s = A
ar(s,1)
s × [n]ar(s,2)

0 . For each R ∈ R let RA∗ be defined such that for all i ∈ [rR]
and all a⃗i⃗bi ∈ A∗

ζ(R)(i), (⃗a1⃗b1, . . . , a⃗rR b⃗rR) ∈ RA∗ if, and only if, (⃗a1, . . . , a⃗rR) ∈ RA
b⃗1,...,⃗brR

. Let
A∗ = (⊎s∈SA∗, (RA∗)R∈R). Let Gn,ar := {A ∈ fin[τn,ar] : A∗ ∈ G}. Let ar1 : S → N0 be
defined such that ar1(s) = ar(s, 1) for all s ∈ S. Let QG,n,ar := QGn,ar,ar1 .

Notice that if ar : S × [2] → N0 is such that ar(s, 2) = 0 for all s ∈ S then for all n ∈ N
we have τn,ar = τ and so Gn,ar = G and QG,n,ar = QG,ar.

Definition 3.18. Let τ = (R,S, ζ) be a many-sorted relational vocabulary. Let G be a class
of τ -structures. We call the set of quantifiers QG = {QG,ar,n : n ∈ N, ar : S × [2] → N0} the
vectorised family of many-sorted quantifiers (or just the vectorised many-sorted quantifier)
generated by G.

We now define for each almost relational Boolean-valued generalised operator Ω a cor-
repsonding family of many-sorted quantifiers QΩ. Let Ω := ΩE,ar be an almost relational
Boolean-valued generalised operator and let τ := (R,F ,S, ζ) be the vocabulary of Ω. We note
that since Ω is almost relational it follows that each function symbol F ∈∈ F is a constant
symbol. Let τrel := (R,S, ζ

∣∣
R

). For each α : F → N0 and A ∈ fin[τrel] let (A|α) be the
τ -structure (U(A), (RA)R∈R, (α(F))F∈F). We can think of each α : F → N0 as an assignment
to the constant symbols and each τ -structure (A|α) as an expansion of A with constant sym-
bols F assigned according to α. For each α : F → N0 let GE,α := {A ∈ fin[τrel] : E(A|α) = 1}.
In order to avoid excessive subscripts we write QE,α,n,ar to denote the quantifier QGE,α,n,ar

for each n ∈ N. Let

QΩ := {QE,α,n,ar : n ∈ N, α : F → N0}.

and let

QE,α := QGE,α = {QE,α,n,ar : n ∈ N, ar : S × [2] → N0}.

We call QΩ the set of quantifiers correpsonding to Ω. We note that when Ω is relational
α : F → N0 is the empty function and A = (A|α). In this case we omit α in the subscript.
Let Ω be an almost relational generalised operator. We let QΩ := QΩB and we call QΩ

44 Generalised Operators

the set of quantifiers correpsonding to Ω. Let Ω be a set of almost relational generalised
operators. Let

QΩ =
⋃

Ω∈Ω
QΩ.

We call QΩ the set of quantifiers corresponding to Ω. In order to illustrate the idea behind this
definition we consider the counting operator as an example and construct the corresponding
set of quantifiers. We see that the set of counting quantifiers corresponds to the counting
operator.

Example 3.19. We recall that the counting operator ΩEcnt has the vocabulary τset =
({U}, ∅, {s}, ζ). The corresponding set of Boolean-valued generalised operators ΩEBcnt

has the
vocabulary τBset = ({U}, {t}, {s}, ζB), where t is some constant function symbol. From [21]
it follows that FPC ≡ FPN(ΩEcnt) ≡ FPN(ΩEcnt,ar) where ar : {s} × [2] → N0 is defined
such that ar(s, 1) = 1 and ar(s, 2) = 0. We construct the set of quantifiers corresponding
to ΩEcnt,ar. Let α : {t} → N0 and let G := GEBcnt,α

. Since ar(s, 2) = 0 it follows that for all
n ∈ N we have Gn,ar = G and QEBcnt,α,n,ar = QG,n,ar = QG,ar1 , where ar1 : {s} → N0 is defined
such that ar1(s) = 1. Recall that G is defined such that for any A ∈ fin[τset], A ∈ G if, and
only if, |UA| ≥ α(t). The Lindström quantifier ∃≥α(t) is also defined by G and so we can
identify QG,ar1 with ∃≥α(t). It follows that for all n ∈ N and α : {t} → N0 we can identify
QEBcnt,α,n,ar with the counting quantifier ∃≥α(t) and so

QΩEcnt ,ar = QΩ
EBcnt

,ar = {QEBcnt,α,n,ar : n ∈ N, α : {t} → N0}

= {∃≥k : k ∈ N0}.

3.4 Translating Formulas to Substitution Programs

There is a standard translation from FP to Lω given by [35]. This translation involves
defining for each FP-formula θ a family of FO-formulas (θn)n∈N where each θn has the same
meaning as θ for structures of size n. For every n ∈ N we define θn by replacing each
application of the fixed-point operator in θ with an explicit implementation in first-order logic
of the construction of an inflationary fixed-point. This involves for each fixed-point operator
recursively replacing each occurrence of the bound second-order variable with its inductive
definition. However, if within the scope of a fixed-point operator the bound second-order
variable appears more than once then each recursive step results in a doubling of the size of
the formula. It follows that, in general, the family of formulas (θn)n∈N has exponential-size.

In contrast, the standard translation from FP to families of symmetric circuits given
by [32] associates each FP-formula with a polynomial-size family of symmetric circuits defined
over the standard basis. These two translations use similar approaches and both involve

3.4 Translating Formulas to Substitution Programs 45

unrolling the fixed-point operator in the sense discussed above. However, the important
difference is that when we define a circuit we can reuse the output of any gate. In particular,
we can reuse the recursive definition of the second-order variable multiple times without
imposing an additional cost.

In this section we introduce the notion of a substitution program. We think of a
substitution program as a more succinct representation of a formula, one in which we are
allowed to ‘name’ subformulas and then refer to them without having to rewrite their definition.
In this way a substitution program is very similar to a circuit. Indeed, we use substitution
programs both as an intermediary step when we define translations from fixed-point logics
to infinitary logics in Section 3.5 and when we define translations from fixed-point logics to
families of symmetric circuits in Chapter 8.

Definition 3.20. Let L be a logic and ρ be a relational vocabulary. An L[ρ]-substitution
program is a sequence of L[ρ]-formulas Φ := (ϕ1(x⃗1, µ⃗1);V1), . . . , ϕk(x⃗k, µ⃗k);Vk)) such that
for each i ∈ [k]

• x⃗i is a sequence of element-variables and µ⃗i is a sequence of number-variables,
• if i > 1 then Vi is a mixed-sort second-order variable that has the same type as (x⃗i, µ⃗i),

and
• Vi ⊆ {Vj : i < j ≤ k}.

For each i ∈ [k] the flattening of Φ at i is defined recursively as follows. If i = k then the
flattening of Φ at i is ϕi. Suppose i < k and for each j ∈ [i + 1, k] let ψj(x⃗j , µ⃗j) be the
flattening of Φ at j. The flattening of Φ at i is defined by replacing each subformula in ϕi of
the form Vj(y⃗, ν⃗), where Vj ∈ Vi, with the formula

∃z⃗η⃗ [(z⃗ = y⃗ ∧ η⃗ = ν⃗) ∧ ∃x⃗jµ⃗j(x⃗j = z⃗ ∧ µ⃗j = η⃗ ∧ ψj(x⃗jµ⃗j))].

The flattening of Φ is the flattening of Φ at 1. The free variables of Φ are the free variables
in the flattening of Φ. For sequences of variables x⃗, µ⃗ we write Φ(x⃗, µ⃗) to indicate that the
free variables in Φ are among x⃗, µ⃗. Let A ∈ fin[ρ] and let α be an assignment to the free
variables in Φ in A. Let ϕ be the flattening of Φ. We say A |= Φ[α] if, and only if, A |= ϕ[α].
If all of the free variables of Φ are element-variables we say that Φ defines a query Q if the
flattening of Φ defines the query Q. The formula length of a substitution program Φ is the
maximal length of a formula in Φ. The width of a substitution program is the maximum
width of a formula in Φ.

Example 3.21. Let τ := {E,A} be a vocabulary. We think of a τ -structure G as a directed
graph with all vertices in the unary relation A labelled by a ∀ symbol. We define the
alternating path relation recursively as follows. We say there is an alternating path from a

to b in G if (i) a = b, (ii) a is not in AG and there exists a vertex c adjacent to a such that

46 Generalised Operators

there is an alternating path from c to b, or (iii) a is in AG and for every vertex c adjacent to
a there is an alternating path from c to b.

We now define a family of substitution programs intended to define the alternating path
relation. Let n ∈ N and let Φn := (ϕi(xi, yi))i∈[n2] where ϕn2(xn2 , yn2) :≡ xn2 = yn2 and for
all i < n2

ϕi(xi, yi) :≡ xi = yi ∨ [∃z(E(xi, z) ∧ Vi+1(z, yi))
∧A(xi) =⇒ ∀z(E(xi, z) =⇒ Vi+1(z, yi))].

We think of each formula in the substitution program Φn as denoting a single recursive step
in the definition of the alternating path relation for τ -structures of size n. It can be shown
that the function n 7→ Φn can be computed in time polynomial in n. The flattening of Φn is
given by starting with ϕ1 and then recursively replacing each relation Vi with its definition
ϕi (while renaming variables). The flattening of Φn is thus a single first-order formula that
defines the alternating path relation for structures of size n. Notice that in each step in the
definition of the flattening of Φn we replace each of the two occurrences of the second-order
variable with its definition. It is not hard to see that the resultant flattenings, in contrast
with the substitution programs, will have size exponential in n.

Remark 3.22. A substitution program is a finite linearly ordered set of formulas, and we
index this sequence by an initial segment of the natural numbers. It is known that any finite
linearly ordered set can be identified with an initial segment of the natural numbers and with
this in mind we will sometimes index a substitution program by some linearly ordered set
other than the natural numbers rather than explicitly include an order-preserving bijection.

There is a notion of the width of a formula that measures the maximal number of variables
that appear free in any subformula. In some cases we are not just interested in the number
of free variables that appear free in a given subformula but rather the number of variables
that are introduced into the scope by an operator or quantifier. Let Ω be a generalised
operator with arity ar and vocabulary τ := (R,F ,S, ζ). The operator width of Ω is equal to
max{

∑
i∈[rR](ar(ζ(R)(i), 1) + ar(ζ(R)(i), 2)) : R ∈ R}. We can similarly regard many-sorted

quantifiers as generalised operators and so associate each of them with an operator width.
We say that the universal and existential quantifiers each have operator width 1. Let L be a
logic and let Ω be a set of generalised operators. Let θ be an L(Ω)-formula. The operator
width of θ is equal to the maximal operator width of any quantifier or generalised operator
that appears in θ. We denote the operator width of θ by owidth(θ). The operator width of a
L(Ω)[ρ]-substitution program Φ is equal to the maximal operator width of any of formula in
Φ. It is not hard to see that any formula can be transformed into a normal form with the
property that the operator width of that formula is at most equal to its width.

3.4 Translating Formulas to Substitution Programs 47

Definition 3.23. Let ρ be a relational vocabulary and let L be a logic. Let x⃗ be a sequence
of element variables and let µ⃗ be sequence of number variables. Let Φ := (Φn(x⃗, µ⃗))n∈N

be a family of L[ρ]-substitution programs. We say Φ is a P-uniform family of substitution
programs if the function n 7→ Φn(x⃗, µ⃗) is computable in time polynomial in n. We say that
Φ has constant width if there exists k ∈ N such that for all n ∈ N the width and operator
width of Φn is at most k. We say that Φ has constant length if there exists k ∈ N such that
for all n ∈ N the formula length of Φn is at most k.

Suppose for all n ∈ N that all of the free variables in Φn are element variables (i.e. µ⃗ = ())
and let Qn be the query defined by Φn. Let Q be the query such that Q(A) = Q|A|(A) for
each A ∈ fin[ρ]. We call Q the query defined by Φ.

For any given formula θ in an extension of a fixed-point logic we can unroll the fixed
points and so define a family (θn)n∈N of formulas without any application of the fixed-point
operator and such that for each n ∈ N, θn and θ define the same query on structures of size
n. This approach can also be used to prove the following result. We omit the proof here as
the technique is standard. For more detail please see [35].

Lemma 3.24. Let Ω be a set of generalised operators. If a query can be defined in FPN(Ω)
(resp. FPN(Ω̃)), then it can be defined by a P-uniform family of FON(Ω)-substitution programs
(resp. FON(Ω̃)-substitution programs) with constant length.

We aim to show that every P-uniform family of FON(Ω̃)-substitution programs with
constant length can be translated to an equivalent P-uniform family of FO(Q̃)-substitution
programs with constant width. We prove this result in two stages. Let Θ = (Θn)n∈N be a
P-uniform family of FON(Ω̃)-substitution programs with constant length. First, we show in
Lemma 3.25 that for every n ∈ N each formula θn,i(x⃗i, µ⃗i) in Θn can be associated with a
family of formulas (θn,i;β(x⃗i))β∈[n]µ⃗i0

in FO(Q̃) each of which capture the meaning of θn,i on
structures of size n when the number variables are assigned according to β. Second, we show
in Lemma 3.26 that by concatenating these families we can form a single P-uniform family of
FO(Q̃)-substitution programs Θ′ with constant width such that Θ and Θ′ define the same
query.

We now formalise this argument. Let ρ be a relational vocabulary and let Ω be a set
of almost relational generalised operators. Let Q = QΩ. Let θ(x⃗, µ⃗; V⃗) be a formula in
FON(Ω̃)[ρ] where V⃗ = (V1, . . . , Vv) is a sequence of mixed-sort second-order variables. For
each i ∈ [v] let vi and mi be the arity of the element-sort and number-sort of Vi, respectively.
Let n ∈ N. For each i ∈ [v] and c⃗ ∈ [n]mi0 let V n

i,⃗c be an element-sort second-order variable
with arity vi. Let W⃗n := {V n

i,⃗c : i ∈ [v], c⃗ ∈ [n]mi0 } and let θn = (θn;β(x⃗, W⃗n))
β∈[n]µ⃗0

be a
sequence of FO(Q̃)[ρ]-formulas. We say θn translates θ for n if for all

1. A ∈ fin[ρ, n];
2. assignments α ∈ Ax⃗ and β ∈ [n]µ⃗0 ; and

48 Generalised Operators

3. assignments γ and γ′ to the second-order variables, where γ maps each Vi to a relation
V

(A,γ)
i ⊆ Avi × [n]mi0 and γ′ maps each V n

i,⃗c to the relation (V n
i,⃗c)(A,γ′) ⊆ Avi such that

(⃗a, c⃗) ∈ V
(A,γ)
i if, and only if, a⃗ ∈ (V n

i,⃗c)(A,γ′),
we have

A |= θ[α, β, γ] ⇐⇒ A |= θn;β[α, γ′].

We say θ := (θn)n∈N = (θn;β)
n∈N,β∈[n]µ⃗0

translates θ if θn translates θ for all n ∈ N.

Lemma 3.25. Let ρ be a relational vocabulary. Let Ω be a set of almost relational Boolean-
valued generalised operators and suppose FON(Ω̃) is P-bounded. Let θ(x⃗, µ⃗; V⃗) ∈ FON(Ω̃)[ρ]
where V⃗ = (V1, . . . , Vv) is a sequence of mixed-sort second-order variables.

There exists a sequence of FO(Q̃Ω)[ρ]-formulas θ := (θn)n∈N = (θn;β(x⃗; W⃗n))
n∈N,β∈[n]µ⃗0

such that θ translates θ. Each formula in θ has width at most equal to the element-variable
width of θ. Moreover, there is a constant c such that the function that maps (n, θ) to
(θn;β)

β∈[n]µ⃗0
is computable in time O((|θ| + n)c|cl(θ)|).

Proof. Let n ∈ N. We aim to prove by induction that for every subformula ϕ(y⃗, ν⃗) of θ there
exists a family FO(Q̃)[ρ]-formulas ϕn = (ϕn;β(y⃗; W⃗n))β∈[n]ν⃗0

that translate ϕ for n, where
W⃗n = {V n

i,⃗a : i ∈ [v], a⃗ ∈ [n]mi0 }.
Let ϕ(y⃗, ν⃗) be a subformula of θ and let β ∈ [n]ν⃗0 . It follows from the induction hypothesis

that for each subformula ψ(z⃗, λ⃗) of ϕ there exists a family of FO(Q̃)[ρ]-formulas ψn =
(ψn;β(z⃗; W⃗n))

β∈[n]λ⃗0
that translate ψ for n. We now consider those cases for which ϕ is an

atomic formula. If ϕ is an atomic formula and ϕ does not have a generalised operator at
its head then let ϕn;β ≡ ϕ. If ϕ ≡ Vi(y⃗, ν⃗) for some i ∈ [v] let ϕn;β(y⃗) ≡ V n

i,β(ν⃗)(y⃗). Suppose
ϕ ≡ γ1 ≤ γ2 for two number-terms γ1 and γ2. Since all of the generalised operators in Ω
are Boolean-valued it follows that every sub-number-term of θ has no subformulas or free
element variables. It follows that the evaluation of a sub-number-term in θ depends just
on the assignment to its free (number) variables and the size of the structure over which
it is being evaluated. We can compute the values of γ1 and γ2 for the assignment β and a
structure of size n. Let t1 be the value of γ1 and t2 be the value of γ2. Let ϕn;β ≡ ∀y (y = y)
if t1 ≤ t2 and otherwise let ϕn;β :≡ ∃x (x ≠ x). We handle the case where ϕ ≡ γ1 = γ2

similarly. Suppose ϕ is of the form

ϕ ≡ ΩE,ar[(x⃗R1 µ⃗R1 , . . . , x⃗RrR µ⃗
R
rR

)ψR]R∈R[ηF]F∈F .

Let α : F → N0 be defined such that α(F) is the value of ηF for structures of size n

with assignment β. Let τ := (R,F ,S, ζ) be the vocabulary of ΩE,ar. From the induction
hypothesis there exists for each R ∈ R a family of formulas

ψR,n = {ψR,n;β((x⃗R1 , . . . , x⃗RrR , y⃗; W⃗n) : β ∈ [n]
µ⃗R1 ∪...,∪µ⃗RrR∪ν⃗
0 }

3.4 Translating Formulas to Substitution Programs 49

such that ψR,n translates ψR for n. We recall that the quantifier QE,α,n,ar has the vocabulary
τn,ar = (Rn,ar,S, ζn,ar). For each R

b⃗1,...,⃗brR
∈ Rn,ar let ψR

b⃗1,...,⃗brR
:= ψR,n;β′ where β′ =

β b⃗1
µ⃗R1
. . .

b⃗rR
µ⃗RrR

. Let

ϕn;β ≡ QE,α,n,ar[(x⃗R1 , . . . , x⃗RrR)ψR
b⃗1,...,⃗brR

]R
b⃗1,...,⃗brR

∈Rn,τ .

Suppose ϕ(y⃗, ν⃗) ≡ ψ1(y⃗1, ν⃗1) ∧ ψ2(y⃗2, ν⃗2). From the induction hypothesis there exists ψ1,n =
(ϕ1,n;β(y⃗; W⃗n))

β∈[n]ν⃗1
0

and ψ2,n = (ϕ2,n;β(y⃗; W⃗n))
β∈[n]ν⃗2

0
such that ψ1,n translates ψ1 for n

and ψ2,n translates ψ2 for n. Let β1 be the restriction of β to ν⃗1 and let β2 be the restriction
of β to ν⃗2. Let

ϕn;β ≡ ψ1,n;β1 ∧ ψ2,n;β2 .

The other logical connectives can be handled similarly. Suppose ϕ(y⃗, ν⃗) ≡ ∃xψ, where x is a
number variable. Let ψn;β ≡ ∃xψn;β . Suppose ϕ(y⃗, ν⃗) ≡ ∃λψ, where λ is a number variable.
Let

ψn;β ≡
∨

a∈[n]0

ψn;βa(y⃗),

where for each a ∈ [n]0, βa = β aλ . We can handle the universal quantifier similarly using
conjunctions instead of disjunctions.

It is not hard to show that in each of these cases the constructed families of formulas
satisfy the requirements for a translation. This completes the inductive argument.

It can be shown that there is an algorithm that takes as input a number-term γ with no
subformulas, a number n ∈ N, and an assignment β that maps the free (number) variables of
γ to [n]0 and outputs the value of γ for any structure of size n with the assignment β and
runs in time polynomial in n and the length of γ. Let p(n) = anc1 be a polynomial bounding
the running time of this algorithm, where a and c1 are constants.

Let n ∈ N and θ(x⃗, µ⃗; V⃗) ∈ FON(Ω̃)[ρ]. We can construct a translation of θ for n by
implementing the above inductive argument as a recursive algorithm. Moreover, it can be
shown that there exists constants c2 and c3 such that we can construct a translation of a
subformula ϕ for n in time at most c2 · (|ϕ| + n)c1 · nc3·(width(ϕ)+|ϕ|) · Xϕ where Xϕ is the
maximal cost of translating an immediate subformula ϕ. It follows that we can compute
a translation for θ for n in time at most c|cl(θ)|

2 (|θ| + n)c1·|cl(θ)|nc3·|cl(θ)|·(wθ+|θ|) and so, since
|cl(θ)| ≤ |θ|, in time O((n+ |θ|)c·|θ|) for some constant c.

Lemma 3.26. Let ρ be a relational vocabulary and let Ω be a set of almost relational Boolean-
valued operators such that FON(Ω̃) is P-bounded. Let Q = QΩ. Every query definable by a

50 Generalised Operators

P-uniform family of FON(Ω̃)[ρ]-substitution programs with constant length is definable by a
P-uniform family of FO(Q̃)[ρ]-substitution programs with constant width.

Proof. Let Θ := (Θn)n∈N be a P-uniform family of FON(Ω̃)[ρ]-substitution programs with
constant length. For each n ∈ N let Mn be the domain of the function Θn. For each n ∈ N,
i ∈ Mn let x⃗ni and µ⃗ni be the free element variables and number variables in Θn(i) and let
V n
i be the second-order variable associated with Θn(i). Note that V n

i has the same type as
(x⃗ni , µ⃗ni). For each n ∈ N, i ∈ Mn, and c⃗ ∈ [n]|µ⃗

n
i |

0 let V n
i,⃗c be an element-sort second-order

variable with arity |x⃗ni | and let θn,i(x⃗ni , µ⃗ni ; V⃗ n
i) := Θn(i), where V⃗ n

i = (V n
j)j>i. It follows from

Lemma 3.25 that there exists a family of FO(Q̃)[ρ]-formulas θn,i := (θn,i;β(x⃗ni ; W⃗n
i))

β∈[n]
µ⃗n
i

0

that translates θn,i for n and where W⃗n
i = {V n

j,⃗c : j ∈ Mn, j > i, c⃗ ∈ [n]|µ⃗
n
j |

0 }.
Let M ′

n := {(i, c⃗) : i ∈ Mn, c⃗ ∈ [n]|µ⃗
n
i |

0 }. Let Θ′
n : M ′

n → FO(Q̃)[ρ] be defined such
that for each (i, c⃗) ∈ M ′

n let β = c⃗
µ⃗ni

then we have Θ′
n(i, c⃗) := θn,i;β. Let Θ′ = (Θ′

n)n∈N.
Since M ′

n is a product of two linearly ordered sets, we can define a linear order on M ′
n

lexicographically. For each (i, c⃗) ∈ M ′
i we associate the formula Θ′

n(i, c⃗) with the second-order
variable V n

i,⃗c. For each (i, c⃗) ∈ M ′
i the second-order variables that appear in Θ′

n(i, a⃗) are
among W⃗n

i ⊆ {V n
j,⃗b

: (j, b⃗) ∈ M ′
i , (j, b⃗) > (i, c⃗))}. It follows that Θ′

n is a valid substitution
program.

Claim 3.26.1. For each n ∈ N and i ∈ Mn let ϕn,i(x⃗ni , µ⃗ni) be the flattening of Θn at i
and for each c⃗ ∈ [n]|µ⃗

n
i |

0 let ϕ′
n,(i,⃗c)(x⃗ni) be the flattening of Θ′

n at (i, c⃗). Then for all n ∈ N

and i ∈ Mn A ∈ fin[ρ, n], α ∈ Ax⃗
n
i , and β ∈ [n]µ⃗

n
i

0 we have A |= ϕn,i[α, β] if, and only if,
A |= ϕ′

n,(i,β(µ⃗ni)[α].

Proof. Let n ∈ N. We prove this result by backwards induction. Let i ∈ Mn. Suppose
i = max(Mn). Then no second-order variables appear in Θn(i) and for all c⃗ ∈ [n]|µ⃗

n
i |

0 no
second-order variables appear in Θ′

n(i, c⃗). It follows that for all c⃗ ∈ [n]|µ⃗
n
i |

0 we have ϕn,i = Θn(i)
and ϕ′

n,(i,⃗c) = Θ′
n(i, c⃗). We thus have A |= ϕn,i[α, β] if, and only if, A |= Θn(i)[α, β] if, and

only if, A |= θn,i;β[α] if, and only if, A |= Θ′
n(i, β(µ⃗ni))[α] if, and only if, A |= ϕ′

n,(i,β(µ⃗ni))[α].
The second equivalence follows from the definition of a translation and from the fact that no
second-order variables appear in either of these formulas. The base case follows.

Suppose i < max(Mn) and the hypothesis holds for all j > i. Let γ be an assignment to
second-order variables that maps each V n

j with j > i to the relation (V n
j)(A,γ) := ϕA

n,j . Let
γ′ be the assignment to second-order variables that maps each V n

j,⃗c with j > i and c⃗ ∈ [n]|µ⃗
n
j |

0
to the relation (V n

j,⃗c)(A,γ′) := (ϕ′
n,(j,⃗c))A. From the induction hypothesis we have for all j > i,

αj ∈ Aµ⃗
n
j , and βj ∈ [n]µ⃗

n
j

0 that A |= ϕn,j [α, β] if, and only if, A |= ϕ′
n,(j,βj(µ⃗nj))[α]. It follows

from the definition of γ and γ′ that for all (⃗a, c⃗) ∈ A|x⃗nj | × [n]|µ⃗
n
j |

0 we have (⃗a, c⃗) ∈ (V n
j)(A,γ) if,

and only if, a⃗ ∈ (V n
j,⃗c)(A,γ′). In other words γ and γ′ satisfy condition 3 in the definition of a

translation. We note that γ maps each second-order variable V n
j to the flattening of Θn at j

3.5 Infinitary Logics 51

and γ′ maps each second-order variable V n
j,⃗c to the flattening of Θ′

n at (j, c⃗). It follows that

A |= ϕn,i[α, β] ⇐⇒ A |= θn,i[α, β, γ] ⇐⇒ A |= θn,i;β[α, γ′] ⇐⇒ A |= ϕ′
n,(i,⃗c)[α].

The first and third equivalences follow from the definition of a flattening and the second
equivalence follows from the definition of a translation for n. The proof of Claim 3.26.1
follows by induction.

We have for each n ∈ N that Θn(1) has no free number variables. Let θn and θ′
n be the

flattenings of Θn and Θ′
n. It follows that no free number variables appear in θn and θ′

n. Then,
from Claim 3.26.1, we have that A |= θn[α] if, and only if, A |= θ′

n[α] for each A ∈ fin[ρ, n]
and assignment α ∈ Ax⃗

n
1 . In other words Θ′ and Θ defines the same query.

Since Θ is P-uniform, the function that maps n to Θn is computable in time polynomial in
n. Since Θ has constant length it follows that there is a constant k such that for each n ∈ N
and i ∈ Mn, |Θn(i)| ≤ k. It follows from Lemma 3.25 that the function that maps each Θn(i)
(for n ∈ N, i ∈ Mn) to the translation of Θn(i) for n is computable in time polynomial in n.
Therefore the function n 7→ Θ′

n is computable in time polynomial in n. From Lemma 3.25
and the fact that Θ has constant length, and hence constant width, that Θ′ has constant
width. In summary, we have that Θ′ is a P-uniform family of FO(Q̃)[ρ]-substitution programs
with constant width and Θ′ defines the same query as Θ. The result follows.

3.5 Infinitary Logics

We now complete the translation from fixed-point logics with generalised operators to
bounded-variable infinitary logics with extended quantifiers. We first note that formally
we restricted our attention to finitary logics in this chapter and only defined extensions by
many-sorted quantifiers for these finitary logics. However, it is easy to see that we can extend
an infinitary logic by a many-sorted quantifier using essentially the same approach used to
extend an infinitary logic by a Lindström quantifier.

Proposition 3.27. Let Ω be a family of almost relational operators and let Q be the
corresponding set of quantifiers. Let ρ be a relational vocabulary. Every query definable in
FPN(Ω̃)[ρ] can be defined by a formula of the form

ϕ(x⃗) ≡
∨
n∈N

(∃=nx (x = x)) ∧ ϕn(x⃗),

where for all n ∈ N we have ϕn ∈ FO(Q̃)[ρ]. It follows that FPN(Ω̃) ≤ Cω(Q̃).

Proof. Let θ(x⃗) ∈ FPN(Ω̃)[ρ]. It follows from Lemma 3.16 that FPN(Ω̃) ≡ FPN(Ω̃B). From
Lemma 3.24 there exists a P-uniform family FON(Ω̃B)[ρ]-substitution programs (Θn(x⃗))n∈N

52 Generalised Operators

with constant length that defines the same query as θ. From Lemma 3.26 there exists a
P-uniform family of FO(Q̃)[ρ]-substitution programs (Φn(x⃗))n∈N with constant width that
defines the same query as (Θn)n∈N. For each n ∈ N let ϕn(x⃗) be the flattening of Φn. It
follows that for each n ∈ N, ϕn defines the same query as θ for structures of size n, and θ

and ϕ ≡
∧
n∈N(∃=nx (x = x)) ∧ ϕn(x⃗) define the same query. The result follows.

Chapter 4

Symmetric Circuits

A Boolean circuit C computing a function from {0, 1}n to {0, 1} is usually taken (e.g. [4, 43])
to be a directed acyclic graph in which each gate g that has m incoming edges is labelled
with a Boolean function Fg : {0, 1}m → {0, 1} from a basis B and with exactly n input gates
of C labelled by variables. Notice that if we allow the function Fg to be arbitrary then an
order would need to be imposed on the children of g in order to ensure an unambiguous
evaluation of g. When we say that C is a directed acyclic graph, without further ordering the
nodes, we implicitly assume that the functions in the basis B are symmetric. That is to say
Fg is invariant under all permutations of its m inputs. This unstated assumption is pervasive
in circuit complexity (see [4, 43, 8]). In particular, the standard Boolean basis of AND, OR
and NOT gates as well as bases with majority or threshold gates only contain symmetric
functions.

We are interested in Boolean circuits that compute queries on relational structures. In
the case of (undirected, loop-free) graphs on n vertices, such a circuit might compute a
function from {0, 1}(n2) to {0, 1}. In this case, the function computed by the circuit is
not necessarily invariant under all permutations of the inputs, but it is invariant under all
permutations of the

(n
2
)

inputs induced by permutations of [n]. We are especially concerned
with symmetric circuits, that is those where the permutations of [n] extend to automorphisms
of the circuit. Note that this use of the word “symmetric” is distinct from its use when applied
to Boolean functions. For such circuits, Anderson and Dawar [3] consider P-uniform families
of circuits defined over the standard Boolean basis as well the extension of the standard
basis with majority functions. It is a consequence of their results that the latter are strictly
more powerful than the former. In particular, families of symmetric circuits with majority
functions are shown to be equivalent to the logic FPC. In contrast, we show in this chapter
that adding any further symmetric functions to the basis does not allow us to extend the
power of P-uniform symmetric circuits beyond that of FPC.

As we ultimately aim to generalise Anderson and Dawar’s result and establish circuit
characterisations for a broad range of extensions of fixed-point logic, many of which are

54 Symmetric Circuits

strictly more expressive than FPC, we need to consider circuits with gates that compute
non-symmetric Boolean functions. To lead up to this, we first develop a general framework of
structured Boolean functions. These are functions whose inputs naturally encode τ -structures.
We are particularly interested in isomorphism-invariant structured functions, i.e. those
structured functions whose output is invariant under the symmetries of these structures.

We next introduce a more general circuit model whose gates are labelled by isomorphism-
invariant structured functions, rather than symmetric functions. We generalise various
important notions introduced by Anderson and Dawar, including the notions of a circuit
automorphism and a symmetric circuit. We aim to replicate many of Anderson and Dawar’s [3]
results in this more general setting. However, many of the proof techniques used in their paper
heavily rely, often in quite subtle ways, on the assumption that individual gates compute
symmetric functions. In this chapter we discuss some difficulties that arise in this more
general setting and what implications these have for the prospect of generalising some of
Anderson and Dawar’s results.

This chapter is organised as follows. In Section 4.1 we introduce the theory of structured
Boolean functions. In Section 4.2 we introduce our more general circuit model and corre-
spondingly generalise key notions for such circuits. We also discuss some new concepts which
only become relevant in this more general setting and which will be needed to overcome some
of the difficulties introduced by this generalisation. We also formally state the main theorem
of this thesis. In Section 4.3 we show that any query definable by a P-uniform family of
symmetric circuits over a basis of symmetric functions is definable by a P-uniform family of
symmetric circuits over the standard basis with majority functions.

4.1 Structured Functions and Symmetry

In complexity theory we are often interested in the problem of deciding a language L ⊆ {0, 1}∗.
We can equivalently define L using a family of functions (Fn : {0, 1}n → {0, 1})n∈N, where
each Fn decides L for strings of length n. In contrast, in descriptive complexity we are usually
interested in working directly with classes of structures, rather than sets of string encodings,
and consider methods of computation that respect the abstract symmetry properties of these
structures. In this context we are interested in Boolean functions that take as input a more
direct encoding of a structure and which respect the appropriate symmetries. We do this
by considering families of functions of the form F : {0, 1}X → {0, 1} where X is not just an
(ordered) index set, such as [n], but carries with it a structure which gives a natural way of
identifying input functions with relational structures. To give an example, for a finite set V if
we take X = V × V then the functions f : X → {0, 1} can each be identified with a directed
graph with vertex set V . The function F can then be thought of as deciding a set of directed
graphs with vertex set V . When the index set X is unstructured it is natural to consider
those Boolean functions invariant under all permutations in SymX on the input, i.e. the

4.1 Structured Functions and Symmetry 55

symmetric functions. However, in our example a more natural symmetry requirement would
be to consider functions invariant under the action of SymV on the input. Understanding
the inputs to this function as directed graphs, this notion of invariance corresponds to the
function being invariant under graph isomorphism. We use this example to motivate our
introduction of structured functions.

Definition 4.1. Let τ := (R,S, ζ) be a many-sorted relational vocabulary. Let X = ⊎s∈SXs

be a disjoint union of non-empty sets. Let Kτ,X be the complete τ -structure with universe
X. Let τ [X] := ⊎R∈RR

Kτ,X = {(⃗a,R) : R ∈ R, a⃗ ∈ RKτ,X}. If X = [n] for some n ∈ N we
write τ [n] to denote τ [X].

We call a function F : {0, 1}τ [X] → {0, 1} a structured function with universe τ and
domain X. We call Kτ,X the structure associated with F and τ [X] the index set of F . We
denote the index set of F by ind(F).

We always assume that if F is a structured function with vocabulary τ = (R,S, ζ) then
for each s ∈ S there exists R ∈ R such that s appears in ζ(R). Let τ = (R,S, ζ) be a
many-sorted relational vocabulary and let X := ⊎s∈SXs be a disjoint union of non-empty
sets. We identify each f : τ [X] → {0, 1} with the τ -structure A with universe X and such
that for each R ∈ R, RA = {a⃗ : f (⃗a,R) = 1}.

There is a group action of Symτ [X] on {0, 1}τ [X] defined for each σ ∈ Symτ [X] and
f ∈ {0, 1}τ [X] such that (f · σ)(x) = f(σ(x)) for all x ∈ τ [X]. There is also a group action
of Aut(Kτ,X) on {0, 1}τ [X] defined for each λ ∈ Aut(Kτ,X) and f ∈ {0, 1}τ [X] such that
(f · λ)(⃗a,R) = (λ(⃗a), R) for all (⃗a,R) ∈ τ [X]. We can identify Aut(Kτ,X) with a subgroup
of Symτ [X]. We notice that for all σ ∈ Symτ [X] we have for f : τ [X] → {0, 1} that f · σ is
isomorphic to f if, and only if, σ ∈ Aut(Kτ,X). We call Aut(Kτ,X) the automorphism group
of F .

Definition 4.2. Let F : {0, 1}τ [X] → {0, 1} be a structured function. Let G ≤ Symτ [X]. We
say that F is G-invariant if for all σ ∈ G and all f : τ [X] → {0, 1} we have F (f) = F (σf).
We say that F is isomorphism-invariant if F is Aut(Kτ,X)-invariant.

It follows from the above argument that F is an isomorphism-invariant if, and only if, F
decides a property of τ -structures. We have noted that each function f : τ [X] → {0, 1} can
be identified with a τ -structure with universe X. Let H be a set. We can similarly identify
a function f : τ [X] → H with an (edge) labelled version of the complete τ -structure with
universe X. We say two labelled structures are isomorphic if there is a bijection between
these structures that preserves relations and labels. In other words, if f : τ [X] → H and
g : τ [Y] → H then f and g are isomorphic if, and only if, there exists π : X → Y such that
for all (⃗a,R) ∈ τ [X], f (⃗a,R) = g(π(⃗a), R). If f and g have the same domain then we can
identify this bijection with an element of Aut(Kτ,X).

We now return to the motivating example mentioned earlier involving Boolean functions
that take directed graphs as inputs. We notice that for a finite set V the Boolean function

56 Symmetric Circuits

F : {0, 1}V×V → {0, 1} can be viewed as a structured function with universe V and with
vocabulary τ , where τ is single-sorted and contains a single binary relation symbol. We
notice that F is isomorphism-invariant as a structured function if, and only if, F (A) = F (B)
whenever A and B are isomorphic directed graphs.

We can similarly view a Boolean function of the form F : {0, 1}n → {0, 1} as a structured
function with universe [n] and vocabulary τ , where τ is single-sorted and contains a single
unary relation. In this case we notice that F is isomorphism-invariant if, and only if, F is
invariant under arbitrary permutations of the input string. In this way we recover the usual
notions of a Boolean function and a symmetric Boolean function. We identify the usual
symmetric Boolean functions with isomorphism-invariant structured functions defined over
a single-sorted vocabulary with a single unary relation. It would be natural then to call
isomorphism-invariant structured functions that are not symmetric non-symmetric Boolean
functions. However, this could be confusing as these functions are invariant with respect to
the automorphism group of the relevant complete structure, and so are “symmetric” in some
appropriately weaker sense. As such, in our framework we call symmetric functions trivially
automorphism-invariant (or just trivially invariant) functions and say that isomorphism-
invariant structured function that are not trivially automorphism-invariant are non-trivially
automorphism-invariant or just non-trivially invariant.

We can also define a structured function that takes 0-1 matrices as inputs. In this case
we take τ = ({M}, {s1, s2}, ζ) where ζ(M) = (s1, s2). We can think of a τ -structure as being
a 0-1 matrix with the first sort denoting the row index set and the second sort denoting the
column index set. In this case a structured function F : {0, 1}τ [X] → {0, 1} is isomorphism-
invariant if, and only if, it is invariant under the action of all permutations of the form (σ1, σ2)
where σ1 permutes the first sort (thought of as the row indices) and σ2 permutes the second
sort (thought of as the column indices). In other words, F is isomorphism-invariant if, and
only if, it is invariant under all row-column permutations of the matrix. We now generalise
the usual notion of a Boolean basis so as to allow for structured functions.

Definition 4.3. A Boolean basis (or just a basis) is a set of isomorphism-invariant structured
functions.

We now introduce some notation and a few useful conventions. If F is a structured
function with a vocabulary τ consisting of a single relation symbol we often omit it when
denoting the index set. In other words, if τ has a single relation symbol U we write a ∈ τ [X]
instead of (a, U) ∈ τ [X]. It is conventional when working with Boolean functions to take the
index set to be an initial segment of the natural numbers. We also follow this convention
and often work with structured functions where each sort in its universe is an initial segment
of the natural numbers. Let τ = (R,S, ζ) be a many-sorted relational vocabulary. Let
e : S → N. We write τ [e] to denote τ [X] where X = ⊎s∈SXs and Xs = [e(s)] for each
s ∈ S. In some contexts it is natural to consider the set of sort symbols to be ordered.

4.1 Structured Functions and Symmetry 57

Suppose S = {s1, . . . , sm}. Then for p1, . . . , pm ∈ N we write τ [p1, . . . , pm] to denote τ [e]
where e : S → N is defined by e(si) = pi for each i ∈ [m].

We noted earlier that a language is defined by a family of Boolean functions. We now show
that a class of structures can similarly be associated with a family of structured functions.
Let G be a class of τ -structures and let X = ⊎s∈SXs be a disjoint union of non-empty sets.
Let FG [X] : {0, 1}τ [X] → N be defined by FG [X](A) = idG(A) for all A ∈ fin[τ,X]. Let BG

be the set of all FG [X] for any union of non-empty disjoint sets X = ⊎s∈SXs. We call BG the
basis corresponding to G. Notice that each structured function in BG is isomorphism-invariant.
We say that a basis B is finitely generated if there is a finite collection of classes of structures
{G1, . . . ,Gk} such that B = ⋃

i∈[k] Gi.
We also introduce some notation for structured functions defined over universes consisting

of disjoint unions of initial segments of the natural numbers. If S = {s1, . . . , sm} and
p1, . . . , pm ∈ N we write FG [p1, . . . , pm] to denote FG [⊎si∈S [pi]].

We can also associate each family of almost relational generalised operators with a
basis of isomorphism-invariant structured functions. We notice that each Boolean-valued
almost relational generalised operator Ω and each assignment α to the constant symbols
in the vocabulary of Ω defines a class of many-sorted relational structures Gα. The basis
corresponding to Ω is the union of the bases BGα for each assignment α. We now define this
notion formally.

Definition 4.4. Let Ω be an almost relational generalised operator. Let ΩB be the corre-
sponding Boolean-valued generalised operator. Let E be the evaluation function of ΩB. Let
τ := (R,S,F , ζ) be the vocabulary of ΩB. Let τrel := (R,S, ζrel) where ζrel = ζ

∣∣
R

. For
each α : F → N0 and A ∈ fin[τrel] let (A|α) be the τ -structure (A, (RA)R∈R, (α(F))F∈F).
For each α : F → N0 let GE,α := {A ∈ τrel : E(A|α) = 1}. Let BΩ := {BGE,α : α : F → N0}.
In order to simplify notation we write FΩ,α[X] to denote FGE,α [X] for each τrel-sorted set
X. We call BΩ the basis corresponding to Ω. Let Ω be a set of almost relational generalised
operators. Let BΩ := ⋃

Ω∈Ω BΩ. We call BΩ the basis corresponding to Ω. If Ω is relational
then τrel = τ and we omit α from the above subscripts and write GE to denote GE,α and
FΩ[X] to denote FGE [X] for each τ -sorted set X.

We introduce some specific notation for vectorised operators. We first note that if Ω
is an almost relational vectorised operator then for any Ω ∈ Ω we have BΩ = BΩ. In this
case we write FΩ,α[X] to denote FΩ,α[X] for each Ω ∈ Ω. We sometimes use Ω to denote a
set of vectorised operators, rather than a set of generalised operators. In this case we abuse
notation and write BΩ to denote the union of BΩi for each vectorised operator Ωi ∈ Ω.

We now consider the counting operator as an example and show that the corresponding
Boolean basis is the set of threshold functions.

Example 4.5. Let ΩEcnt be the counting operator. Let s be the single sort symbol in the
vocabulary of ΩEcnt . Then BΩEcnt

consists of all functions of the form FΩEcnt ,α
[X] where

58 Symmetric Circuits

α : {s} → N0 and X : {s} → N0 and FΩ,α[X] takes as input the characteristic function of a
subset of [X(s)] and outputs 1 if, and only if, the size of that set is at least α(s).

4.2 Symmetric Circuits

We now generalise the circuit model of Anderson and Dawar [3] so as to allow for circuits to
be defined over bases that may include both trivially and non-trivially invariant functions.
In this model each gate g is not only associated with an element of the basis, as in the
conventional case, but also with a labelling function. This labelling function maps the input
gates of g to an appropriate set of labels (i.e. the index of the structured function associated
with g). In concord with this generalisation, we also update the circuit-related notions
discussed by Anderson and Dawar [3], e.g. circuit automorphisms, symmetry, etc. Moreover,
we briefly discuss some of the important complications introduced by our generalisation,
and introduce some of the important tools we will use in later chapters to address these
complications.

Definition 4.6 (Circuits on Structures). Let B be a basis and ρ be a relational vocabulary, we
define a (B, ρ)-circuit C of order n computing a q-ary query Q as a structure ⟨G,Ω,Σ,Λ, L⟩.

• G is called the set of gates of C.
• Ω is an injective function from [n]q to G. The gates in the image of Ω are called the

output gates. When q = 0, Ω is a constant function mapping to a single output gate.
• Σ is a function from G to B ⊎ ρ ⊎ {0, 1} such that |Σ−1(0)| ≤ 1 and |Σ−1(1)| ≤ 1.

Those gates mapped to ρ ⊎ {0, 1} are called input gates, with those mapped to ρ called
relational gates and those mapped to {0, 1} called constant gates. Those gates mapped
to B are called internal gates.

• Λ is a sequence of injective functions (ΛR)R∈ρ such that ΛR maps each relational gate
g with Σ(g) = R to the tuple ΛR(g) ∈ [n]rR . When no ambiguity arises we write Λ(g)
for ΛR(g).

• L associates with each internal gate g a function L(g) : ind(Σ(g)) → G such that if we
define a relation W ⊆ G2 by W (h1, h2) iff h2 is an internal gate and h1 is in the image
of L(h2), then (G,W) is a directed acyclic graph.

The definition requires some explanation. Each gate in G computes a function of its
inputs and the relation W on G is the set of “wires”. That is, W (h, g) indicates that the
value computed at h is an input to g. However, since the functions are structured, we need
more information on the set of inputs to g and this is provided by the labelling L. Σ(g) tells
us what the function computed at g is, and thus the index of Σ(g) tells us the structure on
the inputs and L(g) maps this to the set of gates that form the inputs to g.

Let C := ⟨G,Ω,Σ,Λ, L⟩ be a (B, ρ)-circuit of order n. Recall that the order of a circuit
refers to the size of the input structures it takes. In contrast, we define the size of C, denoted

4.2 Symmetric Circuits 59

|C| to be the number of elements in G. If (Cn)n∈N is a family of circuits we assume that each
Cn is a circuit of order n.

For each g ∈ G we let W (·, g) := {h ∈ G : W (h, g)} and W (g, ·) := {h ∈ G : W (g, h)}.
We call the elements of W (·, g) the children of g and the elements of W (g, ·) the parents of g.
We also abbreviate W (g, ·) by Hg. We write WT for the transitive closure of W .

For a gate g ∈ G with Σ(g) ∈ B, we let the index of g, denoted by ind(g), be the index
of Σ(g). We let the vocabulary and universe of g be the vocabulary and universe of Σ(g),
respectively, and denote the vocabulary of g by voc(g) and the universe by unv(g). We let the
automorphism group of g be the automorphism group of Σ(g) and we write Aut(g) to denote
this group. We write str(g) denote the complete structure associated with Σ(g). We say that
a gate g is trivially automorphism-invariant (or just trivially invariant)if Σ(g) is a trivially
invariant function and otherwise we say that g is non-trivially automorphism invariant (or
just non-trivially invariant. We say C is a circuit with trivially invariant gates if every gate
in C is trivially automorphism-invariant.

Let ρ be a relational vocabulary, A be a ρ-structure with universe A of size n, and
γ ∈ [n]A. Let γA be the structure with universe [n] formed by mapping the elements of A in
accordance with γ. The evaluation of a (B, ρ)-circuit C of order n computing a q-ary query
Q proceeds by recursively evaluating the gates in the circuit. The evaluation of the gate g
for the bijection γ and input structure A is denoted by C[γA](g), and is given as follows

1. If g is a constant gate then it evaluates to the bit given by Σ(g),
2. if g is a relational gate then g evaluates to true iff γA |= Σ(g)(Λ(g)), and
3. if g is an internal gate let LγA(g) : ind(g) → {0, 1} be defined by LγA(g)(x) =
C[γA](L(g)(x)), for all x ∈ ind(g). Then g evaluates to true if, and only if, Σ(g)(Lγg) =
1.

We say that C defines the q-ary query Q ⊆ Aq under γ where a⃗ ∈ Q if, and only if,
C[γA](Ω(γa⃗)) = 1. We write C[γA] to denote the query Q.

We notice that in general the output of a circuit C may depend on the particular encoding
of A as a structure with universe [n], i.e. on the chosen bijection γ. It is natural to consider
circuits whose outputs do do not depend on this choice of encoding. Anderson and Dawar [3]
call such a circuit invariant. We have reproduced their definition below.

Definition 4.7 (Invariant Circuit). Let C be a (B, ρ)-circuit of order n, computing some q-
ary query. We say C is invariant if for every ρ-structure A of size n, a⃗ ∈ Aq, and γ1, γ2 ∈ [n]A

we have that C[γ1A](Ω(γ1a⃗)) = C[γ2A](Ω(γ2a⃗)).

If a family of (B, ρ)-circuits C is invariant it follows that the query computed is a q-ary
query on ρ-structures. Thus if q = 0 then C computes a property of ρ-structures. The
following lemma allows us to recast this notion in terms of the language developed in this
thesis.

60 Symmetric Circuits

Lemma 4.8. Let C be a (B, ρ)-circuit of order n computing a 0-ary query. The function
computed by C is isomorphism-invariant if, and only if, C is an invariant circuit.

Proof. We first note that, since C computes a 0-ary query, there is exactly one output gate.
We call this gate go. We can associate with each relational gate g in C a unique pair (⃗a,R),
where R := Σ(g) is a relational symbol in τ and a⃗ := ΛR(g) is an an element of R[n]. Thus
we can think of the function FC computed by the circuit as having its input string indexed
by the elements of ρ[n], and so think of FC as a structured function with index ρ[n].

We now present a number of observations, and then combine these observations to prove
both directions of the lemma. Let B be a ρ-structure of size n over the universe [n]. We
can define a function fB : ρ[n] → {0, 1} such that fB (⃗aR) = 1 if, and only if, a⃗ ∈ RB. Let
f : ρ[n] → {0, 1}. We can define the ρ-structure Bf over the universe [n] such that for all
R ∈ ρ, we have a⃗ ∈ RBf if, and only if, f (⃗aR) = 1. It is easy to see that the functions B 7→ fB

and f 7→ Bf are inverse to one another, and so define a bijection. Moreover, we notice that
for all σ ∈ Symn we have that fσB (⃗aR) = 1 if, and only if, a⃗ ∈ RσB if, and only if, σ−1a⃗ ∈ RB

if, and only if, (fBσ
−1)(⃗aR) = fB(σ−1a⃗R) = 1. It follows fσB = fBσ

−1.
Let A be a ρ-structure of size n with universe A, and let γ1, γ2 ∈ [n]A. From the definition

of FC it follows that for γ ∈ Symn we have that FC(fγA) = 1 if, and only if, C[γA](go) = 1.
Let γ1, γ2 ∈ [n]A and let σ ∈ Symn be such that γ1 = σγ2. We have that

C[γ1A](go) = C[γ2A](go) ⇔ FC(fγ1A) = FC(fγ2A)
⇔ FC(fγ1A) = FC(fσ−1γ1A)
⇔ FC(fγ1A) = FC(fγ1Aσ).

We now combine the above observations to prove the result. Suppose FC is isomorphism-
invariant. Let γ1, γ2 ∈ [n]A and let σ ∈ Symn be such that γ1 = σγ2. Then, from
isomorphism-invariance, we have FC(fγ1A) = FC(fγ1Aσ), and so C[γ1A](go) = C[γ2A](go).

Suppose C is invariant. Fix a bijection γ1 ∈ [n]A. Let σ ∈ Symn and f : ρ[n] → {0, 1}.
Let A = γ−1

1 Bf and γ2 := σ−1γ1. Since C is invariant we have C[γ1A](go) = C[γ2A](go), and
so FC(fγ1Aσ) = FC(fγ1A). But fγ1A = fBf = f , and so FC(fσ) = FC(f). It follows that FC
is isomorphism-invariant.

We now define an automorphism of a circuit, generalising the definition introduced by
Anderson and Dawar. The definition is similar, but adds the requirement that if a gate g is
mapped to g′, then children of g must be mapped to the children of g′ via some appropriate
isomorphism of the structure associated with g.

Definition 4.9 (Automorphism). Let C = ⟨G,Ω,Σ,Λ, L⟩ be a (B, τ)-circuit of order n
computing a q-ary query, and where B is a basis of isomorphism-invariant structured functions.
Let σ ∈ Symn and π : G → G be a bijection such that

4.2 Symmetric Circuits 61

• for all output tuples x ∈ [n]q, πΩ(x) = Ω(σx),
• for all gates g ∈ G, Σ(g) = Σ(πg),
• for each relational gate g ∈ G, σΛ(g) = Λ(πg), and
• For each pair of gates g, h ∈ G W (h, g) if and only if W (πh, πg) and for each internal

gate g we have that L(πg) and πL(g) are isomorphic (as labelled structures).

We call π an automorphism of C, and we say that σ extends to an automorphism π. The
group of automorphisms of C is called Aut(C).

We can equally define an isomorphism between a pair of circuits C = ⟨G,Ω,Σ,Λ, L⟩ and
C ′ = ⟨G′,Ω′,Σ′,Λ′, L′⟩ as a bijection π : G → G′ satisfying conditions as above. We do not
usually need to consider distinct, isomorphic circuits and for this reason we only formally
define automorphsims.

We are particularly interested in circuits that have the property that every permutation
in Symn extends to an automorphism of the circuit.

Definition 4.10 (Symmetry). A circuit C or order n is called symmetric if every σ ∈ Symn

extends to an automorphism on C.

It follows that for any symmetric circuit C of order n there is a homomorphism h that
maps Symn to Aut(C) such that if σ ∈ Symn then h(σ) is an an automorphism extending
σ. Suppose C does not contain a relational gate labelled by a relation symbol with non-zero
arity. In that case C computes a constant function. For this reason, in this thesis we always
assume a circuit contains at least one relational gate with non-zero arity. Now, by assumption
there exists a relational gate in C such that some element of [n] appears in the tuple labelling
that gate. By symmetry it follows that every element of [n] appears in a tuple labelling a
relational gate in C. It follows that no two distinct elements of Symn agree on all input
gates, and so the homomorphism h is injective.

If this homomorphism is also surjective then we have that each element of σ extends
uniquely to an automorphism of the circuit. In this case we say that a circuit has unique
extensions.

Definition 4.11. We say that a circuit C has unique extensions if for every σ ∈ Symn there
is at most one πσ ∈ Aut(C) such that πσ extends σ.

It is worth noting that many of the important technical tools needed in this thesis are
only applicable if the circuit under consideration has unique extensions. In order to handle
this technicality Anderson and Dawar [3] introduce the notion of a rigid circuit and show
that, for circuits defined over a basis of trivially invariant functions there is a polynomial-time
algorithm that takes as input a symmetric circuit and outputs an equivalent rigid symmetric
circuit. They also show that a great many properties of rigid circuits can be decided in
polynomial time, a necessary step in their argument, and, importantly, that rigid circuits

62 Symmetric Circuits

have unique extensions. This allows them to restrict their attention to P-uniform families of
symmetric circuits (over bases of trivially invariant functions) with unique extensions, without
a loss of generality.

In order to make use of these technical tools, as well as ensure the polynomial-time
decidability of many important circuit properties, we should like to be able to construct a
normal form analogous to rigidity and present a polynomial time algorithm that transforms
a circuit into an equivalent circuit of this form. It is at this point that we arrive at the first
complication introduced by our generalisation. The polynomial-time translation in [3] makes
indispensable use of the polynomial-time decidability of many important circuit properties for
circuits defined over trivially invariant bases. However, for the more general circuits discussed
here, it is not known if even the most basic circuit properties are polynomial-time decidable.
This is essentially due to the requirement built in to Definition 4.9 that an automorphism
that takes g to g′ must be an isomorphism between L(g) and L(g′), which makes checking
the condition as hard as isomorphism checking. Indeed, we show in Chapter 7 that for
circuits that include gates computing non-trivially invariant functions all of the relevant
circuit properties of interest are at least as hard to decide as the graph-isomorphism problem.
As such, constructing an argument analogous to [3], as well as establishing the numerous
other crucial results whose proofs rely on the polynomial-time decidability of various circuit
properties, would be beyond the scope of this thesis.

In order to proceed we explicitly restrict our attention to a particular class of circuits
characterised by a restriction on the children of gates labelled by non-trivially invariant
functions. We say such circuits are transparent. We show in Chapter 7 that all of the circuit
properties of interest are polynomial-time decidable for transparent circuits, and we use these
results to define a polynomial-time transformation from transparent circuits to equivalent
circuits with unique extensions. Importantly, while the restriction to transparent circuits
makes it easier to translate families of circuits into formulas, the usual translation from
formulas to circuits does not produce a family of transparent circuits. We thus define a novel
translation from formulas to circuits in Chapter 5.

Before we can formally define transparency we need to define the syntactic-equivalence
relation on the gates of a circuit. The intuition is that two gates g and g′ in a circuit are
syntactically-equivalent if the circuits underneath them are ‘hereditarily equivalent’, i.e. if
the two circuits induced by the restrictions to WT (·, g) and WT (·, g′) are in some sense just
copies of one another.

Definition 4.12. Let C := ⟨G,Ω,Σ,Λ, L⟩ be a (B, ρ)-circuit of order n. We recursively
define the equivalence relation syntactic-equivalence, which we denote using the symbol ‘≡’,
on G as follows. Suppose g and h are gates in C such that Σ(g) = Σ(h) and either both g and
h are output gates and Ω−1(g) = Ω−1(h) or neither are output gates. Suppose g and h are
input gates, then g ≡ h if, and only if, both g and h are constant gates and Σ(g) = Σ(h) or

4.2 Symmetric Circuits 63

both are relational gates and Λ(g) = Λ(h). Suppose g and h are internal gates and suppose
we have defined the syntactic-equivalence relation for all gates of depth less than the depth
of either g or h. Then g ≡ h if, and only if, L(g)/≡ and L(h)/≡ are isomorphic.

For a circuit C of order n and a gate g we think of g as computing the function that
maps an input structure A and a bijection γ from the universe of A to [n] to the evaluation
C[γA](g). While we would like to be able to identify gates that compute the same function
in this sense, it is not hard to show that deciding this equivalence relation for a given circuit
is NP-hard. We now show that if two gates are syntactically-equivalent then the functions
computed at these two gates must be equal. We show later that the syntactic-equivalence
relation is polynomial-time decidable for the class of circuits of interest to us in this thesis. In
this sense we shall treat syntactic-equivalence as a tractable refinement of the NP-complete
relation.

Lemma 4.13. Let C = ⟨G,Ω,Σ,Λ, L⟩ be a (B, ρ)-circuit of order n. Let A be a ρ-structure
of size n and let γ be a bijection from the universe of A to [n]. For all g, g′ ∈ G if g ≡ g′

then C[γA](g) = C[γA](g′).

Proof. We prove the result by induction on depth. Suppose g and g′ have depth 0 and
g ≡ g′. Then they are both input gates and so g = g′. The result for depth 0 then follows
trivially. Suppose g and g′ are internal gates, and suppose for all h, h′ ∈ G of depth less
than g or g′ we have that if h ≡ h′ then C[γA](h) = C[γA](h′). Suppose g ≡ g′. There
exists λ ∈ Aut(g) such that L(g)(x) ≡ L(g′)(λx) for all x ∈ ind(g). It follows from the
inductive hypothesis that LγA(g)(x) = C[γA](L(g)(x)) = C[γA](L(g′)(λx)) = (LγA(g)λ)(x)
for all x ∈ ind(g). Since Σ(g) (and so Σ(g′)) is a structured function, it follows that
C[γA](g) = Σ(g)(LγA(g)) = Σ(g′)(LγA(g′)λ) = Σ(g′)(LγA(g′)) = C[γA](g′). The result
follows.

The syntactic-equivalence relation identifies gates that have ‘equivalent’ circuits under-
neath them. A similar intuition is captured by identifying gates that are mapped to one
another by automorphisms of the circuit that extend the trivial permutation. We now show
that if two automorphisms extend the same permutation then the two images of each gate
must be syntactically-equivalent.

Lemma 4.14. Let C be a circuit of order n, σ ∈ Symn and π, π′ ∈ Aut(C) both extend σ,
then for every gate g in the circuit we have that π(g) and π′(g) are syntactically-equivalent.

Proof. We first note that, from the definition of an automorphism, for any gate g in C,
Σ(g) = Σ(π(g)) = Σ(π′(g)), and either all of g, π(g) and π(g′) are output gates and
π(g) = πΩ(Ω−1(g)) = Ω(σΩ−1(g)) = π′Ω(Ω−1(g)) = π′(g), or none of g, π(g) and π′(g) are
output gates.

64 Symmetric Circuits

We now prove the result by induction on depth. Suppose g is a gate of depth 0. Then g

is either a relational or constant gate. In either case π(g) = π′(g), and so π(g) and π′(g) are
syntactically-equivalent.

Suppose g is an internal gate and suppose that for every gate h of depth less than g,
π(h) is syntactically-equivalent to π′(h). We have that there exists λ, λ′ ∈ Aut(g) such that
πL(g)(x) = L(πg)(λx) and π′L(g)(x) = L(π′g)(λ′x), for all x ∈ ind(g). Then, from the
inductive hypothesis, we have that πL(g)(x) ≡ π′L(g)(x) and so L(πg)(λx) ≡ L(π′g)(λ′x),
for all x ∈ ind(g). Thus we have that L(πg)(x) = L(πg)(λλ−1(x)) ≡ L(π′g)(λ′λ−1(x)), for
all x ∈ ind(g), and so L(πg)/≡ is isomorphic to L(π′g)/≡. We thus have that π(g) and π′(g)
are syntactically-equivalent, and the result follows.

It follows from Lemma 4.14 that the syntactic-equivalence relation of a circuit C constrains
the automorphism group of C and the orbits and stabiliser groups of the gates in C. We say
that a circuit C is reduced if C has trivial syntactic-equivalence classes, i.e. for all gates g
and h in C if g ≡ h then g = h. An immediate corollary of Lemma 4.14, and an example of
this intuitive understanding of the result, is that if a circuit is reduced then it has unique
extensions. We now define transparency and other properties of circuits in terms of the
structure of their syntactic-equivalence classes.

Definition 4.15. Let C be a circuit and g be a gate in C. We say g has injective labels
if L(g) is an injection. We say g has unique children if no two distinct gates in Hg are
syntactically-equivalent. We say g has unique labels if g has injective labels and unique
children.

We say C has injective labels (or just C is injective) if every gate in C has injective labels.
We say C has unique labels if every gate in C has unique labels. We say C is transparent if
every non-trivially invariant gate g in C has unique labels.

It is worth noting that if a circuit has injective labels and is reduced then it has unique
labels. The converse is, in general, false.

There is a small technical point that needs some discussion before we continue. The
definition of a circuit allows for the inclusion of a gate such that there is no path from this
gate to any of the output gates. In this case we can be sure that this gate has no influence
on the function computed by the circuit. We say that such a gate is redundant.

Definition 4.16. Let C be a circuit and Wt be the transitive closure of the W relation on
the gates of C. We say that an internal gate g in C is redundant if for all output gates g′ in
C, we have ¬Wt(g, g′).

It is easy to see that we can construct from a given circuit an equivalent circuit without
redundant gates by simply removing all of the redundant gates. Let C := ⟨G,Ω,Σ,Λ, L⟩ be
a circuit of order n and let g be a redundant gate in C. It is easy to see that g is not the

4.2 Symmetric Circuits 65

child of a non-redundant gate, nor is it a relational or output gate. Thus we can define the
circuit C ′ := ⟨G′,Ω,Σ

∣∣
G′ ,Λ, L

∣∣
G′⟩, where G′ ⊆ G is the set of all non-redundant gates in C.

It is easy to see that C ′ computes the same query as C, and that each g ∈ G′ has unique
labels in C if, and only if, g has unique labels in C ′. Moreover, it can be shown that if C
is symmetric and g, g′ ∈ G then if g and g′ are in the same orbit then either both g and g′

are in G′ or neither are in G′. As such, if C is symmetric then so is C ′. We thus have the
following Lemma.

Lemma 4.17. Let C := ⟨G,Ω,Σ,Λ, L⟩ be a circuit of order n. Let G′ be the set of non-
redundant gates in C. Let C ′ := ⟨G′,Ω,Σ

∣∣
G′ ,Λ, L

∣∣
G′⟩. Then (i) C and C ′ compute the same

query, (ii) no gate in C ′ is redundant, (iii) if C is symmetric then C ′ is symmetric, (iv) if C
has unique labels then C ′ has unique labels, (v) if C is reduced then C ′ is reduced, and (vi) if
C is transparent then C ′ is transparent

We note that the construction of C ′ from C in Lemma 4.17 can be implemented by an
algorithm that runs in time polynomial in the size of C. As such, for the remainder of this
thesis we assume, unless stated otherwise, every circuit has no redundant gates. With this
assumption in mind we now show that every circuit with unique children (and so unique
labels) has unique extensions.

Proposition 4.18. Let C := ⟨G,Ω,Σ,Λ, L⟩ be a (B, ρ)-circuit of order n. If C has unique
children then C has unique extensions.

Proof. Suppose C has unique children. Let πσ, π′
σ ∈ Aut(C) be automorphisms extending

σ ∈ Symn. We now prove that πσ = π′
σ. Let π := π′

σπ
−1
σ . We have that π is an automorphism

of the circuit and that π extends σ−1σ = e, the identity permutation. It follows that π fixes
all input gates and, since for any output gate g, π(g) = π(Ω(⃗a)) = Ω(ea⃗) = Ω(⃗a) = g for all
a⃗ ∈ [n]q, π fixes all output gates.

We now prove the result by structural induction on the circuit starting from the output
gates. Let g be an output gate then π(g) = g from the above argument. Let g be an internal,
non-output gate. We now show that if π(g) = g then for all h ∈ Hg we have π(h) = h.
Suppose π(g) = g and let h ∈ Hg. Since π(g) = g we have that πHg = Hg, and so π(h) ∈ Hg.
We have from Lemma 4.14 that h is syntactically-equivalent to π(h) and, since g has unique
children, h is the only gate in Hg syntactically-equivalent to h. It follows that π(h) = h.

Let Wt be the transitive closure of the relation W on C. The inductive argument gives us
that for all h ∈ G if there exists an output gate g such that Wt(h, g) or h = g, then π(h) = h.
Since the circuit contains no redundant gates, we have that G = ⋃

a⃗∈[n]q{g ∈ G : Wt(g,Ω(⃗a))},
and the result follows.

We have from Proposition 4.18 that circuits with unique gates have unique extensions.
However, in order to prove many of the results we will need later we not only need that

66 Symmetric Circuits

each automorphism is uniquely determined by the permutation it extends, but also that the
isomorphisms between the labellings of each gate that witness this automorphism are also
uniquely determined by the permutation – or, at the very least, well constrained. Without
this constraint, computing many properties of the circuit would involve solving some version
of the isomorphism problem for τ -structures, where τ is the vocabulary of the gates in
question. Indeed, we prove in Chapter 7, that for the class of circuits with unique children
deciding if a given function is in fact a valid circuit automorphism is at least as hard as the
graph-isomorphism problem. Moreover, we go on to show that a great many important circuit
properties (e.g. the orbit of a gate, symmetry of a circuit, etc.) are also at least as hard to
decide for circuits with unique gates as the graph isomorphism – and so these properties are,
at the very least, not obviously polynomial-time decidable. As such, circuits with unique
children, although satisfying the requirement of having unique extensions, are insufficient for
our purposes.

We have introduced symmetric circuits and generalised operators and are now ready to
state the main result of this thesis.

Theorem 4.19 (Main Theorem). Let Ω be a finite union of P-bounded almost relational
vectorised operators. Let ρ be a relational vocabulary. Then

1. Every query definable in FPN(Ω̃) is definable by a P-uniform family of transparent
symmetric (BΩ ∪ Bstd, ρ)-circuits, and

2. Every query definable by a P-uniform family of transparent symmetric (BΩ ∪ Bstd, ρ)-
circuits is definable in FPN(Ω).

We note that if the logic FPN(Ω) is closed under operator quotients then Theorem 4.19
gives us an exact characterisation of FPN(Ω) in terms of P-uniform families of symmetric
circuits. In the remainder of this thesis we build up the necessary tools to prove this result.
The formal proof is given in Chapter 9.

4.3 Limitations of Symmetric Bases

In this section we show that any family of symmetric circuits defined over an arbitrary
basis of trivially invariant functions can be transformed in polynomial time into a family
of symmetric circuits that decide the same query but are defined over the basis Bmaj. It
follows in particular that it makes no difference to the expressive power of this circuit model
whether we consider circuits defined over the basis containing all trivially invariant functions
or just over Bmaj. We may deduce from this observation that in order to construct P-uniform
families of symmetric circuits that define queries not in FPC we must allow for bases that
include non-trivially invariant functions.

4.3 Limitations of Symmetric Bases 67

Before we present the novel technical content of this section we should first discuss a
related result concerning extensions infinitary logic by families of simple unary Lindström
quantifiers established by Kolaitis and Väänänen [34]. We say a Lindström quantifier Q
is simple and unary if the vocabulary of Q consist of a single unary relation and for every
pair of appropriate structures A = (A,X) and B = (B, Y) if A ∈ GQ, where GQ is the class
of structures associated with Q, and |X| = |Y | then B ∈ GQ. Kolaitis and Väänänen [34]
establish in Proposition 2.7 that if Q is a family of simple urinary quantifiers then Lk(Q) ≤ Ck

for all k < ω. We may view Theorem 4.21, the main result of this section, as establishing an
analogous result for symmetric circuits, in that it shows that if a query is computable by a
family of symmetric circuits over an arbitrary basis of trivially invariant functions then it is
computable by a family of symmetric circuits over the standard basis with majority with only
a polynomial blowup in size. Importantly, for any fixed basis of trivially invariant functions
B the translation we define that maps symmetric circuits over B to equivalent symmetric
circuits over Bmaj is computable in time polynomial in the size of the input circuit.

Let F : {0, 1}n → {0, 1} be a trivially invariant function. Recall that the output of F is
entirely determined by the number of 1s in its input. Let cF ⊆ [n] be the set of all m ≤ n

such that for all x⃗ ∈ {0, 1}n with m 1s we have F (x⃗) = 1. Clearly any trivially-invariant
function F is entirely determined by cF . As such, F may be encoded by a tuple f ∈ {0, 1}n,
where f(i) = 1 if, and only if, i ∈ cF . We assume this encoding below.

Proposition 4.20. There is a deterministic algorithm that outputs for each trivially invariant
function F : {0, 1}n → {0, 1} (encoded as a binary n-tuple as above) a symmetric circuit
C defined over the basis Bmaj that computes F . Moreover, this algorithm runs in time
polynomial in n and the circuit C has depth at most 5, width at most 2n+ 2 and size at most
5n+ 3.

Proof. We have cF from the input. We now define C. We define the set of gates and wires
of C layer by layer as follows. The first layer consists of just the n input gates labelled by
the variables x1, . . . , xn. The second layer consists of two MAJ gates for each a ∈ cF , which
we denote by maja and maj¬

a . For each a ∈ cF there is one wire from each of x1, . . . , xn to
maja and maj¬

a . For all a ≥ n
2 , there are 2a− n wires from 0 to maja and 2a− n+ 2 wires

from 0 to maj¬
a . For all a < n

2 there are n− 2a wires from 1 to maja and n− 2a− 2 wires
from 1 to maj¬

a . The third layer consists of one NOT gate for each a ∈ cF , which we denote
by ¬a. For each a ∈ cF there is a wire from maj¬

a to ¬a. The fourth layer consists of one
AND gate for each a ∈ cF , which we denote by counta. For each a ∈ cF there is a wire from
each of maja and ¬a to counta. The fifth layer consists of just a single OR gate, designated
as the output gate, and for each a ∈ cF there is a wire from counta to the output gate.

68 Symmetric Circuits

We summarise the circuit up to the fourth layer as follows:

counta =

∧(maj(x1, . . . , xn, 0, . . . , 0︸ ︷︷ ︸

2a−n

),¬(maj(x1, . . . , xn, 0, . . . , 0︸ ︷︷ ︸
2a−n+2

))) a ≥ n
2

∧(maj(x1, . . . , xn, 1, . . . , 1︸ ︷︷ ︸
n−2a

),¬(maj(x1, . . . , xn, 1, . . . , 1︸ ︷︷ ︸
n−2a−2

))) a < n
2 .

We note that for an input vector x⃗, counta evaluates to 1 if, and only if, the number of 1’s
in x⃗ equals a. Thus we have that C evaluates to 1 if, and only if, there exists a ∈ cF such
that the number of 1’s in x⃗ equals a if, and only if, F (x⃗) = 1. Let σ ∈ Symn. We define
the automorphism π extending σ as follows. If xi is an input gate then let πxi := xσi. We
note that for each majority gate g in the second layer there is exactly one wire from each
input gate to g. We note additionally that every other gate in the circuit is connected to
the (non-constant) input gates only through a gate in the second layer. As such, if g is an
internal gate we let πg := g, and note that π is an automorphism extending σ. It follows that
C is symmetric. It is easy to see that the construction of the circuit C can be implemented
by an algorithm running in time polynomial in n.

Furthermore, notice that the first layer contains n gates and the second layer contains at
most 2|cF | ≤ 2n gates. The third and fourth layer each contain at most n gates. As such C

has size at most n+ 2n+ 2n+ 1 + 2 = 5n+ 3 (the additional 2 is for the constant gates).
The width of C is at most 2n+ 2, and the depth is at most 5.

Theorem 4.21. Let B be a basis of trivially invariant functions and let (Cn)n∈N be a family
of symmetric circuits defined over the basis B. Then there exists a family of symmetric circuits
(C ′

n)n∈N defined over Bmaj that decides the same language. Moreover, the map Cn 7→ C ′
n is

polynomial-time computable and for each n ∈ N, |C ′
n| ≤ (5 · |Cn| + 3) · |Cn|.

Proof. From Cn we construct C ′
n as follows. For each gate g ∈ Cn labelled by a member of B

we have a symmetric circuit Cg from Proposition 4.20 that computes the same function as
g. Then let C ′

n be as Cn but with each gate g ∈ Cn replaced by Cg. It is easy to see that
C ′
n is symmetric. We note that each gate g ∈ Cn has |Hg| ≤ |Cn|, and so the size of Cg is

bounded by 5|Cn| + 3. Thus the size of C ′
n is bounded by (5f(n) + 3)f(n). This algorithm

clearly runs in polynomial-time.

This result establishes that for any family of circuits over an arbitrary basis of trivially
invariant functions we can construct another family of symmetric circuits over the majority
basis computing the same function and with only a polynomial blowup in size. It follows
from the fact that this translation is polynomial-time computable that if the first family of
symmetric circuits is P-uniform then the second family defined over Bmaj will be as well.
As such, we cannot increase the expressive power of the circuit model studied by Anderson
and Dawar [3], which is defined in such a way as to necessitate that the circuit be defined

4.3 Limitations of Symmetric Bases 69

over a basis of trivially invariant functions, by simply considering some alternative basis of
trivially invariant functions. This result thus motivates the necessity of the generalisation of
the circuit model so as to allow for bases that may include non-trivially invariant functions.

Chapter 5

Translating Formulas to Circuits

There is a standard translation from fixed-point logics to families of symmetric circuits
(see [32] for details). However, this translation does not, in general, produce families of
transparent symmetric circuits. In this chapter we show that for a P-bounded family of almost
relational generalised operators Ω each formula in FP(Ω̃) can be translated to a P-uniform
family of transparent symmetric circuits defined over the basis BΩ ∪ Bstd. This translation
suffices to prove one direction in Theorem 4.19.

We build up to this translation as follows. First, in Lemma 5.1 we show that each formula
in an extension of first-order logic by a family of many-sorted quantifiers Q can be translated
to a P-uniform family of transparent symmetric circuits over the basis BQ ∪ Bstd. Second, in
Proposition 5.3 we use Lemma 5.1 to show that each P-uniform family of FO(Q̃)-substitution
programs can be translated to a P-uniform family of transparent symmetric circuits over
the basis BQ ∪ Bstd. Finally, we use the translation from extensions of fixed-point logic to
P-uniform families of substitution programs given in Lemma 3.26, as well as Lemma 5.4, to
complete the translation.

Let ρ be a relational vocabulary. Let Q be a family of quantifiers. We aim to define
a translation from P-uniform families of FO(Q̃)[ρ]-substitution programs with constant
width to P-uniform families of transparent symmetric (BQ ∪ Bstd, ρ)-circuits. We say that a
(BQ ∪ Bstd, ρ)-circuit C translates a FO(Q̃)[ρ]-formula θ(x⃗) for n ∈ N if C is a transparent
symmetric circuit of order n and for all A ∈ fin[ρ, n], γ ∈ [n]A, and α ∈ Ax⃗ we have that
γ(α(x⃗)) ∈ C[γA] if, and only if, A |= θ[α]. We say a family of circuits (Cn)n∈N translates θ(x⃗)
if (Cn)n∈N is P-uniform and for all n ∈ N, Cn translates θ(x⃗) for n. We now show that for
each FO(Q̃)[ρ]-formula θ(x⃗) and each n ∈ N we can define a circuit Cn that translates θ(x⃗)
for n. Moreover, we show that the construction of Cn can be implemented by an algorithm
and we give precise bounds on the running time of this algorithm.

Lemma 5.1. Let ρ be a relational vocabulary containing at least one non-nullary symbol.
Let Q be a family of quantifiers. There is a function that takes as input a number n ∈ N, an
FO(Q̃)[ρ]-formula θ(x⃗) and outputs a (BQ ∪ Bstd, ρ)-circuit C such that C translates θ for n.

72 Translating Formulas to Circuits

Moreover, there exists a polynomial p such that this function is computable by an algorithm
that for a given input terminates in at most p(|θ|nwidth(θ)+owidth(θ)) many steps.

Proof. We assume, without a loss of generality, that at least one relation symbol from
ρ appears in θ. If this is not the case we take a conjunction of θ with a tautology of
the form ∀x (T (x, . . . , x) ∨ ¬T (x, . . . , x) for some non-nullary T ∈ ρ. For each Q ∈ Q let
τQ := (RQ,SQ, ζQ) be the vocabulary of Q and let arQ be the arity of Q.

There is a natural order on the symbols in the formula θ . We can use the order to define
for each many-sorted quantifier Q that appears in θ an injection fQ : RQ → N0 such that
fQ(R) ≤ |θ| for all R ∈ RQ.

We structure this proof as follows. First, we define a formula λ such that θ and λ

define the same query. We think of λ as a normal form for θ defined so as to remove any
“unwanted symmetries” in the structure of the formula that would result in two children of a
non-symmetric gate being syntactically equivalent when we translate to circuits. We use λ to
define a circuit C and show that C is symmetric, transparent, and defines the same query as
λ (and hence θ) for structures of size n. Lastly, we show that we can construct C within the
required time bounds.

Before we define λ we first define a few auxiliary formulas. Let T ∈ ρ be a non-nullary
symbol. For a variable y let no-opy ≡ (T (y . . . , y) ∨ (¬T (y, . . . , y))) and let no-op-all ≡
∀uno-opu. Let y⃗ := (y1, . . . , ym) be a (possibly empty) sequence of variables. If y⃗ is not
empty let tagy⃗ ≡ (no-opy1 ∧ (no-opy2 ∧ (. . . ∧ (no-opym) . . .)) . . .)). If y⃗ is empty let
tagy⃗ ≡ ∀u ((u = u) ∧ (u = u)). We define a similar helper formula tag-num for each e ∈ N

tag-nume ≡ (no-op-all ∧ (no-op-all ∧ (. . . ∧ (no-op-all) . . .)))︸ ︷︷ ︸
e times

.

It is easy to see that tagy⃗ and tag-nume are tautologies for any e ∈ N and sequence of
variables y⃗. Notice that for e, d,∈ N, tag-nume = tag-numd if, and only if, e = d. Moreover,
for sequences of variables y⃗ and z⃗, tagy⃗ = tagz⃗ if, and only if, z⃗ = y⃗.

Let ψ be a subformula of θ(x⃗) of the form Q[(y⃗R1 , . . . , y⃗RrR)ψR]R∈RQ . For each R ∈ RQ let

ψ′
R ≡ ((∀u (u = u)) ∧ ψR) ∧ (tag-numfQ(R) ∧ tagy⃗R1 ...y⃗RrR)

and let

ψ′(y⃗) ≡ Q[(y⃗R1 , . . . , y⃗RrR)ψ′
R]R∈RQ .

It follows from the fact that ψ′ is defined from ψ by taking conjunctions with tautologies
that ψ and ψ′ define the same query. Let θ′ be defined from θ by recursively replacing each
subformula ψ in θ with a many-sorted quantifier at its head with the corresponding formula
ψ′. Let λ ≡ θ′ ∧ tagx⃗. It can be shown by induction that λ(x⃗) and θ(x⃗) define the same

73

query. It can also be shown by induction that width(λ) ≤ 1 + owidth(θ) + width(θ) and that
owidth(λ) ≤ owidth(θ) + 1.

We fix n ∈ N. We now define a binary relation on pairs of FO(Q)[ρ]-formulas and variable
assignments. Let ϕ1, ϕ2 ∈ FO(Q)[ρ]. Let x⃗1 and x⃗2 be sequences of variables such that
free(ϕ1) ⊆ x⃗1 and free(ϕ2) ⊆ x⃗2 and let α1 ∈ [n]x⃗1 and α2 ∈ [n]x⃗2 . Let c = {c0, . . . , cn} be
a set of constant symbols and for each z ∈ [2] let αcz : x⃗z → c be defined such that for all
x ∈ x⃗z, αcz(x) = cαz(x). Let (ϕ1, α1) ∼ (ϕ2, α2) if, and only if,

• ϕ1 is of the form x1 = y1 and ϕ2 is of the form x2 = y2 and α1(x1) = α1(y1) if, and
only if, α2(x2) = α2(y2), or

• the formulas ϕ1[α
c
1(x⃗1)
x⃗1

] and ϕ2[α
c
2(x⃗2)
x⃗2

] are equal up to renaming of bound variables.

It can be seen that ∼ is an equivalence relation. For a formula ϕ ∈ FO(Q)[ρ] and an
assignment α ∈ [n]z⃗ where free(ϕ) ⊆ z⃗ let [ϕ, α] be the equivalence class of (ϕ, α).

Example 5.2. Let T be a ternary relation symbol and let ϕ1(z, w) ≡ ∃uT (z, w, u). Let
ϕ2(x) ≡ ∃v T (x, x, v) and let α1 and α2 be assignments such that α1(z) = α1(w) = 1 and
α2(x) = 1. Then ϕ1[α

c
1(z)
z

αc1(w)
w] ≡ ∃uT (c1, c1, u) and ϕ2[α

c
2(x)
x] ≡ ∃v T (c1, c1, v). These two

formulas are equal up to renaming of bound variables and so (ϕ1, α1) ∼ (ϕ2, α2). Notice that
if ϕ1(x, y) were instead defined such that ϕ1(x, y) ≡ ∃uT (u, z, w) and ϕ2, α1, and α2 were
defined as above, then (ϕ1, α1) ̸∼ (ϕ2, α2).

Notice that for a, b ∈ N and any assignments α and β we have (tag-numa, α) ∼
(tag-numb, β) if, and only if, a = b. For sequences of variables x⃗ and y⃗ and assignments
α ∈ [n]x⃗′ and β ∈ [n]y⃗′ where x⃗′ and y⃗′ are sequences of variables such that x⃗ ⊆ x⃗′ and y⃗ ⊆ y⃗′

it follows that (tagx⃗, α) ∼ (tagy⃗, β) if, and only if, α(x⃗) = β(y⃗).
For each ψ ∈ cl(λ) let Gψ := {g[ψ,α] : α ∈ [n]free(ψ)}. Let G := ⋃

ψ∈cl(λ)Gψ. We define Σ,
Λ and L for g := g[ψ,α] ∈ G as follows.

• If ψ is of the form x = y let Σ(g) = 1 if, and only if, α(x) = α(y).
• If ψ is of the form T (y⃗) for some T ∈ ρ let Σ(g) = T and let ΛT (g) = α(y⃗).
• Suppose ψ is of the form Q[(y⃗R1 , . . . , y⃗RrR) ·ψR]R∈RQ for some Q ∈ Q. Let G be the class

of τQ-structures associated with Q. Let Σ(g) = FG [arQ]. Let L(g) : τQ[arQ] → G be
defined as follows. Let (⃗a,R) ∈ τQ[arQ]. For each i ∈ [rR] there exists a⃗i ∈ [n]ar(ζQ(R)(i))

such that a⃗ = (⃗a1, . . . , a⃗rR). Let L(g)(⃗a,R) = g[ψR,β] where β = α a⃗1
y⃗R1
. . .

a⃗rR
y⃗RrR

.

• Suppose ψ is of the form Qz ϕ(y⃗, z) for Q ∈ {∀,∃}, then if Q = ∀ let Σ(g) = AND[n] and
otherwise let Σ(g) = OR[n]. Let L(g) : [n] → G be defined for i ∈ [n] by L(g)(i) = g[ϕ,β],
where β := α i

z .
• If ψ is of the form ϕ1 ∧ ϕ2 let Σ(g) = AND[2] and let L(g) : [2] → G be defined for
i ∈ [2] by L(g)(i) = g[ϕi,βi] where βi = α

∣∣
free(ϕ)i

. The same approach is used for the
disjunctive case.

74 Translating Formulas to Circuits

• If ψ is of the form ¬ϕ let Σ(g) = NOT and L(g) : [1] → G be defined by L(g)(1) = g[ϕ,α].

For a given g ∈ G by checking cases we can show that L(g) is an injection. Let q = |x⃗|,
where x⃗ is the sequence of variables free in λ. Let Ω : [n]q → G be defined for a⃗ ∈ [n]q by
Ω(⃗a) = g[λ, a⃗

x⃗
]. It follows from the definition of λ that for all a⃗ ∈ [n]q we have that g[λ, a⃗

x⃗
] is

not a constant gate. Let a⃗, b⃗ ∈ [n]q and suppose Ω(⃗a) = Ω(⃗b). Then g[λ, a⃗
x⃗

] = g[λ, b⃗
x⃗

] and so

(λ, a⃗x⃗) ∼ (λ, b⃗x⃗). It follows from the structure of λ that a⃗ = b⃗. We conclude that Ω is injective.
Let T ∈ ρ and let g[ψ,α], g[ϕ,β] ∈ G be such that ΛT (g[ψ,α]) = ΛT (g[ϕ,β]). Then ψ is of the
form T (z⃗) and ϕ is of the form T (w⃗) and α(z⃗) = ΛT (g[ψ,α]) = ΛT (g[ϕ,β]) = β(w⃗). It follows
that (ψ, α) ∼ (ϕ, β) and so g[ψ,α] = g[ϕ,β]. So we have that ΛT is injective. We conclude that
C := ⟨G,Ω,Σ,Λ, L⟩ is a circuit of order n with injective labels.

Claim 5.2.1. The circuit C is symmetric.

Proof. Let σ ∈ Symn. Let πσ : G → G be defined such that πσg[ψ,α] = g[ψ,σα] for each
g[ψ,α] ∈ G . It can be shown that πσ is a bijection. We now show that πσ is an automorphism
of C extending σ. We prove this by induction on the structure of the circuit. Let g[ψ,α] ∈ G.

Suppose g[ψ,α] is an input gate. If g[ψ,α] is a constant gate then ψ is of the form y1 = y2

and since σ is a bijection we have α(y1) = α(y2) if, and only if, σα(y1) = σα(y2). It follows
that (ψ, α) ∼ (ψ, σα) and so πσg[ψ,α] = g[ψ,σα] = g[ψ,α]. If g[ψ,α] is a relational gate then
ψ is of the form T (y⃗) for some relation symbol T and ΛT (g[ψ,α]) = α(y⃗). It follows that
ΛT (πσg[ψ,α]) = ΛT (g[ψ,σα]) = σα(y⃗) = σΛT (g[ψ,α]).

Suppose g[ψ,α] is an internal gate. It can be shown by considering each of the cases in the
definition of the circuit that for each g[ϕ,α] ∈ Hg[ψ,α] we have πσg[ϕ,α] = g[ϕ,σα] ∈ Hg[ψ,σα] =
Hπσg[ψ,α] . From this we have πσHg[ψ,α] = Hπσg[ψ,α] . If g[ψ,α] is a symmetric gate, then this
is sufficient to conclude that πσL(g[ψ,α]) is isomorphic to L(πσg[ψ,α]). Suppose g[ψ,α] is a
non-symmetric gate. Then ψ is of the form Q[(y⃗R1 , . . . , y⃗RrR)ψR]R∈RQ for some Q ∈ Q. Let G
be the class of structures associated with Q. For each (⃗a,R) ∈ τQ[arQ] and each i ∈ [rR] let
a⃗i ∈ [n]ar(ζQ(R)(i)) be such that a⃗ = (⃗a1 . . . a⃗rR) and let

βα,⃗a := α
a⃗1
y⃗R1

. . .
a⃗rR
y⃗RrR

(5.1)

and let σa⃗ = (σa⃗1, . . . , σa⃗rR). Let (⃗a,R) ∈ τQ[arQ]. Notice that

σβα,⃗a = σ(α a⃗1
y⃗R1

. . .
a⃗rR
y⃗RrR

) = (σα)σa⃗1
y⃗R1

. . .
σa⃗rR
y⃗RrR

= βσα,σa⃗.

Then πσL(gψ,α)(⃗a,R) = πσg[ϕ,βα,⃗a] = g[ϕ,σβα,⃗a] = g[ϕ,βσα,σa⃗] = L(gψ,σα)(σa⃗, R). It follows that
πσL(g[ψ,α]) is isomorphic to L(πσg[ψ,α]).

Suppose g[ψ,α] is an output gate. Then ψ ≡ λ(x⃗). It follows that πσΩ(α(x⃗)) = πσg[ψ,α] =
g[ψ,σα] = Ω(σα(x⃗)). This completes the proof of the Claim 5.2.1.

75

Claim 5.2.2. Let A ∈ fin[ρ, n] be a structure and let γ ∈ [n]A. For each g[ψ,α] ∈ G we have
A |= ψ[γ−1α] if, and only if, C[γA](g[ψ,α]) = 1.

Proof. We prove this claim by induction on the structure of the circuit. Let g[ψ,α] ∈ G. If
g[ψ,α] is an input gate then ψ has at its head a relation symbol or equality. It is easy to prove
the claim in either case. Suppose g[ψ,α] is an internal gate and the claim holds for each child
of g[ψ,α]. If g[ψ,α] is labelled by an element of Bstd then ψ has at its head either a Boolean
connective, an existential, or a universal quantifier. It can be shown in each of these cases
that A |= ψ[γ−1α] if, and only if, C[γA](g[ψ,α]) = 1.

Suppose g[ψ,α] is labelled by an element of B. Then ψ is of the formQ[(y⃗R1 , . . . , y⃗RrR)ψR]R∈RQ
for some Q ∈ Q. Let G be the set of structures associated with Q and let I be the L[ρ, τQ]-
interpretation defined by ψ. Let B = I(A, γ−1α). Let (⃗a,R) ∈ τQ[arQ]. Let βα,⃗a be defined
as in Equation 5.1. From the induction hypothesis LγA(g[ψ,α])(⃗a,R) = C[γA](g[ψR,βα,⃗a]) = 1
if, and only if, A |= ψR[γ−1βα,⃗a] if, and only if, γ−1a⃗ ∈ RB. It follows that B and LγA(g[ψ,α])
are isomorphic structures and so C[γA](g[ψ,α]) = 1 if, and only if, FG [arQ](LγA(g[ψ,α])) =
FG [arQ](B) = 1 if, and only if, B ∈ G if, and only if, A |= ψ[γ−1α]. Claim 5.2.2 follows by
induction.

Let A ∈ fin[ρ, n], let γ ∈ [n]A and let α ∈ Ax⃗. Then g[λ,γα] = Ω(γα(x⃗)). It follows from
Claim 5.2.2 that C[γA](Ω(γα(x⃗)) = 1 if, and only if, A |= λ[α]. In other words, C and θ(x⃗)
express the same query for structures of size n.

Claim 5.2.3. The circuit C is transparent.

Proof. If every gate in C is symmetric then C is transparent. Suppose there exists a non-
symmetric gate g[ψ,α] ∈ G. Then ψ is of the form Q[(y⃗R1 , . . . , y⃗RrR)ψR]R∈RQ for some Q ∈ Q.
Let (⃗a1, R1), (⃗a2, R2) ∈ τQ[arQ]. Let r1 be the arity of R1 and r2 be the arity of R2. For
each i ∈ [2] and j ∈ [ri] let y⃗ij := y⃗Rij . For each i ∈ [2] and each j ∈ [rR] there exists

a⃗ji ∈ [n]ar(ζQ(Ri)(j)) such that a⃗i = (⃗ai1 . . . a⃗iri). For each i ∈ [2] let βi = α
a⃗i1
y⃗i1
. . .

a⃗iri
y⃗iri

and let
hi := L(g[ψ,α])(⃗ai, Ri) = g[ψRi ,βi]. Suppose h1 ≡ h2. We aim to show that h1 = h2.

From the definition of λ it follows that ψRi ≡ κ1
i ∧ κ2

i where κ1
i ≡ ((∀u.u = u) ∧ ψi and

κ2
i ≡ (tagy⃗i1...y⃗iri ∧ tag-numfQ(Ri) for some formula ψi. For each i ∈ [2] it follows from the

construction of the circuit that g[κ1
i ,βi]

has a grandchild that is a constant gate while no
grandchild of g[κ2

i ,βi]
is a constant gate. As such, for all i, j ∈ [2] we have g[κ1

i ,βi]
̸≡ g[κ2

j ,βj]
. It

follows from the fact that h1 ≡ h2 that g[κ1
1,β1] ≡ g[κ1

2,β2] and g[κ2
1,β1] ≡ g[κ2

2,β2].
Let i ∈ [2]. We have κ2

i ≡ ϵ1i ∧ ϵ2i where ϵ1i ≡ tagy⃗i1...y⃗iri and ϵ2i ≡ tag-numfQ(Ri). Let
j ∈ [2]. Then g[ϵ1i ,βi]

is an OR-gate and g[ϵ2j ,βj]
is an AND-gate, and so g[ϵ1i ,βi]

̸≡ g[ϵ2j ,βj]
.

It follows from the fact that g[κ2
1,β1] ≡ g[κ2

2,β2] that g[ϵ11,β1] ≡ g[ϵ12,β2] and g[ϵ21,β1] ≡ g[ϵ22,β2].

76 Translating Formulas to Circuits

Notice that for each e ∈ N, tag-nume defines an e-length sequence of nested tautologies.
This is translated to a circuit consisting of an e-height tower of tautologies. As such,
it can be shown that since g[ϵ21,β1] ≡ g[ϵ22,β2] we have fQ(R1) = fQ(R2). Moreover, since
fQ is an injection and so R1 = R2. Similarly, it follows from the definition of tag and
the fact that g[ϵ11,β1] ≡ g[ϵ12,β2] that β1 = β2 and so a⃗1 = a⃗2. We thus conclude that
h1 = L(g[ψ,α])(⃗a1, R1) = L(g[ψ,α])(⃗a2, R2) = h2.

It follows that no two children of g[ψ,α] are syntactically-equivalent and since L(g[ψ,α]) is
injective it follows that g[ψ,α] has unique labels. We conclude that C is transparent. This
completes the proof of Claim 5.2.3.

It can be shown that |λ| ≤ c1|θ|nowidth(θ)+width(θ)+1 for a constant c1. We can construct
the set of gates by iterating over the subformulas of λ and for each subformula ψ and
assignment α ∈ [n]free(ψ) defining a gate g[ψ,α]. We can thus construct the set of gates in time
polynomial in |λ|nwidth(λ) and we note that |λ|nwidth(λ) ≤ c1|θ|n2(owidth(θ)+width(θ)+1). Since
the rest of the circuit can be constructed in time polynomial in the number of gates, it follows
that the construction of C can be completed in time polynomial in |θ|nowidth(θ)+width(θ). We
have from the above three claims that C translates λ (and hence θ) for n, and from the above
argument we can construct C within the required time bounds. This completes the proof of
the lemma.

Let ρ be a relational vocabulary. Let (Φn)n∈N be a P-uniform family of FO(Q)[ρ]-
substitution programs. Let n ∈ N and let (ϕ1, . . . , ϕk) = Φn. For each i ∈ [k] we can treat
the second-order variables in ϕi as relation symbols and use Lemma 5.1 to define a circuit
Cn,i that translates ϕi for n. We can connect these circuits in order to form a single circuit
Cn that translates the flattening of Φn for n. In this way we can define a P-uniform family
of transparent symmetric circuits (Cn)n∈N that decides the same query as (Φn)n∈N. We now
formalise this argument and prove the following proposition.

Proposition 5.3. Let ρ be a relational vocabulary. Let Q be a set of many-sorted quantifiers.
Each query definable by a P-uniform family of FO(Q)[ρ]-substitution programs with constant
width is definable by a P-uniform family of transparent symmetric (BQ ∪ Bstd, ρ)-circuits.

Proof. Let Θ := (Θn)n∈N be a P-uniform family of FO(Q)[ρ] substitution programs. Let
n ∈ N. Let k = |Θn| and let (θn,1, . . . , θn,k) := Θn. For each i ∈ [k] let V⃗i be the element-sort
second-order variables that appear in θn,i. We treat these second-order variables as relation
symbols, and suppose, without a loss of generality, that for all i ∈ [k] none of the variables in
V⃗i are in ρ. For each i ∈ [k] let ρi = V⃗i ∪ ρ.

Suppose ρ is empty. It follows that all ρ-structures of the same size are isomorphic. We
can evaluate Θn on the ρ-structure with universe [n] and construct a transparent symmetric
circuit Cn that decides the same query as Θn for structures of size n.

77

Suppose all of the relation symbols in ρ are nullary. Then each ρ-structure of size n is
in one of 2|ρ| many isomorphism classes. We can evaluate Θn on a structure of size n from
each of these classes and construct a single transparent symmetric circuit Cn that decides
the same query as Θn for structures of size n.

We suppose that at least one relation symbol in ρ is not nullary. From Lemma 5.1 we
may construct for each i ∈ [k] a (B, ρi)-circuit Cn,i such that Cn,i translates the formula θn,i
for n. We assume, without a loss of generality, that in each of these circuits none of the
input gates are also output gates (if this is not the case, we can alter the circuit by adding in
single-input AND-gates with each gate that is both an input and output gate taken as input
to the AND-gate, and the AND-gate then assigned to be an output gate).

For each i ∈ [k] let θ′
n,i be the flattening of Θn at i. We recall that for each i ∈ [k] the

formula θ′
n,i is defined by replacing each appearance of a symbol Vj in θn,i with the formula

θ′
n,j . Notice, this definition is a (backwards) recursive definition. We will similarly define
C ′
n,i from Cn,i by replacing each input gate labelled by the symbol Vj and tuple a⃗ with the

output gate of C ′
n,j labelled by a⃗. For each i ∈ [k] let (Gi,Ωi,Σi,Λi, Li) := Cn,i. We now

define the (B, ρ)-circuit C ′
n,i := (G′

i,Ω′
i,Σ′

i,Λ′
i, L

′
i) recursively. If i = k then C ′

n,i = Cn,i. If
i < k then we define C ′

n,i from the circuits {C ′
n,j : j > i} as follows.

• Let G′
i = {g ∈ Gi : Σ(g) ̸∈ V⃗i} ∪

⋃
Vj∈V⃗ G

′
j . We identify input gates labelled by the

same relation symbol and tuple so that there are no duplicate input gates.
• Let Λi be defined for each T ∈ ρ, a⃗ ∈ [n]arty(T), and g ∈ G′

i such that (Λ′
i)T (g) = a⃗ if,

and only if, (i) g ∈ Gi and (Λi)T (g) = a⃗ or (ii) there exists j > i such that g ∈ G′
j and

(Λ′
j)T (g) = a⃗.

• For each g ∈ G′
i if g ∈ Gi let Σ′

i(g) = Σi(g) and otherwise there exists j > i such that
g ∈ G′

j and let Σ′
i(g) = Σ′

j(g).
• Let q be the arity of the query decided by Cn,i. Let Ω′

i be an injection from [n]q to G′
i

defined such that Ω′
i(⃗a) = Ωi(⃗a) for all a⃗ ∈ [n]q.

• Let g ∈ G′
i. Suppose g ∈ Gi. Let L′

i(g) : Dom(Li(g)) → G′
i be defined for a ∈

Dom(Li(g)) such that L′
i(g)(a) = Li(g)(a) if Σi(Li(g)(a)) ̸∈ V⃗i and otherwise let

L′
i(g)(a) = Ωj((Λi)Vj (Li(g)(a))), where j > i and Σi(Li(g)(a)) = Vj . Suppose g ̸∈ Gi.

Then there exists j > i such that g ∈ G′
j . Let Li(g) = L′

j(g).

We next show, by backwards induction, that for all i ∈ [k], C ′
n,i translates θ′

n,i for n.
Since C ′

n,k = Cn,k and θ′
n,k = θn,k, clearly C ′

n,k translates θ′
n,k for n. Let i ∈ [k] and suppose

for each j > i we have that C ′
n,j translates θ′

n,j for n. We now show that C ′
n,i translates θ′

n,i

for n. We split the proof over the following three claims.

Claim 5.3.1. The circuit C ′
n,i is symmetric.

Proof. Let σ ∈ Symn. Since Cn,i is symmetric there exists an automorphism πi of Cn,i
extending σ. From the induction hypothesis we have for each j > i that there exists an

78 Translating Formulas to Circuits

automorphism π′
j of C ′

n,j extending σ. Let π′
i : G′

i → G′
i be defined for each g ∈ G′

i such that
if g ∈ Gi then π′

i(g) := πi(g) and otherwise π′
i(g) := π′

j(g), where j > i is such that g ∈ G′
j .

We now show that π′
i is an automorphism of C ′

n,i extending σ.
We show for each internal gate g we have that π′

iL
′
i(g) is isomorphic to L′

i(π′
ig). Let

g be an internal gate in C ′
i. Suppose g ̸∈ Gi. Then g ∈ G′

j for some j > i. Since C ′
n,j is

symmetric there exists λ ∈ Aut(g) such that π′
jL

′
j(g) = Lj(π′

jg)λ. Then for all a ∈ ind(g)
we have π′

iL
′
i(g)(a) = π′

jL
′
j(g)(a) = L′

j(π′
jg)(λa) = L′

i(π′
ig)(λa). It follows that π′

iL
′
i(g)

is isomorphic to L′
i(π′

ig). Suppose g ̸∈ G′
j for any j > i. Then g ∈ Gi. Since Cn,i is

symmetric there exists λ ∈ Aut(g) such that πiLi(g) = Li(πig)λ. Let a ∈ ind(g). If
L′
i(g)(a) ∈ Gi then Li(g)(a) = L′

i(g)(a) and so π′
iL

′
i(g)(a) = πiLi(g)(a) = Li(πig)(λa) =

L′
i(π′

ig)(λa). If L′
i(g)(a) ̸∈ Gi then L′

i(g)(a) = Ω′
j((Λi)Vj (Li(g)(a))) for some j > i and

π′
iL

′
i(g)(a) = π′

jΩ′
j((Λi)Vj (Li(g)(a))) = Ω′

j(σ(Λi)Vj (Li(g)(a))) = Ω′
j((Λi)Vj (πiLi(g)(a)) =

Ω′
j(((Λi)Vj (Li(πig)(λa))) = L′

i(πig)(λa) = L′
i(π′

ig)(λa). It is easy to check the remaining
requirements for π′

i to be an automorphism of C ′
n,i extending σ. This completes the proof of

Claim 5.3.1.

Claim 5.3.2. The circuit C ′
n,i is transparent.

Proof. If all of the gates in C ′
n,i are symmetric then C ′

n,i is transparent. Suppose there exists
a non-symmetric gate g ∈ G′

i. If g ∈ G′
j for some j > i then, since C ′

n,j is transparent it
follows that g has unique labels. Otherwise g ∈ Gi. It follows from the construction of Cn,i
in Lemma 5.1 and from an argument similar to the one used to prove Claim 5.2.3 that g has
unique labels. It follows that C ′

n,i is transparent.

Claim 5.3.3. Let A ∈ fin[ρ, n], let x⃗ be the free variables in θ′
n,i, and let α ∈ Ax⃗. Let

γ ∈ [n]A. Then C ′
n,i[γA](Ω′

i(γ(α(x⃗)))) = 1 if, and only if, A |= θ′
n,i[α].

Proof. Let A∗ be the ρi-structure with the same universe as A and such that for each R ∈ ρ,
RA∗ = RA and for all Vj ∈ V⃗i, V A∗

j = (θ′
i,j)A. It follows from the definition of a substitution

program that A |= θ′
n,i[α] if, and only if, A∗ |= θn,i[α] if, and only if, Cn,i[γA∗](Ωi(γ(α(x⃗)))).

It thus suffices to show that Cn,i[γA∗](Ωi(γ(α(x⃗)))) = C ′
n,i[γA](Ω′

i(γ(α(x⃗)))).
We prove by induction on the structure of Cn,i that for each g ∈ Gn,i if g is an input

gate in Cn,i labelled by Vj for some j > i then Cn,i[γA∗](g) = C ′
n,j [γA](Ω′

j((Λi)Vj (g))) and
otherwise Cn,i[γA∗](g) = C ′

n,i[γA](g). Let g ∈ Gi. Suppose g is an input gate. If g is
labelled by Vj for some j > i then Cn,i[γA∗](g) = 1 if, and only if, γ−1((Λi)Vj (g)) ∈ V A∗

j

if, and only if, A |= θ′
n,j [γ−1((Λi)Vj (g))] if, and only if, C ′

n,j [γA](Ω′
j((Λi)Vj (g))). Otherwise,

g is an input gate not labelled by Vj for any j > i, and, from the definition of C ′
n,i, we

have Cn,i[γA∗](g) = C ′
n,i[γA](g). Suppose g is not an input gate in Cn,i and suppose

the inductive hypothesis holds for each child of g in Cn,i. Let a ∈ ind(g). If Li(g)(a) is
not an input gate labelled by Vj for any j > i then, from the definition of C ′

n,i we have
L′
i(g)(a) = Li(g)(a) and, from the induction hypothesis, (L′

i)γA(g)(a) = C ′
n,i[γA](L′

i(g)(a)) =

79

Cn,i[γA∗](Li(g)(a)) = LγA∗

i (g)(a). Otherwise, Li(g)(a) is an input gate labelled by Vj

for some j > i and, from the definition of C ′
n,i, we have L′

i(g)(a) = Ω′
j((Λi)Vj)(Li(g)(a)).

It follows that that LA∗
i (g)(a) = Cn,i[γA∗](Li(g)(a)) = C ′

n,j [γA](Ω′
j((Λi)Vj)(Li(g)(a))) =

C ′
n,i[γA](L′

i(g)(a)) = (L′
i)γA(g)(a). The third equivalence follows from the definition of C ′

n,i.
It follows that (L′

i)γA(g) = LA∗
i (g), and so Cn,i[γA∗](g) = C ′

n,i[γA](g). This completes
the inductive argument. From the definitions of the circuits Cn,i and C ′

n,i we have that
Ω′
i = Ωi and that no output gate in either circuit is also an input gate. In particular, we have

C ′
n,i[γA](Ω′

i(γ(α(x⃗)))) = Cn,i[γA∗](Ωi((γα(x⃗)))). This completes the proof of Claim 5.3.3.

Let C ′
n := C ′

n,1 and let θ′
n be the flattening of Θ′

n. It follows from the above three claims
that C ′

n translates θ′
n for n.

It remains to argue that the construction of C ′
n for each n may be completed in

time polynomial in n. This follows from three polynomial bounds. First, since Θ is P-
uniform there exists a polynomial p1 such that the function n 7→ Θn is computable in time
p1(n). Second, it follows from Lemma 5.1 that there is a polynomial p2 such that the
function that maps Θn to the sequence of circuits Cn,1, . . . , Cn,|Θn| is computable in time∑
i∈[|Θn|] p2(|θn,i|nowidth(θ)+width(θ)) ≤ p1(n) · p2(p1(n)nc), where c is the constant such that

for all n ∈ N and i ∈ [|Θn|], owidth(θn,i) ≤ c and width(θ) ≤ c. Thirdly, the construction
of C ′

n from Cn,1, . . . , Cn,|Θn| works by constructing each C ′
n,i from Cn,j , for all j > i, by

replacing the appropriate input gates of Cn,i with the output gates of C ′
n,j . It can be shown

that this algorithm runs in time polynomial in the combined size of these circuits. The
function that maps n 7→ C ′

n is the composition of these three functions, each of which is
computable in time polynomial in n, and so n 7→ C ′

n can be computed in time polynomial in
n. This completes the proof of the proposition.

Let Ω be a set of almost relational generalised operators. There are actually two bases
we define from Ω. The first is the basis BΩ corresponding to Ω. The second is the basis
BQΩ corresponding to QΩ, where QΩ is the set of quantifiers corresponding to Ω. It can be
shown that BΩ ⊆ BQΩ , and that BΩ = BQΩ only if every Ω ∈ Ω is relational and quantifies
over the universe. As such, the basis BQΩ is in general a richer basis then BΩ. We now show
that this choice does not affect the power of the corresponding circuit models. In particular,
we now show that there is an algorithm that takes as input a circuit C defined over the basis
BQΩ and outputs an equivalent circuit C ′ defined over the basis BΩ.

We define QΩ from Ω by explicitly associating with each relation R in the vocabulary of
Ω a family of relations of the form R

b⃗1,...,⃗brR
, one for each possible assignment to the number

variables bound in the definition of R (given by the arity of Ω). This induces a map between
structures defined such that each tuple in R corresponds to a tuple in some appropriate
relation R

b⃗1,...,⃗brR
. We prove the following result by reconstructing R from the associated

family of relations. In other words, we replace each gate labelled by a function in BQΩ with

80 Translating Formulas to Circuits

a gate labelled by a function in BΩ and rewire the circuit so as to replace each wire labelled
by a tuple in the relation R

b⃗1,...,⃗brR
with an appropriate tuple in the relation R.

Lemma 5.4. Let ρ be a vocabulary. Let Ω be a set of almost relational generalised operators.
Let Q be the corresponding set of quantifiers. Let B be any basis. There is an algorithm that
takes as input a (BQ ∪ B, ρ)-circuit C and outputs a (BΩ ∪ B, ρ)-circuit C ′ such that C and
C ′ compute the same query and the algorithm runs in polynomial time. Moreover, if C is
symmetric then C ′ is symmetric and if C is transparent then C ′ is transparent.

Proof. We define C ′ := ⟨G′,Ω′,Σ′,Λ′, L′⟩ as follows. Let ΩB be the set of Boolean-valued
generalised operators corresponding to Ω. Let G′ := G, Ω′ := Ω, and Λ′ := Λ. We define Σ′

and L′ as follows. Let g ∈ G′. If Σ(g) ̸∈ BQ let Σ′(g) = Σ(g) and let L′(g) = L(g). Otherwise
Σ(g) ∈ BQ for some Q ∈ Q. Let Ω ∈ ΩB be such that Q ∈ QΩ. Let E be the evaluation
function and ar be the arity of Ω. Let ar1 : S → N0 be defined such that ar1(s) = ar(s, 1)
for all s ∈ S. Let τ = (R,F ,S, ζ) be the vocabulary of Ω. Then Q = QE,α,n,ar for some
α : S → N0 and n ∈ N. Let τQ = (RQ,SQ, ζQ) be the vocabulary of Q. It follows from the
definition of QE,α,n,ar that

RQ = {R
b⃗1,...,⃗brR

: R ∈ R, b⃗1 ∈ [n]ar(ζ(R)(1),2)
0 , . . . , b⃗rR ∈ [n]ar(ζ(R)(rR),2)

0 }.

Let X = ⊎s∈SXs be the universe of Σ(g). For each s ∈ S let X ′
s := Xs × [n]ar(s,2) and let

X ′ = ⊎s∈SX ′
s. Let Σ′(g) := FΩ,α[X ′]. Let L′(g) : τ [X ′] → G′ be defined as follows. Let

(c,R) ∈ τ [X ′]. For each i ∈ [rR] there exists (ai, b⃗i) ∈ Xsi × [n]ar(si,2) where si = ζ(R)(i) such
that c = ((a1, b⃗1), . . . , (arR , b⃗rR)). Let L′(g)(c,R) = L(g)((a1, . . . , arR), R

b⃗1,...,⃗brR
). It follows

from the fact that G′ = G, Λ′ = Λ, and Ω′ = Ω that C ′ is a circuit.
Let k be the order of C. It follows that C ′ also has order k. We now show by induction

that for g ∈ G′, A ∈ fin[ρ, k], and γ ∈ [k]A we have C[γA](g) = C ′[γA](g). The only
interesting case in this inductive argument is when Σ′(g) ∈ BΩ. Then Σ(g) ∈ BQ for some
Q ∈ Q. Let Ω, τ , τQ, E, ar X, and X ′ be defined as above. Let G be the class of structures
associated with Q. It follows from the definition of a corresponding family of quantifiers that
for any τQ-structure B with universe X we have B ∈ G if, and only if, E(B∗) = 1 where B∗

is the τ -structure with universe X ′ and such that for each F ∈ F , FB∗ = α(F) and for all
R ∈ R, i ∈ [rR], and (ai, b⃗i) ∈ X ′

ζ(R)(i) we have ((a1, b⃗1), . . . , (arR , b⃗rR)) ∈ RB∗ if, and only if,
(a1, . . . , arR) ∈ RB

b⃗1,...,⃗brR
. We note that from the induction hypothesis we have for all R ∈ R,

i ∈ [rR], and (ai, b⃗i) ∈ X ′
ζ(R)(i) that

(L′)γA(g)(((a1, b⃗1), . . . , (arR , b⃗rR)), R) = LγA(g)((a1, . . . , arR), R
b⃗1,...,⃗brR

).

We therefore have C[γA](g) = 1 if, and only if, FQ[X](LγA(g)) = 1 if, and only if, LγA(g) ∈ G
if, and only if, E((L′)γA(g)) = 1 if, and only if, FΩ,α[X ′]((L′)γA(g)) = 1 if, and only if,

81

C ′[γA](g) = 1. This concludes the inductive argument. Since Ω′ = Ω it follows that C and
C ′ define the same query. Moreover, it can be shown by a trivial inductive argument that if
C is transparent (resp. symmetric) then C ′ is transparent (resp. symmetric). We construct
C ′ from C by relabelling the children of gates in the circuit, and it is not hard to show that
this can be done in polynomial time.

We now prove the main theorem of this chapter establishing that each extension of a
fixed-point logic by family of P-bounded almost relational generalised operators may be
translated to an equivalent P-uniform family of transparent symmetric circuits defined over
the corresponding basis. This result follows almost immediately from Lemmas 3.24, 3.26 5.4,
and Proposition 5.3.

Theorem 5.5. Let ρ is a vocabulary and let Ω be a P-bounded set of almost relational
generalised operators. Every query definable in FPN(Ω̃)[ρ] is definable by a P-uniform family
of transparent symmetric (BΩ ∪ Bstd, ρ)-circuits (Cn)n∈N.

Proof. Let θ(x⃗) ∈ FPN(Ω̃)[ρ]. From Lemma 3.24 there exists a P-uniform family of FON(Ω)[ρ]-
substitution programs Θ1 := (Θ1

n)n∈N with constant length such that Θ1 decides the same
query as θ. Let Q be the set of quantifiers corresponding to Ω. From Lemma 3.26 there exists
a P-uniform family of FO(Q̃)[ρ]-substitution programs Θ2 := (Θ2

n)n∈N with constant width
such that Θ1 and Θ2 define the same query. From Proposition 5.3 there is a P-uniform family
of transparent symmetric (BQ ∪ Bstd, ρ)-circuits (C ′

n)n∈N that decides the same query as Θ2.
From Lemma 5.4 there is a P-uniform family of transparent symmetric (BΩ ∪Bstd, ρ)-circuits
(Cn)n∈N that decides the same query as (C ′

n)n∈N, and so the same query as Θ2, Θ1, and θ.
The result follows.

Chapter 6

The Support Theorem

In this chapter we discus a few structural properties of symmetric circuits and develop a
theory of supports. We say a set S ⊆ [n] is a support of a gate g in a circuit C of order
n if any permutation in Symn that fixes S pointwise also fixes g. The supports of gate g
encode information about the structure of the stabiliser group and orbit of g and, as shown in
Chapter 7, are efficiently computable. Moreover, as shown in Lemma 8.3, the evaluation of g
for a given input structure is entirely determined by how the elements of the input structure
are mapped to a support of g.

In this chapter we show that each gate in a circuit can be associated with a unique
canonical support. The main result, which we call the support theorem, establishes an upper
bound on the size of the canonical support of any gate g in terms of the size of the orbits of
g. It follows from this result that for a polynomial-size family of reduced injective symmetric
circuits (Cn)n∈N there is a constant bound on the size of the canonical support of any gate g
in any circuit Cn. We show that each element of the universe of a gate can also be associated
with a support and that the support theorem extends to these elements as well.

The support theorem proved in this chapter generalises a similar result proved by Anderson
and Dawar [3] for symmetric circuits with trivially invariant gates. Anderson and Dawar’s
proof crucially relies on the fact that the stabiliser group of any gate is exactly equal to
the setwise stabiliser group of its children, which holds only if the gates in question are all
trivially invariant. We develop novel techniques in order to prove this result in the more
general setting, where we allow for circuits defined over arbitrary bases. We also go beyond
Anderson and Dawar in extending these results to elements of the universes of the gates in a
circuit.

This chapter is organised as follows. In Section 6.1 we introduce basic group-theoretic
language and define the notions of a support and supporting partition. We also define the
notion of a canonical support and prove a few related results. In Section 6.2 we characterise
the stabiliser groups of the gates in the circuit and establish a lower bound on the orbits of
the gates. We use these results to prove the support theorem. In Section 6.3 we show that

84 The Support Theorem

the action of Symn on the gates of a circuit can be extended so as to define an action on the
elements of the universes of the gates in the circuit. We also extend the support theorem to
the elements of the universes of these gates.

6.1 Supports and Supporting Partitions

In this section we formally define the notion of a support and develop some surrounding
theory. We also define the notion of a supporting partition. A supporting partition generalises
the notion of a support by replacing the subset with a partition and the requirement to fix
the support pointwise with a requirement to fix each component of the partition setwise.
We show that each subgroup of Symn can be associated with a unique coarsest supporting
partition, which we call the canonical supporting partition. The definition of a support is
standard and the notions of a supporting partition and canonical supporting partition were
introduced by Anderson and Dawar [3].

Definition 6.1. Let G ≤ Symn and let S ⊆ [n]. Then S is a support for G if Stabn(S) ≤ G.

Definition 6.2. Let G ≤ Symn and P be a partition of [n]. Then P is a supporting partition
for G if Stabn(P) ≤ G.

Notice that if P is a supporting partition for G and P ∈ P then Stabn([n] \ P) ≤
Stabn(P) ≤ G, i.e. [n] \ P is a support for G. Let P,P ′ be partitions of [n]. We say that P ′

is no finer than P (and denote this by P ⪯ P ′) if for all P ∈ P there exists P ′ ∈ P ′ such
that P ⊆ P ′. Anderson and Dawar [3] define an operation E on pairs of partitions of [n],
where E(P,P ′) is the partition of [n] consisting of the equivalence classes of the transitive
closure of the relation ∼ on [n] defined by a ∼ b if, and only if, there exists P ∈ P ∪ P ′ such
that a, b ∈ P .

Anderson and Dawar show that E maps pairs of supporting partitions to supporting
partitions and that E(P,P ′) is no finer than either P or P ′. In fact, E(P,P ′) is the finest
partition that is no finer than either P or P ′ (i.e. E(P,P ′) is the least upper bound of P and
P ′). We state this result formally in Proposition 6.3.

Proposition 6.3 ([3, Proposition 2]). Let G ≤ Symn be a group and let P and P ′ be
supporting partitions of G. Then P ⪯ E(P,P ′) and P ′ ⪯ E(P,P ′), and E(P,P ′) is a
supporting partition of G.

Anderson and Dawar, using Proposition 6.3, show that every group G ≤ Symn has a
unique coarsest supporting partition. We call this partition the canonical supporting partition,
and denote it by SP(G). We now define the notion of a canonical support.

Definition 6.4. Let G ≤ Symn. Let ∥SP(G)∥ = min{|[n] \ P | : P ∈ SP(G)}. We say that
G has small support if ∥SP(G)∥ < n

2 .

6.1 Supports and Supporting Partitions 85

Note that if G ≤ Symn has small support then there exists a unique P ∈ SP(G) such
that P > n

2 .

Definition 6.5. Let G ≤ Symn such that G has small support. Let sp(G) = [n] \ P , where
P is the largest element of SP(G). We call sp(G) the canonical support of G.

Lemma 6.6. Let G1, G2 ≤ Symn with G1 ≤ G2. Then SP(G1) ⪯ SP(G2)

Proof. We have that Stabn(SP(G1)) ≤ G1 ≤ G2, and so SP(G1) supports G2. Since SP(G2)
is the coarsest supporting partition of G2 we have that SP(G1) ⪯ SP(G2).

Lemma 6.7. Let G1, G2 ≤ Symn such that G1 ≤ G2 and G1 has small support. Then G2

has small support and sp(G2) ⊆ sp(G1).

Proof. By Lemma 6.6, we have that SP(G1) ⪯ SP(G2). Let P1 be the largest element of
SP(G1), and note that since G1 has small support, |P1| > n

2 . Then there exists a (unique)
P2 ∈ SP(G2) such that P1 ⊆ P2. Thus G2 has small support, and sp(G2) = [n] \ P2 ⊆
[n] \ P1 = sp(G1).

Lemma 6.8. Let G,H,K ≤ Symn such that G has small support and G = H ∩K. Then
H and K have small support and sp(G) = sp(H) ∪ sp(K).

Proof. The fact that H and K have small support follows from Lemma 6.7.
Let Q := {PH ∩ PK : PH ∈ SP(H), PK ∈ SP(K) and ∃P ∈ SP(G), P ⊆ PH ∩ PK}. We

first show that Q is a supporting partition of G. We have that for any PH ∩ PK , P
′
H ∩ P ′

K ∈
Q, PH ∩ PK ∩ P ′

H ∩ P ′
K ̸= ∅ if, and only if, PH = P ′

H and PK = P ′
K if, and only if,

PH ∩ PK = P ′
H ∩ P ′

K . By Lemma 6.6, we have that SP(G) ⪯ SP(H) and SP(G) ⪯ SP(K).
It follows that for each P ∈ SP(G) there exists PK ∈ SP(K) and PH ∈ SP(H) such that
P ⊆ PH ∩ PK . So, for each a ∈ [n] there is Pa ∈ SP(G), PH ∈ SP(H) and PK ∈ SP(K)
such that a ∈ Pa ⊆ PH ∩ PK . It follows that Q is a partition.

Moreover, we note that Stabn(Q) ≤ Stabn(SP(H)) and Stabn(Q) ≤ Stabn(SP(K)),
and thus Stabn(Q) ≤ Stabn(SP(H)) ∩ Stabn(SP(K)) ≤ H ∩ K = G. It follows that Q
is a supporting partition of G, and so by definition of the canonical supporting partition
Q ⪯ SP(G). Since G has small support, there is a part PG in SP(G) with |PG| > n

2 .
Then there exists PH ∈ SP(H) and PK ∈ SP(K) such that PG ⊆ PH ∩ PK , and so
|PH ∩PK | > n

2 . Thus PH ∩PK is the unique largest element in Q. It follows from Q ⪯ SP(G)
that PG ⊆ PH ∩ PK ⊆ PG.

We state the following two results proved by Anderson and Dawar [3].

Lemma 6.9. Let G ≤ Symn and σ ∈ Symn then σSP(G) = SP(σGσ−1).

Lemma 6.10. For any G ≤ Symn we have that Stabn(SP(G)) ≤ G ≤ SetStabn(SP(G)).

86 The Support Theorem

6.1.1 Group Action on Supports

In our more general setting we are often interested not just in associating each gate in the
circuit with a support but also in associating each element of the universe of a gate with a
support. In this subsection we develop theory and terminology for dealing with group actions
and supports with this more general application in mind.

Definition 6.11. Let X be a set on which a left group action of G ≤ Symn is defined. We
denote the canonical supporting partition of x ∈ X by SPG(x) = SP(StabG(x)). Similarly
we let ∥SPG(x)∥ = ∥SP(StabG(x))∥. We say that x ∈ X has small support if StabG(x)
has small support. We say that X has small supports if each x ∈ X has small support. If
x ∈ X has small support (i.e. ∥SPG(x)∥ < n

2), we denote the canonical support of x by
spG(x) = sp(StabG(x)). We refer to SPG(x) (resp. spG(x)) as the canonical supporting
partition (resp. canonical support) of x relative to G.

If the subgroup G ≤ Symn is obvious from context we omit the subscript in the canonical
support and canonical support partition without the subscript. We have already noted that
if C is a symmetric circuit with unique extensions of order n we can identify Symn with
Aut(C) and so define an action of Symn on the gates of C. We omit the subscripts for the
canonical support and canonical supporting partition when working with this group action.

We are often interested in supports relative to some stabiliser group and we now intro-
duce some simplifying notation for that case. Let X and Y be sets on which a left group
action of Symn is defined. Let x ∈ X and S ⊆ Y . Let SPS(x) and spS(x) abbreviate
SPStabn(S)(x) and spStabn(S)(x), respectively. Similarly, let OrbS(x) and StabS(x) abbrevi-
ate OrbStabn(S)(x) and StabStabn(S)(x), respectively. In the event that S is a singleton we
omit the set braces in the subscript. We now extend a number of elementary results about
supports to relative supports.

Lemma 6.12. Let X be a set on which a left group action of G ≤ Symn is defined and let
σ ∈ G. Then for any x ∈ X, σStabG(x)σ−1 = StabG(σx).

Proof. Let π ∈ StabG(x), then σπσ−1(σx) = σπx = σx, and so σπσ−1 ∈ StabG(σx). Let
π ∈ StabG(σx) then π(σx) = σx and so σ−1πσx = x. It follows that σ−1πσ ∈ StabG(x)
and so π = σ(σ−1πσ)σ−1 ∈ σStabG(x)σ−1.

Lemma 6.13. Let X be a set on which a left group action of G ≤ Symn is defined and let
σ ∈ G. Then for any x ∈ X it follows that σSPG(x) = SPG(σx) and, if x has small support,
σspG(x) = spG(σx).

Proof. We have Lemmas 6.9 and 6.12 that σSPG(x) = σSP(StabG(x)) = SP(σStabG(x)σ−1) =
SP(StabG(σx)) = SPG(σx), proving the first part of the statement.

From the fact that ∥SPG(x)∥ < n
2 it follows there exists a unique P ∈ SPG(x) such that

|P | > n
2 and spG(x) = [n] \ P . But then σspG(x) = σ([n] \ P) = [n] \ (σP). We note that

6.2 The Support Theorem 87

σP ∈ σSPG(x) = SPG(σx) and |σP | > n
2 . Thus σP is the unique largest part in SPG(σx),

and so spG(σx) = [n] \ (σP) = σspG(x).

Lemma 6.14. Let X be a set on which a left group action of G ≤ Symn is defined. Let
x ∈ X be such that x has small support and let σ, σ′ ∈ G. If σ(a) = σ′(a) for all a ∈ spG(x)
then σ(x) = σ′(x).

Proof. We have that (σ′)−1σ ∈ Stab(spG(x)) ⊆ StabG(x) and so (σ′)−1σ(x) = x and thus
σ(x) = σ′(x).

6.2 The Support Theorem

The support theorem proved by Anderson and Dawar [3] establishes an upper bound on
the size of the support of a gate in a symmetric circuit with trivially invariant gates in
terms of sizes of the orbits of the gates. In particular, their result implies that if (Cn)n∈N is
a polynomial-size family of reduced symmetric circuits with majority gates then for large
enough n every gate in Cn has a constant-size canonical support. In this section we generalise
the support theorem and establish an analogous results for reduced injective symmetric
circuits with no restriction on the basis.

The proof of the support theorem in this section follows a strategy broadly similar to the
one used in [3], and uses two lemmas from there. The first of these lemmas gives us that if
the index of a group G ≤ Symn is small then SP(G) either has very few or very many parts.
The second lemma gives us that for G ≤ Symn of small index, if SP(G) has very few parts
then it must have a single very large part (and hence a small canonical support). These two
results allow us to conclude that a gate in a symmetric circuit has a small canonical support if
it has a canonical supporting partition with very few parts. We prove by structural induction
that the canonical supporting partition of every gate has few parts. To be precise, we show
that if g is a minimal gate in the natural partial order on the circuit that has a canonical
supporting partition with too many parts then the size of its orbit exceeds a given bound.

In order to prove this result we first characterise the stabiliser groups of the gates in a
circuit. We then use this characterisation to derive a lower-bound on the size of the orbits of
the gates. We recall that if C is a reduced symmetric circuit with trivially invariant gates
then a permutation σ ∈ Symn moves g if, and only if, there exists h ∈ Hg such that σh ̸∈ Hg.
This simple observation is central to Anderson and Dawar’s proof of the support theorem for
circuits with trivially invariant gates, but it is false in our more general setting. To see how
this can assertion can fail in this more general setting please see Example 6.15.

Example 6.15. Let τ = {E} be the graph vocabulary. Let n ∈ N and let F : {0, 1}τ [n] →
{0, 1} be an isomorphism-invariant structured function. Let C = ⟨G,Ω,Σ,Λ, L⟩ be a circuit
of order n that takes as input τ -structures defined as follows. Let X = {(i, j) ∈ [n]2 : i ̸= j}.

88 The Support Theorem

Let gout be a gate, for each i, j ∈ [n] let gin
i,j be a gate, and for each (i, j) ∈ X let gi,j be a

gate. Let Ω := gout. For each (i, j) ∈ [n]2 let Σ(gin
i,j) := E, for each (i, j) ∈ X let Σ(gi,j) := F ,

and let Σ(gout) := AND[X]. For each i, j ∈ [n] let Λ(i, j) := gin
i,j . For each (i, j) ∈ X let

L(gout)(i, j) := gi,j . For each (i, j) ∈ X and each (a, b) ∈ [n]2 let L(gi,j)(a, b) := Λ(i, i) if
a = i and b = j, L(gi,j)(a, b) := Λ(i, j) if a = b = i, and L(gi,j)(a, b) := Λ(a, b) otherwise.

We should explain the intuition behind this formal definition. We think of C as having
three layers. The first consists of all the relational gates. The second consists of the internal
gates of the form gi,j , one for each pair (i, j) ∈ [n]2 such that i ̸= j. We note that each of
these gates has exactly the same set of children and has injective labels. Importantly, each
gi,j labels its children slightly differently, labelling the relational gate Λ(i, i) with the tuple
(i, j), the gate Λ(i, j) with the tuple (i, i), and labelling the rest of the gates in accord with
Λ. The final layer of the gate contains a single output gate that takes a conjunction of all the
gates in the second layer.

It is not hard to see that for any permutation σ ∈ Symn the bijection πσ : G → G

permutes the relational gates in accord with σ, maps each gate of the form gi,j to gσ(i),σ(j),
and fixes the output gate, is a circuit automorphism extending σ. It is thus easy to see
that C is a reduced symmetric circuit with injective labels. We also notice that for every
permutation that moves any gate gi,j we have that σHgi,j = Hgi,j . In contrast, it was observed
by Anderson and Dawar [3] that if a circuit is symmetric, reduced, and has only trivially
invariant gates then a permutation σ moves a gate g if, and only if, σHg ̸= Hg.

We now introduce the notion of a two gates being compatible with a permutation. We
then show that a permutation σ ∈ Symn moves g if, and only if, two children of g are not
compatible with σ.

Definition 6.16. Let C be an injective symmetric circuit of order n and let g be a gate in the
circuit. Let σ ∈ Symn and h, h′ ∈ Hg. We say that (h, h′) is compatible with σ if σh, σh′ ∈ Hg

and there is a partial automorphism λ on str(g) such that L(g)−1(σh) = λ(L(g)−1(h)) and
L(g)−1(σh′) = λ(L(g)−1(h′)).

Lemma 6.17. Let C be a reduced injective symmetric circuit of order n, g be a gate in the
circuit, and σ ∈ Symn. The following are equivalent

1. σHg = Hg and σL(g) is isomorphic to L(g),
2. σ ∈ Stabn(g), and
3. for all h, h′ ∈ Hg, (h, h′) is compatible with σ.

Proof. ‘1 ⇒ 2’: From the definition of a circuit automorphism we have that L(σg) and
σL(g) are isomorphic, and so L(σg) and L(g) are isomorphic. It follows that g and σg are
syntactically-equivalent and so, since C is reduced, it follows that g = σg.

6.2 The Support Theorem 89

‘2 ⇒ 3’ We have λ ∈ Aut(g) such that L(g)λ = σL(g). Then λ = L(g)−1σL(g) and
so λ(L(g)−1(h)) = L(g)−1(σL(g)(L(g)−1(h))) = L(g)−1(σh) and similarly λ(L(g)−1(h′)) =
L(g)−1(σh′).

‘3 ⇒ 1’ From the compatibility condition we have for all h, h′ ∈ Hg that σh, σh′ ∈ Hg.
It follows that σHg = Hg. We have for all (⃗a1, R1), (⃗a2, R2) ∈ ind(g) that there exists
a partial automorphism λ′ of str(g) such that L(g)−1(σ(L(g)(⃗a1, R1))) = λ′(⃗a1, R1) and
L(g)−1(σ(L(g)(⃗a2, R2))) = λ′(⃗a2, R2). It follows that the function λ : ind(g) → ind(g)
defined by λ(⃗a,R) = L(g)−1(σ(L(g)(⃗a,R))) for all (⃗a,R) ∈ ind(g) is in Aut(g). We then
have that λL(g) = σL(g) and so σL(g) is isomorphic to L(g).

We aim to establish a lower bound on the sizes of the orbits of the gates in the circuit.
We do this by establishing the existence of a large set of permutations that each take g to a
different gate. To construct this set, we define a set of triples of the form (σ, h, h′) where
σ ∈ Symn and h, h′ ∈ Hg. Each of these triples is useful (formally defined below) in a sense
that guarantees that σ moves g. Moreover, the triples are pairwise independent which means
that we can compose them in arbitrary combinations to generate new permutations moving
g, while guaranteeing that each such combination gives us a different element in the orbit of
g. We now define these terms formally and prove the result.

Definition 6.18. Let C be a circuit with injective labels of order n and g be a gate in C.
We say that (σ, h, h′) ∈ Symn ×H2

g is useful if (h, h′) is not compatible with σ.
The mutual independence relation on Symn ×H2

g is defined to be the symmetric closure
of the binary relation on Symn × H2

g consisting of all pairs ((σ1, h1, h
′
1), (σ2, h2, h

′
2)) ∈

(Symn ×H2
g)2 such that

• σ2h1 = h1,
• σ2σ1h1 = σ1h1,
• σ2h

′
1 = h′

1, and
• σ2σ1h

′
1 = σ1h

′
1.

If a pair of triples is in the mutual independence relation we say they are mutually independent.
We say that a set S ⊆ Symn ×H2

g is useful (at g) if each pair in it is useful. We say that S
is independent (at g) if every two distinct elements in S are mutually independent.

Lemma 6.19. Let C be a rigid injective symmetric circuit of order n and let g be a gate in
that circuit. If S is a useful and independent set at g then |Orb(g)| ≥ 2|S|.

Proof. It follows from the orbit-stabiliser theorem that |Orb(g)| = [Symn : Stabn(g)]. We
fix some linear order on S. For any R ⊆ S define σR = Π(σ,h,h′)∈Rσ, where the order of
multiplication is induced by the order on S. We now show that the map R 7→ σR defines

90 The Support Theorem

a function from 2S to Symn such that for all R and Q distinct subsets of S we have
σ−1
Q σR ̸∈ Stabn(g). We assume, without a loss of generality, that R \ Q ≠ ∅. Pick any

(σ, h, h′) ∈ R \ Q. From independence we have σRh = σh, σRh′ = σh′, σQσh = σh, and
σQσh

′ = σh′. Thus σ−1
Q σRh = σ−1

Q σh = σh, and similarly σ−1
Q σRh

′ = σh′. Since S is useful
it follows that (h, h′) is incompatible with σ and so (h, h′) is incompatible with σ−1

Q σR. It
follows from Lemma 6.17 that σ−1

Q σR ̸∈ Stabn(g).

We earlier referred to two lemmas from [3] that we use to prove the support theorem. We
now state these lemmas and explain their significance. Lemma 6.20 is used to establish a size
bound on the supporting partition of a gate. In particular, it shows that for a partition P of
[n], if the index of SetStab(P) in Symn is small enough, then P either contains very few or
very many parts.

Lemma 6.20 ([3, Lemma 5]). For any ϵ and n such that 0 < ϵ < 1 and logn ≥ 4
ϵ , if

P is a partition of [n] with k parts, s = [Symn : SetStab(P)] and n ≤ s ≤ 2n1−ϵ, then
min{k, n− k} ≤ 8

ϵ
log s
logn .

Lemma 6.21 gives us that, under the same assumptions as Lemma 6.20, if the number
of parts in P is less then n

2 then P contains a very large part. This lemma is used both
to establish that the stabiliser group of a gate has small support, and hence a canonical
support, but also that this canonical support has bounded size (and is in fact constant for
polynomial-size circuits).

Lemma 6.21 ([3, Lemma 6]). For any ϵ and n such that 0 < ϵ < 1 and logn ≥ 8
ϵ2 , if P is a

partition of [n] with |P| ≤ n
2 , s := [Symn : SetStab(P)] and n ≤ s ≤ 2n1−ϵ , then P contains

a part P with at least n− 33
ϵ · log s

logn elements.

We are now ready to prove the support theorem for symmetric circuits that may include
non-trivially invariant gates. Let C be a circuit with unique extensions. We let SP(C) denote
the maximum value of ∥SP(g)∥ for g a gate in C.

Theorem 6.22. For any ϵ and n such that 2
3 ≤ ϵ ≤ 1 and n ≥ 128

ϵ2 , if C is a reduced injective
symmetric circuit of order n and s := maxg∈C |Orb(g)| ≤ 2n1−ϵ, then, SP(C) ≤ 33

ϵ
log s
logn .

Proof. First we note that if 1 ≤ s < n, then C cannot have a relational gate, as the orbit
of a relational gate has at least n elements. Since C has no relational gates, the only input
gates in the circuit are the constant gates. Since constant gates are fixed by all permutations,
it follows that any gate g whose children are constant gates must similarly be fixed under
all permutations. Furthermore, from the fact that C is reduced (so from Proposition 4.18
has unique extensions) this property inductively extends to the rest of the circuit. Thus for
each gate g in C the partition {[n]} supports g, and since this is trivially the coarsest such
partition it follows that ∥SP(g)∥ = 0 = SP(C). We therefore assume that s ≥ n.

6.2 The Support Theorem 91

If g is a gate in C then Stab(g) ≤ SetStab(SP(g)), and so s ≥ |Orb(g)| = [Symn :
Stab(g)] ≥ [Symn : SetStab(SP(g))]. Thus if |SP(g)| ≤ n

2 , then from Lemma 6.21, we
have ∥SP(g)∥ ≤ 33

ϵ · log s
logn . The result thus follows from showing that for each g in C we have

that |SP(g)| ≤ n
2 .

If g is a constant gate, then as argued above, it follows |SP(g)| = 0 < n
2 . If g is a

relational gate, then g is fixed by a permutation σ ∈ Symn if, and only if, σ fixes all elements
that appear in Λ(g). It follows that {a} ∈ SP(g) for each a appearing in Λ(g) and all
other elements of [n] are contained in a single part of SP(g). But suppose |SP(g)| > n

2 .
Then the number of singletons in SP(g) must be larger than n

2 , which in turn, from the
orbit-stabiliser theorem, gives us that s ≥ |Orb(g)| ≥ n!

(n−|Λ(g)|)! ≥ n!
(n2)! ≥ 2n4 > 2n1−ϵ . This

is a contradiction, and so |SP(g)| ≤ n
2 .

We now consider the internal gate case. Let g be the topologically first internal gate
with |SP(g)| > n

2 . Let k′ := ⌈ 8 log s
ϵ logn⌉. From the assumptions on s, n and ϵ we have that

k′ ≤ 1
4n

1−ϵ < n
2 . We note that Lemma 6.20 implies that n− |SP(g)| ≤ k′.

We now construct a sufficiently large useful and independent set of triples which, using
Lemma 6.19, allows us to place a lower bound on the orbit size of g. Divide [n] into ⌊ n

k′+2⌋
disjoint sets Si of size k′ + 2 and ignore the elements left over. It follows that for each i there
is a permutation σi which fixes [n] \ Si pointwise but moves g. Suppose there was no such
σi, but then every permutation that fixes [n] \ Si pointwise fixes g. Thus the partition of
all the singletons in [n] \ Si and Si is a supporting partition of g. As SP(g) is the coarsest
such partition it follows that |SP(g)| ≤ n− (k′ + 2) + 1 = n− k′ − 1, which contradicts the
inequality n− |SP(g)| ≤ k′.

Since g is moved by each σi, and C is reduced and injective, it follows from Lemma 6.17
that there exists (hi, h′

i) ∈ Hg such that (hi, h′
i) is not compatible with σi, and so the triple

(σi, hi, h′
i) is useful.

Note that our choice of g guarantees that for all h ∈ Hg, |SP(h)| ≤ n
2 , and so, from

Lemma 6.21 and the hypothesis of this theorem, h has small support. Let Qi = sp(hi) ∪
sp(σihi) ∪ sp(h′

i) ∪ sp(σih′
i). Then note that if σj fixes Qi pointwise then by construction we

have that σj ∈ Stab(SP(hi)) ∩ Stab(SP(σihi)) ∩ Stab(SP(h′
i)) ∩ Stab(SP(σih′

i))
Define a directed graph K with vertices given by the sets Si and an edge from Si to Sj

(with i ̸= j) if, and only if, Qi ∩ Sj ̸= ∅. It follows then that if there is no edge from Si to
Sj then Qi ⊆ [n] \ Sj , and so σj fixes Qi pointwise, giving us that (σi, hi, h′

i) and (σj , hj , h′
j)

are mutually independent. It remains to argue that K has a large independent set. This is
possible as the out-degree of Si in K is bounded by

|Qi| ≤ ∥SP(hi)∥ + ∥SP(σihi)∥ + ∥SP(h′
i)∥ + ∥SP(σih′

i) ≤ 4 · 33 log s
ϵ logn .

These inequalities follow from the fact that the sets Si are disjoint and we may apply Lemma
6.21 to each of the child gates. From these inequalities we have that the average total degree

92 The Support Theorem

(in + out degree) of K is at most 2 · |Qi| ≤ 34 ·k′. Now greedily select a maximal independent
set in K by repeatedly selecting Si with the lowest total degree and eliminating it and its
neighbours. This action does not affect the bound on the average total degree of K and
hence determines an independent set I in K of size at least

⌊ n
k′+2⌋

34k′ + 1 ≥ n− (k′ + 2)
34k′ + 1k′ + 2 ≥

n 7
16

34k′2 + 69k′ + 2 ≥ n

(16k′)2 .

Take S = {(σi, hi, h′
i) : Si ∈ I}. Then from the above argument we have that S is useful

and independent.
Moreover, from Lemma 6.19, we have that s ≥ |Orb(g)| ≥ 2|S| ≥ 2

n
(16k′)2 then n1−ϵ ≥

log s ≥ n · (128
ϵ

log s
logn)−2 > n · (n1−ϵ)−2 = n2ϵ−1 ≥ n1−ϵ. This is a contradiction, and the result

follows.

Let C = (Cn)n∈N be a polynomial-size family of reduced injective symmetric circuits.
Then s(n) := maxg∈Cn |Orb(g)| must be polynomially bounded, and so the theorem implies
that there exists k ∈ N such that for all large enough n and all g ∈ Cn we have that g has
small support and |sp(g)| ≤ k.

Corollary 6.23. Let C := (Cn)n∈N be a polynomial-size family of reduced injective symmetric
circuits. There is a k such that SP(Cn) ≤ k for all n.

6.3 Supports on Indexes

We have defined an action of Symn on the gates of a circuit of order n and established a
bound on the size of the supports of these gates. We now show that we can also define a
natural action on the elements of the universes of the gates and that the support theorem
can be extended so as to give a bound on the supports of these elements.

Let C be a reduced injective symmetric circuit of order n and let g be a gate in C. Since
C is symmetric and reduced it follows from Proposition 4.18 that each permutation in Symn

extends uniquely to an automorphism of C. We define a group action of Stab(g) on unv(g)
as follows. Let σ ∈ Stab(g) and x ∈ unv(g). It follows from the fact that C is injective that
there exists a unique λ ∈ Aut(g) such that λL(g) = L(σg). Let σ · x = λ(x).

In this case we are considering the group action of Stab(g), rather than Symn, and
so we consider supports and stabilisers relative to Stab(g) or a subgroup of Stab(g). In
order to simplify notation we use the abbreviations introduced in Section 6.1.1 for relative
supports and stabilisers. We now prove an extension of the support theorem and show that
for any polynomial-size family (Cn)n∈N of reduced injective symmetric circuit we have for
large enough n that for each g in Cn the supports of each x ∈ unv(g) relative to both the
subgroups Stab(g) and Stab(sp(g)) have size bounded by a constant. The proof of this
result follows almost immediately from the support theorem and the observation that for any

6.3 Supports on Indexes 93

internal gate g the support of an element a in the universe of g relative to the support of g is
always contained in the union of the support of g and the support of some child gate of g.

Theorem 6.24. Let (Cn)n∈N be a polynomial-size family of injective reduced symmetric
circuits. There exists n0, k ∈ N such that for all n > n0, g a gate in Cn, and a ∈ unv(g)

• Stabn(g), Stabsp(g)(a), and Stabg(a) have small supports,
• if h ∈ Hg and a appears in L(g)−1(h) then spg(a) ⊆ spsp(g)(a) ⊆ sp(g) ∪ sp(h), and
• |sp(g)| ≤ k and |spg(a)| ≤ |spsp(g)(a)| ≤ 2k.

Proof. We have from Corollary 6.23 that there exists k, n′
0 ∈ N such that for all n ≥ n′

0,
SP(Cn) ≤ k. Let n0 = max(n′

0, 4k + 1). Let n > n0, g be a gate in Cn, a ∈ unv(g), and
h ∈ Hg be such that there exists (⃗a,R) ∈ ind(g) such that (⃗a,R) = L(g)−1(h) and a ∈ a⃗.

Since SP(Cn) ≤ k and n > 4k, we have that Stab(g) and Stab(h) have small supports.
Moreover, we have that Stab(sp(h) ∪ sp(g)) = Stab(sp(h)) ∩ Stab(sp(g)) ≤ Stab(h) ∩
Stab(sp(g)) = Stabsp(g)(h). It follows that sp(h) ∪ sp(g) supports Stabsp(g)(h) and so, since
|sp(h) ∪ sp(g)| ≤ 2k < n

2 , Stabsp(g)(h) has small support and spsp(g)(h) ⊆ sp(h) ∪ sp(g).
We also have that Stabsp(g)(h) = ⋂

i∈[|⃗a|] Stabsp(g)(ai), and so by repeated application
of Lemma 6.8, we have that spsp(g)(a) ⊆

⋃
i∈[|⃗a|] spsp(g)(ai) = spsp(g)(h) ⊆ sp(h) ∪ sp(g). We

thus also have that |spsp(g)(a)| ≤ 2k.
Lastly, we note that Stabsp(g)(a) ⊆ Stabg(a), and so Stabg(a) has small support and

spg(a) ⊆ spsp(g)(a). The result follows.

Chapter 7

Transparent Circuits

In order to establish our translation from P-uniform families of circuits to formulas of fixed-
point logic we first need to show that a number of circuit parameters, such as the action
of an automorphism or the syntactic-equivalence relation, are polynomial-time computable.
Moreover, in order to apply the support theorem we need to be able to restrict our attention
to reduced injective circuits, and for this we seem to need a polynomial-time computable
translation from circuits to equivalent reduced injective circuits. However, computing these
properties and translations seems to entail showing either that a given function is a valid
circuit automorphism or that a given pair of gates are syntactically-equivalent. Both of
these reduce to checking if two structures labelling gates in the circuit are isomorphic. If
we restrict our attention to circuits with trivially invariant gates, as they do in [3], this
isomorphism problem reduces to testing for the existence of a bijection, which is polynomial-
time decidable. However, in our more general setting, where the gates of the circuit may be
labelled by arbitrary relational structures, this isomorphism problem is in general as hard as
the graph-isomorphism problem.

In order to ensure the polynomial-time decidability of these important problems we have
restricted our attention to transparent circuits. We recall that a transparent circuit is one
where every non-trivially invariant gate has unique labels. In this case there can be at most
one easily identifiable label-preserving function between the structures labelling any two gates,
and so deciding isomorphism reduces to deciding if this particular function is an isomorphism.
This is a polynomial-time decidable problem.

This chapter is organised as follows. In Section 7.1 we formally show that the requisite
circuit properties are indeed polynomial-time decidable for transparent circuits. We first
show that the syntactic-equivalence relation for transparent circuits is polynomial-time
decidable. We then establish a translation from transparent circuits to reduced injective
circuits. We also show that other related properties, such as a circuit being symmetric, are
polynomial-time decidable. In Section 7.2 we discuss more formally the relationship between
the graph-isomorphism problem and the aforementioned decision problems. In each case we

96 Transparent Circuits

show that the graph-isomorphism problem is reducible to deciding the given circuit property
for general symmetric circuits. It is easy to establish the reduction in the reverse direction,
and so it follows that each of these properties is polynomial-time decidable if, and only if, the
graph-isomorphism problem is in P. We also show that most of these hardness results are
robust in the sense that even if we restrict our attention to other natural classes of circuits
(e.g. circuits with unique children or circuits with injective labels) these problems remain at
least as hard as the graph-isomorphism problem.

We think of Section 7.1 as presenting a number of useful results for transparent circuits,
and hence suggesting why the restriction to transparent circuits is useful. We think of
Section 7.2 as proving a cumulative case for the necessity of this restriction.

7.1 Tractable Properties of Transparent Circuits

In this section we show that many important circuit properties are polynomial-time decidable
for transparent circuits. First, we prove that the syntactic-equivalence relation is polynomial-
time computable for transparent circuits. We use this result to show that transparent circuits
can be transformed in polynomial-time into equivalent reduced injective circuits. We show
that for circuits with unique labels we can compute in polynomial-time the action of a given
automorphism on the circuit, the orbits and canonical supporting partitions of each gate, as
well as the orbits and supporting partitions of each element of the universe of each gate. We
use these results when we define our translation from circuit families to fixed-point formulas
in Chapter 8.

We now show that the syntactic-equivalence relation can be computed in polynomial-time
for transparent circuits.

Lemma 7.1. There is an algorithm that takes as input a transparent circuit C and outputs
the syntactic-equivalence relation on the gates of C. The algorithm runs in time polynomial
in the size of C.

Proof. Let C := ⟨G,Ω,Σ,Λ, L⟩ be a transparent (B, ρ)-circuit of order n. We should note that
syntactic-equivilence is defined inductively, and this inductive definition can be implemented
as a dynamic program. In order to show this algorithm runs in polynomial-time it suffices to
show there is a polynomial-time algorithm that takes as input two gates g and h in C and
the syntactic-equivalence relation for all gates of depth less than either g or h and returns
whether or not g ≡ h. We now sketch a definition of this algorithm.

Let g and h be two internal gates in C and suppose we have defined the syntactic-
equivalence relation for all gates of depth less than the depth of either g or h. We check all
of the conditions for syntactic-equivalence with the exception of the isomorphism condition,
and if any of them fail to hold we halt and output that g ̸≡ h.

7.1 Tractable Properties of Transparent Circuits 97

Let x1, . . . , x|ind(g)| be an indexing of the elements in ind(g) by [|ind(g)|]. We iterate
over each i ∈ [|ind(g)|] and select yi ∈ ind(h) such that yi ̸= yj for all j ∈ [i − 1] and
L(g)(xi) ≡ L(h)(yi). If at any point we cannot select an appropriate yi we halt and output
that g ̸≡ h. For each i ∈ [|ind(g)|] let f(xi) = yi. We have that f is injective. Check if f is
surjective. If not, halt and output that g ̸≡ h. We thus have that f is a bijective function and
for all x ∈ ind(g), L(g)(x) ≡ L(h)(f(x)). Check if g and h are both trivially invariant gates.
If so, f is an isomorphism from L(g)/≡ to L(h)/≡, and so we halt and output that g ≡ h.

We thus have that g and h are non-trivially invariant gates. Then, since C is transparent,
both g and h have unique labels. In that case the function f is the only function such that
for all x ∈ ind(g), L(g)(x) ≡ L(h)(f(x)). It follows that g ≡ h if, and only if, f defines an
isomorphism from str(g) to str(h). This is easy to check.

It is natural to consider quotients of algebraic structures by congruences. We now
define what it means to take a quotient of a circuit by the syntactic equivalence relation.
Intuitively, we think of a quotient of a given circuit as being formed by “merging” each
syntactic-equivalence class into a single gate and including a wire between any two gates [h]
and [g] in the quotient circuit if, and only if, for some h′ ∈ [h] and g′ ∈ [g] there is a wire
from h′ to g′.

Definition 7.2. Let C := ⟨G,Ω,Σ,Λ, L⟩ be a (B, ρ)-circuit. A quotient of C is a (B, ρ)-circuit
C≡ := ⟨G≡,Ω≡,Σ≡,Λ≡, L≡⟩, where G≡ = G/≡, Ω≡ = Ω/≡, Σ = Σ/≡, (Λ≡)R = ΛR/≡ for all
R ∈ ρ, and for all [g] ∈ G≡ there exists g′ ∈ [g] such that, L≡ associates with [g] a function
L≡([g]) : ind(g′) → G≡ where L≡([g]) = L(g′)/≡.

We should note that the there is no obvious quotienting operation that associates with
each circuit a unique quotient circuit. However, it is easy to see that if C and C ′ are distinct
quotients of a given circuit then the only point where they differ is in the definition of their
respective labelling functions. But it is not hard to see that for every gate g in C, L(g) and
L′(g) are isomorphic. It follows that these two circuits are isomorphic in the precise sense
alluded to right after Definition 4.9.

We now show that taking the quotient of a circuit preserves important properties, including
the function computed by the circuit, the symmetry of the circuit, and whether the circuit
has unique labels. We also show that the quotient of a circuit is reduced, and hence has
unique children (and so, from Proposition 4.18, unique extensions).

Lemma 7.3. Let C := ⟨G,Ω,Σ,Λ, L⟩ be a (B, ρ)-circuit and C≡ = ⟨G≡,Ω≡,Σ≡,Λ≡, L≡⟩ be
a quotient of C. Then C≡ is reduced and C and C≡ compute the same function. Moreover,
if C is symmetric then C≡ is symmetric, and for all g ∈ G, g has unique labels in C if, and
only if, [g] has unique labels in C≡. Indeed, for all σ ∈ Symn if there exists π ∈ Aut(C)
extending σ then π/≡ is an automorphism of C≡ extending σ.

98 Transparent Circuits

Proof. Let n be the order of C. We first prove that C≡ and C compute the same function.
Let A be a ρ-structure of size n and let γ be a bijection from A to [n]. We now show
that for all g ∈ G, C≡[γA]([g]) = C[γA](g). We do this by induction on the depth of a
gate. Suppose g ∈ G has depth 0. In this case g is an input gate and the result follows
trivially. Suppose g is an internal gate and suppose for all h of depth less than g we have
that C≡[γA]([h]) = C[γA](h). We have that there exists g′ ∈ [g] such that L≡([g]) = L(g′)/≡

and Σ≡([g]) = Σ(g) = Σ(g′). We have from Lemma 4.13 and the inductive hypothesis
that there exists λ ∈ Aut(g) such that L≡([g]) = L(g′) = L(g)λ. It follows from the fact
that Σ(g) is a structured function that C≡[γA]([g]) = Σ≡([g])(LγA

≡ ([g])) = Σ(g′)(LγA(g′)) =
Σ(g)(LγA(g)λ) = Σ(g)(LγA(g)) = C[γA](g).

We now show that C≡ is reduced. Suppose [g], [h] ∈ G≡ and suppose [g] ≡ [h]. If [g]
and [h] are both input or output gates then [g] = [h]. Suppose [g] and [h] are internal gates
that are not output gates. Then Σ(g) = Σ≡([g]) = Σ≡([h]) = Σ(h). There exists g′, h′ ∈ G

such that g′ ≡ g and h′ ≡ h, and L≡([g]) = L(g′)/≡ and L≡([h]) = L(h′)/≡. It follows from
[g] ≡ [h] that L(g′)/≡ is isomorphic to L(h′)/≡. From this it follows that g′ ≡ h′, and so
[g] = [h].

Let σ ∈ Symn and suppose there exists π ∈ Aut(C) extending σ. Let π≡ = π/≡. We now
show that π≡ is an automorphism of C≡ extending σ. It is easy to see that π≡ is a bijection
from G≡ to G≡ that preserves syntactic-equivalence, and is thus is a well-defined function. Let
[g] ∈ G≡. We have that Σ≡(π≡[g]) = Σ≡([πg]) = Σ(πg) = Σ(g) = Σ≡([g]). It is easy to check
the automorphism conditions for input gates. Suppose [g] is an internal gate. Let g′ ∈ [g]
be such that L≡([g]) = L(g′)/≡ and h ∈ [g] be such that L≡(π≡[g]) = L≡([πh]) = L(πh)/≡.
We have that πL(g′) is isomorphic to L(πg′), and it follows that (πL(g′))/≡ is isomorphic
to L(πg′)/≡. We then have (πL(g′))/≡ = π≡(L(g′)/≡) = π≡L≡([g]) and, since g′ ≡ h and
so πg′ ≡ πh, we have that L(πg′)/≡ is isomorphic to L(πh)/≡ = L≡(π≡[g]). It follows
that π≡L≡([g]) is isomorphic to L≡(π≡[g])/≡. Suppose [g] is an output gate. Then for
a⃗ ∈ Dom(Ω), π≡Ω≡(⃗a) = [πΩ(⃗a)] = [Ω(σa⃗)] = Ω≡(σa⃗). It follows that if C is symmetric
then C≡ is symmetric.

Let g ∈ G. Suppose [g] has unique labels. There exists h ∈ [g] such that L≡([g]) = L(h)/≡.
Since L≡([g]) is injective, L(h)/≡ must be injective and so L(h) must be injective and no two
child gates of h can be syntactically-equivalent. It follows that h has unique labels. Since
h ≡ g and h has unique labels, it follows that g has unique labels. Suppose g has unique
labels. Let h ∈ [g] be such that L≡([g]) = L(h)/≡. Since h ≡ g and g has unique labels h
has unique labels and so L≡([g]) has injective labels. Since each equivalence class in C≡ is a
singleton it follows that [g] has unique labels.

In is not hard to show that there is a polynomial-time computable function that maps a
transparent circuit to a quotient of that circuit. To see this, recall that from Lemma 7.1 we
can compute the syntactic-equivalence classes of a transparent circuit in polynomial-time. We

7.1 Tractable Properties of Transparent Circuits 99

can thus define a quotient circuit by picking representatives from each syntactic-equivalence
class and then applying the definition of a quotient circuit in the obvious manner.

We now show that we can transform in polynomial time a transparent circuit into an
equivalent reduced injective circuit, and hence one with unique labels and unique extensions,
and that this transformation preserves important properties such as symmetry.

Lemma 7.4. There is an algorithm that takes as input a transparent (B, ρ)-circuit C and
outputs a (B∪Bstd, ρ)-circuit C ′ such that C and C ′ compute the same function, C ′ is reduced
and injective, and if C is symmetric then C ′ is symmetric. Moreover, this algorithm runs in
time polynomial in the size of the input circuit.

Proof. Let ⟨G,Ω,Σ,Λ, L⟩ := C. Let C0 := ⟨G0,Ω0,Σ0,Λ0, L0⟩ be the quotient of C. If C0

does not contain the constant gates g0 and g1 such that Σ(g0) = 0 and Σ(g1) = 1 we construct
a new circuit from C0 by just adding in the constant gates. We abuse notation and also call
this new circuit C0. The addition of these constant gates to the circuit does not alter the
function computed by the circuit, nor does it effect the symmetry of the circuit or whether it
has unique labels.

The proof proceeds by first defining a circuit C1 from C0 and then defining C ′ from C1.
We then show that each of these constructions preserves the relevant circuit properties and
that C ′ is reduced and injective.

We now define the circuit C1. Let C1 := ⟨G1,Ω1,Σ1,Λ1, L1⟩ be defined as follows. Let
G1 = G0 ⊎ {g∨}. Let Ω1 = Ω0 and Λ1 = Λ0. Let g ∈ G1. If g = g∨ then Σ1(g) = OR[2]
with L1(g)(1) = g0 and L1(g)(2) = g1. If g ∈ G0, Σ(g) = OR[2] and Hg = {g0, g1}, then
Σ1(g) = OR[3], L1(g)(1) = L0(g)(1), L1(g)(2) = L0(g)(2), and L1(g)(3) = g∨. If g ∈ G0 and
g = AND[k] for some k ∈ N then Σ1(g) = AND[k + 1] and L1(g)(i) = L0(g)(i) for all i ∈ [k]
and L1(g)(k + 1) = g∨. Otherwise let Σ1(g) = Σ0(g) and L1(g) = L0(g).

Stated more informally, we define C1 from C0 by adding in an OR-gate g∨ that always
evaluates to one, and then adding a wire from that gate to all AND-gates in the circuit (and
also a wire from g∨ to any two-input OR-gate that may already exist in the circuit in order
to ensure that g∨ is part of a singleton syntactic-equivalence class in C1). The important
point to note is that each AND-gate in C1 has fan-in at least two. We construct C ′ from C1

by adding in a number of AND-gates with fan-in one. Therefore, since all of the AND-gates
in C1 have fan-in two, it follows that none of these new gates are syntactically-equivalent
to any gate in C1. We now show that C1 and C0 compute the same function and if C0 is
symmetric then C1 is symmetric.

It is easy to see that if C has order n then C0 has order n and so C1 has order n. Let
A be a ρ-structure of size n and let γ be a bijection from the universe of A to [n]. We
have that C1[γA](g∨) = 1. We constructed C1 from C0 by adding a single wire from g∨ to
each AND-gate and each two-input OR-gate with only the two constant gates as children.
Notice that if g is a two-input OR gate in C0 with the two constant gates as children, then

100 Transparent Circuits

since g has g1 as a child and g is an OR-gate C0[γA](g) = C1[γA](g) = 1. It can be shown
by induction that if g ∈ G1 \ {g∨} then C0[γA](g) = C1[γA](g). Since Ω1 = Ω0, it follows
that C0 and C1 compute the same function. We thus have from Lemma 7.3 that C and C1

compute the same function.
Suppose C is symmetric. From Lemma 7.3 it follows that C0 is symmetric. Let σ ∈ Symn

and let π0 ∈ Aut(C0) be an extension of σ. Let π1 : G1 → G1 such that π1(g) = π0(g) for
all g ∈ G0 and π1(g∨) = g∨. It is easy to see that π1 is an automorphism of C1 extending σ.
It follows that C1 is symmetric.

We now show that C1 is reduced. We have from Lemma 7.3 that C0 is reduced. Since g∨

is the only two input OR-gate with exactly the two constant gates as children, g∨ is contained
in a singleton syntactic-equivalence class. It can be shown by induction that if g, g′ ∈ G0 are
syntactically equivalent in C1 then they must be syntactically-equivalent in C0. It follows
from these two observations that if g, g′ ∈ G1 are syntactically-equivalent in C1 then g = g′.
We thus have that each syntactic-equivalence class in C1 is a singleton, and so C1 is reduced.

Let C ′ := {G′,Ω′,Σ′Λ′L′} be defined as follows. For each g, h ∈ G1 let chg := |L−1({h})|.
For each h ∈ G1 let ch = maxg∈G1 c

h
g . For each h ∈ G1 if ch > 1 we define for each

i ∈ [ch − 1] a distinct gate ghi and let Gh := {gh1 , . . . , ghch−1}, and otherwise let Gh := ∅.
Let G∧ := ⊎

h∈G1 Gh and G′ = G∧ ⊎ G1. Let Ω′ = Ω1 and Λ′ = Λ1. For g ∈ G′ if g ∈ G1

let Σ′(g) = Σ1(g) and otherwise let Σ′(g) = AND[1]. For each g ∈ G1 and h ∈ Hg let
xh,g0 , . . . , xh,g

cg
h

−1 be a (0-based) ordering of L1(g)−1({h}). For each g ∈ G′ and x ∈ ind(g) we
define L′(g)(x) as follows. If g ∈ G1 then there exists unique h ∈ Hg and i ∈ {0, . . . , chg − 1}
such that x = xh,gi , and we let L′(g)(x) = h if i = 0 and L′(g)(x) = ghi otherwise. If
g ∈ G∧ then g = ghi for some h ∈ G1 and i ∈ [ch − 1], and we let L′(g)(x) = h if i = 1 and
L′(g)(x) = ghi−1 otherwise.

The construction ensures that C ′ has injective labels. Let g ∈ G1. In order to avoid
confusion we let Hg be the set of children of g in C1 and H ′

g be the set of children of g
in C ′. If g′ ∈ G1 we let g ≡ g′ denote syntactic-equivalence in C1 and g ≡′ g′ denote
syntactic-equivalence in C ′.

We now prove that C ′ has all of the requisite properties.

Claim 7.4.1. C ′ is reduced

Proof. We prove this result by induction on depth. Let g ∈ G′. If g has depth 0 then g is
an input gate and so [g] = {g}. Let g ∈ G′ be an internal gate in C ′ and suppose for each
gate h of depth less than g we have that [h] = {h}. Let g′ ∈ G′ and suppose g ≡′ g′. We now
show that g = g′, and so [g] = {g}, breaking down the argument by case. We first make a
few useful observations. Note that, since g ≡′ g′, it follows that Σ(g) = Σ(g′) and both g and
g′ have the same depth. Moreover, from the inductive hypothesis and the fact that g ≡′ g′,
we have that there exists λ ∈ Aut(g) such that for all x ∈ ind(g), L′(g)(λx) = L′(g′)(x). It
follows that H ′

g = H ′
g′ . We also have from the inductive hypothesis that each child of g and

7.1 Tractable Properties of Transparent Circuits 101

g′ must be contained in a singleton equivalence class. Since C ′ has injective labels it follows
that g and g′ have unique labels.

Suppose g ∈ G∧. Then there exists h ∈ G1 and i ∈ [ch − 1] such that g = ghi . Suppose
g′ ∈ G1. Then Σ′(g) = AND[1]. But, from the construction of C1, there are no single-input
AND-gates in G1. It follows Σ′(g′) ̸= Σ′(g) and so g′ ̸≡′ g, a contradiction, and so we must
have g′ ∈ G∧. If i = 1 then {h} = H ′

g = H ′
g′ . Since the only gate in G∧ that has h as a child

is gh1 , it follows that g = gh1 = g′. If i > 1 then {ghi−1} = H ′
g = H ′

g′ . Since ghi is the only gate
in G∧ that has ghi−1 as a child, we have g = ghi = g′. It follows that if g ∈ G∧ then g = g′.

Suppose g ∈ G1. We have already shown that if g′ ∈ G∧ then g ̸≡′ g′, a contradiction,
and so we must have g′ ∈ G1. Since g ≡′ g′ there exists λ ∈ Aut(g) such that for all
x ∈ ind(g), L′(g)(λx) = L′(g′)(x). From the construction, we have that for all x ∈ ind(g)
and h ∈ G1, L′(g)(x) ∈ {h, gh1 , . . . , ghchg−1} if, and only if, L1(g)(x) = h. Suppose g is not a
trivially invariant gate. Since C is transparent, C0 is transparent and so C1 is transparent.
We thus have that g and g′ have unique labels in C1 and so chg = 1 = chg′ and so for all
x ∈ ind(g), L1(g)(x) = L′(g)(x) and L1(g′)(x) = L′(g)(x). It follows that for all x ∈ ind(g),
L1(g′)(x) = L′(g′)(x) = L′(g)(λx) = L1(g)(λx). We thus have that g ≡ g′ and so g = g′.
Suppose instead that g is a trivially invariant gate. Let x ∈ ind(g) and h := L1(g)(λx).
Then L′(g′)(x) = L′(g)(λx) ∈ {h, gh1 , . . . , ghchg−1}. It follows that L1(g′)(x) = h. Putting this
together we have that for all x ∈ ind(x), L1(g)(λx) = L1(g′)(x), and so g ≡ g′ and thus
g = g′. This completes the proof of Claim 7.4.1.

We have already shown that if C is symmetric then C1 is symmetric. We now show that
if C1 is symmetric then C ′ is symmetric. Suppose C1 is symmetric. Let σ ∈ Symn and let
π1 ∈ Aut(C1) be an extension of σ. We define the function π′ : G′ → G′ as follows. Let
g ∈ G′. If g ∈ G1 let π′(g) := π1(g). If g ̸∈ G1 then g ∈ G∧, and so there exists h ∈ G1 and
i ∈ [ch−1] such that g = ghi . Let π′(g) := gπ1h

i . It is easy to show that π′ is an automorphism
of C ′ extending σ.

Claim 7.4.2. Let g ∈ G1, A be a ρ-structure of size n, and γ be a bijection from the universe
of A to [n]. Then C ′[γA](g) = C1[γA](g).

Proof. It is easy to see that for all h ∈ G1 and i ∈ [ch−1] we have that C ′[γA](ghi) = C ′[γA](h).
Suppose g ∈ G1. We now prove the result by induction on the depth of a gate. Suppose
g has depth 0. In this case g is an input gate, and the result follows trivially. Suppose
g is an internal gate, and for all h of depth less than g we have that if h ∈ G1 then
C ′[γA](h) = C1[γA](h). Let x ∈ ind(g). Recall that C ′ is constructed such that if g ∈ G1

then for all x ∈ ind(g) and h ∈ Hg, L1(g)(x) = h if, and only if, L′(g)(x) ∈ {h, gh1 , . . . , ghchg−1}.
But, from the construction, we have that all of the gates in {h, gh1 , . . . , ghchg−1} evaluate to the
same value for a given input to the circuit. Thus, from the inductive hypothesis, we have
that if L′(g)(x) ∈ G1 then L′γA(g)(x) = C ′[γA](L(g)(x)) = C1[γA](L1(g)(x)) = LγA

1 (g)(x).

102 Transparent Circuits

If L′(g)(x) ̸∈ G1 then L′(g)(x) ∈ G∧ and so L′(g)(x) = ghi , where h = L1(g)(x) and some
i ∈ [chg − 1]. But then L′γA(g)(x) = C ′[γA](ghi) = C ′[γA](h) = C1[γA](h) = LγA

1 (g)(x). The
penultimate equality follow from the inductive hypothesis. The final equality follows from the
fact that h = L1(g)(x). We thus have C ′[γA](g) = Σ′(L′γA(g)) = Σ1(LγA

1 (g)) = C1[γA](g).
This completes the proof of Claim 7.4.2

Since Ω′ = Ω1, we have that C ′ and C1 compute the same function. It follows that, since
C1 and C compute the same function, C and C ′ compute the same function. Since C is
transparent, we may construct the quotient circuit C0 in time polynomial in |C|. Since C1 is
constructed by adding in a single gate and then adding at most |C0| wires, we may construct
C1 from C0 in time polynomial in |C|. It is easy to see that C ′ can be constructed in time
polynomial in |C1| and hence polynomial in |C|. This completes the proof of the lemma.

We now show that there is an algorithm that runs in polynomial time and takes as input
a circuit with unique labels and an appropriate permutation and outputs the action of the
automorphism extending the permutation (if it is defined) on the gates of the circuit.

Lemma 7.5. There is an algorithm that takes as input a (B, ρ)-circuit C of order n with
unique labels and σ ∈ Symn and outputs for each gate g the image of g under the action of
the unique automorphism extending σ (if it exists). This algorithm runs in time polynomial
in the combined size of the input circuit and the encoding of the permutation.

Proof. Let C := ⟨G,Ω,Σ,Λ, L⟩. Let C≡ = ⟨G≡,Ω≡,Σ≡,Λ≡, L≡⟩ be a quotient of C. We
recursively build up the mapping π′ ∈ Aut(C≡) extending σ. If at some point in the recursive
construction we arrive at a point where no mapping for g can be found we halt at that point
and return that no automorphism exists.

Let h be any gate in C≡. Suppose h is an input gate. If h is a constant gate then let
π′(h) = h. If h is a relational gate such that R := Σ≡(h), then check if there exists h′

such that Σ≡(h′) = R and σΛ≡(h) = Λ≡(h′), and also check that either both h and h′ are
output gates or neither are output gates. If no such h′ exists then halt and output that no
automorphism exists. If neither h nor h′ are output gates then set π′(h) = h′. If both h and
h′ are output gates then check if σΩ−1

≡ (h) = Ω−1
≡ (h′). If the equality holds set π′(h) = h′,

otherwise halt and output that no automorphism exists. We note that, from the definition
of an automorphism, there is at most one such h′ meeting this criteria, and so π′(h) is
well-defined.

Let h be an internal gate in the circuit and assume we have defined π′(g) for every gate
g of depth less than h. Let h′ be a gate in the circuit such that Σ≡(h) = Σ≡(h′), π′L(h)
is isomorphic to L≡(h′) and, if h is an output gate then h′ is an output gate such that
σΩ−1

≡ (h) = Ω−1
≡ (h′). Suppose there is another gate h′′ in the circuit that meets all of those

criteria as well. But then it follows that h′′ ≡ h′. Since C≡ is reduced, we then have that
h′′ = h′. We thus have that the choice of h′, if it exists, is unique. Note that, since C has

7.1 Tractable Properties of Transparent Circuits 103

unique labels C≡ has unique labels, and so unique extensions, and so we have that π′L≡(h) is
isomorphic to L≡(h′) if, and only if, L≡(h′)−1π′L≡(h) acts on ind(h) like an automorphism
of str(h). This is easy to determine. If no such h′ exists, halt and output that there is no
automorphism extending σ. Otherwise, let π′(h) = h′.

It is easy to see that if there is an automorphism of C≡ extending σ then this construction
must have been successful and π′ is the unique automorphism of C≡ extending σ. Thus, if
we have thus far halted and returned that no automorphism exists, then indeed there is no
automorphism of C≡ extending σ and so, from Lemma 7.3, no automorphism of C extending
σ. We suppose the algorithm has not halted, and thus that π′ is an automorphism of C≡

extending σ.
We say that a function π : G → G is a pseudo-automorphism extending σ if (i) π acts

like an automorphism extending σ on the input and output gates, (ii) Σ(π(h)) = Σ(h) for all
h ∈ G, (iii) π(h) ∈ Hπ(g) for all h ∈ G and g ∈ W (h, ·), and (iv) π(h) ∈ π′([h]).

Claim 7.5.1. If π is an automorphism of C extending σ then π is a pseudo-automorphism
extending σ.

Proof. Suppose π is an automorphism of C extending σ. It is easy to see that conditions (i),
(ii) and (iii) are satisfied. We now show that (iv) is satisfied as well. Notice that, since C≡ is
reduced and so has unique extensions, π′ is the unique automorphism of C≡ extending σ. We
have from Lemma 7.3 that there exists π≡ ∈ Aut(C≡) extending σ such that π≡([g]) = [π(g)].
It follows that for all h ∈ G, π(h) ∈ π≡([h]) = π′([h]).

We now describe an algorithm that takes as input a circuit C and a permutation σ and if
there is no pseudo-automorphism extending σ halts and outputs a corresponding message or
otherwise halts outputs a pseudo-automorphism π extending σ. This algorithm works by
first defining π on the set of output gates and then, by backwards induction on the maximal
length of a path from a gate to an output gate, extending the definition of π to the rest of
the circuit. Importantly, we have that π, if it exists, is the unique pseudo-automorphism
extending σ.

For each gate h in C let Q(h) be the maximum length of a path from h to an output
gate. Let h be a gate in C. Suppose Q(h) = 0. Then h is an output gate. Let h′ ∈ G be
such that h′ = Ω(σΩ−1(h)) and Σ(h) = Σ(h′). If there is no such h′ then halt and output
that no extension exists. Otherwise let π(h) = h′.

Suppose h is a gate in the circuit with Q(h) > 0 and for all g such that Q(g) < Q(h) we
have defined π(g). Let H = ⋂

g∈W (h,·)Hπ(g). If H is empty then we cannot satisfy condition
(iii) in the definition of a pseudo-automorphism, and so we halt and output that no extension
exists. Suppose that H is non-empty. If h is an input gate then there is an obvious action of
σ on h, and we let h′ = σh. If h is an output gate, let h′ ∈ G be such that h′ = Ω(σΩ−1(h))
and Σ(h) = Σ(h′). If h′ ̸∈ H we halt and output that no extension exists, and otherwise we

104 Transparent Circuits

let π(h) = h′. Notice that in the case that h is an output gate or an input gate then from the
definition of an automorphism h′ is the unique gate satisfying these criteria. Suppose h is an
internal non-output gate. Let h≡ ∈ G≡ be such that h≡ = [h]. Let h′ ∈ π≡(h≡) be such that
h′ ∈ H. We now show that h′, if it exists, is the unique gate satisfying these criteria. Let
h′′ ∈ π≡(h≡) and h′′ ∈ H. Then h′′ ≡ h′ and for all g ∈ W (h, ·), h′ ∈ Hg and h′′ ∈ Hg. But
then, since every g ∈ W (h, ·) has unique labels, h′′ = h′. Let π(h) = h′.

It is easy to see that if there is a pseudo-automorphism of C extending σ then this
construction must have been successful, and π is the unique pseudo-automorphism extending
σ. It follows that if the algorithm has halted without outputting a pseudo-automorphism,
then there is no pseudo-automorphism extending σ and so, from the claim, there is no
automorphism extending σ. We suppose then that the algorithm has not halted and we have
constructed π successfully. It follows from the claim and the uniqueness of π that if there is
an automorphism extending σ than it must be equal to π, and so π is an automorphism. We
thus have that there is an automorphism extending σ if, and only if, π is an automorphism. It
remains to check that π is an automorphism. It suffices to check that π is a bijection and that
for each h ∈ G, πL(h) is isomorphic to L(h′). It is easy to check that π is a bijection. Notice
that πL(h) is isomorphic to L(π(h)) if, and only if, L(π(h))−1πL(h) is an automorphism.
This condition is also easy to check. If either of these checks fail, halt and output that there
is no automorphism extending σ. Otherwise, output π(g) for all g ∈ G.

We note that, since C has unique labels, we can compute C≡ in polynomial-time. Moreover,
it is easy to see that the construction of π′ and π can be completed in polynomial-time. We
thus have that the algorithm described may be implemented so as to run in polynomial-
time.

We now use Lemma 7.5 to define an algorithm that computes in polynomial-time the
image of a given element of the universe of a gate under the action of a given permutation.

Lemma 7.6. There is an algorithm that takes as input a (B, ρ)-circuit C with unique labels of
order n, a gate σ ∈ Symn, g a gate in C, and a ∈ unv(g) and, if there exists an automorphism
of C extending σ such that σ ∈ Stab(g), outputs σ(a). The algorithm runs in time polynomial
in the size of C and the encoding of σ.

Proof. Let C = ⟨G,Ω,Σ,Λ, L⟩. We use the algorithm from Lemma 7.5 to check if σ extends
to an automorphism on C. We also check if σ ∈ Stab(g). If either of these checks fail, halt
and return that no such automorphism exists. Let h ∈ Hg and b⃗R := L(g)−1(h) be such that
a ∈ b⃗R, and let i be the index of a in b⃗R. Halt and output σa = (L(g)−1(σh))(i).

We aim to show that it is possible to compute in polynomial-time the orbits and canonical
supporting partitions of the gates, and elements of the universes of the gates, of a given
circuit with unique labels. In order to prove this, we first prove a more general result which
shows that there is a polynomial-time algorithm that takes as input a set X, an element

7.1 Tractable Properties of Transparent Circuits 105

x ∈ X, and a polynomial-time computable group action on X, and computes the orbit and
canonical supporting partition of x.

Lemma 7.7. Let p be a polynomial. There is an algorithm that takes as input a set S ⊆ [n],
a set X, an element x ∈ X, and a Turing machine T computing the action of Stab(S) on X

that runs in time bounded by p(n+ |X|), and outputs OrbStab(S)(x) and SPStab(S)(x). This
algorithm runs in time polynomial in n+ |X| + |T |.

Proof. Let (u, v) ∈ Sym[n]\S be a transposition. We note that (u, v) ∈ Stab(S) and there
are

(n−|S|
2

)
many such transpositions. For each (u, v) ∈ Sym[n]\S let

P(u,v) := {{u, v}} ∪
⋃

w∈[n]\{u,v}
{{w}}.

We note that P(u,v) is a partition of [n]. Then P(u,v) supports StabStab(S)(x) if, and only if,
(u, v) · x = x.

Let P be the partition that is the coarsest common refinement of the partitions P(u,v),
for all u, v with (u, v) · x = x. From Proposition 6.3 we have that P supports StabStab(S)(x).
Suppose that P is not the coarsest supporting partition of StabStab(S)(x). Then there exists
a partition P ′ supporting StabStab(S)(x) such that P ′ ⪯ P and P ′ ̸= P . And so there exists
P ∈ P and P ′ ∈ P ′ such that P ⊊ P ′. But then there exists a, b ∈ P ′ such that a ̸∈ P

and b ∈ P . Note that (a, b) fixes P ′ and, since P ′ supports StabStab(S)(x), it follows that
(a, b) ∈ StabStab(S)(x) and a ̸∈ S and b ̸∈ S. But then we have that (a, b) · x = x, and so
P(a,b) supports StabStab(S))(x) and thus, from the construction of P, P is fixed by (a, b).
But we selected a and b such that P is not fixed by (a, b), and so we have a contradiction.
We thus have that P is the coarsest supporting partition of StabStab(S)(x).

It remains to compute OrbStab(S)(x). Let M0 := {x} and for each i ≥ 0 let Mi+1 :=
Mi∪ (⋃(u,v)∈Sym[n]\S

((u, v) ·Mi)). Let M ⊆ X be the union of this sequence. It is easy to see
that M ⊆ OrbStab(S)(x) as every element of M is equal to the action of some finite sequence
of transpositions acting on x. Moreover, if y ∈ OrbStab(S)(x), then there exists π ∈ Stab(S)
such that y = π · x. But then, since Sym[n]\S , is generated by the set of all transpositions in
Sym[n]\S , it follows that π can be written as a sequence of t transpositions for some t ∈ N.
Thus y ∈ Mt ⊆ M , and hence OrbStab(S)(x) ⊆ M , and so OrbStab(S)(x) = M .

Note that the set of all transpositions in Sym[n]\S can be computed in time O(n2), and
we can check if a given transposition fixes x by simulating T with the given transposition and
x as inputs. Moreover, since it is easy to show that E (the operator defined in Section 6.1) can
be computed in time polynomial in n, it follows that P can be computed in O(n2|T |p(|X| +
n)2q(|X| + n)), for some polynomial q. The dependence of the running time on the size of T
is a result of the overhead required to simulate T .

Furthermore, when computing the orbit, we construct Mi iteratively and obtain the orbit
after at most |X| iterations. Since each iteration requires at most O(n2) applications of the

106 Transparent Circuits

group action, it follows that this part of the procedure runs time O(n2|X||T |p(|X| + n)2).
We thus have that the entire algorithm runs in polynomial-time, and the result follows.

We now apply Lemma 7.7 and show that there is a polynomial-time algorithm that takes
as input a circuit with unique labels and decides if the circuit is symmetric and, if it is,
outputs the orbit and canonical supporting partition of each gate in the circuit.

Lemma 7.8. There is an algorithm that takes in a circuit C with unique labels and outputs
if the circuit is symmetric. If it is symmetric then it outputs the orbit and coarsest supporting
partition of each gate. This algorithm runs in time polynomial in the size of the circuit.

Proof. Let n be the order of C. We have from Lemma 7.5 that there is a Turing machine T ′

that takes as input a circuit with unique labels and a permutation and outputs the image of
each gate (if it exists) in polynomial-time. We define a Turing machine T that takes as input
a permutation σ ∈ Symn and a gate g in C, runs T ′ with inputs C and σ and outputs the
image of g under the action of σ (if it exists).

For each transposition (u, v) ∈ Symn and each gate g in C we use T to check if the image
of g under the action of (u, v) exists. If for any transposition and gate T returns that no
image exists then we halt and output that the circuit is not symmetric.

We note that if every gate has an image under the action of every transposition then,
since Symn is generated by the set of transpositions, we have that C is symmetric.

For each gate g in C we run the algorithm from Lemma 7.7 with S := ∅, X := G (where
G is the set of gates in C), x := g, and Turing machine T , and output the result of this
computation.

We note that there are
(n

2
)

≤ n2 transpositions in Symn and so, since from Lemma 7.5
the action of a transposition on the gates of the circuit can be computed in polynomial-
time, the initial symmetry check can be completed in polynomial-time. Moreover, from the
polynomial-time bounds in Lemmas 7.5 and 7.7, we have that the rest of the algorithm also
runs in time polynomial in the size of the circuit.

We now extend Lemma 7.8 and construct a polynomial-time algorithm that computes
the orbit and canonical supporting partition of each element of the universe of each gate in a
circuit.

Lemma 7.9. There is an algorithm that takes in a circuit C of order n with unique labels, a
gate g in C with small support, and a ∈ unv(g), and outputs if the circuit is symmetric. If C
is symmetric it outputs the orbit Orbsp(g)(a) and coarsest supporting partition SPsp(g)(a).
This algorithm runs in time polynomial in the size of the circuit.

Proof. We first use the algorithm from Lemma 7.8 to compute the canonical support of g. If
the algorithm returns that C is not symmetric, output that C is not symmetric.

7.1 Tractable Properties of Transparent Circuits 107

We have from Lemma 7.6 that there is a Turing machine T ′ that takes as input a circuit
with unique labels, a gate, an element of the universe of that gate, and a permutation, and
outputs the image of the given element under the action of the given permutation (if it exists).
We define a Turing machine T that takes as input an element b ∈ sp(g) and a permutation
σ ∈ Stab(sp(g)) outputs the result of running T ′ with inputs C, σ, g and b.

We then use the algorithm from Lemma 7.7, with inputs S := sp(g), X := unv(g) and
x := a, and the Turing machine T , and output the results.

We have from the bounds in Lemmas 7.6 and 7.7 that this algorithm runs in time
polynomial in the size of the circuit.

We have shown that transparent circuits, and circuits with unique labels, have all of
the requisite algorithmic properties needed to establish our main result. However, since
transparency is defined in terms of syntactic-equivalence, and testing for syntactic-equivalence
reduces to testing for isomorphism, it is not obvious that transparency itself is a polynomial-
time decidable property of circuits. If transparency were not polynomial-time decidable then
the restriction to transparent circuits in the main theorem of this thesis would be quite
unnatural. It may also undermine the usefulness of this result. We now show that the class
of transparent circuits is indeed polynomial-time decidable.

Proposition 7.10. There is an algorithm that takes as input a circuit and decides if that
circuit is transparent. This algorithm runs in time polynomial in the size of the circuit.

Proof. Let C = ⟨G,Ω,Σ,Λ, L⟩ be a (B, ρ)-circuit. We now describe an algorithm. We first
check that L(g) is an injection for every non-trivially invariant gate g ∈ G. If this is not
the case we return that C is not transparent. For each p ∈ N let Gp ⊆ G be the set of all
gates of depth p and let G≤p = ⋃

0≤i≤pG
i. We have that no two input gates are syntactically-

equivalent. It follows that a gate in G1 has unique labels if, and only if, it has injective labels.
We therefore have that all of the non-trivially invariant gates in G1 have unique labels. We
then run the following iterative algorithm. We initialise a variable i to 1. We have that all
of the non-trivially invariant gates in G≤i have unique labels. We can thus compute the
syntactic-equivalence classes of G≤i using the algorithm given in Lemma 7.1. The children
of the gates in Gi+1 are in G≤i. We check if every non-trivially invariant gate in Gi+1 has
unique labels, i.e. if no two of its children are elements of the same syntactic-equivalence class.
If this check fails, we halt and output that the circuit is not transparent, and if it succeeds
we increment the variable i and continue as above. If i is ever set to the value depth(C) we
halt and output that the circuit is transparent. It is easy to see that this algorithm runs in
polynomial-time.

We can similarly show that the class of circuits with unique labels is polynomial-time
decidable.

108 Transparent Circuits

Corollary 7.11. There is an algorithm that takes in a circuit and decides if that circuit has
unique labels and runs in time polynomial in the size of the circuit.

Proof. Let C be the input circuit. From Proposition 7.10 we may check if C is transparent
in time polynomial in the size of C. If C is not transparent halt and output that C does
not have unique labels. If C is transparent then from Lemma 7.1 we may compute the
syntactic-equivalence relation for the gates of C in time polynomial in the size of C. Note
that C has unique labels if, and only if, for each gate g in C, |ind(g)| = |Hg/≡|. We may
thus check if C has unique labels by iterating through the gates of C.

7.2 The Necessity of Transparency

We have shown then that many crucial properties of transparent circuits are polynomial-time
decidable and, using these results, we have shown that transparent circuits can be transformed
in polynomial-time to equivalent reduced injective circuits. We have also shown that circuits
with unique labels have many of the requisite algorithmic properties needed for the proof of
our main result.

In this section we formally establish that most of these circuit properties are at least as
hard to decide as the graph isomorphism problem. In particular, we present reductions from
the graph-isomorphism problem to most of the important decision problems addressed in the
first section of this chapter, including: deciding if a circuit is symmetric, deciding if a gate
has unique labels, deciding if two gates are syntactically-equivalent, deciding if two gates are
in the same orbit, etc. Moreover, we show that many of these hardness results hold even
if we restrict ourselves to other natural classes of circuits, such as the class of circuits with
injective labels or the class of circuits with unique children.

These results together suggest the necessity of the restriction to transparent circuits.
Moreover, while we do not show that there is no polynomial-time computable transformation
from a general circuit to an equivalent transparent circuit (or equivalent circuit with unique
labels), the difficulty associated with computing these basic circuit properties that seem
essential for defining such a transformation should be considered evidence that, at the very
least, many of the obvious approaches for defining such an algorithm require showing that
graph-isomorphism in P.

In each case we establish this reduction by showing that the graph-isomorphism problem
can be encoded as a question about a circuit with non-trivially invariant gates. In each case
we use circuits defined over the same basis and it may be asked whether these hardness
results might fail to hold if we restrict ourselves to circuits defined over bases from some
class that excludes this one. However, it is easy to show that these hardness results can be
generalised to a broad range of bases.

7.2 The Necessity of Transparency 109

We now fix the basis we use in this section. Let τ = ({M}, {s1, s2}, ζ) be a many-sorted
relational vocabulary such that ζ(M) = (s1, s2). Let G be a class of τ -structures. Let BG be
the basis corresponding to G. We fix BG for the remainder of this section.

Remark 7.12. In this section we present a number of polynomial-time reductions from the
graph-isomorphism problem to various circuit-related problems. In each case we present a
reduction from the bipartite-isomorphism problem to a circuit-related problem. This suffices
as, from [44], there is a polynomial-time reduction from the graph-isomorphism problem
to the bipartite-isomorphism problem. We recall that the bipartite-isomorphism problem
is the problem of deciding if for a given pair of bipartite graphs B1 := (U1, V1, E1) and
B2 := (U2, V2, E2) there exists a (graph) isomorphism π : B1 → B2 such that π(U1) = U2

and π(V1) = V2.

We now present a reduction from the graph-isomorphism problem to the problem of
deciding if two gates in a circuit are syntactically-equivalent. In fact, we prove a stronger result,
presenting a reduction from the graph-isomorphism problem to the problem of computing
the syntactic-equivalence relation over a more constrained class of circuits.

Proposition 7.13. There is a polynomial-time reduction from the graph isomorphism problem
to the problem of determining if a given pair of gates in a given circuit are syntactically-
equivalent.

Proof. Let ρ be a non-empty relational vocabulary. We reduce the bipartite-isomorphism
problem to the problem of deciding whether two given gates are syntactically equivalent
in a symmetric (BG ∪ Bstd, ρ)-circuit taking ρ-structures as input where the circuit (i) has
injective labels, (ii) contains no constant gates, and (iii) contains at most two non-trivially
invariant gates. Suppose we are given two partitioned bipartite graphs B1 := (U1, V1, E1) and
B2 := (U2, V2, E2). We assume, without a loss of generality, that there exists a1, b1, a2, b2 ∈ N
such that U1 = [a1], V1 = [b1], U2 = [a2], and V2 = [b2]. Let n be the size of these graphs (i.e.
n = a1 + b1 = a2 + b2).

The idea is to construct a circuit with n inputs, and with two designated gates used to
encode the presence or absence of an edge, and two non-trivially invariant gates wired up so
as to encode the two graphs. We wire the circuit such that, for a given non-trivially invariant
gate gns, the child of gns labelled by (p, q) has exactly one of the two designated gates as a
child, with the choice of which one depending on whether (p, q) is an edge in the associated
graph or not. In this sense the circuit encodes the two bipartite graphs at the non-trivially
invariant gates, and the two non-trivially invariant gates are syntactically-equivalent if, and
only if, the two graphs are bipartite-isomorphic. We now present this construction formally.

Let R be a fixed-relation symbol in ρ. Let GR := {gR,⃗c : c⃗ ∈ [n]rR}, Gmid := {g∨, g∧, gout},
Gns := {g1

ns, g
2
ns}, and Gnodes := {gi,(u,v) : i ∈ [2], (u, v) ∈ [ai] × [bi]}. Let C = ⟨G,Ω,Σ,Λ, L⟩

be a (BG ∪ Bstd, ρ)-circuit of order n defined as follows. Let G = GR ∪Gmid ∪Gns ∪Gnodes

110 Transparent Circuits

and Ω be the 0-ary function gout. For each c⃗ ∈ [n]rR let ΛR(c⃗) = gR,⃗c. Define Σ as follows.
For each g ∈ G,

• if g = gout then Σ(g) = AND[2],
• if g ∈ Gns let i ∈ [2] be such that g = gins and let Σ(g) = FG [ai, bi],
• if g ∈ Gnodes then Σ(g) = AND[1],
• if g = g∧ then Σ(g) = AND[nrR] and if g = g∨ then Σ(g) = OR[nrR], and
• if g ∈ GR then Σ(g) = R.

Define L as follows. For each g ∈ G,

• if g = gout then for each i ∈ [2], L(g)(i) := gins,
• if g ∈ Gns and g = gins then for all (p, q) ∈ ind(g) let L(g)(p, q) = gi,(p,q),
• if g ∈ Gnodes and g = gi,(p,q), then if (p, q) ∈ Ei let L(g)(1) = g∧ and otherwise let
L(g)(1) = g∨, and

• if g = g∧ or g = g∨ then for all q ∈ [nrR] we have that L(g)(q) = Λ−1(c⃗q), where c⃗q is
the qth element of [n]rR in the lexicographical ordering on [n]rR .

We note that for i ∈ [2] the child of L(gins)(p, q) is g∧ if, and only if, (p, q) is an edge
in Bi and the child of L(gins)(p, q) is g∨ if, and only if, (p, q) is not an edge in Bi. We
thus have that B1 and B2 are bipartite-isomorphic if, and only if, Σ(g1

ns) = Σ(g2
ns) and

there exists λ ∈ ind(g) = [a1] × [b1] = [a2] × [b2] such that for all (u, v) ∈ [a1] × [b1],
L(g1

ns)(u, v) = g1,(u,v) ≡ g2,λ(u,v) = L(g2
ns)(λ(u, v)). It follows that B1 and B2 are bipartite-

isomorphic if, and only if, g1
ns ≡ g2

ns.
Since the construction of C can be complete in time polynomial in the combined sizes of

the input graphs, the mapping of (B1, B2) to the tuple (C, (g1
ns, g

2
ns)) is a reduction, and the

result follows.

It follows from the proof of Proposition 7.13 that computing the syntactic-equivalence
relation for a given circuit remains hard even if we restrict ourselves to injective circuits.

We now show that the syntactic-equivalence relation remains hard to compute even if
we restrict ourselves to the class of circuits such that each non-trivially invariant gate has
unique children.

Lemma 7.14. There is a polynomial-time reduction from the graph-isomorphism problem to
the problem of deciding if two gates in a given circuit with the property that each non-trivially
invariant gate has unique children are syntactically-equivalent.

Proof. We use a similar approach as in the proof of Proposition 7.13. The circuit used here
is similar except that we omit the children of the non-trivially invariant gates and replace
them with direct wires. We now present this reduction formally.

7.2 The Necessity of Transparency 111

Suppose we are given two partitioned bipartite graphs B1 := (U1, V1, E1) and B2 :=
(U2, V2, E2). We assume, without a loss of generality, that there exists a1, b1, a2, b2 ∈ N such
that U1 = [a1], V1 = [b1], U2 = [a2], and V2 = [b2].

Let C = ⟨G, ,Ω,Σ,Λ, L⟩ be the circuit defined in the proof of Proposition 7.13. Let
C ′ = ⟨G′,Ω′,Σ′,Λ′, L′⟩ be defined as follows. Let G′ = G \ Gnodes, Ω′ = Ω, Λ′ = Λ, and
Σ′ = Σ

∣∣
G′ . For all g ∈ G′ \ Gns let L′(g) = L(g). For i ∈ [2] and (p, q) ∈ [ai] × [bi] let

L(gins)(p, q) = g∧ if (p, q) ∈ Ei and L(gins)(p, q) = g∨ otherwise.
We have defined C ′ from C by deleting the gates in Gnodes and for each g ∈ Gnodes adding

a wire directly from the child of g in to the parent of g. Using an argument similar to
that of Proposition 7.13 we have that B1 and B2 are bipartite-isomorphic if, and only if,
g1

ns ≡ g2
ns. Since the construction of C, and so C ′, can be implemented in time polynomial in

the combined sizes of the input graphs, the mapping of (B1, B2) to the tuple (C ′, (g1
ns, g

2
ns))

is a reduction, and the result follows.

We recall that a circuit C is transparent if, and only if, every non-trivially invariant gate
in C has injective labels and unique children. We have shown that computing the syntactic-
equivalence relation of a circuit is at least as hard as the graph-isomorphism problem even if
we restrict ourselves to either the class of circuits in which each non-trivially invariant gate has
injective labels (Proposition 7.13) or the class of circuits in which each non-trivially invariant
gate has unique children (Lemma 7.14). It follows that while transparency, which is the
conjunction of these two properties, suffices to establish the polynomial-time computability of
syntactic-equivalence, each of these properties alone is too weak to unconditionally guarantee
the existence of a polynomial-time algorithm computing syntactic-equivalence.

We now present a reduction from the problem of deciding the syntactic-equivalence
relation to the problem of deciding if a given gate in a circuit has unique labels. It follows
from Proposition 7.13 and the composition of reductions that there is a reduction from the
graph-isomorphism problem to the problem of deciding if a gate has unique labels.

Lemma 7.15. There is a polynomial-time reduction from the problem of determining if a
given pair of gates in a given circuit are syntactically equivalent to the problem of determining
if a given gate in a given circuit has unique labels.

Proof. Let C := ⟨G,Ω,Σ,Λ, L⟩ be a circuit of order n and let g1, g2 ∈ G. Let D be the circuit
formed from C by removing every gate g ∈ G \ {g1, g2} such that ¬Wt(g, g1) ∧ ¬Wt(g, g2),
where Wt is the transitive closure of the W relation (i.e. we remove all those gates in the
circuit such that there is no path from the gate to either g1 or g2). Let C ′ be the circuit
formed from D by adding in a single two-input AND-gate g′ and connecting the outputs of
g1 and g2 to the inputs of g′. Moreover, we let this g′ be the single output gate of C ′.

It follows that g1 and g2 are syntactically-equivalent in C if, and only if, g′ has unique
labels in C ′. Since the construction of C ′ from C can be completed in polynomial time, the
mapping of (C, (g1, g2)) to (C ′, g′) is a reduction.

112 Transparent Circuits

We say a gate g in a circuit C has unique extensions if there is no permutation σ ∈ Symn

such that there exists two automorphisms extending σ that disagree with each other on
g (i.e. g is not a counter example to C having unique extensions). We now use a similar
argument as for Lemma 7.15 to establish a reduction from the problem of deciding if two
gates are syntactically-equivalent in an injective circuit to the problem of deciding if a given
gate in an injective circuit does not have unique extensions. It follows from the composition
of reductions and Proposition 7.13 that there is a reduction from the graph-isomorphism
problem to the problem of deciding if a gate does not have unique extensions.

Lemma 7.16. There is a polynomial-time reduction from the problem of determining if a
given pair of gates in a given circuit with injective labels are syntactically-equivalent to the
problem of determining if for a given pair (C, g), where C is an injective circuit of order
n and g is a gate in C, that there exists σ ∈ Symn and automorphisms π, π′ ∈ Aut(C)
extending σ such that π(g) ̸= π′(g).

Proof. Let C be a circuit of order n and let g1 and g2 be two gates in C. Note that for any
gate g in σ ∈ Symn, if π, π′ ∈ Aut(C) both extend σ and πe := π′π−1 then π(g) ̸= π′(g)
if, and only if, πe(g) ̸= g. We thus have that there exists σ ∈ Symn and π, π′ ∈ Aut(C)
extending σ such that π(g) ̸= π′(g) if, and only if, there exists πe ∈ Aut(C) extending the
trivial permutation such that πe(g) ̸= g.

Let C ′ be the circuit constructed from C as in the proof of Lemma 7.15. We now show
that the mapping (C, g1, g2) to (C ′, g1) is a reduction. Let πe be a bijection from the gates of
C ′ to the gates of C ′ that swaps g1 and g2 and fixes all other gates. It follows that if g1 and
g2 are syntactically-equivalent in C, then they are syntactically-equivalent in C ′, and so πe is
a non-trivial automorphism extending the trivial permutation, and thus g1 does not have
unique extensions in C ′. We now prove the other direction. Suppose g1 does not have unique
extensions in C ′. Then there exists an automorphism πe ∈ Aut(C ′) extending the trivial
permutation and such that πe(g1) ̸= g1. But g1 is a child of the single output gate g′ (which
must be fixed by any automorphism), and the only other child of g′ is g2. It follows πe swaps
g1 and g2, and so from Lemma 4.14 g1 and g2 are syntactically-equivalent in C ′. The result
follows.

We now show that there is a reduction from the graph-isomorphism problem to the
problem of deciding if a circuit is symmetric. In fact, we prove a stronger result, showing
that this reduction holds even if we restrict ourselves to the class of reduced circuits in which
all but two gates in the circuit have injective labels. We might think of this as the class of
circuits that are almost reduced and injective.

Proposition 7.17. The graph-isomorphism problem is polynomial-time reducible to the
problem of deciding if a reduced circuit with all but two gates being injective is symmetric.

7.2 The Necessity of Transparency 113

Proof. We use an approach similar to that in the proof of Proposition 7.13. In this case we
construct a circuit with two inputs, and each input is connected to an approximate copy of
the circuit defined in the proof of Lemma 7.14. We now define this reduction formally.

Suppose we are given two partitioned bipartite graphs B1 := (U1, V1, E1) and B2 :=
(U2, V2, E2). We assume, without a loss of generality, that there exists a1, b1, a2, b2 ∈ N such
that U1 = [a1], V1 = [b1], U2 = [a2], and V2 = [b2].

Let ρ := {R} be a relational vocabulary, where R is a unary relational symbol. We define
a (BG ∪ Bstd, ρ)-circuit C := ⟨G,Ω,Σ,Λ, L⟩ of order two as follows. Let GR := {g1

R, g
2
R} and

Gmid := {g1
∧, g

2
∧, g

1
∨, g

2
∨, gout}, and Gns := {g1

ns, g
2
ns}. Let G = GR ∪Gmid ∪Gns and Ω be the

0-ary function gout. Let Λ(1) := g1
R and Λ(2) := g2

R. Define Σ as follows. For each g ∈ G,

• if g = ∧out let Σ(g) = AND[2],
• if g ∈ Gns let Σ(g) = FG [a, b],
• if g = g1

∧ or g = g2
∧ let Σ(g) = AND[1] and if g = g1

∨ or g = g2
∨ let Σ(g) = OR[1], and

• if g ∈ GR let Σ(g) = R.

Define L as follows. For each g ∈ G,

• if g = gout then for each i ∈ [2] let L(g)(i) := gins,
• if g ∈ Gns and g = gins for some i ∈ [2] then for (p, q) ∈ [ai] × [bi] let L(g)(p, q) = gi∧ if

(p, q) ∈ Ei and L(g)(p, q) = gi∨ otherwise, and
• if g = gi∧ or g = gi∨ for some i ∈ [2] let L(g)(1) = Λ−1(i).

We note that for i ∈ [2], L(gins)(p, q) = gi∧ if, and only if, (p, q) is an edge in Bi and
L(gins)(p, q)gi∨ if, and only if, (p, q) is not an edge in Bi. Let π(1,2) : G → G be the function
that fixes the output gate, and for each symbol s ∈ {∧,∨} swaps the gate g1

s with the gate g2
s .

It is easy to see that π(1,2) is a bijection. Moreover, C is symmetric if, and only if, π(1,2) is an
automorphism of the circuit extending the transposition (1, 2), if and only if, (1, 2)(L(g1

ns)) is
isomorphic to L(g2

ns) if, and only if, B1 and B2 are bipartite-isomorphic.
We also note that every gate in the circuit is part of a singleton syntactic-equivalence

class and all of the gates in the circuit except for the two non-trivially invariant gates have
unique labels. Since the construction of C can be implemented in time polynomial in the
combined sizes of the input graphs, the mapping of (B1, B2) to C is a reduction, and the
result follows.

It follows from Proposition 7.17 that deciding if a circuit is symmetric is at least as hard
as the graph-isomorphism problem even if we restrict ourselves to reduced circuits or circuits
with unique children. Moreover, it is possible to alter this reduction, using a construction
analogous to the one used in the proof of Proposition 7.13, and show that the problem of
deciding symmetry for injective circuits is also as hard as the graph-isomorphism problem.
In contrast, we have from Lemma 7.9 that we can decide if a transparent circuit is symmetric

114 Transparent Circuits

in polynomial-time. These observations again suggest both the robustness of this hardness
result and the importance of the transparency condition.

In Lemma 7.5 we showed that for circuits with unique labels we can compute the action
of an automorphism on the gates of a circuit in polynomial-time. In Proposition 7.8 we show
that we can also compute the orbit and supports of gates in polynomial-time. These results
play a central role in our translation from families of circuits to formulas, and hence in the
proof of our main result. We now show that deciding the orbit of a gate in a general circuit
is at least as hard as the graph isomorphism problem. We show that this result holds even if
we restrict our attention to circuits with unique extensions or circuits with injective labels.

Lemma 7.18. There is a polynomial-time reductions from the graph-isomorphism problem
to the problem of deciding if two given gates in a given symmetric circuit are in the same
orbit. This result holds even if we restrict ourselves either to circuits with unique extensions,
to circuits with unique children, or to circuits with injective labels.

Proof. Let B1 and B2 be bipartite graphs. Let C be the circuit constructed in Lemma 7.14.
The mapping of (B1, B2) to (C, g1

ns, g
2
ns) is a reduction from the graph isomorphism problem

to the problem of deciding if two gates in a circuit with unique children (and so unique
extensions) are in the same orbit. A similar reduction using the circuit constructed in
Proposition 7.13 gives a reduction to the problem of deciding if two gates in a given circuit
with injective labels are in the same orbit.

We have from Propositions 7.13 and 7.17 and from Lemmas 7.15, 7.14, 7.18, and 7.16,
that a number of basic circuit properties are at least as hard for general circuits a the graph
isomorphism problem and that this hardness results hold even if we restrict our attention to
particular classes of circuits. In contrast, we proved in Section 7.1 that all of these properties
are known to be polynomial-time decidable for transparent circuits.

It is worth noting that we have not established the hardness of computing a function that
maps a circuit to an equivalent transparent circuit. However, we have shown that many of
the related decision problems are at least as hard as the graph-isomorphism problem. This
excludes many of the obvious translations from circuits to transparent circuits that require
computing, for example, the syntactic-equivalence relation. In particular, the translation
from circuits to reduced circuits presented by Anderson and Dawar [3] explicitly uses the
polynomial-time computability of syntactic-equivalence for circuits with trivially invariant
gates, and does not generalise to our setting. As such, while we do not establish the hardness
of computing this function we consider the results presented in this section to be evidence
against the existence of an easily-definable polynomial-time translation from general circuits
to transparent circuits, or to circuits with unique labels, assuming the graph isomorphism
problem is not in polynomial-time.

We now establish one final hardness result. We have from Proposition 7.10 and Corol-
lary 7.11 that the set of transparent circuits and the set of circuits with unique labels are

7.2 The Necessity of Transparency 115

both polynomial-time decidable. However, we now show that other important classes of
circuits, such as the class of circuits with unique extensions, are as hard to decide as the
graph-isomorphism problem.

Lemma 7.19. There are polynomial-time reductions from the graph isomorphism problem
to the problem of deciding if a circuit does not have unique extensions and the problem of
deciding if a circuit does not have unique children.

Proof. In both cases the circuit constructed in the proof of Lemma 7.14 suffices for the
reduction.

Chapter 8

Translating Circuits to Formulas

In Chapter 5 we showed that for any set of almost relational P-bounded generalised operators
Ω every query definable in FP(Ω̃) is definable by a P-uniform family of transparent symmetric
circuits defined over the basis BΩ ∪ Bstd. In this chapter we prove a partial converse to this
result and establish a translation from P-uniform families of transparent symmetric circuits
to formulas in the corresponding extension of fixed-point logic. The formal statement of this
result is as follows.

Proposition 8.1. Let Ω be a finite set of almost relational P-bounded vectorised operators.
Let ρ be a relational vocabulary. Every query definable by a P-uniform family of transparent
symmetric (BΩ ∪ Bstd, ρ)-circuits C = (Cn)n∈N is definable in FPN(Ω)[ρ].

The proof of this proposition is structured as follows. First, we use the Immerman-Vardi
theorem to show that the P-uniform family (Cn)n∈N is definable by an FPN-interpretation in
the number sort (thought of as a linearly ordered structure). We use Lemma 7.4 to show
that each Cn can be assumed to have unique labels and use the support theorem to show
that each gate and element of the universe of a gate has constant size support. We show that
the evaluation of a gate g in Cn for an input structure A and bijection γ ∈ [n]A is entirely
determined by how γ maps elements to the support of g. We use this result to show that
the evaluation of g for an input structure A is characterised by a set EVg of assignments
to the (constant-size) support of g. We use the various algorithms in Chapter 7, as well as
numerous other constructions given throughout this chapter, to recursively construct EVg for
each gate g. Finally, we use the fixed-point operator to implement this recursive definition
and, by evaluating the output gates of the circuit, we define the required formula.

This approach reduces to proving four key claims. First, that there is a constant bound
on the size of the supports of the gates (and elements of the universes of the gates) in each
circuit. Second, that each circuit can be mapped in polynomial-time to an equivalent circuit
with unique labels (this is needed to apply the support theorem). Third, that the orbits and
supports of the gates in each circuit can be computed in polynomial-time. Fourth, that there

118 Translating Circuits to Formulas

exists a formula in the logic that recursively defines EVg for each gate g in each circuit. We
have already proved the first three of these claims. It remains for us to discuss the fourth
claim.

Anderson and Dawar [3] prove this claim for symmetric circuits with majority gates by
first exhibiting a bijection from the orbit of a gate to the set of assignments to its support and
then, using this bijection, counting the number of children of g that evaluate to true. This
suffices as the gates in the circuits of interest to them all compute trivially invariant functions,
and so counting the number of inputs that evaluate to true suffices to evaluate a gate.
However, in our more general setting, the gates in a circuit compute possibly non-trivially
invariant functions, and the evaluation of such a gate depends not just on the number of
children that evaluate to true, but on the structure defined at the gate g.

In this chapter we develop a novel approach for recursively defining EVg for each gate g.
In particular, we show that for each gate g and each assignment to the support of g we can
define a structure Mg,η

≡ isomorphic to the structure defined at g. We then evaluate g in the
logic by applying the relevant generalised operator to the interpretation defining Mg,η

≡ .
We should note that Proposition 8.1 generalises the translation from P-uniform families

of symmetric circuits with majority gates to FPC proved by Anderson and Dawar [3]. The
proof they present is broadly similar in structure to the proof we present in this chapter and
can similarly be reduced to proving four analogous claims. However, we should emphasise
that in each of these cases Anderson and Dawar’s arguments crucially rely on the symmetry
assumption on gates, and substantial new developments were needed to prove these results
in the more general setting.

This chapter is organised as follows. In the first section we show how to construct a
structure Mg,η

≡ for each gate g, appropriate structure A, and assignment η to the support of g.
We also show that Mg,η

≡ is isomorphic to the structure defined at g when evaluating the circuit
for the input A. In the second section we complete the proof of Proposition 8.1 by showing
that the construction given in the first section can be implemented as an interpretation in
FPN.

8.1 Defining a Structure at Each Gate

We now show that for a gate g in a symmetric circuit C of order n the evaluation of g for
an input structure A and bijection γ ∈ [n]A depends only on the mapping given by γ to the
support of g. We first introduce some notation. We say two injective functions are compatible
if we can define an injection on the union of their domains that agrees with both functions
on their respective domains. We now define this notion more formally and more generally.

8.1 Defining a Structure at Each Gate 119

Definition 8.2. Let X1, X2, Y1, Y2 be sets. We say that f : X1 → Y1 and g : X2 → Y2 are
compatible if (i) for all x ∈ X1 ∩X2 we have f(x) = g(x), (ii) for all x ∈ X1 \X2 and y ∈ X2

we have f(x) ̸= g(y), and (iii) for all x ∈ X2 \X1 and y ∈ X1 we have g(x) ̸= f(y).

Lemma 8.3. Let ρ be a vocabulary and B a basis, and C be a symmetric (B, ρ)-circuit with
unique labels. Let n ∈ N be the order of C and let A ∈ fin[ρ, n]. Let g be an internal gate,
η ∈ Asp(g), and γ1, γ2 ∈ [n]A such that γ−1

1 ∼ η and γ−1
2 ∼ η. Then Lγ1A(g) and Lγ2A(g) are

isomorphic and C[γ1A](g) = C[γ2A](g).

Proof. We have that there exists a unique π ∈ Symn such that πγ1 = γ2. Moreover, since
γ−1

1 and γ−1
2 are both compatible with η, it follows that π must fix sp(g) pointwise. From the

definition of a support, we have that π(g) = g, and so L(g) is isomorphic to πL(g). Therefore
there exists λ ∈ Aut(g) such that πL(g) = L(g)λ, and so for all a ∈ ind(g),

Lγ1A(g)(a) = C[γ1A](L(g)(a))
= C[πγ1A][πL(g)(a)]
= C[γ2A][L(g)(λ(a))]
= Lγ2A(g)(λ(a)).

It follows that Lγ1A(g) and Lγ2A(g) are isomorphic and C[γ1A](g) = Σ(g)(Lγ1A(g)) =
Σ(g)(Lγ2A(g)) = C[γ2A](g).

For the remainder of this section we fix a basis B such that there exists rB ∈ N such
that every relation in the vocabulary of a structured function in B has arity at most rB.
Let ρ be a relational vocabulary. We fix a P-uniform family of transparent symmetric
(B, ρ)-circuits C = (Cn)n∈N. Let n0 and k be the constants in the statement of Theorem 6.24.
Let n1 = max(n0, k · rB). Fix some n > n1 and A ∈ fin[ρ, n]. Let C := ⟨G,Ω,Σ,Λ, L⟩ := Cn.

For each g ∈ G let Γg := {γ ∈ [n]A : C[γA](g) = 1} and let EVg := {η ∈ Asp(g) : ∃γ ∈
Γg , η ∼ γ−1}. In other words, Γg is the set of bijections for which g evaluates to one and
EVg is the set of assignments to the support of g that can be extended to a bijection for
which g evaluates to one. It follows from Lemma 8.3 that Γg is entirely determined by EVg.
It is important to note that, from the support theorem, the domain of each η ∈ EVg has
cardinality at most k. As such, we think of EVg as succinctly encoding Γg and characterising
the evaluation of the gate g.

We aim to define the set EVg for each gate g in C by induction on the structure of
the circuit. We do this by inductively defining for each gate g ∈ EVg and each assignment
α ∈ Asp(g) a structure Mg,η

≡ such that for any γ ∈ [n]A with γ−1 ∼ η, Mg,η
≡ is isomorphic to

LγA(g). In this section we give an inductive definition of Mg,η
≡ and in Section 8.2 we show

that each step in this definition can be implemented by a formula in FPC and hence Mg,η
≡ is

definable by an FPC-interpretation in A.

120 Translating Circuits to Formulas

For the remainder of this section we fix a gate g ∈ G and an assignment η ∈ Asp(g).
Let τ := (R,S, ζ) be the vocabulary of g. Let X = ⊎s∈SXs be the universe of g. We now
introduce some notation. Let h ∈ Hg. There exists (x⃗, R) ∈ ind(g) such that L(g)(x⃗, R) = h

and for each j ∈ [rR] we let colj(h) denote the jth element in the tuple x⃗. We follow the
conventions introduced in Chapter 6 and for each x ∈ unv(g) we shorten some notation and let
sp(x) := spStab(sp(g))(x), Orb(x) := OrbStab(sp(g))(x), and Stab(x) := StabStab(sp(g))(x).
For each h ∈ Hg let Ah := {α ∈ Asp(h) : η ∼ α} be the set of assignments to the support of h
that are compatible with η. For each x ∈ unv(g) let Ax := {α ∈ Asp(x) : η ∼ α} be the set of
assignments to the support of x that are compatible with η.

We first aim to define a τ -structure Mg,η and then show that there is an epimorphism
from LγA(g) to Mg,η. We can define Mg,η

≡ by quotienting Mg,η by the equivalence relation
on Mg,η induced by the surjection, and hence establish the isomorphism. We now define the
set Ig,η and then define the τ -structure Mg,η with universe Ig,η.

We note that in Section 8.2 we encode each circuit as a structure over an ordered universe
and this order induces an order on the universe of each gate. As such, in this section
we suppose for each s ∈ S that there is some linear ordering on Xs. For each s ∈ S let
minorb(s) := {min(Orb(x)) : x ∈ Xs} and let Ig,ηs := {(x, α) : x ∈ minorb(s), α ∈ Ax}. Let
Ig,η := ⊎s∈SIg,ηs . For each s ∈ S we think of each x ∈ minorb(s) as denoting an orbit in Xs

and each assignment in Ax as encoding a permutation on sp(x) and hence an element of the
orbit. In this way we can think of each element in Ig,ηs as encoding an element in Xs.

We now sketch the construction of Mg,η and then complete this construction formally
below. We aim to associate each ((x1, α1), . . . , (xrR , αrR)), R ∈ τ [Ig,η] with a gate h ∈ Hg

and assignment ϵ ∈ Ah. In order to define this pair we first define a set of permutations
σ1, . . . , σrR ∈ Stab(sp(g)) such that the action of each σi on αi for i ∈ [rR] defines a
set of compatible assignments. We let ϵ be the injection defined on the union of these
compatible assignments and let h := L(g)((x1, . . . , xrR), R). We then define Mg,η by letting
M(((x1, α1), . . . , (xrR , αrR)), R) = 1 if, and only if, ϵ ∈ EVh. We complete this definition
formally.

We first define a function J̄g,η that maps each element in τ [Ig,η] to a sequence of injections
as follows. Let z := (((x1, α1), . . . , (xrR , αrR)), R) ∈ τ [Ig,η]. Let J̄g,η(z) := (σ̄1, . . . , σ̄rR),
where for each j ∈ [rR] have that σ̄j ∈ [n]sp(xj) is defined by recursion as follows. For each
u ∈ Dom(α1) let σ̄1(u) := u if u ∈ sp(g) and otherwise let σ̄1(u) be the kuth element of
[n] \ sp(g), where ku is such that u is the kuth element of Dom(α1) \ sp(g). Suppose j > 1
and let u ∈ Dom(αj). If u ∈ sp(g) let σ̄j(u) := u. If u ̸∈ sp(g) and there exists some minimal
j′ < j and u′ ∈ Dom(αj′) such that αj(u) = αj′(u′) then let σ̄j(u) := σ̄j′(u′). Otherwise,
let σ̄j(u) be the ((j − 1)k + ku)th element of [n] \ sp(g), where ku is such that u is the kuth
element of Dom(αj) \ sp(g).

The construction ensures that for each R ∈ R and i ∈ [rR] we have that σ̄i is an injection.
We abuse notation slightly and write αiσ̄−1

i to denote the injection αiσ̄
−1
i : Img(σ̄i) → A

8.1 Defining a Structure at Each Gate 121

defined by αiσ̄−1
i (u) = αi(σ̄−1

i (u)) for all u ∈ Img(σ̄i). We think of each αiσ̄
−1
i as being a

version of αi with the domain shifted by σ̄−1
i such that the set {αiσ̄−1

i : i ∈ [rR]} consists
of pairwise compatible assignments. Moreover, we note that sp(g) ⊆ Dom(σ̄i) and for each
a ∈ sp(g) we have σ̄i(a) = a. It follows that each σ̄i can be extended to a permutation in
Stab(sp(g)). We now formally prove each of the assertions we have just made.

Lemma 8.4. Let z = (((x1, α1), . . . , (xrR , αrR)), R) ∈ τ [Ig,η]. Let (σ̄1, . . . , σ̄rR) := J̄g,η(z).
Then for all j ∈ [rR] we have that

1. for all u ∈ sp(g) ∩ Dom(σ̄j), σ̄j(u) = u,
2. σ̄j is an injection, and
3. for all j′ ∈ [rR], αj ◦ σ̄−1

j and αj′ ◦ σ̄−1
j′ are compatible.

Proof. It is easy to see that for all j ∈ [rR] we have for all u ∈ sp(g) ∩ Dom(σ̄j) that
σ̄j(u) = u. We now prove by induction that for all j ∈ [rR], σ̄j is an injection and for all
j′ < j, αj ◦ σ̄−1

j and αj′ ◦ σ̄−1
j′ are compatible.

Let j ∈ [rR]. Suppose j = 1. Let u, v ∈ Dom(α1) be such that σ̄1(u) = σ̄1(v). Suppose
u ∈ sp(g). Then v ∈ sp(g), as if v ̸∈ sp(g) then, from the definition of σ̄1, we have
σ̄1(v) ̸∈ sp(g), but σ̄1(v) = σ̄1(u) = u ∈ sp(g). It follows that u = σ̄1(u) = σ̄1(v) = v.
Otherwise, suppose u ̸∈ sp(g). Then v ̸∈ sp(g). We have σ̄1(u) is the kuth element of
[n] \ sp(g), where ku is such that u is the kuth element of Dom(α1) \ sp(g) and σ̄1(v) is the
kvth element of [n]\sp(g) where kv is such that v is the kvth element of Dom(α1)\sp(g). But
σ̄1(u) = σ̄1(v) and so ku = kv and u = v. It follows that σ̄1 is an injection. This completes
the proof of the base case.

Suppose j > 1 and suppose the induction hypothesis holds for all j′ < j. It can be shown,
following a very similar approach as for the base case, that σ̄j is an injection. Let j′ < j. We
first prove a claim.

Claim 8.4.1. Let u ∈ Dom(αj σ̄−1
j) and u′ ∈ Dom(αj′ σ̄−1

j′). Then αj(σ̄−1
j (u)) = αj′(σ̄−1

j′ (u′))
if, and only if, u = u′.

Proof. ‘⇒’ Suppose αj(σ̄−1
j (u)) = αj′(σ̄−1

j′ (u′)). If u ∈ sp(g) then η(u′) = αj′(u′) =
αj′(σ̄−1

j′ (u′)) = αj(σ̄−1
j (u)) = αj(u) = η(u) and, since η is an injection, it follows that

u = u′. Suppose u ̸∈ sp(g). Since αj(σ̄−1
j (u)) = αj′(σ̄−1

j′ (u′)), it follows that there exists
a minimal j′′ < j and u′′ ∈ Dom(αj′′) such that αj σ̄−1

j (u) = αj′ σ̄−1
j′ (u′) = αj′′(u′′).

Then u = σ̄j(σ̄−1
j (u)) = σ̄j′′(u′′) = σ̄j′(σ̄−1

j′ (u′)) = u′.
‘⇐’ Suppose u = u′. Suppose that both u ̸∈ sp(g) and for all j′′ < j and all u′′ ∈ Dom(αj′′)

we have αj(σ̄−1
j (u)) ̸= αj′′(u′′). Then u > u1, where u1 is the (j − 1)kth element in

[n] \ sp(g). Let j′′ < j and u′′ ∈ Dom(αj′′). If u′′ ∈ sp(g) then u ̸= u′′ = σ̄j′′(u′′).
Otherwise u′′ ̸∈ sp(g) and it can be shown that σ̄j′′(u′′) ≤ u2 ≤ u1, where u2 is the
((j′′ − 1)k + k)th element of [n] \ sp(g). It follows that σ̄j′′(u′′) ≤ u1 < a and so

122 Translating Circuits to Formulas

u ≠ σ̄j′′(u′′). Thus, for all j′′ ≤ j we have u ̸∈ Img(σ̄j′′). Then u ̸∈ Dom(αj′ σ̄−1
j′). But

this is a contradiction as u = u′ ∈ Dom(αj′ σ̄−1
j′).

It follows that either u ∈ sp(g) or there exists j′′ < j and u′′ ∈ Dom(αj′′) such
that αj(σ̄−1

j (u)) = αj′′(u′′). If u ∈ sp(g) then σ̄j(u) = u = u′ = σ̄j′(u′) and so
αj σ̄

−1
j (u) = αj(u) = η(u) = η(u′) = αj′(u′) = αj′ σ̄−1

j′ (u′). Suppose u ̸∈ sp(g). Let
j′′ < j be minimal such that there exists u′′ ∈ Dom(αj′′) such that αj(σ̄−1

j (u)) =
αj′′(u′′). Then u′ = u = σ̄j(σ̄−1

j (u)) = σ̄j′(u′′). It follows that u′′ ∈ Dom(αj′ σ̄−1
j′).

From the induction hypothesis we have that αj′ σ̄−1
j′ and αj′′ σ̄−1

j′′ are compatible, and so
αj′ σ̄−1

j′ (u′) = αj′′ σ̄−1
j′′ (σ̄j′′(u′′)) = αj′′(u′′) = αj(σ̄−1

j (u)).
This completes the proof of Claim 8.4.1.

Let u ∈ Dom(αj σ̄−1
j)∩Dom(αj′ σ̄−1

j′). Then, from Claim 8.4.1, it follows that αj(σ̄−1
j (u)) =

αj′(σ̄−1
j′ (u)). Let u ∈ Dom(αj σ̄−1

j) \ Dom(αj′ σ̄−1
j′) and u′ ∈ Dom(αj′ σ̄−1

j′) \ Dom(αj σ̄−1
j).

Then, from Claim 8.4.1, since u ̸= u′ it follows αj(σ̄−1
j (u)) ̸= αj′(σ̄−1

j′ (u′)). We conclude that
αj σ̄

−1
j and αj′ σ̄−1

j′ are compatible. This completes the proof of the lemma.

Let Jg,η : τ [Ig,η] → {(h, ϵ) : h ∈ Hg, ϵ ∈ Ah} be defined for z := (((x1, α1), . . . , (xrR , αrR)), R) ∈
τ [Ig,η] as follows. Let (σ̄1, . . . , σ̄rR) := J̄g,η(z). For every j ∈ [rR] let σj ∈ Stab(sp(g))
be such that for all u ∈ sp(xj), σj(u) = σ̄j(u). Let h := L(g)((σ(x1), . . . , σ(xrR)), R)
and let ϵ := (α1σ̄

−1
1 | . . . , |αrR σ̄−1

rR
)
∣∣∣
sp(h)

. It follows from Lemma 8.4 that the assignments

α1σ̄
−1
1 , . . . , αrR σ̄

−1
rR

are pair-wise compatible and so ϵ is well-defined. Let Jg,η(z) := (h, ϵ).
Let Mg,η : τ [Ig,η] → {0, 1} be defined for z := (((x1, α1), . . . , (xrR , αrR)), R) ∈ τ [Ig,η] as

follows. Let (h, ϵ) := Jg,η(z) and let Mg,η(z) = 1 if, and only if, ϵ ∈ EVh.
We previously stated that we can think of each assignment to the support of a child or

element of the universe of g as encoding an element in the orbit of that object. We now
formalise this statement and show that for each γ ∈ [n]A with γ−1 ∼ η and each h ∈ Hg there
is a natural surjective map defined by γ from Ah to Orb(h) and for each x ∈ unv(g) there is
a similarly defined map from Ax to Orb(x). Let γ ∈ [n]A be such that γ−1 ∼ η. Let h ∈ Hg.
For each ϵ ∈ Ah let Πγ

ϵ be any permutation in Stab(sp(g)) such that Πγ
ϵ (u) = γ(ϵ(u)) for all

u ∈ sp(h). It follows from Lemma 6.14 that the action of Πγ
ϵ on h is defined independently of

this choice of permutation and so the function ϵ 7→ Πγ
ϵ (h) is well-defined. Let x ∈ X. For

each α ∈ Ax let Πγ
α be any permutation in Stab(sp(g)) such that Πγ

α(u) = γ(α(u)) for all
u ∈ sp(x). It follows similarly that the action of Πγ

α on x is defined independently of the
choice of permutation and so the function α 7→ Πγ

α(x) is well-defined. It is easy to show that
both of these maps are surjective.

We now define a function from Mg,η to LγA(g). Let γ ∈ [n]A be such that γ−1 ∼ η. For
each s ∈ S let P γs : Ig,ηs → Xs be defined by P γs (x, α) := Πγ

α(x) for all (x, α) ∈ Ig,ηs . Let
P γ = ⊎s∈SP γs . We aim to show that P γ defines an epimorphism from Mg,η to LγA(g). We

8.1 Defining a Structure at Each Gate 123

will prove this result in stages. We first establish a correspondence between EVh and those
elements of the orbit of h that evaluate to 1 in the circuit.

Lemma 8.5. Let γ ∈ [n]A be such that γ−1 ∼ η and h ∈ Hg. Then ϵ ∈ EVh if, and only if,
C[γA](Πγ

ϵ (h)) = 1.

Proof. From the definition of EVh it follows that ϵ ∈ EVh if, and only if, there exists δϵ ∈ [n]A

such that δ−1
ϵ ∼ η, δ−1

ϵ ∼ ϵ, and C[δϵA](h) = 1. Let πϵ := γδ−1
ϵ . Notice that π ∈ Stab(sp(g))

and πϵδϵ = γ. For a ∈ sp(h) we have γ(ϵ(a)) = πϵ(δϵ(ϵ(a))) = πϵ(a) (the second equality
follows from the fact that δ−1

ϵ ∼ ϵ and so δϵ(ϵ(a)) = a). It follows that for all a ∈ sp(h) we
have Πγ

ϵ (a) = γ(ϵ(a)) = πϵ(a), and so Πγ
ϵ (h) = πϵ(h). Thus

ϵ ∈ EVh ⇐⇒ C[δϵA](h) = 1 ⇐⇒ C[πϵδϵA](πϵ(h)) = 1
⇐⇒ C[γA](πϵ(h)) = 1 ⇐⇒ C[γA](Πγ

ϵ (h)) = 1.

We recall that the function Jg,η maps tuples of the form (((x1, α1), . . . , (xrR , αrR)), R) to
pairs of the form (h, ϵ), where h is a gate defined by mapping each x1, . . . , xrR such that each
of the images of the assignments α1, . . . , αrR under the same mapping form a set of pairwise
compatible assignments and ϵ is the assignment to the support of h given by taking the union
of these compatible assignments. We now show that Πγ

ϵ (h) is exactly the gate defined by
mapping each xi to Πγ

αi .

Lemma 8.6. Let γ ∈ [n]A be such that γ−1 ∼ η. Let z := (((x1, α1), . . . , (xrR , αrR)), R) ∈
τ [Ig,η] and let (h, ϵ) := Jg,η(z). Then Πγ

ϵ (h) = L(g)(((Πγ
α1(x1), . . . ,Πγ

αrR
(xrR), R)).

Proof. Let j ∈ [ri] and let u ∈ sp(xj). It follows from Theorem 6.24 that σj(u) ∈ sp(colj(h)) ⊆
sp(h) ∪ sp(g), and so either σj(u) ∈ sp(g) or σj(u) ∈ sp(h). Suppose σj(u) ∈ sp(g). We
have that σj and Πγ

ϵ , and Πγ
αj are in Stab(sp(g)), and so Πγ

ϵ (σj(u)) = u = Πγ
αj (u). Suppose

instead that σj(u) ∈ sp(h). Then Πγ
ϵ (σj(u)) = γ(ϵ(σj(u))) = γ(αj(σ̄−1

j (σj(u)))) = γ(αj(u)) =
Πγ
αj (u). It follows that Πγ

ϵ (σj(xj)) = Πγ
αj (xj) and so

Πγ
ϵ (h) = Πγ

ϵ (L(g)((σ1(x1), . . . , σri(xri)), Ri))
= L(g)((Πγ

ϵ (σ1(x1)), . . . ,Πγ
ϵ (σri(xri))), Ri)

= L(g)((Πγ
α1(x1), . . . ,Πγ

αri
(xri)), Ri)

We now show that P γ is a homomorphism from Mg,η to LγA(g) for any γ ∈ [n]A such
that γ−1 ∼ η. This result is an immediate consequence of Lemmas 8.5 and 8.6.

124 Translating Circuits to Formulas

Proposition 8.7. Let z := (((x1, α1), . . . , (xrR , αrR)), R) ∈ Dom(Mg,η). Let γ ∈ [n]A be
such that γ−1 ∼ η. Then Mg,η(z) = LγA(g)(P γ(x1, α1), . . . , P γ(xrR , αrR)), R).

Proof. Let (h, ϵ) := Jg,η(z). Then

Mg,η(z) = 1 ⇐⇒ ϵ ∈ EVh

⇐⇒ C[γA](Πγ
ϵ (h)) = 1

⇐⇒ C[γA](L(g)((Πγ
α1(x1), . . . ,Πγ

αrR
(xrR)), R)) = 1

⇐⇒ LγA(g)(P γ(x1, α1), . . . , P γ(xrR , αrR)), R) = 1.

The second equivalence follows from Lemma 8.5 and the third equivalence follows from
Lemma 8.6.

We now show that P γ is a surjection. This follows almost immediately from the fact that
for any y ∈ X the mapping α 7→ Πγ

α(y) for any α ∈ Ay is a surjection.

Lemma 8.8. If γ ∈ [n]A is such that γ−1 ∼ η then P γ is surjective.

Proof. Let x ∈ X. Let y = min(Orb(x)). There exists σ ∈ Stab(sp(g)) such that σ(y) = x.
Let α := γ−1σ

∣∣
sp(y). Then for each u ∈ sp(y)∩sp(g) we have α(u) = γ−1σ

∣∣
sp(y)(u) = γ−1(u) =

η(u), and so α ∈ Ay. For each u ∈ sp(y) we have Πγ
α(u) = γ(α(u)) = γ(γ−1σ

∣∣
sp(y)(u)) = σ(u).

It follows that P γ(y, α) = Πγ
α(y) = σ(y) = x.

It follows from Lemma 8.8 and Proposition 8.7 that for any γ ∈ [n]A such that γ−1 ∼ η, P γ

is an epimorphism from Mg,η to LγA(g). We aim to establish the existence of an isomorphism
from a quotient of Mg,η to LγA(g). We now define an equivalence relation on Ig,η and show
that it is a congruence on Mg,η. We then show that this equivalence relation identifies
precisely those elements in Ig,η that are mapped to the same element by P γ . We then use
the first isomorphism theorem to establish the existence of the isomorphism between the
quotient of Mg,η by the equivalence relation and LγA(g).

Definition 8.9. We say that (x, α), (y, β) ∈ Ig,η are mutually stable if x = y and there exists
π ∈ Stab(x) such that α(u) = β(π(u)) for all u ∈ sp(x). We write (x, α) ≡ (y, β) to denote
that (x, α) and (y, β) are mutually stable.

We now show that two pairs are mutually stable if, and only if, they are mapped to the
same element by P γ .

Lemma 8.10. Let γ ∈ [n]A be such that γ−1 ∼ η. For each (x, α), (y, β) ∈ Ig,η we have that
(x, α) ≡ (y, β) if, and only if, P γ(x, α) = P γ(y, β).

Proof. ‘⇒’ Let (x, α), (y, β) ∈ Ig,η and suppose (x, α) ≡ (y, β). Since (x, α) ≡ (y, β) there
exists π ∈ Stab(x) such that for all u ∈ sp(x), α(u) = β(π(u)) and π(x) = x =

8.1 Defining a Structure at Each Gate 125

y = π(y). For all u ∈ Stab(x) we have Πγ
β(π(u)) = γ(β(π(u))) = γ(α(u)) = Πγ

α(u),
and so Πγ

β(π(x)) = Πγ
β(π(y)) = Πγ

α(y) = Πγ
α(x). It follows that P γ(y, β) = Πγ

β(y) =
Πγ
β(π(y)) = Πγ

α(x) = P γ(x, α).
‘⇐’ Let (x, α), (y, β) ∈ Ig,η be such that P γ(x, α) = P γ≡(y, β). Then Πγ

α(x) = Πγ
β(y).

It follows that x ∈ Orb(y), and so Orb(x) = Orb(y) and x = min(Orb(x)) =
min(Orb(y)) = y. Let σ := (Πγ

β)−1Πγ
α. Notice that σ(x) = (Πγ

β)−1Πγ
α(x) = y = x,

and so σ ∈ Stab(x). Let u ∈ sp(x). Then γ(α(u)) = Πγ
α(u) = Πγ

β(σ(u)) = γ(β(σ(u))).
Since γ is an injection it follows that α(u) = β(σ(u)) and so (x, α) ≡ (y, β).

We now show that mutual stability is a congruence with respect to Mg,η. This result
follows from the fact that mutual stability is a congruence with respect to P γ and the fact
that P γ is a homomorphism.

Lemma 8.11. Let (((x1, α1), . . . , (xrR , αrR)), R), (((y1, β1), . . . , (yrrT , βrrT)), T) ∈ τ [Ig,η].
Suppose R = T and for all i ∈ [rR] we have (xi, αi) ≡ (yi, βi). It follows that

Mg,η(((x1, α1), . . . , (xrR , αrR)), R) = Mg,η(((y1, β1), . . . , (yrR , βrT)), T).

Proof. We have

Mg,η(((x1, α1), . . . (xrR , αrR)), Ri) = LγA(g)((P γ(x1, α1), . . . , P γ(xrR , αrR)), R)
= LγA(g)((P γ(y1, β1), . . . , P γ(yrT , βrT)), R)
= Mg,η(((y1, β1), . . . (yrT , βrT)), T).

The first and third equivalences follows from Proposition 8.7. The second equivalence follows
from Lemma 8.10

We now take quotients of Mg,η and P γ with respect to mutual stability. We introduce
some notation for these quotients for ease of reading. For each s ∈ S let Ig,η≡,s := Ig,ηs / ≡
and let Ig,η≡ := ⊎s∈SIg,η≡,s. For each γ ∈ [n]A such that γ−1 ∼ η let P γ≡,s : Ig,η≡,s → Xi be
defined by P γ≡,s([(x, α)]) := P γs (x, α) for all ([(x, α)]) ∈ Ig,η≡,s. Let P γ≡ := ⊎s∈SP γ≡,s. It follows
from Lemma 8.10 that all of these functions are well-defined. Let Mg,η

≡ : τ [Ig,η≡] → {0, 1}
be defined by Mg,η

≡ (([(x1, α1)], . . . , [(xrR , αrR)]), R) = Mg,η(((x1, α1), . . . , (xrR , αrR)), R) for
each (([(x1, α1)], . . . , [(xrR , αrR)]), R) ∈ τ [Ig,η≡]. It follows from Lemma 8.11 that Mg,η

≡ is
well-defined. We now prove the main result of this section.

Proposition 8.12. Let γ ∈ [n]U be such that γ−1 ∼ η. Then P γ≡ is an isomorphism from
Mg,η

≡ to LγA(g).

126 Translating Circuits to Formulas

Proof. It follows from Lemma 8.11 that ≡ is a congruence onMg,η. It follows from Lemma 8.10
that for all (x, α), (y, β) ∈ Ig,η, (x, α) ≡ (y, β) if, and only if, P γ(x, α) = P γ(y, β). It follows
from Lemma 8.8 that P γ is an epimorphism from Mg,η to LγA(g). We thus have from the
first isomorphism theorem that P γ≡ is an isomorphism from Mg,η

≡ to LγA(g).

8.2 Constructing a Formula

Let Ω = {Ω1, . . . ,Ωw} be a finite set of P-bounded almost relational vectorised operators. It
follows from Lemma 3.16 that we can assume, without a loss of generality, that each of these
vectorised operators is Boolean-valued. Let B := BΩ ⊎Bstd. Let R(B) be the set of all relation
symbols that appear in the vocabulary of a function in B. Let ρ be a relational vocabulary.
Let C := (Cn)n∈N be a fixed P-uniform family of transparent symmetric (B, ρ)-circuits and let
q ∈ N0 be such that C defines a q-ary query. For each n ∈ N let Cn := (Gn,Ωn,Σn,Λn, Ln).

In this section we define a formula Q ∈ FPN(Ω) that defines the same query as C. We now
give a brief sketch of the definition of Q. First, we use the Immerman-Vardi theorem to show
that there exists a FPN-interpretation Φ such that for each ρ-structure A evaluating Φ on A
defines a copy of C|A| in the number domain. We then define a formula θ(µ, x⃗) such that
when g is assigned to µ and denotes a gate and a⃗ is assigned to x⃗ and denotes an assignment
ηa⃗ to the support of g then A |= θ[g, a⃗] if, and only if, ηa⃗ ∈ EVg. We define θ by recursion
and break the definition into cases. To be more precise, we define a formula θs(µ, x⃗;V) for
each symbol s denoting either a constant symbol, a relation symbol in ρ, a logical connective,
or a vectorised operator in Ω, such that when g is assigned to µ and denotes a gate associated
with s, a⃗ is assigned to x⃗ and denotes an assignment ηa⃗ to the support of g, and V is a
second-order variable assigned to a relation that defines θ for each of the children of g, then
A |= θs[g, a⃗] if, and only if, ηa⃗ ∈ EVg. In other words each θs gives a recursive definition of
EVg when g is a gate associated with the symbol s. We define θ by taking a disjunction over
these cases to give a recursive definition of EVg and then using the fixed-point operator to
implement recursion and define θ. We finally define Q by using θ to evaluate the output
gates of the circuit.

The vast majority of the work of this section is in defining θs when s ∈ Ω. In this case
θs gives a recursive definition of EVg when g is a gate such that Σn(g) ∈ Bs. We define
θs by showing that there is an FPN-interpretation that defines the structure Mg,η

≡ given in
Section 8.1. We now work through the technical details and prove Proposition 8.1.

Let T := {AND,OR,NAND} ∪ Ω ∪ ρ ∪ {0, 1}. It follows from the Immerman-Vardi
theorem, the P-uniformity of C, and Lemma 7.4, that there is an FPN[ρ]-interpretation

Φ := (ϕG, ϕΩ, (ϕΣ,s)s∈T , (ϕΩi)Ωi∈Ω, (ϕΛR)R∈ρ, (ϕL,Ri)Ri∈R(B))

8.2 Constructing a Formula 127

such that for each n ∈ N when Φ is interpreted in ρ-structure A of size n it defines a
symmetric (B, ρ)-circuit with unique labels equivalent to Cn in the number domain. We
abuse notation and also refer to this equivalent circuit as Cn. Let t be the width of this
interpretation. Throughout this section we use µ, ν, ϵ, η, and δ to denote t-length sequences
of number variables and κ and π to denote individual number variables. We now describe
the formulas in Φ by describing the relation that each formula defines when interpreted in a
ρ-structure A of size n.

• ϕG(µ) defines the set of gates in the circuit Cn as a subset of [n]t. We identify this set
with Gn, and hence write Gn ⊆ [n]t.

• ϕΩ(κ1, . . . , κq, µ) is defined such that A |= ϕΩ[a1, . . . , aq, g] if, and only if, g is a gate,
(a1, . . . , aq) ∈ [n]q, and Ωn(a1, . . . , aq) = g.

• ϕΣ,s(µ) is defined for s ∈ T such that A |= ϕs[g] if, and only if, g is an input gate and
Σn(g) = s or g is an internal gate and Σn maps g to an element of Bs.

• Let Ωi ∈ Ω. Let s1, . . . , sli be an enumeration of the sort symbols in the vocabulary
of Ωi and let c1, . . . , cmi be enumeration of the (constant) function symbols in the
vocabulary of Ωi. Then ϕΩi(µ, δ1, . . . , δmi) is such that A |= ϕΩi [g, p1, . . . , pmi] if,
and only if, g is a gate, p1, . . . , pmi ∈ N0, and Σn(g) = FΩi,α[a1, . . . , ali], for some
a1, . . . ali ∈ N and where α maps the constant symbols in the vocabulary of Ωi to N0

such that αi(cj) = pj for each j ∈ [mi].
• Let R ∈ ρ. Then ϕΛR(µ, δ1, . . . , δrR) is such that A |= ϕΛR [g, a1, . . . , arR] if, and

only if, (a1, . . . , arR) ∈ [n]rR and g is a relational gate such that Σ(g) = R and
(Λn)R(g) = (a1, . . . , arR).

• Let R ∈ R(B). Then ϕL,R(µ, ν, δ1, . . . , δrR) is such that A |= ϕL,R[g, h, a1, . . . , arR] if,
and only if, g is an internal gate such that R is a relation symbol in the vocabulary of
Σn(g), h ∈ Hg, and Ln(g)((a1, . . . , arR), R) = h.

The interpretation Φ does not define a circuit in exactly the way we might expect. In
particular, there is no single formula in Φ that defines Σn or Ln for each n ∈ N. Instead, Φ
includes three families of formulas (ϕΣ,s)s∈T , (ϕΩi)Ωi∈Ω, and (ϕL,R)R∈R(B) which together
suffice to determine both of these functions. Note as well that ϕΩ is used to denote the
output gates of the circuit while ϕΩi is used to denote which vectorised operators (and which
assignment to the constants in the vocabulary of those operators) are associated with each
gate.

Let n0 and k be the constants in the statement of Theorem 6.24. Let r′ be the maximal
arity of a relation in R(B) and let n1 = max(n0, k · (r′ + 1)). Notice that for each n ≤ n1,
there are constantly many bijections from the universe of an ρ-structure A of size n to [n].
It follows that here exists a FPN-formula that evaluates Cn for any n ≤ n1 by explicitly
quantifying over all of these constantly many bijections, and then evaluating the circuit with

128 Translating Circuits to Formulas

respect to each bijection. For the rest of this section we fix such an n > n1 and let A denote
a ρ-structure of size n.

In the remainder of this section we use µ and ν to denote gates and δ and ϵ to denote
elements of the universe of a gate. We use κ, π and λ to denote single number variables
and κ⃗ to denote a 2k-length tuple of number variables. We use x⃗ and y⃗ to denote k-length
sequences of vertex variables and use z⃗ to denote 2k-length sequences of vertex variables. We
use U and V to denote second-order variables. If S is a subset of an ordered set we write S⃗
to denote the |S|-tuple given by listing the elements of S in order. Let X and Y be sets, a⃗
be a sequence in X, and u⃗ be a sequence of distinct elements in Y such that |u⃗| ≤ |⃗a|. Let
αu⃗a⃗ : Img(u⃗) → X be such that αu⃗a⃗(b) := a⃗ ◦ u⃗−1(b) for all b ∈ Img(u).

We should like to recursively construct EVg for each gate g in the circuit. However, while
we have from Theorem 6.24 that the canonical support of g has size at most k, it may not be
exactly equal to k. If |sp(g)| = ℓ, we define

EVg := {(a1, . . . , ak) ∈ [n]k : α(a1,...,aℓ)
s⃗p(g) ∈ EVg and ∀i, j ∈ [k] (i ̸= j =⇒ ai ̸= aj)}.

We aim to define a FPN(Ω)[ρ]-formula θ(µ, x⃗) such that A |= θ[g, a⃗] if, and only if,
a⃗ ∈ EVg. We do so by defining for each s ∈ T a formula θs that gives a recursive definition
of θ for any gate associated with the symbol s. We now state this formally. Let V be a
second-order variable with the same type as (µ, x⃗). We aim to define for each s ∈ T a formula
θs so that for each gate g with A |= ϕΣ,s[g] and each a⃗ ∈ Ak, if V is mapped to a relation
β(V) such that all h ∈ Hg, (h, b⃗) ∈ β(V), if, and only if, b⃗ ∈ EVg, then A |= θs[g, a⃗;β(V)] if,
and only if, a⃗ ∈ EVg.

Anderson and Dawar [3] have already defined θs for each s ∈ T \ Ω. In each of these
cases the definition of θs is very straightforward, and so we reproduce these formulas below
with minimal discussion and minor adjustments. We first introduce a few auxiliary formulas.
We note that the auxiliary formulas supp and agree have been defined by Anderson and
Dawar [3] and we reproduce them here with minor adjustments. We use these formulas to
define a number of other auxiliary formulas. We have from the Immerman-Vardi theorem
and Lemma 7.8 that there exists a FPN-formula supp(µ, κ) such that A |= supp[g, u] if, and
only if, g is a gate and u ∈ sp(g) [3]. We can define from supp a formula suppi for each
i ∈ N such that A |= suppi[g, u] if, and only if, u is the ith element of sp(g). We define these
formulas by induction as follows

supp1(µ, κ) :≡ supp(µ, κ) ∧ (∀π(π < κ) =⇒ ¬supp(µ, π))
suppi+1(µ, κ) :≡ supp(µ, κ) ∧ ∃π1(π1 < κ ∧ suppi(µ, π1)

∧ ∀π2((π1 < π2 < κ) =⇒ ¬supp(µ, π2))).

8.2 Constructing a Formula 129

We can define from these formulas a formula agree(µ, ν, x⃗, y⃗) such that A |= agree(g, h, a⃗, b⃗)
if, and only if, g and h are gates, h ∈ Hg, and αa⃗s⃗p(g) ∼ αb⃗s⃗p(h) [3]. We define this formula as
follows

agree(µ, ν, x⃗, y⃗) :≡ϕG(µ) ∧ ϕG(ν) ∧
∧

1≤e,d≤[k]
[∀δ (suppe(µ, δ) ∧ suppd(ν, δ)) =⇒ xe = yd)∧

∀δ1, δ2 ((suppe(µ, δ1) ∧ suppd(µ, δ2) ∧ xe = xd) =⇒ δ1 = δ2)]

Let ϕW (ν, µ) :≡ ∨
R∈R(B)(∃δ1, . . . , δrR . ϕL,R(µ, ν, δ1, . . . , δrR)). It can be seen that A |=

ϕW [h, g] if, and only if, g is an internal gate and h ∈ Hg. We now define for each s ∈ T \ Ω a
formula θs as follows

θ0(µ, x⃗) :≡ ∃y (y ̸= y)
θ1(µ, x⃗) :≡

∧
1≤i<j≤k

xi ̸= xj

θR(µ, x⃗) :≡ (
∧

1≤i<j≤k
xi ̸= xj) ∧ ∃y1, . . . , yr∃κ1, . . . , κr R(y1, . . . , yr) ∧ ϕΛR(µ, κ1, . . . , κr)∧

∧
i∈[r]

∧
j∈[k]

(suppj(µ, κi) =⇒ yi = xj)

θOR(µ, x⃗) :≡ (
∧

1≤i<j≤k
xi ̸= xj) ∧ ∃ν∃y⃗ ψW (ν, µ) ∧ agree(µ, ν, x⃗, y⃗) ∧ V (ν, y⃗)

θAND(µ, x⃗) :≡ (
∧

1≤i<j≤k
xi ̸= xj) ∧ ∀ν∀y⃗ ((ψW (ν, µ) ∧ agree(µ, ν, x⃗, y⃗)) =⇒ V (ν, y⃗))

θNAND(µ, x⃗) :≡ (
∧

1≤i<j≤k
xi ̸= xj) ∧ ∃ν∃y⃗ ψW (ν, µ) ∧ agree(µ, ν, x⃗, y⃗) ∧ ¬V (ν, y⃗)

Let Ωf ∈ Ω. We aim to define θΩf
. Let τ := (R,F ,S, ζ) be the vocabulary of Ωf . Let

s1, . . . , sl be an enumeration of the sort symbols in S and let c1, . . . , cm be an enumeration
of the (constant) symbols in F .

We have defined formulas that define the support of a gate and express that two assign-
ments to the supports of two gates are compatible. We now define analogous formulas for
the supports of elements of the universe of a gate. Let s ∈ S. From the Immerman-Vardi
theorem and Lemma 7.9 there is a formula supps(µ, δ, κ) such that A |= supps[g, b, u] if, and
only if, g is a gate, b is an element of s-sort of the universe of g, and u ∈ spsp(g)(b). We can
define for each i ∈ N, using a similar approach as for supp, a formula suppsi (µ, δ, κ) such that
A |= suppsi [g, u,m] if, and only if, A |= supps[g, u,m] and m is the ith element of spsp(g)(u).
We can use a similar approach as in the definition agree to define for each s ∈ S a formula
agreesL(µ, ν, δ, x⃗, y⃗, z⃗) such that A |= agreesL[g, h, u, a⃗, b⃗, c⃗] if, and only if, g and h are gates
with h ∈ Hg, u is an element of the s-sort of the universe of g, and αa⃗s⃗p(g), αb⃗s⃗p(h), and αc⃗s⃗p(u)
are all pairwise compatible. Let agreesL(µ, δ, x⃗, z⃗) :≡ ∃νy⃗ agreesL(µ, ν, δ, x⃗, y⃗, z⃗).

130 Translating Circuits to Formulas

We have from Lemma 7.6 and the Immerman-Vardi theorem that for each s ∈ S there
is a formula moves(µ, δ1, δ2, κ⃗) such that A |= moves[g, b1, b2, u⃗] if, and only if, g is a gate,
b1 and b2 are elements of the s-sort of the universe of g, for all a, b ∈ [2k] if a ̸= b then
ua ̸= ub, and there exists σ ∈ Stab(sp(g)) such that for all a ∈ [|sp(b1)|], σ(s⃗p(b1)(a)) = ua

and σ(b1) = b2. In other words, A |= moves[g, b1, b2, u⃗] if, and only if, the function that
maps the support of b1 to u⃗ extends to a permutation in Stab(sp(g)) that maps b1 to b2.

For each s ∈ S let orbs(µ, δ1, δ2) :≡ ∃κ⃗moves(µ, δ1, δ2, κ⃗). It can be seen that A |=
orbs[g, b1, b2] if, and only if, b1 and b2 are elements of the s-sort of the universe of g, and
b1 ∈ Orb(b2). Let

min-orbs(µ, δ) :≡ ∀ϵ (orbs(µ, δ, ϵ) =⇒ δ ≤ ϵ).

We use a similar approach as in the definition of suppi in order to define for each i ∈ N
and s ∈ S the formulas out-spi(µ, λ) and out-spsi (µ, δ, λ) such that A |= out-sp[g,m] if,
and only if, g is a gate and m is the ith element of [n] \ sp(g) and A |= in-spsi [g, u,m] if, and
only if, g is an internal gate, u is an element of the s-sort of the universe of g, and m is the
ith element of spsp(g)(u).

In Section 8.1 we defined for each gate g and η ∈ Asp(g) a structure Mg,η
≡ . We aim to

show that we can define this structure in FPN[ρ]. We constructed Mg,η
≡ in stages as follows.

First, we defined the functions J̄g,η and Jg,η, second, we defined the structure Mg,η, third,
we defined the mutual stability relation, and fourth, we defined Mg,η

≡ by taking a quotient of
Mg,η. In order to define Mg,η

≡ in FPN[ρ] we first define formulas corresponding to each of
these stages.

Let R ∈ R. We aim to define a formula ψJ̄ ,R(µ, x⃗, δ1, z⃗1, . . . , δrR , z⃗rR , κ⃗1, . . . , κ⃗rR) such
that A |= ψJ̄ ,R[g, a⃗, u1, c⃗1, . . . , urR , c⃗rR , m⃗1, . . . , m⃗rR] if, and only if, g is a gate, for each
j ∈ [rR] we have that ui is element of the ζ(R)(i)-sort of the universe of g, and

J̄
g,αa⃗s⃗p(g)((u1, α

c⃗1
s⃗p(u1)), . . . , (urR , α

c⃗rR
s⃗p(urR))) = (αm⃗1

s⃗p(u1), . . . , α
m⃗rR
s⃗p(urR)).

We define this formula recursively. We first define a set of auxiliary formulas. For each p ∈ N
and j ∈ [2k] let

ψjR,p(µ, x⃗, δ, z⃗, κ⃗) :≡(∀λ¬suppζ(R)(p)
j (µ, δ, λ)) ∨ ∃λ [suppζ(R)(p)

j (µ, δ, λ) ∧ [(supp(µ, λ) ∧ κ⃗(j) = λ)∨
(¬supp(µ, λ) ∧

∨
a∈[2k]

in-spζ(R)(p)
a (µ, δ, λ) ∧ out-sp(p−1)k+a(µ, κ⃗(j)))]].

This formula will be used for both the base and inductive cases in the definition of J̄g,η. The
sequence κ⃗ is intended to encode a function that maps the support of δ to κ⃗. The purpose
of this formula is to check if there is some element u that is the jth element of the support
of δ and, if there is, to check that (i) if u is in the support of µ then the function encoded

8.2 Constructing a Formula 131

by κ⃗ fixes u, and (ii) if u is not in the support of µ then the function encoded by κ⃗ maps
u to an appropriate element outside the support of µ. We now define for each p ∈ [rR] a
FPN-formula ψp

J̄,R
as follows. Let

ψ1
J̄ ,R

(µ, x⃗, δ1, z⃗1, κ⃗1) :≡
∧

1≤a<b≤k
(xa ̸= xb) ∧

∧
1≤a<b≤2k

(za ̸= zb ∧ κa ̸= κb)∧

agreeζ(R)(p)
L (µ, δ, x⃗, z⃗) ∧

∧
j∈[2k]

ψjR,1(µ, x⃗, δ1, z⃗1, κ⃗1),

and let

ψp+1
J̄ ,R

(µ,x⃗, δ1, z⃗1, . . . , δp+1, z⃗p+1, κ⃗1, . . . , κ⃗p+1) :≡ ψp
J̄,R

(µ, x⃗, δ1, z⃗1, . . . , δp, z⃗p, κ⃗1, . . . , κ⃗p)∧∧
1≤a<b≤2k

(z⃗p+1(a) ̸= z⃗p+1(b) ∧ κ⃗p+1(a) ̸= κ⃗p+1(b)) ∧ agreeζ(R)(p+1)
L (µ, δp+1, x⃗, z⃗p+1)∧

∧
b∈[2k]

[(∃λ suppζ(R)(p+1)
b (g, δp+1, λ)) =⇒ [[(

∧
a∈[p]

∧
d∈[2k]

[(∃λ1suppζ(R)(j)
d (g, δa, λ1)) =⇒

z⃗p+1(b) ̸= z⃗a(d)]) ∧ ψbR,p+1(µ, x⃗, δp+1, z⃗p+1, κ⃗p+1)]∨

[
∨
a∈[p]

∨
d∈[2k]

(∃λ1suppζ(R)(j)
d (g, δa, λ1))) ∧ z⃗p+1(b) = z⃗a(d) ∧ κ⃗p+1(b) = κ⃗a(d))]]]

The purpose of the second line of this formula is to check that the assignment to the support
of δp+1 and the mapping given by κ⃗p+1 are injections and that the assignments to the supports
of µ and δp+1 are compatible. The rest of the formula is intended to handle the three cases
that appear in the definition of J̄g,η. More formally, the purpose of the third, fourth, and
fifth lines is to check that for every b ∈ [2k] if there is some u that is the bth element of the
support of δp+1 then either (i) for every a ∈ [p] we have z⃗a(b) ̸∈ z⃗p+1 and κ⃗p+1 fixes u if u is
in the support of µ and otherwise moves u to an appropriate point outside the support of µ,
or (ii) there exists some a ∈ [p] and d ∈ [2k] such that z⃗p+1(b) = z⃗a(d), and the permutation
encoded by κ⃗p+1 maps u to the same element that κ⃗a maps the dth element of the support
of δp+1. We let

ψJ̄ ,R(µ, x⃗, δ1, z⃗1, . . . , δrR , z⃗rR , κ⃗1, . . . , κ⃗rR) :≡ ψrR
J̄ ,R

(µ, x⃗, δ1, z⃗1, . . . , δrR , z⃗rR , κ⃗1, . . . , κ⃗rR).

We now define ψJ,R(µ, x⃗, δ1z⃗1, . . . , δrR z⃗rR , ν, y⃗) such that A |= ψJ,R[g, a⃗, u1, c⃗1, . . . , uri , c⃗rR , h, b⃗]
if, and only if, g is an internal gate, h ∈ Hg, and Jg,α

a⃗
s⃗p(g)((u1, α

c⃗1
s⃗p(u1)), . . . , (urR , α

c⃗rR
s⃗p(urR))) =

132 Translating Circuits to Formulas

(h, αb⃗s⃗p(h)). This formula is defined as follows

ψJ,R(µ, x⃗, δ1, z⃗1, . . . ,δrR , z⃗rR , ν, y⃗) :≡ ∃κ⃗1, . . . , κ⃗rR [ψJ̄ ,R(µ, x⃗, δ1, z⃗1, . . . , δrR , z⃗rR , κ⃗1, . . . , κ⃗ri)∧

∃δ′
1, . . . , δ

′
rR

(ϕL,Ri(µ, ν, δ′
1, . . . , δ

′
rR

)∧

∃z⃗′
1, . . . , z⃗

′
rR

[
∧

j∈[rR]
[moveζ(R)(j)(g, δj , δ′

j , κ⃗j) ∧ agreeζ(R)(j)
L (µ, ν, δ′

j , x⃗, y⃗, z⃗
′
j)∧

[
∧

1≤a<b≤2k
z⃗′
j(a) ̸= z⃗′

j(b) ∧
∧

a∈[2k]
(∀λ (¬suppζ(R)(j)(µ, δ′, λ)))∨

∨
b∈[2k]

suppζ(R)(j)
a (µ, δ′, κ⃗j(b)) ∧ z⃗′

j(a) = z⃗j(b)))]]]

The purpose of the first line is to define the functions κ⃗1, . . . , κ⃗rR as per the definition of ψJ̄ ,R.
The purpose of the second line and the first part of the third line is to define δ′

j for each
j ∈ [rR] such that δ′

j is the image of δj under the action of any permutation extending the
function κ⃗j . For each j ∈ [rR] we have an assignment to the support of δ′

j given by mapping
κ⃗j to z⃗j . From Lemma 8.4 this set of assignments is pairwise compatible. Notice that κ⃗j
contains the support of δ′

j , but perhaps not in order. The purpose of the second part of the
third line and lines four and five is to re-order each z⃗j so as to match the order on the support
of δ′

j , and then to check if the assignment y⃗ to ν is compatible with these assignments.
We now define ψM,R(µ, x⃗, δ1, z⃗1, . . . , δrR , zrR ;V) such that A |= ψM,R[g, a⃗, u1, c⃗1, . . . urR , c⃗rR ;β(V)]

if, and only if, Mg,αa⃗s⃗p(g)(((u1, α
c⃗1
s⃗p(u1)), . . . , (urR , α

c⃗rR
s⃗p(uri)

)), R) = 1, where β(V) is an assign-
ment to V such that for all h ∈ Hg and b⃗ ∈ Ak, (h, b⃗) ∈ β(V) if, and only if, b⃗ ∈ EVh. This
formula is defined as follows

ψM,R(µ, x⃗, δ1, z⃗1, . . . , δrR , z⃗rR ;V) :≡ ∃ν, y⃗ (ψJ,R(µ, z⃗, δ1, z⃗1, . . . , δrR z⃗rR , ν, y⃗) ∧ V (ν, y⃗)).

We now define a formula ψDj (µ, x⃗, δ, z⃗) for each s ∈ S such that A |= ψDs [g, a⃗, u, c⃗] if, and

only if, (u, αc⃗s⃗p(u)) ∈ I
g,αa⃗s⃗p(g)
j . For each s ∈ S we define this formula as follows

ψDs (µ, x⃗, δ, z⃗) :≡ min-orbits(µ, δ) ∧ agreesL(µ, δ, x⃗, z⃗).

We now define a formula ψ≈
s (µ, x⃗, δ1, z⃗1, δ2, z⃗2) for each s ∈ S such that A |= ψ≈

s [g, a⃗, u1, c⃗1, u2, c⃗2]
if, and only if, g is a gate, u1 and u2 are elements of the s-sort of the universe of g, and

8.2 Constructing a Formula 133

(u1, α
c⃗1
s⃗p(u1)) ≡ (u2, α

c⃗2
s⃗p(u2)). For each s ∈ S we define this formula as follows

ψ≈
s (µ, x⃗, δ1, z⃗1, δ2, z⃗2) :≡

∧
1≤a<b≤k

(xa ̸= xb) ∧
∧

1≤a<b≤2k
(z⃗1(a) ̸= z⃗1(b) ∧ z⃗2(a) ̸= z⃗2(b))∧

agreesL(µ, δ1, x⃗, z⃗1) ∧ agreesL(µ, δ2, x⃗, z⃗2) ∧ δ1 = δ2∧

∃κ⃗ [(
∧

1≤a<b≤2k
κa ̸= κb) ∧ moves(µ, δ1, δ1, κ⃗)∧

∧
a∈[2k]

[(∃λsuppsa(µ, δ1, λ) =⇒ [(supp(µ, κa) =⇒ suppsa(µ, δ1, κa))∧

∨
b∈[2k]

suppsb(µ, δ1, κa) ∧ z⃗1(a) = z⃗2(b))]]]

The purpose of the first line is to check that the assignments to the supports of µ, δ1, and δ2

are injections. The purpose of the second line is to check that the assignments to δ1 and δ2

are compatible with the assignment to µ and that δ1 = δ2. The purpose of the third line is
check if there exists a permutation σ extending the function encoded by κ⃗ that fixes δ1. The
purpose of the fourth and fifth line is to check that σ also fixes those elements in the support
of µ, fixes the support of δ1 setwise, and that applying σ maps the assignments z⃗1 and z⃗2

appropriately. We define θΩf
as follows

θΩf
(µ, x⃗;V) :≡ (

∧
1≤i<j≤k

xi ̸= xj) ∧ ∃ϵ1, . . . , ϵm (ϕΩf
(µ, ϵ1, . . . , ϵm)∧

Ωf [(ψDs)s∈S , (ψ≈
s)s∈S][(y⃗1δ1, . . . , y⃗rRδrR)ψM,R(µ, x⃗, δ1, y⃗1, . . . , δrR , y⃗rR ;V)]R∈R[ϵi]ci∈F).

We now show that θΩf
suffices for this recursive definition.

Lemma 8.13. Let g be a gate such that Σn(g) ∈ BΩf
and let a⃗ ∈ Ak. Let β be an assignment

that maps µ to g, x⃗ to a⃗, and V to β(V) such that for all h ∈ Hg and all b⃗ ∈ Ak we have
(h, b⃗) ∈ β(V) if, and only if , b⃗ ∈ EVh. Then A |= θΩf

[β] if, and only if, a⃗ ∈ EVg.

Proof. Let η := αa⃗s⃗p(g). Let τrel = (R,S, ζ
∣∣
R

). Let I := ⟨(ψDs)s∈S , (ψ≈
s)s∈S , (ψM,R)R∈R⟩. Let

p1, . . . , pm be such that A |= ϕΩf
[β p1

π1
. . . pmπm]. Let B be the quotient of the τrel-structure

(⊎s∈S(ψDs)(A,β), (ψ(A,β)
M,R)R∈R) by the equivalence relation ≈:= ⊎s∈S(ψ≈

s)(A,β). It follows that
B = I(A, β). For each s ∈ S let Ks : Ig,η≡,s → Bs be defined for all [(d, α)] ∈ Ig,η≡,s by
Ks([(d, α)]) := [(d, e⃗)], where e⃗ ∈ A2k such that α(e⃗(i)) = s⃗p(a)(i) for all i ∈ [|sp(d)|].
Let K = ⊎s∈SKs. It can be shown that K is well-defined and bijective. Let R ∈ R and
let (([(d1, α1)], . . . , [(drR , αrR)]), R) ∈ Ig,η≡ . Then Mg,η

≡ (([(d1, α1)], . . . , [(drR , αrR)]), R) = 1
if, and only if, A |= ψM,R[g, a⃗, d1, e⃗1, . . . , drR , e⃗rR ;β(V)], where for all j ∈ [rR], [(dj , e⃗j)] =
K([(dj , αj)]) if, and only if, (K([d1, α1]), . . . ,K([(drR , αrR)])) ∈ RB. It follows that K is an
isomorphism.

134 Translating Circuits to Formulas

Let α : F → N0 be defined such that α(ci) = pi for each ci ∈ F . Let B∗ be a τ -structure
such that B∗ is an expansion of B with cB∗ = pi for each ci ∈ F . Let M∗ be a τ -structure
such that M∗ is an expansion of Mg,η

≡ with cM
∗

i = pi for each ci ∈ F . We have that B∗ and
M∗ are isomorphic. Let E be the evaluation function of Ωf and let γ ∈ [n]A be such that
γ−1 ∼ η. Then

A |= θΩf
[β] ⇐⇒ E(B∗) = 1 ⇐⇒ E(M∗) = 1 ⇐⇒ FΩf ,α[Ig,η≡](Mg,η

≡) = 1
⇐⇒ Σn(LγA(g)) = 1 ⇐⇒ η ∈ EVg ⇐⇒ a⃗ ∈ EVg

The second equivalence follows from the fact that B and Mg,η
≡ are isomorphic and the

fourth equivalence follows Proposition 8.12.

We now define θ(µ, x⃗) as follows

θ(µ, x⃗) :≡ [ifpV,νy⃗
∨
s∈T

(ϕs(µ) ∧ θs(ν, y⃗))](µ, x⃗).

Let g be a gate and a⃗ ∈ Ak. Let β be an assignments to V such that for all h ∈ Hg and
all b⃗ ∈ Ak we have (h, b⃗) ∈ β(V) if, and only if , b⃗ ∈ EVh. It is easy to show that for each
s ∈ T \ Ω, A |= θs[g, a⃗;β(V)] if, and only if, a⃗ ∈ EVg. It thus follows from Lemma 8.13
that for all s ∈ T , θs[g, a⃗;β(V)] if, and only if, a⃗ ∈ EVg. From this it can be shown, using a
straight-forward inductive argument, that for all g ∈ G and a⃗ ∈ Ak, A |= θ[g, a⃗] if, and only
if, a⃗ ∈ EVg.

We now define a FPN(Ω)[ρ]-formula Q that defines the same q-ary query as C. The
definition of this formula is similar to one given in [3]. Let

Q(y1, . . . yq) :≡ ∃x⃗ ∃µ, κ1, . . . , κqπ1, . . . , πk [θ(µ, x⃗) ∧ ϕΩ(κ1, . . . , κq, µ)∧∧
1≤i≤k

(suppi(µ, πi) ∨ ∀π (¬suppi(µ, π)))∧

∧
1≤i≤k

∧
1≤j≤q

((suppi(µ, πi) ∧ (xi = yj)) =⇒ κj = πi)∧

∧
1≤j≤q

∨
1≤i≤k

(xi = yj ∧ suppi(µ, πi))].

We could informally understand the formula Q as inverting the assignment denoted by
(y1, . . . , yq), selecting the corresponding output gate, and then evaluating this output gate.
This completes the proof of Proposition 8.1.

Chapter 9

The Main Result

In this brief chapter we restate and prove the main theorem. We also discuss a number of
noteworthy corollaries of this theorem.

Theorem 4.19 (Main Theorem). Let Ω be a finite union of P-bounded almost relational
vectorised operators. Let ρ be a relational vocabulary. Then

1. Every query definable in FPN(Ω̃) is definable by a P-uniform family of transparent
symmetric (BΩ ∪ Bstd, ρ)-circuits, and

2. Every query definable by a P-uniform family of transparent symmetric (BΩ ∪ Bstd, ρ)-
circuits is definable in FPN(Ω).

Proof. The first claim follows from Theorem 5.5 and the second claim follows from Proposi-
tion 8.1.

If an extension of fixed-point logic is closed under operator quotients then we have an
exact circuit characterisation of the logic. We state this observation formally.

Corollary 9.1. Let Ω be a finite union of P-bounded almost relational vectorised operators.
Let ρ be a relational vocabulary. If FPN(Ω) is closed under operator quotients then a query
is definable in FPN(Ω) if, and only if, it is definable by a P-uniform family of transparent
symmetric (BΩ ∪ Bstd, ρ)-circuits.

We notice that by setting Ω to be either the empty set or the counting operator we can
recover the symmetric circuit characterisations of FPN and FPC established by Anderson
and Dawar [3].

We have established circuit characterisations for a particular class of logics. It is a
straightforward consequence of a result by Dawar [11] that with respect to the search for
a logic for P we can restrict our attention to logics of this form. We state this observation
formally. We say that a vectorised (many-sorted) quantifier is polynomial-time decidable if
the corresponding class of structures is polynomial-time decidable.

136 The Main Result

Proposition 9.2. There is a logic that captures polynomial-time if, and only if, there exists
a polynomial-time decidable vectorised many-sorted quantifier Ω such that FPN(Ω) is closed
under operator quotients and captures polynomial-time.

Proof. Suppose there exists a logic that captures polynomial-time. It follows from Theorem 2.9
that exists a polynomial-time decidable vectorised quantifier Q such that FO(Q̃) captures
polynomial-time. Let Ω be the definition of Q as a vectorised quantifier. It is easy to see
that any formula in FPN(Ω) must decide a query in P. It follows that FO(Q̃) ≤ FPN(Ω̃) ≤
FPN(Ω) ≤ FO(Q̃) and so FPN(Ω̃) ≡ FPN(Ω) and FPN(Ω) captures polynomial-time.

We can use Theorem 4.19 to state the question of whether there is a logic for P purely in
terms of symmetric circuits. We formalise this now.

Definition 9.3. We call a basis B polynomial-time bounded if there exists a polynomial
p and computable function that maps each function F ∈ B to a Turing machine MF that
computes F and such that MF (x) has running time bounded by p(|x|) for x an input string.

Proposition 9.4. There is a logic that captures polynomial-time if, and only if, there is a
finitely generated polynomial-time bounded basis B such that a query is decidable in polynomial-
time if, and only if, it is definable by a P-uniform family of transparent symmetric circuits
defined over B.

Proof. ‘⇒’: It follows from Proposition 9.2 that there is a polynomial-time computable
vectorised many-sorted quantifier Ω such that FPN(Ω) is closed under operator quotients
and captures polynomial-time. It follows from the fact that Ω is polynomial-time computable
that BΩ is finitely generated and polynomial-time bounded. It follows from Theorem 4.19 for
any query Q that Q is definable in polynomial-time if, and only if, Q is definable in FPN(Ω)
if, and only if, Q is definable by a P-uniform family of transparent symmetric circuits defined
over BΩ.

‘⇐’: Let B be a finitely generated polynomial-time bounded basis satisfying the hypothesis.
Since B is finitely generated there exists classes of structures G1, . . . ,Gk each of which is
polynomial-time decidable and such that B = ⋃

i∈[k] BGi . For each i ∈ [k] let Qi be the
vectorised quantifier generated by Gi. Let Q = {Q1, . . . , Qk}. Then FPN(Q) captures
polynomial-time.

Theorem 4.19 characterises families of transparent symmetric circuits in terms of fixed-
point logics. The restriction to transparent circuits is important as it ensures the polynomial-
time decidability of a number of circuit parameters, and we need this to define the translation
from families of circuits to formulas. However, unless P-uniform families of symmetric
circuits and transparent circuits have the same expressive power, this leaves us without a
characterisation for general symmetric circuits. We now show that if there is a basis for which

137

P-uniform families of symmetric circuits and transparent circuits have different expressive
powers then the graph isomorphism problem is not in P.

Proposition 9.5. Let B be a basis and ρ be a relational vocabulary. If the graph isomorphism
problem is in P then every query decidable by a P-uniform family of symmetric (B, ρ)-circuits
is definable by any P-uniform family of transparent symmetric (B, ρ)-circuits.

Proof. Suppose graph-isomorphism is polynomial-time decidable. Then, using a similar
approach as in Lemma 7.1, we can define an algorithm that runs in polynomial time and
takes as input a symmetric circuit and outputs the syntactic-equivalence classes of the gates
in that circuit. We can then show, using the same approach as in Lemme 7.4, that there is a
polynomial-time computable mapping that takes as input a symmetric circuit C and outputs
a reduced injective symmetric circuit C ′ such that C and C ′ compute the same function.
It follows that if Q is a query definable by a P-uniform family of symmetric (B, ρ)-circuits
(Cn)n∈N then there exists a P-uniform family of reduced injective symmetric (B, ρ)-circuits
(C ′

n)n∈N that also define the query Q. We recall that a reduced injective circuit is transparent,
and so the result follows.

We conclude this chapter by discussing the particular case of FPR. The study of the
expressive power of FPR and the question of whether it captures polynomial-time remain
topics of particular interest in descriptive complexity. The work of this thesis was, in part,
motivated by the desire to develop a circuit characterisation for FPR. This characterisation
follows from the main theorem and, because of the particular importance of FPR, we now
work through the details here. We first define the rank basis explicitly.

Definition 9.6. Let p, t ∈ N and suppose p is prime. Let τ := ({R}, [3], ζ). Let ζ(R) =
(1, 2, 3). For each a, b, c ∈ N let rktp[a, b, c] : {0, 1}τ [a,b,c] → {0, 1} be defined for each
B ∈ {0, 1}τ [a,b,c] as follows. Let MB : [a] × [b] → Fp be defined such that

MB(x, y) := |{z ∈ [c] : (x, y, z) ∈ RB}| mod p

for all (x, y) ∈ [a] × [b]. Let rktp(B) = 1 if, and only if, the rank of rk(MB) ≥ t. Let Brk be
the set of all such Boolean functions for any p, t, a, b, c ∈ N with p prime. We call Brk the
rank basis.

It is easy to see that the rank basis Brk is precisely the basis corresponding the rank
operator ΩErk defined in Section 3.2. We call a circuit defined over the union of the standard
basis and the rank basis a rank circuit. From Theorem 4.19 we have the following circuit
characterisation of FPR.

Theorem 9.7. A query is definable in FPR if, and only if, it is definable by a P-uniform
family of transparent symmetric rank circuits.

138 The Main Result

Proof. It follows from Lemma 3.5 that FPR is closed under operator quotients. This result
then follows immediately from Theorem 4.19.

Chapter 10

Conclusions and Future Work

In this chapter we summarise the main findings of this thesis and discuss some interesting
areas for possible future study.

10.1 Summary and Discussion

The study of fixed-point logics and their extensions is of central importance in finite model
theory and, in particular, in the search for a logic for polynomial-time. In this thesis we have
shown that each from a broad class of extensions of fixed-point logic can be characterised by
uniform families of transparent symmetric circuits over a corresponding basis. In order to
prove this result we developed new more general frameworks both for studying extensions of
logics and for studying circuits defined over a broader class of bases.

This result establishes a deep and interesting connection between circuit complexity and
descriptive complexity. Most immediately, it allows us to translate inexpressibility results for
the logic to lower-bounds for classes of symmetric circuits, and vise versa. This gives us the
opportunity to exploit combinations of techniques from both logic and circuit complexity in
order to solve problems in both fields.

It also follows from the main result that we have a circuit characterisation of FPR. We
recall that FPR is one of the strongest logics known to be in polynomial-time but not known
to capture it. For this reason precisely characterising the expressive power of FPR is an
active area of research. The circuit characterisation established here provides us with an
alternative characterisation of the expressive power of FPR, opening up new avenues for
proving lower-bounds.

Perhaps most interestingly, the main result of this thesis presents an interesting perspective
on the central tension in descriptive complexity, the relationship between machine models of
computation and model-theoretic logics. We should explain this in more detail. We recall that
an algorithm specified by a machine model can be translated to a uniform family of circuits.
In contrast, each formula in a logic can be translated to a uniform family of symmetric

140 Conclusions and Future Work

circuits. In this sense the formulas of a logic each define an algorithm that uses only those
techniques that respect the inherent symmetries of the structure. The main theorem of this
thesis establishes that fixed-point logics do not just define uniform families of symmetric
circuits (over an appropriate basis), but rather they are characterised by these P-uniform
families of symmetric circuits. In this sense we can understand symmetry as the defining
feature of a logic, and our framework provides the tools for studying it. To illustrate this point
we consider a specific case. Let FPN(Ω) be a logic closed under operator-quotients, where
Ω is a finite union of polynomial-time computable P-bounded almost relational vectorised
operators. We recall that a query is polynomial-time decidable if, and only if, it is decidable
by P-uniform families of invariant circuits over BΩ ∪ Bstd. In contrast, the logic FPN(Ω)
can define exactly those queries definable by P-uniform families of transparent symmetric
circuits over the basis BΩ ∪ Bstd. Here we notice the fundamental role symmetry plays as
exactly that property separating the logic from the machine model. The question of whether
they have the same expressive power (i.e. whether FPN(Ω) captures polynomial-time) is
equivalent to the question of whether P-uniform families of symmetric and invariant circuits
over BΩ ∪ Bstd have the same expressive power. In this way, the question of whether there is
a logic for P, the central question in the field, can be understood as essentially a question
about whether there is a strong enough basis over which polynomial-time computation is in
this sense ‘inherently symmetric’.

We now review some of the important contributions of this thesis and discuss some of the
novel frameworks and techniques developed.

We began by defining a general framework for studying extensions of fixed-point logic.
We introduced the notion of a generalised operator. We showed that Lindström quantifiers,
counting operators, and rank operators can all be defined in this framework. We showed that
each family of P-bounded almost relational generalised operators Ω can be associated with a
family of quantifiers QΩ. This generalises the relationship between counting operators and
counting quantifiers. We aimed to generalise the translation from FPC to P-uniform families
of FO+C-formulas. However, we noted that the usual translation given by unrolling fixed-
points does, in general, result in an exponential blow-up in formula size. We introduced the
notion of a substitution-program, which was intended to give a more compact representation
for formulas. We showed that each formula in FP(Ω̃) can be translated to a P-uniform family
of FO(Q̃Ω)-substitution programs. We used this result to also establish a translation to
infinitary logic.

We next introduced a framework for studying symmetric circuits over a much richer class
of bases. We noted that the usual definition of a circuit implicitly imposes the assumption
that a circuit is defined over a basis of trivially invariant functions. We showed that any
P-uniform family of symmetric circuits defined over a basis of symmetric functions must
define a query expressible in FPC. In order to go beyond FPC we needed to generalise
the circuit model. We developed a framework of structured Boolean functions that take as

10.1 Summary and Discussion 141

input τ -structures rather than strings. We then considered bases of isomorphism-invariant
structured functions, a generalisation of the notion of a symmetric function (which in our
framework are instead called trivially invariant functions). We showed that each family of
almost relational generalised operators defines a corresponding basis of structured functions.
We generalised the notion of a circuit in order to include for each gate g a structure on
the children of g corresponding to the structured function labelling g. We generalised the
notion of a circuit automorphism to ensure that this additional structure is preserved, and
correspondingly generalised the notion of a symmetric circuit.

While our aim was to generalise many of the important results from [3], we found that in
almost every case the techniques they employ fundamentally rely on the assumption that
the circuit is defined over a basis of trivially invariant functions. One particular difficulty
arose due to the fact that determining if a map preserves for each gate g the structure on
the inputs of g requires checking if two structures are isomorphic. As such, we showed that
in our general setting, unlike in [3], deciding many crucial circuit properties, such as the
syntactic-equivalence relation or the action of an automorphism, is at least as hard as solving
the graph-isomorphism problem. This posed a problem for two reasons. First, we needed to
be able to transform circuits into a particular normal form in polynomial-time in order to
apply the support theorem, and any such translation seems to require these properties be
polynomial-time decidable. Second, the translation from circuits to formulas we use explicitly
relies on the polynomial-time decidability of a number of related properties, including the
orbit of a gate and the action of an automorphism. In response we introduced the notion of
a transparent circuit. We showed that on this class of circuits all of the relevant problems
are polynomial-time decidable, and so we restricted our main result to transparent circuits.

The restriction to transparent circuits makes the translation of uniform circuit families
into formulas of the logic (which is the difficult direction of our characterisation) possible,
but it complicates the translation in the other direction. Indeed, the natural translation from
formulas of fixed-point logic to uniform circuit families yields circuits which are symmetric,
but not necessarily transparent. As such, we needed to explicitly define a translation from
fixed-point logics to uniform families of circuits. Here we used the translation from FP(Ω̃)
to P-uniform families of FO(Q̃)-substitution programs and then showed that by adding a
number of gadgets to the circuit we could transform these families of substitution programs
into equivalent P-uniform families of circuits.

In order to establish the translation we needed to generalise a number of crucial results
proved by [3]. In particular, we generalised the support theorem. The conclusion of [3] says
that the support theorem is “largely agnostic to the particular [. . .] basis”, suggesting that it
could be easily adapted to include other gates. This turns out to have been a misjudgement.
Attempting to prove the support theorem for a basis that includes non-trivially invariant
gates showed us the extent to which both the proof of the theorem and, more broadly,
the definitions of a circuit, relies on the assumption that all functions computed by gates

142 Conclusions and Future Work

are trivially invariant. We developed new techniques that avoided these assumptions and
established a generalisation of the support theorem.

We completed our characterisation by showing that P-uniform families of circuits can
be translated to formulas in the corresponding extension of fixed-point logic. Here again we
noted the extent to which the results in [3] rest on the symmetry assumption on the basis.
In order to prove this result we developed a radically new set of tools that allowed us to
recursively evaluate the gates of the circuit in the logic without the symmetry assumption,
and so established the translation.

In short, we can represent the proof of our characterisation through the three equivalences
in this triangle.

FP(Ω)
Uniform families of substitution
programs with constant width

Uniform families of transparent
symmetric circuits

This highlights another interesting aspect of our result. We notice that the formulation
of fixed-point with rank in [13] can similarly be formalised as an extension of FPN by an
(infinite) union of vectorised operators Ω. We note that QΩ = QΩrk and BΩ = BΩrk , where
Ωrk is the rank operator defined in Section 3.2. However, Grädel and Pakusa showed the
fixed-point logic with rank defined in [13] is strictly less expressive than FPR [22]. The
fact that we can complete the cycle of equivalences for FPR but not for this less expressive
logic suggests that FPR is the “right” formulation of rank logic. We also conclude from this
example that the restriction to finite unions of vectorised operators in the statement of the
main theorem is necessary.

10.2 Future Work

There are many directions for new work suggested by the methods and results of this thesis.
First of all, there is the question of transparency. We have established a characterisation of
the expressive power of families of transparent symmetric circuits but we are not sure if this
model is strictly weaker than without the transparency restriction. If the model is strictly
weaker for any basis then the graph-isomorphism problem in not in polynomial-time (see
Proposition 9.5). Of course, if we could show that for an appropriate collection of vectorised
operators Ω the P-uniform families of transparent symmetric circuits over the basis BΩ are
strictly less expressive than P-uniform families of arbitrary symmetric circuits over BΩ, then
we would have separated FPN(Ω̃) from P.

We have explored methods of extending the symmetric circuit model by allowing for
richer bases. Another approach to extending the model would be to consider relaxations of

10.2 Future Work 143

the symmetry property. There are numerous ways we might do this. We could consider, for
example, circuits with the property that all of the permutations from a subgroup G ≤ Symn

extend to automorphisms of the circuit. We say such circuits are semi-symmetric relative to
G. We notice that the circuits that are semi-symmetric relative to the full permutation group
are exactly the symmetric circuits and the circuits that are semi-symmetric relative to the
trivial group are the circuits with no symmetry restriction at all. In this way by considering
subgroups of the symmetric group of increasing index we can interpolate from the extension
of fixed-point logic (such as FPC or FPR) to P.

This also offers an interesting approach we might use to develop a circuit characterisation
of choiceless polynomial time (CPT) [7]. CPT is one of the most powerful logics known to be
contained in polynomial-time but not known to be strictly contained [14, 1]. We attempted
to develop a circuit characterisation of CPT within the framework presented in this thesis,
but found that CPT seemed to require a different, perhaps weaker, notion of symmetry.
We might start by seeing if the formulas in CPT naturally define semi-symmetric circuits
relative to some subgroup. Alternatively, we could start with a known CPT algorithm, e.g.
from [14], and see if we can define a semi-symmetric circuit from one of these algorithms.
The prospect of a circuit characterisation of CPT is certainly an intriguing one. Not only
would it clarify the role of symmetry in understanding CPT, but bringing FPR and CPT
into the same framework might allow us to begin to study the relationship between these
logics, and perhaps separate them.

There are still more ways of considering weakenings of the symmetry condition. In order
to define our more general notion of a circuit we needed to relax the usual requirement of
symmetry on the inputs of a gate. We could weaken this condition further and instead
consider functions of the form f : {0, 1}X → {0, 1} where X is an arbitrary set, along with
an explicit invariance condition given by a subgroup G ≤ SymX . In order to work with
these circuits we would first need to prove a result analogous to the support theorem. In this
framework it would be natural to use a more fine-grained approach and treat asymmetry as
a resource, which we could then prove lower bounds against. A first step in this direction
might be to consider circuits with only a constant or logarithmic number of gates labelled by
non-trivially invariant functions.

Both of these approaches involve “relativising” the symmetry notion in some way to
a subgroup of the full permutation group. In both cases we believe it can be shown that
relativising the symmetry notion to a subgroup of polynomial order results in a circuit
model with the same expressive power as the circuit model without any symmetry restriction.
Similarly, for subgroups of polynomial size index the relativised symmetry notion results in a
model with the same expressive power as that with the full symmetry requirement. As such,
the interesting questions would be about “intermediate” subgroups of the permutation group.
The structure of these groups is largely unknown, but it would be a natural first step to ask
what sorts of structural results would be needed in order to separate circuits with symmetry

144 Conclusions and Future Work

properties relativised to different subgroups. This direction, although speculative, may help
establish connections between logic, complexity theory, and permutation group theory.

We have thus far discussed three ways of extending the circuit model, the above two
approaches for relaxing symmetry and the approach discussed in this thesis of allowing for a
richer basis. These three, along with the possibility of varying the uniformity condition on the
circuits, provide a rich space of possibilities to explore. It would be particularly interesting to
consider how these various approaches, which seem to pull in somewhat different directions,
might trade-off against one another.

The circuit characterisations of a logic emphasises certain combinatorial parameters
against which we could prove lower bounds. One such parameter is the fan-in of the gates of
the circuit. A promising and novel approach would be to try and prove lower bounds for
symmetric circuits with gates with bounded fan-in. A concrete first question would be to
ask if it is possible to compute AND[3] using a symmetric circuit with gates that have fan-in
two. We also do not yet have any general techniques for proving lower bounds for symmetric
circuits. It might be useful to consider how techniques used for establishing inexpressibility
in logic might be directly used to prove lower bounds for symmetric circuits. Dawar [12]
has already shown how the bijection games of Hella [27] can be directly used to prove lower
bounds for symmetric circuits without reference to the logic. We might ask if the game
characterisations of the expressive power of fixed-point logics given by Holm [29] can similarly
be applied directly to the circuit model. It would be especially interesting to see if combining
these methods with standard circuit-based techniques, such as the switching lemma and
random restrictions, could yield new lower bounds.

References

[1] F. Abu Zaid, E. Grädel, M. Grohe, and W. Pakusa. Choiceless polynomial time on
structures with small abelian colour classes. In Mathematical Foundations of Computer
Science 2014 - 39th International Symposium, pages 50–62, 2014.

[2] N. Alon and R. Boppana. The monotone circuit complexity of boolean functions.
Combinatorica, 7(1):1–22, Mar 1987.

[3] M. Anderson and A. Dawar. On symmetric circuits and fixed-point logics. Theory of
Computing Systems, 60(3):521–551, 2017.

[4] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, New York, NY, USA, 1st edition, 2009.

[5] A. Atserias, A. Bulatov, and A. Dawar. Affine systems of equations and counting
infinitary logic. Theoretical Computer Science, 410(18):1666–1683, 2009.

[6] J. Barwise. Chapter I: Model-Theoretic Logics: Background and Aims, volume 8 of
Perspectives in Mathematical Logic, pages 3–23. Springer-Verlag, New York, 1985.

[7] A. Blass, Y. Gurevich, and S. Shelah. Choiceless polynomial time. Technical report,
1997.

[8] R. Boppana and M. Sipser. The complexity of finite functions. In Handbook of Theoretical
Computer Science, Volume A: Algorithms and Complexity (A), pages 757–804. 1990.

[9] J. Cai, M. Fürer, and N. Immerman. An optimal lower bound on the number of variables
for graph identification. Combinatorica, 12(4):389–410, 1992.

[10] A. Chandra and D. Harel. Structure and complexity of relational queries. Journal of
Computer and System Sciences, 25(1):99 – 128, 1982.

[11] A. Dawar. Generalized quantifiers and logical reducibilities. Journal of Logic and
Computation, 5(2):213–226, 1995.

[12] A. Dawar. The nature and power of fixed-point logic with counting. ACM SIGLOG
News, 2(1):8–21, 2015.

[13] A. Dawar, M. Grohe, B. Holm, and B. Laubner. Logics with rank operators. In 2009
24th Annual IEEE Symposium on Logic In Computer Science (LICS), pages 113–122,
2009.

[14] A. Dawar, D. Richerby, and B. Rossman. Choiceless polynomial time, counting and the
Cai-Fürer-Immerman graphs. Annals of Pure and Applied Logic, 152(1):31–50, 2008.

[15] A. Dawar and G. Wilsenach. Symmetric circuits for rank logic. arXiv:1804.02939.

http://arxiv.org/abs/1804.02939

146 References

[16] A. Dawar and G. Wilsenach. Symmetric circuits for rank logic. In 27th EACSL Annual
Conference on Computer Science Logic, CSL 2018, September 4-7, 2018, Birmingham,
UK, pages 20:1–20:16, 2018.

[17] L. Denenberg, Y. Gurevich, and S. Shelah. Definability by constant-depth polynomial-size
circuits. Information and Control, 70(2):216–240, 1986.

[18] R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets. In
R. Kar, editor, Complexity of Computations, pages 43–73. AMS, 1974.

[19] M. Furst, J. Saxe, and M. Sipser. Parity, circuits, and the polynomial-time hierarchy.
Mathematical systems theory, 17(1):13–27, Dec 1984.

[20] E. Grädel, P. Kolaitis, L. Libkin, M. Marx, J. Spencer, M. Vardi, Y. Venema, and
S. Weinstein. Finite Model Theory and Its Applications. Texts in Theoretical Computer
Science. An EATCS Series. Springer, 2007.

[21] E. Grädel and M. Otto. Inductive definability with counting on finite structures. In
Computer Science Logic, 6th Workshop, CSL ’92, San Miniato, Italy, September 28 -
October 2, 1992, Selected Papers, pages 231–247, 1992.

[22] E. Grädel and W. Pakusa. Rank logic is dead, long live rank logic! In 2015 24th Annual
Conference on Computer Science Logic, (CSL), pages 390–404, 2015.

[23] M. Grohe. Fixed-point logics on planar graphs. In Thirteenth Annual IEEE Symposium
on Logic in Computer Science, Indianapolis, Indiana, USA, June 21-24, 1998, pages
6–15, 1998.

[24] M. Grohe. Fixed-point definability and polynomial time on graphs with excluded minors.
In 2010 25th Annual IEEE Symposium on Logic in Computer Science (LICS), pages
179–188, July 2010.

[25] M. Grohe and J. Mariño. Definability and descriptive complexity on databases of
bounded tree-width. In Database Theory - ICDT ’99, 7th International Conference,
Jerusalem, Israel, January 10-12, 1999, Proceedings., pages 70–82, 1999.

[26] Y. Gurevich. Logic and the challenge of computer science. In Current Trends in
Theoretical Computer Science, pages 1 – 57. Computer Science Press, Rockvill, 1988.

[27] L. Hella. Logical hierarchies in PTIME. Information and Computation, 129(1):1 – 19,
1996.

[28] L. Hella, P. Kolaitis, and K. Luosto. Almost everywhere equivalence of logics in finite
model theory. In Bulletin of Symbolic Logic, pages 422–443, 1996.

[29] B. Holm. Descriptive complexity of linear algebra. University of Cambridge, 2010.

[30] N. Immerman. Relational queries computable in polynomial time. Information and
Control, 68(1-3):86 – 104, 1986.

[31] N. Immerman. Expressibility as a complexity measure: results and directions. In
Proceedings of the Second Annual Conference on Structure in Complexity Theory, Cornell
University, Ithaca, New York, USA, June 16-19, 1987, 1987.

[32] N. Immerman. Descriptive Complexity. Graduate texts in computer science. Springer
New York, 1999.

References 147

[33] S. Jukna. Boolean Function Complexity: Advances and Frontiers. Algorithms and
Combinatorics. Springer Berlin Heidelberg, 2012.

[34] P. Kolaitis and J. Väänänen. Generalized quantifiers and pebble games on finite structures.
Annals of Pure and Applied Logic, 74(1):23 – 75, 1995.

[35] P. Kolaitis and M. Vardi. Infinitary logics and 0–1 laws. Information and Computation,
98(2):258 – 294, 1992.

[36] L. Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Science.
An EATCS Series. Springer Berlin Heidelberg, 2004.

[37] P. Lindström. First order predicate logic with generalized quantifiers. Theoria, 32(3):186–
195, 1966.

[38] M. Otto. Bounded Variable Logics and Counting: A Study in Finite Models, volume 9
of Lecture Notes in Logic. Cambridge University Press, 1997.

[39] M. Otto. The logic of explicitly presentation-invariant circuits. In 1996 10th Interna-
tional Workshop, Annual Conference on Computer Science Logic (CSL), pages 369–384.
Springer, Berlin, Heidelberg, 1997.

[40] B. Rossman. On the constant-depth complexity of k-clique. In Proceedings of the 40th
Annual ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada,
May 17-20, 2008, pages 721–730, 2008.

[41] J. Rotman. An Introduction to the Theory of Groups. Graduate Texts in Mathematics.
Springer New York, 1999.

[42] M. Vardi. The complexity of relational query languages (extended abstract). In
Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, pages
137–146, New York, NY, USA, 1982. ACM.

[43] H. Vollmer. Introduction to Circuit Complexity: A Uniform Approach. Springer-Verlag,
Berlin, Heidelberg, 1999.

[44] V. N. Zemlyachenko, N. M. Korneenko, and R. I. Tyshkevich. Graph isomorphism
problem. Journal of Soviet Mathematics, 29(4):1426–1481, May 1985.

Index of Terminology

Boolean bases, 56
corresponding to an operator, 57
corresponding to class of structures, 57
finitely generated, 57
polynomial-time bounded, 136

Boolean functions, 20
symmetric functions, 20

Boolean queries, 17

circuits, 21
depth, 21
P-uniform families, 21
polynomial size families, 21
size, 21
width, 21

circuits on structures, 22, 58
circuit automorphisms, 60
circuit isomorphisms, 61
circuits with unique labels, 64
evaluation, 59
injective circuits, 64
invariant circuits, 59
pseudo-automorphisms, 103
quotients, 97
reduced circuits, 64
transparent circuits, 64
unique extensions, 61

closure under operator quotients, 28
compatible functions, 118
compatible gates and permutations, 88
counting operators, 28

counting quantifiers, 18

EVg, 119
encoding classes of structures as strings, 19

first-order logic, 11
formulas, 11
terms, 11

first-order logic with counting (FOC), 16
first-order logic with rank, 16
first-order logic with a number sort (FON), 13

element terms, 14
element variables, 13
number terms, 14
number variables, 13

fixed-point logic with a number sort (FPN),
14

fixed-point logic with counting (FPC), 15
fixed-point logic with rank (FPR), 16
fixed-point logic (FP), 13
functions

arity, 9
identity functions, 9
injection notation, 9
nullary functions, 9
quotients, 9

Γg, 119
gates

children, 59
indices, 59
injective labels, 64

150 Index of Terminology

non-trivial automorphism-invariance, 59
parents, 59
redundant gates, 64
trivial automorphism-invariance, 59
unique children, 64
universes, 59
vocabularies, 59

generalised operators, 26
almost relational operators, 30
Boolean-valued operators, 27
evaluation functions, 26
extending a logic, 26
number-valued operators, 26
operator width, 46
operators that quantify over the number-

sort, 30
operators that quantify over the universe,

30
operators without constants, 30
P-bounded operators, 30
relational operators, 30
vocabularies, 26

group theory
orbits, 10
stabiliser group, 10

Gurevich conjecture, 20

Immerman-Vardi theorem, 20
independent sets, 89
infinitary logics, 18

extended with many-sorted quantifiers,
51

with counting, 18
inflationary fixed-point logic (FP), 13
interpretations, 17
interval, 9
invariant circuits, 22

Lindström quantifiers, 18
as generalised operators, 28

simple and unary quantifiers, 67
logic, 10

abstract definition, 19
arity, 10
assignments, 12
first-order variables, 11
function, relation, and constant symbols,

10
many-sorted vocabularies, 10
relational vocabularies, 11
second-order variables, 12
single-sorted vocabularies, 10
variable type, 14
vocabulary, 10
width of a formula, 12

logical comparisons, 17
logical definability, 17
logics capturing complexity classes, 19
logics that simulate counting, 31
logics with a number sort, 13

main theorem, 66, 135
majority basis, 21
many-sorted quantifiers, 41

vectorised families, 43
mutual stability, 124
mutually independent triples, 89

natural numbers, 9
number-extended interpretations, 25
number-extended structures, 24

operator quotients, 28

P-bounded logics, 30
powerset, 10

queries, 16

rank basis, 137
rank operators, 28

Index of Terminology 151

almost relational operators, 31
relations, 9

arity, 9
nullary relations, 9
trivial relations, 9

semi-symmetric circuits, 143
standard basis, 21
structured functions, 55

automorphism groups, 55
group-invariant functions, 55
index sets, 55
isomorphism-invariant functions, 55
non-trivially automorphism invariant func-

tions, 56
trivially automorphism invariant functions,

56
universes, 55

structures, 11
complete structure, 11

substitution programs, 45
constant length programs, 47
constant width programs, 47
flattenings, 45
P-uniform families, 47
queries defined by programs, 47
width, 45

supporting partitions, 84
canonical supporting partitions, 84, 86
combining partitions and the E function,

84
preoder on partitions, 84
supports from partitions, 90

supports, 84
canonical supports, 85, 86
small supports, 84, 86

symmetric circuits, 22, 61
symmetric functions, 53
syntactic-equivalence, 62

τ -sets, 11

useful sets, 89
useful triples, 89

vectorised families of generalised operators,
27

element-domain operators, 28
number-domain operators, 28

vectorised families of quantifiers, 20
polynomial-time decidable families, 135

	Table of contents
	1 Introduction
	1.1 A Logic for P?
	1.2 Symmetric Circuits and Fixed-Point Logic
	1.3 The Contributions and Structure of this Thesis
	1.4 Previously Published Work

	2 Preliminaries
	2.1 Basic Notation
	2.2 Group Theory
	2.3 Logic
	2.3.1 Vocabularies
	2.3.2 Structures
	2.3.3 First-Order Logic
	2.3.4 Assignments and Models
	2.3.5 Fixed-Point Logic
	2.3.6 Logics with a Number Sort
	2.3.7 Logics with Counting
	2.3.8 Logics with Rank
	2.3.9 Queries and Classes
	2.3.10 Interpretations
	2.3.11 Lindström Quantifiers
	2.3.12 Infinitary Logics

	2.4 Complexity Theory and Logic
	2.4.1 Basic Notions and Complexity Classes
	2.4.2 Capturing Complexity Classes
	2.4.3 Vectorised Families of Quantifiers

	2.5 Circuits and Logic
	2.5.1 Boolean Functions
	2.5.2 Circuits
	2.5.3 Circuits on Structures and Symmetric Circuits

	3 Generalised Operators
	3.1 Structures with Number-Valued Functions
	3.2 Generalised Operators
	3.3 Many-Sorted Quantifiers
	3.4 Translating Formulas to Substitution Programs
	3.5 Infinitary Logics

	4 Symmetric Circuits
	4.1 Structured Functions and Symmetry
	4.2 Symmetric Circuits
	4.3 Limitations of Symmetric Bases

	5 Translating Formulas to Circuits
	6 The Support Theorem
	6.1 Supports and Supporting Partitions
	6.1.1 Group Action on Supports

	6.2 The Support Theorem
	6.3 Supports on Indexes

	7 Transparent Circuits
	7.1 Tractable Properties of Transparent Circuits
	7.2 The Necessity of Transparency

	8 Translating Circuits to Formulas
	8.1 Defining a Structure at Each Gate
	8.2 Constructing a Formula

	9 The Main Result
	10 Conclusions and Future Work
	10.1 Summary and Discussion
	10.2 Future Work

	References
	Index of Terminology

