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Abstract

Accounting for Strong Electronic Correlation in Metalloproteins

Edward Linscott

Metalloproteins play a crucial role in many key biological processes, from oxygen transport

to photosynthesis. In the case of photosynthesis, the oxygen evolving complex (OEC) — a

CaMn4O5 cluster — catalyses water-to-oxygen-gas conversion.

From a computational standpoint, accurately modelling the electronic structure of the OEC

and other metalloproteins ab initio is difficult, due to two challenges. Firstly, there is that of

the strong electronic correlation present due to the partially-filled 3d-subshells of the transition

metal atoms, a classic example of where semi-local density functional theory (DFT) — a go-to

method for computational physicists — fails. The second challenge is that of size: as this thesis

will demonstrate, we must consider large cluster models that are thousands of atoms in size,

which takes us beyond the reach of both plane-wave DFT and quantum chemistry methods.

This thesis explores the capacity of density functional theory-plus-U (DFT + U ) and dy-

namical mean field theory (DMFT) to meet both of these challenges. It will demonstrate how

both DFT + U and DMFT can be readily married with linear-scaling DFT, meaning that these

theories can be applied to protein systems containing thousands of atoms. In particular, this

thesis presents the unification of ONETEP (a linear-scaling DFT code) and TOSCAM (a DMFT

solver). It also presents a novel approach for determining Hubbard and Hund’s parameters via

linear response that is compatible with linear-scaling DFT and resolves inconsistencies between

the linear response method and the DFT + U corrective functional.

These techniques are then applied to haem, haemocyanin, and the OEC, providing insight

into the role of strong correlation in their electronic structure and function. In so doing, this

thesis demonstrates how one can perform large-scale simulations of metalloproteins that account

for strong electronic correlation. The results of this thesis are of significant interest due to both

the importance of metalloproteins in nature, and the wealth of potential applications that would

spring from a thorough understanding of their catalytic and binding properties.
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Chapter 1

Introduction

The process of photosynthesis is integral to life on earth as we know it — almost every ecological

community is ultimately dependent on a phototroph. Among all of the photosynthetic organisms

on earth, oxygenic phototrophs (such as cyanobacteria, algae, and higher plants) are by far the

most prolific.

A key step in oxygenic photosynthesis is the oxidation of water:

2H2O + 4hν → 4e− + O2 + 4H+.

This reaction is carried out by the oxygen evolving complex (OEC), a CaMn4O5 cluster contained

within the photosystem II (PSII) protein complex. The ability of the OEC to oxidise water in

very mild physiological conditions is impressive, and remarkably all contemporary phototrophs

have an identical reaction centre despite their sheer number and ecological diversity. This

makes understanding the structure and function of the OEC (as nature’s unique solution to

oxygenic light-harvesting) an alluring research problem, and it has been the subject of substantial

research already.7–11 Ultimately, an understanding of the O–O formation mechanism would

provide a blueprint for the design of biomimetic catalysts — a field that is garnering an incredible

amount of interest.12–15 However, in spite of all of this attention, the precise structure and

mechanism of the OEC is not yet well understood. The next section will elaborate on our

present understanding, but for the moment it is worth highlighting that it was only in 2011

that the crystal structure of PSII was determined at atomic resolution16 — before then, the

structure of the OEC was the realm of (educated) guesswork, with some hypothesised models

bearing remarkable resemblance to the actual structure.17

In parallel with these developments, there have been remarkable advances in the field of com-

putational materials science. When attempting to calculate the electronic structure of atomic

systems, the last few decades have seen density functional theory (DFT) establish itself as the

go-to method.18–21 Facilitated by exponentially increasing computing power, modern DFT codes

are capable of routinely calculating the electronic structure of systems with hundreds of atoms,

opening the door to quantum-mechanical modelling of a vast landscape of systems of consider-

able scientific interest (such as catalysts, photovoltaics and materials for energy storage). The

range of computationally accessible systems has broadened even further with the advent of

1
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linear-scaling DFT codes (that is, codes whose computational cost scales linearly with the num-

ber of atoms in the system, rather than the cubic scaling of traditional methods). ONETEP22

is one such code, notable for its equivalence to plane-wave approaches and its minimal basis

size due to the in situ optimisation of its basis (a set of local Wannier-like orbitals). Its ability

to routinely perform DFT calculations on systems containing thousands of atoms allows more

detailed study of nanostructures,23,24 defects,25,26 and biological systems.27–30 Furthermore, ex-

tensions to DFT — namely density functional theory-plus-U (DFT + U ) and dynamical mean

field theory (DMFT) — have facilitated increasingly accurate treatment of strong electronic

correlation.

The objective of this thesis, therefore, is to bring these two threads together, developing

linear-scaling DFT (and its extensions) to a point where it is capable of performing calculations

on metalloproteins such as the OEC that are both sufficiently accurate and computationally

tractable. These calculations will allow us to predict important properties of scientific interest,

from binding energies to optical spectra.

1.1 The structure and function of the OEC

I will begin by outlining our current understanding of the OEC. Based on the results of x-ray

diffraction measurements,16,31–34 it is known that the OEC contains an inorganic CaMn4O5 core

that catalyses the oxidation process (Figure 1.1). This core lies within PSII, a large cluster of

around twenty protein subunits, containing some 120,000 atoms in all (Figure 1.2).

Figure 1.1: The distorted chair structure (solid lines) of the inorganic core of the OEC as found by Suga
et al. in their seminal XFEL crystal structure.34 Only the carbonyl groups of the coordinating ligands are
shown. A histidine (which coordinates with Mn1) is not shown. Manganese, calcium, oxygen, carbon,
and hydrogen atoms are shown in purple, orange, red, green, and white respectively.
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Figure 1.2: The 1.9 Å resolution crystal structure of the entire PSII obtained by x-ray diffraction
measurements.16 The inset reveals the location of an OEC core (there are two such cores within PSII).

In order to oxidise water, the OEC cycles through five states (S0 to S4) in what is known

as the Kok cycle (Figure 1.3).35,36 The system proceeds to the next intermediate state upon

absorption of a photon (at a neighbouring chlorophyll pigment), which prompts the OEC to

release an electron and a proton (with the exception of the S1 to S2 transition, where no protons

are released) and oxidise one of the four manganese atoms. Throughout this process, two water

ligands progressively have their hydrogens removed, and bind to one another to form molecular

oxygen.

Figure removed due to copyright. The original can be seen in
Ref. 37 as Figure 1.

Figure 1.3: The Kok cycle, with proposed (but disputed) structures shown for S0 to S3.36 Manganese,
calcium, oxygen, and hydrogen atoms are in purple, yellow, red, and white respectively. The oxidation
states for each of the manganese atoms (also disputed) are labelled. Figure taken from Ref. 37.

The atomic structure of the OEC was unknown until 2011, when Umena et al. published

their 1.9 Å-resolution x-ray diffraction (XRD) structure of the dark-stable S1 state.16 However,

it came under criticism, as it was suspected that the imaged structure had substantial radiation
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damage: both metal-metal and metal-oxygen distances in the reported XRD structure were

surprisingly long compared to extended x-ray absorption fine structure (EXAFS) predictions,

synthetic complexes, and computational models.38,39 Because EXAFS is not prone to damaging

the OEC via radiation, many authors concluded that radiation damage during the imaging

process likely occurred in the case of the XRD structure.40–42 Other authors disagree, questioning

the reliability of EXAFS as a predictive tool.43

Then in 2015, Suga et al. published a “radiation-damage-free” structure.34 This work em-

ployed a novel imaging technique using an x-ray free-electron laser (XFEL).† By using ultra-

short, high brilliance x-ray pulses, the structure is imaged (supposedly) before the onset of

radiation damage. Since that seminal work, this technique has also enabled measurements of S-

states other than the dark-stable S1 state (which are not amenable to conventional experimental

structural determination): in 2017 Suga et al. published XFEL data on the S3 state, and in late

2018 Kern et al. published XFEL structures for all the S-states.46,47

1.2 Open questions

Building on this increasing body of knowledge, the computational community has proposed a

multitude of reaction pathways for O2 formation. Disagreements between different proposals

usually arise around the following points of contention.

1.2.1 Why do XRD, EXAFS, and computational structures disagree?

As discussed already, the 2015 XFEL structure supposedly avoided the radiation damage that

dogged its 2011 predecessor. However, the 2015 XFEL structure is also inconsistent with EXAFS

spectra,48 and it is a matter of debate whether or not these structures are genuinely free of

radiation damage.49 The fact that XRD, EXAFS, and computational models remain inconsistent

is the source of much consternation.

One particular point of disagreement is the position of O5, the µ4-oxo-bridge located in the

quasi-centre of Mn1 and Mn4 (refer back to Figure 1.1). Specifically, the 2011 and 2015 struc-

tures reported unusually equal Mn1–O5 and Mn4–O5 distances, with O5 appearing “stranded”

between the two manganese atoms. In comparison, DFT and other methods tend to place O5 as

being bound to Mn4, as do recent XFEL structures published by Kern et al..47 This is not mere

nitpicking: given that this oxygen atom is almost certainly one of the two substrate oxygen atoms

that ultimately forms O2,46 the precise position and chemical bonding of this atom will have

far-reaching implications for the entire reaction mechanism. Increasingly accurate simulations

and experiments resolving the nature of the bonding of O5 are highly desirable, especially given

the potential inaccuracy of existing DFT calculations (which at most use hybrid functionals

and/or only consider small cluster models).

†Two groups had previously reported XFEL structures for PSII, but these did not achieve atomic resolu-
tion.44,45
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1.2.2 What are the oxidation states of the manganese atoms?

In addition to the protonation state, crystallography cannot unambiguously inform experimen-

talists as to the oxidation states of the metal ions of the OEC core. Other experimental methods

provide some insights: based on multiline electron paramagnetic resonance (EPR) signals of the

S0 and S2 states, the four Mn ions of the OEC are known to have total spin of 1
2 .11 Additionally,

EPR, electron nuclear double resonance (ENDOR), and x-ray absorption spectroscopy (XAS)

analyses agree that S2 contains a combination of Mn3+ and Mn4+. It follows that S0 must

be either Mn2+(Mn3+)3, Mn2+Mn3+(Mn4+)2, or (Mn3+)3Mn4+.9 This has implications for all

the other S-states, as upon each step of the Kok cycle one manganese atom is oxidised. The

so-called low oxidation state (LOS) paradigm assumes a S0 of Mn2+(Mn3+)3, and consequently

the mean Mn oxidation level is 3.0 in S1, 3.25 in S2, and so on. The alternative is the high

oxidation state (HOS) paradigm, where the mean Mn oxidation level is 3.5 in S1, 3.75 in S2,

and so on.

The HOS paradigm is preferred by many authors, largely due to comparisons of the Mn

K-edge energy of the OEC with a set of Mn oxy species as measured by XAS.50 This stance is

reaffirmed by Mn Kβ spectroscopy, resonant inelastic x-ray scattering (RIXS) K pre-edge results,

and most recently EPR.51† Other EPR, ENDOR, and EXAFS data appears to support the LOS

paradigm.53,54 Time-dependent density functional theory (TDDFT) calculations of x-ray near

edge structure (XANES) edge positions have also favoured the LOS paradigm,55 although more

recent results have shed doubt on these conclusions.37 Increasingly accurate calculations could

assist the oxidation state assignment.

1.2.3 What is the hydrogenation pattern of the OEC?

Protons are practically invisible in x-ray crystallography and do not appear in crystal structures

— and yet, the protonation of a system can have dramatic effects on its electronic structure

and the potential mechanisms of O2 formation. It has been the role of computational studies to

deduce the protonation of the OEC in each S-state.‡,§ On this front, there is little consensus,

with competing reaction mechanisms often proposing different protonation configurations.37,41

Competing protonation schemes are usually delineated on a basis of energetics and the resulting

metal-metal and metal-oxygen bond distances. Naturally, the hydrogenation pattern is strongly

influenced by the oxidation state paradigm,56 and is usually investigated using small cluster

models for the OEC.

1.2.4 What role do interconvertible states play?

In addition to the multi-line EPR signal indicative of a spin S = 1
2 ground state of S2, higher

spin signals corresponding to spin S ≥ 5
2 are observed under a variety of preparation conditions.

It has been demonstrated that the existence of two interconvertible forms of S2 rationalise

these observations,57 a proposal that has support from computational investigations.58–61 The

†For a detailed discussion of these results, see Ref. 52.
‡Recall that the system loses a hydrogen atom upon each step of the Kok cycle.
§Neutron diffraction experiments could also provide insight.
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Figure removed due to copyright. The original can be seen in Ref. 10
as Figure 5.

Figure 1.4: Possible pathways for oxygen insertion: (a) W3, via Mn162,63,67 (b) W3 (relying on inter-
convertible S2 states to move O5 close to Mn1),57 and (c) the “carousel” or “pivot” movement of water
about Mn4.48,61,68 Figure adapted from Ref. 10.

existence of these interconvertible states has ramifications for potential S2 → S3 mechanisms,62,63

with some proposed reaction mechanisms involving passing between these two states (such as

that depicted in Figure 1.3). The existence and importance of these states is contested; for

instance, recent XFEL data failed to detect S2 interconvertible states.47

It is also debated whether or not S1 has multiple interconvertible structures, or is simply

a single rigid structure.58,64–66 Likewise, interconversion in the S3 and S4 states has been pro-

posed.7

1.2.5 Which are the substrate water molecules? The S2 to S3 transition

There is substantial evidence that the oxo-bridge (known as O5) is one of the two substrate

waters.46,47 The identity of the second is much less clear. Crucially, when the system transitions

to the S3 state, a second oxygen atom (“Ox”) appears between Mn1 and Mn4.46,47 This may

be the second substrate oxygen, or alternatively the oxygen that replaces O5 after O2 release.

This leaves several candidates for the second substrate, including W2 (a water molecule bound

to Mn4), W3 (bound to Ca), or Ox itself, as illustrated in Figure 1.4.

Increasingly accurate assessments of energetics and reaction barriers will narrow down pos-

sible substrate candidates, as will Raman and Fourier-transform infrared (FTIR) spectroscopy,

which can help clarify the oxidation state of the manganese atoms and the protonation states

of the oxygen atoms.69

1.2.6 What is the O2 bond formation mechanism?

There are two competing proposals for O2 bond formation. The first (Figure 1.5a) is an oxo-

oxyl radical attack mechanism — that is, an unpaired electron on Ox makes it highly reactive,

and it forms an O–O bond with O5. This proposal has been championed by Siegbahn and
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Figure removed due to copyright. The original can be
seen in Ref. 10 as Figure 6.

Figure 1.5: The two competing O2 bond formation mechanisms: (a) a Mn4+-O• species in the S4 state
could lead to an oxo-oxyl radical attack mechanism, or (b) a Mn5+=O species could lead to a water-
nucleophilic attack mechanism (although not necessarily involving the two oxygen atoms pictured here).
Figure taken from Ref. 10.

co-workers,59,63,70,71 among others.72,73 The alternative (Figure 1.5b) is a nucleophilic attack

mechanism, whereby a highly electrophilic Mn5+=O species is attacked by a nucleophilic water

(or OH- molecule). This second mechanism is analogous to many well-characterised inorganic

water oxidation catalysts, and is favoured by Cox, Brudvig and others.7,10,74

Note that the difference between these two mechanisms lies in the precise location of a hole

across the Mn-O bond, so an accurate computational assessment of the spin density of the S4

state would help to clarify our understanding of this mechanism.

1.3 Thesis outline

Evidently, several of these open questions would benefit from increasingly accurate methods for

simulating metalloproteins, where we must be able to simulate large systems while also capturing

the complex electronic structure of transition metals. With this in mind, the structure of the

rest of this thesis is as follows.

I begin in Chapter 2 by introducing DFT, focusing on the challenges that metalloproteins

present to conventional DFT codes. To this end, I explore how DFT — as implemented in

ONETEP — achieves linear scaling, and I discuss the plethora of various functionalities that we

rely on when simulating biological systems.

The next two chapters explore how to accurately treat the strong electronic correlation

present in metalloproteins. Chapter 3 introduces density functional theory-plus-U (DFT + U ),

a widely used method for electronic structure prediction that provides a pragmatic approach to

correcting delocalisation error — a problem which lies at the heart of DFT’s underestimation of

the band gap. The reliability of any DFT + U calculation hinges on the choice of the parameter

U, and in the past decade linear response calculations have become an incredibly popular ap-

proach for obtaining these parameters ab initio. This chapter also presents a detailed study of

the role of spin in linear response calculations. It demonstrates that conventional scalar linear

response, which does not distinguish between spin channels, neglects screening by the electrons

in the same Hubbard site but of the opposite spin. I present alternative definitions for Hubbard

and Hund’s parameters that account for this screening, bringing them into line with the contem-

porary DFT + U functional. These are tested on manganese oxide and hexahydrated transition

metals. By establishing a systematic approach for including/excluding screening by the oppo-
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(a) (b) (c)

Figure 1.6: Three metalloproteins and their transition metal cores: (a) the OEC core of PSII (PDB
record 4UB6),34 introduced already, (b) the iron porphyrin in carboxymyoglobin (PDB record 1MYZ),80

and (c) the dicopper core of oxyhaemocyanin (PDB record 1OXY).81 Green, blue, red, yellow, and
purple atoms are carbon, nitrogen, oxygen, sulfur, and manganese; the orange atoms are calcium, iron,
and copper in (a-c) respectively.

site spin channel, these developments provide a route forward for performing DFT + U ( + J ) on

spin-polarised systems in a robust and consistent manner. The work of this chapter expands

upon the minimum-tracking linear response method, a reformulation of linear response which

is applicable in DFT codes that operate via direct minimisation (as opposed to iterating the

Kohn-Sham potential and density to self-consistency). Such codes cannot otherwise perform

the particular calculations that linear response usually requires. These advances make first-

principles DFT + U newly compatible with calculations on large and spatially complex systems

such as metalloproteins.

Chapter 4 then introduces an alternative method for treating the transition metal centres:

dynamical mean field theory (DMFT). DMFT is a much more sophisticated method that in-

cludes quantum dynamical effects and takes into account valence fluctuations, spin fluctuations,

and thermal excitations. Although DMFT is routinely used to describe bulk materials, it was re-

cently extended to molecular systems.75,76 In particular, Refs. 77–79 deployed an implementation

of an interface between ONETEP and TOSCAM, a DMFT toolbox. However, this implemen-

tation was never distributed – nor, crucially, was it ever properly incorporated into ONETEP.

This chapter reports an overhauled implementation of ONETEP+TOSCAM, which (a) restores

compatibility with the active version of ONETEP, (b) has no external dependencies that would

prevent its distribution, and (c) is straightforward to compile.

At this stage in the thesis, these theoretical and computational developments start to be ap-

plied to several metalloproteins, shown in Figure 1.6. The latter half of Chapter 4 demonstrates

the capabilities of ONETEP+TOSCAM on an iron porphyrin system (Figure 1.6b). This study

provides a logical first stepping-stone for the methodology.

https://www.rcsb.org/structure/4UB6
https://www.rcsb.org/structure/1MYZ
https://www.rcsb.org/structure/1OXY
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Chapter 5 applies these developments to haemocyanin, a dicopper cluster found in molluscs

and arthropods (Figure 1.6c), systematically investigating how the Hubbard Coulomb potential

U alters the electronic structure at the Cu2O2 site. I present an analysis of the quantum-

entangled low energy states and the dominant contributions to the charge and magnetic prop-

erties of Cu2O2. This enables the identification of a regime of parameters where the singlet is

stabilised for the structure in situ, in line with experiment. The resulting singlet is in the Heitler-

London regime (an entangled quantum superposition of two localised magnetic moments), and

is associated with incoherent scattering processes that reduce the lifetime of charge excitations.

Chapter 6 then turns to the inspiration for this thesis: the OEC. Making use of the linear-

scaling capacity of ONETEP, I present the geometry optimisation of a 1631-atom cluster model

of the OEC (at the level of DFT). Precursory DMFT calculations on a toy 75-atom model of

the OEC are then presented. These calculations provide an opportunity to demonstrate several

obstacles that arise; I outline in this chapter how they may be overcome.

Finally, Chapter 7 summarises the results of this thesis and discusses several promising topics

for future research.

There are also several appendices that provide background and contain several detailed

proofs.
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Chapter 2

Linear-scaling density functional

theory

2.1 The many-body problem and density functional theory

Quantum-mechanical simulations have played a key role in establishing our present understand-

ing of the structure and function of the OEC. A system of many nuclei and electrons such as the

OEC is fundamentally described at the quantum-mechanical level by a many-body wavefunction

|Ψ〉 and its Hamiltonian, which is (in atomic units†)

Ĥ = −1

2

∑
i

∇2
i +

1

2

∑
i 6=j

1

|ri − rj |
−
∑
i,I

ZI
|ri −RI |

−
∑
I

1

2MI
∇2
I +

1

2

∑
I 6=J

ZIZJ
|RI −RJ |

, (2.1)

with the terms being, respectively, the electronic kinetic energy, the electron-electron repulsion,

the electron-nuclear attraction, the nuclear kinetic energy, and the nuclear-nuclear repulsion.

(Electrons are denoted by lower case indices and nuclei by upper case, with charge ZI and mass

MI .) The total energy of such a system is given by

E =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 . (2.2)

The ground state of the system minimises this energy, and it is this ground state that one

usually wants to obtain. However, in full this equation is intractable, so it is necessary to

make some simplifying assumptions. It is common to assume that compared to the timescale

of nuclear motion, electrons will relax rapidly to their ground-state configuration. This is the

Born-Oppenheimer approximation. For the purposes of this thesis we will further limit ourselves

to electrons in a static array of nuclei, in which case the third term of Equation 2.1 takes the

form of an external potential
∑

i Vext(ri), the fourth term can be ignored, and the final term

becomes a constant that can be ignored for the purposes of energy minimisation.

However, this system remains vastly complex: the wavefunction Ψ(r1, ..., rN ) is 3N -dimensional,

†In atomic units the electron rest mass me, the elementary charge e, and the reduced Planck’s constant ~
are all unity; the resulting unit for length is the Bohr radius a0 ≈ 5.292 × 10−11 m; for energy, the Hartree
Eh ≈ 4.359× 10−18 J.

11
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and hence the size of the wavefunction’s configuration space scales exponentially with respect

to particle number — which is immensely prohibitive. This obstacle led Walter Kohn to —

somewhat provocatively — state during his Nobel Lecture that for systems on the order of 100

or more atoms the many-electron wavefunction is “not a legitimate scientific concept”, as it

cannot be calculated or recorded with sufficient accuracy.82 Or, in the words of Paul Dirac,83

“The underlying physical laws necessary for the mathematical theory of a large part

of physics and the whole of chemistry are thus completely known, and the difficulty is

only that the exact application of these laws leads to equations much too complicated

to be soluble. It therefore becomes desirable that approximate practical methods of

applying quantum mechanics should be developed, which can lead to an explanation

of the main features of complex atomic systems without too much computation.”

2.1.1 The Hohenberg-Kohn theorems

Density functional theory (DFT) is one such approximate practical method. Instead of dealing

with the 3N -dimensional many-body wavefunction, DFT recasts the electronic problem in terms

of the three-dimensional electronic density n(r). This simplification is made possible by means

of the Hohenberg-Kohn theorems,18 which state that there exists a functional of the density

such that

E[n(r)] ≥ EGS , (2.3a)

E[nGS(r)] = EGS . (2.3b)

That is, there exists a functional that always gives values greater than or equal to the ground-

state energy EGS , and gives the ground-state energy for the ground-state density.

2.1.2 The Kohn-Sham construction

However, this is only a statement of existence: we do not know the precise form of this functional,

as the proofs of the Hohenberg-Kohn theorems only talk about it in very abstract terms.† On

the basis of what we do know about the underlying Hamiltonian, we can at least decompose the

energy functional into several terms

E[n] = T0[n] +

∫
drn(r)[Vext(r) + 1

2Φ(r)] + Exc[n] (2.4)

where T0 is the kinetic energy, Φ(r) =
∫
dr′ n(r′)
|r−r′| is the Hartree term, and Exc[n] is the exchange-

correlation (xc) functional, which contains all the terms whose form is unknown and must be

approximated (specifically, non-classical electron-electron interactions and the difference in the

kinetic energy between the interacting and non-interacting systems.)

†In proving Equations 2.3a and 2.3b via the Levy construction, one defines a universal functional F [n] =
minψ→n〈ψ|T̂ + V̂ee|ψ〉 – that is, the lowest expectation value of the kinetic and electron-electron interaction
operators of any possible wavefunction that gives rise to the desired density n.84 (“Universal” because all systems
have the same T̂ and V̂ee operators, cf. Vext which depends on the location and charge of the nuclei.) Written in
this way, F [n] — and by extension, E[n] — is a statement of existence and no more.
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Kohn and Sham astutely noticed that a system of non-interacting particles subject to the

external potential Veff(r) = Vext(r)+Φ(r)+Vxc[n](r) will share the same ground-state density as

this interacting system, where Vxc = δExc[n]
δn(r) .19 (To see this, one need only apply the variational

principle to Equation 2.4.) Consequently, the ground-state density of the interacting system can

be obtained via the auxiliary problem[
−1

2
∇2 + Veff[n](r)

]
ϕi(r) = εiϕi(r), (2.5a)

n(r) =
N∑
i=1

|ϕi(r)|2. (2.5b)

where crucially this auxiliary system is non-interacting and will therefore be much easier to solve.

These are the Kohn-Sham (KS) equations. Since the effective potential is itself dependent on

the system density, the equations must be solved self-consistently: that is, given some initial

density n(r) we can generate an effective potential Veff [n](r), for which we solve Equation 2.5a

to obtain the Kohn-Sham orbitals {ϕi(r)}. From these we can obtain an updated density via

Equation 2.5b, then update the effective potential, and so on until the density and potential

converge. This would yield the exact ground state of the system if the form of the exact

exchange-correlation functional was known, but at best it can only be approximated.†,‡

2.1.3 Exchange-correlation functionals

Substantial scientific effort has produced a plethora of xc functionals to approximate exchange

and correlation. Of these, perhaps the simplest and most näıve is the local density approximation

(LDA), which assumes the exchange and correlation are only dependent on the local electron

density:

ELDA
xc [n] =

∫
drn(r)εxc(n(r)) (2.7)

where for the exchange part we take the exact result for the homogeneous electron gas

ELDA
x [n] = −3

4

(
3

π

)1/2 ∫
drn(r)4/3 (2.8)

and the correlation energy is taken from quantum Monte Carlo (QMC) calculations on the

homogeneous electron gas by Ceperley and Alder.85

To improve upon this, the next obvious step is to include dependence on the gradient of the

†Note that while the real and auxiliary systems have matching densities, their energies differ; to recover the
real energy (Equation 2.4) from the eigenenergies of the auxiliary system {εi}, we make the correction

E[n] =

occ∑
i

εi +

∫
drn(r)

(
εxc[n](r)− Vxc[n](r)− 1

2
Φ(r)

)
(2.6)

which removes the double-counting of terms in the Hartree term and the xc functional.
‡Also note that the kinetic energy T0[n] is the kinetic energy of the non-interacting Kohn-Sham system (hence

the “0”); the exact xc functional would include the difference between the kinetic energies of the interacting and
non-interacting systems.
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density:

EGGA
xc [n] =

∫
drn(r)εxc(n(r),∇n(r)) (2.9)

known as generalised gradient approximations (GGAs). By including more and more terms in

the xc functional, we can construct a whole hierarchy of functionals varying in accuracy and

complexity.

With a suitable xc functional at our disposal, DFT provides a tractable method of obtaining

approximate solutions for the ground-state density of many-electron systems. Over the past few

decades, DFT has established itself as a go-to method for such calculations.20,21 This success

hinges on the fact that for many systems, it turns out that these approximate xc functionals are

able to predict the density, energy, and derived properties of interest with sufficient accuracy.

2.1.4 A standard implementation of DFT: plane waves

When it comes to practically solving Equations 2.5a and 2.5b, it is common to adopt a basis of

plane waves in order to take numerical advantage of Bloch’s theorem. In this framework, our

Kohn-Sham eigenfunction can be written as

ϕi(r) =
∑
q

ciq ×
1√
Ω

exp(iq · r) =
∑
q

ciq〈r|q〉 (2.10)

where ciq are the expansion coefficients of the wavefunction now expressed in terms of or-

thonormal plane waves. In this basis the Schrödinger equation for the Kohn-Sham system

(Equation 2.5a) becomes

∑
q

∫
dr 〈q′|r〉

(
−1

2
∇2 + Veff[n](r)

)
〈r|q〉ciq = εiciq′ . (2.11)

If the physical system in question is periodic, then the effective potential is also periodic:

Veff [n](r) =
∑
m

Veff [n] (Gm) exp (iGm · r) (2.12)

where {Gm} are the reciprocal lattice vectors. Thus〈
q′
∣∣∣V̂eff [n]

∣∣∣q〉 =
∑
m

Veff (Gm) δq′−q,Gm (2.13)

– that is, plane waves |q〉 and |q′〉 are only coupled if they differ by a reciprocal lattice vector.

(The kinetic energy, meanwhile, does not couple different plane waves.) So if we define a new

wave-vector k = q + Gm = q′ + Gm′ then our Schrödinger equation becomes the k-dependent∑
m′

Hmm′ [n](k)cim′(k) = εi(k)cim(k). (2.14)

where

Hmm′ [n](k) =
1

2
|k + Gm|2 δmm′ + Veff [n] (Gm −Gm′) . (2.15)
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Furthermore, we now have a k-dependent eigenfunction

ϕik(r) =
∑
m

cim(k)× 1√
Ω

exp (i (k + Gm) · r) = uik(r) exp(ik · r) (2.16)

Thus, if we adopt a plane-wave basis, instead of solving Equations 2.5a and 2.5b self-consistently,

we now solve ∑
m′

Hmm′ [n](k)cim′(k) = εi(k)cim(k) (2.17a)

n(r) =
1

Nk

∑
ik

f (εik)
1

Ω

∑
mm′

c∗im(k)cim′(k) exp (i (Gm′ −Gm) · r)︸ ︷︷ ︸
nik(r)=|ϕik(r)|2

(2.17b)

self-consistently. (In the calculation of n we have averaged over k points, and f is the Fermi-

Dirac distribution.)

2.2 The challenge of size

A number of obstacles stand in the way of using plane-wave DFT to accurately simulate systems

such as the OEC. Plane waves are well-suited to describing periodic functions, rather than

the heterogeneity of proteins, and they struggle especially with large regions of vacuum that

inevitably feature in protein systems.† But a more insurmountable problem is the issue of

scale: photosystem II itself comprises some 120,000 atoms, which is far too large a system

to be included in a calculation in its entirety. To perform simulations of the OEC, one must

instead consider a system incorporating the OEC core and a selection of the nearby residues,

discarding more peripheral atoms to make the system a tractable size.‡ A good cluster model

must be sufficiently large as to accurately capture the behaviour of the system without being

prohibitively computationally expensive. This begs the question: how large a cluster does one

need?

Intuitively, one might hope that only the chemically active species need be included in any

cluster model — but this is not the case. Exclusion of more peripheral residues§ may induce (or

suppress) polarisation or charge transfer across the system, and spurious forces on the periphery

of the cluster can propagate to the centre of the cluster.86 This can ultimately affect the geometry

(and hence the electronic structure) of DFT-optimised clusters.

One approach for including more of the biological system at minimal computational cost

is quantum mechanics/molecular mechanics (QM/MM). In QM/MM, a central subsystem is

treated at the quantum-mechanical level, and a secondary shell of atoms is treated using classical

molecular mechanics. In principle, the quantum mechanical (QM)-only and QM/MM methods

†Most codes assume periodic boundary conditions, so large areas of vacuum or solvent are required to prevent
periodic images from interacting.

‡Presently, computational studies of the OEC tend to treat anywhere from 75 to 250 atoms at a quantum-
mechanical level of theory.

§A residue is a single amino acid within a peptide chain.
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should give the same result in the large-QM-system limit.

QM/MM studies of biological systems have reported disappointingly slow convergence (with

respect to QM region size) of free energies,86–88 barrier heights,89 nuclear magnetic resonance

(NMR) shieldings,90,91 solvation effects,92,93 and excitation energies.94 In the specific case of the

OEC, it has been shown that spectroscopic properties do not adequately converge (with respect

to cluster size) for 225-atom systems.95 Furthermore, QM/MM approaches fail to agree with

analogous QM-only calculations in the large-system limit. Studies on other biological systems

have reported that properties only begin to converge for systems of the size of 500 atoms.94,96

Accurately simulating a system of 500 (or more) atoms is a substantial challenge. In the

case of a traditional DFT calculation of N atoms using a plane-wave basis of size M , the

requirement to orthogonalise all of the eigenstates (which scales as O(N2) × O(M)) quickly

becomes prohibitively expensive.†

In order to perform calculations on proteins, therefore, it is necessary to recast the DFT

formalism so that it is amenable to linear scaling. Usually this is done by adopting an atom-

centred localised basis such as numerical atomic orbitals φα(r) = ϕnαlα(rI)Ylαmα(r̂I) (where

rI = r − RI). If these orbitals {φα} are subject to a radial cut-off then the number of non-

diagonal elements of the Hamiltonian Hαβ = 〈φα|ĤKS |φβ〉 and the overlap matrix Sαβ = 〈φα|φβ〉
only grows linearly with system size. Nevertheless, finding the KS eigenstates still involves the

O(N3) diagonalisation of Hαβ. Furthermore, by adopting a local basis such as numerical atomic

orbitals, one loses the ability to systematically extend a basis set: in the case of a plane-wave

basis, the accuracy of the basis is controlled solely by the energy cut-off; in a localised basis one

can choose increasingly complex basis sets (for instance, multiple zeta or split valence bases),

but these extensions are by no means systematic.

2.3 ONETEP

ONETEP (Order-N Electronic Total Energy Package) is a code that implements DFT using

a local basis which achieves true linear scaling systematically.22 The following section explains

how this is achieved.

2.3.1 Density kernel and NGWF formalism in ONETEP

The set of KS orbitals {ϕn(r)} of DFT can be equivalently described by the single-particle

density matrix

ρ̂ =
∑
n

fn|ϕn〉〈ϕn|; ρ(r, r′) =
∑
n

fnϕ
∗
n(r)ϕn(r′) (2.18)

†Näıvely, solving the KS system (Equations 2.5a and 2.5b) would require constructing and diagonalising a
M -by-M Hamiltonian, which scales as O(M3). With plane waves, M can be of the order of 106, which means
this matrix would not be able to be stored in RAM, let alone diagonalised. Instead, iterative diagonalisation
procedures (such as the Davidson method97) can be used to isolate and compute the lowest Nb � M energy
eigenvectors (where Nb is the number of bands, which is typically on the order of the number of electrons N),
resulting in the oft-quoted cubic scaling of plane-wave DFT.
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(a) (b)

Figure 2.1: A single KS orbital (a) and an optimised NGWF (b) for 4-methyl-1-pentene. The KS
orbital extends across the whole system, whereas the NGWF is localised and therefore preferable as a
basis function.

where fn is the occupancy of the nth orbital. The trace of this matrix yields the density of the

system (n(r) = 2ρ(r, r)) and the total energy of the non-interacting auxiliary system is given by

E = 2Tr
[
ρ̂Ĥ
]
, (2.19)

which when performing DFT calculations is minimised subject to particle number and idem-

potency conservation.† (Note that this formulation avoids having to perform diagonalisation,

which scales cubically.) The energy of the interacting system is then obtained by making the

standard double-counting corrections for the Hartree and exchange-correlation terms.

Note that already the system has N occupied states and therefore the size of the density

matrix defined in this fashion scales as N2. To achieve linear scaling, ONETEP transforms

from the basis of KS molecular orbitals (which extend over the entire system) to a basis of

non-orthogonal generalised Wannier functions (NGWFs),98 defined as

φαR(r) =
V

(2π)3

∫
BZ

e−ik·R
(∑

n

ψnk(r)Mnα

)
dk, (2.20)

which is a Fourier transform of Bloch states ψnk mixed by the matrix M. In the case that M is

the identity, the functions are orthogonal. (ONETEP uses a non-orthogonal form.) The label α

allows for the possibility of more than one basis function per unit cell, R is the lattice vector,

and the integral runs over the first Brillouin Zone. NGWFs are spatially localised, which makes

them suitable for linear-scaling codes (see Figure 2.1).

To implement this new basis the density matrix is reformulated as

ρ(r, r′) =
∑
n

fnϕn(r)ϕ∗n(r′)

=
∑
n

fn
V

(2π)3

∫
BZ

ψnk(r)ψ∗nk(r′)dk

=
∑
α,β,R

φαR(r)Kαβφ∗βR(r′) (2.21)

†Note that these expressions apply to systems that are not spin-polarised, hence the various factors of two.
It is straightforward to generalise the expressions to account for spin.
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where now Kαβ is the density kernel, the representation of the density matrix in the NGWF

basis

Kαβ =
∑
n

Nα
n fn(N †)βn, (2.22)

and N is the inverse of M from Equation 2.20. In this new framework, the total energy is E =

KαβHαβ, the idempotency restriction is KαγSγδK
δβ = Kαβ and the normalisation condition is

KαβSβα = N , where Sαβ =
∫

drφα(r)φβ(r) is the overlap matrix between NGWFs.

Crucial to the success of linear-scaling DFT is the “near-sightedness” of the density ma-

trix/kernel: it can be shown that the density matrix (and thus also the density kernel) is highly

diagonally-dominated, with ρ(r, r′) decaying very rapidly with |r− r′|.99† Thus the non-zero el-

ements Kαβ of the density-kernel corresponding to NGWFs centred further apart than a cut-off

rk can be discarded. This ensures the density matrix is sufficiently sparse to guarantee linear

scaling (although in practice this truncation need not be imposed).

Thus far, this switch to NGWFs is nothing more than a mathematical reformulation. But

this is where the approach of ONETEP diverges quite substantially from most DFT codes. When

it comes to basis sets, the important considerations are (a) how few basis functions do we need

to accurately represent the physical system and (b) if we don’t have enough basis functions, how

do we generate more? One of the distinct advantages of a plane-wave basis is that its accuracy

can be systematically improved: by progressively including higher-k waves in the basis set, we

converge on the true solution. (But on the other hand, many plane waves are often required.) At

the other end of the spectrum, atomic orbital basis sets require fewer basis functions (because

they more closely resemble electronic states) but extending the basis is non-trivial, requiring

human expertise and effort.

ONETEP uses an alternative approach: a minimal basis set of NGWFs is used, but the

basis functions themselves are optimised during the course of a calculation in situ. As they

are optimised, they respond and adapt to their surroundings. Although this requires additional

computational effort, the resulting basis set is of minimal size and of high accuracy.

The optimisation of the NGWFs is performed in tandem with the optimisation of the density

kernel in a self-consistent fashion, as illustrated in Figure 2.2. Below, I will describe how the

NGWF and density kernel update steps are achieved.

2.3.2 NGWF optimisation

To facilitate their optimisation, the NGWFs are expanded in terms of frequency-limited delta

functions — or “psinc” functions‡ — shown in Figure 2.3b. A psinc function centred on the

point rklm is given by

Dklm(r) =
1

N1N2N3

J1∑
P=−J1

J2∑
Q=−J2

J3∑
R=−J3

ei(Pb1+Qb2+Rb3)·(r−rklm) (2.23)

†This decay is exponential for insulators and metals at finite temperatures, but only algebraic for zero-
temperature metals.

‡Periodic sinc functions, where sinc(x) = sin(x)/x.
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Guess Kαβ and {φα}

Improve
guess of Kαβ

Converged with
respect to Kαβ?

Yes

No

Improve guess
of {φα}

Converged with
respect to {φα}?

Yes

No

Solution found

Figure 2.2: Process by which ONETEP finds a self-consistent ground-state solution for Kαβ and {φα}.

which is zero at all grid points save rklm. Psinc functions are orthogonal by construction.

Additionally, the projection of an arbitrary periodic function f(r) onto a psinc function is∫
V

drDklm(r)f(r) = WfD(rklm), (2.24)

where fD(r) is the bandwidth-limited f(r) and W the volume per grid point. The NGWFs can

be expressed in both the psinc basis

φα(r) =

N1−1∑
k=0

N2−1∑
l=0

N3−1∑
m=0

Cklm,αDklm(r) (2.25)

and the plane-wave basis

φα(r) =
1

V

J1∑
P=−J1

J2∑
Q=−J2

J3∑
R=−J3

φ̃α (Pb1 +Qb2 +Rb3) ei(Pb1+Qb2+Rb3)·r. (2.26)

Crucially, the size (and therefore accuracy) of these representations may be related to an energy

cut-off (that of the maximum wavevector the grid can support). This means that the basis set of

NGWFs expanded in terms of psinc functions can be systematically improved by increasing this

cut-off.100 Compare this to split-valence basis sets, for which there is no systematic approach

for expanding the basis.

The amplitudes φ̃α (Pb1 +Qb2 +Rb3) are the result of a discrete Fourier transform on the

psinc expansion coefficients Cklm,α, and thus one can still make use of the computational power

of Fourier transforms throughout the ONETEP calculation: that is, we are able to calculate

energy contributions in real- or reciprocal-space as convenient.101†

†In order to do all this we must adopt periodic boundary conditions.
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simulation cell

FFT box of red atom

(a) (b)

Figure 2.3: (a) The construction of a FFT box in a cartoon system of four atoms, each shown with
their nuclei (solid circles) and NGWF radii (translucent). The underlying psinc grid is shown as grey
points. The red atom has three neighbouring atoms (blue, green, and purple). Its FFT box encloses its
own NGWFs and those of its neighbours. (b) A psinc function. (N.B. The grid shown here serves as a
visual aid. It is eight times finer than the psinc grid. Thus, unlike the psinc grid, it has non-zero points
in addition to the central peak.)

In the above equations, the indexes k, l, and m spanned the whole simulation cell. But

in order to achieve linear scaling, we must apply several restrictions to our representations of

the NGWFs. The first is to confine every NGWF to a sphere centred on the atom the NGWF

belongs to. The second is to associate a fast Fourier transform (FFT) box with each NGWF.

Each FFT box is centred on its corresponding atom, and is sufficiently large to encompass all

other NGWFs that overlap with the central NGWF, as illustrated in Figure 2.3a. We then

restrict the calculation of all energy terms to operations within FFT boxes (rather the full

simulation cell). Roughly, ONETEP will start outperforming plane-wave methods when the

FFT box becomes smaller than the simulation cell.

The NGWFs are optimised using the conjugate gradient method.102 The result is shown in

Figure 2.4. By the time the calculation is complete, the now optimised basis set of NGWFs

will clearly serve as an excellent basis set for capturing electronic behaviour. This approach

is especially well suited for simulating organic molecules: plane waves are good at describing

periodic structures such as crystals, but they struggle with heterogeneity and large regions devoid

of atoms, both of which are common in biological systems. Because NGWFs are local they do

not encounter such difficulties.

2.3.3 Density kernel optimisation

Every time the NGWFs are updated, the density kernel is optimised (refer back to Figure 2.2).

The crucial consideration during the density kernel optimisation is that the idempotency of the

kernel must be maintained. This is achieved by performing a purification transformation via the

method of Li, Nunes, and Vanderbilt.104 (We also use adaptive purification to monitor extremal

eigenvalues, and in some instances we additionally apply a penalty functional method.105 These

will not be discussed here; details can be found in Ref. 106.)
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Figure removed due to copyright. The original can be
seen in Ref. 103 as Figure 5.

Figure 2.4: A NGWF centred on the carbon of an ethene molecule at the start and end of a calculation.
It is initialised as the 2p pseudo-atomic orbital (PAO). Figure taken from Ref. 103.

Figure removed due to copyright. The original can be seen in
Ref. 106 as Figure 5.

Figure 2.5: An illustration of the purification transform for three different starting orbital occupancies
(a) an initial occupancy of 2/5 converges to 0; (b) an initial occupancy of 6/5 converges to 1; (c) an initial
occupancy of − 2/5 converges to 1. Figure taken from Ref. 106.

A simple purification algorithm

The purification methods in ONETEP are based on the following simple iterative process by

McWeeny107

ρk+1 = 3ρ2
k − 2ρ3

k. (2.27)

In the limit of k →∞, this procedure (illustrated in Figure 2.5) drives the eigenvalues of ρk

towards either zero or one, provided the initial eigenvalues lie in the interval (1−
√

5
2 , 1+

√
5

2 ). If the

initial eigenvalues lie within the slightly tighter bounds (−1/2, 3/2) then the purified occupancies

remain in [0, 1]. However, as Figure 2.5c demonstrates, occupancies can flip from “unoccupied”

to “occupied” and vice versa. This can be avoided if starting occupancies lie within the tighter

bounds (1−
√

3
2 , 1+

√
3

2 ).

Li-Nunes-Vanderbilt method

Building upon the simple purification algorithm, the Li-Nunes-Vanderbilt method104,108 defines

the density matrix ρ in terms of an auxiliary matrix σ via

ρ = 3σ2 − 2σ3 (2.28)

where σ is defined by

σ(r, r′) =
∑
αβ

φα(r)Lαβφ∗β(r′) (2.29)
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L is an auxiliary kernel related to the original kernel by K = 3LSL − 2LSLSL. Minimising

the energy by optimising the matrix elements of the auxiliary kernel in place of the original

kernel naturally drives the density matrix to idempotency. (Specifically, if the eigenvalues of L

remain within (−1/2, 3/2) then the purified density matrix will be weakly idempotent i.e. with

eigenvalues in [0, 1].)

In addition to idempotency, we must enforce normalisation. This can be achieved via a

simple rescaling of the purification transformation

ρ =
Ne

Tr [3σ2 − 2σ3]
(3σ2 − 2σ3) (2.30)

and with the revised auxiliary kernel defined via

Kαβ =
Ne

Tr [3LSL− 2LSLSL]
(3LSL− 2LSLSL)αβ . (2.31)

When this is used to generate a search direction, the extra terms in the denominator automat-

ically project out the electron number gradient. During this process the extremal occupancies

are monitored, and adaptive purification is applied if necessary.

Real vs. imaginary representation and equivalence to k-point sampling

ONETEP does not support k-point sampling† (although work to add this functionality is ongo-

ing). In effect, we only sample k = Γ and consequently our NGWFs and KS eigenfunctions are

real. Because ONETEP is designed to tackle large, irregular systems where plane-wave treat-

ments are not well-suited, this is not a critical shortcoming. But if we want to treat periodic

systems or benchmark calculations against a plane-wave code, one can achieve the equivalent

of k-point sampling using super-cells.‡ While this scales far worse than k-point parallelism, it

does allow us to sample non-zero k if need be.

At this stage in the formalism, ONETEP can perform DFT. But a number of additional

functionalities – unnecessary for the most basic of DFT calculations – prove indispensable when

it comes to biological systems. These are outlined in the remainder of this section.

†That is, performing the sum over k in Equations 2.17a and 2.17b.
‡Consider a periodic one-dimensional system with n k-points. Assuming time-reversal symmetry, Bloch waves

satisfy ψ−k = ψ∗k and ε(−k) = ε(k). This means that instead of working with Bloch waves as our eigenfunctions
on [−a/2, a/2] we can equivalently work with the combinations ψ̃(r) = ψk(r) + ψ−k(r) and i[ψk(r) − ψ−k(r)]
defined over [−na/2, na/2]. These new eigenfunctions (a) are real and (b) are Bloch waves with k = Γ since
ψ̃(r) = exp(i0r)v(r) where v(r) = ψk(r) + ψ−k(r) is a real periodic function. Furthermore, v(r) must have
periodicity na since

ψ̃(r + na) = ψk(r + na) + ψ−k(r + na)

= exp(ik(r + na))uk(r + na) + exp(−ik(r + na))u−k(r + na)

= ψk(r) + ψ−k(r)

= ψ̃(r) (2.32)

where the second step follows because k ∈ {−(n − 1)π/na, ..., π/a} and we have assumed n is even. Therefore,
instead of the original system with n k-points, we can equivalently work in a system with periodicity na and
constrain ourselves to real orbitals.
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2.3.4 Implicit solvation

Even with linear scaling it is prohibitively expensive to consider solvent molecules explicitly. To

make computation feasible, solvents are usually modelled as continuous polarisable dielectrics.

This also avoids the problem of the many possible configurations an explicit solvent can adopt,

which would require averaging over inaccessibly long timescales. In effect, a continuous dielectric

provides an approximation to a time-average over configurations.

ONETEP includes solvation effects by defining a smooth dielectric cavity around the solvated

molecule, whose relative permittivity is defined as

ε(r) = 1 +
ε∞ − 1

2

(
1 +

1− (n(r)/n0)2β

1 + (n(r)/n0)2β

)
(2.33)

where n(r) is the electronic density, ε∞ is the bulk relative permittivity, and n0 and β are

free parameters that define the density value where the permittivity drops to ε∞/2, and the

smoothness of the transition.27,109 Note that limn(r)→0 ε(r) = ε∞ and limn(r)→∞ ε(r) = 1.

The solvation routine solves the non-homogenous Poisson equation ∇[ε(r)φ(r)] = ntot(r)

(where ntot includes nuclear charges) to obtain the potential φ due to the molecular density in

the dielectric. Because ε(r) is density-dependent, a self-consistent solution must be found. Once

this is achieved, the potential φ is then used in place of the Hartree potential in the Kohn-Sham

energy functional.

It is expensive to repetitively search for ε(r) every time n(r) is revised (which happens many

times during DFT calculations during the search for a self-consistent ground-state electronic

density). To avoid having to perform this inner self-consistency loop, an in vacuo calculation

for the system is typically performed first, yielding the vacuum density solution nvac(r). This

density is then used to generate the dielectric cavity according to Equation 2.33, and this cavity

is then left unchanged during the subsequent solvated calculation. This procedure reduces wall

time and computational demands by about an order of magnitude, and yields solvation energies

which are within several percent of the full self-consistent solution.109

The use of an implicit solvation model is especially important in quantum mechanical cal-

culations of biological systems. Proteins are naturally found in solution, so when modelling

small proteins it is standard practice to do so with an implicit solvent. For larger proteins it is

important for a different reason: it is a widely held misconception that xc functionals that do

not include HF exchange cannot be applied to large systems — a belief that stems from reports

of unphysical closing of the gap between the highest occupied molecular orbital (HOMO) and

lowest unoccupied molecular orbital (LUMO) in calculations of proteins and water clusters.110

However, it has been demonstrated that this is due to the emergence of a significant dipole

across the entire system (largely due to unterminated hydrogen bonds at the cluster boundary).

Placing such systems in an implicit solvent helps to compensate for the anomalous dipole and

restores the expected HOMO-LUMO gap.111
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2.3.5 Dispersion

Dispersion forces — or van der Waals forces — play an important role in determining the struc-

ture and behaviour of biological systems. However, semi-local DFT xc functionals are inadequate

for describing long-range electronic correlation, as they (a) do not consider instantaneous den-

sity fluctuations and (b) are “short-sighted”: that is, they consider only local properties in

the calculation of exchange and correlation. Consequently, such functionals only give rise to

exchange-correlation interactions between two atoms if their electronic densities overlap — and

because overlap decays exponentially with distance, they often underestimate dispersion.

There are a number of approaches for incorporating dispersion into DFT calculations. One

approach is to construct exchange correlation functionals which explicitly include dispersion via

a non-local term of the form Enl =
∫∫

dr1dr2 n(r1)ϕ(r1, r2)n(r2) for some potential ϕ. This has

been done with varying levels of success (see Ref. 112 for details). A more pragmatic approach is

to add a pair-wise interatomic R−6 correction term to the calculated energy as a post-processing

procedure,† with parameters empirically fitted to reproduce binding energies of a wide range of

†The potential of a classical proton/electron system is given (in atomic units) by

V (R) =
rI · R̂
R2

, (2.34)

where rI is the position of the electron relative to the proton at the origin. If there is a second proton/electron
system where the proton is at R = Rẑ and the electron rJ relative to the proton, then the energy of the second
dipole in the field of the first is given by

Wdd = −E · rJ = ∇V · rJ =
1

R3
(xIxJ + yIyJ − 2zIzJ). (2.35)

The Hamiltonian for the analogous quantum mechanical system is Ĥ = Ĥ0I+Ĥ0J+Ŵdd, where Ŵdd = 1
R3 (x̂I x̂J+

ŷI ŷJ − 2ẑI ẑJ). Provided that the atoms are sufficiently distant, there is no interaction between them asides from
the dipole term, so in the absence of the dipole interaction

(Ĥ0I + Ĥ0J)|ϕInlm;ϕJn′l′m′〉 = (En + En′)|ϕInlm;ϕJn′l′m′〉, (2.36)

and the ground state is |ϕI100;ϕJ100〉. If the dipole-dipole interaction is treated as a perturbation to the system,
the first order correction to the energy is

E(1) = 〈ϕI100;ϕJ100|Ŵdd|ϕI100;ϕJ1,0,0〉 =
1

R3
〈ϕI100|x̂I |ϕI100〉︸ ︷︷ ︸

0

〈ϕJ100|x̂J |ϕJ100〉︸ ︷︷ ︸
0

+ similar terms for ŷ and ẑ = 0, (2.37)

since for any stationary state of the atom, the mean values of the components of the position operator are all
zero. The second order energy correction is

E(2) =
∑

n,l,m,n′,l′,m′

|〈ϕInlm;ϕJn′l′m′ |Ŵdd|ϕI100;ϕJ100〉|2

2E1 − En − En′
, (2.38)

where {n, l,m, n′, l′,m′} = {1, 0, 0, 1, 0, 0} is excluded from the summation and Ei is the energy as given by
Ĥ0|ϕi,l,m〉. Since 2E1 − En − En′ < 0 and Ŵdd ∼ R−3 it follows that this term is of the form

E(2) = − C

R6
, (2.39)

and thus dipole-dipole van der Waals forces are attractive and the energy scales as R−6. Of course, a com-
plete treatment of this system would also have to consider the higher order multipoles (e.g. dipole-quadrupole,
quadrupole-dipole, quadruple-quadrupole etc.) — and indeed, such treatments exist.113 It transpires that these
terms also have zero contribution at first order, and hence the second-order effect of Ŵdd will constitute the largest
energy correction. For a more complete discussion, the reader is referred to Ref. 114.
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dimers.115 For example

EvdW = −1

2

∑
I,J

f6(RIJ , R
0
I , R

0
J)C6IJR

−6
IJ , (2.40)

where I and J are two atoms in the system, RIJ is the distance between them, R0
I and R0

J are

the atoms’ vdW radii, C6IJ is the two-body dispersion coefficient, and the R−6
IJ singularity is

removed by a short-ranged damping term f6 (where limRIJ→0 f6 = 0). This damping term is

further justified by the fact that any exchange functional should provide an adequate description

of short range interactions and therefore a correction term is unwanted at close distances. There

are a variety of different damping functions: for example, the damping function of Elstner et al.

is115

f6(RIJ , R
0
I , R

0
J) =

(
1− e−cdamp(RIJ/R0

IJ)
7)4

; R0
IJ =

(
R0
I

)3
+
(
R0
J

)3(
R0
I

)2
+
(
R0
J

)2 (2.41)

while Grimme proposed116

f6(RIJ , R
0
I , R

0
J) =

1

1 + e−cdamp(RIJ/R
0
ij−1)

; R0
IJ = R0

I +R0
J . (2.42)

Meanwhile, the C6IJ parameters are typically found by fitting to experimental data or high-

accuracy quantum mechanical calculations. The current scheme for calculating vdW corrections

in ONETEP assigns to each atom C6I coefficients according to which element it is. These coeffi-

cients have been predetermined empirically by fitting dispersion energy calculations to a database

of small molecule dimers.117 From these single-atom parameters the pair parameters C6IJ are

constructed (for example, Elstner et al. employ the geometric average C6IJ =
√
C6IC6J).115

Using parameters that are only dependent on the element type of the atom is a substantial

approximation, since the C6IJ coefficients ought to be sensitive to the atoms’ surroundings.

Atom-typing can go some way to addressing this issue, but one class of especially successful

approaches involves density partitioning.118–120 In these schemes, the electronic density is par-

titioned onto individual atoms, and then the C6 coefficients are calculated on-the-fly using the

resulting atom-in-molecule charges as well as free atom data. Alternatively, the C6 coefficients

can be determined via TDDFT, but this gives average errors of 15-20%, with some values devi-

ating by up to 60%.118

2.3.6 Pseudopotentials

The core electrons of an atom are typically closely localised about the nucleus, have several nodes,

and are highly insensitive to their surroundings. This means that calculating these deep-lying

orbitals will be computationally intensive (requiring a high grid resolution) — disproportionate

to their importance in determining the chemical properties. To greatly speed up calculations,

the all-electron problem can be recast as a valence-electron problem, involving weaker nuclear

potentials called pseudopotentials (PSPs). By absorbing the core electrons into the nuclear

potential, our new calculations are less computationally intensive but no less accurate (provided

the PSP is well constructed, of course).
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Figure 2.6: (a) A cartoon of a norm-conserving PSP, showing the all-electron potential and resulting
radial wavefunction (blue, dashed) and a PSP and the resulting pseudo-wavefunction (red, solid). Note
that the potentials and wavefunctions match outside of rc, but within rc the all-electron wavefunction
oscillates much more rapidly. (b) The all-electron (AE) and pseudoatom (PS) valence atomic orbitals for
manganese. The cut-off radii are drawn as short vertical lines.

There are a number of methods for constructing pseudopotentials. So-called norm-conserving

potentials121 are constructed such that for the isolated atom

• all-electron and pseudo- valence eigenvalues agree;

• all-electron and pseudo- valence wavefunctions agree beyond some cut-off radius rc, as do

their logarithmic derivatives;

• the integrated charge inside rc for the all-electron and pseudo- valence wavefunctions match

(hence “norm-conserving”).

This is illustrated in Figure 2.6. The success of this method hinges on the fact that we can

construct PSPs that are transferable: that is, a PSP constructed in one environment (typically

for the isolated atom) can remain sufficiently accurate in other environments (solids, molecules,

etc.).

2.3.7 Projector-augmented waves

Norm-conserving pseudopotentials are widely used, but they do have their drawbacks. In par-

ticular, PSPs for two-shell elements — that is, those with multiple partially-filled subshells like

transition metals — tend to be much less accurate.122 An alternative to PSPs, the projector-

augmented wave (PAW) method123 gives rise to even smoother wavefunctions near atomic cen-

tres.

Motivated by the smoothness of wavefunctions far from atomic centres, and their highly

oscillatory nature near them, the PAW method decomposes the wavefunction into parts, so

as to formally distinguish between these two regions of differing wavefunction behaviour. To

achieve this distinction, we define the following quantities (considering the Hilbert space of all

wavefunctions orthogonal to the core states):

|ψn〉 AE orbitals: the full solution to the system, treating both nuclear and bonding regions

accurately
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|ψ〉

=

|ψ̃〉

+

∑
i |ϕi〉〈p̃i|ψ̃〉

−

∑
i |ϕ̃i〉〈p̃i|ψ̃〉

Figure 2.7: A cartoon of the PAW method, showing two augmentation regions (i.e. atoms). The full
solution |ψ〉 incorporates accurate, system-independent solutions to the core region (red) and the system-
dependent solution of the bonding regions (blue), but the reformulated DFT algorithms need only treat
the PS orbitals |ψ̃〉.

|ψ̃n〉 pseudoatom (PS) orbitals: related to the AE orbitals by a linear transformation T̂ =

1 +
∑

R T̂R – that is, identical to the AE result except within atom-centred augmentation

regions defined by {T̂R}

|ϕi〉 AE partial waves: localised about each nuclei (i.e. within the augmentation regions). A

natural choice for these are the solutions of the radial Schrödinger equation for the isolated

atom

|ϕ̃i〉 PS partial waves: a set of smooth functions defined such that |ϕi〉 = (1 + T̂R)|ϕ̃i〉. These

should form a complete set of functions within the augmentation region

The transformation T̂ that satisfies all the properties we desire is given by

T̂ = 1 +
∑
i

(|ϕi〉 − |ϕ̃i〉) 〈p̃i| (2.43)

where |p̃i〉 is the dual of |ϕ̃i〉: that is,
∑

i |ϕ̃i〉〈p̃i| = 1. Therefore we have

|ψ〉 = |ψ̃〉+
∑
i

(|ϕi〉 − |ϕ̃i〉) 〈p̃i|ψ̃〉. (2.44)

This transformation is loosely depicted in Figure 2.7. Three quantities define this transformation:

our choices for the AE and PS partial waves, and the set of duals for the PS partial waves. By

recasting operators, the electronic density, the energy, and other such quantities in terms of

the PS orbitals, we can work with the much smoother PS representation of the system, but

by keeping track of the projection the frozen core can be recovered when required, and the

calculations are effectively all-electron. (See Ref. 124 for further details.)

The PAW approach relaxes the norm-conserving constraints on the core region, allowing

for a much ‘softer’ representation within this core region, placing a lower demand on the grid

resolution, even for systems that do not contain any transition metals (whose 3d/4s orbitals

benefit greatly from the PAW treatment). The efficacy of the PAW approach for calculations

on hexahydrated manganese is illustrated in Figure 2.8. Clearly, the PAWs outperformed PSPs,

since (a) PSPs required a much higher resolution to achieve the same level of energy convergence

and (b) PAW calculations came with little to no overhead compared to their PSP counterparts.
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Figure 2.8: Comparison of the performance of PSPs and PAWs for the [Mn(H2O)6]3+ system with
respect to psinc spacing. (a) Convergence of total system energy, relative to the energy of the 0.4a0

solution; (b) calculation wall time. The PSPs were generated by opium and PAWs with atompaw.125,126

Figure taken from Ref. 127.

2.3.8 Excited states

Theoretical spectroscopy provides a crucial link between computational methods and experi-

ment. The optical absorption spectrum is given by the imaginary part of the dielectric function

ε(ω) =
8π2

Ω

∑
k,v,c

|〈ψck|q̂ · r|ψvk〉|2 δ (Eck − Evk − ω) (2.45)

where |ψv/ck 〉 is an eigenstate in the valence/conduction band with wavevector k and energy

E
v/c
k , and q̂ is the direction of polarisation of the photon. Ω is the cell volume; in ONETEP

it is assumed that the cell is sufficiently large that the sum over k points need only include Γ.

(This equation is nothing more than Fermi’s golden rule.)

A crucial distinction between ONETEP and plane-wave DFT codes is that when ONETEP

minimises the energy with respect to the density kernel and NGWFs, the unoccupied conduction

bands do not have significant bearing on the total energy, and therefore they can be incorrect.

To overcome this, a “conduction” calculation is performed, whereby the lowest-lying conduction

states are selectively optimised (see Figure 2.9). For further details, see Ref. 128.

2.4 Applying ONETEP to a protein

I will now demonstrate the capabilities of ONETEP on cyclotide kalata B5.129 The cyclotides

are small disulfide-rich circular proteins found in plants. Their natural role is thought to be as a

defence agent, protecting the plant from pests and pathogens. They have proved to be a potent

pesticide,130 and have also demonstrated anti-HIV,131,132 anti-microbial,133 and anti-tumour134

activity. For the purposes of this thesis, cyclotide kalata is a useful test case because it does not

contain any transition metal centres, meaning we need not yet worry about strong electronic

correlation.
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Figure removed due to copyright. The
original can be seen in Ref. 128 as Figure 3.

Figure 2.9: Densities of state of a metal-free phthalocyanine, comparing results from ONETEP with and
without the conduction state optimisation to the plane-wave code CASTEP. Figure taken from Ref. 128.

Figure 2.10: The XRD and ONETEP-optimised structures, in blue and red respectively.

In a previous study, Kulik et al. investigated the ability of QM-approaches to correctly

predict the crystal structure of a number of proteins (starting from experimental structures),

including cyclotide kalata B5.135 However, in order to be able to consider molecules of hundreds

of atoms in size, that study only used small, fixed basis sets, which comes at a substantial cost

to accuracy and is prone to basis set superposition errors (BSSEs). We are interested in seeing

how ONETEP — which is BSSE-immune — compares.

The geometry of the XRD structure of cyclotide kalata B5 was optimised using ONETEP

version 4.5 with the PBE xc functional.136 The calculation was spin-unpolarised, with an energy

cut-off of 897 eV. Each nitrogen, carbon, oxygen, and sulfur atom had four NGWFs; hydrogen

atoms, one. All NGWFs had a cut-off radius of 8.0 a0. PAW potentials from the JTH dataset

were used.137 The protein was immersed in an implicit solvent parametrised to mimic water

(ε∞ = 80, n0 = 0.00035a−3
0 , and β = 1.3 following Ref. 138). The geometry was optimised using

the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, updating the solvent cavity (being a

function of the charge density) every five BFGS steps.
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Table 2.1: Cα RMSD values with respect to the crystal structure (Å) for restricted Hartree-Fock
(RHF), ωPBEh, BLYP (all calculated with TeraChem and using a variety of basis sets3,139,140), AMBER
(a classical molecular dynamics force field),141 and ONETEP. All results bar the ONETEP entry are
from Ref. 135.

RHF
MINI MINI+D STO-3G 3-21g 6-31g
0.51 0.41 0. 35 0.38 0.45

ωPBEh
MINI MINI+D STO-3G 3-21g 6-31g
0.60 0.70 0. 33 0.45 0.44

BLYP
AMBER ONETEP

6-31g
0.54 0.55 0. 139

The resulting optimised structure is compared against the XRD structure in Figure 2.10. In

order to quantitatively compare our results to those of Kulik et al., we measured the root-mean-

square deviation

RMSD({xi}, {yi}) =

√√√√ 1

N

N∑
i

|xi − yi|2 (2.46)

of the positions of the N alpha carbons of the optimised structure {xi}, relative to the XRD

crystal structure {yi} (Table 2.1). Evidently, ONETEP achieves a vastly superior RMSD to all

of the other approaches.

As a brief aside, note that this sort of capability may be of assistance in analysing experi-

mental structures obtained using cryogenic electron microscopy (cryo-EM). Cryo-EM is a x-ray

crystallographic technique which (unlike traditional x-ray diffraction) does not depend on the

structure being crystalline. This is a substantial advantage, as crystallising proteins is a very

challenging process, and many proteins of interest have defied experimentalists’ efforts to do so.

Historically, cryo-EM has struggled to achieve sufficiently high resolutions for structural

determination. But in recent years, this has been changing, with a number of groups having

achieved resolutions as low as 2–3 Å.142–145 While impressive, these numbers are not quite low

enough for atomic resolution. This is where computational approaches have made substantial

ground: Monte Carlo sampling methods have been shown to be capable of refining 3–4 Å-

resolution XRD structures to within approximately 0.5 Å of high-resolution measurements of

the same structures (namely, as implemented in the Rosetta software suite).146 ONETEP could

hypothetically assist in this refinement process. The level of structural refinement performed by

the Rosetta suite — involving complete reorientation of side-chains — is not going to be rivalled

by ONETEP, whose geometry-optimisation routine will be far slower and will not bring about

such substantial conformational changes, but will instead find a local minimum in whichever

energy basin the structure happens to start in. That said, ONETEP could be used to polish

Rosetta-refined structures. It may be that some of the conformational isomers put forward by

Rosetta have enthalpies that differ by orders of kBT — a problem that would go undetected by

Rosetta (which uses a simplistic energetic scoring function), but which ONETEP would reveal

immediately.
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2.5 Conclusions; the challenge of strong correlation

As this chapter has established, DFT is a powerful tool — especially when reformulated to be

linear-scaling. But while linear-scaling DFT does overcome the challenge of size, there remain

other challenges to the accurate electronic structure prediction of metalloproteins. For many sys-

tems, xc functionals such as the LDA and generalised gradient approximations of Subsection 2.1.3

adequately describe their electronic behaviour. However, for so-called “strongly-correlated” sys-

tems, such as the OEC, this is not the case.

Formally, correlation can be defined as the physics/chemistry due to multi-determinantal

wavefunctions (that is, beyond-HF).† Correlation effects encompass dispersion interactions, par-

ticle lifetimes, magnetism, satellites, collective excitations, the Kondo effect, Mott insulators

and metal-insulator transitions.147

Many of the systems that exhibit these phenomena contain transition element or rare-earth

atoms whose 3d- or 4f -electron shells are partially filled. Electrons in these shells are in especially

close proximity with one another,‡ and thus their interaction is too pronounced to be adequately

described by DFT, which can provide even qualitatively incorrect descriptions of the electronic

structure. For example, DFT often yields magnetic moments inconsistent with experiment,148

predicts some insulators to be metallic,149,150 and yields equilibrium volumes dramatically differ-

ent to experiment.151 DFT also fails to capture important dynamic properties that are enhanced

by strong correlation, such as satellite peaks in photoemission spectra,152,153 magnetic behaviour

above the Curie temperature,153 and the physics of heavy fermion materials.154

In the case of the metalloproteins, problems arise from the partially occupied 3d orbitals of

the transition metals (iron in the case of haem, copper for haemocyanin, and manganese for

the OEC). Existing computational studies of the OEC almost exclusively use more advanced xc

functionals than the LDA or GGAs. Common approaches are to incorporate Hartree-Fock (HF)

exchange via hybrid functionals58 and DFT + U .57 These will outperform semi-local functionals,

but they are certainly not the most accurate methods available. DFT + U will be explained in

the next chapter; hybrid functionals directly include HF exchange into the energy functional

EHF
x = −1

2

∑
ijσ

∫ ∫
dr dr′

ψ∗iσ(r)ψjσ(r)ψ∗jσ(r′)ψiσ(r′)

|r− r′| (2.47)

which is mixed with a semi-local xc functional(s). The most prevalent hybrid xc functional is

B3LYP:155,156

EB3LYP
xc = 0.2EHF

x + 0.08ELDA
x + 0.72EB88

x + 0.81ELYP
c + 0.19EVWN

c (2.48)

where B88 is a GGA,157 LYP and VWN are correlation functionals,158,159 and the various coef-

ficients have been derived by fitting to experimental data. B3LYP is widely used and has been

†This is different to what a statistician would call ‘correlation’: the Slater determinant wavefunction enforces
the Pauli principle, thereby introducing “correlation” between any two electrons with the same spin, which cannot
be in the same single-particle state.

‡Because they have no lower l = 2/l = 3 orbitals to be orthogonal to, these orbitals are highly localised about
the nucleus.
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undeniably successful, but there are several issues with its approach. Firstly, the fitting means

the calculations are no longer ab initio and in principle the functional could fail for systems that

are dissimilar to those used during fitting. Secondly, hybrid functionals benefit from cancella-

tion of errors: for example, semi-local DFT underestimates band gaps while HF overestimates

band gaps. This makes further development difficult. Finally — and most importantly for our

purposes — evaluating Equation 2.47 scales poorly,† which prevents hybrid DFT calculations

from being performed on sufficiently large cluster models.

The following chapters will explore and develop methods for treating strong electronic corre-

lation. The challenge throughout is that more accurate theories are also more computationally

intensive; if the methods and work-flows that we consider are to be of practical use, they must

always be integrated within a linear-scaling DFT framework.

†It scales as O(M4) for a Gaussian basis set with M basis functions; in plane-wave and wavelet representations,
the HF exchange can be reformulated to allow its evaluation inO(N3 logN), with N being the number of electrons.



Chapter 3

Density functional theory-plus-U

3.1 Introduction

The first approach this work will explore for improving the treatment of correlation in metal-

loproteins is the density functional theory-plus-U (DFT + U ) method. Inspired by the seminal

Hubbard model, this scheme involves adding Hubbard-model-like terms to the DFT framework,

in an approach originally designed to capture Mott-Hubbard physics in transition-metal ox-

ides.160–162 The corrective terms are applied to preselected spatially localised subsystems that

are expected to exhibit strong correlation — for instance, the 3d orbitals of each Mn atom in

the OEC — while the rest of the system is treated with semi-local DFT.

3.1.1 The Hubbard model

According to conventional band structure calculations (where the electron interactions are ig-

nored) a system with a half-filled valence band is metallic. However, the presence of strong

Coulombic interactions between electrons can give rise to a phase transition to an insulating

phase, known as the Mott metal-insulator transition,163 which explains (for example) why nickel

oxide is not metallic.

The Mott transition is captured by the Hubbard model Hamiltonian:

Ĥ = −t
∑
〈mn〉

∑
σ

ĉ†mσ ĉnσ + U
∑
m

n̂m↑n̂m↓, (3.1)

where ĉmσ is the annihilation operator for site m and spin σ, and n̂mσ = ĉ†mσ ĉmσ is the number

operator. U is the on-site repulsion and t is the inter-site hopping parameter (where the sum

is over nearest neighbour pairs). Of course, the derivation of this model — contained in full in

Appendix A.1 — involves several assumptions. Key among these is the fact that electrostatic

interaction is only important for electrons of the same spin on the same site.† This leaves us with

†While as physicists we are very familiar with the Hubbard model, it is worth drawing attention to how counter-
intuitive this assumption is: after all, the unscreened electrostatic interaction is exceptionally long-ranged. In
order to realise that an on-site Hubbard parameter is a sensible approximation, we rely on theoretical develop-
ments such as Thomas-Fermi screening and the Yukawa effective potential,164,165 Lindhard screening and Friedel
oscillations,166 and Fermi liquid theory (Landau and others),167 which explains why the Hubbard model only
emerged 34 years after the Heisenberg Hamiltonian.

33
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a comparatively simple Hamiltonian, but one which is notoriously difficult to solve.† Despite

this, it has been the subject of intense research because of its ability to exhibit some very non-

trivial physics: magnetism, superconductivity, Tomonaga–Luttinger liquids, and, of course, the

Mott transition.169

The behaviour of the Hubbard model is dictated by competition between U and t. Consider

the case of the half-filled system where each site has an average occupancy of one. In the U � t

limit, the local interactions are only a weak perturbation to the tight-binding model and thus

the system will be metallic. In the U � t limit, it is unfavourable to doubly occupy any site.

This inhibits migration of electrons through the system and makes the system an insulator. In

between these two states lies the Mott transition.

3.1.2 The DFT +U correction

In an attempt to have DFT inherit the Hubbard model’s ability to describe correlation, one

can massage the Hubbard-model formalism so that it can be incorporated into the framework

of DFT. By doing so we arrive at the DFT + U correction:

EU [n̂Iσ] =
∑
Iσ

U I

2
Tr
[
n̂Iσ(1− n̂Iσ)

]
, (3.2)

which is added to the DFT energy functional (here I have used the rotationally-invariant, sim-

plified form).150,160–162,170,171 The full derivation is contained in Appendix A.2. The density

operators n̂Iσ = P̂ I ρ̂σP̂ I are projections of the (spin-dependent) KS density operator onto

subspaces (indexed I). The projectors P̂ I =
∑

m |ϕIm〉〈ϕIm| are typically constructed from atom-

centred, fixed, spin-independent, localised, and orthonormal orbitals ϕIm (although they may be

non-orthogonal172 and self-consistent173). The U I are externally-defined parameters that deter-

mine the strength of the energy corrections for each subspace. The corresponding correction to

the KS potential is given by

V̂U =
∑
Iσmn

U I |ϕIm〉
(

1

2
− nIσmn

)
〈ϕIn|. (3.3)

This is attractive or repulsive for occupancy matrix eigenvalues greater than or less than one-half,

respectively. In the absence of any significant self-consistent response, this will penalise non-

integer occupancies of the subspaces, opening an energy gap of order U between any occupied

and unoccupied KS orbitals which have a significant overlap with the Hubbard projectors.

In order to correct interactions between unlike spins, DFT + U can be extended to become

DFT + U + J .174–177 This involves a second correction to the total energy,

EJ [n̂σ] =
∑
Iσ

JI

2
Tr
[
n̂Iσn̂I−σ

]
, (3.4)

where this correction is parametrised by the additional Hund’s coupling constants JI . Addition-

†It has only been solved analytically in one dimension, where there is no Mott transition.168
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N−1 N N+1
n

E

exact

standard DFT

DFT + U correction

Figure 3.1: Sketch of total energy as a function of number of electrons for a generic atomic system in
contact with a reservoir. The Hubbard correction (blue), when added to the result of the LDA (black),
can potentially reproduce the piecewise-linear behaviour of the exact energy (red).

ally, the U in Equations 3.2 and 3.3 becomes Ueff = U−J . Note that since n̂σmm′ = ĉ†mσ ĉm′σ, this

correction Tr
[
n̂Iσn̂I−σ

]
= nIσmm′n

I−σ
m′m can be understood to address “orbital exchange” between

electrons of opposite spin (that is, an up electron going from orbital m to m′ and a down electron

going from m′ to m).176,177

3.1.3 DFT +U as a correction to self-interaction error

A number of steps in the historical derivation of Equation 3.2 from the Hubbard model are hard

to rigorously justify, and consequently this interpretation of DFT + U (that is, as an embedding

of the Hubbard model in DFT) has fallen out of favour. Nevertheless, the technique itself

remains popular thanks to a reinterpretation of the energy correction term of Equation 3.2 due

to Cococcioni, Kulik, Marzari, and co-workers.178,179

One of the most prominent failures of many xc functionals is that they do not properly

correct for the self-interaction in the Hartree term. Self-interaction error (SIE) — or more

generally “delocalisation error”180,181 — manifests itself as a spurious curvature in total energies

with respect to total electron number (see the black curve in Figure 3.1), where instead there

should be a derivative discontinuity at integer numbers of electrons and linear behaviour at

fractional numbers (red curve).182 To see why this is, consider an atom in contact with a reservoir

of electrons, and let the energy of that atom be given by E(N), where N is the occupancy

of the atom. If there is a fractional number N + ω of atoms in the atomic system, where

0 ≤ ω ≤ 1, the system is a statistical mixture of the N and N + 1 states and its energy is given

by (1 − ω)E(N) + ωE(N + 1) — that is, as a function of N , E has a slope that is piecewise

constant.183 The LDA and GGAs do not reproduce this behaviour: instead, they give rise to

an unphysical curvature associated with incorrect treatment of self-interaction for the partially

occupied KS orbitals. This failure is closely related to approximate DFT’s well-documented

underestimation of the band gap.184,185 But while the origins of the SIE are well understood,

it remains a challenge to avoid its introduction when constructing xc functionals, even if exact

exchange is incorporated.180

Now that we have identified this shortcoming of DFT, let us reconsider the DFT + U for-

malism. Equation 3.2 can be seen to penalise partial occupancies of the correlated subspaces:
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in the basis of localised orbitals ψIσm that diagonalise the subspace occupancy matrices such

that n̂IσψIσm = λIσm ψ
Iσ
m , the Hubbard correction becomes

∑
Iσm U

IλIσm (1 − λIσm )/2, which pe-

nalises non-integer occupancies of these orbitals ψIσm (see the blue curve of Figure 3.1). Hubbard

corrections therefore counteract the spurious SIE curvature — and thus, with well-chosen val-

ues for {U I}, DFT + U calculations may cancel the SIE that is present (although this is not

guaranteed).186 Note that the correction to the total energy vanishes at integer occupancy ma-

trix eigenvalues, where the xc functional is assumed to be correct. In this interpretation, the

Hubbard subspaces become localised subspaces in which the SIE is to be selectively addressed.

A substantial advantage of DFT + U (+ J) over other methods that address the SIE (for ex-

ample, SIC-LSDA,187–189 Fermi orbital self-interaction correction,190–192 and Koopman’s com-

pliant functionals193,194) is its small computational cost: once any Hubbard parameters have

been determined, the overhead for incorporating the additional potential and energy terms is

insignificant compared to the cost of the DFT calculation itself.195

3.1.4 Conventional linear response

In order to apply a Hubbard correction, one must select an appropriate value for the parameters

U I . This can be done pragmatically by picking values on empirical grounds — that is, cho-

sen so that certain system characteristics are reproduced (for example, ionic geometries,196–199

band gaps,197–200 and formation enthalpies199,201,202). While this approach has seen some suc-

cess,203,204 it does not guarantee that the chosen U will correct the SIE energy curvature to the

greatest extent achievable, or result in an improved description of other system properties, and

this method is not even possible where there is a lack of reliable experimental or higher-level

computational data. Furthermore, it opens up DFT + U to criticism that it is not truly an ab

initio method.

An alternative approach for determining U is the linear response method developed by

Cococcioni and de Gironcoli,178 which built upon the earlier linear response scheme of Pickett

and co-workers,171 and shares many aspects with the constrained LDA approach of Aryasetiawan

and co-workers.205 In this approach, DFT calculations are performed subject to a perturbing

potential δv̂ext = dvJextP̂
J confined to the J th Hubbard subspace, for a range of scalar values

{dvJext}. The density operator’s response to these perturbations is given by the response operator

χ̂:

δρ̂ = χ̂δv̂ext. (3.5)

The occupancy of the Ith Hubbard subspace will change by

dnI = Tr
[
P̂ Iδρ̂

]
= Tr

[
P̂ I χ̂P̂ J

]
dvJext (3.6)

and thus we can define the projected response matrix206

χIJ ≡
dnI

dvJext

= Tr
[
P̂ I χ̂P̂ J

]
. (3.7)
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A value for U that corresponds to the screened response of the system is given by

U I =
(
χ−1

0 − χ−1
)
II

(3.8)

where χ0 is the response of the non-interacting system, which must be separately measured

and removed from the Hubbard correction.177,207,208 There is also scope here for calculation of

off-diagonal terms VIJ =
(
χ−1

0 − χ−1
)
IJ

. Introducing corrective inter-site terms is known as

DFT + U + V .209,210

Satisfyingly, the determination of U via linear response removes any possible arbitrariness of

the Hubbard correction: the U parameter is a well-defined property of the system that can be

unambiguously measured in theory, rather than a parameter that can be tuned “to taste”.177,179

Recently the idea of calculating U and J to best emulate subspace-projected KS exact

exchange175 has been further advanced.211 But because I wish to cancel the systematic errors of

approximate DFT181,182 to the extent possible using functionals of the DFT + U form, we choose

to instead develop the linear response formalism that has been shown to successfully achieve

this,171,178,179,212 and that does not incorporate any theory or model (e.g. Fock exchange) beyond

what is already ordinarily present.

3.1.5 Problems

There are some aspects of the linear response methodology that pose issues. Firstly, delocalisa-

tion error is associated with fractional total charge, but the DFT + U functional of Equation 3.2

corrects fractional occupation for each spin channel separately. Conventional linear response,

meanwhile, perturbs both spin channels simultaneously. These discrepancies in how we treat

spin channels warrant investigation.

Secondly, measuring the non-interacting response χ0 is not straightforward. The common

practice is to follow the example of Ref. 178, and calculate χ0 via the first iteration of the KS

equations during a self-consistent field (SCF) calculation — that is, the response is measured

following the initial charge redistribution introduced by the perturbation but before the KS

potential is updated. This approach is impractical to implement in codes that use a direct-

minimisation procedure of the total energy with respect to the density, KS orbitals, or den-

sity matrix. This represents a substantial number of packages, including ONETEP,22 CON-

QUEST,213,214 SIESTA,215,216 BigDFT,217 OpenMX,218 and CP2K219 (albeit that in some

of these the self-consistent field technique is also available). In direct-minimisation, updating

the density and potential are not nested separately, so χ0 cannot be calculated in the manner

prescribed above.

Finally, in the case of closed-shell systems, linear response approaches tend to dramatically

overestimate U and suffer from numerical instabilities.220–223 It would be good to overcome, or

at least to better understand, these failures.
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3.2 Minimum-tracking linear response

Ref. 212 presented an alternative to the established SCF linear response approach for calculating

the Hubbard parameters: so-called “minimum-tracking” linear response. This approach is suited

for calculating U in direct-minimisation codes, as it makes no reference to the first iteration of

the KS loop. In this section I will expand upon this formalism.

The minimum-tracking linear response approach is largely equivalent to SCF linear response,

but its derivation centres on the ground-state density for each value of the perturbing potential.

As with the SCF approach, a perturbing potential dv̂ext = dvJextP̂
J is applied to the J th Hubbard

subspace. The response of the projected KS potential is given by the chain rule

dvIKS

dvJext

=
dvIext

dvJext

+
dvIHxc

dvJext

=
dvIext

dvJext

+
∑
K

dvIHxc

dnK
dnK

dvJext

, (3.9)

where the final step follows because while the external potential acting on site J will change

the density matrix everywhere, the N -site Hubbard model only sees the N subspace density

matrices. Screening due to the residual bath is incorporated within the total derivatives. The

projections of one-body operators are given by OI = Tr[P̂ IÔ]/Tr[P̂ I ].

Defining the projected Hartree-plus-xc kernel fIJ ≡ dvIHxc/dn
J , the inverse dielectric function

(ε−1)IJ ≡ dvIKS/dv
J
ext, and the overlap matrix ΩIJ ≡ dvIext/dv

J
ext, Equation 3.9 becomes

ε−1 = Ω + fχ =⇒ f =
(
ε−1 − Ω

)
χ−1. (3.10)

Finally, U can be equated with the projected Hartree-plus-xc kernel, with the residual bath

screening in the background.177 (See Appendix A.3 for a detailed discussion on why we can

discard the rest of the system, and Appendix A.4 for a proof of the oft-repeated result that if

we include the bath, we can still calculate the difference of the two now non-invertible matrices

χ and χ0.) This yields

U I =

[(
dvKS

dvext
− 1

)(
dn

dvext

)−1
]
II

. (3.11)

From here on in, I will assume that the overlap matrix Ω = δIJ for simplicity. When Hubbard

projectors from different atoms overlap this may become an approximation. I will also reserve

f for the matrix measured via linear response, and U for the parameter to be subsequently used

in a DFT + U calculation. This distinction will become important.

Equation 3.11 is nothing more than a reformulation of Equation 3.8. We can identify the

interacting and non-interacting response matrices

χIJ =
dnI

dvJext

; (3.12a)

(χ0)IJ =

[
dn

dvext

(
dvKS

dvext

)−1
]
IJ

. (3.12b)
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Figure 3.2: A typical linear response plot. Each pair of points represents an individual DFT calculation
with a perturbing potential δv̂ext = dvJextP̂

J , and the resulting response of the projected density dnI and
KS potential dvIKS . The slopes of these lines correspond to entries of χ and ε−1. These data have been
taken from calculations on [Cr(H2O)6]3+, which are covered in detail in Section 3.3.

In this framework, we can see that the removal of the non-interacting response can be rigorously

justified as a consequence of the Dyson equation, with U being a measure of the net interaction.

These definitions are nothing but a special case of standard linear response theory for DFT (see

Appendix A.5). It is crucial that the non-interacting response is calculated as the product of χ

and ε, rather than dnI/dvJKS directly. dnI/dvJKS is both conceptually and numerically arbitrary

with respect to the choice of external potential, and so its direct use must be avoided.

Figure 3.2 demonstrates the calculation of elements of χ and ε−1 from a typical set of linear

response calculations.

Both minimum-tracking and conventional SCF linear response rely on the same external

perturbation, and both make use of the Dyson equation. They only differ in their definition of

the non-interacting response and the set of densities used in its calculation. In the minimum-

tracking procedure, χ0 is constructed from ground-state densities of the perturbed system, and

thus the resulting U is strictly a ground-state property. This is obviously not the case for the

SCF approach: there, χ0 is calculated in reference to an unconverged density and thus the

resulting U is not a local property of the ground-state density landscape (but is still a well-

defined property of the ground-state KS eigensystem). This distinction is intriguing and worthy

of further investigation, but possibly numerically inconsequential in practice.

Already, the minimum-tracking construction reveals an interesting property of the projected

χ0 (and hence f): it is not necessarily symmetric. This is because χ0 as defined in Equation 3.12b

incorporates the total derivative of the potential, which is itself a partial derivative. While

the bare χ0 is certainly symmetric, the response matrices that we deal with here are always

screened by the background, and the screening depends on the subspace being perturbed. (In

general, χ0 should not be symmetrised before inversion, even if the resulting U matrix will be.)

This observation will also hold for SCF linear response, since it also correctly goes beyond the
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symmetric result of first-order perturbation theory.

3.2.1 Accounting for spin

Many transition metal subspaces, such as those found in metalloproteins, exist in a high-spin

state, and consequently the response of their two different spin channels will be wildly different.

However, all of the above formalism has been blind to this, with both spin channels perturbed

during a linear response calculation and their collective response measured. In contrast, the

Hubbard energy functional (Equation 3.2) treats different spin channels entirely separately; in-

deed, spin and sites are treated equivalently, with spin/site indices being totally interchangeable.

This raises the question: what happens to the response and interaction parameters if we were

to be consistent, and fine-grain linear response down to the level of spin?

In the minimum-tracking formulation it is straightforward to consider spin degrees of free-

dom. Response matrices become rank-four tensors

χσσ
′

IJ =
dnIσ

dvJσ′
, (3.13)

and to measure these elements via linear response, we must perturb spin channels individually.

(Practically, this is implemented as a combination of two potentials: a uniform shift applied to

both spin-channels and a spin-splitting potential.)

This extension has several consequences. Spin-specific response functions can be visualised

by flattening rank-four tensors down to rank-two ones: for example, a two-site system would

have response matrices of the form

χ =


χ↑↑11 χ↑↓11 χ↑↑12 χ↑↓12

χ↓↑11 χ↓↓11 χ↓↑12 χ↑↓12

χ↑↑21 χ↑↓21 χ↑↑22 χ↑↓22

χ↓↑21 χ↓↓21 χ↓↑22 χ↓↓22

 =

(
(χσσ

′
)11 (χσσ

′
)12

(χσσ
′
)21 (χσσ

′
)22

)
. (3.14)

This is not simply aesthetic: it means we are treating spin and atom indices on the same footing,

like the DFT + U functional does.

We can construct different models based on how we perform the inversion of this matrix

(such as in Equation 3.11): either (1) point-wise inversion, which decouples both sites and spin;

(2) atom-wise inversion, with each 2 × 2 block inverted individually, decoupling sites but not

spins; or (3) invert the full matrix, leaving all sites and spins coupled. I will work through each

of them in turn.

Point-wise inversion

The Hubbard parameters in this case are screened by the opposite spin on the same site (Fig-

ure 3.3a). In this case, Equation 3.11 separates into an independent equation for each atom:

fσσ =
dvσKS

dnσ
− dvσext

dnσ
=
dvσHxc

dnσ
. (3.15)
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U
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Figure 3.3: Schematic diagram illustrating which subspaces screen the Hubbard parameters (pink) and
which do not (orange). Individual Hubbard sites are represented by solid circles. Point-wise inversion (a)
effectively treats our system as a one-site Hubbard model connected to a bath, where the bath includes
the opposite-spin subspace of the same site. Atom-wise inversion (b) is effectively a two-site system
connected to a bath. Finally, in conventional linear response (c) both spin channels on a given atom are
treated as a single Hubbard site.

We have dropped the atomic indices for brevity. This simplification affords some numerical

cancellation of errors, since inversion is no longer performed. The off-diagonal components of

the matrix fσσ
′

are not meaningful in this case. The conventional DFT + U functional requires

a spin-independent U ; for this we must average the spin-up and spin-down components:

U =
1

2

(
f↑↑ + f↓↓

)
. (3.16)

This will henceforth be referred to as “averaged 1×1”. There is also the option to avoid this

approximation and apply a different value of U to each spin channel: Uσ = fσσ (“1×1”).

It is interesting to note that Shishkin and Sato224 have previously advocated removing the

off-diagonal components of site-indexed response matrices. This was motivated by the fact

that these components were negligible so removing them did not alter the resulting Hubbard

parameters. Here, however, the off-diagonal components components correspond to coupling

between spin channels on the same atom. These components are sizeable and neglecting them

appreciably alters Hubbard and Hund’s parameters, as we will see.

Atom-wise inversion

In atom-wise inversion, screening from both the bath and other sites is present in the response

matrices, but the resulting f = χ−1
0 − χ−1 is bare with respect to inter-spin interactions on

the same atom as it is removed by the inversion of the spin-indexed response (Figure 3.3b).

Employing this approach amounts to assuming inter-spin interactions will be corrected separately

i.e. with a + J functional. (This is because in the absence of such a correction, a spin-screened

U would be necessary.)

Equation 3.11 reduces to

fσσ
′

=

[(
dvKS

dvext
− 1

)(
dn

dvext

)−1
]σσ′

(3.17)

where each term is a two-by-two matrix indexed by spin channel, and if there are N atoms there

are N such equations. For practical use in DFT + U + J , f can be related to the scalar Hubbard
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parameter U that, in the minimum-tracking linear response formalism, is defined by

U =
1

2

dv↑Hxc + dv↓Hxc

d(n↑ + n↓)
≈ 1

2

f↑↑δn↑ + f↑↓δn↓ + f↓↑δn↑ + f↓↓δn↓

δ(n↑ + n↓)
. (3.18)

In other words, U is given by a weighted average of the elements of fσσ
′
, where elements are

weighted according to the extent to which the spin-up and -down densities would respond to a

perturbation. In the case of spin-unpolarised systems, the two densities would respond equally

(dn↑ = dn↓) and Equation 3.18 simplifies to

U =
1

2
(f↑↑ + f↑↓) (3.19)

(where we have also taken advantage of the symmetries f↑↑ = f↓↓ and f↑↓ = f↓↑). Such

a straightforward simplification is not possible for spin-polarised systems. Instead, we must

account for the possibility of different spin-up and -down density responses, and we must adopt

some approximation if we are to reduce the kernel down to a scalar U .

I propose two alternative approximations. The first, more näıve approach, is simply to

approximate this as

U =
1

4

(
f↑↑ + f↑↓ + f↓↑ + f↓↓

)
(3.20)

which I will refer to as “simple 2×2”. (This is not as bad as it might seem, for a start, it is exact

in the spin-unpolarised limit. But more fundamentally, the assertion that dn↑ = dn↓ means that

we are in effect measuring the curvature of the energy while constraining the magnetic moment

to remain constant.)

To derive a more sophisticated approach, consider the ratio

dn↑

dn↓
=

∑
σ χ
↑σdvσext∑

σ χ
↓σdvσext

. (3.21)

If we focus in particular on a perturbation of the form dv↑ext = dv↓ext this simplifies to∑
σ χ
↑σ∑

σ χ
↓σ = λU . (3.22)

Therefore, if we assert that in general dn↑/dn↓ can be approximated by λU then Equation 3.18

simplifies to

U =
1

2

λU (f↑↑ + f↓↑) + f↑↓ + f↓↓

λU + 1
. (3.23)

This approximation I will refer to as “scaled 2 × 2”. It is a reasonable approximation, but it

is certainly not rigorously justified, and is perhaps best interpreted post hoc (as the following

section will explain).

With atom-wise inversion, Hund’s parameters J can be directly calculated in an analogous

manner to U : in place of Equation 3.18 we instead define, within the spin-polarised minimum-
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tracking linear response formalism,

J = −1

2

dv↑Hxc − dv
↓
Hxc

d(n↑ − n↓) . (3.24)

Simple 2× 2 yields

J = −1

4

(
f↑↑ − f↑↓ − f↓↑ + f↓↓

)
, (3.25)

while for scaled 2× 2 one can derive the analogous expression of Equation 3.25 in a very similar

manner, except that the scaling factor λJ is constructed with reference to a perturbation of the

form dv↑ext = −dv↓ext (that is, one that will most directly affect magnetic moments).†

J =− 1

2

λJ(f↑↑ − f↓↑) + f↑↓ − f↓↓
λJ − 1

; λJ =
χ↑↑ − χ↑↓
χ↓↑ − χ↓↓ . (3.26)

Full inversion

Finally, in the case of full matrix inversion, the result is bare with respect to both inter-spin

and inter-site interactions by the same logic. This implies that inter-atom interactions require,

and are subject to, correction via a +V term. This V term would be doubly spin-dependent,

and it may need to be symmetrised with respect to the site indices to retain a Hermitian KS

Hamiltonian for each spin. I will not explore this approach in this work.

We emphasise that including each of these successive terms (J and V ) should not be viewed

as systematic improvements. In the limit that corrective parameters are introduced within and

between every single subspace (such that the corresponding screened interactions are removed)

the entire system becomes effectively non-interacting. Corrective terms are only appropriate

where the corresponding interactions dwarf all others.

3.2.2 Comparisons with the conventional scalar approach

Conventional linear response calculations do not treat spin channels separately (Figure 3.3c);

for a single-site system χ, ε−1 and f would all be scalars. It is straightforward to relate the

spin-indexed response matrices of the previous section to these scalars:

dn = dn↑ + dn↓ ≈
[∑
σσ′

χσσ
′
]
dvext =⇒ χ ≈

∑
σσ′

χσσ
′
. (3.27)

Likewise

dvKS =
1

2

[
dv↑KS + dv↓KS

]
≈ 1

2

[∑
σσ′

(
ε−1
)σσ′]

dvext =⇒ ε−1 ≈ 1

2

[∑
σσ′

(
ε−1
)σσ′]

. (3.28)

These two relations allow us to examine the role of spin-screening in scalar linear response. The

Hubbard parameter obtained via spin-indexed, atom-wise inversion (scaled 2×2; Equation 3.23)

†Here, one could certainly use λU . Neither approximation is obviously superior to the other, and furthermore
this choice does not drastically alter the resulting J . After all, Hund’s coupling is much less susceptible to
screening than Hubbard parameters.
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can be rewritten as

U =
1

2

∑
σσ′(fχ)σσ

′∑
σσ′ χ

σσ′ =
1

2

∑
σσ′(ε

−1 − 1)σσ
′∑

σσ′ χ
σσ′ =

ε−1 − 1

χ
. (3.29)

This is nothing less than the scalar expression U = χ−1
0 − χ−1, which is used in scalar linear

response (the widely used standard approach). We may conclude that the conventional scalar

approach and scaled 2× 2 are entirely equivalent.

Therefore, Hubbard parameters obtained by spin-aggregated approaches are not screened

by the opposite spin channel on the same site. Since they combine both like and unlike spin

interactions (cf. Equation 3.23), they do not correspond to the like-spin-only interaction Ueff =

U − J (as implied elsewhere).225 We could have anticipated this result: during a scalar linear

response calculation there is no shift in the external potential difference between the two spin

channels, so there is no external driver for changes in subspace spin polarisation (to first order).

We noted earlier that atom-wise inversion formally necessitates a Hund’s correction, but such

a correction is not usually included when the conventional linear response approach is employed.

Given that these methods are equivalent, I argue that it is more consistent to include a Hund’s

exchange correction term (e.g. calculated using Equation 3.24) when using a Hubbard correction

calculated in the conventional manner.

The precise functional form of the + J correction needed is, however, the subject of ongoing

research.226 Recently, for example, Millis and co-workers demonstrated that spin-polarised DFT

already possesses some degree of intrinsic exchange splitting, and they have argued convincingly

that the contemporary form of the + J correction can overestimate exchange splitting.227 This

finding is corroborated by my own results discussed later in this chapter (e.g. Table 3.7).

3.3 Application to a complete series of hexahydrated transition

metals and manganese oxide

In the second half of this chapter, I will explore the ramifications of these theoretical devel-

opments on two test systems: hexahydrated transition metals, and manganese oxide. In these

systems, all of the metal atoms have partially filled 3d sub-shells, and thus they are poorly

described by local or semi-local xc functionals.228–231 DFT + U may provide a more accurate

description of these systems.177,186,210,221

Manganese oxide (MnO) has a rock salt structure. At low temperatures it is antiferromag-

netic,232 and has a band gap of approximately 4 eV that is substantially underestimated by

semi-local functionals.150 Conventional linear response calculations on MnO yield an excessively

large Hubbard parameter (U > 7 eV).233 Meanwhile, hexahydrated transition metals comprise

of a central first-row transition metal ion surrounded by six water ligands in a tetragonal ar-

rangement (Figure 3.4c). Depending on the electronic structure of the metal, these systems

may exhibit Jahn-Teller distortion, resulting in an elongated tetragonal structure with two axial

waters being slightly more distant than their four equatorial counterparts (Figure 3.4). While

neither of these systems are metalloproteins, they can serve as good proving grounds for our
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dxy/xz/yz

dz2/x2−y2

(a)

dxy/xz/yz

dz2

dx2−y2

(b) (c)

Figure 3.4: The ground state of the 3d electrons in (a) [Mn(H2O)6]2+ and (b) [Mn(H2O)6]3+. In both
systems, the dxy, dxz, and dyz orbitals (the so-called t2g orbitals) have lower energy as they have lobes
directed between the ligands (and hence less overlap with the ligand orbitals) compared to the dz2 and
dx2−y2 orbitals (eg). For the doubly-charged system, the system is symmetric and no Jahn-Teller splitting
takes place. In the triply-charged system, the molecule distorts into a D2h symmetry as shown in (c),
with the axial bonds (dashed) fractionally longer than the equatorial bonds (solid).

Figure removed due to copyright. The original
can be seen in Ref. 195 as Figure 1.

Figure 3.5: Scaling of DFT and DFT + U calculations for NiO nanoclusters of increasing size. Crucially,
linear scaling is retained. Figure taken from Ref. 195.

theory. Hexahydrated transition metals bear some resemblance to metalloproteins such as the

OEC, and in a loose sense, MnO could be seen as the “bulk limit” of the OEC core.

3.3.1 Computational details

All the following calculations in this chapter were performed using ONETEP22,88,172,173,195,234,235

(version 4.3) using the PBE xc functional.136

One of the major advantages of DFT + U compared to other methods that improve upon

the LDA and GGAs (such as hybrid functionals) is its minimal computational cost: once the

parameter U has been determined, the penalty for moving from DFT to DFT + U is relatively

insignificant, and does not compromise the linear-scaling of ONETEP (see Figure 3.5).

For MnO, a square super-cell containing 512 atoms was simulated under periodic boundary

conditions without explicit k-point sampling (but recall in Subsection 2.3.3 I demonstrated how

a super-cell can be used in place of k-point sampling). This is a non-diagonal super-cell236 of the

four-atom primitive cell, and gives an equivalent k-point sampling scheme that includes both
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Z and Γ.† This is crucial for when we measure the band gap, as it is known to be Z-to-Γ.

The lattice parameter was set to the experimental value of 4.445 Å.237 The calculations were

spin-polarised, with an energy cut-off of 1030 eV. Each Mn atom had ten NGWFs; O atoms,

four. All NGWFs had a cut-off radius of 11.0 a0.

For the hexahydrated metals, all calculations were spin-polarised, with an energy cut-off of

897 eV. Depending on the species, there were nine, ten, or thirteen NGWFs on the transition

metal atom, four on each oxygen, and one on each hydrogen. All NGWFs had 14 a0 cut-off

radii. An Elstner dispersion correction115,117 was applied, and electrostatics were treated using

a padded cell and a Coulomb cut-off.238

For all the calculations, the Hubbard projectors were constructed from solving the neutral

atomic problem subject to the pseudopotential of the species in question.235 Most pseudopo-

tentials were taken from the Rappe group pseudopotential library239 although those for Co and

†We can relate a super-cell with basis vectors A1, A2, A3 to a primitive cell a1, a2, a3 viaA1

A2

A3

 = S

a1

a2

a3

 . (3.30)

An arbitrary k-point can be expressed in terms of either the reciprocal primitive lattice vectors or the reciprocal
super-cell lattice vectors. These two alternative representations are related by

Sq = Q. (3.31)

As demonstrated by Lloyd-Williams and Monserrat,236 if Q is an integer vector then this k-point is commensurate
with the super-cell generated by S.

Our antiferromagnetic MnO system has a needle-like primitive cell containing four atoms along the (1, 1, 1)
axis, with primitive cell vectors

a1 = (2, 1, 1)l (3.32a)

a2 = (1, 2, 1)l (3.32b)

a3 = (1, 1, 2)l (3.32c)

where l = 2.22 Å. One super-cell that samples both Γ and Z is generated by

S =

 6 −2 −2
−2 6 −2
−2 −2 6

 (3.33)

since for Γ

S

0
0
0

 =

0
0
0

 (3.34)

(which is trivially true of all super-cells), and for Z

S

1/2
1/2
1/2

 =

1
1
1

 (3.35)

since in both of these cases Q is a vector of integers. The super-cell generated by this S isA′1
A′2
A′3

 =

8 0 0
0 8 0
0 0 8

 l (3.36)

which is nothing less than our 512-atom cubic cell.
A more subtle effect at play here is the weighting of k-points, which can change from super-cell to super-cell: the

system will change if we change the weighting on different k-points. (Think of an infinite hydrogen chain: if most
of the k-point weighting is at Γ then you have a very “bonding-like” density, whereas if most of the weighting is at
the Brillouin zone edge, you will have twice as many lobes in the density due to “anti-bonding-like” k-dependent
orbitals being over-sampled.) This effect will only be keenly felt if there are too few k-points.
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0 1 2 3 4 5
DFT occupancy

Ti3+

V2+

Cr3+

Cr2+

Mn3+

Mn2+

Fe3+

Fe2+

Co3+

Co2+

Ni2+

Cu2+

(a)
n n

0 1 2 3 4 5 6 7 8 9
U (eV)

(b)
metal oxygen

0.0 0.25 0.5 0.75 1.0 1.25 1.5
J (eV)

(c)
metal oxygen

Figure 3.6: (a) The metal ion 3d subspace occupancies as given by DFT. The residual spin-down
densities for the lighter metals are not formally what one would expect; a Hubbard correction should
remedy this. (b) Hubbard parameters and (c) Hund’s parameters as calculated via scaled 2×2 (equivalent
to the scalar approach). Faint lines link the +2 systems/+3 systems to show the general trends. (Co3+,
being the only low-spin system, is not linked.)

Fe were generated in-house using OPIUM.125,240–245 These were scalar relativistic pseudopoten-

tials246 with non-linear core corrections.247 All DFT + U + J calculations used a +J correction

to the energy, potential, and ionic forces. I used the energetic correction shown in Equation 3.4

(following the example of Ref. 176 I have omitted the “nmin” term that appears in that paper).

Example input and output files can be found at https://www.repository.cam.ac.uk/

handle/1810/288598.

3.3.2 Calculating Hubbard parameters

Hubbard U and Hund’s J parameters were calculated for the set of hexahydrated transition

metals and MnO. Prior to the linear response calculations, the geometries of the hexahydrated

transition metal complexes were optimised using the PBE xc functional without a Hubbard cor-

rection and with the water molecules constrained to their respective planes (refer to Figure 3.4).

Various linear response approaches were performed: averaged and non-averaged 1 × 1, simple

and scaled 2 × 2, as well as the standard scalar approach. While the scalar values reported

here will be roughly analogous to conventional linear response reported elsewhere, they were

calculated using minimum-tracking linear response, not SCF, which differ in their definitions of

χ0.

Hubbard and Hund’s parameters were obtained for two Hubbard subspaces: the 3d subspace

on the transition metal ion, and the 2p subspace on one of the equatorial oxygen atoms, taken

as a representative of the six oxygen atoms in the system. The Hubbard parameters that were

obtained are listed in Tables 3.1 and 3.2 respectively, and plotted in Figure 3.6. The uncertainties

in the Hubbard parameters have also been calculated from the error in the least-square fits of

dvσHxc/dn
σ′ , dvσKS/dv

σ′
ext and dnσ/dvσ

′
ext using unbiased Gaussian error propagation. These error

estimates prove to be very instructive.

https://www.repository.cam.ac.uk/handle/1810/288598
https://www.repository.cam.ac.uk/handle/1810/288598
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General trends

Both tables exhibit some general trends: the Hubbard parameters of the metal ions grow slowly

as the number of 3d electrons increases (Figure 3.6a); oxygen parameters remain relatively

stable; the Hund’s coupling parameters of the metals appear reasonable. Furthermore, the

scalar approach and scaled 2 × 2 (atom-wise inversion) yield the same result across the board,

in keeping with the conclusions of Subsection 3.2.2. The scaled 2 × 2 approach is marginally

less numerically stable, which is reflected by the marginally larger error estimates. Interestingly,

however, I found that for the spin channel that matters to strong correlation (the spin-up channel

for less-than-half filled sub-shells, and the spin-down channel for more-than-half filled sub-shells),

the relevant 1× 1 U is very reasonable, and systematically lower in value than the conventional

scalar U . This hints at a possible solution for first-principles DFT + U calculations on systems in

which the calculated scalar U proves to be unphysically large, and the predominantly empty/full

spin channel is already well described by the approximate functional.

One particularly noteworthy result is the substantial spin-screening of the Hubbard param-

eters of [Co(H2O)6]3+ observed in averaged and non-averaged 1 × 1. This is the only complex

in a low-spin ground state, so the up and down KS orbitals overlap perfectly and there is very

efficient screening between spins. This system also exhibits one of the largest J values. Similarly,

the large J values on the oxygen atoms may surprise at first (as Hund’s physics is expected to

play a very minor role here). This illustrates an important point: the absence of any magneti-

sation does not imply the absence of magnetisation-related error in the approximate functional.

Subsequent calculations demonstrate that applying this J term, large as it is, does not result in

the oxygen atoms acquiring magnetic moments.

Some works go one step further and calculate Hubbard parameters in a self-consistent fash-

ion,179,221,225 with linear response being performed on DFT + U ground states. While it remains

to be seen what effect this additional step would have, it will likely be small here because these

systems do not undergo qualitative changes in electronic structure upon the application of U :248

in going from DFT to scalar DFT + U , the root-mean-square and maximum fractional differ-

ences in the total 3d occupancies are 6% and 15% respectively. For the spin moment µ = n↑−n↓
these are 7% and 14% respectively.

It is important to acknowledge that the authors of Ref. 186 calculated U for this set of

molecules (using scalar linear response). In comparison, their values are lower (by 1.4 eV on

average) and more species-dependent (a standard deviation of 1.2 eV compared to 0.9 eV for our

set of values). In comparison with this work, Ref. 186 (a) used ultra-soft pseudopotentials as

opposed to norm-conserving ones; (b) performed all calculations on structures optimised in the

3+ charge state; (c) employed U self-consistency for some calculations; and (d) used SCF linear

response. As the following section will demonstrate, details such as (a) and (b) can substantially

affect Hubbard parameters.

Comparison of schemes

Table 3.1 illustrates the dangers of averaging across the two spin channels, as performed in

averaged 1 × 1. For systems where both the spin-up and spin-down channels are partially
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Figure 3.7: The difference in Hubbard parameters for four hexahydrated transition metals, as calculated
via the various linear response schemes and using two alternative simulation set-ups (eV).

occupied (see Figure 3.6a) the responses are well-behaved, the Hubbard parameters are both

sensible and similar, and averaging is unlikely to have any drastic effects. But for the heavier

elements with filled spin-up channels, we are faced with the prospect of averaging two very

different values, which in the most extreme cases lead to negative Hubbard parameters. Here,

averaging the two values is likely to be a poor approximation.

However, any Hubbard correction will not directly affect a fully-occupied channel, because

the Hubbard energy correction term (Equation 3.2) vanishes regardless of the magnitude of U . If

it is imperative that the same correction must be applied to both channels, an argument could

be made in favour of applying the U↓ value in place of an average. Of course, the Hubbard

potential does not vanish (Equation 3.3) and fictional spin-up KS orbitals that overlap with the

Hubbard projectors would be shifted by U↓. This inconsistency may have unforeseen effects,

and an alternative may be to apply DFT + U to partially-filled spin channels only.

Table 3.1 also demonstrates the shortcomings of simple 2 × 2, the approximate atom-wise-

inversion-based method. In the upper half of the table it yields reasonable values similar to

those of scaled 2×2. But in the latter half (where dramatically different response in the spin-up

and spin-down channels is expected) the approximation is a very poor one and the resulting

parameters are unphysical. Scaled 2× 2 encounters no such difficulties, justifying the use of the

rescaling factors λU/J . I will consider simple 2× 2 no further.

Dependence on simulation settings

The results of linear response calculations are sensitive to the precise settings of a calculation.

Figure 3.7 shows the difference in Hubbard parameters as obtained using two quite different

simulation schemes. Both sets of calculations were performed on the same physical systems,

but they differed in (a) the pseudopotentials used (Rappe vs. in-house); (b) the electrostatic

truncation scheme used (padded cell with a spherical cut-off238 vs. a Martyna-Tuckerman cor-

rection249); and (c) the resolution of the fine grid used for calculating products of basis functions

(a factor of two vs. a factor of four finer than the standard grid). The majority of the Hubbard

parameters match to within 1 eV, except for those that relate to the response of a nearly-fully

occupied subspace, where the response is extremely changeable.
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Table 3.3: Values of U and J (eV) for the 3d subspace of Zn in hexahydrated zinc, calculated using the
various linear response schemes and two alternative sets of Hubbard projectors (as defined by the net
charge configuration of the Zn atom in a pseudoatomic solver).

PAO charge +0 +2

scalar U 10.05±0.03 34.77±0.01
averaged 1× 1 U 11.60±0.04 44.64±0.02

1× 1
U↑ 11.67±0.06 44.65±0.03

U↓ 11.53±0.06 44.63±0.02

simple 2× 2
U 10.08±0.03 34.79±0.02
J 1.75±0.05 1.47±0.03

scaled 2× 2
U 10.08±0.03 34.79±0.02
J 1.75±0.05 1.47±0.03

A closed-shell system

Linear response calculations were also performed on [Zn(H2O)6]2+. Zn2+ is not strictly a tran-

sition metal, as its 3d shell is filled. Linear response calculations on closed-shell systems tend to

be troublesome,220,222 possibly due the response becoming non-linear.223

The results of our calculations are listed in Table 3.3. These calculations were performed for

two different definitions of the Hubbard projectors. In ONETEP these are defined using PAOs:

that is, the DFT solutions of the isolated atom/ion with the pseudopotential.235,250,251 Table 3.3

lists the Hubbard parameters for when the pseudoatomic problem was solved with a total charge

of 0 and +2, keeping the pseudopotential itself fixed. The Hubbard projectors corresponding to

the neutral pseudoatom are more diffuse than those for the +2 case.

We find that U is exceptionally large as given by both the scalar and spin-resolved linear

response schemes, and with either definition of the Hubbard projectors. The dependence of the

result on the Hubbard projectors is very striking, and is the most dramatic case that I have

seen. But what is more remarkable is the robustness of these calculations (as shown by the small

uncertainties). Crucially, this robustness is not due to the fact that some schemes avoid matrix

inversion: the uncertainties are similar for schemes where matrix inversion is necessary (2 × 2)

and those where it is not (1× 1), and in no case did I observe evidence of non-linear response.

3.3.3 A comparison with cRPA

For the sake of comparison, it is instructive to study how constrained random phase approxi-

mation (cRPA) methods account for the spin-screening of Hubbard parameters.252,253 In these

approaches, the non-interacting response χ0 is partitioned into components corresponding to re-

sponse within/between various subspaces. For instance, consider a system consisting of a single

site with spin-up and -down channels. The component due to response solely within the spin-up

subspace is given by the (↑, ↑)th entry of χ0 — that is,

(χ0,↑)
σσ′ ≡

(
χ0
↑↑ 0

0 0

)
. (3.37)
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Table 3.4: Spin-screened Hubbard parameters U (eV) calculated using the cRPA approach. The differ-
ences with respect to the corresponding averaged and non-averaged 1 × 1 results of Table 3.1 are given
in parentheses.

metal average U↑ U↓

Ti3+ 0.80 (−0.86) 0.88 (−0.97) 0.71 (−0.76)
V2+ 2.22 (−0.56) 2.57 (−0.72) 1.88 (−0.40)
Cr3+ 1.16 (−0.62) 1.06 (−0.80) 1.26 (−0.44)
Cr2+ 2.07 (−0.32) 2.31 (−0.44) 1.83 (−0.21)
Mn3+ 1.17 (−0.83) 0.38 (−1.13) 1.95 (−0.55)
Mn2+ 3.47 (−0.58) 3.15 (−1.13) 3.78 (−0.04)
Co3+ 1.20 (+0.01) 1.20 (+0.01) 1.20 (+0.01)
Co2+ 5.19 (−1.00) 6.23 (−1.94) 4.14 (−0.08)
Ni2+ 8.36 (−1.48) 12.39 (−3.02) 4.32 (+0.05)
Cu2+ −3.53 (−0.99) −11.44 (−2.33) 4.37 (+0.33)

The non-interacting response due to all other contributions is

(χ̃0,↑)
σσ′ ≡ χ0 − χ0,↑ =

(
0 χ0

↑↓

χ0
↓↑ χ0

↓↓

)
. (3.38)

For such a non-interacting response χ̃0,σ there is a corresponding Dyson equation

UσRPA =
[(
f−1 − χ̃0,σ

)−1
]σσ

(3.39)

where UσRPA is now screened by everything except for interactions within the spin-σ subspace

(as this screening is what χ̃0,σ pertains to).

Screened interaction parameters UσRPA for hexahydrated metal systems are tabulated in

Table 3.4. In this work, it was shown that point-wise inversion (the averaged and non-averaged

1 × 1 schemes) yields an interaction screened by both the opposite spin channel on the same

site and the remainder of the system, so we expect the results of Table 3.4 to resemble those

of Table 3.1. They are correlated, but the match is certainly not exact. This suggests that

the random phase approximation (RPA) is not a good approximation for screening between

unlike-spins, and that more sophisticated methods (such as that of Ref. 254) are required.

3.4 Properties of MnO

We calculated the band gap (Figure 3.8) and the local magnetic moment of Mn (Figure 3.9)

for bulk MnO using Hubbard and Hund’s parameters obtained via our novel schemes (and

listed in Tables 3.1 and 3.2). Semi-local functionals dramatically underestimate the band gap of

MnO; the local/semi-local results presented in Figure 3.8 underestimate it by 2.3 eV on average

(with a standard deviation of 1.0 eV). They also underestimate the local magnetic moment (by

0.35 ± 0.14µB). More sophisticated techniques have been applied with mixed success: hybrid,

GW, and other DFT + U studies underestimate the band gap by 1.3 ± 1.0, 1.3 ± 0.7, and

1.1± 0.7 eV respectively. Our approaches compare very favourably, with the band gap agreeing

with experiment, differing on average by −0.2± 0.4 eV. Scaled 2× 2 in particular gives both the

band gap and magnetic moment in excellent agreement with experiment.
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Figure 3.8: The indirect band gap of MnO, as calculated by various computational approaches, as well
as experimental results (with error bars). All-electron calculations are denoted “AE”.

I found the predicted band gap to be highly sensitive to the choice of pseudopotential, with

different pseudopotentials predicting anything from a metal to gaps as large as 2 eV (for PBE).

All-electron calculations yield a gap of 0.86 eV.256 To obtain similar values with a pseudopoten-

tial, ensuring accurate descriptions of 4s and 4p scattering proved to be key.

Transition metal oxides are typically insulating for one of two reasons. Early 3d transition

metal oxides (such as TiO and VO) are Mott-Hubbard insulators, with the band gap sitting

between the lower and upper Hubbard bands. Late 3d transition metal oxides (such as CuO

and NiO) are charge-transfer insulators, with band gaps formed between the oxygen 2p band

and the upper metal 3d band, separated by the ligand-to-metal charge transfer energy.

MnO sits near the boundary of these two regimes; the valence band edge is neither purely

metal 3d or oxygen 2p in character.269,275 As Figure 3.10 illustrates, this picture is captured by

all schemes, with the valence band edge character sitting between 36 to 59 % Mn. That said, if

Hubbard corrections are applied to Mn but not O, the Mn character drops to below 26% in all

cases, incorrectly approaching a charge-transfer insulator. This demonstrates the importance

of applying corrections to the oxygen orbitals. The valence band in its entirety is plotted in

Figure 3.11, and our methods exhibit marked improvement over PBE.
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Figure 3.9: The magnetic moment of the manganese atoms in MnO, as calculated by various approaches.
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Figure 3.10: The valence band edge character of MnO, showing the fractional contribution of Mn
(purple) and O (orange). PBE correctly predicts the valence band edge’s mixed character, as do the
different corrective schemes. This balance is due largely to the U (and J where relevant) terms applied
to the oxygen 2p subspaces, which see the Mn fractions increase from unphysically low values (indicated
in white).

3.5 Properties of hexahydrated metal complexes

3.5.1 Structural properties

We will now examine how these various Hubbard corrections affect the resulting geometry of

the hexahydrated metal systems. Hartree-Fock,276 hybrid DFT,277,278 and semi-local xc func-

tionals (such as PBE)279 already predict bond lengths consistent with experiment,280 without

any need for Hubbard corrections. However, these corrections can dramatically affect structural

properties; it would be undesirable for them to do so here.

If only the 3d orbitals of the transition metal species are subjected to a Hubbard correction,

and the structure optimised, metal-oxygen distances dramatically lengthen (Figure 3.12a and
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Figure 3.11: The local Mn, O, and total densities of states as obtained by the different schemes. The
1 × 1 result is similar to the averaged 1 × 1 result, and so has been excluded for simplicity. The energy
scale is shown relative to the valence band edge energy εVBE. Experimental results (x-ray emission and
photoelectron spectroscopy) from Ref 270 are included for comparison.
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Figure 3.12: The mean (a) axial and (b) equatorial bond lengths of hexahydrated Mn3+ when optimised
using DFT + U , for various values of UMn and without adding a Hubbard correction to the oxygen atoms.
The shaded regions indicate the range of values reported by other computational studies,276–279 which
are in line with experiment.280 (c) Metal-oxygen distances as given by DFT + U –optimised structures,
now with a first-principles Hubbard U correction to the oxygen 2p orbitals, as compared to analogous
PBE calculations. Each data-point corresponds to a distinct set of Hubbard parameters from Tables 3.1
and 3.2 (that is, all different transition metal species and schemes for computing Hubbard parameters).

3.12b). This is because any hybridisation that existed between the metal 3d orbitals with lone

pairs on the water ligands is weakened by the lowering of the energy of any filled 3d orbitals.

Consequently, the individual species are stabilised and they drift apart. It is clear that this

elongation is wholly unphysical, taking bond lengths well outside of the range of experimental

values. This failure is not specific to this particular system or any procedure for computing U ,

but is a well-documented problem.210,248,281,282

There are a number of approaches for correcting this issue. One solution is DFT + U + V ,

whose inter-site interaction correction to the DFT + U energy functional may correctively favour

O (2p)–metal (3d) bonding.209 Alternatively, adaptive Hubbard projectors can mitigate the prob-

lem, as they will be more delocalised and responsive to the bonding environment.173 But perhaps

the most pragmatic approach is to add Hubbard corrections to the 2p orbitals of the oxygen

atoms.283,284 This lowers their energies to levels comparable with the 3d orbitals, re-establishing

the possibility of hybridisation.
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Figure 3.13: Water deformation as a result of the addition of Hubbard corrections to the manganese and
oxygen orbitals in hexahydrated manganese, showing (a) O–H distances and (b) H–O–H angles (plotted
as crosses). Also shown (light purple) is a literature value corresponding to an ab initio calculation of
liquid water.286 The leftmost point corresponds to UMn,O=0 eV; the rest of the plot corresponds to
UMn = 4.9 eV and U0 progressively increasing from 0 to 8 eV. The water molecules for each structure
display a range of bond lengths and angles due to the Jahn-Teller effect.

Table 3.5: Spin-flip energies (eV) for various hexahydrated transition metal systems. The quantum
chemistry results are from Ref. 278, and the experimental results are from Ref. 287 (and the references
therein).

metal DFT
DFT +U (+J)

CASSCF CASPT2 MRCI exp
scalar av 1× 1 1× 1 scaled 2× 2

V2+ 1.06 1.10 1.09 1.28 1.10 2.01 1.89 1.98 1.62
Cr3+ 1.11 1.04 1.11 1.33 1.04 2.41 2.23 2.35 2.60
Mn2+ 2.16 2.41 2.39 2.41 2.42 3.42 2.91 3.25 2.34
Co2+ 1.60 1.85 1.85 1.86 1.85 1.96 1.95 1.76 1.98
Ni2+ 1.23 1.44 1.48 1.50 1.44 2.30 2.03 2.23 1.91

The success of the latter method is demonstrated in Figure 3.12c, where the addition of

these corrections reduces any bond elongation to at most a five percent increase (and in many

cases much less). The alignment is particularly remarkable given the range of different U and J

values being used.

It is important to note that adding Hubbard terms to the oxygen atoms (a) alters hydrogen-

oxygen-hydrogen angles by less than 2%, (b) alters oxygen-hydrogen bond lengths by approxi-

mately 1%, and (c) does not result in the oxygen atoms acquiring a magnetic moment (the largest

observed was 0.014µB for DFT and 0.073µB for DFT + U + J ), as shown in Figure 3.13. This

level of deformation is acceptable, being within the sorts of errors one would expect from DFT

geometries (and also within the range of bond lengths and angles used in molecular models of

water285).

3.5.2 Spectroscopic properties

Hubbard corrections have significant bearing on spectroscopic properties (given that to first

order, they open a gap between the filled and unfilled Hubbard projectors). This section will
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Table 3.6: Hubbard parameters calculated via linear response for systems where one electron’s spin has
been flipped from the ground spin state. The differences to the parameters obtained for the ground state
(Table 3.1) are listed in parentheses.

metal
scalar averaged 1× 1 1× 1 scaled 2× 2
U U U↑ U↓ U J

V2+ 3.99 (−0.01) 2.57 (−0.21) 2.72 (−0.57) 2.42 (+0.14) 3.84 (−0.23) 0.35 (+0.01)
Cr3+ 4.03 (+0.13) 1.69 (−0.09) 1.71 (−0.15) 1.68 (−0.02) 4.01 (−0.03) 0.41 (+0.01)
Cr2+ 3.08 (−0.12) 2.04 (−0.35) 2.12 (−0.63) 1.97 (−0.07) 3.08 (−0.26) 0.31 (−0.02)
Mn3+ 5.26 (−0.14) 1.64 (−0.36) 1.59 (+0.08) 1.69 (−0.81) 5.27 (−0.59) 0.50 (+0.00)
Mn2+ 4.33 (−0.03) 2.97 (−1.08) 3.19 (−1.09) 2.74 (−1.08) 4.56 (−0.34) 0.38 (+0.01)
Co2+ 5.11 (+0.16) 2.85 (−3.34) 2.86 (−5.31) 2.85 (−1.37) 5.12 (−2.03) 0.42 (−0.06)
Ni2+ 5.49 (+0.23) 3.32 (−6.52) 3.31 (−12.10) 3.32 (−0.95) 5.48 (−6.87) 0.90 (+0.15)

Table 3.7: Spin-flip energies (eV) for various hexahydrated transition metal systems with U (and J for
2×2) updated following the flip. The quantum chemistry results are from Ref. 278, and the experimental
results are from Ref. 287 (and the references therein).

metal DFT
DFT +U (+J)

CASSCF CASPT2 MRCI exp
scalar av 1× 1 1× 1 scaled 2× 2

V2+ 1.06 1.11 1.26 1.28 0.80 2.01 1.89 1.98 1.62
Cr3+ 1.11 0.94 1.32 1.33 −0.15 2.41 2.23 2.35 2.60
Mn2+ 2.16 2.40 2.73 2.74 2.00 3.42 2.91 3.25 2.34
Co2+ 1.60 1.83 1.44 1.62 0.72 1.96 1.95 1.76 1.98
Ni2+ 1.23 1.81 1.03 1.50 0.41 2.30 2.03 2.23 1.91

focus on d-d excitation energies, where a single electron transitions between two 3d orbitals.

While these transitions are formally dipole-dipole forbidden by the Laporte selection rule, they

are allowed via vibronic coupling.288

The first subset of such transitions are those which involve the flip of the electron’s spin.

These transitions additionally violate spin selection rules, but vibronic coupling again means

that they are observable (albeit weakly). The transition energies are simply calculated as the

difference in the total energy between two DFT ( +U) calculations where the total spin differs

by ~. This was done without updating U . As this approach relies only on the accuracy of the

total energy, DFT alone (without a Hubbard correction) might give reasonable results. This is

indeed what I found (Table 3.5). The results are relatively insensitive to the choice of Hubbard

parameters. Surprisingly, the scalar and scaled 2 × 2 approaches yield near-identical results,

despite the fact that the two approaches differ by the value for J and share the same value

for U . A Hund’s correction ought to have a significant bearing on spin-flip energies, providing

further evidence that the precise functional form of the +J functional needs revision.

If instead we update U for the excited state, we get the Hubbard values listed in Table 3.6 and

the resulting spin-flip energies listed in Table 3.7. Using updated Hubbard parameters worsened

the resulting spin-flip energies, with some cases even predicting the wrong ground state. The

scaled 2× 2 results are an excellent demonstration of the findings of Millis and co-workers, who

showed that the current +J functional wrongly disfavours ferromagnetism.227

The other possible d-d excitations involve the transition of a single electron without changing

its spin. These transitions are spin-allowed, and thus will exhibit intensities between those of fully

allowed and spin-forbidden transitions. The transition energies are calculated as the difference

in energy of the corresponding KS orbitals, and are listed in Table 3.8.

I found that DFT and DFT + U (+ J) have mixed success reproducing these transition en-



58 CHAPTER 3. DFT+U

ergies. This not surprising. The energy of such transitions is instead directly related to the cal-

culated KS band gap and, as such, DFT (with its well-known underestimation of the band gap)

will not give accurate results. Hubbard corrections tend to correctly enlarge KS band gaps, but

there is no reason a priori why the final gap they produce ought to be accurate.186 Ongoing ef-

forts are being made to construct generalised DFT + U theories that satisfy Janak’s/Koopman’s

theorem.289–291 These transition energies will also be highly sensitive to static correlation, a fail-

ing of DFT associated with multi-reference ground states. This failing remains unaddressed

and may be an important factor in the overestimation of transition energies of Ti2+, Fe2+,

and Co2+.180,181 Adapting DFT + U -like functionals to correct both self-interaction and static

correlation error is an area of active research.292 Furthermore, the excitation energies shown

have been computed using a very simplistic approach, neglecting vibronic and solvation effects

(among others), which would likely result in significant shifts.293

3.6 Conclusions

This chapter has presented the generalisation of the minimum-tracking linear response formal-

ism for calculating U and J to multiple sites and spins.212 In this formalism, the non-interacting

response χ0 is strictly a ground-state property. Previously, it was not possible to calculate

Hubbard parameters via linear response in large, spin-polarised systems such as metallopro-

teins.30,294 But because minimum-tracking is compatible with direct minimisation (common to

linear-scaling density functional theory packages such as ONETEP), linear response calculations

on large and complex systems are now possible.

Crucially, this formalism allowed me to work with spin relatively easily. I demonstrated

that the scalar linear response approach, whose use is widespread, yields a Hubbard U that is

unscreened by the opposite spin channel of the same site. I presented alternative approaches

that account for this screening. Specifically, the opposite spin channel can be included in the

bath, which is consistent with the effective decoupling of spins into separate subspaces implied

by the standard DFT + U functional (i.e. the 1×1 schemes). This lowers the resulting U values.

Alternatively (but not equivalently), if inter-spin interactions require correction then a Hund’s

coupling parameter ought to be used in conjunction with an adjusted Hubbard parameter (scaled

2× 2).

Applying these approaches to hexahydrated transition metals revealed significant trends

in the Hubbard parameters across the transition metals. The linear response calculations were

remarkably stable numerically, offering a possible route forward for closed-shell solids. That said,

the best DFT + U like model, and hence the uniquely-defined linear response calculation scheme

for that model, seems to be difficult to predict for a given system and underlying exchange-

correlation functional.

In the case of MnO, a canonical strongly correlated system, these novel approaches gave

band gaps, magnetic moments, and valence band edge characters in excellent agreement with

experiment, with a satisfyingly small variance compared to hybrid functionals and other meth-

ods. In the case of the hexahydrated transition metal complexes all approaches reproduced

reasonable bond lengths but none reliably reproduced experimental d-d excitation energies. The
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Table 3.8: KS transition energies (eV) for spin-conserving d-d excitations. In all cases, corrective terms
were applied to both the metal 3d and oxygen 2p subspaces.

metal
final

DFT
DFT +U

CASSCF CASPT2 MRCI exp
symmetry scalar 1a 1b 2b

Ti3+

1B2g 0.27 3.16 1.48 1.63 2.79 0.00
1B3g 0.28 3.25 1.51 1.66 2.86 0.00
1Ag 1.94 3.98 2.81 2.92 3.76 1.69 1.71 1.76 2.16
1Ag 2.38 4.60 3.33 3.44 4.34 1.70 1.72 1.77 2.52

V2+

3B1g 1.97 4.92 3.98 4.35 4.61 1.19 1.26 1.28 1.53
3B2g 1.97 4.92 3.98 4.35 4.61 1.19 1.26 1.28 1.53
3B3g 1.97 4.92 3.98 4.35 4.61 1.19 1.26 1.28 1.53

Cr3+

3B1g 2.24 3.98 3.15 3.17 3.56 1.69 1.77 1.79 2.16
3B2g 2.24 3.98 3.15 3.17 3.56 1.69 1.77 1.79 2.16
3B3g 2.24 3.98 3.15 3.17 3.56 1.69 1.77 1.79 2.16

Cr2+

4Ag 0.38 2.06 1.60 1.80 1.83 0.62 0.69 0.64 1.17
4B2g 1.37 3.28 2.77 2.99 3.04 1.18 1.27 1.19
4B3g 1.53 3.44 2.93 3.15 3.22 1.23 1.30 1.23
4B1g 1.95 3.88 3.36 3.58 3.61 1.34 1.44 1.36 1.75

Mn3+

4Ag 0.21 1.28 0.68 0.62 0.97 0.69 0.77 0.72 1.11
4B2g 0.97 5.08 3.63 1.86 4.87 1.72 1.96 1.78 2.53
4B3g 2.64 5.28 3.99 3.41 4.95 1.76 1.99 1.82 2.53
4B1g 3.00 5.72 4.38 3.88 5.42 1.91 2.21 2.00 2.53

Fe2+

4B2g 1.28 5.62 6.03 4.92 4.95 0.00
4B3g 1.28 5.63 6.04 4.93 5.04 0.00
4Ag 1.88 5.73 6.07 5.07 5.24 0.75 0.80 0.83 1.29
4Ag 3.12 6.99 7.34 6.38 6.33 0.85 0.89 0.91 1.29

Co2+

3B2g 3.02 7.85 8.65 7.03 7.16 0.00
3B3g 3.03 7.85 8.67 7.04 7.17 0.00
3B2g 3.64 7.91 8.75 7.15 7.23 0.67 0.81 0.65 1.02
3B3g 3.64 7.91 8.78 7.16 7.24 0.68 0.81 0.65 1.02
3B3g 5.17 9.41 10.08 8.76 8.69 2.82 2.69 2.62 2.41
3B2g 5.17 9.42 10.10 8.77 8.70 2.85 2.69 2.62 2.41

Ni2+

2B3g 4.30 8.74 13.39 7.72 7.91 0.75
2B1g 4.30 8.74 13.39 7.72 7.91 0.76 0.89 0.85 1.05
2B2g 4.30 8.74 13.39 7.72 7.91 0.76
2B1g 4.30 8.74 13.39 7.72 7.91 1.31 1.48 1.45 1.67
2B2g 4.31 8.74 13.39 7.72 7.91 1.31
2B3g 4.31 8.74 13.39 7.72 7.91 1.31

Cu2+

1Ag 1.79 5.06 0.49 4.56 4.47 0.51 0.61 0.52 1.17
1B2g 2.31 6.19 1.12 5.49 5.33 0.84 1.08 0.85
1B3g 2.82 6.68 1.81 5.91 5.82 0.89 1.12 0.89
1B1g 3.34 6.85 1.99 5.95 5.88 0.97 1.23 0.99 1.56

1×1 approach gave the best results for spin-flip energies (a well-defined ground-state property),

but even these were not in very good agreement with quantum-chemistry results. Here, the

electronic structure appears to be too complicated to be accurately described by the standard

DFT + U functional, especially while static correlation remains unaddressed. The development

of DFT + U methodologies are reliant on ever more accurate quantum chemistry benchmarks

(e.g. Refs. 295 and 296).

Applying Hubbard corrections to the oxygen 2p subspaces proved to be necessary to preserve

the correct valence band edge character in MnO and to reproduce bond lengths in hexahydrated

transition metals.

By establishing a systematic approach for including/excluding screening by the opposite

spin channel, these developments provide a route forward for performing DFT + U ( + J) on

spin-polarised systems in a robust and consistent manner.
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(a) (b)

Figure 3.14: (a) Dissociation curves of H+
2 as given by DFT and various self-consistent DFT + U

schemes (differing in their definition of self-consistency). Crucially, U is calculated separately for each
different bond length. (b) Dissociation curves generated using fixed values for U . This emphasises the
importance of calculating U ab initio. Figures taken from Ref. 212.

3.6.1 The dissonance between local and global curvature

A substantial shortcoming of DFT + U as a correction to SIE is the distinction between local

and global curvature. SIE gives rise to a curvature in the energy with respect to the total num-

ber of atoms in the entire system (“global curvature”), whereas DFT + U subtracts curvature

with respect to the occupancy of a local subspace (“local curvature”), which are very different

quantities. Ref. 186 demonstrated that for many systems correcting local curvature did address

global curvature, but for others this was not the case at all. (This is why I have always stated

that DFT + U can partially correct the SIE present in a system.)

If we restrict ourselves to a system where global and local curvature are the same, the

results are promising. For instance, in calculations on stretched H+
2 DFT + U can reproduce

the dissociation curve (see Figure 3.14).212 The challenge is to go beyond this point to multi-

electron systems. One way of doing so would be to develop functionals with explicit derivative

discontinuities — although this would be a dramatic departure from DFT + U -like theories.

3.6.2 Static correlation error

We need not stray too far from H+
2 to run into issues. DFT exhibits two major inaccuracies

when it comes to energies. SIE is one, and the second is static correlation error (SCE).180 In the

classification scheme of Cohen et al., SCE is associated not with fractional charge but fractional

spins, and can therefore be observed in systems as simple as Hex+ (0 < x < 2), as shown in

Figure 3.15. Furthermore, attempts to correct SIE using DFT + U have been shown to worsen

SCE.292

Many of the issues discussed in this chapter stemmed from the conflict between (a) the desire

to co-opt DFT + U to correct density curvature and (b) the fact that the DFT + U functional

corrects spin channels separately. Perhaps a conceptually cleaner approach would be to consider
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Figure removed due to copyright. The original can be
seen in Ref. 180 as Figure 1.

(a)

Figure removed due to copyright.
The original can be seen in

Ref. 292 as Figure 2.

(b)

Figure 3.15: (a) The principal systematic errors in practical quantum-mechanical material simula-
tion are self-interaction error (SIE, left) and static correlation error (SCE, right). Figure adapted from
Ref. 180. (b) The curvature of the PBE energy of helium as a function of the spin-up (nα) and spin-down
(nβ) occupancies, making clearly visible both the SIE curvature (as n = nα + nβ changes) and the SCE
curvature (as µ = nα − nβ changes). Figure taken from Ref. 292.

alternative energy corrections of the form:

Ecorrection =
1

2

δ2E

δn2

(
n− n2

)
− 1

2

δ2E

δµ2

(
µ2
)

(3.40)

which, by design, linearises E as a function of n (that is, removes SIE) and makes it independent

of µ (removes SCE). In order to draw some parallels with the DFT + U functional, let us

manipulate this a little:

Ecorrection =
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(3.41)

We can relate the two curvatures to Hubbard parameters:

U =
δ2Eint
δn2

=
δvHxc

δn
=

1

2

δv↑Hxc + δv↓Hxc

δ(n↑ + n↓)
. (3.42)

In the case of a closed-shell system, this simplifies due to the fact that δn↑ = δn↓, f↑↑ = f↓↓,

and f↑↓ = f↓↑:

U =
1

2
(f↑↑ + f↑↓) (3.43)
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— that is, the average of the like- and unlike-spin interactions. Likewise for J ,

J = −δ
2EHxc

δµ2
= −1

2

δv↑Hxc − δv
↓
Hxc

δ(n↑ − n↓) (3.44)

which in the closed-shell case becomes

J = −1

2
(f↑↑ − f↑↓) (3.45)

that is, a difference between the like- and unlike interactions. Note that the effective U reduces

to the like-spin interactions only, as expected (Ueff = U − J = f↑↑). In this simplified case our

revised energy correction functional becomes

Ecorrection =− 1

2
f↑↑

∑
σ

(nσ)2 − 1

2
f↑↓

∑
σ

nσn−σ

+
1

2
(f↑↑ + f↑↓)

∑
σ

nσ. (3.46)

This makes the action of this particular Hubbard correction transparent: the first two terms

remove any quadratic interactions within a subspace, and the final term installs linear behaviour

in an average-like way. Perhaps a functional such as this may be better suited to counteracting

SIE and SCE than DFT + U .

Following similar logic, Kulik and co-workers have recently constructed DFT + U -like func-

tionals for lone atoms and homonuclear diatomic molecules, fitting their parameters (U , J , and

several others besides) in order to explicitly recover the flat plane condition.292,297 This they

were able to do, demonstrating that generalised DFT + U -like functionals can simultaneously

address both SIE and SCE and recover the flat plane condition. Admittedly in some cases this

required exceptionally large corrective terms (i.e. U, |J | > 20 eV in many instances). It will be

interesting to see how these corrective functionals affect system properties.

3.6.3 Koopman’s compliance

An entirely different approach is taken by the recently-developed “Koopman’s-compliant” func-

tionals.193,194,298,299 Instead of defining self-interaction in terms of the curvature of the total

energy, they consider the individual Kohn-Sham eigenvalues

εiσ = 〈φiσ|HKS |φiσ〉 (3.47)

and assert that the system is “self-interaction-free” if these energies are independent of the

corresponding occupation of that orbital fi. The construction of the resulting functional is

straightforward:

EKC[n] = EDFT +
∑
iσ

αiσΠiσ (3.48)

where

Πiσ(fiσ) = −
∫ fi

0
〈φiσ|HDFT|φiσ〉ds+ fiσ

∫ 1

0
〈φiσ|HDFT|φiσ〉 (3.49)
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which transparently removes the non-linear behaviour of the underlying functional and replaces

it with a linear Koopman’s term that interpolates between integer occupations. (The {αiσ}
terms are screening coefficients that must be calculated in a similar manner to Hubbard/Hund’s

parameters in DFT + U .)

One complication of these functionals is that the energy correction is orbital-dependent,

taking us beyond the realm of density functional theories. Here, the “variational orbitals” that

minimise the functional are different to the “canonical orbitals” that diagonalise the Hamil-

tonian: the variational orbitals typically become localised to lower the total energy while the

canonical orbitals are typically delocalised and interpreted much like KS orbitals.300

This class of functionals performs well, yielding accuracy comparable to GW at a fraction of

the computational cost301 — another fine example of the importance of self-interaction and the

usefulness of DFT + U -like theory looking forward.



64 CHAPTER 3. DFT+U



Chapter 4

Dynamical mean field theory

4.1 Introduction

Leaving behind the DFT + U method of the previous chapter, an alternative approach for treat-

ing correlated materials is dynamical mean field theory (DMFT). In order to motivate this

method, let us revisit some of the ideas underpinning DFT.

Many physical systems can be well described in an independent-particle framework. In this

approach, valence electrons are described using a wave-like picture, with Bloch states repre-

senting individual wavefunctions. This works well for systems where the electrons are highly

itinerant, but it breaks down if electrons instead have a tendency to localise (as in the case of

the U � t limit of the Hubbard model discussed in Subsection 3.1.1). In these cases, it is better

to conceptualise electrons as particles, with wavefunctions localised on individual atomic sites.

Strongly-correlated systems often sit at the boundary of these two extremes, with the electrons

“hesitating” between itinerant and localised behaviour.302

DFT — with its auxiliary non-interacting system — leans heavily on the independent-particle

picture. While formally one can prove that the ground-state density uniquely determines the

Hamiltonian of a system (and therefore every single system property, both ground- and excited-

state), in practice approximate DFT is generally most successful for systems where the electrons

are itinerant.

DMFT was developed in an attempt to restore aspects of the “atom-like” picture. Devel-

oped by Metzner, Vollhardt, Georges, Kotliar, and others, DMFT303,304 is a Green’s function305

method that maps the electronic problem onto an impurity Hamiltonian with a self-consistency

condition. This model Hamiltonian includes Hubbard and Hund’s-like terms, much like the

Hubbard model discussed earlier, and local quantum fluctuations are fully taken into account,

allowing DMFT to capture complex electronic behaviour such as the intermediate three-peak

states of the Mott transition, the transfer of spectral weight, and the finite lifetime of excita-

tions.306

Like DFT + U , DMFT can be used in conjunction with DFT to treat localised regions where

correlation is important.150 In the case of DFT + U , each correlated subspace was subjected to an

additional potential; in DFT + DMFT, we go substantially further, subjecting these subspaces

65
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to a full Green’s function treatment.† The fact that DMFT can be selectively applied is critical,

as DMFT alone is prohibitively expensive for studying most realistic systems.

In the past decade, numerous codes have been written to add DMFT functionality to ex-

isting DFT packages. These include EDMFTF307,308 and DFTTools309 on top of Wien2K,310

EDMFTF308 on top of VASP,311–313 DCore314 on top of Quantum Espresso315 and OpenMX,218,316

TOSCAM317 on top of CASTEP,318,319 Amulet320 on top of Quantum Espresso315 and Elk,321

and ComDMFT322 on top of FlapwMBPT.323,324 Many of these make use of stand-alone li-

braries such as TRIQS,325 ALPS,326 iQIST,327 or W2dynamics.328 This chapter introduces an

overhauled implementation of TOSCAM on top of ONETEP. In contrast to the packages men-

tioned above, this approach uniquely enables us to perform DMFT calculations on large and

aperiodic systems such as nanoparticles and metalloproteins.

This ONETEP+TOSCAM code has already seen success: it has been used to explain the

insulating M1 phase of vanadium dioxide,77 to demonstrate the importance of Hund’s coupling

in the binding energetics of myoglobin,78,79 and to reveal the super-exchange mechanism in

the dicopper oxo-bridge of haemocyanin and tyrosinase (see Chapter 5).6 But until now it has

not been available to the scientific community at large. As part of my PhD project I have

substantially rewritten the DMFT module in ONETEP, which is now included in the latest

release (version 5.0). This chapter presents an overview of this methodology, its implementation,

and an example of its application to an iron porphyrin system.

4.2 Theory

A DMFT calculation involves the self-consistent calculation of the Green’s function Gαβ(ω) (ω

here may be ω + i0+ or iωn if operating in the finite-temperature Matsubara representation)

and the self-energy Σαβ, which are related via

Gαβ(ω) = [(ω + µ)S −H − Σ(ω)]αβ
−1 (4.1)

where µ is the chemical potential and Sαβ is the NGWF overlap matrix (that is, Sαβ = 〈φα|φβ〉),
which of course is non-diagonal.

Treating most physical systems at the DMFT level would usually be prohibitively expensive

(I will explain why later). The DFT + DMFT scheme takes advantage of the fact that strong

electronic correlation is often confined to identifiable localised subspaces (for instance, the 3d

orbitals of a transition metal atom), with the remainder of the system having a delocalised,

free-electron character. In such systems, the correlated subspaces can be treated at the DMFT

level, while DFT alone should be sufficient everywhere else.

Correlated subspaces are typically defined via a set of local, fixed, atom-centred, spin-

independent, and orthogonal orbitals {ϕIm}. (Here, I is the atom index and m is an orbital

index.) In ONETEP, these are defined using the same the Hubbard projectors as in DFT + U

(that is, they are defined using PAOs: the Kohn-Sham solutions to the isolated pseudopotential

of the correlated atom235,250,251).

†For a brief overview of Green’s function formalism, see Appendix A.6.



4.2. THEORY 67

impurity sites

bath sites

ε

V

t HU

Figure 4.1: Schematic diagram of an Anderson impurity model, showing the impurity sites (red squares),
bath sites (blue circles) and the interaction parameters.

4.2.1 The Anderson impurity model

In order to efficiently find a self-consistent solution to Equation 4.1, DMFT relies on mapping

correlated subspaces to auxiliary Anderson impurity models (AIMs). An AIM is a simplified

Hamiltonian that describes the interaction of a number of sites (known as impurity sites) with

a bath of additional electronic levels:

Ĥ =
∑
ijσ

(εij − µ)ĉ†iσ ĉjσ︸ ︷︷ ︸
Ĥbath

+
∑
imσ

(
Vmif̂

†
mσ ĉiσ + h.c.

)
︸ ︷︷ ︸

Ĥmix

+
∑
mm′σ

(tmm′ − µ)f̂ †mσf̂m′σ + ĤU︸ ︷︷ ︸
Ĥloc

(4.2)

where Ĥbath describes the non-correlated behaviour of the bath (parametrised by the hopping

matrix εij), Ĥloc the impurity (parametrised by the impurity hopping tmm′ and the interaction

Hamiltonian ĤU ), and Ĥmix the coupling between the two (parametrised by Vmi). The bath and

impurity sites have a shared chemical potential µ, and ĉ/f̂ are the annihilation operators for the

bath/impurity. The convention throughout will be that Greek indices correspond to NGWFs,

m and m′ to Hubbard subspaces and their corresponding impurity sites, and Latin indices to

bath sites. σ is the spin index.

The non-interacting Anderson model (i.e. HU = 0) has the Green’s function

G0
tot(ω) =

1

ω + µ− T (4.3)

where the full hopping matrix is of the block matrix form

T =

(
t V

V † ε

)
. (4.4)

It follows that the (non-interacting) impurity Green’s function — that is, the top-left-hand block

of G0
tot(ω) — simplifies to

G0
imp(ω)−1 = ω + µ− t−∆imp(ω), (4.5)
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where

∆impmm′(ω) = Vmi

(
1

ω + µ− ε

)
ij

V †jm′

is the so-called impurity hybridisation function. This quantity is of particular importance be-

cause it encapsulates all of the contributions of the bath sites to the physics of the impurity

sites; the AIM impurity Green’s function is given by

Gimp(ω)−1 = G0
imp(ω)−1 − Σ(ω) = ω + µ− t−∆imp(ω)− Σimp(ω). (4.6)

4.2.2 A DMFT calculation

This subsection will walk through the steps in a standard DMFT calculation as performed in

TOSCAM + ONETEP. It is important to note that DMFT typically invokes a mean field ap-

proximation across multiple correlated sites (hence dynamical “mean field” theory), an approach

that only becomes exact in the limit of infinite coordination (or equivalently, dimensions). This

is not the case in our following real-space approach, where instead correlated sites are typically

treated via a (possibly multi-site) AIM.

Mapping physical systems to an impurity model

DFT + DMFT utilises an AIM as an auxiliary system: the AIM parameters {Vmi}, {εij}, and

{tmm′} are chosen such that the resulting model Hamiltonian reproduces the physics of the

real system as closely as possible. This mapping proceeds as follows. Firstly, the Kohn-Sham

Hamiltonian, an estimate of the system self-energy (zero is a reasonable starting point), and

a total Green’s function (obtained via Equation 4.1) are each projected onto the correlated

subspaces. For instance, the local Green’s function is given by

G̃Imm′(ω) = W I
mαG

αβ(ω)(W I)†βm′ (4.7)

where W I
mα = 〈ϕIm|φα〉 is the overlap of the NGWFs and the Hubbard projectors. In a similar

manner one can obtain the projected self energy Σ̃I(ω) and the projected Kohn-Sham Hamilto-

nian H̃I .

The impurity hopping parameters tmm′ for the auxiliary AIM are set equal to the projected

Hamiltonian. Meanwhile, in order to determine {Vmi} and {εij}, we define the local hybridisation

function for our physical system

∆̃I(ω) = ω + µ− (G̃I)−1(ω)− Σ̃I(ω)− H̃I (4.8)

which is analogous to the definition of the impurity hybridisation function (Equation 4.6). We

choose the impurity model bath parameters such that the AIM hybridisation function matches

this local hybridisation function as closely as possible. This is done by minimising the distance

function

d(V, ε) =
∑
ω<ωc

1

ωγ

∣∣∣∆imp(ω)− ∆̃I(ω)
∣∣∣2 (4.9)
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using a conjugate gradient (CG), BFGS, or similar minimisation algorithm. Here, ωc is a cut-off

frequency and γ is a user-specified parameter that can allow for the preferential weighting of

agreement at low frequencies.

In order to complete the construction of the auxiliary AIM Hamiltonian we choose HU to be

of the Slater-Kanamori form329,330

ĤU = U
∑
m

n̂m↑n̂m↓ +

(
U ′ − J

2

) ∑
m>m′

n̂mn̂m′

−J
∑
m>m′

(2ŜmŜm′ + f̂ †m↑f̂
†
m↓f̂m′↑f̂m′↓). (4.10)

This Hamiltonian is well-suited to capturing multiplet properties of low energy states.331 Its first

term describes intra-orbital Coulomb repulsion. The second describes the inter-orbital repulsion,

with U ′ = U−2J further renormalised by the Hund’s coupling to ensure the rotational invariance

of the Hamiltonian. The third and final term captures the Hund’s exchange coupling; Ŝm is the

spin of orbital m, given by (Ŝm)i = 1
2

∑
σσ′ f̂

†
mσ(si)σσ′ f̂mσ′ via the Pauli spin matrices {si}. The

Hubbard parameter U and Hund’s coupling J are user-specified parameters that, in principle,

could be obtained via linear response178 but are often chosen empirically or treated as variational

parameters.

Now that we have defined ε, V , t, and HU , the mapping of a real system to an auxiliary AIM

is complete. In theory, this mapping can be exact: as long as ∆imp(ω) and ∆̃I(ω) match exactly,

Gimp(ω) and G̃I(ω) will also. Getting this mapping right is therefore of the utmost importance.

Solving the AIM

Having constructed the AIM Hamiltonian HAIM, the next step is to calculate the Green’s func-

tion of the AIM (known as the impurity Green’s function):

Gimpmm′(ω) =

∫ ∞
−∞

eiωtGimpmm′(t) dt

= −i
∫ ∞

0
eiωt〈eiĤtĉme−iĤt, ĉ†m′〉 dt

= −i
(〈

ĉm

∫ ∞
0

ei(ω−(Ĥ−E0))t dt ĉ†m′

〉
+

〈
ĉ†m′

∫ ∞
0

ei(ω+(Ĥ−E0))t dt ĉm

〉)
=

〈
ĉm

1

ω − (Ĥ − E0)
ĉ†m′

〉
+

〈
ĉ†m′

1

ω + (Ĥ − E0)
ĉm

〉
(4.11)

where 〈 • 〉 is the thermodynamic average, which at zero temperature becomes 〈ψ0| • |ψ0〉.
Resolving Equation 4.11 is highly expensive, and becomes one of the most substantial com-

putational barriers in a DMFT calculation. If there are m bath sites and n impurity orbitals,

the Hilbert space of this problem scales as 4m+n.† This is far larger than any of the other

matrix inversions that we need to calculate during the DMFT loop (for instance, Gαβ is only as

large as the number of Kohn-Sham orbitals, which in turn will be of the order of the number

†For a system containing a single transition metal there will be five impurity orbitals (one for each 3d orbital)
and then typically six to eight bath sites.
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of electrons in the physical system — typically several thousand at most). There are a multi-

tude of approaches for obtaining Gimp, such as exact diagonalisation (ED) and continuous time

Monte Carlo algorithms. The calculations in this work employ ED via the Lanczos algorithm to

evaluate Equation 4.6, a process which is explained in detail n Appendix A.7.

Given a solution Gimp (obtained via ED or otherwise), the impurity self-energy can then be

obtained via

Σ(ω) = [G0
imp]−1(ω)−G−1

imp(ω) (4.12)

where the non-interacting impurity Green’s function is given by Equation 4.5. Note that this

operation is far less expensive than Equation 4.6 because these matrices are only m×m in size.

Upfolding and double-counting

Having obtained the impurity Green’s function ΣI for each AIM, the final step is to upfold

this result to the complete physical system. Since the original DFT solution already contains

the influence of the Coulomb interaction to some degree, double-counting becomes an issue. A

popular form of the correction is

EDC =
Uav

2
n (n− 1)− J

2

∑
σ

nσ(nσ − 1) (4.13)

where n is the total occupancy of the subspace, and

Uav =
U + 2(N − 1)U ′

2N − 1
(4.14)

with N being the number of orbitals spanning the correlated subspace (and recall that U ′ =

U − 2J).331 This double-counting is derived by attempting to subtract the DFT contributions

in an average way; Uav is the average of the intra- and inter-orbital Coulomb parameters.

The self-energy is upfolded to the NGWF basis via

Σαβ =
∑
I

W I
mα(ΣImm

′
− EDCδ

mm′)W I
m′β (4.15)

— and with that, we are back where we started, having generated a new estimate of the self-

energy Σαβ for the full system.

The DMFT algorithm in full

To summarise, the scheme is as follows:

1. perform a DFT calculation to construct the system Hamiltonian

2. initialise the self-energy as Σαβ(ω) = 0

3. obtain the Green’s function for the full system (equation 4.1)

4. project the total Green’s function and self energy onto the Ith Hubbard subspace to obtain

the corresponding local quantities (Equation 4.7)
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5. calculate the local hybridisation function (Equation 4.8)

6. find the bath parameters εij and Vmi such that the AIM hybridisation function (equa-

tion 4.2.1) matches the local hybridisation function found above

7. explicitly solve the AIM Hamiltonian to obtain the impurity Green’s function (equa-

tion 4.11)

8. update the impurity self-interaction (equation 4.12)

9. upfold the self-energies from each correlated subspace to obtain the total self-interaction

(equation 4.15)

Note that if we only have one correlated site in our system (as is the case for many of the

biological systems we will come across in this thesis), this mapping is exact, and the local lattice

Green’s function at step 9 will already match the impurity Green’s function.

This is not the case for bulk systems. There, the mean field approximation that we adopt

means that the self-energy of a correlated site is also inherited by the “bath” i.e. one would

typically solve a single Anderson impurity problem but then in Equation 4.15, the index I would

run over all correlated sites. This means that after step 9 we must return to step 3, and repeat

this loop until the local lattice and impurity Green’s functions match.

Once the calculation is converged, we can extract system properties from the Green’s function

(such as the density of states and the optical absorption). One can also apply standard ONETEP

analysis techniques to the electron density (such as natural bonding orbital analysis). These

techniques will be demonstrated in Section 4.3.

4.2.3 Extensions

There are several possible extensions to the theory described thus far. These are not essential

but often useful.

Enlarged AIM via cluster perturbation theory

If an AIM has too few bath sites at its disposal, it will be insufficiently flexible to fit a given local

hybridisation function. The brute-force approach would be to increase the number of bath sites,

but in practice the number of bath sites is severely limited due to the exponential growth of

Hilbert space with respect to the AIM’s total number of sites (bath and impurity). To overcome

this barrier, a secondary set of bath levels are coupled to the primary bath levels via cluster

perturbation theory (CPT). By indirectly including these sites, the AIM system acquires extra

flexibility without expanding the Hilbert space, resulting in a dramatic drop in the distance

function. For more details, see Ref. 332.

Self-consistency

For a system with a single correlated site, there is no feedback from the self energy to the hybridi-

sation function, and — provided the AIM is sufficiently representative — the DMFT algorithm
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Figure 4.2: The three DMFT schemes, in increasing order of complexity.

will converge in a single step. (In this case the algorithm is not a mean-field approximation, but

exact.) This scheme is shown in Fig. 4.2a.

However, there are a number of reasons why we may not be content with the resulting

solution. For a start, the total number of electrons in the system is related to the total retarded

Green’s function via

N =

∫
dω ραβ(ω)Sαβ; ραβ(ω) =

1

2πi

(
Gαβ(ω)−Gαβ†(ω)

)
, (4.16)

where ραβ(ω) is the basis-resolved DMFT spectral density matrix.

There is no reason a priori why the Green’s function, updated via the DMFT loop, should

yield the same number of electrons as we started with — in fact, this is almost never the

case. For this reason, charge conservation can optionally be enforced by adjusting µ so that∫ µ
−∞ ρ(ω) = N . This update is done during each DMFT cycle, which means that our total

Green’s function (now adjusted by our altered µ) will not necessarily be consistent with the

self energy — and consequently more than one DMFT loop will likely be required to iterate to

self-consistency (Fig. 4.2b). We will refer to this as “charge-conserving” DMFT; it will be the

primary approach deployed in Chapter 5.

Finally, in the DFT formalism, the Hamiltonian is a functional of the density. It could be

argued that if we are to be fully self-consistent, whenever the density changes the Hamiltonian

should be updated accordingly. In this scheme, one iterates until Σ, H, and µ all converge

(Fig. 4.2c). This we will refer to as “self-consistent” DMFT. We use Pulay mixing333,334 to

update the Hamiltonian (via the density kernel) and the self-energy. Performing this double-

loop naturally makes the calculations much more expensive, but they remain feasible. This

approach was taken in Refs. 335–337, for example.

4.2.4 Practical implementation

In our implementation, ONETEP and TOSCAM are responsible for separate sections of the

DMFT loop, as shown in Figure 4.3. As the calculation proceeds, these two programs alternate,

with the entire procedure being driven by an overarching script.

This splitting makes our algorithm highly amenable to parallelisation: parallel TOSCAM
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Figure 4.3: A simplified DMFT loop, demonstrating which program (ONETEP or TOSCAM) is re-
sponsible for which step.

instances can consider different correlated subspaces in isolation. (That is, a system with many

correlated sites is embarrassingly parallel if inter-site correlation can be neglected.) By design,

the AIM solver in TOSCAM is as modular as possible. This allows it to be easily interchanged

with other solvers that have been independently developed.

A ONETEP+TOSCAM implementation already existed prior to my PhD (and was used to

generate the results of Refs. 77–79). However, that version was never integrated into the official

ONETEP repository, so subsequent development of ONETEP had made the two codes incompat-

ible. Furthermore, the implementation had a raft of external dependencies† that complicated its

compilation and distribution. I overhauled this interface, which involved (a) restoring compati-

bility with the active version of ONETEP, (b) reducing the number of external dependencies as

much as possible, to those that we can expect HPC systems to have installed (or are sufficiently

lightweight and open-source that we can distribute them directly),‡ and (c) extensively tidied

the code, removing ambiguous syntax, adding documentation, and automating its compilation

via a makefile procedure.

This overhauled interface will be made freely available for download, along with documen-

tation, tutorials, and example input files. (ONETEP must be obtained separately.)

†Specifically, BLAS, LAPACK, FFTW, ARPACK, BLZPACK, DIERICKX, Fields, GSL, PGPLOT, and
SLATEC.

‡The new interface has external dependencies on BLAS, LAPACK, FFTW, and has an in-house copy of
DIERICKX.

http://www.netlib.org/blas/
http://www.netlib.org/lapack/
http://www.fftw.org/
https://www.caam.rice.edu/software/ARPACK/
https://web.cs.ucdavis.edu/~bai/ET/lanczos_methods/overview_BLZPACK.html
http://www.netlib.org/dierckx/
http://www.image.ucar.edu/GSP/Software/Fields
http://git.savannah.gnu.org/cgit/gsl.git
http://www.astro.caltech.edu/~tjp/pgplot/
http://www.netlib.org/slatec/
http://www.netlib.org/blas/
http://www.netlib.org/lapack/
http://www.fftw.org/
http://www.netlib.org/dierckx/
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Figure 4.4: The scaling of ONETEP+TOSCAM for calculations on iron porphyrin (see Section 4.3
for details). (a) The scaling with respect to the number of AIM sites; (b) and (c) the fractional wall
time and the speed-up with respect to the number of OpenMP threads. “Lanczos diagonalisation” and
“computing the impurity Green’s function” are two steps involved in solving the AIM; for details refer
to Subsection A.7.2.

4.2.5 Scaling

One of our primary considerations is how ONETEP+TOSCAM calculations scale. As discussed

already, obtaining the Green’s function of the AIM scales very poorly with the number of AIM

sites. This is shown in Figure 4.4a. We are not entirely in a position to dictate the number

of AIM sites: a 3d correlated site is represented as a five-site impurity, and typically we need

to include at least six bath sites to give the AIM sufficient flexibility to fit the hybridisation

function. Subsequent chapters will explore methods for side-stepping this requirement.

To some extent, poor scaling can be overcome by efficient parallelisation. Both ONETEP

and TOSCAM employ hybrid MPI and OpenMP parallelisation schemes. ONETEP’s parallelisa-

tion is highly optimised. Individual atoms are distributed across MPI threads, with lower-level

computationally-intensive operations (including 3D FFT box operations, sparse matrix alge-

bra operations, calculation of integrals, and Ewald summation) being further parallelised with

OpenMP.338

In the current implementation of TOSCAM, individual MPI tasks are responsible for in-

dividual correlated atoms. For systems where we have only one unique correlated atom, MPI

becomes redundant. Meanwhile, OpenMP is deployed to speed up lower-level operations (see

Figure 4.4b and c).

4.3 Iron porphyrin

In the final section of this chapter, to demonstrate the use of the ONETEP+TOSCAM interface,

I present some calculations on an archetypal strongly-correlated system, FePImCO (Figure 4.5).
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(a)
(b)

Figure 4.5: (a) Carboxymyoglobin, showing the iron binding site.80 (b) The model complex studied
in this chapter: iron porphyrin with axial imidazole and carbon monoxide ligands. Hydrogen, carbon,
nitrogen, oxygen and iron atoms are are shown in white, green, blue, red, and orange respectively.

By translating the carbon monoxide molecule perpendicular to the porphyrin plane, we will

model the photodissociation of carboxymyoglobin. Myoglobin is one of the most ubiquitous

metalloproteins. Previous studies have successfully applied DMFT in order to rationalise its

binding energetics,78,79 so it will serve as a natural starting point for this thesis’s exploration

of the DMFT method. There are also unresolved questions surrounding the process of carbon

monoxide photodissociation (as I will explain below).

4.3.1 Computational details

All DFT calculations were performed using a modified copy of ONETEP.22,172,173,195,234,235† All

calculations used the PBE xc functional,136 were spin-unpolarised,‡ and had an energy cut-off

of 908 eV. There were 13 NGWFs on the iron atom, four on each carbon, nitrogen, and oxygen,

and one on each hydrogen. All NGWFs had 6.6 Å cut-off radii. Open boundary conditions were

achieved using a padded cell and a spherical Coulomb cut-off.238 Scalar relativistic pseudopoten-

tials were used, generated in-house using OPIUM,125,240–246 and the Hubbard projectors were

constructed from the Kohn-Sham solutions for a lone iron pseudopotential.235

The bound structure was taken from Ref. 339, which had been optimised with the B3LYP

functional. The other structures were generated by simply translating the carbon monoxide

molecule in steps of 0.1Å, without subsequent geometry optimisation of the rest of the system.

(An ideal analysis would involve a constrained geometry optimisation, to account for effects such

as doming.)

Both charge-conserving and self-consistent calculations were performed, using enlarged AIM

Hamiltonians via the CPT extension. Six (or sometimes seven) bath orbitals proved necessary

for the AIM to be able to fit the hybridisation function using the BFGS minimisation algorithm,

†Version 4.3; those modifications were subsequently included in ONETEP 5.0.
‡That is, n↑(r) = n↓(r).
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Figure 4.6: Spin state energies as given by DFT. For FePImCO the singlet state is correctly preferred,
but for FePIm the triplet is wrongly preferred, albeit only very marginally (by 34 meV).

and the AIM was solved using an ED Lanczos solver. Values of U = 4.0 eV and J = 0.7 eV were

used in the AIM Hamiltonian.

4.3.2 The quantum-mechanical state of the 3d iron subspace

A lot of effort (largely in the quantum chemistry community) has been made to correctly predict

the spin state of Fe(II)P with (and without) a variety of axial ligands. These range from

decades-old Hartree-Fock calculations to recent FCIQMC studies.340–345 FePImCO is one of the

simpler cases, with a singlet state universally predicted. Meanwhile, iron-porphyrin with an

axial imidazole ligand (FePIm) has proven to be more of a challenge. Experiment characterises

FePIm as a quintet. Semi-local DFT wrongly predicts it to be a triplet (as shown in Figure 4.6).

DFT + U remedies this,282 as does HF.340

To start, we will examine the charge transfer that takes place during CO dissociation in the

DFT + DMFT picture. The Fe atom in FePIm is formally in the 2+ state (d6). When it binds

CO, it moves closer to 1+ (d7) due to ligand-to-metal charge transfer. This is corroborated by

our DFT+DMFT calculations: the occupancy of the 3d subspace can be calculated via

n3d =
1

2πi

∑
m

∫
dωGimpmm(ω)−Gimpmm

†(ω). (4.17)

This is plotted in Figure 4.7a. The unbinding is plainly visible in a sudden step in the total

occupancy, at the same distance that DFT predicted the low-to-high-spin crossover (refer back

to Figure 4.6). The effect of DMFT is especially pronounced at large Fe-C distances, where it

drives the subspace occupancy towards the expected formal d6 configuration. (In some sense,

DMFT restores the quantised nature of the electrons in the correlated subspace.)

As a means of analysing the spin state of the iron atom during the dissociation process with

DMFT, we construct the reduced density matrix

ρ̂ =
∑
i

e−βEiTrB[|i〉〈i|], (4.18)
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Figure 4.7: The electronic state of iron in FePImCO during CO dissociation. (a) The total occupancy
of the Fe-3d subspace as given by DFT and two different DMFT schemes. Unfortunately self-consistent
DMFT calculations proved very difficult to converge beyond the low-to-high spin transition, so these
results have been excluded throughout. Below this transition, the two methods qualitatively agree. (b)
The effective spin Seff of the reduced density matrix, defined via Tr[Ŝ2ρ̂] = ~2Seff(Seff + 1). (c) The
decomposition of the reduced density matrix by spin state. The colours correspond to the respective
weights of the different contributions; if a colour occupied all the vertical axis, it would mean that all
eigenvectors of the density matrix are in that particular quantum sector.

where we take the partial trace of the low-lying eigenstates of the AIM over the bath degrees

of freedom, leaving a mixed density operator for the impurity alone. It is then straightforward

to calculate the expectation value of Ŝ2 =
∑

i,j Ŝi · Ŝj and extract the effective spin Seff (Fig-

ure 4.7b). Here we can see that at large distances we approach the quintet Seff = 2. At small

distances we are closer to the triplet value Seff = 1. Note that this does not mean that DMFT

has failed to predict that FePImCO is a singlet. Rather, this result is compatible with (but does

not confirm the existence of) a singlet forming across the Fe-CO bond. By limiting ourselves to

the Fe subspace we cannot detect such a singlet.

To inspect the reduced density matrix in more detail, one can construct the spin-projector

P̂S =
∑
s∈S
|s〉〈s| (4.19)

as the sum of the eigenstates |s〉 of the operator Ŝ2 with eigenvalue S(S + 1). This allows us

to evaluate the fraction of the reduced density matrix in singlet, doublet, triplet, and higher

states via Tr
[
P̂S ρ̂P̂S

]
for S = 0, 1

2 , 1 etc. Note, however, that this approach is incompatible
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with the CPT extension. The CPT extension involves solving an auxiliary AIM Hamiltonian

that shares the same impurity Green’s function as a larger AIM Hamiltonian, and consequently

any quantities derived directly from the Green’s function will be unaffected. However, there

is no such guarantee for the reduced density matrix, because the hybridisation function of this

auxiliary system does not necessarily match that of the physical system. To overcome this, the

CPT extension was at first applied in order to obtain an approximate solution, but then removed

for the final DMFT step. Typically this final step required the addition of an extra bath site

so that the AIM acquired sufficient flexibility to fit the impurity hybridisation function to the

local hybridisation function without the assistance of the CPT extension.

The decomposition of the reduced density matrix into spin sectors is displayed in Figure 4.7c.

It reveals a large quintet state contribution in the limit of dissociation, but also that, regardless

of Fe-C distance, many different spin sectors are important. This would be missed if we only

examined Seff . Evidently, a multitude of states play an important role throughout CO-unbinding,

and therefore the success of DFT + U and HF in predicting the quintet ground state must be

for the wrong reasons, as neither go beyond the single-determinantal picture. (Note that HF is

known to overly favour high-spin states.346)

It should be noted that the precise details of Figure 4.7 are somewhat sensitive to various

simulation parameters (most notably the definition of the Hubbard projectors), but qualitatively

the results are expected to hold generally.

4.3.3 Photodissociation

The photodissociation mechanism of carboxymyoglobin is already relatively well understood.

Irradiation at 570 nm (2.18 eV) causes the excitation of electrons in the porphyrin ring into low

lying singlet states with π/π∗ character (the so-called Q band).347 The carbon monoxide ligand

then dissociates within 50 fs, as the system adiabatically crosses to a repulsive anti-back-bonding

orbital.348,349 There is a small (but not insignificant) predicted energy barrier of 0.08 eV between

these two states, as calculated by B3LYP and TDDFT.339 The porphyrin then undergoes the

“intersystem crossing”, a complicated, multi-step process which ultimately takes the dissociated

system to its high-spin ground state.

To a large extent, semi-local DFT captures this process. The energies of the lowest unoccu-

pied KS molecular orbitals as predicted via DFT are shown in Figure 4.8. The Q band is present,

and the pathway from the Q band to the anti-back-bonding orbital is clearly visible via their

crossing at approximately 2.3 Å (the same distance we observe the low-to-high spin crossover in

Figure 4.6), with an energy barrier of approximately 0.13 eV. Compared to the TDDFT/B3LYP

results of Refs. 348 and 349, PBE calculations place this crossover at a much longer distance

(approximately 2.3 Å compared to 2.0 Å), and predict that the energy of the anti-back-bonding

orbital drops much more steeply.†

To compare the results of DMFT to these KS eigenenergies, the analogous quantity we must

extract is the density of states (DOS). The DOS is given by the trace of the many-body density

†Head-Gordon and co-workers noted that the very gentle decrease in the energy of the anti-back-bonding
orbital as predicted by their TDDFT/B3LYP calculations is at odds with the ∼ 50 fs timescale of photodissocia-
tion.349
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Figure 4.8: Energies of the KS molecular orbitals, measured relative to the highest occupied orbital of
the tightly-CO-bound structure.
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Figure 4.9: The DMFT DOS of FePImCO during dissociation, compared to the KS eigenenergies
(white dashed lines), as given by self-consistent DMFT calculations. The DOS and eigenenergies have
been aligned to match the Q band, because, being a porphyrin-ring state, it should not be significantly
shifted by DMFT.

matrix

ρ(ω) =
∑
α,β

ραβ(ω)Sβα. (4.20)

The DMFT DOS is compared to the KS eigenenergies in Figure 4.9. Qualitatively, they yield

very similar results, although DMFT does provide further details such as the finite lifetime of

excitations.

To reveal the contribution of individual atoms (or groups of atoms) towards the DMFT DOS,
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Figure 4.10: Self-consistent DMFT density of state for carboxy-haem with a Fe-C distance of 2.06 Å.
The DOS is further decomposed into contributions from the iron atom, CO molecule, imidazole ligand
and porphyrin ligand. Above, isosurfaces of ρ(r, ωpeak) have been plotted for each peak.

it can be decomposed into local densities of state (LDOSs)

ρI(ω) =
∑
α∈I

∑
β

ραβ(ω)Sβα, (4.21)

where I denotes a subset of NGWFs typically belonging to atoms that are a particular element or

part of a spatially distinct subsystem (e.g. all the NGWFs belonging to atoms in the porphyrin

ring). One such LDOS is plotted in Figure 4.10, along with isosurfaces of the spectral density

at energies corresponding to the various peaks in the DOS. The Q-band π/π∗ orbitals and the

Fe-CO back- and anti-back-bonding orbitals are all clearly identifiable.

Another important quantity that can be extracted from DMFT calculations is the opti-

cal spectrum. The theoretical optical absorption spectrum can be obtained within the linear-

response regime (that is, Kubo formalism) as

σij(ω) =
2π

Ω

∫
dω′

f(ω′ − ω)− f(ω′)
ω

(
ραβ(ω′ − ω)viβγρ

γδ(ω′)vjδα

)
(4.22)

where Ω the simulation cell volume, f(ω) is the Fermi-Dirac distribution, ρ is the basis-resolved

spectral density, the i and j indices correspond to Cartesian directions, the velocity operator v

is

vjαβ = −i〈α|∇j |β〉+ i〈α|
[
V̂nl, r

]
|β〉 (4.23)

which includes the effect of non-local pseudopotentials Vnl on the velocity operator matrix el-

ements, and adopts the no-vertex-corrections approximation.350 Optical spectra for haem are

typically carried out in liquid or gas phases, and so are described by the isotropic part of the

optical conductivity tensor

σ(ω) =
1

3

∑
i

σii(ω). (4.24)

The optical absorption spectra for carboxy-haem complexes as given by self-consistent DMFT
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Figure 4.11: Optical spectra of FePImCO calculated using self-consistent DMFT, going from ligated
(dark) up to the point of dissociation (light). Also pictured are the Q-band peaks from experimental
spectra of carboxymyoglobin.351

are plotted in Figure 4.11. These spectra are dominated by a feature at around 2 eV associated

with π-π∗ transitions on the porphyrin ring — that is, the Q band. The double-peak structure

of the Q band is successfully reproduced.† Secondary peaks appear above 3 eV corresponding

to direct photoexcitation of the anti-back-bonding orbital.

4.4 Conclusions

This chapter has introduced the DMFT method and described how to interface it with DFT.

More specifically, I have detailed its implementation with linear-scaling DFT in the form of

ONETEP+TOSCAM. Extensive work was performed to overhaul this code, in order to make

it compatible with the active version of ONETEP and prepare it for distribution. Crucially,

for the purposes of simulating metalloproteins, this DFT + DMFT implementation does not

compromise our ability to model thousands of atoms at the DFT level.

Calculations on the photodissociation of carboxymyoglobin showcased the kind of results one

can extract from such a DFT + DMFT calculation on a metalloprotein. The calculations do not

present any previously unknown physics – but this was not their purpose. Nevertheless, there

is scope here to resolve some unanswered questions surrounding the photodissociation process.

In particular, the remarkably fast rate of photodissociation (∼ 50 fs) is at odds with the gentle

slope of the potential energy surface (discussed above) and the predicted barrier on the order

of 0.1 eV (compared to the 0.028 eV zero-point energy of the Fe-C stretching mode).339 Further

study could investigate this apparent contradiction.

†Ref. 79 found that J > 0 is necessary to obtain this double-peak feature.
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Chapter 5

Haemocyanin

N.B. This chapter is the result of work done jointly by myself and M. A. Al-Badri (of King’s

College, London). A detailed breakdown of who contributed to the calculations presented in

each section is contained in the Preface.

5.1 Introduction

This chapter will apply the methods of the previous chapters to the dicopper core of oxygenated

haemocyanin (oxyHc). In addition to the inherent scientific value of studying this system’s

electronic structure, for the purposes of this thesis oxyHc provides a logical next stepping stone

towards simulating the OEC: compared to the haem system of the previous chapter, we now

have two correlated sites, but these correlated sites are comparatively simple (with only one hole

on each copper).

5.1.1 The structure and function of haemocyanin

Copper-based metalloproteins play a major role in biology as electron or dioxygen (O2) trans-

porters. Haemocyanin is one of three oxygen transporting proteins found in nature, alongside the

iron-based haemrythrin and haemoglobin, and is common to a number of invertebrates, such as

molluscs and arthropods. Deoxygenated haemocyanin (deoxyHc) employs two half-spin copper

(I) cations, each coordinated with the imidazole rings of three histidine residues, to reversibly

bind O2 as shown in Figure 5.1.

Some type 3 copper-based systems† also possess catalytic properties. Haemocyanin can

decompose hydrogen peroxide into water and oxygen353 and synthetic analogues have been

shown to reversibly cleave the dioxygen bond354 — a mechanism that enables tyrosinase and

catechol oxidases to oxidise phenols.355 There is significant interest in the biomimetic application

of naturally occurring metal complexes for use in metallodrug design, with Cu(II) complexes

recently employed in cancer therapeutics as artificial DNA metallonucleases356 and tyrosinase

mimics.357 An accurate understanding of the electronic structure (spin and charge) of the Cu2O2

core is essential to clarifying the operation of dioxygen transport and would advance the design

of synthetic catalysts that employ dioxygen as a terminal oxidant.

†i.e. systems with a pair of copper atoms, each coordinated with three histidine residues.

83
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5.1.2 Computational challenges

The binding of O2 to deoxyHc remains a challenging problem, being a spin-forbidden transition.

Molecular O2 is in a spin triplet configuration, and the Cu ions in deoxyHc are known to be

in the Cu(I) d10 singlet configuration. The combination of triplet O2 and singlet deoxyHc, to

produce the Cu2O2 antiferromagnetic singlet in oxyHc, is believed to occur via a simultaneous

charge transfer of one electron from each Cu(I) ion to O2, forming a hybrid Cu(II)-peroxy-

Cu(II) configuration. A superexchange pathway is hypothesised to form across the two Cu

atoms, stabilising the singlet.358 This mechanism is supported by SQUID measurements that

report a large superexchange coupling between the two Cu centres,359 and a diamagnetic ground

state.360

Despite intensive study, theoretical analysis has so far proved to be challenging for many elec-

tronic structure methods including ab initio quantum chemistry, DFT, and QM/MM methods.

In particular, DFT and hybrid-DFT do not predict the correct singlet ground state due to the

fact that its multi-reference nature is not accessible in DFT-based approaches.361–363 (Experi-

ments have alluded to the necessity of characterising the oxyHc ground state as a mixed valence

state.364) To overcome this limitation, a spin-projection method (also called spin-mixing) is often

applied, whereby the different spin-polarised ground states are calculated individually,346 and

the entangled singlet is reconstructed by linear combination of the respective Slater determinants

(essentially a combination of the spin-broken symmetry state in the up-down, up-up, down-down

configurations to extract an effective singlet state).365 Although this construction yields insights

into the energetics, it does not allow the study of excitations, preventing comparison with ex-

perimental data such as the optical absorption.362 Furthermore, the spin-contamination present

in spin-polarised hybrid DFT remains an issue,358,363,366–368 and typically the broken symmetry

state wrongly becomes asymmetric in the Cu2O2 core.362

Multi-reference wavefunction methods have been extensively applied to the oxyHc core,367–374

but these approaches are not feasible for systems containing more than several dozen electrons.

Flock and Pierloot argue that the inclusion of the imidazole ligands results in steric effects that

Figure 5.1: The full haemocyanin protein, with an inset showing the binding site for O2. This protein
structure is taken from Limulus polyphemus (horseshoe crab), and corresponds to PDB record 1OXY.352

https://www.rcsb.org/structure/1OXY


5.1. INTRODUCTION 85

Figure 5.2: The oxyHc model simulated in this chapter, showing the Cu2O2 correlated subsystem,
which is treated using DMFT, and the surrounding imidazole rings representing the protein environment.
(The red, orange, green, blue, and white atoms are oxygen, copper, carbon, nitrogen, and hydrogen.)

are critical for a realistic description of oxygen containing dicopper systems.370 However, most

multi-reference wavefunction studies of this core consider a simplified model with ammonia lig-

ands (including CC,367,368 CASPT2,370 MRCI,371 RASPT2,372 and DMRG-CASPT2373), while

others (such as DMRG374 and DMRG-CT375) are limited further to the experimentally inacces-

sible bare Cu2O2
2+ core alone. Furthermore, this system has large active-space requirements

given that it likely suffers from triplet instability,363 and if the number of allowed excitations is

too limited, size-extensivity errors arise.372 Some of these methods also lack dynamical correla-

tion contributions,376–378 and others strongly over-correct correlation effects.371

DMFT accounts for these limitations by treating the many-body effects and the superex-

change of the dicopper bridge explicitly (unlike DFT), while limiting this treatment to the

correlated subspace of the copper 3d electrons, thereby side-stepping the prohibitive scaling of

quantum chemistry methods. This chapter will present the first DFT + DMFT simulations of

the oxyHc functional complex.6 These calculations will be performed on a 58-atom model of

the core and the coordinating histidine ligands (modelled by imidazole rings), as shown in Fig-

ure 5.2. While 58 atoms is within the reach of some less accurate quantum chemistry methods,

the overhead of extending DFT + DMFT to include much more of the protein environment using

the ONETEP+TOSCAM framework would come at an insignificant computational cost.

As this problem involves direct exchange across two correlated atoms, we used the non-

local DMFT implementation (cluster DMFT) needed to capture the superexchange mechanism

between the Cu2 d -orbitals and intermediate p-orbitals, as single-site DMFT can only treat the

multiplet structure of each Cu atom separately.
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Figure 5.3: The convergence of the system-to-AIM mapping for haemocyanin, as quantified by the
distance d (see Equation 4.9), as a function of the total number of sites (impurity and bath).

The Hubbard U correction is crucial for describing many-body effects at play in the oxyHc

core. Several competing effects stem from the local Hubbard U physics: charge localisation,

exchange of electrons, charge-transfer excitations, and stabilisation of magnetic multiplets. Al-

though typical values for U can be obtained by linear response or cRPA,282 I will first consider a

range of values for U . By artificially manipulating the magnitude of the local many-body effects,

we can investigate their influence on the electronic spectral weight and magnetic properties. At

the end of the chapter I will return to linear response.

5.2 Methods

The geometry of the 58 atom system was obtained from Ref. 363, which had been optimised

using the B3LYP hybrid functional. The resulting structure closely matches the experimentally

observed structure.81,363

The initial calculations were performed with ONETEP,22 using an energy cut-off of 897 eV

and the PBE exchange-correlation functional.136 Nine NGWFs were associated with each cop-

per atoms, four with each carbon, nitrogen, and oxygen, and one with each hydrogen. Spin

symmetry was imposed. NGWFs were truncated using 7 Å cut-off radii. Open boundary con-

ditions were achieved via a padded cell and a Coulomb cut-off.238 The Hubbard projectors

were constructed from the Kohn-Sham solutions to an isolated copper pseudopotential.235 The

pseudopotentials were generated OPIUM.125 These pseudopotentials partially account for scalar

relativistic effects. (Studies have demonstrated that relativistic effects can play a role in the elec-

tronic structure of the Cu2O2 core,379 but relativistic effects cannot be explicitly included in

current state-of-the-art DMFT calculations.)

The DFT + DMFT calculations were then performed with TOSCAM, mapping the oxyHc

model to an AIM Hamiltonian, and solving it with an extended Lanczos solver380 to obtain the
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Figure 5.4: The local axes for the Cu 3d correlated subspaces, and the two half-filled NBOs for com-
parison. (CuA is on the left; CuB is on the right.)

DMFT self energy. The convergence of the mapping is shown in Figure 5.3. If we increase the

number sites of our AIM, the AIM Hamiltonian has more parameters, and we stand a better

chance of fitting the physical hybridisation function because the AIM hybridisation function is

more flexible. As a rule of thumb d < 10−7 is generally adequate; if d is much smaller than

this it tends to indicate overfitting. Subsequent calculations presented in this chapter used eight

sites.

The DMFT calculations were carried out at room temperature (T = 293 K). The Hub-

bard U was varied over the range 0 – 10 eV, with the Hund’s coupling fixed at J = 0.8 eV. We

performed self-consistency over the chemical potential but not the Hamiltonian (refer back to

Subsection 4.2.3) to minimise computational cost.

5.2.1 Local axes

To identify the best spatial representation of the local 3d-subspaces in the AIM, we first identi-

fied the orthogonal transformation which reduces the off-diagonal elements of the local Green’s

function for each copper atom. We implemented a minimisation procedure which finds the clos-

est corresponding real space SO(3) rotation of the local Cartesian axis corresponding to the

O(5) orthonormal transformation in d-space. The resulting axes for the two Cu subspaces are

shown in Figure 5.4. As shown in Table 5.1 these axes localise the holes on single d orbitals; dxz

for CuA (on the left of the figure) and dxy for CuB (on the right). Increasing U decreased the

occupancy of these two orbitals.

The two natural bonding orbitals (NBOs) identified as being half-filled are plotted for com-

parison (see Section 5.4). The NBO method and analysis will be properly explained later in

Section 5.4, but for the purposes of this section, these NBOs are orbitals that have been iden-

tified as being half-filled via an analysis that is agnostic to the projection procedure used in

the cluster DMFT calculations. It is therefore very reassuring that these orbitals align with the

axes.
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Table 5.1: DMFT 3d orbital occupations of Cu in our model of ligated haemocyanin for different
Hubbard U values. The U = 4 eV values come from a single-site DMFT calculation, where all five
orbitals on each Cu atom were explicitly included (but inter-copper correlation had to be neglected
due to the exponentially-scaling computational cost of solving the corresponding AIM). The bold font
indicates the identified holes. From this calculation the ideal rotation was determined, and the results for
other values of U come from cluster-DMFT calculations using this rotation. Note that the orbital labels
correspond to the local axes to each Cu atom (as shown in Figure 5.4).

U (eV) atom dxy dyz d3z2−r2 dxz dx2−y2

0
CuA 1.72
CuB 1.68

4
CuA 2.00 2.00 1.95 1.50 1.93
CuB 1.40 2.00 1.98 1.99 2.00

8
CuA 1.25
CuB 1.21

10
CuA 1.18
CuB 1.14

(a) (b)

R

Figure 5.5: The superexchange model of Solomon and co-workers, depicting the Cu2O2 core viewed
from side-on (top) and above (bottom). (a) In the planar configuration, single ligand orbitals bridge the
two copper sites, and superexchange is possible. (b) In a bent configuration, the copper d orbitals overlap
with different π∗ orbitals. As these two sets of orbitals are orthogonal, hopping between the blue and the
red subspaces is not possible and the superexchange mechanism breaks down.

5.3 The ground electronic state of the Cu2O2 core

5.3.1 Formation of the singlet

In vivo, the Cu2O2 core exists in a low-spin (singlet) state. (This can be identified experimentally

via EPR.381) In the model of Solomon and co-workers, this low-spin state is stabilised by superex-

change via the O2 ligand orbitals, which relies on the Cu2O2 core being planar (Figure 5.5a).362

As the peroxide molecule unbinds, the core butterflies (i.e. the dioxygen moves up out of the

plane, leaving the core in a bent configuration). Here, each Cu overlaps with a different oxygen

π∗ orbital on the peroxide (Figure 5.5b). This removes the superexchange, and the triplet state

becomes most favourable. If we measure planarity by R = |12(rCuA + rCuB)− 1
2(rO1 + rO2)| —

that is, the distance between the mean position of the two copper atoms and the mean position

of the two oxygen atoms, B3LYP calculations predict that the singlet-to-triplet transition occurs

at R = 0.6 Å.362
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Figure 5.6: Decomposition of the reduced density matrix of the Cu2 dimer in the different quantum
sectors. Note that the d occupation is the sum of both Cu sites (for example, d20 means both Cu atoms
are in the d10 configuration).

However, x-ray structures of the Cu2O2 core reveal that the bound singlet state is not

planar. In oxyHc R = 0.47 Å, and in oxyTy R = 0.63 Å— beyond the predicted singlet-to-triplet

transition.81,382 QM/MM studies of the entire oxyHc protein (from which our model complex

derives) obtain R = 0.54 to 0.71 Å; evidently, the protein scaffolding around the binding site

prevents the core from ever reaching the planar structure observed in model complexes.363

With this in mind, I examined the reduced finite temperature density matrix of our but-

terflied model (R = 0.68 Å), obtained by tracing out the bath states from the density matrix

(a procedure explained more fully in Subsection 4.3.2). The lowest-energy eigenstates of the

reduced density matrix provide a detailed picture of the effective electronic structure of the 3d

subspace of the Cu atoms. Note that in this approach, the ground-state wavefunction is not a

pure state with a single allowed value for the spin states (singlet, doublet, triplet, etc.). Fur-

thermore, compared to the haem system in Subsection 4.3.2, the quantum state we are probing

exists purely within the Cu2 joint 3d subspace, so we will not encounter the issues we had for

the FePImCO singlet. The distribution of these states is displayed in Figure 5.6. In the weakly

correlated regime (U < 2 eV), we find a large contribution from the d20 and d19 configurations,

indicating that the average charge transfer from the Cu to O2 involves less than one electron

per Cu, thus preventing the formation of a singlet (as the Cu 3d orbitals are nearly full). As U

increases, the total electronic occupation of the Cu dimer decreases (Figure 5.6 and Table 5.1).

In the range U = 6 − 8 eV, the d18 singlet component is maximised, beyond which d18 triplet

excitations begin to contribute. Since U ≈ 8 eV in the case of both molecules383 and solids,160 it

appears that in nature many-body quantum effects stabilise the low-spin singlet in spite of the

butterflied structure of the Cu2O2 core.
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5.3.2 Details of diamagnetism

The existence of this singlet is corroborated by the observed local magnetic moment and spin

correlation (Figure 5.7). The spin correlation K reaches half the saturation value for U =

6−8 eV. Note that the saturation value would only be obtained for a diatomic system in vacuum,

which is not hybridised to the rest of the molecule. As the local Cu 3d orbital charge and spin are

not true quantum numbers in the molecule due to hybridisation, quantum fluctuations reduce

the amplitude of the spin correlation to half the full value.

0 5 10

U (eV)

0.0

0.5

1.0

M
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K

Figure 5.7: The effective magnetic moment M =
√
〈S2

1〉/3 (normalised by saturation value) and the
spin correlation K = 2〈S1 · S2〉 for varying values of the Hubbard U . For a pure two orbital singlet,
K = −1.5. In our calculations, as the rest of the molecule hybridises with the Cu orbitals, the spin
correlation is renormalised to half its saturation value for U = 6− 8 eV.

5.3.3 von Neumann entropy

The importance of multi-determinantal physics can be quantified by the von Neumann entropy.

The von Neumann entropy, obtained in the dicopper 3d subspace, is given by Λ = Tr [ρ̂d log ρ̂d],

where ρ̂d is the dicopper reduced density matrix, traced over the states of the AIM bath envi-

ronment.

The von Neumann entropy is plotted in Figure 5.8. Interestingly, it grows as U increases,

pointing to the importance of many low-lying quantum states. I note the presence of two

plateaus, for U = 4− 6 eV and U = 7− 8 eV, that coincide with the formation of the singlet and

triplet configurations in the histogram in Figure 5.6.

5.3.4 The superexchange mechanism

Having identified this singlet in the Cu2O2 core at U ≈ 8 eV, let us establish how it forms. Direct

hopping between localised Cu d-orbitals is very unlikely due to the large distance by which they

are separated, and therefore hopping must proceed via an intermediate oxygen p-orbital (i.e.

superexchange).384

The superexchange process can be visualised in the canonical hydrogen atom dimer system,

in which we have a a pair of electrons (one spin-up, one -down) that form a singlet state. In this
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Figure 5.8: The von Neumann entropy Λ of the reduced density matrix and its dependence on the
on-site interaction U .

picture, two different limits are possible: (a) at short H-H distances, the H atoms form a bond;

the up- and down-electron form a delocalised bound singlet (BS) centred on the bond, with a

high degree of double occupancy; (b) in the dissociated case, known as the Heitler-London (HL)

limit, the H atoms are far apart and the singlet is a true quantum entangled state of the singly

occupied H orbitals. The HL case typically appears in cases of dissociation, with the charge

localised around the H atoms. However, it may also occur in systems where the local Hubbard

Coulomb repulsion U acts as a Coulomb blockade: many-body effects prevent long-lived charge

transfer excitations, and the Coulomb repulsion energy is reduced at the expense of the kinetic

energy. A signature of the blockade is typically a large increase in the self energy at the Fermi

level, indicating charge localisation and incoherent scattering associated with a short lifetime of

charge excitations.

To investigate the nature of the singlet (BS or HL), Figure 5.9a shows the computed self

energy of the Cu 3d subspace, for various values of U . There is a qualitative difference between

U = 6 eV and U = 8 eV: at U = 8 eV the self energy develops a pole at ω = 0 eV (Figure 5.9b).

The formation of the pole is associated with the regime where excitations are incoherent, which

prevents long-lived charge transfer excitations from the Cu 3d orbitals to O2. Here, many-body

effects act as a Coulomb blockade and the charge is in turn localised, with weak direct coupling.

For U ≈ 6 eV, this pole is absent and therefore the singlet is in the BS limit, where charge

excitations allow a direct electron transfer across the oxo-bridge. Note that the observation of

the BS-HL crossover is not apparent in averaged quantities, such as in the double occupancies

(Figure 5.9c), which evolve smoothly with the Coulomb repulsion.

Turning back to the physical system, superexchange relies on a single ligand orbital bridging

the two copper sites. (Superexchange pathways via two p orbitals are possible, but they give

rise to ferromagnetic coupling that is significantly weaker than antiferromagnetic coupling from

single-ligand orbital pathways.385) Examination of the molecular orbitals near the Fermi level

(Figure 5.10) reveals that for the HOMO of the bent Cu2O2 structure, electronic density of the

oxygen ligand is directed into the copper plane, thus providing a pathway for the antiferromag-

netic superexchange that we observe. To properly establish this, one could examine the precise
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Figure 5.9: (a) The imaginary part of the dynamical mean field local self energy of the Cu-3d empty
orbital for Hubbard U = 2 eV, 6 eV, and 8 eV. At U = 8 eV, we obtain incoherent excitations at ω = 0 eV.
(b) The self energy at ω = 0 and (c) the double occupancy D as a function of U . Note that although the
double occupancy evolves smoothly with the Coulomb interaction U , Σ(ω = 0) shows a sharp increase near
U = 8, associated with the stabilisation of a localised singlet. (The lifetimes of quasiparticles are given by
(Re[Σ(ω)] − 1)/Im[Σ(ω)], so if −Im[Σ(0)] is very large then lifetimes of low-frequency excitations/holes
in the joint Cu2 3d subspace are very small: in other words, charge transfer excitations will have short
lifetimes, stabilising the singlet.)

Figure 5.10: Isosurfaces for the HOMO (left) and LUMO (right) densities for U = 8 eV, as viewed from
above (top) and face-on (bottom). Note that because these are extracted from the Green’s function via
the spectral density, the phase of the orbitals is inaccessible.
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parametrisation of AIMs for this system (including the oxygen molecular orbitals explicitly as

impurity orbitals), but that is beyond the scope of this work.

Interestingly, we note that these molecular orbitals differ in their energetic ordering compared

to those from DFT studies of planar model complexes.360 In particular, the HOMO involves

hybridisation with oxygen π∗ rather than σ∗ orbitals (with the σ∗ oxygen orbital featuring

approximately 3 eV above the Fermi level). This reordering will have substantial ramifications

for the potential catalytic pathways, especially considering the importance of the σ∗ orbital to

O2 bond-breaking.

5.4 Natural bond orbital analysis

This molecular orbital picture is confirmed by NBO analysis, which I performed on the DFT and

DMFT densities in order to understand the nature of the bonding in the Cu2O2 complex.386–388

NBO analysis involves a series of diagonalisation and occupancy-weighted orthogonalisation

procedures on the single-particle density matrix, transforming it into a set of atom-centred

orthogonal natural atomic orbitals (NAOs), then natural hybrid orbitals, and finally the natural

bond orbitals {|σi〉}, which are either one- or two-atom centred. By construction, this procedure

decomposes the electronic density into terms resembling Lewis-type chemistry (with bonding and

lone pairs of electrons). The NBOs generated from DFT + DMFT densities largely retain the

familiar profile of DFT-based NBOs, but their occupancies may be expected to deviate further

from integer values due to quantum-mechanical and finite-temperature multi-reference effects

captured within DFT + DMFT.

Natural bonding orbital analysis was performed using the NBO 5 programme.387 Performing

this transformation starting from ONETEP’s basis of NGWFs is non-trivial, and is described

in Ref. 388.

For haemocyanin, this analysis reveals a hole in one 3d orbital for each Cu atom (with 3d

occupancies of 9.11 and 9.07 for U = 8 eV), confirming the expected Cu(II) oxidation state

3d94s0 (Table 5.1 and Figure 5.11a) and the expected orientation of the local axes that give rise

to this hole (as illustrated in Figure 5.4).

(a) (b) (c)

Figure 5.11: Isosurfaces of several natural bonding orbitals for U = 8 eV. (a) Two Cu 3d orbitals are
identified as half-filled by the NBO analysis. (b) The O2 σ

∗ anti-bond is empty, and does not hybridise
with any Cu orbitals. (c) Instead, O 2p (blue) to Cu 4s (red) charge transfer is favourable.
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A second-order perturbation analysis† detects multiple energetically favourable transfers of

electronic density from filled to unfilled NBOs, revealing those aspects of the electronic structure

that are not well described by Lewis-like chemistry. Early studies of haemocyanin identified

back-bonding charge transfer from Cu 3d to oxygen σ∗ anti-bonding orbitals (Figure 5.11b) as

an important factor in explaining the comparatively low 750 cm-1 Raman frequency of the O2

bond.389 However, our second-order perturbation analyses find that this back-transfer is not

present. For U = 8 eV we instead detect favourable charge transfer from O 2p orbitals to Cu 4s

orbitals (Figure 5.11c).

5.5 Optical transitions

As a validation of the DFT + DMFT computational model, and to identify the strength of

correlations in oxyHc, we extracted the optical absorption spectrum of ligated haemocyanin

(Figure 5.12).

The experimental absorption spectrum of oxyHc391,392 is dominated by a peak at 4.5 eV

corresponding to intense aromatic bands attributed to the wider protein (or, in the case of

our smaller cluster model, the imidazole molecules). Several smaller features of the spectrum

are associated with the oxygen molecule (making the spectrum qualitatively dependent on the

protein’s ligation state). A peak at approximately 3.6 eV is attributed to ligand-to-metal charge

transfer from the O2 π anti-bond with lobes oriented towards the copper atoms. This orbital is

denoted “π∗σ”; the π anti-bond with lobes directed perpendicular to the copper atoms is denoted

π∗v and is responsible for a weaker peak at approximately 2.2 eV. An even weaker peak at 1.8 eV

supposedly corresponds to metal d→ d transitions.360,362,390

The DFT + DMFT spectrum qualitatively reproduces many of these features. The large

peak at 4.5 eV peak is present, albeit blue-shifted. As these excitations are unrelated to the Cu2

correlated subspace, this blue-shift is due to inaccuracy at the DFT level (possibly due to the

xc functional, the absence of the wider protein environment, or to the conduction states being

insufficiently optimised as discussed in Subsection 2.3.8). This could be corrected by using a

more accurate starting point, such as is done in GW + DMFT.393,394 However, this would violate

a requirement of any successful technique for accurately simulating metalloproteins: that it must

be able to be scaled up to cluster models containing many hundreds of atoms.

†NBO analysis allows electronic delocalisation to be quantified. In the NBO formalism, delocalisation presents
itself as deviation from the ideal Lewis description of the system provided by the bonding NBOs. This behaviour
is partially captured by the anti-bonding orbitals, but is also considered by searching for energetically favourable
delocalisations of electronic density to unfilled orbitals as predicted by second order perturbation theory.

Formally, the Hamiltonian of the system in the NBO representation 〈σi|Ĥ|σj〉 is decomposed into its diagonal
and off-diagonal parts, and then the off-diagonal parts are treated as a perturbation to the diagonal NBO Lewis-
like description. The first-order energy correction for this “perturbation” is zero; the second order term is given
by

∆E
(2)
i =

∑
j 6=i

fi
|〈σi|Ĥ|σj〉|2

Ei − Ej
=
∑
j 6=i

∆E
(2)
i→j (5.1)

and therefore the stabilisation effects of electron transfer from NBO |σi〉 to |σj〉 can be estimated by ∆E
(2)
i→j .

For example, dative bonding appears within this donor-acceptor analysis. This is because dative bonds do not
appear amongst the set of bonding NBOs, but are identified by the analysis as lone pairs on the donor atom for
which it is highly favourable to donate electrons to unoccupied NBOs on the acceptor.
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Figure 5.12: Theoretical optical absorption of the Cu2O2 core and imidazole rings obtained by DMFT
for various values of the Coulomb repulsion U . For comparison, we show the experimental optical ab-
sorption390 in a wide range of wavelengths (infrared to UV). There are several much smaller peaks in the
experimental spectra that are not visible at this scale (indicated with arrows).

As for the lower-energy excitations associated with the Cu2 subspace itself, the most notable

feature is that for U < 6 eV — that is, prior to the formation of the singlet — there are several

erroneous low-energy features which are absent in experiment, although they are also seen in

other computational studies.362 For larger values of U these features are suppressed due to a

large increase in incoherent scattering at ω = 0 eV at U = 8 eV (Figure 5.9), associated with

the localisation of the holes in the Cu 3d shell. In comparison, DFT, without extensions, puts a

strong emphasis on the near-infrared peak in the optical absorption because the aforementioned

scattering processes are absent at this level of theory. This is also evident from the very small

HOMO-LUMO gap in the DOS (Figure 5.13) for small values of U .

The second notable difference in the spectra is the unphysical suppression of ligand-to-metal

charge transfer (in particular for the peak at 3.6 eV). There are suggestions of some excitations

at this particular frequency (see inset of Figure 5.12), but they are weaker than in experiment.

This is reminiscent of what we saw in Chapter 3, where corrections to metal centres disrupted

their bonding with adjacent oxygen atoms. Further work will investigate if including oxygen-2p

orbitals explicitly in the AIM can alleviate this problem.
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Figure 5.13: (g) The local density of states for U = 8 eV and (h) the different total density of states
of the system for a range of Hubbard U values from DMFT. Isosurfaces of the spectral density ρ(ω) are
shown for the indicated peaks (a-f).

5.6 What about DFT +U ?

Thus far, we have only applied our DMFT framework to the haemocyanin model. It is worthwhile

considering if lower-level theories such as DFT + U can recover the same results, but with

substantially less effort. We have also been treating U as a variational parameter, when the

results of Chapter 3 allow us to determine it ab initio, so we will first revisit these results in the

context of haemocyanin.
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Table 5.2: Values of U and J (eV) for haemocyanin, calculated using the various linear response schemes
introduced in Subsection 3.2.1.

atom
scalar averaged 1× 1 1× 1 scaled 2× 2

U U U↑ U↓ U J
CuA 6.83± 0.01 2.16± 0.01 0.75± 0.00 3.56± 0.01 6.78± 0.05 0.90± 0.01
CuB 6.87± 0.07 2.31± 0.01 4.26± 0.02 0.36± 0.01 6.88± 0.07 0.87± 0.01
O1 7.10± 0.00 2.18± 0.00 2.38± 0.00 1.99± 0.00 7.10± 0.04 0.86± 0.00
O2 7.11± 0.00 2.16± 0.00 2.11± 0.00 2.20± 0.00 7.11± 0.04 0.86± 0.00

5.6.1 Linear response

Our novel linear response methods were applied to the oxyHc system. The resulting values for

U and J are contained in Table 5.2. In particular the 2×2 results of U = 6.8 eV and J = 0.9 eV

are very similar to the U ≈ 8 eV and J = 0.8 eV that we chose when thinking of U as a free

parameter.

However, there are some subtleties worth highlighting here. The results of Chapter 3 were

the product of careful consideration of how linear response relates to the functional form of the

DFT + U corrective functional. We should therefore be cautious taking these values and imme-

diately using them in the DFT + DMFT framework, where U and J appear in a different context

(namely, the Slater-Kanamori Hamiltonian of Equation 4.10 rather than the DFT + U + J cor-

rection of Equations 3.2 and 3.4). More work is required to determine the correct prescription

for using the minimal-tracking definition U = dvHxc/dN in the context of DMFT. (Ref. 253

provides some insights on this front.) That said, it is not entirely unreasonable to take the

results of Table 5.2 at face value and use them directly in the context of DFT + DMFT; this

would be akin to what others have done using Hubbard parameters determined via cRPA.395

5.6.2 Optical spectra

The optical spectrum of our oxyHc system was calculated using DFT, DFT + U , and TDDFT.

The resulting spectra are shown in Figure 5.14, alongside the DMFT and experimental spectra

for comparison.

The DFT and DFT + U calculations were performed using ONETEP (using the same com-

putational approach as that described in Section 5.2). Two DFT calculations were performed:

in the first, spin symmetry was imposed (i.e. n↑(r) = n↓(r)); in this scheme, it is impossible for

a spin-singlet to form between the copper atoms.† The second calculation was allowed to break

this symmetry, with the copper 3d subspaces artificially polarised such that one is majority

spin-up and the other majority spin-down. This achieves the desired spin state to some extent,

as the system is antiferromagnetic rather than diamagnetic. (As discussed in Subsection 5.1.2,

DFT is unable to capture the ground state’s multi-reference character.) Both of these calcu-

lations produced spectra with several very low-energy features that are absent in experiment.

The DFT + U calculations see some improvement, with these low energy features shifted up by

several eV, but not enough to align them with experiment.

†This is of course a poor approximation. Nevertheless, we are still interested in this result because this
calculation provides the initial density fed to the DMFT calculations.
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Figure 5.14: The optical spectra of oxyHc given by DFT (PBE), DFT + U , hybrid TDDFT (ωB97XD),
DMFT (U = 8 eV) and experiment.390

The spectrum was also calculated with unrestricted TDDFT, using the range-separated

hybrid xc functional ωB97XD (which includes Grimme D2 dispersion corrections) and an atom-

centred basis set (aug-cc-pVDZ).1 These calculations were performed with Gaussian09.396 They

predict a strong absorption peak at 3.6 eV, in agreement with experiment, but the feature at

4.5 eV is notably missing. More importantly, the ground-state electronic structure at this level

of theory is not the antiferromagnetic singlet state that is observed experimentally. Like DFT,

TDDFT cannot capture the multi-reference character of the ground state, so any agreement

between TDDFT and experiment is likely to be for the wrong reasons. Thus we see that both

(a) adding Hubbard-like physics via a +U correction or (b) adding dynamical effects via TDDFT

partially shift the erroneous low-energy excitations upwards, but neither approach individually

reproduces the optical absorption spectrum of haemocyanin.
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3.50

3.55

3.60

C
u

–
C

u
d

is
ta

n
ce

(Å
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Figure 5.15: The Cu – Cu distance only very weakly anticorrelates with the butterfly effect, as shown by
this survey of Cu2O2 geometries extracted from experimental XRD structures (Refs. 81, 352, 400–402).

5.7 Conclusions

This chapter has presented the application of our DFT + DMFT approach to oxyHc, a molecule

of important biological function containing multiple correlated centres. The reduced density

matrix of the 3d subspace of the two Cu atoms revealed the presence of fluctuating spin states,

in which a Cu2 d
18 singlet component is maximised at U = 8 eV in spite of the butterfly distortion

of the Cu2O2 core. The Hubbard U is necessary to capture the multi-reference character of the

ground state, placing oxyHc in the limit of a true quantum entangled singlet in the limit of the

Heitler-London model, with the highest occupied molecular orbital likely providing a pathway

for antiferromagnetic superexchange. However, the DFT + DMFT approach had mixed success

reproducing the experimentally-observed peaks in the absorption spectrum at around 2.2 eV,

3.6 eV, and 4.5 eV.

It has been previously suggested397 that the catalytic properties of haemocyanin are related

to reduced butterfly distortion, as mollusc haemocyanins are 30 times more active than their

arthropod counterparts,353 and EXAFS measurements398,399 indicate that the Cu – Cu distance

is greater (and ergo one would infer that the butterfly distortion is likely weaker) in molluscs.

However, XRD structures81,352,400–402 show shorter Cu – Cu distances in molluscs, and only

weak anticorrelation between Cu – Cu distance and the butterfly effect, as shown in Figure 5.15.

More work is required to explain the remarkable activity of mollusc haemocyanins.

This chapter provides a starting point for studying biological activity of oxyHc and related

type 3 Cu-based enzymes by (a) establishing that the singlet can survive the butterfly distortion,

thereby resolving a prior inconsistency between structural data, spectroscopy, and first-principles

calculations, and (b) by providing a framework for subsequent studies to account for the effect

of the protein “scaffolding” in which the active site sits, without compromising the accurate

treatment of strong electronic correlation.
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Chapter 6

The oxygen evolving complex

We come now to the system that motivated this thesis: the OEC of PSII (Figure 6.1).

Figure 6.1: Photosystem II and the oxygen evolving complex (inset), as revealed via XFEL spectroscopy
in PDB 4UB6.34

6.1 A large cluster model of the OEC

As Section 2.2 argued, the accurate simulation of metalloproteins requires many hundreds of

atoms to be simulated at the quantum-mechanical level. There, I enumerated various failures

of small cluster models. In the specific case of the OEC, studies have shown that spectroscopic

properties do not adequately converge (with respect to cluster size) for 225-atom systems,95

and QM/MM approaches fail to agree with analogous QM-only calculations in the large-system

limit. Motivated by these observations, I generated a cluster model of unprecedented size of the

S1 state of the OEC, starting from the 2015 “radiation-damage-free” XFEL crystal structure,34

and optimised its geometry at the semi-local DFT level. This cluster model will serve as a

starting point for future DFT + U and DMFT calculations.

101

https://www.rcsb.org/structure/4UB6
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6.1.1 Cluster preparation

An approximately spherical cluster of radius 13 Å around the OEC was cut out from monomer

A of the “radiation-damage-free” XFEL crystal structure (PDB record 4UB6), corresponding

to the dark-stable S1 state of the OEC. The cluster includes the core CaMn4O5 cluster itself, 91

amino acid residues, the two chloride ions, and 48 water molecules. In all, the cluster contains a

total of 1631 atoms. Wherever a peptide chain extended out well beyond 13 Å, it was truncated

and capped with a neutral methyl group.

Because XRD does not detect the presence of hydrogen atoms, they had to be added sepa-

rately to the cluster. For the purposes of this work, all of the oxygen atoms within the cluster

were assumed to be unprotonated, and all exterior oxygen atoms were assumed to be water

molecules, in line with Ref. 403 (among many others). The hydrogens added to the water

molecules needed to form an optimal hydrogen-bonding network. Establishing and verifying

the hydrogen-bonding network proved to be a time-consuming process. Candidate networks

were generated using the molecular modelling interface Maestro, which performs automated

hydrogen-bond optimisation.404 The optimisation procedure used the OPLS 2.1 force field405,406

to find the lowest energy configuration via a Monte-Carlo algorithm, allowing for the reorien-

tation of water molecules and 180◦ flips of asparagine, glutamine and histidine. The hydrogen-

bond optimisation was performed with protonation states of residues predicted for a pH of 7.0,

as determined by a propka pKa prediction.407,408

The structure was then screened for poorly oriented hydrogen atoms. By flagging pairs of

atoms that ought to form hydrogen bonds but did not, and also checking for unrealistically

short H–H distances, candidate hydrogen-bonding networks were evaluated and improved upon.

(N.B. the above process was carried out as part of my Master’s.127)

6.1.2 Geometry optimisation

The geometry of this cluster model was then optimised using ONETEP versions 4.5 to 5.1 with

the PBE xc functional.136 The calculation was spin-polarised, with an energy cut-off of 897 eV.

Each manganese atom had thirteen NGWFs, the calcium had ten; nitrogen, carbon, oxygen,

and chlorine atoms four; hydrogen atoms, one. All NGWFs had a cut-off radius of 13.0 a0. PAW

potentials from the JTH dataset were used.137 The protein was immersed in an implicit solvent

parametrised to mimic water (ε∞ = 80, n0 = 0.00035a−3
0 , and β = 1.3 following Ref. 138). The

overall cluster had a charge of −2, which was calculated assuming the HOS paradigm. Ensemble

density functional theory (EDFT) was used in order to stabilise the possibly non-insulating

vacuum state for generating the solvent cavity. (I later modified the code to use the initial guess

for the density to immediately generate a solvent cavity, which would then be used instead of a

vacuum to calculate the final cavity. While this cavity would not be especially accurate, at the

very least it ought to avoid any pathologies associated with the vacuum calculations.)

The geometry was optimised using the BFGS algorithm, updating the solvent cavity (being

a function of the charge density) every five BFGS steps. The positions of the innermost 200

atoms were optimised; the rest were fixed in place (see Figure 6.2).28

Some development of ONETEP was required to perform these calculations, including over-
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Figure 6.2: A cross-section of the 1631-atom, 13 Å radius cluster model of the OEC, showing the oxygen
evolving complex (white), with surrounding protein (with those atoms that were optimised in red, and
those that were constrained in orange) and the ε = ε∞/2 isosurface of the implicit solvent (blue).
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Figure 6.3: The maximum and average force on the atoms in the OEC cluster model as it was optimised.

hauling logic associated with when to regenerate the implicit solvent during a geometry optimi-

sation, and developing smooth implicit solvent exclusion regions in order to prevent pockets of

implicit solvent forming within the cluster model. (This is undesired: all the water molecules

within the cluster were explicitly included, so the implicit solvent should be restricted to outside

the cluster.) This is discussed further in Appendix A.9.

The convergence of the atomic forces during the optimisation of the OEC are shown in

Figure 6.3. The final structure obtained has all atomic forces less than 0.2 eV/Å, with the

average atomic force much lower than that.
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(Å

)

(b)

Mn1–O5 Mn3–O5 Mn4–O5

Figure 6.4: (a) The change in selected metal-metal and metal-oxygen distances after optimisation of
the 1631-atom cluster model of the OEC, and (b) the change in Mn–O5 distances during the optimisation
process. Refer to Figure 6.5 for the atom labels.

Figure 6.5: The geometry of the OEC core of
the 1631-atom cluster model before (blue) and
after (red) optimisation.

Figure 6.6: RMSDs of the metal-metal dis-
tances in the OEC between several experimen-
tal and computational studies.

6.1.3 Analysis of the optimised geometry

The changes in selected metal-metal and metal-oxygen distances during optimisation are shown

in Figure 6.4. The characteristic shift of O5 away from Mn1 and towards Mn4 is clear, with the

Mn3– and Mn4–O distances finishing at the more typical ∼ 1.9 Å for Mn–O bonds.38,39 Given

that these are the first calculations on the OEC of this size, we can already rule out ambient

protein effects as the source of the inconsistencies in the Mn–O5 distances in the experimental

structures. Metal-metal distances are compared in Table 6.1 and Figure 6.6. The optimised dis-

tances of my cluster model compare very well to XRD structures; there are different experimental

structures that differ more with one another than with my optimised structure.
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Table 6.1: Metal-metal distances in the OEC, as given by various experiments, as well as the two
computationally-optimised structures used in this chapter. Refer to Figure 6.5 for the atom labels. All
of these results agree qualitatively; the subtle differences are captured in Figure 6.6.

Authors Method
MnX–MnY Ca–MnX

1–2 1–3 1–4 2–3 2–4 3–4 1 2 3 4
Yano et al. EXAFS 2.7 to 2.8 × 3; 3.3 × 1 3.4 × 2
Dau et al. EXAFS ≤ 2.9 × 2; 3.3 × 1 or 2; 3.7 × 1 ∼ 3.3× 2
Umena et al. XRD 2.82 3.28 4.95 2.90 5.41 2.93 3.52 3.34 3.42 3.80
Suga et al. XFEL 2.64 3.21 4.96 2.69 5.17 2.85 3.48 3.32 3.43 3.81
Suga et al. XFEL 2.64 3.16 4.90 2.74 5.17 2.76 3.60 3.44 3.51 3.85
Kern et al. XFEL 2.81 3.26 4.86 2.84 5.24 2.74 3.42 3.41 3.52 3.90
Luber et al. R-QM/MM 2.72 3.32 4.79 2.81 5.15 2.72 3.35 3.37 3.58 3.88
This work 1631-atom QM 2.72 3.31 4.99 2.77 5.16 2.74 3.56 3.38 3.43 3.76

Figure 6.7: The 75-atom model of the OEC (the QM region of the QM/MM calculations of Ref. 40).

6.1.4 A smaller cluster model

The large optimised cluster model of the OEC will be invaluable for future DFT + DMFT

calculations. But for the purposes of initial exploratory calculations into the electronic structure

of the OEC, I used a much smaller 75-atom cluster model taken from Ref. 40. This structure

has been optimised using the so-called revised-QM/MM (R-QM/MM) approach: the atomic

positions of the 2011 XRD structure16 were first optimised using QM/MM, with the QM using

the B3LYP xc functional and the classical region being treated with the AMBER force field.141

The structure was then optimised a second time, but now it was minimised with respect to

the sum of the squared deviations between calculated and experimental EXAFS spectra, plus

a quadratic penalty function for displacing atoms from their reference QM/MM configuration.4

The resulting structure is in good agreement with EXAFS measurements, while also exhibiting

features common to DFT calculations of the OEC (for example, the position of O5 is tightly

bound to Mn4). The 75 atoms used in this thesis correspond to the QM region of the QM/MM

calculations, which is pictured in Figure 6.7.
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Table 6.2: Values of U and J (eV) for OEC atoms, calculated using the various linear response schemes
introduced in Subsection 3.2.1.

atom
scalar averaged 1× 1 1× 1 scaled 2× 2

U U U↑ U↓ U J
Mn1 4.75± 0.00 1.95± 0.00 2.26± 0.00 1.65± 0.00 4.75± 0.02 0.52± 0.00
Mn2 5.04± 0.00 0.95± 0.00 1.11± 0.00 0.80± 0.01 5.04± 0.03 0.54± 0.00
Mn3 5.02± 0.00 0.82± 0.00 0.65± 0.00 0.99± 0.01 5.02± 0.05 0.54± 0.00
Mn4 4.84± 0.00 1.68± 0.02 1.49± 0.02 1.87± 0.02 4.84± 0.05 0.53± 0.01
O1 7.83± 0.00 1.87± 0.00 1.48± 0.00 2.25± 0.00 7.83± 0.06 0.81± 0.01
O2 8.07± 0.00 2.19± 0.00 2.40± 0.00 1.98± 0.00 8.06± 0.06 0.82± 0.01
O3 7.88± 0.00 1.99± 0.00 1.78± 0.00 2.20± 0.00 7.88± 0.06 0.81± 0.01
O4 7.98± 0.00 2.27± 0.00 2.38± 0.00 2.16± 0.00 7.98± 0.05 0.83± 0.01
O5 7.97± 0.00 2.03± 0.00 2.06± 0.00 2.00± 0.00 7.97± 0.06 0.82± 0.01

6.1.5 Linear response

In preparation for subsequent DFT + U and DMFT calculations, the linear response schemes

of Chapter 3 were applied to the 75-atom cluster model. These calculations used the same

computational set-up as described in Subsection 6.1.2, with the exception of the pseudopotentials

used, which were norm-conserving PSPs generated in-house with OPIUM125 as opposed to

PAWs. (The linear response schemes are not yet compatible with PAW; this will be discussed

further in Chapter 7.) The results of the linear response calculations are listed in Table 6.2.

As was the case for the hexahydrated transition metals and MnO, the Hubbard and Hund’s

corrections on the oxygen 2p subspaces are significant. The different chemical environments of

the individual atoms have a small but noticeable effect on the corrective parameters. In the

future the geometry of the 1631-atom cluster model will be optimised using these parameters.

6.2 Single-site DMFT

The OEC presents some new challenges when constructing DMFT calculations. Firstly, it is

impossible to perform cluster DMFT on all four manganese atoms at once — the twenty 3d

orbitals alone (plus the several other bath orbitals one would require) takes us well beyond the

reach of the Lanczos algorithm, so we must somehow reduce the size of our Hilbert space.

The first approach is to map each manganese atom to a separate AIM. This means that we

are solving four AIMs with five impurity orbitals each, which will be computationally equivalent

to the FePImCO calculations of Chapter 4. One of the downsides of this approach is that direct

inter-manganese correlation is excluded, as the other manganese atoms are coupled via the bath.

This is certainly an approximation (although how poor an approximation this is remains to be

seen).

6.2.1 Computational details

Charge-conserving DMFT calculations were performed on the 75-atom Luber model, using en-

larged AIM Hamiltonians with six bath sites and a further three sites coupled to each bath site

via the CPT extension. The hybridisation function was fitted using the BFGS minimisation

algorithm, and the AIM was solved using an ED Lanczos solver. The U and J values for each
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Figure 6.8: (a) The charge of the atoms in the OEC core, as given by a Mulliken analysis.410 (b) The
change in the DMFT Mulliken charges compared to those given by spin-polarised DFT.

manganese atom determined via scaled 2 × 2 linear response in Subsection 6.1.5 were used in

the AIMs (with the caveats of Subsection 5.6.1 applying here, too). In order to increase numer-

ical stability, nominal valence double-counting was imposed — that is, the double-counting was

set to correspond to the nominal occupancy of the 3d subspaces assuming the HOS paradigm.

(Recall that in the S1-state the formal charges of the four manganese atoms assuming the HOS

are 3+, 4+, 4+, and 3+ respectively.)

6.2.2 The electronic state of the OEC

The charges of the individual atoms in the OEC as given by DFT, DFT + U ( + J), and DMFT

are listed in Figure 6.8a. All methods report smaller values than the formal charges due to

hybridisation, but DMFT yielded substantially larger local charges. These shifts in charge

are localised to the OEC core (see Figure 6.8b). It would be misleading to say that strong

electronic correlation has driven the charge to localise. Instead, this shift is largely a consequence

of the choice of double-counting scheme, which acts as a penalty function, driving the Mn

3d occupancies towards the values used in the double-counting term. Ultimately it would be

desirable to allow the double counting to update, but currently this prevents the DMFT loop

from converging.

DMFT calculations were also performed on a 75-atom subset of the 2015 XFEL structure

(in other words, the unoptimised core of the 1631-atom model), taking the same 75 atoms as the

Luber structure. This provides us with an opportunity to examine the Jahn-Teller physics at

play in the OEC. Recall from Section 3.3 that Jahn-Teller distortion in tetrahedrally-coordinated

Mn d4 complexes lowers the energy of the system by elongation along the z-axis, lowering the

energy of the dz2 orbital at the expense of the dx2−y2 . Alternatively, tetragonal compression can

achieve the reverse.

We can clearly observe the Jahn-Teller effect in the occupancies of the 3d orbitals of Mn1

and 4 (Figure 6.9). In the case of the XFEL structure, there is tetragonal elongation along the

Mn4–O5 axis (Figure 6.9b), which is reflected in the vastly larger dz2 occupancy. This is reversed

in the Luber structure (Figure 6.9c), where we instead have tetragonal compression. The picture

is slightly less clear with Mn1: in both structures there is unambiguously tetragonal elongation

along Mn1–O5, and in the Luber structure this is clearly reflected in the d-orbital occupancies,

but this is not true of the XFEL structure. Perhaps this departure from the conventional
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Figure 6.9: (a) The orbital occupancies of Mn1 and Mn4 in the Luber and XFEL models as given by
the DMFT reduced density matrix. Note that these orbital labels correspond to the local axes defined in
Figure 6.11, which differ marginally between models. (b) and (c) The Jahn-Teller axes of Mn1 (orange)
and Mn4 (blue) in the 1631-atom cluster before and after geometry optimisation, showing elongation
(solid) and compression (dashed).

Jahn-Teller picture is due to the substantially electronegative carbonyl ligand coordinating with

Mn1. Note that since Mn2 and 3 have formal occupancies of d3, we do not expect them to be

Jahn-Teller-active.

Turning now to the spin state, it is known that the S1 state of the OEC cluster has no net

spin, as identified by the absence of an EPR signal.51,411 The manganese atoms will individually

be in high spin states, with Mn1 and Mn4 being spin quintets; Mn2 and 3, quadruplets (as

näıvely determined by their formal charge in the HOS paradigm). The effective spin Seff of the

manganese atoms as predicted by single-site, paramagnetic DMFT are 1.93, 1.62, 1.66, and 2.00

respectively.† A more detailed breakdown is provided by Figure 6.10.

In order to achieve zero net spin, the spins of Mn1 and 3 are opposite to that of Mn2

and 4. This is reproduced by spin-polarised DFT and DFT + U : for example, DFT + U + J

calculations on the Luber structure using the Hubbard and Hund’s parameters listed in Table 6.2

give n↑3d − n
↓
3d = 3.8, −3.3, 3.4, and −4.0 for Mn1 through 4.

The single-site DMFT approach has a substantial flaw: by removing all inter-manganese

correlation, it does not — or more accurately, cannot — exhibit any spin ordering. This severely

†Recall that we defined Seff via Tr[Ŝ2ρ̂] = ~2Seff(Seff + 1).
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Mn4

triplet quadruplet quintet sextet

Mn2 Mn1

Mn3

Figure 6.10: The spin states of the Mn 3d correlated subspaces in the OEC, calculated from the DMFT
reduced density matrices as described in Subsection 4.3.2.

hampers our ability to study the OEC: for example, theories of interconvertibility in the S2 state

hinge on the existence of a low- and a high-spin state (refer back to Subsection 1.2.4). The single-

site DMFT calculations as they stand would be incapable of investigating this.

6.3 Going beyond single-site paramagnetic DMFT

In the future, there are several approaches we could take to overcome these issues.

6.3.1 Ferromagnetic single-site DMFT

In order to re-introduce spin ordering, one approach is to perform non-paramagnetic DMFT.

In this method, we start with the spin-unpolarised DFT density and Hamiltonian as before,†

but now the Green’s function, self energy, Hamiltonian, and electronic density are permitted to

break spin-symmetry; that is, they gain a spin index. In order to break the spin-symmetry of

the initial DFT density, the self-energy is initialised to a small, spin-dependent and static value.‡

Ferromagnetic DMFT calculations on the OEC are underway and ongoing.

6.3.2 Cluster DMFT

Projection

If we ever want to include inter-atomic correlation, multiple manganese atoms would need to

be included in the same AIM. We have done this already in the case of haemocyanin, so let us

return to consider the strategy of projection that we used there. Projection requires local axes

to be constructed for the four Mn subspaces; these are shown in Figure 6.11.

†We do not start from a spin-polarised DFT calculation because the DMFT calculation would inherit problems
such as spin contamination.

‡Compare this to the standard approach, where the self-energy is initialised to be zero.
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(a) (b)

Figure 6.11: The local axes for the Mn 3d correlated subspaces in the OEC for (a) the Luber model
and (b) the XFEL model.
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Figure 6.12: The LDOS of Mn2, projected onto the 3d Hubbard subspace and split by spin channel, as
given by spin-polarised DFT (PBE). The t2g and eg orbitals are labelled accordingly.

However, there are some distinct differences between the cases of haemocyanin and the OEC.

Haemocyanin was remarkably well-suited to projection: there was only a single hole on each

copper atom and there were several low-lying 3d orbitals that were guaranteed not to play a

part in the dynamics, so they could be projected out without concern. The case of the OEC is

much more complicated. In the S1 state, the manganese atoms will have formal occupancies of

d3 or d4. It is possible that the t2g–eg splitting† of the 3d orbitals will mean that some half-filled

orbitals will play a lesser role, but that is by no means guaranteed.

If we inspect the LDOS of the manganese atoms (as given by spin-polarised DFT), it becomes

evident that projection would be ill-advised. For the projection to be successful, we need the 3d

correlated subspace to be divided into distinct energy windows: one, containing those orbitals

near the Fermi surface which will be retained, and the other, containing orbitals far away from

that energy window that will have a negligible contribution to the Green’s function. However,

this is not the case, as Figure 6.12 demonstrates: the t2g and eg orbitals are equally close to

the chemical potential, so freezing one of these subsets out would be unreasonable as it would

drastically affect the physics of the AIM.

These local axes are still useful: they can still be used for all DMFT calculations, just not

†Refer back to Figure 3.4.
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Figure removed due to copyright. The
original can be seen in Ref. 414 as Figure 2.

Figure 6.13: A cartoon of the rr-DMFT approach for four correlated sites, showing the construction
of multiple dimer DMFT problems from an original four-site problem. C1-4 are smaller clusters that
collectively make up the full cluster problem; in our case each would correspond to a manganese 3d
subspace. Figure adapted from Ref. 414.

for projection.† Having a nearly-diagonal Green’s function is numerically convenient as it will

lead to simpler AIMs.

Dimer DMFT

Having ruled out projection, the next step could be to perform “dimer” DMFT. This involves

mapping the OEC to two AIMs, each representing two manganese atoms, thereby reintroduc-

ing explicit correlation within the manganese dimers. A framework for this functionality exists

within ONETEP+TOSCAM, but it is currently untested and disabled. Further code develop-

ment would enable these calculations. These dimer AIMs would also be larger than any we have

solved thus far, and would likely require either (a) further optimisation of the ED solver or (b)

a different solver that scales less poorly with AIM size, such as CTQMC.412 This dimer approx-

imation may be a good one: DMRG calculations on the OEC core showed that the Mn1 and

2 are relatively disentangled from Mn3 and 4 in the S0 and S1 states.42‡ Additionally, Ref. 53

proposed that a coupled dimer model can best explain the hyperfine 55Mn structure of EPR

structure of the S2 state (although these calculations assumed the LOS).413

rr-DMFT

A further extension to this approach that could be explored is the so-called real-space renor-

malised dynamical mean field theory (rr-DMFT) approach of Imada and co-workers.414 This

method involves decomposing n-site clusters into
(
n
2

)
dimer DMFT calculations, as shown in

Figure 6.13. The Green’s functions of these individual dimer calculations are then amalgamated

to form an approximate solution to the original n-site problem.

†Indeed, these local axes were used in the definition of the individual d orbitals whose occupancies were listed
in Subsection 6.2.2.

‡I would caution against treating these calculations as gospel truth because they neglect the ambient protein
environment.
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6.4 Conclusions

This chapter has laid the groundwork for large-scale DFT + DMFT calculations on the OEC.

The geometry optimisation of a 1631-atom cluster model provides the perfect starting point.

Preliminary DMFT calculations have demonstrated that DMFT has the potential to yield unique

insights into the electronic structure of the OEC, with the structure of the OEC clearly being

highly sensitive to the electronic structure of the manganese atoms. These calculations have

also demonstrated several of the challenges that remain: primarily, how to properly account

for inter-manganese correlation while keeping the calculations tractable. This will be discussed

further in the final chapter. As always, comparison with experiment remains a rigorous test of

computation. There is scope for comparison: for example, magnetic circular dichroism spectra

— which we can calculate — have been recently proposed to be an excellent probe of the OEC.415

If we can perform DMFT calculations on the OEC, it will be a major breakthrough. Studies

of biological systems considering thousands of atoms at the DMFT level of theory have already

borne fruit: simulations of myoglobin have shown that DMFT corrects the fact that DFT gives

an unphysical imbalance between the binding of myoglobin with oxygen and carbon monoxide.79

In this scenario, the explicit inclusion of many-body effects via DMFT prompted a rearrangement

of the Fe 3d orbital occupancies and enhanced electron transfer to the O2 molecule, resulting

in a crucial shift in the Fe–O2 binding energy. Similar shifts in Mn 3d orbital occupancies and

altered electron transfer between the manganese and oxygen ions for the case of the toy 75-atom

model may prompt altered bonding affinities between the ions of the OEC and/or redirection of

Jahn-Teller axes, which could hypothetically account for the unresolved disagreement between

experimental and computational models of the S1 state (Subsection 1.2.1). Similar changes

could also favour (or rule out) a particular oxidation state paradigm (Subsection 1.2.2), and a

detailed picture of the electronic structure of the S3 state could help clarify the bond formation

mechanism (Subsection 1.2.6).



Chapter 7

Conclusions

This thesis has identified the challenges to accurate quantum-mechanical simulation of metallo-

proteins, and has developed techniques for overcoming them.

In Chapter 2 I demonstrated how linear-scaling DFT is a powerful tool for performing

quantum-mechanical simulations on systems comprising of thousands of atoms, which I ar-

gued was necessary for the accurate simulation of proteins (transition-metal-containing or not).

The capabilities of the linear-scaling DFT code ONETEP were demonstrated on the cyclotide

kalata B5 protein. I also discussed the shortcomings of semi-local DFT for accurately treating

electronic correlation.

To overcome these shortcomings, I explored, extended, and implemented two methodologies:

DFT + U and DMFT. In the case of DFT + U (Chapter 3), a case was made for determining

the Hubbard parameters via linear response, and a novel approach for accounting for the non-

interacting contribution — so-called “minimum-tracking” linear response — was developed and

expanded upon. I also noted that discrepancies exist between conventional linear response and

the contemporary DFT + U functional. To resolve these, I paid particular attention to spin and

associated screening, proposing revised definitions for Hubbard and Hund’s parameters (Subsec-

tion 3.2.1). By comparing scalar linear response to my spin-specific theory, I demonstrated that

the treatment of inter-spin screening in conventional linear response is somewhat inconsistent

with the DFT + U functional as it is most commonly employed (Subsection 3.2.2). While I do

not claim to have arrived at an ultimate solution to this inconsistency, I do provide a simple

technique by which inter-spin screening of the Hubbard U may be suppressed. This results in

spin-dependent U parameters that are generally lower in value than the canonical U for the

partially-filled spin channel of a localised subspace (the spin channel that usually harbours the

strong correlation effects) and that, in principle, could be applied to that spin channel alone.

This hints at a possible solution to the widespread finding that first-principles U parameters

can be rather too large in practice, leading to over-correction by DFT + U .

In the latter half of that chapter I applied our theoretical developments to a complete set

of hexahydrated transition metal complexes from Ti to Zn. I calculated Hubbard and Hund’s

parameters using conventional and novel approaches, and then performed DFT + U calculations

using these parameters to predict structural and spectroscopic properties. The numerical stabil-

ity of the minimum-tracking formalism (in which Hubbard parameters are a strictly ground-state

113
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property) allowed me to investigate closed-shell cases with confidence. The Hubbard corrections

to oxygen 2p subspaces proved to be far from negligible, and helped to obtain sensible structural

predictions. Spectroscopic simulations of coordination complexes using DFT + U saw mixed

success, whereas indirect band gap results for the long-standing challenge material MnO are

very promising when compared against a wide range of more computationally demanding ap-

proximations.

The development of the DFT + U method is ongoing: issues remain relating to local vs.

global curvature, static correlation error, and the precise formulation of +J corrections (among

many others). One issue with DFT + U that I have not yet directly addressed is the matter of

energy comparability. With Hubbard parameters obtained via linear response being dependent

on the chemical environment, it is unclear if DFT + U energies of different structures (now with

different corrective parameters) are comparable.416 Ultimately, DFT + U is a correction to an

incorrect energy curvature, so, in principle, comparison of total energetics should improve with

the addition of a Hubbard correction. In practice, there is little consensus on this front. Indeed,

many authors417–420 keep U fixed across a wide range of chemical environments — which can

become very problematic when the electronic structure of the system changes appreciably. Other

authors421 update U and obtain reasonable results, and there are even some who mix GGA and

GGA + U energies.422,423 Resolving this conflict would dramatically improve DFT + U -based ab

initio random structure searching.424

One self-contained avenue for immediate work is the extension of our minimum-tracking

methodology to the PAW formalism (Subsection 2.3.7). This should be a straightforward ex-

tension to account for PAW augmentation density when measuring projected potentials. As

Subsection 2.3.7 illustrated, the PAW method is a powerful and accurate method of treating

core electrons, and being able to make use of it would be advantageous. (Since the Hubbard

and Hund’s parameters are sensitive to the atomic potential used, one cannot apply parameters

determined using norm-conserving PSPs to a system that utilises PAWs.)

The theoretical and computational advances of Chapter 3 are by no means specific to met-

alloproteins. That said, they do address several key concerns when performing DFT + U on

metalloproteins, not least by providing an approach for performing linear response within a

linear-scaling framework.

Chapter 4 introduced the DFT + DMFT method. This approach is much more computa-

tionally intensive than DFT + U , but — in principle — should more accurately describe strong

electronic correlation. The overhauled implementation of ONETEP+TOSCAM was presented.

This code can account for strongly correlated electronic behaviour while simultaneously includ-

ing the effects of protein environments, making it ideally suited for studying biological activity in

metalloproteins. Developing and improving this code accounted for a substantial portion of my

PhD: the ONETEP DMFT module was updated and incorporated into the active development

version, meaning the most recent (and all future versions) of ONETEP will be compatible with

TOSCAM. The TOSCAM code was significantly restructured to remove unnecessary external

dependencies and to simplify the compilation procedure, with an eye on distributing the code in

the near future. This ONETEP+TOSCAM interface will continue to be developed and tested.

In particular, a GPU implementation of the ED solver will be incorporated, as well as a CTQMC
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solver (that should in principle allow us to solve much larger AIMs).

The capabilities of the ONETEP+TOSCAM code were first demonstrated on the toy ex-

ample of FePImCO, where I presented results on the details of its electronic state and the CO

dissociation mechanism. Several of these results — the spin decomposition of the reduced density

matrix, for example — are not obtainable with DFT or DFT + U . The ONETEP+TOSCAM

approach was then applied to oxyHc, a dicopper complex that binds molecular oxygen. These

calculations allowed us to establish a mechanism for explaining the spin state of the butterflied

dicopper core (as opposed to the planar core observed in model complexes). This is a pertinent

illustration of the importance of both (a) the ambient protein environment, which imposes the

butterflied structure and (b) the accurate simulation of the copper 3d electrons.

However, there are some issues that remain: metal-ligand charge transfer excitations were

underestimated in the optical absorption spectrum. This could be investigated by incorporating

oxygen 2p Hubbard subspaces — or, indeed, the dioxygen π∗ orbitals — as explicit impurity

sites in the DMFT AIM.† This approach goes slightly against the spirit of DMFT — in that all

of the physics of the oxygen sites ought to be captured by the hybridisation function — but it

would allow us to be more definitive about the superexchange pathway. More generally, this ap-

proach would allow us to robustly consider radical ligands which cannot be modelled in DFT —

for example, in the case of the binding of NO to cyctochrome c′,425,426 and the oxo-oxyl radical

attack mechanism for oxygen formation in the OEC (refer to Subsection 1.2.6). That said, it is

worthwhile keeping in mind relative strengths and weaknesses of DMFT compared to compet-

ing methods. Namely: our DFT + DMFT approach does not compromise our ability to deploy

linear-scaling DFT to the rest of the protein. This provides a useful middle ground between

(a) density functional theory based simulations of metalloproteins, which depend heavily on

the choice of functional and incorrectly describe multi-reference effects, and (b) multi-reference

quantum chemistry approaches, whose unfavourable scaling prevents studies on models of real-

istic size. After all, if we were to include more and more orbitals explicitly in the AIM, at some

stage we are effectively performing quantum chemistry. There already exist several quantum

chemistry techniques for selecting active spaces and efficiently solving large active spaces (for

example, the FCIQMC-CASSCF technique of Alavi and co-workers, which has already been

applied to iron porphyrin345).

DMFT can also provide some insights that are not accessible via DFT or quantum chem-

istry methods. One such quantity is the dynamical spin susceptibility χzz(q, iω). This can be

calculated, for example, via TDDFT.427,428 However, the dynamical spin susceptibility is itself

an averaged quantity

χ(q, iω) =
∑
ν,ν′

χ̃q(iν, iν ′, iω) (7.1)

where the individual elements χ̃q(iν, iν ′, iω) relate to the contributions of particular two-particle

excitations that collectively make up the dynamical susceptibility. In the scope of DMFT, these

†Work has been carried out in the ONETEP community for defining two-centred Hubbard projectors.
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individual elements can be related to the local susceptibilities306

χσσ
′

imp

(
iν, iν ′, iω

)
=

∫ β

0
dτ1

∫ β

0
dτ2

∫ β

0
dτ3e

i(ντ1+ν′τ2+ωτ3)
〈
Tτ cσ (τ1) c†σ (τ2) cσ′ (τ3) c†σ′(0)

〉
(7.2)

which can be extracted from DMFT via a Lanczos procedure (or alternatively via a QMC

approach).429,430 By inspecting the individual elements — rather than the averaged quantity

χ(q, iω) — we can gain unique insight into the nature of spin transitions (e.g. the low- to

high-spin transition of FePImCO during photodissociation, or the singlet-triplet transition in

haemocyanin).

Finally, Chapter 6 presented calculations on the OEC of PSII. A 1631-atom cluster model,

optimised at the level of semi-local DFT, represents the largest QM calculation on the OEC

to date, and will serve as an excellent starting point for future DFT + U and DMFT calcu-

lations. Preliminary DMFT calculations on a much smaller cluster model demonstrated that

these DMFT calculations remain especially challenging, in spite of the advances contained in this

thesis, stemming largely from the sheer computational size of the problem if it was to be simply

brute-forced. Chapter 6 discussed several strategies for overcoming this computational hurdle,

both theoretical (including single-site ferromagnetic, dimer DMFT, and rr-DMFT) and compu-

tational (using AIM solvers with superior scaling to ED and implementing a GPU-accelerated

version of the code). Meanwhile, I demonstrated that projecting out some of the manganese 3d

orbitals would severely compromise the accuracy of the calculations.

More generally, there is a need to improve the numerical stability of these DMFT calcula-

tions. Currently, a number of issues prevent these calculations from being “routine”. This is

especially true in the case of the self-consistent calculations, where achieving self-consistency is

a challenging process. Further work could consider the optimal strategies for the mixing of the

self-energy, the mixing of the density, and the form of the double-counting term.431,432 Tackling

these challenges will serve to drive the development of ONETEP+TOSCAM forward.

There is no shortage of interesting systems to study while honing these techniques. For

example, binuclear hydrogenases (NiMn, FeNi, and FeFe)433 could be studied while perfecting

the dimer and rr-DMFT methods. Copper metallothioneins — which contain CuxSy clusters

where x ranges from one to over ten — could provide an excellent proving ground given that (a)

the number of impurity sites can be easily varied and (b) the Hilbert space will be comparatively

small compared to the OEC (given that projection could be applied to the nearly-filled copper

3d subspaces as in the case of haemocyanin).434 Cluster DMFT approaches in periodic systems

exhibit some non-intuitive behaviour (especially with respect to which atoms are bundled into

the same AIM435); perhaps the same will be true in biological systems.

It would also be short-sighted to dismiss DFT + U — being less sophisticated than DMFT

— as being unable to provide novel insights into the function of the OEC. After all, DFT + U

calculations of the OEC provided breakthroughs explaining the results of EPR experiments.57,436

This thesis has presented the first DFT + U calculations (to my knowledge) on the OEC using

U determined via linear response,† and will allow re-optimisation of the OEC cluster at the

†Refs. 57 and 436 used a value determined via extrapolation of exchange coupling constants to match B3LYP
results.



117

DFT + U + J level. It may be that the sensitivity of U to the environment of each manganese

atom (which is captured by linear response) is incredibly important.

To summarise, this thesis has explored how strong electronic correlation can be accounted for

within the scope of linear-scaling DFT for the purposes of accurately modelling metalloproteins.

Firstly, it has advanced our understanding of linear response calculations of Hubbard and Hund’s

parameters for open-shell systems (and made it compatible with linear-scaling codes). Secondly,

it has presented an overhauled implementation of linear-scaling DFT + DMFT in the form of

ONETEP+TOSCAM, yielding insights into the importance of strong electronic correlation in

the haemocyanin dicopper complex. Finally, it has established a strategy and framework for

DFT + U and DFT + DMFT calculations on the OEC. It is my hope that we will soon be able

to perform these calculations routinely, and to then investigate the electronic structure and

reaction mechanism of the OEC in great detail.
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235. Á. Ruiz-Serrano, N. D. M. Hine & C.-K. Skylaris. Pulay forces from localized orbitals

optimized in situ using a psinc basis set. J. Chem. Phys. 136, 234101 (2012).

236. J. H. Lloyd-Williams & B. Monserrat. Lattice dynamics and electron-phonon coupling

calculations using nondiagonal supercells. Phys. Rev. B 92, 184301 (2015).

237. R. W. G. Wyckoff. Crystal Structures 2nd ed. (Interscience Publishers, New York, 1963).

238. N. D. M. Hine, J. Dziedzic, P. D. Haynes & C.-K. Skylaris. Electrostatic interactions

in finite systems treated with periodic boundary conditions: application to linear-scaling

density functional theory. J. Chem. Phys. 135, 204103 (2011).

239. Perdew-Burke-Ernzerhof GGA pseudopotentials. http://www.sas.upenn.edu/rappegroup/

research/pseudo-potential-gga.html.

240. G. P. Kerker. Non-singular atomic pseudopotentials for solid state applications. J. Phys.

C Solid State Phys. 13, L189 (1980).

241. L. Kleinman & D. M. Bylander. Efficacious form for model pseudopotentials. Phys. Rev.

Lett. 48, 1425 (1982).

242. D. R. Hamann. Generalized norm-conserving pseudopotentials. Phys. Rev. B 40, 2980

(1989).

243. A. M. Rappe, K. M. Rabe, E. Kaxiras & J. D. Joannopoulos. Optimized pseudopotentials.

Phys. Rev. B 41, 1227 (1990).

244. X. Gonze, R. Stumpf & M. Scheffler. Analysis of separable potentials. Phys. Rev. B 44,

8503 (1991).

245. N. J. Ramer & A. M. Rappe. Designed nonlocal pseudopotentials for enhanced transfer-

ability. Phys. Rev. B 59, 12471 (1999).

http://dx.doi.org/10.1039/b419105f
http://dx.doi.org/10.1039/b907148b
http://dx.doi.org/10.1039/b907148b
http://dx.doi.org/10.1063/1.4963168
http://dx.doi.org/10.1063/1.4963168
http://dx.doi.org/10.1063/1.4985084
http://dx.doi.org/10.1063/1.4985084
http://dx.doi.org/10.1103/PhysRev.83.333
http://dx.doi.org/10.1103/PhysRev.83.333
http://dx.doi.org/10.1103/PhysRevB.94.165151
http://dx.doi.org/10.1103/PhysRevB.94.165151
http://dx.doi.org/10.1103/PhysRevB.94.165151
http://dx.doi.org/10.1063/1.4728026
http://dx.doi.org/10.1063/1.4728026
http://dx.doi.org/10.1103/PhysRevB.92.184301
http://dx.doi.org/10.1103/PhysRevB.92.184301
http://www.sas.upenn.edu/rappegroup/research/pseudo-potential-gga.html
http://www.sas.upenn.edu/rappegroup/research/pseudo-potential-gga.html
http://www.sas.upenn.edu/rappegroup/research/pseudo-potential-gga.html
http://dx.doi.org/10.1088/0022-3719/13/9/004
http://dx.doi.org/10.1103/PhysRevLett.48.1425
http://dx.doi.org/10.1103/PhysRevB.40.2980
http://dx.doi.org/10.1103/PhysRevB.41.1227
http://dx.doi.org/10.1103/PhysRevB.44.8503
http://dx.doi.org/10.1103/PhysRevB.59.12471
http://dx.doi.org/10.1103/PhysRevB.59.12471


134 REFERENCES

246. I. Grinberg, N. J. Ramer & A. M. Rappe. Transferable relativistic Dirac-Slater pseudopo-

tentials. Phys. Rev. B 62, 2311 (2000).

247. S. G. Louie, S. Froyen & M. L. Cohen. Nonlinear ionic pseudopotentials in spin-density-

functional calculations. Phys. Rev. B 26, 1738 (1982).

248. H. J. Kulik. Perspective: treating electron over-delocalization with the DFT+U method.

J. Chem. Phys. 142, 240901 (2015).

249. G. J. Martyna & M. E. Tuckerman. A reciprocal space based method for treating long

range interactions in ab initio and force-field-based calculations in clusters. J. Chem. Phys.

110, 2810 (1999).

250. O. F. Sankey & D. J. Niklewski. Ab initio multicenter tight-binding model for molecular-

dynamics simulations and other applications in covalent systems. Phys. Rev. B 40, 3979

(1989).

251. E. Artacho et al. Linear-scaling ab-initio calculations for large and complex systems. Phys.

Status Solidi 215, 809 (1999).

252. F. Aryasetiawan et al. Frequency-dependent local interactions and low-energy effective

models from electronic structure calculations. Phys. Rev. B 70, 195104 (2004).

253. H. Sakakibara et al. Model-mapped RPA for determining the effective Coulomb interac-

tion. J. Phys. Soc. Japan 86, 044714 (2017).
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373. Y. Kurashige, J. Chalupský, T. N. Lan & T. Yanai. Complete active space second-order

perturbation theory with cumulant approximation for extended active-space wavefunction

from density matrix renormalization group. J. Chem. Phys. 141, 174111 (2014).

374. Y. Kurashige & T. Yanai. High-performance ab initio density matrix renormalization

group method: applicability to large-scale multireference problems for metal compounds.

J. Chem. Phys. 130, 234114 (2009).

375. T. Yanai, Y. Kurashige, E. Neuscamman & G. K.-L. Chan. Multireference quantum chem-

istry through a joint density matrix renormalization group and canonical transformation

theory. J. Chem. Phys. 132, 24105 (2010).
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Appendices

A.1 The Hubbard model

This appendix presents the derivation of the Hubbard model.

To develop a Hamiltonian suitable for explaining the Mott transition, consider a one-dimensional

lattice of identical atoms. The Hamiltonian of an electron gas is given by

Ĥ = Ĥ0 +
1

2

∫
dx

∫
dx′
∑
σσ′

ĉ†σ(x)ĉ†σ′(x
′)

1

|x− x′| ĉσ′(x
′)ĉσ(x), (A.1)

where Ĥ0 is the single-particle Hamiltonian

Ĥ0 =

∫
dx
∑
σ

ĉ†σ(x)

(
−∇

2

2
+ Vext(x)

)
ĉσ(x), (A.2)

and ĉσ(x) is the field operator corresponding to the removal of an electron of spin σ located at

x.

Given a periodic external potential, the eigenstates of this system will be Bloch states ϕks(x)

that are extended across the system (k being the state’s momentum and s = 0, 1, ... the band

or orbital index). For our purposes it is more instructive to consider the system via a basis of

localised functions

|ψns〉 =
1√
N

∑
k∈[−πa ,

π
a ]

eikna|ϕks〉, (A.3)

where the sum runs over those k in the first Brillouin zone. |ψns〉 are known as Wannier

functions. If the lattice is widely spaced, these Wannier functions will vary little from the sth

bound state of the isolated atom for the low-energy orbitals.

Restricting ourselves to the s = 0 band, the operator ĉ†nσ =
∫ L

0 dx 〈x|ψn〉ĉ†σ(x) can be shown

to be the creation operator for an electron at site |ψn〉 with spin σ. Using these new field

operators, the Hamiltonian of Equation A.1 can be reformulated as

Ĥ = −
∑
mn

∑
σ

tmnĉ
†
mσ ĉnσ +

∑
mnm′n′

∑
σσ′

Umnm′n′ ĉ
†
mσ ĉ

†
nσ′ ĉm′σ′ ĉn′σ, (A.4)

where tmn are the single-particle matrix elements

tmn = −〈ψm|Ĥ0|ψn〉 =
1

N

∑
k

ei(n−m)kaεk (A.5)
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and the interaction matrix elements are given by

Umnm′n′ =
1

2

∫ L

0
dx

∫ L

0
dx′ψ∗m(x)ψ∗n(x′)

1

|x− x′|ψm′(x
′)ψn′(x). (A.6)

At this point, a number of approximations are made which are suitable for when the atoms are

sufficiently separated and the overlap between neighbouring orbitals is weak:

(a) all but density-density fluctuation interactions between electrons on the same site are

ignored;

(b) interactions between sites that are not nearest neighbours are ignored;

(c) the strength of the terms are assumed to be the same from site to site.

This reduces Equation A.4 to the Hubbard Hamiltonian

Ĥ = −t
∑
〈mn〉

∑
σ

ĉ†mσ ĉnσ + U
∑
m

n̂m↑n̂m↓, (A.7)

where n̂mσ is the number operator ĉ†mσ ĉmσ, and t and U are constants. Intuitively, the two terms

of the Hubbard Hamiltonian describe the tunnelling between neighbouring lattice sites, and the

local Coulomb interaction between atoms on the same site. The behaviour of our system will

ultimately depend on the competition between these two terms as discussed in Subsection 3.1.1.

For a more complete discussion on the Hubbard model, the reader is referred to Ref. 437.

A.2 DFT +U as derived from the Hubbard model

This appendix follows the historical derivation of the Hubbard correction used in DFT + U .

Let a correlated subspace be defined by a set of basis orbitals (known as Hubbard projectors).

Within this subspace, the operator associated with electron-electron interactions is

Û =
∑

mnm′n′

∑
σσ′

Umnm′n′ ĉ
†
mσ ĉ

†
nσ′ ĉm′σ′ ĉn′σ, (A.8)

where {m,n,m′, n′} are Hubbard projector labels and {σ} are spin indices, and ĉ†mσ are the

associated creation operators. One can show that

EHub = 〈Û〉 =
1

2

∑
mnm′n′σ
m 6=n,m′ 6=n′

(Umnm′n′ − Umnn′m′)〈n′, σ;m′, σ|ρ̂2|n, σ;m,σ〉

+
1

2

∑
mnm′n′σ

Umnm′n′〈n′, σ;m′,−σ|ρ̂2|n,−σ;m,σ〉)

− Umnn′m′〈n′,−σ;m′, σ|ρ̂2|n,−σ;m,σ〉. (A.9)

where ρ̂2 is the two-body density matrix. Adopting the ansatz that the many-body wavefunc-

tion is a Slater determinant of single-particle states, the two-body density matrices ρ̂2 can be
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decomposed as determinants of single-body density.438 In this case

EHub =
1

2

∑
mnm′n′σ
m 6=n,m′ 6=n′

(Umnn′m′ − Umnm′n′)nσmm′nσnn′ +
1

2

∑
mnm′n′σ

Umnm′n′n
σ
mn′n

−σ
nm′ , (A.10)

where nσmm′ = 〈m|ρ̂σ|m′〉. At this stage the only approximation that has been introduced is the

assertion that the state corresponds to a Slater determinant. If Umnm′n′ is obtained using the

unscreened Coulomb potential, then Equation A.10 is equivalent to a Hartree-Fock treatment

of the system.

Now, all but two-site terms are ignored. Due to the symmetries of Umnm′n′ , this leaves only

two types of terms: Umnnm and Umnmn. These are then averaged over the Hubbard projectors

to yield two scalars:

U =
1

(2l + 1)2

∑
mn

Umnnm; J =
1

(2l + 1)2

∑
mn

Umnmn. (A.11)

Using these average values in place of the tensorial terms simplifies A.10 to

EHub =
1

2

∑
mnσ

U(nσmmn
σ
nn − nσmnnσnm + nσmmn

−σ
nn )

+
1

2

∑
mnσ

J(nσmnn
σ
nm − nσmmnσnn + nσmnn

−σ
nm)

=
∑
σ

U

2

(
(nσ)2 + nσn−σ − Tr [nσnσ]

)
+
J

2

(
Tr
[
nσnσ + nσn−σ

]
− (nσ)2

)
(A.12)

where nσ = Tr [nσ]. If at this stage Equation A.12 was to be incorporated directly into the DFT

formalism, interactions associated with the subsystems that are already being handled by the

conventional exchange-correlation functional would be double-counted. To avoid this, the fully

localised limit439 is considered, where all correlated subspaces have integer occupancy. In this

approximation

Tr [nσnσ]→ nσ; Tr
[
nσn−σ

]
→ nσmin , (A.13)

where σmin denotes the minority spin. Thus in the fully localised limit, the double counting

term becomes

EDC =
U

2
n(n− 1)− J

2

∑
σ

nσ(nσ − 1) + Jnσmin , (A.14)

where n =
∑

σ n
σ and hence

EHub − EDC =
∑
Iσ

U I − JI
2

Tr
[
nIσ(1− nIσ)

]
+
∑
Iσ

JI

2

(
Tr
[
nIσnI−σ

]
− 2δσσminn

Iσ
)
. (A.15)

Note that the entire expression has now been generalised to allow for the possibility of multiple

sites (labelled with the index I), to each of which a correction term is applied. As a final

approximation, terms arising from interaction between opposite spin (those contained in the
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second sum) are neglected. This leaves

EU = EHub − EDC =
∑
Iσ

U Ieff

2
Tr
[
nIσ(1− nIσ)

]
, (A.16)

where the on-site Coulomb repulsion parameter U I has been effectively reduced by JI to U Ieff.

(This is Equation 3.2 in the main text.) The DFT + U correction to the KS potential is given

by

V̂U =
∑
Iσmn

U I |m〉
(

1

2
− nIσmn

)
〈n| (A.17)

(Equation 3.3 in the main text). With this, the derivation is complete: the Hubbard-model

formalism is in a form which can be incorporated into the framework of DFT.

A.3 Ignoring the system outside of Hubbard subspaces

Suppose for a N -site Hubbard model we want to consider the existence of the bath explicitly as

an additional row/column in the response matrices. Due to the fact that shifting one level by

dvext is equivalent to shifting all other sites by −dvext the rows/columns of the (N +1)× (N +1)

response matrices must sum to zero i.e. the matrices will be of the form:

X =

(
χ −χ1

−1Tχ 1Tχ1

)
(A.18)

where χ is the original N × N response matrix excluding the bath, and 1 is a N × 1 array of

ones. Since

X0

(
χ−1

0 − χ−1 0

0T 0

)
X =

(
χ0 −χ01

−1Tχ0 1Tχ01

)(
χ−1

0 − χ−1 0

0T 0

)(
χ −χ1

−1Tχ 1Tχ1

)

=

(
I − χ0χ

−1 0

−1T (I − χ0χ
−1) 0

)(
χ −χ1

−1Tχ 1Tχ1

)

=

(
χ− χ0 −(χ− χ0)1

−1T (χ− χ0) 1(χ− χ0)1

)
=X −X0 (A.19)

it follows that if f is a solution to the N ×N Dyson equation then

F ≡
(

f 0

0T 0

)
=

(
χ−1

0 − χ−1 0

0T 0

)
(A.20)

is a solution to the (N + 1) × (N + 1) Dyson equation X = X0 + X0FX. This new kernel F

clearly corresponds to the original N -site Hubbard model coupled to a non-interacting bath.
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A.4 The difference of the inverses of two non-invertible matrices

The (N + 1)× (N + 1) response matrices of Appendix A.3 are non-invertible, so some authors

rightly point out that X−1
0 −X−1 is poorly defined. However, one can still calculate the difference

X−1
0 −X−1 via a trick first proposed (to our knowledge) by Cococcioni,207 who stated (without

proof) that the difference can instead be calculated via

(X0 + λ1)−1 − (X + λ1)−1, (A.21)

where 1 is now a N + 1 by N + 1 matrix with all entries equal to 1, and λ is some non-zero

constant. In this appendix, we prove this. Let X be a generic response matrix that satisfies the

aforementioned properties ∑
j

(X)ij = 0 ∀j, (A.22a)

∑
i

(X)ij = 0 ∀i, (A.22b)

and define

Q = I− 1

N + 1
1. (A.23)

Theorem 1

X = (X + λ1)Q (A.24)

Proof: we start by making two observations. Firstly, it is clear that

12 = (N + 1)1. (A.25)

Secondly, (M1)ij =
∑

kMik for any matrix M. In the specific case of X, we have the property

that all row or column sums are 0, and thus

X1 = 0. (A.26)

It follows that

(X + λ1)Q = (X + λ1)

(
I− 1

N + 1
1

)
= X + λ1− 1

N + 1
((N + 1)λ1) = X. (A.27)

Theorem 2: X + λ1 has an inverse.

This is not true of all non-invertible matrices X: it is not true of any matrix whose null space

is a subspace of the null space of 1.† This is actually quite restrictive: there must exist some

mutually exclusive sets of indices S1 and S2 of identical length such that
∑

j∈S1
Xij =

∑
j∈S2

Xij .

†If v is in the null space of X + λ1 then (X + λ1) v = 0⇒ 1 (X + λ1) v = 0⇒ λ(N + 1)1v = 0⇒ 1v = 0.
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If this is not the case, then there exists some λ which will break the linear dependence of the

matrix’s rows/columns. We will proceed assuming this is the case.

Theorem 3:

XQ = X (A.28)

This immediately follows from the definition of Q and Equation A.26.

Thus, for any two response matrices X1 and X2 it follows that

X1(X2 + λ1)−1X2 = X1Q = X1, (A.29)

where the first equality follows from Theorems 1 and 2, and the second equality follows from

Theorem 3. It follows that

X1

[
(X2 + λ1)−1 − (X1 + λ1)−1

]
X2 = X1 −X2. (A.30)

Compare this to the behaviour of invertible matrices in a Dyson-like context: if A and B are

invertible then

A(B−1 −A−1)B = A−B. (A.31)

Thus the proof is complete: by comparison, for non-invertible response matrices X1 and X2

we can calculate the difference of their inverses indirectly, via the difference of two invertible

matrices of the form Xi + λ1.

A.5 Details of linear response theory

In this appendix I outline the standard formalism for linear response DFT, following Refs. 440–

442 and many others.

Suppose for a given system we perturb the external potential by some small δvext(r). The

resulting change in the density is given by

δn(r) =

∫
dr′χ(r, r′)δvext(r

′) (A.32)

where χ(r, r′) is the response function to this perturbation. For the same perturbation, we can

choose to define a second response function χ0(r, r′) as

δn(r) =

∫
dr′χ0(r, r′)δvKS(r′). (A.33)

The KS potential is given as vKS(r) = vHxc[n](r) +vext(r) — that is, the sum of the Hartree and

exchange-correlation potential, and the external potential (which includes the atomic potentials

as well as the perturbing potential). It follows that δvKS(r) = δvHxc[n](r) + δvext(r). By the KS
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construction, the change in the Hubbard-plus-xc-potential can be recast as

δvHxc[n](r′) =

∫
dr′′f [nGS ](r′, r′′)δn(r′′), (A.34)

where we have defined the Hartree plus exchange-correlation kernel as

f [nGS ](r′, r′′) =
δvHxc(r

′)
δn(r′′)

∣∣∣∣
n=nGS

. (A.35)

Combining Equations A.32–A.35 we can see that χ, χ0, and f are related via a Dyson-like

equation for the Hartree plus exchange-correlation kernel:

χ(r, r′) =χ0(r, r′) +

∫
dr′′

∫
dr′′′χ0(r, r′′′)f [nGS ](r′′′, r′′)χ(r′′, r′) (A.36)

and we can identify χ0(r, r′) = δn(r)/δvKS(r′) as the non-interacting response. For subspaces de-

fined by projection operators P̂ J , Equation 3.12b defines the projected non-interacting response,

which is used in the minimum-tracking formalism for U .

A.6 A brief introduction to Green’s functions

This appendix provides a brief overview of Green’s functions.

The idea of a correlation function is of immense interest and importance in both experimental

and theoretical physics; they are the measure of the response of a system to a perturbation. That

is, we are interested in the quantity X(t) = 〈X̂F (t)〉: the response of a system in the presence

of a perturbation Ĥ = Ĥ0 + F (t)Ŷ . One can demonstrate that

X(t) =

∫
dt′CXY (t− t′)F (t′) (A.37)

where the retarded response function CXY (t) is given by

CXY (t) = −iΘ(t)〈{X̂(t), Ŷ (0)}〉. (A.38)

(see Ref. 437 for the derivation). If we now focus on correlation functions for fermionic creation

and annihilation operators, we get what we call the (fermionic) retarded Green’s function

G+
αβ(t) = −iΘ(t)〈{cα(t), c†β(0)}〉 (A.39)

and one can similarly define the advanced Green’s function

G−αβ(t) = iΘ(−t)〈{cα(t), c†β(0)}〉. (A.40)

It is also useful (for reasons that will be explained later) to define the imaginary-time Green’s
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function

Gαβ(τ) = −
〈
T
[
cα(τ)c†β(0)

]〉
= −

〈cα(τ)c†β(0)〉, τ > 0

−〈c†β(0)cα(τ)〉, τ ≤ 0
(A.41)

where the time-evolution of the operators is defined through the imaginary-time Heisenberg

representation

X̂(τ) = eτ(Ĥ−µN̂)X̂e−τ(Ĥ−µN̂), (A.42)

and 〈X̂〉 = Z−1Tr
[
X̂ exp−β(Ĥ − µN̂)

]
.† All of these Green’s functions are measures of the

probability amplitude for the propagation of a particle (or hole) excitation in an equilibrium

state.

By analogy with the imaginary-time Green’s function we can also define the real-time Green’s

function,

GTαβ(t) = −i〈Ttcα(t)c†β(0)〉 (A.43)

but while this substitution may seem like the most natural analogue to the imaginary-time

Green’s function, the retarded/advance Green’s functions turn out to be of much more physical

significance. A Fourier transform of the imaginary-time Green’s function yields the Matsubara

Green’s function

Gαβ(iωn) =

∫ β

0
dτ Gαβ(τ)eiωnτ (A.44)

with Matsubara frequencies iωn = 2π
β (n+ 1

2).

It is useful to adopt the Lehmann representation of the Green’s function:

Gαβ(iωn) =

∫ ∞
−∞

dω
Aαβ(ω)

iωn − ω
(A.45)

where

Aαβ(ω) =
1

Z
∑
m,n

〈n|c†β|m〉〈m|cα|n〉(e−βEm − e−βEn)δ(ω − (En − Em)) (A.46)

and {Ei} are the eigenvalues of Ĥ−µN̂ . Note that in practice the spectral function is not often

explicitly considered, but it does give us insight into the nature of Green’s functions, as explored

below.

Before proceeding, it is worth noting that the retarded Green’s function G+
αβ(ω) can be

obtained by analytic extension of the Matsubara Green’s function Gαβ(iωn): that is, we can

expand the definition of G across the entire complex plane:

G(z) =

∫ ∞
−∞

dω
A(ω)

z − ω (A.47)

in which case we have

G+(ω) = G(ω + i0+); (A.48a)

G−(ω) = G(ω − i0+). (A.48b)

†Also note that Gαβ(τ) = −Gαβ(τ + β) for −β < τ < 0 due to the cyclic properties of the trace.
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This vindicates the earlier choice to consider retarded and advanced Green’s functions on the

real time axis. At zero temperature, we get the important identity Aαα = − 1
π Im[G+

αα(ω)].

A.6.1 Green’s function of the non-interacting system

Consider a system of free (fermionic) particles with Hamiltonian

Ĥ − µN̂ =
∑
α

(εα − µ)c†αcα =
∑
α

ξαc
†
αcα. (A.49)

The eigenstates |n〉 are antisymmetrical combinations of single-particle eigenstates {|α〉}, and

their energies are simply En =
∑occ

α ξα. The only non-vanishing terms in the spectral function

Aαβ(ω) are those where β = α, and |n〉 and |m〉 only differ in the occupation of the single-particle

eigenstate |α〉. Thus we have

Aαβ(ω) =
1

Z δαβ
∑
m,n

〈n|c†α|m〉〈m|cα|n〉
(
e−βEm − e−β(Em+ξα)

)
δ(ω − ξα)

=
1

Z δαβδ(ω − ξα)
(

1− e−βξα
)∑

m

〈m|cαc†α|m〉e−βEm

=
1

Z δαβδ(ω − ξα)
(

1− e−βξα
)∑

m

〈m|(1− c†αcα)|m〉e−βEm

=
1

Z δαβδ(ω − ξα)
(

1− e−βξα
)
Z (1− nF (ξα))

= δαβδ(ω − ξα) (A.50)

and hence

G0
αβ(ω) =

δαβ
ω − ξα

. (A.51)

This makes physical sense. Harking back to our initial definition of the retarded Green’s

function, consider adding a particle to a non-interacting system in its ground state, where the

particle is added into |α〉 at time t = 0. We know that it will evolve as |ψ(t)〉 = |α〉e−iξαt, and

consequently the probability amplitude that it will be in state |β〉 at some later time is

〈β|ψ(t)〉 = δαβΘ(t)e−iξαt. (A.52)

(Note the Heaviside function enforcing t is a later time.) This is of course nothing less than the

retarded Green’s function iG+
αβ(t), the Fourier transform of which is simply

G+
αβ(ω) = −i

∫ ∞
−∞

dt δαβΘ(t)ei(ω−ξα)t = δαβ
ei(ω−ξα)t

ω − ξα

∣∣∣∣∣
∞

0

=
δαβ

ω + i0+ − ξα
(A.53)

where we resolve the oscillating exponential at infinity with the standard trick of shifting the

singularity off the real axis slightly. This matches the result we already found earlier (Equa-

tion A.51).
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A.6.2 Extending to interacting systems

Building on the results for the non-interacting case, it is customary to introduce the Green’s

function operator as

Ĝ0(ω) =
1

ω + µ− ĥ
(A.54)

where ĥ is the single-particle Hamiltonian. We can extend this to the interacting case by

introducing the self energy Σ:

Ĝ(ω) =
1

ω + µ− ĥ− Σ(ω)
. (A.55)

Because it is defined in this way, the self-energy is a measure of the difference between the

interacting and non-interacting Green’s functions:

Gαβ(ω)−1 = G0
αβ(ω)−1 − Σαβ(ω) (A.56)

and the Green’s function obeys a Dyson equation G = G0 +G0ΣG.

A.6.3 Why imaginary time?

The choice to work in imaginary time may seem like a strange decision, but there is a good

reason for it, and that is to do with finite temperature.

For T 6= 0, the expectation value of a time-independent Hamiltonian in the grand-canonical

ensemble is

〈Ô〉 =
1

Z
Tr
[
e−βK̂Ô

]
(A.57)

where Z = Tr
[
e−βK̂

]
and K̂ = Ĥ − µN̂ . In the Heisenberg picture, time-evolution is offloaded

onto operators, and

ψ̂(x, t) = eiK̂tψ̂(x)e−iK̂t. (A.58)

The time-ordered Green’s function for t > t′ becomes

GTαβ(t, t′) = − i

Z
Tr
[
e−βK̂cα(t)c†β(t′)

]
= − i

Z
Tr
[
e−βK̂

(
eiK̂tĉαe

−iK̂t
)(

e−iK̂t
′
ĉ†βe

iK̂t′
)]
. (A.59)

The presence of these various thermal factors means that GT cannot be cast in the form of a

spectral function à la Equation A.47. However, this problem is resolved if we move to imaginary

frequencies. It is easy to demonstrate that

GTαβ(t+ iβ, t′) =− i

Z
Tr
[
e−βK̂

(
eiK̂(t+iβ)ĉαe

−iK̂(t+iβ)
)(

e−iK̂t
′
ĉ†βe

iK̂t′
)]

=
i

Z
Tr
[
e−βK̂

(
eiK̂tĉαe

−iK̂t
)(

e−iK̂t
′
ĉ†βe

iK̂t′
)]

=−GTαβ(t, t′) (A.60)
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— that is, it is anti-periodic in imaginary time with period β. Likewise, for t < t′, GTαβ(t−iβ, t′) =

−GTαβ(t, t′). We can exploit this by working in imaginary time, in which case G(τ) can be

expressed as a Fourier series

G(τ) =
1

β

∞∑
n=−∞

e−iωnτG(iωn) (A.61)

where ωn = (2n+ 1)π/β. The reverse transform is

G(iωn) =
1

2

∫ β

−β
dτ eiωnτG(τ). (A.62)

This is the end result: for non-zero temperatures, the Green’s function is determined solely by

its values at the Matsubara frequencies, and thus it makes sense to work in this imaginary-

time framework to take advantage of this fact. That said, the process of analytic continuation

(reconstructing real-time Green’s functions from their imaginary-time counterparts) is a difficult

and sensitive process (for example, see Ref. 443).

A.6.4 Extracting system properties from Green’s functions

Knowing the one-particle Green’s function allows one access to a raft of system properties.

A generic operator

The expectation value of an operator Ô =
∑

αβ Oαβc
†
αcβ is given by

〈Ô〉 =
∑
αβ

Oαβ〈c†αcβ〉 = −i
∑
αβ

Oαβ lim
t′→t+

GTαβ(t, t′) =
1

2iπ

∑
αβ

Oαβ lim
η→0+

∫
dωeiηωGTαβ(ω).

(A.63)

This can be rewritten in terms of the spectral function

〈Ô〉 =
∑
αβ

Oαβ

∫
dω

Aαβ(ω)

1 + eβ(ω−µ)
(A.64)

or in terms of the Matsubara frequencies

〈Ô〉 =
1

β

∑
αβn

OαβGαβ(iωn). (A.65)

Density and the density matrix

For the density matrix ρ̂

ραβ =

∫
dω

Aαβ(ω)

1 + eβ(ω−µ)
. (A.66)
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At zero temperature we have

ραα =

∫ µ

−∞
dω Aαα(ω) =

1

π

∫ µ

−∞
dω Im[G+

αα(ω)] (A.67)

and for finite temperature

ραα = Gαα(τ = 0−) =
1

β

∞∑
−∞

e−iω0−Gαα(iωn). (A.68)

Total energy

The total energy of a system of interacting electrons is related to its Green’s function via the

Galitskii-Migdal formula444:

E =
1

2

∫
dr lim

t′→t+
lim
r′→r

(
∂

∂t
− ih0(r)

)
G(r, t; r′, t′) (A.69)

where h0(r) is the independent-particle Hamiltonian. For further details on Green’s functions,

the reader is referred to Refs. 147 and 437.

A.7 Solving an AIM via exact diagonalisation

One of the most computationally-intensive steps in a DMFT calculation is obtaining AIM im-

purity Green’s function from the AIM Hamiltonian. These are related via Equation 4.11, which

was

Gimpmm′(ω) =

〈
ĉm

1

ω − (Ĥ − E0)
ĉ†m′

〉
+

〈
ĉ†m′

1

ω + (Ĥ − E0)
ĉm

〉
(A.70)

where 〈 • 〉 is the thermodynamic average, which at zero temperature becomes 〈ψ0| • |ψ0〉.
This appendix describes how we can resolve this equation using exact diagonalisation (ED)

via the Lanczos algorithm.

A.7.1 The Lanczos algorithm

The Lanczos algorithm is an approach for obtaining the eigenvectors and eigenvalues of a Her-

mitian matrix A, without ever having to perform a full diagonalisation.

Starting with some arbitrary normalised vector |0〉, we compute ε0 = 〈0|A|0〉. Then we

construct ˜|1〉 = Â|0〉 − ε0|0〉, and normalise to obtain |1〉. Importantly, the resulting vector |1〉
is orthogonal to |0〉.

We can now generate a third vector ˜|2〉 = A|1〉 − ε1|1〉 − k1|0〉, where k1 = 〈0|A|1〉, and

normalise to obtain |2〉. Again, |0〉, |1〉, and |2〉 are orthogonal by construction.

Now suppose we were to continue to generate orthogonal vectors according to this pattern

|i+ 1〉 =
1√

〈i|(A− εi)2|i〉+ ki
2
A|i〉 − εi|i〉 − ki|i− 1〉 (A.71)
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to obtain a basis of Lanczos vectors {|i〉}. In this basis, the matrix A is tridiagonal:†

Aij =



ε0 k1 0 · · · · · ·
k1 ε1 k2 0 · · ·
0 k2 ε2 k3 0
... 0 k3 ε3

. . .
...

... 0
. . .

. . .


ij

. (A.72)

From here, it is straightforward to calculate the eigenvectors and eigenvalues of A.

As an approximate scheme, one need only consider the first L + 1 Lanczos vectors. In this

case, Ãij =
∑L

kl〈i|k〉〈k|A|l〉〈l|j〉 is an (L + 1)-by-(L + 1) tridiagonal matrix, the eigenvalue

problem Ãcν = Eνc
ν is straightforward to solve, and the eigenvectors of Ã are approximated

by |ν〉 =
∑L

i c
ν
i |i〉. By progressively increasing L and periodically recalculating {E0, ..., EL} one

can converge to the eigenvectors and energies of A without ever doing the full diagonalisation.

Note that this algorithm is very cheap; multiplication by Ã is the most expensive step, and

scales as O(L2). It also is worthwhile noting that because the Lanczos basis is generated via

repeated action of A on the previous Lanczos vector, the Lanczos algorithm rapidly finds the

vectors |i〉 for which A|i〉 is large — another advantage of the method.

A.7.2 Applying the Lanczos method to the AIM

Let us return now to the problem at hand: we would like to calculate

Gαβimp(ω) =

〈
ψ0

∣∣∣∣∣ĉα 1

ω+ − (Ĥ − E0)
ĉ†β

∣∣∣∣∣ψ0

〉
+

〈
ψ0

∣∣∣∣∣ĉ†β 1

ω+ + (Ĥ − E0)
ĉα

∣∣∣∣∣ψ0

〉
.

Obtaining |ψ0〉 is straightforward: we can obtain it by performing the Lanczos algorithm on Ĥ,

as described in the previous section. Given |ψ0〉, some additional tricks are necessary to arrive

at the Green’s function. Let us first focus on the diagonal components Gααimp[ω], in which case

we are interested in quantities of the form〈
ψ0

∣∣∣∣O† 1

z −HO
∣∣∣∣ψ0

〉
. (A.73)

for some generic operator O. To calculate this, we perform the Lanczos algorithm on H — but

now, instead of starting with a random vector, we choose

|0〉 =
O|ψ0〉√
〈ψ0|O†O|ψ0〉

. (A.74)

†This is straightforward to show. For example, 〈j|A|i〉 = 〈j|
(

˜|i+ 1〉+ εi|i〉+ ki|i− 1〉〉
)

= 0 if i ≤ j− 2. The

other entries can be obtained via similar logic.
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In the Lanczos basis generated using this vector, we have

(z −H)ij =



z − ε0 −k1 0 · · · · · ·
−k1 z − ε1 −k2 0 · · ·

0 −k2 z − ε2 −k3 0
... 0 −k3 z − ε3

. . .
...

... 0
. . .

. . .


ij

(A.75)

Crucially, the quantity we ultimately want to obtain (Equation A.73) is (z − H)−1
00 , which is

given† by the continued fraction

1

z − ε0 − |k1|2
z−ε1− |k2|2

z−ε2−···

(A.81)

which can be numerically evaluated (via, for example, the modified Lentz method445). Thus we

can calculate the diagonal terms Gααimp[ω] by setting O = ĉα. The off-diagonal terms, meanwhile,

require some clever trickery: it can be shown446 that

Gαβimp = Gαβ − 1

2

(
Gααimp +Gββimp

)
(A.82)

where Gαβ is the result of repeating the above process for the diagonal elements, but now using

the initial Lanczos matrix O = 1√
2

(ĉα + cβ). (This avoids a vanishing denominator 〈ψ0|c†αcβ|ψ0〉
if we were to blindly proceed with the same procedure as for the diagonal elements.)

†The ij-element of the inverse of A is given by

(A−1)ij = (−1)i+j
det ∆ij

detA
(A.76)

where ∆ij is the sub-matrix of A obtained by eliminating from A the i-th row and j-th column. In the case of a
tridiagonal matrix,

detA = det

A00 A01 0
A10 A11 A12 0

0 A21 A22 A23 0
0 A32 A33 A34

0 A43 A44

 = A00 det

(
A11 A12 0
A21 A22 A23 0

0 A32 A33 A34
0 A43 A44

)
−A01A10 det

(
A22 A23 0
A32 A33 A34

0 A43 A44

)
.

(A.77)
If Di is determinant of the matrix A having removed the first i rows and columns, it follows that

D0

D1
=
A00D1 − |A01|2D2

D1
= A00 −

A01A10

D1/D2
. (A.78)

This reasoning can be extended to
Dl
Dl+1

= All −
|All+1|2

Dl+1/Dl+2
(A.79)

and thus the first element of the inverse of A is given by the continued fraction

(A−1)00 =
1

D0/D1
=

1

A00 − |A01|2

A11− |A12|2
A22−···

(A.80)

as claimed.
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A.8 Is superexchange via empty orbitals viable?

∆1

∆2

d ligand d

U

Figure A.1: A sketch of two d orbitals bridged by a ligand orbital.

Consider the system displayed in Figure A.1. Conventional superexchange goes via the filled

ligand orbital (and hence coupling is dependent on ∆1). But what about pathways via the empty

ligand orbital? Do such pathways give rise to any spin coupling? And, if so, is this coupling

ferromagnetic or antiferromagnetic?

For this subsystem, the Hamiltonian is

H = −t
∑
iσ

(
c†iσcpσ + c†pσciσ

)
+ ∆2

∑
σ

npσ + U
∑
i

ni↑ni↓ (A.83)

where t is the metal-to-ligand hopping, i is the metal index, p signifies the ligand site, σ is the

spin index, ∆2 is the difference in the energies of the empty ligand orbital and the metal sites

εp − εd, and U is the on-site Hubbard interaction on the metal sites.

Let us first explore the Hilbert space of two spin-up electrons, which has the basis {c†1↑c
†
2↑|0〉,

c†1↑c
†
p↑|0〉, c

†
2↑c
†
p↑|0〉}. In this Hilbert space, the Hamiltonian is

H =

 0 −t t

−t ∆2 0

t 0 ∆2

 =

(
A T01

T10 B

)
(A.84)

where lines (and corresponding block matrices) delineate the subspaces where there is or isn’t an

electron on the ligand site. Downfolding the ligand states gives the energy-dependent effective

Hamiltonian

Heff(ω) = A + T01(ω −B)−1T10 ≈ A + T01B−1T10 = −2t2

∆2
(A.85)

where in the second step we take the static limit (ω → 0).

Now let us analogously explore two-electron states with opposite spin. Now our basis is

much larger: {c†1↑c
†
2↓|0〉, c

†
2↑c
†
1↓|0〉, c

†
1↑c
†
p↓|0〉, c

†
2↑c
†
p↓|0〉, c

†
p↑c
†
1↓|0〉, c

†
p↑c
†
2↓|0〉, c

†
1↑c
†
1↓|0〉, c

†
2↑c
†
2↓|0〉,
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c†p↑c
†
p↓|0〉}. Our Hamiltonian is

H =



0 0 −t 0 0 −t 0 0 0

0 0 0 −t −t 0 0 0 0

−t 0 ∆2 0 0 0 −t 0 −t
0 −t 0 ∆2 0 0 0 −t −t
0 −t 0 0 ∆2 0 −t 0 −t
−t 0 0 0 0 ∆2 0 −t −t
0 0 −t 0 −t 0 U 0 0

0 0 0 −t 0 −t 0 U 0

0 0 −t −t −t −t 0 0 2∆2


=

 A T01

T10 B T12

T21 C

 (A.86)

where now we have three subspaces: that with the two electrons on the two metal sites, those

states which are coupled to the first subspace, and those states which are not coupled to the

first subspace. Downfolding as before gives

Heff(ω) =A + T01(ω −B−T12(ω −C)−1T21)−1T10

≈A + T01B−1T12C−1T21B−1T10

=− 2t2

∆2

(
1 0

0 1

)
− 4t4

∆2
2

(
1

∆2
+

1

U

)(
1 1

1 1

)
(A.87)

where in the second step we take the static limit (ω → 0). Defining

α = −2t2

∆2
; β = −4t4

∆2
2

(
1

∆2
+

1

U

)
(A.88)

then the Hamiltonian (
α+ β β

β α+ β

)
(A.89)

obviously has eigenvectors and eigenvalues

ε1 = α; |1〉 =
1√
2

(
c†1↑c

†
2↓ − c

†
2↑c
†
1↓

)
|0〉 =

1√
2

(| ↑, ↓〉+ | ↓, ↑〉) (A.90)

ε2 = α+ 2β; |2〉 =
1√
2

(
c†1↑c

†
2↓ + c†2↑c

†
1↓

)
|0〉 =

1√
2

(| ↑, ↓〉 − | ↓, ↑〉) (A.91)

— the triplet and singlet, respectively. (Note that getting the correct ordering of the creation

operators is crucial!) The triplet state has the same energy α as the aligned-spin case (Equa-

tion A.85). Meanwhile, the singlet state is lower in energy; i.e. this superexchange mechanism

gives rise to an antiferromagnetic spin coupling

J = −2β =
8t4

∆2
2

(
1

∆2
+

1

U

)
. (A.92)

(Note that the divergence as ∆2 → 0 is not physical: in this limit the downfolding is no longer

valid.)
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(a) without exclusion region (b) with exclusion region

Figure A.2: The cluster model of the OEC (white spheres) and ambient protein (orange), showing the
implicit solvent isosurfaces ε = ε∞/2. The ambient solvent (blue) is removed above the x = 0 plane to
reveal the enclosed protein cluster: (a) the default implicit solvent cavity. Pockets of solvent that are
disconnected from the ambient solvent are highlighted in red. Because the cluster already contains explicit
water atoms, the presence of implicit solvent within the cluster is undesirable; (b) upon application of a
smooth spherical exclusion region, the implicit solvent was expelled from the cluster.

This result is very similar to conventional superexchange via the filled ligand orbital, which

gives the effective Hamiltonians

Heff = − 2t2

U −∆1
(A.93)

for parallel spins and

Heff = − 2t2

U −∆1

(
1 0

0 1

)
− 2t4

(U −∆1)2

(
1

U
+

1

U −∆1

)(
1 1

1 1

)
(A.94)

for anti-parallel spins, where again ∆1 is the difference of the orbital energies εp − εd, but now

for the filled p orbital (typically, as in Figure A.1, ∆1 < 0). The resulting spin-coupling is

J =
4t4

(U −∆1)2

(
1

U
+

1

U −∆1

)
. (A.95)

In hindsight, the result of this appendix is obvious: superexchange via empty orbitals is nothing

less than superexchange of holes.

A.9 Smooth implicit solvent exclusion regions

During the optimisation of the OEC (Section 6.1) I quickly noticed some anomalous solvation

energies, caused by locations within the cluster where the density dropped so low that pockets

of implicit solvent started to form (see the red surfaces in Figure A.2a). This is undesired: all

the water molecules within the cluster were explicitly included, so the implicit solvent should be

restricted to outside the cluster.

In order to overcome this, I implemented smooth implicit solvent exclusion regions in ONETEP.

Implicit solvent exclusion regions were already implemented, but they had hard-walled bound-

aries which had to coincide with areas of high electronic density, since the Poisson equation
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Figure A.3: A cross-section of the dielectric permittivity ε for a simulation cell containing a spherical,
a rectangular, and a cylindrical smoothed dielectric exclusion region, as well as a H2 molecule. The edges
of the exclusion regions are shown with solid white lines. Above the main figure is the profile of the
permittivity along the dashed line as given by ONETEP (εdashed) as well as the theoretical result for a
smearing length of r0 = 1 a0.

solver fails when it encounters a discontinuity in the permittivity. Hard-walled exclusion re-

gions are perfectly adequate for, say, a carbon nanotube, where it would be straightforward to

use a hard-walled cylinder to exclude implicit solvent from within the tube. However, this is

not possible for our irregular cluster model of the OEC without being very conservative with

the exclusion region. Instead, I added smoothing to the boundary of any exclusion region i.e.

allowing for multiple exclusion regions we have

ε = ε∞ − (ε∞ − 1) min

{
1.0,

∑
S

fS(r)

}
(A.96)

where the smoothing of an exclusion region S is given by a Fermi-Dirac distribution centred on

the exclusion region surface and with some characteristic smoothing width r0 i.e.

fS(r) =
1

1 + exp(r/r0)
(A.97)

where r is the distance to the nearest exclusion region surface, is positive if outside the region,

and negative inside. The result is demonstrated in Figure A.3, where a series of different solvent

exclusion regions were tested in a simulation cell containing a lone H2 molecule. The smearing

is clearly visible, and the Poisson module could successfully solve this system. (If these regions

were hard-walled, the solver would crash.) This functionality was implemented in ONETEP

v4.5.15.19. The result of applying a spherical, smoothed exclusion region to the OEC cluster

model is shown in Figure A.2b: it expelled the pockets of implicit solvent within the cluster.
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